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1. F́ısica da matéria condensada. 2. Elétrons fortemente
correlacionados. I. Coutinho-Filho, Mauŕıcio Domingues (Orientador).
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Resumo

Diante dos recentes resultados experimentais sobre propriedades magnéticas
e supercontudoras de materias compostos com estruturas cristalinas “rede
colmeia” (honeycomb) e hexagonal, nesta tese utilizamos métodos da teoria
de campos e da teoria quântica de muitos corpos para investigar as pro-
priedades magnéticas e supercondutoras do modelo de Hubbard no limite de
acoplamento forte na rede honeycomb, incluindo os regimes de banda semi-
cheia e dopada (buracos). No âmbito do formalismo de integração funcional,
obtivemos uma densidade de lagrangiana associada aos graus de liberdade de
carga (campos de Grassmann) e de spin [campos de calibre SU(2)]. O hamil-
toniano relacionado aos graus de liberdade de carga é exatamente diagonal-
izado. No regime de acoplamento forte, derivamos uma teoria perturbativa
de baixa energia adequada para descrever as fases (quânticas) magnéticas e
supercondutoras nos regimes de banda semi-cheia e dopada por buracos. No
regime de banda semi-cheia investigamos os efeitos das flutuações quânticas
de spin na fase antiferromagnética (AF) no contexto do modelo de Heisen-
berg, utilizando uma teoria perturbativa de ondas de spin até O (1/S2),
onde S é a magnitude do spin. Com efeito, calculamos a energia do es-
tado fundamental e a magnetização por śıtio, cujos resultados estão em boa
concordância com estudos anteriores. Além disso, analisamos a competição
AF-VBS (estado cristalino de ligação de valência) por meio do modelo σ não-
linear com a presença do termo topológico de Hopf. No desafiante regime
dopado por buracos, nossa abordagem possibilitou a derivação de um hamil-
toniano t-J e a análise do papel desempenhado pelas flutuações quânticas de
carga e de spin na energia do estado fundamental da fase AF e, principal-
mente, no colapso da fase AF para uma dopagem cŕıtica; os resultados são
aferidos com recentes simulações de Grassmann tensor product state. Em
adição, realizamos um estudo extensivo das estruturas eletrônicas do sistema
dopado para cada fase competidora, na ausência de flutuações quânticas de
spin: AF, ferromagnética (FM) e supercondutora (SC) induzida por efeitos
puramente eletrônicos com simetria (pareamento tipo singleto) s, dx2−y2 ou
dxy. Neste contexto, uma análise energética do estado fundamental dessas
fases revela que a fase AF prevalece no regime de baixa dopagem, enquanto
que o estado supercondutor com simetria quiral dx2−y2 + idxy predomina
nas proximidades da singularidade de Van Hove (regime de alta dopagem).
Destacamos ainda que uma análise termodinâmica da fase supercondutora
demonstra que a temperatura cŕıtica está diretamente relacionada à con-
stante de troca J = 4t2/U , onde t é a amplitude de hopping e U é a re-
pulsão coulombiana intra-śıtio do modelo de Hubbard (origem puramente
eletrônica). Finalmente, ressaltamos que a competição entre as fases AF -
dx2−y2 + idxy SC se manifesta pela ocorrência de uma transição de primeira
ordem acompanhada da separação espacial das referidas fases.



Palavras-chave: Fases magnéticas e supercondutoras. Rede honeycomb.
Modelo de Hubbard no limite de acoplamento forte. Modelo de Heisenberg. Mod-
elo t-J . Modelo σ não-linear.



Abstract

In view of quite recent experimental activities on magnetic and superconducting
properties of honeycomb and hexagonal lattice based materials, in this thesis we
have used field-theoretic and many-body methods to investigate magnetic and su-
perconducting properties of the large-U Hubbard model on the honeycomb lattice
at half-filling and in the hole-doped regime. Within the framework of a functional-
integral approach, we obtain the Lagrangian density associated with the charge
(Grassmann fields) and spin [SU(2) gauge fields] degrees of freedom. The Hamil-
tonian related to the charge degrees of freedom is exactly diagonalized. In the
strong-coupling regime, we derive a perturbative low-energy theory suitable to de-
scribe the (quantum) magnetic and superconducting phases at half-filling and in
the hole-doped regime. At half-filling, we deal with the underlying spin degrees of
freedom of the quantum antiferromagnetic (AF) Heisenberg model by employing a
second-order spin-wave analysis, in which case we have calculated the ground-state
energy and the staggered magnetization; the results are in very good agreement
with previous studies. Further, in the continuum, we derive a nonlinear σ-model
with a topological Hopf term that describes the AF-VBS (valence bond solid) com-
petition. In the challenging hole-doped regime, our approach allows the derivation
of a t-J Hamiltonian, and the analysis of the role played by charge and spin quan-
tum fluctuations on the ground-state energy and, particularly, on the breakdown
of the AF order at a critical hole doping; the results are benchmarked against re-
cent Grassmann tensor product state simulations. In addition, we have performed
an extensive study of the electronic structure of the doped system for each com-
peting phase: AF, ferromagnetic (FM), and (spin-singlet pairing) s-, dx2−y2 - and
dxy -wave superconducting (SC) state induced by purely electronic effects. In this
context, an energetic analysis of the ground state of these phases reveal that the
AF order prevails for low hole doping, while a dominantly chiral dx2−y2 + idxy
superconducting state was found in the vicinity of the Van Hove singularity (high
hole doping). We also stress that a thermodynamic analysis of the superconduct-
ing phase shows that the critical temperature is directly related to the exchange
constant J = 4t2/U , in which t denotes the hopping amplitude and U the on-site
Coulomb repulsion of the Hubbard model (purely electronic origin). Remarkably,
the competition between the AF and dx2−y2 + idxy SC phases takes place by the
occurrence of a first-order transition accompanied by a spatial phase separation of
the referred phases.

Keywords: Superconducting and magnetic phases. Honeycomb lattice. Large-
U Hubbard model. Heisenberg model. t-J model. Nonlinear σ-model.
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Néel state. Left: There is broken spin rotation symmetry in the Néel
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1. Introduction

1.1. Strongly Correlated Electrons in Two Dimensions

The advent of quantum mechanics has revolutionized the physicist’s view of the
world. Together with Einstein’s theory of relativity and gravitation, they con-
stitute the most celebrated events in the physics of the twentieth century. After
almost a century of intensive research, its laws continue to surprise us. Indeed,
its impact has been significant both on the scientific and technological realm. For
instance, neither the transistor nor the laser could have been constructed without
quantum mechanics. In fact, the two main phenomena that motivate this thesis,
magnetism and superconductivity, are only explained using quantum mechanics
concepts.

In the beginning of quantum mechanics, Paul Dirac commented in his paper
on “Quantum Mechanics of Many-Electron Systems” [1]:

“ The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be de-
veloped, which can lead to an explanation of the main features of
complex atomic systems without too much computation.”

Notwithstanding, despite the fact that quantum mechanics correctly describes
electrons and atoms (molecules), a straightforward application of these laws is
probably pointless without the development of clever theoretical methods and
new concepts, which share common insights with many areas of physics, chemistry,
biology, and the so-called complex systems.

On the other hand, Philip W. Anderson, in his brilliant article “More is Dif-
ferent” [2], remarked:

18
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“ The ability to reduce everything to simple fundamental laws
does not imply the ability to start from those laws and reconstruct
the universe. At each new level of complexity, entirely new laws,
concepts and generalizations are necessary, requiring inspiration
and creativity to just as great a degree as in the previous one.
The understanding of these behaviors requires research which I
think is as fundamental in its nature as any other. ”

Current research in condensed matter physics, particularly that associated with
strongly correlated electron systems, is intimately connected with the point of view
advocate by Philip W. Anderson.

Nowadays, one among the big challenges in many-body physics is high Tc (tran-
sition temperature) superconductivity [3,4]. Since its discovery in the cuprates in
1986 [5], steady progress has been achieved in the understanding of these strongly
interacting systems. Notwithstanding, a fully consistent theory is still lacking.
It is generally believed that the strong Coulomb repulsion inside the two dimen-
sional CuO2 planes plays an important role as illustrated in Fig. 1.1 (i.e., the
CuO2 planes are primarily responsible for superconductivity.) The model that is
pertinent to this research is the Hubbard model on a square lattice [6].

Figure 1.1: (A) Crystal structure of La2CuO4, the “parent compound” of the
La2−xSrxCuO4 family of high-temperature superconductors. The crucial struc-
tural subunit is the Cu-O2 plane, which extends in the a − b direction; parts of
three Cu-O2 planes are shown. Electronic couplings in the interplane (c) direction
are very weak. (B) Schematic of Cu-O2 plane, the crucial structural subunit for
high-Tc superconductivity. Red arrows indicate a possible alignment of spins in
the antiferromagnetic ground state of La2CuO4. Speckled shading indicates oxy-
gen “pσ orbitals”; coupling through these orbitals leads to superexchange in the
insulator and carrier motion in the doped, metallic state. Figure and caption taken
from [3].
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Figure 1.2: Phase diagram of n- and p-type superconductors, showing super-
conductivity (SC), antiferromagnetic (AF), pseudogap, and normal-metal regions.
Figure and caption taken from [7].

The wide range of phenomena displayed in the phase diagram of Fig. 1.2
explain the difficulty of constructing a consistent theory of the cuprate materials.
Parts of the phase diagram are well comprehended in their respective framework;
however, these cease to be valid for other regions. The undoped system is a good
example of a Mott insulator (an insulating state induced by Coulomb interaction
and correlation effects) and exhibits antiferromagnetic long range order (AF). This
AF order is destroyed by doping, and a superconducting phase emerges. Upon
further doping the critical temperature Tc of the superconducting phase raises to
its maximum value and beyond the optimal doping Tc decreases, such that the
system turns into a normal metal at high enough doping.

The origin of superconductivity is always the main goal, i.e., the mechanism un-
derlying the attraction between electrons. The widely successful Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity [8] provides a good description of
many “conventional” superconductors. Within the BCS framework, the two elec-
trons effectively attract each other by an interaction mediated by phonon (quanta
of lattice vibrations). A schematic version of this conventional scenario is shown
in the upper panel of Fig. 1.3. On the other hand, there are classes of “unconven-
tional” superconductors that can not be understood within the standard (phonon-
mediated) BCS framework, but rather the binding of electrons into Cooper pairs
might occur via the repulsive Coulomb interaction, without significant help from
the lattice vibrations. The unconventional scenario for superconductivity is de-
picted in the lower panel of Fig. 1.3 [9]. The understanding of these pairing
mechanisms in unconventional superconductors has been the focus of extensive
theoretical and experimental investigations.

Another topical subject associated with strongly correlated systems is quantum
magnetism. Magnetic materials, arising due to itinerant or localized electrons, is
ubiquitous in nature and in the laboratory. In the insulating phase a great number
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Figure 1.3: Two routes to superconductivity. Upper panel: two electrons
attract each other when the first (1) polarizes the lattice, and the second (2) is
attracted to this region. The pair wave function φ(r) of the relative electronic co-
ordinate r, has the full symmetry of the crystal and gives rise to a gap function of
the same sign everywhere on the Fermi surface (green= +). Lower panel: electrons
interact with each other via Coulomb interaction. Shown is an example where the
dominant interaction is the magnetic exchange arising between opposite spin elec-
trons due to Coulomb forces. The first electron polarizes the conduction electron
gas antiferromagnetically, and an opposite spin electron can lower its energy in
this locally polarized region. In this case φ(r) has a node at the origin, helping to
avoid the Coulomb interaction, and can have either s+/- or dx2−y2 form, as shown.
These two possibilities lead to gap functions of opposite sign on the Fermi surface
(orange= -). Figure and caption taken from [9].

of these materials are governed by the spins (only degree of freedom) of magnetic
ions, coupled via the exchange interaction J ; in the context of the Hubbard model
J = 4t2/U , where t is the nearest-neighbor hopping amplitude and U is the on-site
Coulomb repulsion. In a two dimensional spin systems, strong enough values of U
imply in a antiferromagnetic structure, i.e., Néel order. However, for small values
of U quantum fluctuations may destroy the Néel order or to turn valence bond
solid (VBS) more stable than the Néel phase. The occurrence of a VBS phase
and of a quantum critical point separating the referred phases requires the exis-
tence of competing exchange interactions, special anisotropies interactions, such as
Dzyaloshinskii-Moriya interaction, and topological arguments, as depicted in Fig.
1.4.
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Figure 1.4: Quantum criticality extends to nonzero temperatures. In the blue
region for small g, thermal effects induce spin waves that distort the Néel an-
tiferromagnetic ordering. For large g, thermal fluctuations break dimers in the
blue region and from quasiparticles called triplon. The dynamics of both types
of excitations can be described quasi-classically. Quantum criticality appears in
the intermediate orange region, where there is no description of the dynamics in
terms of nontrivial entangled quantum excitations of the quantum critical point
gc. Figure and caption taken from [10].

Honeycomb and hexagonal lattice materials has attracted considerable scien-
tific interest in the last decade, due to their remarkable electronic, magnetic and
superconducting properties [11]. In the next Sections, we shall discuss magnetism
and superconductivity in honeycomb materials.

1.2. Magnetism

In view of quite recent experimental activities on magnetic properties, it has been
reported that the undoped Cu2 (3d9) spin-1

2 (S = 1/2) compound In3Cu2VO9

displays an antiferromagnetic Néel (AF) ground state [12–14]. The magnetic Cu2+

(S=1/2) network in the c-plane is expected to take a honeycomb structure with
the nonmagnetic V5+ ions in the center, as depicted in bottom right-hand side of
Fig. 1.5. As each honeycomb layer is well separated from other honeycomb layers
by nonmagnetic In3+ ions (along the c-axis), this compound can be considered
a quasi 2D system. Likewise, experimental evidence has been provided that the
undoped materials Na3T2SbO6 [15], with T=Cu2+; T=Ni2+ (3d94s1; S = 1) and
T=Co2+ (3d7; S = 3/2) also exhibit AF order.

Doctoral Thesis - Department of Physics - UFPE



Strongly Correlated Electrons in Two Dimensions 23

Figure 1.5: Perspective view of the crystal structure of InCu2/3V1/3O3 with [InO6]
and [MO5] polyhedra (left). On the right (top), a [MO5] entity is shown with the
thermal ellipsoids. Below the in-plane Cu/V order representing in the honeycomb
structure (dashed lines) without the oxygen atoms is given with the respective
unit cell. Note that there are two distinct crystallographic sites for copper and
vanadium. Figure and caption taken from [13].

In addition, it was experimentally observed [16] that the Ru-Ru bonds in the
honeycomb lattice material Li2RuO3 have a strong tendency to form local dimers
with covalent bonds via direct overlap of Ru 4d orbitals at temperatures below
270 ◦C. This signals the formation of a valence bond crystal (VBS), as sketched
in Fig. 1.6. Moreover, experimental data have also indicated that the compound
Na2IrO3 (see Fig. 1.7) displays an AF Mott-insulating ground state [17].

Figure 1.6: Armchair (a) and parallel (b) dimerized structures of Li2RuO3.
Shorter (dimerized) Ru-Ru bonds are marked with a dark bar, longer bonds with
a light bar. Figure and caption taken from [16].
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Figure 1.7: The crystallographic structure of Na2IrO3. The Na, Ir, and O atoms
are shown as blue (black), red (dark gray) , and yellow (light gray) spheres, re-
spectively. (a) The view perpendicular to the c axis showing the layered structure
with layers containing only Na atoms alternating slabs of NaIr2O6 stacked along
the c axis. The IrO6 octahedra are shown in pink with the (red) Ir atoms sitting
in the middle. (b) One of the NaIr2O6 slabs viewed down the c axis to highlight
the honeycomb lattice of Ir atoms within the layer. The Na atoms occupy voids
between the IrO6. Figure and caption taken from [17].

In addition, it worth mentioning that the authors in Ref. [18] used polar-
ized neutron spectroscopy to fully characterize the magnetic fluctuations in the
metal-organic compound Cu(DCOO)2.4D2O (CFTD), a known realization of the
quantum square-lattice Heisenberg antiferromagnetic model . In Fig. 1.8 (upper
panel), the authors compared the experimental CFTD data, spin-wave theory with
first-order and third-order 1/S corrections, series expansion, and quantum Monte
Carlo. The spin-wave theories described very well the low-energy branches. Ef-
fects of fractional excitations (S=1/2) are detected at high energies for k = (π, 0)
(magnetic zone boundary), as shown in the lower panel of Fig. 1.8.

The physics of electronic correlation in honeycomb and hexagonal lattice mate-
rials has been the issue of extensive theoretical investigations [11]. Several attempts
have been undertaken with the purpose of describing the underlying mechanisms
governing the physical properties of materials mentioned above.

In the context of the Heisenberg model, the occurrence of an AF ground state
on the honeycomb lattice at half filling has been studied via quantum Monte Carlo
(QMC) simulations [19, 20], second-order spin-wave perturbation theory [21, 22],
series expansion [23], and tensor product state (TPS) numerical calculations [24,25]
and Grassmann tensor product state (GTPS) [26].
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Figure 1.8: Upper panel: The magnon-like dispersion extracted from a (red
points) compared to the experimental CFTD data, spin-wave theory with first-
order (solid black line) and third-order (green triangles) 1/S corrections, series ex-
pansion (dashed purple line) and quantum Monte Carlo (cyan diamonds). Lower
panel: Zoom-in on the magnon-like mode dispersion along the magnetic zone
boundary. Figure and caption taken from [18].

The Hubbard model at half filling and generalized (competitive interactions)
Heisenberg models [27] have been used with the aim of describing the possible
occurrence of a VBS ground state [28–31]. We remark that in the context of the
Hubbard model, QMC simulations have indicated a spin liquid ground state in a
wide region of the phase diagram, between a semi-metal (SM) and an antiferro-
magnetic insulator [32], as shown in Fig. 1.9. However, very recently, Sorella et
al. [33], by performing detailed QMC calculations, have reexamined the ground-
state phase diagram of this model and did not find the occurrence of a VBS or
liquid phase. Indeed, they predicted a robust AF phase to occur in the strong-
coupling regime (Heisenberg limit), as shown in Fig. 1.10. On the other hand, it
has been shown that the AF-VBS competition takes place within the framework
of the theory of unconventional quantum critical points [34–37]. Senthil et. al [35]
have proposed that the AF-VBS transition do not fit into the Landau-Ginzburg-
Wilson (LGW) paradigm, since it is a continuous phase transition between two
ordered states with different symmetries.
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Figure 1.9: Phase diagram for the Hubbard model on the honeycomb
lattice at half-filling. The semimetal (SM) and the antiferromagnetic Mott insu-
lator (AFMI) are separated by a gapped spin-liquid (SL) phase in an intermediate-
coupling regime. ∆sp(K) denotes the single-particle gap and ∆s denotes the spin
gap; ms denotes the staggered magnetization, whose saturation value is 1/2. Inset:
the honeycomb lattice with primitive vectors a1 and a2, and the reciprocal lattice
with primitive vectors b1 and b2. Open and filled sites, respectively, indicate two
different sublattices. The Dirac points K and K

′
and the M and Γ points are

marked. Figure and caption taken from Ref. [32].

The crucial elements responsible for this continuous transition are topological
objects called hedgehogs.

In a broader perspective, the t-J model has provided a comprehensive frame-
work for investigating the effect of charge and spin quantum fluctuations on doped
Mott insulators [38–41]. Recently, a numerical analysis through GTPS [26] calcu-
lations of the t-J model on the honeycomb lattice has been reported, in particular
the data concerning the breakdown of the AF order due to hole doping, as shown
in Fig. 1.11.
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Figure 1.10: The ground state phase diagram for the half-filled Hub-
bard model on the honeycomb lattice. Antiferromagnetic order parame-
ter ms (open squares) as a function of U/t. The antiferromagnetic order pa-
rameter ms is obtained by finite-size extrapolating the square root of SAF /N ,
ms = limL→∞

√
SAF /N . For comparison, ms estimated by finite-size extrapo-

lating SAF for ∆τt= 0.1 without the ∆τ correction is also plotted (solid circles).
SM and AFMI stand for semi-metal and antiferromagnetic insulator, respectively.
Solid lines are fit of ms with the critical behavior ms = (Uc − U)β, for selected
critical exponents β. In any case, the critical Uc ranges from Uc/t = 3.8 (β = 1)
to Uc/t = 3.9 (β = 0.3362). Our best estimate is Uc/t = 3.869 ± 0.013. Figure
and caption taken from Ref. [33].
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Figure 1.11: Left: ground-state energy as a function of doping. Inset: Stagger
magnetization as a function of doping. Right: The comparison of DMRG/ED
and GTPS calculations for stagger magnetization m. Figure and caption taken
from [26].

1.3. Unconventional Superconductivity

Several experiments have provided evidence of unconventional superconductivity in
honeycomb and hexagonal lattice materials. For instance, angle-resolved photoe-
mission spectroscopy (ARPES) measurements have suggested that doped graphene
(see Fig. 1.12) might exhibits a purely electronically mediated superconductivity
close to the van Hove singularity [42].

Figure 1.12: STM topography revealing atomically resolved graphene lattice. The
blue and green spheres indicate two carbon atoms of the unit cell labeled by A
and B. Tunneling parameters are I = 10 pA and U = 50 mV. Figure and caption
taken from [43].
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Figure 1.13: (a) Crystal structure of SrPtAs, where red, blue, and grey spheres
denote Pt, As, and Sr atoms, respectively. (b) Brillouin zone of SrPtAs and high
symmetry points. Figure and caption taken from [44].

Another example is the recently discovered superconducting pnictide, SrPtAs.
This compound displays a hexagonal structure with weakly coupled PtAs layers
forming a honeycomb lattice, as decipted in Fig. 1.13. Further, it has an interesting
physics associated with its hexagonal crystal structure. For example, it exhibits
strong spin-orbit coupling at the Pt ions and the PtAs layers break inversion
symmetry. Indeed, experimental data have indicated that this material exhibits a
chiral d-wave state [44,45].

Several theoretical attempts have been made to describe the emergence of su-
perconductivity in the above mentioned materials. It was shown by means of
functional renormalization group techniques that in the weak-coupling regime the
purely on-site repulsive Hubbard interaction U can lead to a dx2−y2 + idxy super-
conducting state [46], as shown in Figs. 1.14 and 1.15.
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Figure 1.14: Chiral superconductivity arises when graphene is doped to
the van Hove singularity at the saddle point (M points of the Brillouin
zone).(a) d + id pairing exhibiting phase winding around the hexagonal Fermi
surface, which breaks TRS and parity (θ = 2π/3). (b) Conduction band for mono-
layer graphene. At 5/8 filling of the π band, the Fermi surface is hexagonal, and
the DOS strongly enhances the effect of interactions, driving the system into a chi-
ral superconducting state (a). As the Fermi surface is nested, superconductivity
competes with density-wave instabilities, and a full renormalization group treat-
ment is required to establish the dominance of superconductivity. A hexagonal
Fermi surface and log divergent density of states also arise at 3/8 filling, giving
rise to analogous physics. Figure and caption taken from [46].
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Figure 1.15: Possible interactions in the patch model. (a) Feynman
diagrams representing allowed two-particle scattering processes among different
patches. Solid and dashed lines represent fermions on different patches, whereas
wavy lines represent interactions. (b) Pictorial representation of these scattering
processes, superimposed on a contour plot of the energy dispersion. Each scatter-
ing process comes in three flavours, according to the patches involved. However,
it follows by symmetry that the scattering amplitudes are independent of the
patches involved, and therefore we suppress the flavour labels. Flow of coupling
with renormalization group scale y, starting from repulsive interactions.
Note that the coupling g4 changes sign and becomes attractive, leading to a (su-
perconducting) instability at the energy scale yc. Inset: Critical couplings Gi
near yc as a function of the nesting parameter at the ordering energy scale d (yc).
The dominance of superconductivity over spin-density-wave order arises because
−G4 > G2 for all values of d1 (yc). The renormalization group flow is obtained of
the β-functions with the initial conditions gi (0) = 0.1 and modeling the nesting
parameter as d1

(
1/
√

1 + y
)
. The qualitative features of the flow are insensitive

to the initial conditions and to how we model d1. The critical coupling (inset)
are universal and independent of the initial conditions. Figure and caption taken
form [46].

We also mention that the chiral dx2−y2 + idxy superconducting state has also
been found in the strong-coupling regime using renormalized mean-field theory
(RIFT) [47] and GTPS [26]. Notice that in Ref. [47] the calculated values for
both s-wave and d-wave pairing parameters are nonzero, even for values of doping
above the critical percolation threshold of the honeycomb lattice (δ = 0.42± 0.01;
see Chapter 4), as shown in Fig. 1.16. Lastly, we would like to stress that the
authors of Ref. [26] did not succeeded in evaluating the pairing superconducting
order parameter ∆ for doping values higher than δ = 0.15, as shown in Fig. 1.17.
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Figure 1.16: Spin gap ∆d+id and ∆s at T = 0 and superconducting transition
temperature (Tc ∼ gt) when J2 = 0 for the d ± id and ES scenarios as a
function of the hole doping parameter δ = 1− n. The order parameters are
taken in units of 3gsJ/4. Inset: one can observe that the particle-hole order
parameters behave identically for the d ± id and ES situations. Figure and
caption taken from [47].

Figure 1.17: SC order parameters as a function of doping. Figure and caption
taken from [26].
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1.4. Outline of the Thesis

In Chapter 2, we shall use field-theoretic and many-body methods to establish a
low-energy perturbative theory suitable to describe the magnetic and supercon-
ducting properties of the large-U Hubbard model on the honeycomb lattice at
half-filling and in the hole-doped regime. In Chapter 3, we shall deal with the
application of the low-energy perturbative Lagrangian density in investigating the
effects of charge and spin quantum fluctuations in the breakdown of the AF order
on the honeycomb lattice. In Chapter 4, we shall present a systematic study of
the competition between superconducting and magnetic phases, using the strong-
coupling low-energy effective Lagrangian density. Finally, in Chapter 5, we expose
our conclusions.
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2. Low-Energy Perturbative Functional Integral Approach
of the Hubbard Model

In this chapter, we shall use field-theoretic and many-body methods to establish
a low-energy perturbative theory suitable to describe the magnetic and supercon-
ducting properties of the large-U Hubbard model on the honeycomb lattice at
half-filling and in the hole-doped regime. In Section 2.1, within the framework
of a functional-integral approach, we present the Lagrangian density associated
with the charge (Grassmann fields) and spin [SU(2) gauge fields] degrees of free-
dom. Further, in Section 2.2, the Hamiltonian related to the charge degrees of
freedom is exactly diagonalized. The electronic dispersion exhibits a gap due to
the Coulomb repulsive interaction, while in the tight-binding case we obtain the
well known Dirac-like spectrum. Section 2.3 is devoted to the analysis of the
strong-coupling regime within a controllable quantitative perturbative scheme, in
which case we derive a perturbative low-energy Lagrangian density appropriated
to describe both the half-filling and doped regimes. Lastly, in Section 2.4, we draw
some final remarks.

2.1. Functional-Integral Representation

The Hamiltonian of the Hubbard model on the honeycomb lattice reads:

H = −t
∑
〈iα,jβ〉σ

(
ĉ†iασ ĉjβσ + ĉ†jβσ ĉiασ

)
+ U

∑
iα

n̂iα↑n̂iα↓, (2.1)

where ĉ†iασ (ĉiασ) denotes the creation (annihilation) fermion operator of spin σ
(=↑, ↓) on one of the inequivalent site α=A or B of a unit cell i = 1, ..., Nc, with

Nc (N/2) being the number of unit cells (sites) [see Fig. 2.1(a)]; n̂iασ = ĉ†iασ ĉiασ
is the electron number operator with spin σ at the position iα. The first term
describes hopping of electrons with kinetic energy t between nearest-neighbor sites
of distinct sublattices, and the second one is the on-site repulsive Coulombian
interaction U > 0.

Usually the interaction term in Eq.(2.1) is treated by means of the so-called
Hubbard-Stratonovich transformation [48], which has been used to develop the
functional-integral representation of the Hubbard model suitable to describe di-
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Figure 2.1: (a) Honeycomb lattice in real space with the two inequivalent A and
B lattice sites of a unit cell. (b) Conventional representation of the Brillouin zone
of the honeycomb lattice with high symmetry points: Γ (center), M (van Hove
saddle point) and K.

agrammatic perturbation theory [49], critical phenomena [50] in 3D, and mag-
netic [51,52] and superconducting [53] properties in 2D.

On the other hand, in the context of the large-U Hubbard model in 1D [54] and
quasi-1D [55], it has been shown that this term can also be treated through the
use of a decomposition procedure. Hence, we handle the particle density product
in Eq. (2.1) by means of such a decomposition procedure [54,55], which consist in
expressing n̂iα↑n̂iα↓ in terms of charge and spin operators:

n̂iα↑n̂iα↓ =
1

2
ρ̂iα − 2

(
Ŝiα · niα

)2
, (2.2)

where
ρ̂iα = n̂iα↑ + n̂iα↓, (2.3)

and
Ŝiα = 1/2

∑
σσ′

ĉ†
iασ′σσ′σ ĉiασ, (2.4)

are the charge-density and the spin-1/2 operators, respectively, σσ′σ denotes the
Pauli matrix elements (~ ≡ 1), and niα is a unit vector field along the spin-
quantization axis of an electron at site iα. In addition, since the expectation value
of the local charge-density operator is 0, 1 or 2, we can write down the formal
relation: (

Ŝiα · niα

)2
=
ρiα(2− ρiα)

4
, (2.5)

which is consistent with the fact that the expectation value of the operator on the
left-hand side of the above equation is

〈(Ŝiα · niα)2〉 = (±1/2)2 = 1/4. (2.6)
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Hence, we have formally establish that

Ŝiα · niα = piα
ρiα(2− ρiα)

2
, (2.7)

where the staggered factor piα is conveniently chosen to be piα = 1 at the A-sites
with spin-up (σ =↑), and piα = −1 at the B-sites with spin-down (σ =↓). This
choice anticipates the occurrence of a long-range AF ground state at half-filled
band. Furthermore, let us define the normalized weight function:∫ ∏

iα

d2niαW (niα) = 1, (2.8)

where

W (niα) =

√
ϕ

π
exp

{
−ϕ

[
Siα · niα −

piα
2
ρiα(2− ρiα)

]2
}
, (2.9)

and ϕ→∞ (delta-like limit).
In order to determine the partition function

Z = Tr [exp (−βH)] , (2.10)

at a temperature kBT = 1/β, we are going to use the standard procedure [56–
58], i.e., we formally slice the continuous imaginary-time τ ∈ [0, β) into M finite
discrete intervals [τr, τr+1) of equal size δτ , where r = 0, 1, ...,M − 1, τ0 = 0,
τM = β and β = Mδτ , in the limits M → ∞ and δτ → 0. Thus, by using the
Trotter formula, we can write down Z as

Z = Tr

{
T̂

M−1∏
r=0

exp [−δτH(τr)]

}
, (2.11)

where T̂ is the time-ordering operator. We now introduce, between each time
interval, an overcomplete basis of fermionic coherent states,

1 =

∫ ∏
iασ

dc†iασdciασ exp
(
−c†iασciασ

)
|ciασ〉〈ciασ|, (2.12)

where {c†iασ, ciασ} denotes a set of Grassmann fields. Hence, by inserting Eqs.
(2.9) and (2.12) into Eq. (2.11), we can rewrite the partition function in the form:

Z = lim
M→∞,δτ→0

Tr

{∫ ∏
irα

d2niα (τr)W [niα (τr)] exp

[
−δτU

∑
iα

(ρiα
2

−2 (Siα · niα)2
)]}{∫ ∏

irασ

dc†iασ (τr) dciασ (τr) exp
[
−c†iασ (τr) ciασ (τr)

]

×〈ciασ (τr−1) | exp

tδτ ∑
〈iα,jβ〉σ

(
c†iασcjβσ + H.c.

) | ciασ (τr)〉

 .

(2.13)

Doctoral Thesis - Department of Physics - UFPE



2.1 Functional-Integral Representation 37

Let us mention that the above expression is written in terms of the Grassmann
fields only. Technically, upon the assessment of the matrix elements entailing
coherent states, the set of normally ordered creation (ĉ†iασ) and annihilation (ĉiασ)

operators and the set of Grassmann fields (c†iασ and ciασ) are formally connected

through the map: {ĉ†iασ, ĉiασ} ←→ {c
†
iασ, ciασ}. Accordingly, we can formally

replace the operators ρ̂iα and Ŝiα by their related Grassmann fields ρi and Siα,
respectively.

Next, it is important to use the auxiliary result:

〈ciασ (τr−1) | exp

tδτ ∑
〈iα,jβ〉σ

(
c†iασcjβσ + H.c.

) | ciασ (τr)〉

× exp

[
−
∑
iασ

c†iασ (τr) ciασ (τr)

]
= exp

tδτ ∑
〈iα,jβ〉σ

(
c†iασcjβσ + H.c.

)
× exp

{
−
∑
iασ

c†iασ (τr) [ciασ (τr)− ciασ (τr−1)]

}
, (2.14)

in which one should note that in the second exponential of the right-hand side
the first and second terms derive from the exponential term in Eq. (2.12) and the
factor introduced by the time-ordered matrix element associated with the coherent
states | ciασ (τr)〉 and | ciασ (τr−1)〉, respectively.

Bearing in mind that the set of Grassmann fields satisfy anti-periodic bound-
ary conditions in the imaginary-time domain: c†iασ(0) = −c†iασ(β) and ciασ(0) =
−ciασ(β), while the unit vector field satisfies periodic ones: niα(0) = niα(β), and
by considering the limits M →∞, δτ → 0 together with the Eq. (2.14), we obtain
that the partition function takes the form:

Z =

∫ ∏
iα

D2niα

∏
iα

Dc†iαDciα exp

[
−
∫ β

0
L(τ)dτ

]
, (2.15)

where the measures are defined by

D2niα ≡ lim
M→∞

M−1∏
r=0

d2niα(τr)W [niα(τr)];

Dc†iασDciασ ≡ lim
M→∞

M−1∏
r=0

dc†iασ(τr)dciασ(τr), (2.16)

and L(τ) reads:

L(τ) =
∑
iασ

c†iασ∂τ ciασ − t
∑
〈iα,jβ〉σ

(
c†iασcjβσ + c†jβσciασ

)
+U

∑
iα

[
1

2
ρiα − piα (Siα · niα)

]
. (2.17)
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At this stage, it is interesting to consider the symmetry exhibited by the AF
order. Here, we shall use a SU(2) matrix [59], where the group space parameter
is the surface of the unit S3-sphere, parametrized according to the symmetry
displayed by the AF phase. As the unit vector niα, i.e., the Néel order parameter,
lies in the manifold S2, the corresponding SU(2) matrix, Uiα, assumes the form
[det(Uiα)=1]:

Uiα =

 cos
(
θiα
2

)
− sin

(
θiα
2

)
e−iφiα

sin
(
θiα
2

)
eiφiα cos

(
θiα
2

)  , (2.18)

where θiα is the polar angle between the z -axis and the unit vector niα, and φiα
is an arbitrary azimuth angle due to the U(1) gauge freedom. Moreover, it obeys
the relation:

U †iα(σ̂ · niα)Uiα = σz, (2.19)

which explicitly manifest the rotationally broken symmetry along the z -axis. No-
tice also that by taking θiA = θiB = 0, together with the proper choice of the
staggered factor piα, one obtains the representation for the classical Néel order. In
this context, it will prove very useful to introduce a new set of Grassmann fields,
{a†iασ, aiασ}, according to the transformation:

aiασ =
∑
σ′

(Uiα)†σσ′ciασ′ , (2.20)

whose associated spins point along the global z -axis.
Correspondingly, with the help of Eqs. (2.18) and (2.20), the Lagrangian

density in Eq. (2.17) is transformed into the following form:

L(τ) =
∑
iασ

a†iασ∂τaiασ +
∑
iασσ′

a†iσ′(Uiα)†σ′σ∂τ (Uiα)σ′σaiασ

−t
∑
〈iα,jβ〉σ

(
a†iασajβσ + H.c.

)
+
U

2

∑
iασ

(1− piασ)a†iασaiασ

−t
∑

〈iα,jβ〉σσ′

[
a†iασ′

(
U †iαUjβ − 1

)
σ′σ

ajβσ + H.c.
]
. (2.21)

Remarkably, L(τ) can be split up into two parts:

L(τ) = L0 + Ln. (2.22)

One with only charge degrees of freedom:

L0 =
∑
iασ

a†iασ∂τaiασ − t
∑
〈iα,jβ〉σ

(
a†iασajβσ + H.c.

)
+
U

2

∑
iασ

(1− piασ)a†iασaiασ,

(2.23)
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and the other describes the coupling between the charge (Grassmann fields a†iασ
and aiασ) and spin degrees of freedom [SU(2) gauge fields Uiα]:

Ln =
∑
iασσ′

a†iασ′(Uiα)†σ′σ∂τ (Uiα)σ′σaiασ

−t
∑

〈iα,jβ〉σσ′

[
a†iασ′

(
U †iαUjβ − 1

)
σ′σ

ajβσ + H.c.
]
. (2.24)

It should be noted that the Hubbard repulsion U is present only in L0 [see Eq.
(2.23)], while the SU(2) gauge fields Uiα only appear in Ln [see Eq. (2.24)].

2.2. Analysis of Charge Degrees of Freedom in L0

We now turn our attention to L0 in Eq. (2.23). By performing the Legendre
transform:

H0 = −
∑
iασ

∂L0

∂ (∂τaiασ)
∂τaiασ + L0; (2.25)

where
∂L0

∂ (∂τaiασ)
= a†iασ, (2.26)

we get the Hamiltonian associated with the charge degrees of freedom:

H0 = −t
∑
〈iα,jβ〉σ

(
a†iασajβσ + H.c.

)
+
U

2

∑
iασ

(1− piασ)a†iασaiασ. (2.27)

In order to diagonalize H0 we need a two step procedure. Initially, we perform
a Fourier transform:

akσ =
1√
Nc

∑
i

eik·iaiσ;

bkσ =
1√
Nc

∑
j

e−ik·jbjσ, (2.28)

where akσ (bkσ) is the Fourier transform of the Grassmann fields associated with
the A (B) sublattice, i.e., for notation convenience we have replaced ajβσ → bjσ.
Inserting Eq. (2.28) into Eq. (2.27) leads to

H0 = −t
∑
kσ

(
w∗ka

†
kσbkσ + H.c.

)
+
U

2

∑
kσ

(1− σ)a†kσakσ, (2.29)

in which

w∗k = e−ikx + 2ei
kx
2 cos

(√
3 ky
2

)
. (2.30)
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In addition, it is worthwhile to introduce the new set of Grassmann fields [60]:

Akσ =
akσ√

2
+

w∗k√
2 |wk|

bkσ; (2.31)

Bkσ =
akσ√

2
−

w∗k√
2 |wk|

bkσ, (2.32)

such that, by substituting Eqs. (2.31) and (2.32) into Eq. (2.29), one finds:

H0 = −
∑
kσ

εk

(
A†kσAkσ −B†kσBkσ

)
+
U

4

∑
kσ

(1− σ)(
A†kσAkσ +A†kσBkσ +B†kσAkσ +B†kσBkσ

)
, (2.33)

where

εk = t

√√√√3 + 2 cos (
√

3 ky) + 4 cos

(
3kx
2

)
cos

(√
3 ky
2

)
. (2.34)

Now, we can diagonalize H0 in Eq. (2.33) by means of the Bogoliubov trans-
formation [61]:

Akσ = ukαkσ − σvkβkσ;

Bkσ = σvkαkσ + ukβkσ, (2.35)

restricted by the canonical constraint

(uk)2 + (vk)2 = 1. (2.36)

Thus, by plugging Eq. (2.35) into Eq. (2.33), we obtain:

H0 =
∑
kσ

{[
εk
(
v2
k − u2

k

)
+
U

2
− Uukvk

]
α†kσαkσ −

[
2ukvkεk −

U

2

(
u2
k − v2

k

)]
×α†kσβkσ −

[
2ukvkεk −

U

2

(
u2
k − v2

k

)]
β†kσαkσ +

[
εk
(
u2
k − v2

k

)
+
U

2

+Uukvk

]
β†kσβkσ

}
. (2.37)

Further, with the help of Eq. (2.36) and imposing that the off-diagonal terms in
Eq. (2.37) must vanish; we get the diagonal form of H0:

H0 =
∑
kσ

(
Eαkα

†
kσαkσ + Eβkβ

†
kσβkσ

)
, (2.38)

where
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Figure 2.2: Energy spectrum (in units of t) of the charge Hamiltonian [Eq. (2.38)]
on the honeycomb lattice (a) with a Hubbard charge gap U , and (b) the tight-
binding (U = 0) case. Energy spectrum along the lines connecting points of high
symmetry: (c) interacting case for U = t; (d) tight-binding approach.

uk =
1√
2

√
1 +
|εk|
Ek

;

vk =
1√
2

√
1− |εk|

Ek
, (2.39)
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with

Ek =

√
ε2k +

U2

4
;

Eα,βk = ∓Ek + U/2. (2.40)

The Hamiltonian in Eq. (2.38) presents two dispersive bands: the low-energy
(αkσ) and the high-energy one (βkσ), split up by the Hubbard gap U , as shown
in Fig. 2.2(a). Further, it should be noted that the non-interacting tight-binding
spectrum of H0 can be recast by setting U = 0, as shown in Fig. 2.2(b). In
fact, these two dispersive bands meet in the so-called Dirac points. As it is well
known, close to the Dirac points the system can be mapped onto free massless
Dirac fermions [11].

In order to clarify the above discussion, in Figs. 2.2(c) and (d) we also plotted
the energy spectrum along the lines which connects the high symmetry points Γ-
M -K-Γ of the first Brillouin zone (BZ), as illustrated in Fig. 2.1(b). Indeed, one
clearly sees in Fig. 2.2(c) that the two dispersive bands are split up by the Hubbard
gap U , while in Fig. 2.2(d) the two bands meet in the Dirac points (K) in the
non-interacting tight-binding case. Additionally, we emphasize that the M and
the K points are of particular importance for the physics of electronic correlation
in honeycomb materials [the Γ = (0, 0) point is located at the center of the first
BZ]. The M point indicates the position of the van Hove singularities, at which
the density of states is logarithmically divergent [11,46], and the K point specifies
where the two bands meet, and the density of states vanishes linearly [11].
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2.3. Effective Lagrangian Density in the Strong-Coupling Regime

In this section, we shall build a strong-coupling (U/t� 1) perturbative low-energy
theory (effective Lagrangian density) suitable to describe the system in the half-
filled and doped regimes. Our aim is to investigate the relevant processes that
characterize the magnetic and superconducting phases in the large-U regime in
terms of the lower α band and the upper β band (see Fig. 2.2).

Let us start by expanding the auxiliary functions uk and vk in Eq. (2.39) in
powers of t/U as follows:

uk =
1√
2

[
1 +

t|wk|
U
− t2|wk|2

2U2
+O

(
t3

U3

)]
;

vk =
1√
2

[
1− t|wk|

U
− t2|wk|2

2U2
+O

(
t3

U3

)]
, (2.41)

where
εk = t|wk| [see Eq. (2.30)]. (2.42)

In the sequence, by using Eqs. (2.28)-(2.32) and (2.35), we can express the Grass-
mann field aiασ in terms of the Bogoliubov fields αkσ and βkσ:

aiασ =
1√
Nc

∑
kσ

eik·i [(uk + σvk)αkσ + (uk − σvk)βkσ] . (2.43)

Now, by substituting Eq. (2.41) into Eq. (2.43), we can obtain a perturbative
expression for the Grassmann field aiασ in terms of the spinless Grassmann fields
αi and βi (see below), up to O

(
t2/U2

)
, as follows:

aiασ = θ(σ)αi + θ(−σ)βi + θ(−σ)
t

U
αi + θ(σ)

t

U
βi

− t2

U2

θ(−σ)
∑
j

(
αi+êj + αi−êj

)
+ 3θ(σ)αi


+
t2

U2

θ(σ)
∑
j

(
βi+êj + βi−êj

)
+ 3θ(−σ)βi

 , (2.44)

where αi and βi are defined by [54]

αi =

√
1

Nc

∑
σ

θ(σ)
∑
k

eik·iαkσ;

βi =

√
1

Nc

∑
σ

θ(−σ)
∑
k

eik·iβkσ, (2.45)
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θ(σ) is the Heaviside function, with θ(σ)θ(−σ′) = θ(σ)δσ,−σ′ , and êj are the stan-
dard three unit vectors of the honeycomb lattice [11]. This representation is ap-
propriated to describe the magnetic and superconducting orders, in the large-U
regime, in the context of the referred α and β bands. For example, to O (t/U),
Eq. (2.44) yields: aiA↑ ≈ αi and aiB↓ ≈ αi, which is consistent with the situation
of spins up present at A sublattice sites and spins down being at B sublattice sites
in a given unit-cell i (low-energy spin configuration), while for the high-energy β
band one finds an opposite spin configuration: aiA↓ ≈ βi and aiB↑ ≈ βi. (Notice
that this physical picture of low-energy configuration is compatible with both AF
ordering and spin-singlet pairing.)

At this stage, it should be noted, on the grounds of the previous physical pic-
ture, that only single occupancy (in each site) is allowed. In fact, mathematically
speaking, our perturbative scheme will be consistent with the preceding physical
scenario, only if after inserting Eq. (2.44) into Eq. (2.27) [the latter contains the
hopping term, t, and the Coulombian repulsion, U ] one keeps terms of O (U) and
O
(
t2/U2

)
; subsequently, straightforward algebraic manipulations will lead to the

superexchange J ≡ 4t2/U [52–55, 61]. By doing so, one can write H0 in terms of
the spinless Grassmann fields αi and βi in direct space:

H0 = −J
∑
i

(
α†iαi − β†iβi

)
+ U

∑
i

β†iβi

−J
8

∑
ij

(
α†iαi+êj −β

†
iβi+êj + H.c.

)
. (2.46)

The charge Hamiltonian above correctly exhibits the phenomenon of band shrink-
ing [62] in the large-U regime. Notwithstanding, we stress that H0 describes only
processes in the charge sector, i.e., no spin dynamics is involved. Therefore, in our
study of the magnetic and superconducting properties of the system these pro-
cesses play no role and, after a Legendre transform, the Lagrangian density can
be taken simply as:

L0 =
∑
i

α†i∂ταi, (2.47)

where the dynamic (kinetic) term signals the background of the charge degrees of
freedom.

We now employ the same perturbative scheme to Ln, i.e., we insert Eq. (2.44)
into Eq. (2.24), such that, by keeping terms which incorporates only the most
relevant low-energy processes, i.e., quantum charge and spin dynamics between
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nearest-neighbor sites, we obtain the following perturbative expansion for Ln:

Ln =
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ
α†iαi − t

∑
ijαβσ

[
θ(−σ)

(
U †iαUi+êjβ − 1

)
σ,−σ

α†iαi+êj

+H.c.

]
+

t

2U

∑
ijασ

[
θ(−σ)(U †iα∂τUiα)σ,−σ

(
α†i+êj

+ α†i−êj

)
αi + H.c.

]
− t

∑
ijαβσ

{(
U †iαUi+êjβ − 1

)
σσ

[
θ(σ)α†iβi+êj − θ(σ)β†iαi+êj

]
+ H.c.

}
.

(2.48)

It should be noted that the last term in Eq. (2.48) contains hopping between
α and β bands. This term must be treated perturbatively, so that Ln appears
as dependent on the low-energy α band only. We thus consider the perturbing
Hamiltonian below:

H1 = −t
∑
ijαβσ

{(
U †iαUi+êjβ − 1

)
σσ

[
θ(σ)β†iαi+êj −θ(σ)α†iβi+êj

]
+ H.c.

}
.

(2.49)

It can be handled by means of standard second-order perturbation theory [55,61],
which is consistent with the strong-coupling expansion up to O

(
t2/U

)
:

∆E ≡ Heff =
∑
kσ

|〈αkσ|H1|βkσ〉|2

Eαk − E
β
k

, (2.50)

where the unperturbed state is the system at half filling: the low-energy α band
is filled, while the β band is empty. In other words, |αkσ〉 corresponds to the
unperturbed state, with N electrons filling completely the low-energy α band,
whereas |βkσ〉 denotes the virtual perturbative states, in which these virtual states
represent a situation that one electron with spin σ is removed from α band and it
occupies the β band with energy Eβk [see Eq. (2.40)] and spin σ.

From the above discussion, as well as with the help of Eq. (2.45), we obtain
the following auxiliary results:

α†i|αkσ〉 = βi|αkσ〉 = 0;

θ (−σ)βi|βkσ〉 =
1√
Nc

eik·i|αkσ (N − 1)〉. (2.51)

Consequently, by inserting Eqs. (2.49) and (2.51) into Eq. (2.50), we find that
∆E becomes:

∆E = t2〈αkσ|
∑
iασ

θ (−σ)
[(
U †i+êjβ

Uiα − 1
)
σσ
α†i+êj

+
(
U †i−êjβUiα − 1

)
σσ

×α†i−êj
] [ 1

Nc

∑
k

1

Eαk − E
β
k

]
P0 (N − 1)

[(
U †iαUi+êjβ − 1

)
σσ
αi+êj

+
(
U †iαUi−êjβ − 1

)
σσ
αi−êj

]
|αkσ〉, (2.52)
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where P0 = |αkσ〉〈αkσ| denotes the projector operator onto the state |αkσ〉.
At this point, it is worthwhile to use the following lemma of Quantum Me-

chanics [63]:
Lemma. Let A and B be two Hermitian operators, |ψ〉 an arbitrary state in
Hilbert space and P0 the projector operator onto the state |φ0〉. Then, if P0|ψ〉 =
φ0|φ0〉, we have:

〈φ0|AP0B|φ0〉 = 〈ψ|C|ψ〉 ←→ C = AB. (2.53)

Therefore, by means of the above Lemma [Eq. (2.53)], we can express the
effective Hamiltonian in terms of the α band only:

Heff = t2
∑
ijαβσ

θ (−σ)
[(
U †i+êjβ

Uiα − 1
)
σσ
α†i+êj

+
(
U †i−êjβUiα − 1

)
σσ
α†i−êj

]
[

1

Nc

∑
k

1

Eαk − E
β
k

] [(
U †iαUi+êjβ − 1

)
σσ
αi+êj +

(
U †iαUi−êjβ − 1

)
σσ
αi−êj

]
.

(2.54)

Keeping in mind that we are interested in the thermodynamic limit, we can
turn the sum in k in Eq. (2.54) into an integral:

1

Nc

∑
k

1

Eαk − E
β
k

≈ − 1

4π2

∫
BZ

d2k

Eαk − E
β
k

, (2.55)

so that, by using Eqs. (2.34) and (2.40), in the strong-coupling regime (U � t),
we find

1

4π2

∫
BZ

d2k

Eαk − E
β
k

= − 1

U

[
1 +O

(
t2

U2

)]
. (2.56)

The above result [Eq. (2.56)] allows us to express the effective Hamiltonian
Heff in Eq. (2.54), after a slightly rearrangement of the terms, in the form:

Heff = − t2

2U

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
α†iαi.

(2.57)

Indeed, with this result, we have reached a perturbative expression of Ln, up
to O

(
t2/U

)
, in terms of the low-energy α band only [we plug Eq. (2.57) into
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Eq.(2.48)]:

Ln =
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ
α†iαi − t

∑
ijαβσ

[
θ(−σ)

(
U †iαUi+êjβ − 1

)
σ,−σ

α†iαi+êj

+H.c.

]
+

t

2U

∑
ijασ

[
θ(−σ)(U †iα∂τUiα)σ,−σ

(
α†i+êj

+ α†i−êj

)
αi + H.c.

]
− t2

2U

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
α†iαi.

(2.58)

Correspondingly, by adding L0 [see Eq. (2.47)] to the perturbation expression
of Ln [see Eq. (2.58)], we find that the effective low-energy Lagrangian density
of the honeycomb Hubbard model in the large-U regime, up to O

(
J ≡ 4t2/U

)
, is

given by

L =
∑
i

α†i∂ταi +
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ
α†iαi − t

∑
ijαβσ

[
θ(−σ)

(
U †iαUi+êjβ

)
σ,−σ

×α†iαi+êj + H.c.

]
+
J

8t

∑
ijασ

(
U †iα ∂τUiα

)
σ,−σ

[
θ(−σ)α†i

(
αi+êj + αi−êj

)
+H.c.

]
− J

8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
α†iαi.

(2.59)

We emphasize that the above low-energy Lagrangian density incorporates only
quadratic terms in α†, α. We can thus integrate out the fermions degrees of freedom
in order to explicit the spin structure embedded in U †iαUi+êjα and U †iα∂τUiα.

2.4. Final Remarks

In summary, we have presented an analytical approach suitable to investigate of
the large-U Hubbard model on the honeycomb lattice. Our approach, based on
field-theoretic and many-body techniques, has the advantage of allowing us to
derive the Lagrangian density related to the charge (Grassmann fields) and spin
[SU(2) gauge fields] degrees of freedom in a controllable scheme. As a result,
we diagonalized exactly the Hamiltonian associated with the charge degrees of
freedom only, in which case the electronic spectrum exhibits a charge Hubbard
gap separating the Dirac cones. Moreover, we have shown that the two bands
meet at the Dirac points in the non-interacting tight-binding case.

In the strong-coupling regime, by performing a perturbative expansion in the
parameter t/U up to O

(
J = 4t2/U

)
, we were able to derive a low-energy La-

Doctoral Thesis - Department of Physics - UFPE



2.4 Final Remarks 48

grangian density appropriated to describe the (quantum) magnetic and supercon-
ducting phases of the large-U Hubbard model on the honeycomb lattice, as we
shall demonstrate in Chapters 3 and 4.
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3. Charge and Spin Quantum Fluctuations on the Hon-
eycomb Lattice: Half-filled and Doped Regimes

In this chapter we shall investigate the effects of charge and spin quantum fluctua-
tions in the breakdown of the AF order on the honeycomb lattice by means of the
low-energy perturbative Lagrangian density [see Eq. (2.59)] derived in the Section
2.3. Section 3.1 is dedicated to the half-filling case, in which case the large-U Hub-
bard model is mapped onto the quantum Heisenberg model described by SU(2)
gauge fields. In this context, we deal with the underlying spin degrees of freedom
by employing a second-order spin-wave analysis, such that we have calculated the
ground-state energy and staggered magnetization per site; the results are in very
good agreement with previous studies [19–21,23–26].

In Section 3.2, we focus on the challenging hole-doped regime. This topic is
studied within a controllable perturbative scheme, so that our approach allows the
derivation of a t-J Hamiltonian, and the analysis of the role played by charge and
spin quantum fluctuations on the ground-state energy and, particularly, on the
breakdown of the AF order at a critical hole doping; the results are benchmarked
against recent Grassmann tensor product state [26]. Further, in Section 3.3, in
the continuum limit, we map the effective large-U Lagrangian density [see Eq.
(2.59)] onto the quantum nonlinear σ-model with a topological Hopf term [34–37],
in which case its presence (Chern-Simons term) is crucial in the analysis of the
AF-VBS competition. Lastly, final remarks are presented in Section 3.4.

3.1. Heisenberg Model and Quantum Spin Fluctuations

In the half-filled regime, the charge degrees of freedom are frozen (〈α†i∂ταi〉 = 0 and

〈α†iαi+êj 〉 = 0), i.e., the lower-energy α band is completely filled by electrons: nα ≡
〈α†iαi〉 = 1. Accordingly, it turns out that only the spin degrees of freedom survive
and are described by the SU(2) gauge fields in Eq.(2.59). Further, this localized
electronic background allows the emergence of an AF phase [32, 33]. Indeed, by
performing the following Legendre transform:

Hs = −
∑
iασ

∂L
∂ (∂τUiα)σσ

(∂τUiα)σσ + L; (3.1)
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where
∂L

∂ (∂τUiα)σσ
= θ (σ)

(
U †iα

)
σσ
, (3.2)

we can map the large-U Hubbard model, in the half-filling limit of the effective
Lagrangian density in Eq. (2.59), onto the following Heisenberg-like Hamiltonian
written in terms of the SU(2) gauge fields:

Hs = −J
8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
. (3.3)

In fact, with the help of Eq. (2.18), we can write [55]:(U †iαUi+êjβ

)
σσ

2
=

[
1 + cos (θiα) cos

(
θi+êjβ

)
+ sin (θiα) sin

(
θi+êjβ

)
× cos

(
φiα − φi+êjβ

)]
, (3.4)

or (U †iαUi+êjβ

)
σσ

2
=

1

2

(
1 + niα · ni+êjβ

)
, (3.5)

where niα = sin (θiα) [cos (φiα) x̂+ sin (φiα) ŷ] + cos (θiα) ẑ is the unit vector. Ac-
cordingly, Hs can be brought to its standard form:

Hs = −J
∑
ijαβ

Siα · Si+êjβ − h
∑
iα

Siα + h
∑
ijβ

Si+êjβ −
zNJ

8
, (3.6)

where Siα = niα/2, z is the coordination number (z = 3 for the honeycomb lattice)
and the two additional Zeeman terms (h is the magnetic field) allow us to perform
the calculation of the staggered magnetization.

The second-order spin-wave theory [21, 64] can offer an accurate description
of the relevant physical quantities, such as the ground-state energy, E0, and the
staggered magnetization per site, m, which characterizes the AF order. In order
to employ this method to the quantum AF Heisenberg model in Eq. (3.6) let us
introduce the Holstein-Primakoff transformation:

Sziα = −a†iai + S;

S+
iα =

√
2S − a†iai ai;

S−iα = a†i

√
2S − a†iai , (3.7)

for an up-spin on A site of sublattice A, and

Szi+êjβ
= b†i+êj

bi+êj − S;

S+
i+êjβ

=
√

2S − b†i+êj
bi+êj bi+êj ;

S−i+êjβ
= b†i+êj

√
2S − b†i+êj

bi+êj , (3.8)
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for a neighboring down-spin of sublattice B; the bosonic creation and annihilation
operators ai and a†i obey the commutation relations: [ai,a

†
i′ ]=δii′ and [bj ,b†j′ ]=δjj′ .

Moreover, we apply the Fourier transform [see, e.g., Eq. (2.28)] together with the
following Bogoliubov transformation:

ak = cosh (θk)αk − sinh (θk)β†k;

bk = − sinh (θk)α†k − cosh (θk)βk, (3.9)

where tanh (θk) = −γk and the lattice structure factor γk reads:

γk ≡
1

z

∑
j

eik·ej =
1

3

[
eikx + 2e−i

kx
2 cos

(√
3 ky
2

)]
. (3.10)

The resulting diagonalized Hamiltonian up to O
(
1/S2

)
, in k-space, takes the

form:

Hs = −zS
2JN

2
+ hSN + zSJ

∑
k

[(√
1− γ2

k − 1

)
+
√

1− γ2
k

(
α†kαk + β†kβk

)]

− zJ
2N

[∑
k

(√
1− γ2

k − 1

)]2

− h
∑
k

 1√
1− γ2

k

− 1

+
α†kαk + β†kβk√

1− γ2
k


−zJN

8
− 2zJ

N

∑
k,k′

α†kαkβ
†
k′βk′ . (3.11)

Correspondingly, in the thermodynamic limit, the ground-state energy per site in
the presence of a magnetic field becomes:

Eh
N

= −zS
2J

2
+ hS +

zSJ

4π2

∫
BZ
d2k

(√
1− γ2

k − 1

)

− zJ

32π4

[∫
BZ
d2k

(√
1− γ2

k − 1

)]2

− h

4π2

∫
BZ
d2k

 1√
1− γ2

k

− 1

− zJ

8
. (3.12)

In Appendix A, we present detailed calculations of the perturbative scheme
used to derive Eqs. (3.11) and (3.12).

In the sequence, we take S = 1/2 and perform the integration over the first
Brillouin zone (BZ): | kx |≤ 2π/3 and | ky |≤ π/

√
3 . As a consequence, we have

found that the ground-state energy per site at zero magnetic field is given by (we
have subtracted the term −zJ/8 with the intention of comparing Eq. (3.12) at
zero magnetic field to preceding results): E0/NJ ≈ −0.5489. Indeed, this result
agrees very well with the preceding studies listed in Table 3.1
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Table 3.1: Comparison of the results from several approaches for the ground-state
energy per site E0/NJ of the Heisenberg model at zero magnetic field.

Method E0/NJ

QMC [19,20] −0.5440

Spin Wave up to O (1/S2) [21] −0.5489

Our result [22] −0.5489

Series Expansion [23] −0.5443

TPS [24,25] −0.5445

GTPS [26] −0.5441

On the other hand, with the help of Eq. (3.12), we can straightforwardly derive
the staggered magnetization per site [65]:

m =
1

N

∂Eh
∂h
|h=0. (3.13)

Thus, one finds:

m = S − 1

4π2

∫
BZ
d2k

 1√
1− γ2

k

− 1

 , (3.14)

which stands for both first- and second-order spin-wave perturbation theory. Fur-
ther, the integration over the first BZ yields for S = 1/2: m ≈ 0.2418, which is in
good agreement with preceding results summarized in Table 3.2.

We would like to mention that the evaluation of the staggered magnetization
by the TPS and GTPS simulations is rather susceptible to the value of the virtual
dimension D. For instance, as one can note in Table 3.2, GTPS studies have pre-
dicted slightly larger values for the staggered magnetization. Here, the “virtual
dimension” D is a concept associated with the integer bond indices of classical
tensor-networks on honeycomb lattices, and largely used in TPS and GTPS sim-
ulations [24–26].
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Table 3.2: Comparison of the results from several approaches for the ground-state
staggered magnetization per site m of the Heisenberg model at zero magnetic field.

Method m

QMC [19] 0.22± 0.03

QMC [20] 0.2681(8)

Spin Wave up to O (1/S2) [21] 0.2418

Our result [22] 0.2418

Series Expansion [23] 0.266(9)

TPS for D = 8 [24] 0.2142

TPS for D →∞ [25] 0.285

GTPS for D = 10 [26] 0.3257

GTPS for D = 12 [26] 0.3239

Furthermore, it has been indicated, through topological arguments, the possi-
ble occurrence of a VBS phase on the honeycomb lattice [36]. Thus, in Section 3.3,
we map the effective large-U Lagrangian density in Eq. (2.59), in the continuum
limit, onto the quantum nonlinear σ-model with a topological Hopf term, in which
case its presence (Chern-Simons term) is crucial for the possible occurrence of a
VBS order. However, despite that our results provide evidence for the existence
of this topological term in the context of our approach, as mentioned in the In-
troduction, in the numerical studies of the Hubbard model at half-filling the VBS
order did not appear as a stable phase [33].

3.2. t-J Model: Charge and Spin Quantum Fluctuations

In this section, we provide a systematic study of the interplay between quantum
charge and spin fluctuations in the breakdown of the AF order in the doped regime.
In order to obtain the corresponding t-J Hamiltonian, let us apply the Legendre
transform in Eq. (2.59):

Ht-J = −
∑
i

∂L
∂ (∂ταi)

∂ταi −
∑
ijασ

∂L
∂ (∂τUiα)σσ

(∂τUiα)σσ

−
∑
ijασ

∂L
∂ (∂τUiα)σ,−σ

(∂τUiα)σ,−σ + L, (3.15)
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where

∂L
∂ (∂ταi)

= α†i;

∂L
∂ (∂τUiα)σσ

= θ (σ)
(
U †iα

)
σσ
α†iαi;

∂L
∂ (∂τUiα)σ,−σ

=
J

8t

(
U †iα

)
σ,−σ

[
θ (−σ)α†i

(
αi+êj +αi−êj

)
+ H.c.

]
,

(3.16)

so that we indeed can map the large-U Hubbard model onto the following t-J
Hamiltonian:

Ht-J = −t
∑
ijαβσ

[
θ(−σ)

(
U †iαUi+êjβ

)
σ,−σ

α†iαi+êj +H.c.

]

−J
8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi+êjβ

)
σσ

2
]
α†iαi,

(3.17)

which describes the coupling between charge (Grassmann fields) and spin [SU(2)
gauge fields] degrees of freedom in the regime where double occupancy is excluded
[O(J)].

In order to account for the effect of charge and spin quantum fluctuations
on the ground-state energy and magnetization of the system under hole doping
and in the presence of a magnetic field, we shall consider that, in the regime of
interest (stable AF phase and U values not extremely high, such that the Nagaoka
phenomenon is frozen; see discussion in the end of this section), these quantum
fluctuations manifest independently, i.e., the charge and spin correlation functions
can be decoupled and calculated separately. Below, we show that the consistent
results which come out from this procedure are highly rewarding. The above
reasoning amounts to consider that in Eq. (3.17) the charge correlation function
is well described by the spinless tight-binding result [66,67]:∑

j

〈α†iαi+êj 〉 =
1

π2

[
√

2πδ sin
(√

2πδ
)

+
8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
,

(3.18)

where δ = 1− nα measures the hole doping away from half filling.
The above correlation function [Eq. (3.18)] can be derived by writting the

lattice fermionic fields, in the k-space, as:

α†i =
1√
N

∑
k

e−ik·iαk;

αi+ej =
1√
N

∑
k,j

eik·(i+ej)αk, (3.19)
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so that, after straightforward algebraic manipulations, in the thermodynamic limit(∑
k −→

N
4π2

∫
d2k
)
, the correlation function reads:∑

j

〈α†iαi+êj 〉 =
1

4π2

∑
j

∫
eik·ejd2k. (3.20)

In the sequence, one should take into account the three honeycomb lattice unit
vectors

e1 = (1, 0) ; e2 =

(
1

2
,
−
√

3

2

)
; e3 =

(
−1

2
,
−
√

3

2

)
, (3.21)

with the intention of writting the Eq. (3.20) in the form:

∑
j

〈α†iαi+êj 〉 =
1

4π2

∫ [
eikx + 2e−i

kx
2 cos

(√
3 ky
2

)]
d2k. (3.22)

Further, by performing the above integration over the first Brillouin zone:∑
j

〈α†iαi+êj 〉 =
1

4π2

∫ kF

−kF
dkx

∫ kF

−kF
dky

[
eikx + 2e−i

kx
2 cos

(√
3 ky
2

)]
, (3.23)

one ends in∑
j

〈α†iαi+êj 〉 =
1

π2

[
kF sin (kF ) +

8√
3

sin

(
kF
2

)
sin

(√
3 kF
2

)]
. (3.24)

In two dimensions, the hole density, δ, is related to the Fermi momentum, kF , in
the following way: kF =

√
2πδ [11]. Therefore, by inserting this mathematical

expression into Eq. (3.24), we can rewrite the correlation function in terms of the
hole doping as expressed in Eq. (3.18).

We now consider the spin sector in Eq. (3.17), which is described by the SU(2)

gauge fields through the matrix elements:
(
U †iαUi+êjβ

)
σ,−σ

and
(U †iαUi+êjβ

)
σσ

2
,

in terms of the usual spin operators [55]. The latter is given in Eq. (3.5), whereas
the former can be written as follows:(

U †iαUi+êjβ

)
σ,−σ

=
1

2

{[
1 + 2

(
Sziα + Szi+êjβ

)
+4SziαS

z
i+êjβ

]1/2

+
[
1− 2

(
Sziα + Szi+êjβ

)
+4SziαS

z
i+êjβ

]1/2
}
.

(3.25)

At this point, it is worthwhile to introduce the vector potential, A, by means
of the Peierls substitution [68]:

t −→ t exp

(
−i
∫ rj

ri

A · dr
)
, (3.26)
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which is the complex matrix element for tunneling between neighboring sites, in
order to properly describes the effects of charge and spin quantum fluctuations on
the ground-state properties of the AF order. Thus, inserting Eqs. (3.5), (3.18)
and (3.25) into (3.17), we obtain the following effective t-J Hamiltonian:

Ht-J =
−2te−i

∫ rj
ri

A·dr

zπ2

[
√

2πδ sin
(√

2πδ
)

+
8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
×
∑
ijαβ

[√
1− 2Szi+êjβ

− 2Sziα + 4SziαS
z
i+êjβ

+
√

1 + 2Szi+êjβ
+ 2Sziα + 4SziαS

z
i+êjβ

]
−J (1− δ)

∑
ijαβ

Siα · Si+êjβ −
JNz (1− δ)

8
− h

∑
iα

Siα + h
∑
ijβ

Si+êjβ. (3.27)

Notice that we also coupled the external homogeneous magnetic field, h, to the
spins on sublattices A and B.

Let us now implement the second-order spin-wave analysis in the spin sector of
Eq. (3.27), with the help of Eqs. (3.7)-(3.10). Further, it is convenient to choose
the following Landau gauge:

A = hxŷ. (3.28)

As a result we arrive at the following diagonalized Hamiltonian up to O
(
1/S2

)
:

Ht-J = Ht1 +HJ2 , (3.29)

where the hopping Hamiltonian, Ht1, reads (k-space):

Ht1 = −8tzeh
√

3 /4

π2

SN
z

+
∑
k

 1√
1− γ2

k

− 1

 +
1

2

∑
k

α†kαk + β†kβk√
1− γ2

k


×

[
√

2πδ sin
(√

2πδ
)

+
8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
, (3.30)

and the exchange one, HJ2 , becomes (k-space):

HJ2 = −zS
2J (1− δ)N

2
+ hSN + zSJ (1− δ)

∑
k

[(√
1− γ2

k − 1

)

+
√

1− γ2
k

(
α†kαk + β†kβk

)]
− h

∑
k

 1√
1− γ2

k

− 1

+
α†kαk + β†kβk√

1− γ2
k


−zJ (1− δ)

2N

[∑
k

(√
1− γ2

k − 1

)]2

− zJ (1− δ)N
8

. (3.31)
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Figure 3.1: Energy spectrum of the doped AF phase at zero magnetic field and
t/J = 3 for (a) δ = 0, and (b) δ = 0.07.

Therefore, the energy spectrum of Ht1 in the presence of a magnetic field takes
the form:

E1 = −8tzeh
√

3
4

π2

SN
z

+
∑
k

 1√
1− γ2

k

− 1

[√2πδ sin
(√

2πδ
)

+
8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
, (3.32)

whereas the one of HJ2 reads:

E2 = −zS
2J (1− δ)N

2
+ hSN + zSJ (1− δ)

∑
k

[(√
1− γ2

k − 1

)]

−h
∑
k

 1√
1− γ2

k

− 1

− zJ (1− δ)
2N

[∑
k

(√
1− γ2

k − 1

)]2

−zJ (1− δ)N
8

. (3.33)

Lastly, by adding Eqs. (3.32) and (3.33) and taking the thermodynamic limit,
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we find that the ground-state energy per site in the presence of a magnetic field:

Eh
N

= −zS
2J (1− δ)

2
+ hS + zSJ (1− δ) 1

4π2

∫
BZ
d2k

[(√
1− γ2

k − 1

)]

−8tzeh
√

3
4

π2

S
z

+
1

4π2

∫
BZ
d2k

 1√
1− γ2

k

− 1

[√2πδ sin
(√

2πδ
)

+
8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
− h 1

4π2

∫
BZ
d2k

 1√
1− γ2

k

− 1


−zJ (1− δ)

32π4

[∫
BZ
d2k

(√
1− γ2

k − 1

)]2

− zJ (1− δ)
8

. (3.34)

With the aim of corroborating the above analytical results with those obtained
by GTPS simulations [26], let us choose t/J = 3, S = 1/2, and z = 3. Initially,
we analyze the destruction of the AF order through the evolution of the electronic
structure by increasing hole doping. Indeed, in Figs. 3.1 (a) and (b) we show
the evolution of the electronic structure from half-filled band (δ = 0), at which
the system displays a fully staggered AF order, to the doped regime at δ = 0.07
which is quite close to the region of destruction of the AF phase. Moreover, after
performing the integration over the first BZ zone in Eq. (3.34), we find that
the doping-dependent ground-state energy per site at zero magnetic field can be
written as follows:

E0 (δ)

NJ
= −0.3444

[
√

2πδ sin
(√

2πδ
)

+
8√
3

sin

(√
πδ

2

)

sin

(√
3πδ

2

)]
− 0.9239 (1− δ) , (3.35)

where one should notice that, here, for the sake of comparison with GTPS data,
we have added the term −z (1− δ) /8 to the exchange contribution [second term
in Eq. (3.35)], not considered in our estimate of E0/NJ at half filling in Section
3.1.

As shown in Fig 3.2 (a), we compare the analytical result from Eq. (3.35)
with the recent GTPS [26] calculations, and QMC simulations [20] at δ = 0.
Remarkably, our result for the doping-dependent ground-state energy agrees very
well with the GTPS one up to hole doping δ . 0.1. This critical value marks
a region of strong magnetic instability, i.e., the breakdown of the AF order. We
further indicate in the insets, Figs. 3.2 (b) and (c), the effect of hole doping in the
energetic contributions of the hopping and exchange Hamiltonians, respectively.
Based on physics ground, one can realize that the energetic contribution due to
the hopping term decreases far below zero at δ = 0, as we tune up the hole doping
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Figure 3.2: (a) Ground-state energy per site as a function of doping for t/J = 3.
We also compare with GTPS numerical results for the virtual dimensions D = 8
(blue color) and D = 12 (magenta color). Insets: Energetic contributions of the
(b) hopping and (c) exchange terms [see Eqs. (3.32) and (3.33), or first and second
term in Eq. (3.35), respectively].

away from half filling, while a linear increase in the exchange energy for increasing
hole doping is observed.

In order to better understand the effect of charge and spin quantum fluctuations
on the AF order; we also examine the behavior of the staggered magnetization as
a function of doping. In doing so, we obtain by means of Eq. (3.34) that the
staggered magnetization per site, m = 1

N
∂Eh
∂h |h=0, can be written as (for S = 1/2):

m (δ) = 0.2418− 0.1491

[
√

2πδ sin
(√

2πδ
)

+
8√
3

sin

(√
πδ

2

)
sin

(√
3πδ

2

)]
. (3.36)

It is very important to stress the origin of the two contributions in Eq. (3.36):
the first term stands for the Zeeman contribution to m (value of m at half filling),
while the second term is the orbital contribution to m calculated by means of
the Peierls substitution. Indeed, as seen in Fig. 4.10, the analytical result in Eq.
(3.36) indicates that both charge and spin quantum fluctuations conspire for the
breakdown of the AF order at δ ≈ 0.1. As a benchmark, we also display the
GTPS simulations for the virtual dimension D = 12 [26]. Indeed, these findings
are in good agreement for the critical hole concentration δc ≈ 0.1 beyond which the

Doctoral Thesis - Department of Physics - UFPE



3.3 Nonlinear σ-Model with a Topological Hopf Term 60

Figure 3.3: Staggered magnetization per site as a function of doping. We also
benchmark against GTPS simulations for the virtual dimension D = 12. Inset:
Illustration of the low hole doped AF phase.

AF phase disappears. However, at half filling (δ = 0), the GTPS calculation has
suggested a higher value for m = 0.3239 (D = 12), while QMC simulations [20]
have found m ≈ 0.2681(8), closer to our value m ≈ 0.2418. Notwithstanding,
taking into account that the results for the ground-state energy and magnetization
from quite distinct techniques (numerical and analytical) are compatible, we are
confident that our analytical approach is indeed highly rewarding and claims for
further development on this challenging topic.

We close this section by mentioning that the physical framework described by
Eqs. (3.18) and (3.25) is in agreement with density-matrix renormalization-group
results (DMRG) for hole-doped AB2 t-J chains [69] with similar J values, in which
case the holes exhibit charge-density order in anti-phase with the corresponding
spin-density order. Accordingly, a similar behavior of m versus δ has also been
observed in the low-doped regime of AB2 t-J chains.

3.3. Nonlinear σ-Model with a Topological Hopf Term

The purpose of this section is to analyze the Néel-VBS competition [34–37] in
the context of the nonlinear σ-model in the presence of a topological Hopf term.
Actually, we shall explicit the spin fluctuations by integrating out the fermions
degrees of freedom of the low-lying Lagrangian density in Eq. (2.59).

Before proceeding to more technical aspects of the mapping of the large-U
model onto the nonlinear σ-model with a topological Hopf term, let us define the
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order parameter used to describe the competition between the Néel state and the
VBS order. Here, we shall use a five-component unit vector to describe the entire
system:

φiα = (n1
iα, n

2
iα, n

3
iα, ρ

4
iα, ρ

5
iα), (3.37)

which is composed of the Néel vector, niα =
(
n1
iα, n

2
iα, n

3
iα

)
[the Néel order pa-

rameter lies on the surface of a sphere S2], and in competition with the VBS order
parameter, ρiα =

(
ρ4
iα, ρ

5
iα

)
[the VBS order parameter lies on the circle S1]. It

should be noted that the field φiα defines a map from S3 to S4 [70].
Moreover, in order to establish a firm connection with the low-lying Lagrangian

density in Eq. (2.59), we introduce the following representation of the SU(4)
group [71]:

Uiα = cos (λ)− i sin (λ)φiα · Γ, (3.38)

where λ is a group parameter and Γ are the usual Dirac gamma matrices. Here,
we need a set of five Γ matrices and among the possible choices [71], we use

Γ1,2,3 = σx,y,z ⊗ σy, Γ4 = σ0 ⊗ σx and Γ5 = σ0 ⊗ σz. (3.39)

Also, notice that these matrices satisfy the anticommuting relations:

{Γµ,Γν} = 2δµν and Γ5 = −Γ1Γ2Γ3Γ4. (3.40)

Next, by considering the above SU(4) representation of Uiα in Eq. (3.38),
along with the approximation:

∂τφiα × φiα ≈ ∂τφiα, (3.41)

we can turn the effective Lagrangian density, L, in Eq. (2.59) into the φ represen-
tation:

L ≈
∑
i

α†i∂ταi +
J

8t

∑
ijα

(1 + iφiα · Γ)
[
α†i
(
αi+êj +αi−êj

)
+ H.c.

]
. (3.42)

We would like to mention that terms which depend on the total time derivative
and an irrelevant additive constant were excluded (such terms do not contribute
to the effective action).

We proceed further to taking the continuum limit in Eq. (3.42); as a result,
the partition function takes the form:

Z ≈
∫
DᾱDαe−Seff =

∫
DᾱDα exp

{∫
d3xᾱ

[
iτµ∂µ + igφ̃

]
α

}
, (3.43)

where τ are the Pauli matrices; besides, we have defined

ᾱ ≡ iτzα†, g ≡ J/4t and φ̃ ≡ φ · Γ. (3.44)

Doctoral Thesis - Department of Physics - UFPE



3.3 Nonlinear σ-Model with a Topological Hopf Term 62

Correspondingly, by means of the standard procedures [56,57], we can write down
the effective action as

Seff = ln det (iτµ∂µ + igφ̃). (3.45)

At this stage, we follow Abanov and Wiegmann [72, 73], and write the Dirac
operator in the form

D = iτµ∂µ + igφ̃, (3.46)

which allow us to rewrite the fermionic determinant in Eq. (3.45) in a suitable
form to evaluate a perturbative expansion. Hence, by calculating the variation of
the effective action, Seff, with respect to φ, we get

δSeff = −Tr

(
δDD†

−∂2 + g2 − gτµ∂µφ̃

)
. (3.47)

Now, by applying the perturbative expansion up to first order in gτµ∂µφ̃, we
find that the effective action can be written as

δSeff = δS1 + δS2, (3.48)

where the first and second terms are given by

δS1 = ig2

∫
d3x

[∫
d3p

(2π)3

1

(p2 + g2)2

]
trδ
(
∂µφ̃

)
∂µφ̃; (3.49)

δS2 = g3

∫
d3x

[∫
d3p

(2π)3

g2

(p2 + g2)4

]
trφ̃∂µφ̃δφ̃, (3.50)

respectively.
At this point, it is important to use the following auxiliary result [74]:∫

ddp

(2π)d
1

(p2 +m2)n
=

i

(4π)
d
2

Γ
(
n− d

2

)
Γ(n)

(
1

m2

)n− d
2

, (3.51)

with the purpose of solving the integral inside the brackets in Eqs. (3.49) and
(3.50). By doing so, we obtain that the Eq. (3.49) yields a real contribution:

SRe =
g

4π

∫
d3x (∂µφ)2 , (3.52)

which is the nonlinear σ-model [72,73,75].
Less trivial is the evaluation of δS2 in Eq. (3.50). Let us anticipate that this

term gives rise to an imaginary contribution to the effective action that gener-
ates the topological Hopf term. With the purpose of making its derivation ex-
plicit, we must add a parameter ξ such that the field φ̃ (x, ξ) continuously interpo-
lates between the constant value φ̃ (x, ξ = 0) = (0, 0, 0, 0, 1) and the physical value
φ̃ (x, ξ = 1) = φ̃(x). This leads to

SIm = −iεabcde
12π

∫ 1

0
dξ

∫
d3xφa∂τφ

b∂xφ
c∂yφ

d∂ξφ
e. (3.53)
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Figure 3.4: The schematic phase diagram of Eq. (3.58). The coupling g controls
the strength of quantum spin fluctuations about the magnetically ordered Néel
state. Left: There is broken spin rotation symmetry in the Néel state. Right: The
valence bond solid (VBS) state spontaneously breaks lattice (e.g., translational)
symmetry.

It is also worthwhile to introduce, without loss of generality, the four-component
unit vector π according to the following parametrization:

φa = sin (ξϕ)πa, φb = sin (ξϕ)πb, φc = sin (ξϕ)πc, φd = sin (ξϕ)πd,

and φe = cos (ξϕ) . (3.54)

Thus, integrating over the auxiliary variable ξ, we find that

SIm = −iε
µνλεabcd

12π

∫
d3x

[
1− 9

8
cos (ϕ) +

1

8
cos (3ϕ)

]
πa∂µπ

b∂νπ
c∂λπ

d,

(3.55)

where we can readily identify the topological Hopf term [36,72,73,75]:

H =
εabcd
12π2

∫
d3xπa∂τπ

b∂xπ
c∂yπ

d, (3.56)

and the θ-term:

θ = π

[
1− 9

8
cos (ϕ) +

1

8
cos (3ϕ)

]
. (3.57)

Lastly, by summing up Eqs. (3.52) and (3.55), we obtain the action of the
nonlinear σ-model supplemented with a topological Hopf term:

S =
g sin2 ϕ

4π

∫
d3x (∂µπ)2 − iθH. (3.58)
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Figure 3.5: (a) Illustration of an instanton configuration in 2D Euclidean space-
time, with topological charge Q = 1. In (2 + 1) dimensions this configuration is
known as a skyrmion or hedgehog. (b) An instanton on S2 has the same topology
as a monopole, that of a “hairy ball.” Figure and caption taken form Ref. [56].

We would like to mention that by introducing a CPn−1 formulation this action
can be mapped onto a bosonic representation with the well-known Chern-Simons
term [36,56,72].

This nonlinear σ-model with the extra topological term describes the AF-VBS
competition [34–37]. It is expected that, as the Coulombian interaction U varies,
which means to tune the coupling constant g, so that the two insulating phases
become accessible in distinct regimes, as illustrated in Fig. 3.4 (quite possibly
in generalized Heisenberg models). The key point in the analysis of these two
distinct ground states is to make explicit the hedgehog topological defect in the
Néel order parameter (see Fig. 3.5). In order to realize this monopole configuration
we parametrize the components of the four-component unit π in terms of the Néel
vector as follows:

πa = sin (υ)na; πb = sin (υ)nb; πc = sin (υ)nc and πd = cos (υ) , (3.59)

such that we can write down the Lagrangian density, LBP , associated with the
Berry phase term in Eq. (3.55) as

LBP =
i

3
(2υ − sin 2υ)

[
1− 9

8
cos (ϕ) +

1

8
cos (3ϕ)

]
ρm, (3.60)

where
ρm =

εabc
4π

∂τ

(
na∂xn

b∂yn
c
)

(3.61)

is the monopole charge density. Thus, when the monopole charge density ρm
is integrated over the spacetime configuration of n there exists a change in the
Skyrmion number:

∆Qxy =

∫
dτdxdyρm. (3.62)
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Figure 3.6: VBS order on the honeycomb lattice.

These monopoles proliferate at the deconfined AF-VBS critical point. Indeed,
it has been shown that the presence of such monopole events correctly describes
the quantum paramagnet VBS order [75–77], which spontaneously breaks lattice
(e.g., translational) symmetry [see Fig. 3.4]. We may also identify the Berry phase,
which leads to the VBS order by setting ϕ = π/2 together with the following set
of υ = {0, π, 2π} in Eq. (3.60), in which case we find

SBP = 1, SBP = e2iπ/3∆Qxy and SBP = e4iπ/3∆Qxy , (3.63)

respectively, which correspond to Berry phase shift equal to 2iπ/3∆Qxy [77]; in
fact, by applying the symmetry operation in the honeycomb lattice we can con-
struct the VBS order with distinct patterns [36], as shown in Fig. 3.6 .

3.4. Final Remarks

In fact, we have shown that the perturvative low-energy theory established in the
previous Chapter is suitable to describe the magnetic properties of the large-U
Hubbard model at half-filling band and in the doped regime.

At half-filling, in the context of the quantum Heisenberg model, we have used
second-order spin-wave perturbation theory [O

(
1/S2

)
] to study the effect of quan-

tum spin fluctuations on the ground-state energy and staggered magnetization of
the AF order. The results are in very good agreement with previous numerical
and analytical investigations.

We stress that the most challenging aspect of our analysis was the mapping of
the hole-doped large-U Hubbard model onto a t-J Hamiltonian, and the formu-
lation of a controllable perturbative scheme to analyze the role played by charge
and spin quantum fluctuations on the breakdown of the hole-doped AF phase.
Remarkably, our findings for the doping-dependent ground-state energy and stag-
gered magnetization are quite consistent with recent GTPS numerical studies.

Lastly, in the continuum limit, we derived a nonlinear σ-model supplemented
with a topological Hopf term that describes the AF-VBS competition, although
numerical studies of the one band Hubbard model with on-site Coulombian inter-
actions indicate a continuous quantum phase transition from a semi-metal (weak-
coupling regime) to an AF phase (strong-coupling regime). As discussed in the
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Introduction, the VBS order appears only in the context of the Heisenberg model
with competing interactions.
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4. Superconductivity and Competing Magnetic Phases

In this chapter we shall present a systematic study of the competition between
superconducting and magnetic phases, using the strong-coupling low-energy effec-
tive Lagrangian density derived in the Section 2.3 [Eq. 2.59].

In order to investigate both low and high (particularly, near the Van Hove
singularity) hole doping regimes, it is important to perform two changes in the

referred Lagrangian density. Firstly, let us introduce the spinless hole field, h†i ≡ αi

[54, 55], such that we can formally write the relation:

α†iαi = 1− h†ihi. (4.1)

Secondly, it is necessary to introduce the chemical potential µ, which regulates the
doping levels. As a result, the large-U effective low-energy perturbative Lagrangian
density in Eq. (2.59), in the hole representation, takes the form:

L =
∑
i

h†i (∂τ − µ)hi +
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ

(
1− h†ihi

)
−t

∑
ijαβσ

[
θ(σ)

(
U †iαUi+êjβ

)
σ,−σ

h†ihi+êj + H.c.

]
+
J

8t

∑
ijασ

(
U †iα∂τUiα

)
σ,−σ

[
θ(σ)h†i

(
hi+êj + hi−êj

)
+ H.c.

]
−J

8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
](

1− h†ihi
)
.

(4.2)

The derivation of Eq. (4.2) is presented in Appendix B. Further, by performing
the Legendre transform:

H = −
∑
i

∂L
∂ (∂τhi)

∂τhi + L; (4.3)

where
∂L

∂ (∂τhi)
= h†i, (4.4)
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we can write down the corresponding Hamiltonian as:

H = −µ
∑
i

(
1− h†ihi

)
−
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ

(
1− h†ihi

)
−t

∑
ijαβσ

[
θ(σ)

(
U †iαUi+êjβ

)
σ,−σ

h†ihi+êj + H.c.
]

+
J

8t

∑
ijασ

(
U †iα ∂τUiα

)
σ,−σ

[
θ(σ)h†i

(
hi+êj + hi−êj

)
+ H.c.

]
−J

8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
](

1− h†ihi
)
.

(4.5)

The above Hamiltonian has the advantage of describing the entire system, i.e.,
superconducting and magnetic competing orders.

This Chapter is organized as follows: in Section 4.1, we shall describe the
superconducting phases (SC) by using SU(2) gauge fields associated with the
(spin-singlet) pairing symmetries: s−, dx2−y2 - or dxy-wave. Furthermore, we
also perform a thermodynamic analysis of the referred states. In particular, this
thermodynamic analysis shows that the critical temperature for the superconduct-
ing states is directly related to the exchange constant J = 4t2/U . In Section 4.2,
we also use the same formalism [SU(2) gauge fields associated with symmetries
exhibited by each phase] to describe antiferromagnetic (AF) and ferromagnetic
(FM) phases. Moreover, we calculate the electronic structure of the system for
each one of the competing orders: AF, FM, s-, dx2−y2- or dxy-wave SC. In this
context, an energetic analysis of the ground state of these phases reveal that the
AF order prevails for low hole doping, while a dominantly chiral dx2−y2 + idxy
superconducting state was found in the vicinity of the Van Hove singularity (high
hole doping). Remarkably, in Section 4.3, we report that the competition between
the AF and the chiral dx2−y2 + idxy-wave SC phases takes place by the occurrence
of a first-order transition accompanied by a spatial phase separation of the referred
phases. Lastly, in Section 4.4, we draw some final remarks.

4.1. Superconducting Phases on the Honeycomb Lattice

In this section, our aim is to analyze the possible unconventional supercon-
ducting states of the large-U Hubbard on the honeycomb lattice.

As our starting point, let us consider the symmetries exhibited by the super-
conducting orders. Here, we shall use SU(2) gauge fields [39, 55, 78] parametrized
according to the symmetry displayed by each phase. Thus, we shall describe the
possible superconducting phases on the honeycomb lattice, i.e., the pairing sym-
metries: s-, dx2−y2- and dxy-wave SC states [46, 47, 79–83], through the following
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SU(2) gauge field [39]:

USC
iα =

[ ∑
j χêj −

∑
j ∆êj∑

j ∆êj

∑
j χêj

]
, (4.6)

where ∆êj is the nearest-neighbor spin-singlet pairing correlation (notice that on-
site pairing is forbidden due to the very strong on-site Hubbard repulsion), and
χêj is the nearest-neighbor single-particle hopping correlation [39,40,47].

With the SU(2) gauge fields defined in Eq. (4.6), we can now study the oc-
currence of the mentioned superconducting phases using the Hamiltonian in Eq.
(4.5), with the help of Eqs. (2.28), (2.31), (2.32) and (2.35). For this purpose, it
is convenient to use the Nambu spinor representation [36]:

Ψk =

(
αk

βk

)
, (4.7)

such that the resulting Hamiltonian reads:

HSC =
∑
k

Ψ†kẼ
SC
k Ψk +

3JNcχ
2

2
+
∑
j

JNc∆
2
êj

2
−Ncµ, (4.8)

where

ẼSCk =

(
−ESCk 0

0 ESCk

)
; (4.9)

in Eq. (4.9) ESCk defines the band spectrum of the superconducting phases and is
given by

ESCk =

{[
εkχk∆k +

J

4t2
χ2
kε

2
k −

µ

2
+

J

4t2
χk∆kε

2
k

]2

+ (εkχk∆k)2

}1/2

,

(4.10)

with
∆k ≡

∑
j

∆êj cos (k · êj) , (4.11)

χk ≡
∑
j

χêj cos (k · êj) . (4.12)

The reader can find detailed calculations of the diagonalization of H in Appendix
B. Some comments about Eq. (4.10) are in order. One major aspect of our strong-
coupling approach is the fact that at half-filling, µ = 0, and χk = 0 the electronic
spectrum ESCk is zero.

We now proceed in analyzing the symmetries exhibited by the pairing compo-
nent of the superconducting order parameter, ∆. At a general level, the symmetry
analysis of the pairing component of the superconducting order parameter, ∆, on
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the honeycomb lattice [79–81] gives rise to the following basis-vector representa-
tion ( for convenience, the normalization factor of the basis vectors is absorbed by
the corresponding ∆):

∆êj =


∆ (1, 1, 1) ;

∆ (2,−1,−1) ;
∆ (0, 1,−1) ,

(4.13)

for the s-, dx2−y2-, and dxy-wave states, respectively. Notwithstanding these pos-
sibilities, the precise realization of a particular (ground state) superconducting
order parameter must be determined by energetic calculations. However, as we
shall demonstrate, in the next Section, in the low hole doping regime that the AF
order is more stable than the superconducting ones, while the chiral dx2+y2 + idxy-
wave superconducting phase prevails around the Van Hove singularity (the M
point).

Before going through the energetic analysis, let us perform a small-wave-vector
expansion [80,81], |q|a� 1, in the function ∆k around the K points with the goal
of examining the above mentioned pairing symmetries [see Fig. 4.1].

In the case of a s-wave symmetry, the superconducting order parameter ∆k

becomes:
∆k = ∆ [cos (k · ê1) + cos (k · ê2) + cos (k · ê3)] , (4.14)

and keeping in mind that the K points and the lattice unit vectors are given by [11]

K± =

(
2π

3a
,± 2π

3
√

3 a

)
; (4.15)

e1 = a (1, 0) , e2 = a

(
−1

2
,

√
3

2

)
and e3 = a

(
−1

2
,
−
√

3

2

)
, (4.16)

respectively, we obtain, by employing a small-wave-vector expansion (q = K± + k)
[81]:

∆q ≈ −
3a∆|k|

2
. (4.17)

In a equivalent manner, for the dx2−y2-wave symmetry:

∆k = ∆ [2 cos (k · ê1)− cos (k · ê2)− cos (k · ê3)] , (4.18)

so that the small-momentum expansion around the K points gives rise to

∆q ≈ −
∆
(
k2
x − k2

y

)
|k|2

. (4.19)

Similarly, for the dxy-wave symmetry:

∆k = ∆ [cos (k · ê2)− cos (k · ê3)] , (4.20)
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Figure 4.1: ∆k in the first Brillouin zone calculated for three possible symmetries
on a (monolayer) honeycomb lattice. Figure and caption taken from Ref. [81].

we get

∆q ≈ ±
∆ kxky√

3 |k|2
. (4.21)

Eqs. (4.17), (4.19) and (4.21) above clearly indicate that near the K points the
gap functions are nonzero and exhibit the corresponding symmetries, as shown in
Fig. 4.1. [Although, these effective simple pictures do not emerge from a quick
analysis of the electronic spectrum in Eq. (4.10); however, in Section 4.2, Figs.
4.7 these symmetries are clearly evidenced.]

In order to gain further information about distinct superconducting instabil-
ities or ordering tendencies, we also carry out a thermodynamics analysis of the
referred superconducting phases. By doing so, let us perform a Legendre trans-
form:

HSC = −
∑
k

∂LSC
∂ (∂τΨk)

∂τΨk + LSC ; (4.22)

where
∂LSC

∂ (∂τΨk)
= Ψ†k, (4.23)

in the diagonalized Hamiltonian in Eq. (4.8), such that the corresponding effective
low-energy Lagrangian density can be written as

LSC =
∑
k

Ψ†k

(
∂τ + ẼSCk

)
Ψk +

JNc

2

∑
j

∆2
êj

+
3JNcχ

2

2
− µNc. (4.24)

As a consequence, the effective action reads:

SSC =

∫ β

0
dτ

∑
k

Ψ†k

(
∂τ + ẼSCk

)
Ψk +

JNc

2

∑
j

∆2
êj

+
3JNcχ

2

2
− µNc

 .
(4.25)

In the sequence, let us write the Nambu fields in Eq. (4.7) in terms of their
Fourier components (from now on we shall use SI units; instead of the system of
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natural units, with ~ = kB = 1):

Ψk =
1√
~β

∑
n

Ψkne
−iωnτ , (4.26)

where ωn = (2n+ 1)πkBT/~ are the fermionic Matsubara frequencies [56–58, 84]
and n is an integer. Thus, the partition function assumes the form:

Z =

∫
dΨ†kndΨkne

−SSC
[
Ψ†

kn,Ψkn

]
/~
, (4.27)

with

SSC =
∑
kn

Ψ†kn

(
−i~ωn + ẼSCk

)
Ψkn +

JNcβ~
2

∑
j

∆2
êj

+
3JNcβ~χ2

2
− β~µNc.

(4.28)

Using now a saddle point procedure [56–58, 84], we can obtain the strong-
coupling-BCS free energy (FSC = −kBT lnZ):

FSC = −kBT
∑
kn

ln
[
(~ωn)2 +

(
ESCk

)2]
+
JNc

2

∑
j

∆2
êj

+
3JNcχ

2

2
− µNc.

(4.29)

We then convert the Matsubara sum to a contour integral [84]:

FSC = −
∑
~k

∮
dz

2iπ
f (z) ln

[
z2 − E2

k

]
+
JN

2

∑
j

∆2
êj

+
3JNχ2

2
−Ncµ, (4.30)

and performing the contour integration method [85], where the integral runs anti-
clockwise around the poles ±ESCk , as well as by realizing that the logarithm inside
the integral can be split up into two terms:

ln
[
z2 −

(
ESCk

)2] 7−→ ln
[
ESCk − z

]
+ ln

[
−ESCk − z

]
, (4.31)

we recognize that the strong-coupling-BCS free energy takes the form:

FSC = −kBT
∑
~k

{
ln

[
1 + exp

(
−
ESCk
kBT

)]
+ ln

[
1 + exp

(
ESCk
kBT

)]}

+
JNc

2

∑
j

∆2
êj

+
3JNcχ

2

2
−Ncµ; (4.32)

and a simple rearrangement of the terms leads to

FSC = −2kBT
∑
k

ln

[
2 cosh

(
ESCk
2kBT

)]
+
JNc

2

∑
j

∆2
êj

+
3JNcχ

2

2
−Ncµ.

(4.33)
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With the purpose of finding the self-consistent equations for the s-wave and
chiral dx2+y2 + idxy-wave superconducting states [below, the reader can find the
explanation for the choice of this ground state], we minimize FSC in Eq. (4.33)
with respect to ∆, χ and µ for the referred superconducting states. In the former
case, the strong-coupling-BCS free energy in Eq. (4.33) takes the form:

Fs = −2kBT
∑
k

ln

[
2 cosh

(
ESC,sk

2kBT

)]
+

3JNc

2
∆2 +

3JNcχ
2

2
−Ncµ. (4.34)

Accordingly, by minimizing Fs in Eq. (4.34) with respect to ∆ and χ, i.e.,(
∂Fs
∂∆

)
χ,µ

= 0 and

(
∂Fs
∂χ

)
∆,µ

= 0, (4.35)

respectively, we obtain that the strong-coupling-BCS self-consistent equations read:

∆s =
2

3JNc

∑
k

tanh

(
ESC,sk

2kBT

)
∂ESC,sk

∂∆s
, (4.36)

χs =
2

3JNc

∑
k

tanh

(
ESC,sk

2kBT

)
∂ESC,sk

∂χs
. (4.37)

It is important to note that as ∆s and χs are elements of the SU(2) group,
they must satisfy the constraint [det(USCiα )=1]:

3 (∆s)
2 + 3 (χs)

2 = 1. (4.38)

Moreover, bear in mind that N = −∂F/∂µ [65], we can write down the electron
density n as

n =
N

Nc
= − 1

Nc

∂F

∂µ
, (4.39)

such that the above relation provides the equation for hole doping (δ = 1− n):

δs = − 1

Nc

∑
k

tanh

(
ESC,sk

2kBT

)
∂ESC,sk

∂µ
, (4.40)

which connects δs with the components ∆s and χs of the superconducting order
parameter.

Now, by taking the limit T → 0, we can rewrite the above set of self-consistent
equations for the ground-state of the s-wave pairing in the form:

∆s =
1

24Jπ

∫
BZ

d2k
∂ESC,sk

∂∆s
;

χs =
1

24Jπ

∫
BZ

d2k
∂ESC,sk

∂χs
, (4.41)
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and

δs = − 1

8π

∫
BZ

d2k
∂ESC,sk

∂µ
. (4.42)

The above results, together with Eq. (4.10), allow us to determine the ground-state
energy per site for the s-wave pairing:

Es

Nt
=

1

4π2

∫
BZ

d2kESC,sk +
3J

4t
∆2 +

3Jχ2

4t
. (4.43)

In advance of the mathematical set up for the (chiral) dx2−y2 +idxy (≡ d1+id2)
pairing state, let us explain this choice for the honeycomb lattice. As elaborated
in Refs. [46, 47, 79–83] on the grounds of lattice symmetry arguments, numerical
calculations and functional renormalization group analysis, in both strong and
weak coupling regimes, the dominant pairing term on the honeycomb lattice will
be a mixture of dx2−y2− and dxy− wave [between nearest neighbor singlet pairing]:

∆k = cos (θ) ∆x2−y2 (k)± i sin (θ) ∆xy (k) , (4.44)

in which, it was shown that: the minimum of the free energy happens for θ = π/3;
the ± signs are associated with the K and K ′ points, respectively, by means of
the time-reversal symmetry, and the imaginary unit, i, is constrained to the free
energy minimization (i.e., both dx2−y2 and dxy orders coexist).

Following the above prescription, let us apply the same mathematical routine
performed for the s-wave pairing in order to establish the self-consistent equations
for the chiral d-wave state. By doing so, for the d1 + id2 pairing state, the strong-
coupling-BCS free energy is given by

Fd1+id2 = −2kBT
∑
k

ln

[
2 cosh

(
ESC,d1+id2

k

2kBT

)]
+ 4JNc∆

2 +
3JNcχ

2

2
−Ncµ,

(4.45)
so that, at the stationary point of Fd1+id2 :(

∂Fd1+id2

∂∆

)
χ,µ

= 0 and

(
∂Fd1+id2

∂χ

)
∆,µ

= 0, (4.46)

we obtain the following set of strong-coupling-BCS self-consistent equations:

∆d1+id2 =
1

4JNc

∑
k

tanh

(
ESC,d1+id2

k

2kBT

)
∂ESC,d1+id2

k

∂∆d1+id2

; (4.47)

χd1+id2 =
2

3JNc

∑
k

tanh

(
ESC,d1+id2

k

2kBT

)
∂ESC,d1+id2

k

∂χd1+id2

, (4.48)
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and with the help of Eq. (4.39) we find:

δd1+id2 = − 1

Nc

∑
k

tanh

(
ESC,d1+id2

k

2kBT

)
∂ESC,d1+id2

k

∂µ
. (4.49)

Now, by taking the limit T → 0, we obtain the following set of self-consistent
equations for the ground state of the chiral d1 + id2-wave pairing:

∆d1+id2 =
1

64Jπ

∫
BZ

d2k
∂ESC,d1+id2

k

∂∆d1+id2

;

χd1+id2 =
1

8Jπ

∫
BZ

d2k
∂ESC,d1+id2

k

∂χd1+id2

, (4.50)

and

δ = − 1

8π

∫
BZ

d2k
∂ESC,d1+id2

k

∂µ
. (4.51)

Further, as ∆d1+id2 and χd1+id2 are elements of the SU(2) group, they must satisfy
the condition [det(USCiα ) = 1]:

8∆2 + 3χ2 = 1. (4.52)

The above results, together with Eq. (4.10), allow us to determine the ground-
state energy per site for the chiral d1 + id2-wave pairing:

Ed1+id2

Nt
=

1

4π2

∫
BZ

d2kESC,d1+id2

k +
2J

t
∆2 +

3Jχ2

4t
. (4.53)

In Fig. 4.2(a) and (b), we show the pairing ∆ and hopping χ components of
the superconducting order parameter as a function of hole doping, δ, for the chiral
d1 + id2-wave superconducting state. In Fig. 4.2(a), it is worth noting that the
onset of the chiral d1 + id2-wave state occurs since nonzero doping values, with
the optimal doping around δ ≈ 0.15. Further it should be noted that, beyond
the critical hole doping δc ≈ 0.39, the chiral d1 + id2-wave superconducting phase
disappears. Indeed, this finding is in good agreement with previous studies of the
critical percolation density ρc = 0.42± 0.01 for the honeycomb lattice [86]. In Fig.
4.2(b), notice that χ is nonzero everywhere. However, the system is an insulator
at δ = 0 (hopping is not allowed), which means that χ = 1/

√
3 (open circle) is

associated with the continuity condition in Eq. 4.52. It is interesting to remark
that χ = 1/

√
3 is in very good agreement with the maximum value (≈ 0.5760) of

the tight-binding hopping correlation evaluated using Eq. (3.18), as shown in Fig.
4.3. Also, χ = 1/

√
3 at δ = δc. This suggests that for the high-hole doped regime

δ > δc (open circle) the system is governed by the charge Hamiltonian H0 in Eq.
2.46, with the prediction of a sudden small decrease of the tight-binding hopping
correlation at δ = δ+

c .
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Figure 4.2: (a) Pairing ∆ and (b) hopping χ components of the superconducting
order parameter, at T = 0, as a function of doping δ for the chiral d1 + id2-wave
state, with J/t = 1/3. Inset: Illustration of the chiral d1 + id2-wave state. Figure
taken from [87].

Figure 4.3: Tight-binding correlation as a function of hole doping.

Critical Temperature

Here, our aim is to examine the superconducting critical temperature for both
the s-wave and the chiral d1 + id2-wave states. Thus, let us initially impose the
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close gap condition [82]:
J

4t2
χ2
kε

2
k −

µ

2
= 0, (4.54)

such that, in the vicinity of the Van Hove singularity µ ∼ t, we obtain:

χkεk =

√
U

2t
. (4.55)

In the sequence, by performing an expansion of the excitation spectrum in Eq.
(4.10) for small ∆, we find that

ESCk ≈ 3εk
2
χk∆k. (4.56)

Let us now estimate the superconducting critical temperature for the s-wave
state. Thus, by rewriting Eq. (4.29) in the convenient form:

FSC,s = −kBT
∑
kn

ln

[
(~ωn)2 +

(
ESC,sk

)2
]

+
3JNc

2
∆2 +

3JNcχ
2

2
− µNc,

(4.57)

and minimizing with respect to ∆, i.e.,(
∂FSC,s
∂∆

)
χ,µ

= 0, (4.58)

we obtain the following auxiliary result:

∆ =
2kBT

3JNc

∑
kn

1

(~ωn)2 + (ESC,sk )2

∂ESCk
∂∆

. (4.59)

In the sequence, we replace the sum over momenta by an integral around the Van
Hove singularity: 1

Nc

∑
k −→

ρ(t)
4π2

∫
dε, where ρ(t) ≈ 2/π2t (lower estimate) is the

density of states close (above) to the Van Hove singularity (see pgs. 62 and 63).
By doing so, as well as by substituting Eqs. (4.54)-(4.56) into Eq. (4.59), we find:

8π2t2

9U2
= 2πkBTc

∞∑
n=0

[
1

~ωn
− 1

~ωn + J
Γs

]
, (4.60)

where we have imposed the limit on ~ωn by subtracting off an identical term, with
~ωn −→ ~ωn + J/Γs, Γs =

∑
j cos (k · ej) is the form factor evaluated at the M

point. Keeping in mind that ~ωn = (2n+ 1)πkBT
s
c , we can rewrite Eq. (4.60) in

the form:
8π2t2

9U2
=
∞∑
n=0

[
1

n+ 1
2

− 1

n+ 1
2 + J

2πkBT sc Γs

]
. (4.61)
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At this point, we use the identity of the digamma function ψ(z) [74]:

ψ(z) = −C −
∞∑
n=0

(
1

z + n
− 1

1 + n

)
, (4.62)

where C = 0.577 is the Euler constant. Therefore, Eq. (4.61) can be written as

8π2t2

9U2
= ψ

(
1

2
+

J

2πkBT sc Γs

)
− ψ

(
1

2

)
. (4.63)

Further, by using the approximation ψ(z) ≈ ln(z) [74], we obtain:

8π2t2

9U2
= ln

[
Je−ψ( 1

2)

2πkBT sc Γs

]
, (4.64)

a simple rearrangement of the terms yields:

kBT
s
c =

[
e−ψ( 1

2
)

2π

]
J

Γs
e−

8π2t2

9U2 . (4.65)

In an equivalent manner, the critical temperatures for the d1 + id2-wave states
is given by

kBT
d
c =

[
e−ψ( 1

2
)

2π

]
J

Γd
e−

8π2t2

9U2 . (4.66)

We remark that the above estimates of the critical temperatures in Eqs. (4.65)
and (4.66) show a direct proportionality with the exchange constant J = 4t2/U .
Therefore, it suggests a scenario of superconductivity based on a purely electronic
mechanism.

Let us also mention that in a two-dimensional system, the Mermin-Wagner
theorem [88] asserts that there can be no real superconducting long-range order.
However, a Kosterlitz-Thouless transition (TKT) is allowed (a topological transition
with power-law decay of the spin correlation function in the context of the XY
model), with kBTKT = 2J/π, where J denotes an exchange constant of the XY
model on a square lattice [89]. It is interesting to note that using U = 12t in Eq.
(4.66) we find kBT

d
c ≈ J/Γd.

We would like to address a new theoretical analysis of the critical temperature
for both superconducting phases right at the Van Hove singularity [this theoretical
investigation was performed after the presentation of the above contents to the
Thesis Committee].

In our first attempt in controlling the logarithmic divergence of the complete
elliptic integral of the first kind, F (θ; k = 1), as depicted in Fig. 4.4, we set a
cutoff: J/t (energy scale) in the upper limit of the integration [see Eq. (4.92) and
a detailed derivation of its analytical form in Appendix C]:

F
(
J

t
; k = 1

)
=

∫ J
t

0

dφ

cos (φ)
. (4.67)
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Figure 4.4: Behavior of F (θ, k = 1) over the interval of integration in θ [see Eq.
(4.92)]. Inset: Schematic representation of the cutoff (energy scale), J/t, control-
ling the logarithmic divergence.

Evaluating this integral [74], one obtains:

F
(
J

t
; k = 1

)
= ln

∣∣∣∣sec

(
J

t

)
+ tan

(
J

t

)∣∣∣∣ . (4.68)

At this point, it is important to keep in mind that in the strong-coupling
regime: J/t � 1. This allows us to expand the two terms inside the bars, in Eq.
(4.68), such that, after a straightforward series expansion up to O (J/t), we end
up in the following compact form:

F
(
J

t
; k = 1

)
= ln

(
1 +

J

t

)
. (4.69)

Thereby, the density of states - at the Van Hove singularity - reads [see Appendix
C]:

ρ (ε = t) =
2

π2t
ln

(
1 +

J

t

)
. (4.70)

Now, we can readily derive an analytical expression for the critical temperature,
Tc, right at the Van Hove singularity with the aid of the above density of states
[Eq. (4.70)].

Next, we have used the same mathematical algorithm carried out from Eq.
(4.59) to Eq. (4.64) in order to rewrite the mathematical expression of Tc, in
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Eqs. (4.65) and (4.66) for the s-wave and d1 + id2-wave states (right at the Van
Hove singularity), respectively. By doing so, we reached the following closed-form
expressions:

kBT
s
c =

[
e−ψ( 1

2
)

2π

]
J

Γs
e−

π2J
6t , (4.71)

for the s-wave superconducting order, and

kBT
d
c =

[
e−ψ( 1

2
)

2π

]
J

Γd
e−

π2J
6t , (4.72)

related to the d1 + id2-wave superconducting state.
Finally, let us comment on two relevant aspects that rise up in this new the-

oretical analysis: (i) the above closed-form expressions also exhibit a direct link
between Tc and the exchange constant J = 4t2/U , which means that our previous
conclusions remain valids; (ii) further, one should note that only the exponential
behavior was affect by the logarithmic divergence of density of states in comparison
with the preceding investigations [see Eqs. (4.65) and (4.66)]. Physically, these
new theoretical findings keep up with the suggestion that the mechanism which
governs the formation of the superconducting phases is purely of electronic origin.

4.2. Energetic Analysis of Superconducting and Magnetic Phases

In this section, we shall use the corresponding SU(2) gauge fields [55,78] to describe
the antiferromagnetic (AF), UAF

iα , and ferromagnetic, UF
iα, phases:

UM
iα =

 〈niα〉 cos
(
θiα
2

)
−〈niα〉 sin

(
θiα
2

)
e−iφiα

〈niα〉 sin
(
θiα
2

)
eiφiα 〈niα〉 cos

(
θiα
2

)  , (4.73)

where M=AF, F, φiα is an arbitrary azimuth angle due to the U(1) gauge freedom,
θiα is the polar angle between the z-axis and 〈niα〉 is the average occupation at
the site iα (iα = A or iα = B) [90] . In the antiferromagnetic ground state (AF),
the average occupancy at the sites the iA and iB read:

〈niA〉 =
n

2
+
〈miA〉

2
; (4.74)

〈niB〉 =
n

2
− 〈miB〉

2
, (4.75)

where n denotes the electron density, and 〈miA〉 = −〈miB〉 = m denotes the
magnitude of the sublattice magnetization. For the ferromagnetic phase (F) the
average occupation at the site iα takes the form (〈miA〉 = 〈miB〉 = m):

〈niA,B〉 =
n

2
+
m

2
. (4.76)
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We now apply the preceding formalism to the magnetic orders. Firstly, we
plug Eq. (4.73) into Eq. (4.5), as well as with the help of Eqs. (2.28); (2.31);
(2.32) and (2.35), we obtain, after the same pretty long calculations, that the
electronic spectrum associated with the AF and F magnetic phases is given by (in
the momentum space):

EAFk =

{
[εk (1 +m)]2 +

[
J
(
1 +m2

)
8

+
µ

2

−
J
(
1−m2

)
εk

8t

∑
j

cos (2k · êj)

2
1/2

; (4.77)

EFk =

{
[εk (1 +m)]2 +

[
J
(
1 +m2

)
8

+
µ

2

−
J
(
1 +m2

)
εk

8t

∑
j

cos (2k · êj)

2
1/2

, (4.78)

respectively.
In addition, we also calculate the effective action for the AF and F phases:

SAF =

∫ β

0
dτ

[∑
k

Ψ†k

(
∂τ + ẼAFk

)
Ψk +

JNc

4

(
1 +m2

)
−Ncµ

]
; (4.79)

SF =

∫ β

0
dτ

[∑
k

Ψ†k

(
∂τ + ẼFk

)
Ψk +

JNc

4

(
1 +m2

)
−Ncµ

]
, (4.80)

respectively.
In the sequence, we also evaluated the free energy related to the AF and F

phases (we have performed the same calculations routine of the superconducting
phases):

FAF = −2kBT
∑
k

ln

[
2 cosh

(
EAFk

2kBT

)]
+
JN

4

(
1 +m2

)
−Ncµ;

(4.81)

FF = −2kBT
∑
k

ln

[
2 cosh

(
EFk

2kBT

)]
+
JN

4

(
1 +m2

)
−Ncµ,

(4.82)
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respectively.
By minimizing these free energies, we find, at T = 0, the following self-

consistent equations for the magnetization of the AF and F orders:

mAF =
1

8Jπ

∫
d2k

∂EAFk

∂m
; (4.83)

δAF = − 1

8π

∫
d2k

∂EAFk

∂µ
, (4.84)

and

mF =
1

8Jπ

∫
d2k

∂EFk
∂m

; (4.85)

δF = − 1

8π

∫
d2k

∂EFk
∂µ

, (4.86)

respectively.
The above results, along with Eqs. (4.77) and (4.78), allow us to establish the

ground-state energy per site for the AF and F phases:

EAF

Nt
=

1

4π2

∫
BZ

d2kEAFk +
J

4t

(
1 +m2

)
; (4.87)

EF

Nt
=

1

4π2

∫
BZ

d2kEFk +
J

4t

(
1 +m2

)
, (4.88)

respectively.
Before proceeding to the energetic analysis of the magnetic and superconduct-

ing phases in the low and high hole-doped regime, let us consider the electronic
density of state in the non-interacting tight-binding case in order to build a phys-
ical picture of these doping levels. It is possible to derive an analytical expression
for the density of states per unit cell from Eq. (2.34). In fact, after a pretty long
calculation, we find that the density of states per unit cell for the non-interacting
tight-binding case has the form [91]:

ρ (ε) =
4 | ε |

π2t2
√
Z0

F

(
π

2
,

√
Z0

Z1

)
, (4.89)

in which

Z0 =

{
(1+ | ε |)2 − 1

4

(
| ε |2 −1

)2
, for | ε |≤ 1,

4 | ε |, for 1 ≤| ε |≤ 3,
(4.90)

and

Z1 =

{
4 | ε |, for | ε |≤ 1,

(1+ | ε |)2 − 1
4

(
| ε |2 −1

)2
, for 1 ≤| ε |≤ 3,

(4.91)

where

F
(π

2
, k
)

=

∫ π
2

0

dθ√
1− k2 sin2 (θ)

, (4.92)
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Figure 4.5: The density of states per unit cell as a function of energy ε (in
units of t) for the non-interacting tight-binding case. The origin of energy
has been chosen at the K points.

is the complete elliptic integral of the first kind. In Appendix C, we detailed the
derivation of the above analytical expression for the density of states per unit
cell. As shown in Fig. 4.3, the density of states close to the K points (the
neutrality point ε = 0) vanishes linearly, i.e., when ε � 1 the density of states
ρ (ε) ≈ 2|ε|/

(√
3 π
)
; whereas it presents a logarithmically divergent Van Hove

singularity right at the M points (ε = ±t).
From the above perspective, we can now study the competition between the

superconducting and magnetic phases close to the K points (low hole doping) and
around the Van Hove singularity (high hole doping). Technically speaking, one can
realize that each self-consistent equation for a competing order is closely connected
with its respective electronic spectrum. Thus, by solving numerically these self-
consistent equations and performing a integration of the electronic structure in
Eqs. (4.43), (4.53), (4.87) and (4.88) over the first Brillouin zone, we can obtain
the ground-state energy for all competing phases.

Let us start the energetic analysis of the competing orders (at zero temper-
ature) in the low hole doping regime. Thus, after performing the procedure ex-
plained above, we find that the doped AF prevails in the low hole doping regime,
i.e., µ = −0.2t, for the parameter range 0 ≤ J/t ≤ 1 , as shown in Fig. 4.6.
We further indicate in the inset that the system is degenerated in the infinite-U
limit, J/t = 0, as expected [61]. (We would like to mention that in the infinite-U
limit there occurs the so-called Nagaoka phenomenon, which is dominated by the
one-hole doped ferromagnetic ground state [66,69].)
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Figure 4.6: Ground-state energy per site as a function of J/t. Inset: Infinite-U
limit.

Next, we investigate the system in the high hole-doped regime. As shown in
Fig. 4.7, the energetic analysis displays a dominantly chiral d−wave supercon-
ducting order in the vicinity of the Van Hove singularity (VHS), i.e., µ = −t, in
the parameter range 0 ≤ J/t ≤ 1. Indeed, this result is in agreement with pre-
vious theoretical studies in the weak-coupling [46] and strong-coupling [47,79–83]
regimes. We further indicate in the inset that the system is degenerated at U =∞
(i.e, J = 0).

In Figs. 4.8(a) and 4.8(b), we plotted the electronic structure of the dx2−y2-
wave and dxy-wave pairing symmetries, in which case one clearly sees the men-
tioned symmetries manifested. It is interesting to note that both lower and upper
bands collapse in flat bands (Ek = 0) at T = T dc for the respective symmetry.
In fact, flat bands may emerge in fermionic systems with a diverging density of
states [92].
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Figure 4.7: Ground-state energy per site as a function of J/t in the vicinity of
the VHS. Inset: Infinite-U limit.

Figure 4.8: Energy spectrum of the (a) dx2−y2-wave and (b) dxy-wave supercon-
ducting phases with J/t = 1/3 and µ = −t. We also present the flat band, Ek = 0,
(red color) at T = T dc for the respective symmetry.
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Figure 4.9: Energy spectrum along the lines connecting points of high symmetry:
(a) dx2−y2-wave and (b) dxy-wave superconducting phases with J/t = 1/3 and
µ = −t. With the same color code of Fig. 4.8, we display the flat bands, Ek = 0,
(red color) at T = T dc for the respective symmetry.

In addition, in Figs. 4.9 (a) and (b), we show the projections of the energy
spectrum along the lines connecting points of high symmetry of the honeycomb
lattice. These projections provide a transparent link with the behavior of the
dxy and dx2−y2 superconducting order parameters over the first Brillouin zone,
depicted in Fig. 4.1. As expected, the strength of the superconducting order
parameters [Eqs. (4.19) and (4.21) ] ruled the behavior of the energy spectrum
[Eq. (4.10)], i.e., in both symmetry cases the superconducting order parameters
assume their maximum values (in modulus) in the surrounding of the M points
[Figure 2.1 (b)], while they display their minimum values around the Γ and K
points. Phenomenologically speaking, the spin-singlet pairing correlations acquire
their maximum strength (in modulus) around the M points, so that, one can
realize the formation of the superconducting state [this is a auxiliary perspective
in relation to the robust energetic analysis employed in the high hole doping regime
in Fig. 4.7]. Furthermore, the projections of the energy spectrum indicate that in
the surrounding of the K points there exit hopping electrons in the lattice (in this
region, the nearest-neighbor single particle hopping correlation governs the energy
scale).
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4.3. Néel-Chiral d-Wave Phase Separation

In this section, we provide evidence that a spatial phase separation takes place
between the two competing ground states, i.e., the doped AF order (low hole
doping) and the chiral d1 + id2-wave superconducting state (high hole doping)
determined through an energetic analysis in the previous Section.

We now discuss the competition between the referred ground states through
a sound thermodynamic analysis. Thus, with the help of Eqs. (4.83) and (4.84),
we analyze the behavior of the magnetization, m, as a function of doping, δ,
for the AF phase, in Fig. 4.10(a). At half-filling (δ = 0), the magnetization
has its maximum value, when we dope the AF phase away from half filling, the
magnetization decreases rapidly and reaches zero at the critical hole concentration
δc ≈ 0.15, which is in good agreement with preceding studies [22, 26] mentioned
in Section 3.3. Further, in order to help the next explanation, we also present in
the insets, Figs. 4.10(b) and 4.10(c), the pairing and hopping components of the
superconducting order parameter, ∆ and χ, as a function of doping, δ, (see Fig.
4.2). Hence, notice that the position of the optimal doping for the chiral d1 + id2-
wave superconducting state is around δ ≈ 0.16, and the breakdown of the doped
AF phase occurs for δc ≈ 0.15. Indeed, these findings suggest that the two ground
states are in direct competition with each other; moreover, they also suggest that
the AF-SC transition is not continuous for U = 12t, and the phases may coexist
in some interval of hole concentration.
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Figure 4.10: (a) Staggered magnetization as a function of doping at t/J = 3 in
the self-consistent approach. Insets: (b) Pairing ∆ and (c) hopping χ components
of the superconducting order parameter as a function of doping.

In order to further understand the above-mentioned coexistence of phases, we
also analyze the chemical potential as a function of doping [93], µ (δ). Thus, with
the help of Eqs. (4.50); (4.51); (4.83) and (4.84), we show chemical potential as
a function of doping in Fig. 4.11 for the doped AF phase (blue line with square)
and for the chiral d1 + id2-wave superconducting state (magenta line with circle)
for t/J = 3. Further, we also compare the ground-state energies [see Eqs. (4.53)
and (4.87)]:

∆E =
Ed1+id2

Nt
− EAF

Nt
, (4.93)

since it determines the range of absolute stability of each phase. Indeed, as shown
in the inset, the difference of energies ∆E becomes zero for µ/t ≈ −0.58, in
which case the system jumps from the doped AF order to the chiral d1 + id2-
wave superconducting state through a first-order phase transition, which indicates
that there exists a window of forbidden doping, and, consequently, the necessity
of a Maxwell construction [black line connecting the two µ−curves] in the phase
separation region (it can be shown in the canonical ensemble that this window of
forbidden doping corresponds to the wrong convexity of the energy and a negative
compressibility [62]). In fact, in this doped regime the energetic analysis [see Figs.
4.4 and 4.6] predicts unstable states (dashed blue line and dashed magenta line).
Lastly, notice that while in the AF phase (see Chapter 3) χ is described by the
tight-binding result shown in Fig. 4.3, in the superconducting phase χ is governed
by the SU(2) condition in Eq. (4.52).
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Figure 4.11: Chemical potential as a function of doping for J/t = 1/3. The
black line indicates the phase separation regime (Maxwell construction). Inset:
Difference between the ground-state energies of the doped AF phase and the chiral
d−wave SC phases as a function of the chemical potential for J/t = 1/3.

By systematically employing the above careful examination of the chemical
potential as a function of doping for other values of J/t, we have constructed the
phase diagram of the doped strongly coupled Hubbard model on the honeycomb
lattice, as depicted in Fig. 4.12.

In this phase diagram, besides the stunningly spatial phase separation between
doped Néel phase (energetically stable in the low hole doping regime) and chiral
d1 + id2-wave superconducting state (the dominant one in the high hole doping
sector); it is interesting to notice that seemingly the two phase separation lines
could meet at a quantum critical point by tunning the parameters t/U to high
values [i.e., by decreasing the Coulombian interaction].
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Figure 4.12: Phase diagram of the doped strongly coupled Hubbard model on
the honeycomb lattice. (left) Doped Néel phase and (right) chiral d1 + id2-wave
superconducting state are spatially separated (PS). Insets: (left) Doped Néel phase
and (right) chiral d1+id2-wave superconducting state. The right cartoon was taken
from Ref. [87].

4.4. Final Remarks

We have presented a extensive study of the unconventional superconducting phases
on the honeycomb lattice, based on the effective low-energy Lagrangian density
derived in Section 2.3. Indeed, our approach has proved very useful to describe
both superconducting and magnetic orders in the low and high hole-doped regime.
Further, through an energetic analysis, we have demonstrated that the AF order
predominates in the low hole doping, while a dominantly chiral d1 + id2-wave
superconducting state was found in the vicinity of the Van Hove singularity.

We would like to emphasize that our approach, based on SU(2) gauge fields, has
proved fundamental in warranting that the long-range order associated with the
chiral d-wave superconducting phase takes place only below the critical percolation
concentration of the honeycomb lattice.

In addition, by means of a thermodynamic analysis, we have shown that the
critical temperature for the superconducting states is directly related to the ex-
change constant J = 4t2/U , which indicates a scenario of superconductivity rested
on a purely electronic mechanism. Remarkably, we reported that the competition
between the AF order and the chiral d1 + id2-wave superconducting phase takes
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place by the occurrence of a first-order transition accompanied by a spatial phase
separation of the mentioned phases.

In subsequent theoretical analysis of the role played by the Van Hove singularity
on the critical temperature of the superconducting phase, we also have found that
the exchange constant, J , is straightforward linked with the critical temperature,
so that, it remains our conclusion about the purely electronic mechanism mediating
the formation of the superconducting phases (the previous analysis was performed
in the vicinity of the Van Hove singularity).

Additionally, we have built the phase diagram which clearly displays that the
doped Néel and the chiral d1 +id2-wave superconducting phases are spatially sepa-
rated. Moreover, these findings signal the tendency that the two phase separation
lines could meet at a quantum critical point for small values of the Coulombian
interaction. We would like to mention that the well-developed perturbative the-
ory has provided robust results in the strong-coupling regime. But, the preceding
comment about the possible existence of a quantum critical point in the phase
diagram is worthy of a special analytical/simulational treatment starting in the
weak-coupling limit, i.e., for small values of the Coulombian interaction, in order
to establish further evidence about the occurrence of this quantum critical point.
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5. Conclusions

In this work, we studied the magnetic and superconducting properties of the large-
U Hubbard model on the honeycomb lattice at half-filling and in the hole-doped
regime.

In Chapter 2, we reported in detail an analytical investigation of the large-U
Hubbard model on the honeycomb lattice. Our approach, based on field-theoretic
methods, has the advantage of allowing us to derive the Lagrangian density related
to the charge and spin degrees of freedom in a controllable scheme. As a result,
we diagonalized exactly the Hamiltonian associated with the charge degrees of
freedom only, in which case the electronic spectrum exhibits a charge Hubbard
gap separating the Dirac cones. In the strong-coupling regime, by performing a
perturbative expansion in the parameter t/U up to O

(
J = 4t2/U

)
, we were able

to derive a low-energy theory suitable to describe the (quantum) magnetic and
superconducting phases at half-filling and in the hole-doped regime.

In Chapter 3, at half-filling (quantum Heisenberg model), we have used second-
order spin-wave perturbation theory [O

(
1/S2

)
] to study the effect of quantum

spin fluctuations on the ground-state energy and staggered magnetization of the
AF order. The results are in very good agreement with previous numerical and
analytical investigations. Furthermore, in the continuum, we derived a nonlinear
σ-model with a topological Hopf term that describes the AF-VBS competition,
although numerical studies of the Hubbard model indicate a continuous quantum
phase transition from a semi-metal (weak-coupling regime) to an AF phase (strong-
coupling regime). Finally, we stress that the most challenging aspect of our analysis
was the mapping of the hole-doped large-U Hubbard model onto a t-J Hamiltonian;
and the formulation of a controllable perturbative scheme to analyze the role played
by charge and spin quantum fluctuations on the breakdown of the hole-doped AF
phase. In fact, our findings for the doping-dependent ground-state energy and
staggered magnetization are quite consistent with recent GTPS numerical studies.

Finally, in Chapter 4, we extensively investigated the competition between the
superconducting and magnetic phases in the low and high hole doping regimes.
Through an energetic analysis based on a strong-coupling-BCS approach, we have
demonstrated that the AF order prevails in the low hole doping, while a domi-
nantly chiral dx2−y2 + idxy superconducting state was identified in the vicinity of
the Van Hove singularity. We would like to emphasize that our approach, based
on SU(2) gauge fields, has proved fundamental in warranting that the long-range
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order associated with the chiral dx2−y2 + idxy-wave superconducting phase takes
place only below the critical percolation concentration of the honeycomb lattice.
In addition, by means of a thermodynamic analysis, we have shown that the criti-
cal temperature for the superconducting states is directly related to the exchange
constant J = 4t2/U , which indicates a scenario of superconductivity rested on a
purely electronic mechanism. Remarkably, we have found that the competition
between the AF and the chiral dx2−y2 + idxy SC phases takes place by the occur-
rence of a first-order transition accompanied by a spatial phase separation of the
mentioned phases.

In afterward theoretical examinations, we have also found that the exchange
constant, J , is straightforward linked with the critical temperature, right at the
Van Hove singularity, so that, our previous conclusion about the purely electronic
mechanism mediating the formation of the superconducting phases hold. More-
over, we have also built the phase diagram which clearly exhibits a spatial phase
separation between the doped Neel and the chiral dx2−y2 + idxy-wave supercon-
ducting phases. Besides, these findings indicate the likelihood that the two phase
separation lines could run into a quantum critical point for small values of the
Coulombian interaction. Let us mention that the well-developed perturbative the-
ory has yielded robust results in the strong-coupling regime. However, the previous
conclusion about the possible existence of a quantum critical point in the phase
diagram is worthy of a special analytical/simulational treatment beginning with
the weak-coupling limit, i.e., for small values of the Coulombian interaction, with
the purpose of providing further evidence about the occurrence of this quantum
critical point.
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A.Derivation of Eq. (3.12)

We begin with the effective low-energy Lagrangian density of the honeycomb Hub-
bard model in the large-U regime, up to O (J):

L =
∑
i

α†i∂ταi +
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ
α†iαi − t

∑
ijαβσ

[
θ(−σ)

(
U †iαUi+êjβ

)
σ,−σ

×α†iαi+êj + H.c.

]
+
J

8t

∑
ijασ

(
U †iα ∂τUiα

)
σ,−σ

[
θ(−σ)α†i

(
αi+êj + αi−êj

)
+ H.c.

]
−J

8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
α†iαi. (A.1)

At half-filling, we have that 〈φ0|α†iαi|φ0〉 = 1 (n ≡ 1), in which | φ0〉 is the
unperturbed state, i.e., state with N electrons filling (totally) the lower-energy
sector (α band). As a consequence, charge degrees of freedom are frozen:

〈φ0|α†i∂ταi|φ0〉 = 0; 〈φ0|α†iαi+êj |φ0〉 = 0. (A.2)

Hence, by using the projector operator

P0 =| φ0〉〈φ0 |, (A.3)

we can formally write the Lagrangian density, Ls, in terms of the spin degrees of
freedom as follows:

Ls = P0LP0 =| φ0〉〈φ0|L|φ0〉〈φ0 |, (A.4)

such that, by inserting Eqs. (A.1) and (A.2) into Eq. (A.4), we obtain

Ls =
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ
−J

8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
.

(A.5)
Let us now perform the Legendre transform:

Hs = −
∑
iασ

∂Ls
∂ (∂τUiα)σσ

(∂τUiα)σσ + Ls; (A.6)

where
∂Ls

∂ (∂τUiα)σσ
= θ (σ)

(
U †iα

)
σσ
. (A.7)
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Substituting Eq. (A.5) into Eq. (A.6), we get the following Heisenberg-like Hamil-
tonian written in terms of the SU(2) gauge fields:

Hs = −J
8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
. (A.8)

In order to write the above Hamiltonian in its standard form (in the spin
language); it is convenient to write the SU(2) gauge fields in the n-representation.
By doing so, let us use the following representation of SU(2) group: [59]:

Uiα =

 cos
(
θiα
2

)
− sin

(
θiα
2

)
e−iφiα

sin
(
θiα
2

)
eiφiα cos

(
θiα
2

)  , (A.9)

so that, after a straightforward calculation, one obtains the following diagonal
matrix elements:(

U †iαUi+êjβ

)
σσ

= cos

(
θiα
2

)
cos

(
θi+êjβ

2

)
sin

(
θiα
2

)
sin

(
θi+êjβ

2

)
e
i
(
φiα−φi+êjβ

)
. (A.10)

Correspondingly,(U †iαUi+êjβ

)
σσ

2
=

1

2

[
cos (θiα) cos

(
θi+êjβ

)
+ sin (θiα) sin

(
θi+êjβ

)
cos
(
φiα − φi+êjβ

)]
.(A.11)

At this stage, it is convenient to use the unit vector niα in the form:

niα = sin (θiα) [cos (φiα) x̂+ sin (φiα) ŷ] + cos (θiα) ẑ, (A.12)

such that, the inner product reads:

niα · ni+êjβ = cos (θiα) cos
(
θi+êjβ

)
+ sin (θiα) sin

(
θi+êjβ

)
cos
(
φiα − φi+êjβ

)
. (A.13)

Substituting Eq. (A.13) into Eq. (A.11) gives rise to(U †iαUi+êjβ

)
σσ

2
=

1

2

(
1 + niα · ni+êjβ

)
. (A.14)

Next, we plug Eq. (A.14) into Eq. (A.8), such that we find

Hs = −J
8

∑
ijαβ

niα ·
(
ni+êjβ − nêjβ

)
− JNz

8
, (A.15)
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where z is the coordination number (z = 3 for the honeycomb lattice). With
the purpose of bringing Hs to its standard form, we now use the auxiliary result:
Siα = niα/2, so that, Hs becomes

Hs = −J
∑
ijαβ

Siα · Si+êjβ − h
∑
iα

Siα + h
∑
ijβ

Si+êjβ −
zNJ

8
. (A.16)

It also should be noted the two additional Zeeman terms (h is the magnetic field)
which allow us to perform the calculation of the staggered magnetization.

In order to explicit the AF order, it is necessary to perform the following
transformation [61]:

Siα =


Sxiα;
Syiα;
Sziα,

Si+êjβ =


Sxi+êjβ

;

−Syi+êjβ
;

−Szi+êjβ
,

(A.17)

such that, Hs in Eq. (A.16) can be written as

Hs = −J
∑
ijαβ

[(
SxiαS

x
i+êjβ

− SyiαS
y
i+êjβ

)
− SziαSzi+êjβ

]
−h
∑
iα

Sziα + h
∑
ijβ

Szi+êjβ
− zNJ

8
. (A.18)

Next, we introduce the ladder operators [61]

S± = Sx ± iSy, (A.19)

such that

SxiαS
x
i+êjβ

=
1

4

(
S+
iαS

+
i+êjβ

+ S+
iαS
−
i+êjβ

+ S−iαS
+
i+êjβ

+ S−iαS
−
i+êjβ

)
; (A.20)

and

SyiαS
y
i+êjβ

= −1

4

(
S−iαS

−
i+êjβ

− S−iαS
+
i+êjβ

− S+
iαS
−
i+êjβ

+ S+
iαS

+
i+êjβ

)
; (A.21)

Substituting Eqs. (A.20) and (A.21) into Eq. (A.18) leads to

Hs = −J
∑
ijαβ

[
1

2

(
S+
iαS

+
i+êjβ

+ S−iαS
−
i+êjβ

)
− SziαSzi+êjβ

]
−h
∑
iα

Sziα + h
∑
ijβ

Szi+êjβ
− zNJ

8
. (A.22)

At this point, we apply the Holstein-Primakoff transformation [61]:

Sziα = −a†iai + S;

S+
iα =

√
2S − a†iai ai;

S−iα = a†i

√
2S − a†iai , (A.23)
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for an up-spin on A site of sublattice A, and

Szi+êjβ
= b†i+êj

bi+êj − S;

S+
i+êjβ

=
√

2S − b†i+êj
bi+êj bi+êj ;

S−i+êjβ
= b†i+êj

√
2S − b†i+êj

bi+êj , (A.24)

for a neighboring down-spin of sublattice B; the bosonic creation and annihilation
operators ai and a†i obey the commutation relations: [ai,a

†
i′ ]=δii′ and [bj ,b†j′ ]=δjj′ .

With the purpose of performing a second-order spin-wave analysis [64], it is
important to evaluate the following terms:

S+
iαS

+
i+êjβ

= 2S

aibi+êj −
aibi+êjb

†
i+êj

bi+êj

4S

−
a†iaiaibi+êj

4S
+
a†iaiaibi+êjb

†
i+êj

bi+êj

16S2

 , (A.25)

and

S−iαS
−
i+êjβ

= 2S

a†ib†i+êj
−
a†ib
†
i+êj

bi+êjb
†
i+êj

4S

−
a†ia
†
iaib

†
i+êj

4S
+
a†ia
†
iaib

†
i+êj

bi+êjb
†
i+êj

16S2

 . (A.26)

By inserting Eqs. (A.25) and (A.26) into Eq. (A.22), Hs takes the form:

Hs = −J
∑
ij

{[
S2 − S

(
a†iai + b†i+êj

bi+êj

)
+ a†iaib

†
i+êj

bi+êj

]
+ S

(
aibi+êj + a†ib

†
i+êj

)
−1

4

(
aibi+êjb

†
i+êj

bi+êj + a†ib
†
i+êj

bi+êjb
†
i+êj

+ a†iaiaibi+êj + a†ia
†
iaib

†
i+êj

)
+

1

16S

(
a†iaiaibi+êjb

†
i+êj

bi+êj + a†ia
†
iaib

†
i+êj

bi+êjb
†
i+êj

)
−h
∑
i

a†iai + h
∑
ij

b†i+êj
bi+êj + hSN − JNz

8

 . (A.27)

Clearly, one recognizes that due to the form of Hs in Eq. (A.27) the steps to
turn Hs into the k-space are pretty long! Then, it is appropriated to write Hs as:

Hs = H0 +H1 +H2, (A.28)
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in which

H0 = −zJS
2

8
+ hSN − JNz

8
, (it contains only constants terms) (A.29)

H1 = −J
8

∑
ij

[
−S

(
a†iai + b†i+êj

bi+êj

)
+ S

(
aibi+êj + a†ib

†
i+êj

)]
− h

∑
i

a†iai

+h
∑
ij

b†i+êj
bi+êj , (A.30)

with just quadratic terms (notice that there are anomalous terms), and

H2 = −J
8

∑
ij

[
−1

4

(
aibi+êjb

†
i+êj

bi+êj + a†ib
†
i+êj

bi+êjb
†
i+êj

+ a†iaiaibi+êj + a†ia
†
iaib

†
i+êj

)
a†iaib

†
i+êj

bi+êj +
1

16S

(
a†iaiaibi+êjb

†
i+êj

bi+êj + a†ia
†
iaib

†
i+êj

bi+êjb
†
i+êj

)]
, (A.31)

where it includes both quartic and sextic terms.
In the sequence, we focus on H1 in Eq. (A.30). Thus, by introducing the

Fourier transformation:

akσ =
1√
Nc

∑
i

eik·iaiσ;

bkσ =
1√
Nc

∑
j

e−ik·jbjσ, (A.32)

we find that H1 in k-space takes the form:

H1 =
J

2

∑
k

[
zS
(
a†kak + b†kbk

)
+ zSγk

(
a†−kb

†
k + a−kbk

)]
−h
∑
k

(
a†kak − b

†
kbk

)
, (A.33)

in which the lattice structure factor γk reads:

γk ≡
1

z

∑
j

eik·ej =
1

3

[
eikx + 2e−i

kx
2 cos

(√
3 ky
2

)]
. (A.34)

It should be noted that the anomalous terms, a†−kb
†
kand a−kbk, persist. So,

we perform a Bogoliubov transformation:

ak = cosh (θk)αk − sinh (θk)β†k;

bk = − sinh (θk)α†k − cosh (θk)βk, (A.35)
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Inserting Eq. (A.35) into Eq. (A.33), after a pretty long calculation, H1 can
be expressed in terms of the Bogoliubov quasiparticles:

H1 =
J

2

∑
k

{
zS
[
cosh2 (θk)

(
α†kαk + β†kβk

)
+ sinh (θk) cosh (θk)

(
α†kα

†
−k + α−kαk

−β†kβ
†
−k − β−kβk

)
+ sinh2 (θk)

(
α−kα

†
−k + β−kβ

†
−k

)]
+
zSγk

2

[
cosh2 (θk)×(

α†−kα
†
k + α−kαk − β†−kβ

†
k − β−kβk

)
+ cosh (θk) sinh (θk)

(
α†−kαk + α−kα

†
−k

+α†−kβk + α−kβ
†
−k + αkα

†
k + α†kαk − αkβ

†
k + α†kβ

†
k + β†−kα−k + β−kα

†
−k+

β†−kβ
†
−k + β−kβ

†
−k − βkα

†
k + β†kαk + βkβ

†
k + β†kβk

)
− cosh2 (θk)

(
α†−kβ

†
k + α−kβk

−β†−kα
†
k − β−kαk

)
+ sinh2 (θk)

(
αkα

†
−k + α†kα

†
−k − βkβ−k + β†kβ

†
−k

)
+ sinh2 (θk)

×
(
αkβ−k + α†kβ

†
−k − βkα−k + β†kα

†
−k

)]}
− h

∑
k

[
cosh2 (θk)

(
α†kαk + β†kβk

)
+ sinh2 (θk)

(
α−kα

†
−k + β−kβ

†
−k

)
+ sinh (θk) cosh (θk)

(
α†kα

†
−k + α−kαk − β†kβ

†
−k

−β−kβk)] . (A.36)

In order to diagonalized the above Hamiltonian we now choose θk so that terms
like α†kαk and β†kβk do not vanish. These lead to the following conditions:

sinh (2θk) + γk cosh (2θk) = 0; (A.37)

and
sinh2 (θk) + cosh2 (θk) = sinh (θk) cosh (θk) = 0. (A.38)

Substituting Eqs. (A.37) and (A.38) into Eq. (A.36), we obtain the following
clean expression

H1 =
zSJ

2

∑
k

{
[cosh (2θk) + γk sinh (2θk)]

(
α†kαk + β†kβk

)
+ 2 sinh2 (θk)

+γk sinh (2θk)} − h
∑
k

[
cosh (2θk)

(
α†kαk + β†kβk

)
+ 2 sinh2 (θk)

]
.

(A.39)

Next, it convenient to write

cosh (2θk) + γk sinh (2θk) = ωk, (A.40)

as well as Eq. (A.37) in a slightly different form:

tanh (θk) = −γk. (A.41)
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such that after a straightforward algebra, one finds

ωk =
√

1− γ2
k , (A.42)

with

γ2
k =

1

9

[
1 + 4 cos

(
3kx
2

)
cos

(√
3 ky
2

)
+ 4 cos2

(√
3 ky
2

)]
. (A.43)

Then, a slightly rearrangement of the terms yields the resulting diagonalized
Hamiltonian H1:

H1 =
zSJ

2

∑
k

[(√
1− γ2

k

)
α†kαk +

(√
1− γ2

k

)
β†kβk +

√
1− γ2

k − 1

]

−h
∑
k

 α†kαk√
1− γ2

k

+
β†kβk√
1− γ2

k

+
1√

1− γ2
k

− 1

 . (A.44)

Its contribution for the ground-state energy is given by

ε1k =
zSJ

2

(√
1− γ2

k − 1

)
− h

 1√
1− γ2

k

− 1

 . (A.45)

We now proceed to analyze the quartic terms of H2:

H2 = −J
8

∑
ij

[
−1

4

(
aibi+êjb

†
i+êj

bi+êj + a†ib
†
i+êj

bi+êjb
†
i+êj

+ a†iaiaibi+êj + a†ia
†
iaib

†
i+êj

)
a†iaib

†
i+êj

bi+êj

]
, (A.46)

in which case we shall find for terms that are diagonal in the k-space. By doing
so, let us apply the Fourier transform to the above equation, such that

H2 = − zJ
8N

∑
k,k′

[
a†kakb

†
k′ bk′ − 1

4

(
γ∗kakbkb

†
k′ bk′ + γka

†
kb
†
kbk′ b†

k′

γ∗
k′a
†
kaka

†
k′ bk′ + γk′a†ka

†
kak′ bk′

)]
. (A.47)

Let us pursue by employing the Bogoliubov transformation in Eq. (A.35) to
each term of the above Hamiltonian. Hence, each reads:

a†kakb
†
k′ bk′ =

[
cosh2 (θk)α†kαk + cosh (θk) sinh (θk)α†kβ

†
k + sinh (θk) cosh (θk)βkαk

+ sinh2 (θk)βkβ
†
k

] [
sinh2

(
θk′
)
αk′α†

k′ − sinh
(
θk′
)

cosh
(
θk′
)
αk′βk′

− sinh
(
θk′
)

cosh
(
θk′
)
β†
k′α
†
k′ + cosh2

(
θk′
)
β†
k′βk′

]
; (A.48)
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akbkb
†
k′ bk′ =

[
− cosh (θk) sinh (θk)αkα

†
k + cosh2 (θk)αkβk − sinh2 (θk)βkα

†
k

+ sinh (θk) cosh (θk)β†kβk

] [
sinh2

(
θk′
)
αk′α†

k′ − sinh
(
θk′
)

cosh
(
θk′
)
αk′βk′

− cosh
(
θk′
)

sinh
(
θk′
)
β†
k′α
†
k′ + cosh2

(
θk′
)
β†
k′βk′

]
; (A.49)

a†kb
†
kbk′ b†

k′ =
[
− cosh (θk) sinh (θk)α†kαk + cosh2 (θk)α†kβ

†
k − sinh2 (θk)βkαk

+ sinh (θk) cosh (θk)βkβ
†
k

] [
sinh2

(
θk′
)
α†
k′αk′ − sinh

(
θk′
)

cosh
(
θk′
)
α†
k′β
†
k′

− cosh
(
θk′
)

sinh
(
θk′
)
βk′αk′ + cosh2

(
θk′
)
βk′β†

k′

]
; (A.50)

a†kaka
†
k′ bk′ =

[
cosh2 (θk)α†kαk + cosh (θk) sinh (θk)α†kβ

†
k + sinh (θk) cosh (θk)βkαk

sinh2 (θk)βkβ
†
k

] [
− cosh

(
θk′
)

sinh
(
θk′
)
αk′α†

k′ + cosh
(
θk′
)

cosh
(
θk′
)
αk′βk′

− sinh
(
θk′
)

sinh
(
θk′
)
β†
k′αk′ + sinh

(
θk′
)

cosh
(
θk′
)
β†
k′βk′

]
, (A.51)

finally,

a†ka
†
kak′ bk′ =

[
cosh2 (θk)α†kα

†
k + cosh (θk) sinh (θk)α†kβk + sinh (θk) cosh (θk)βkα

†
k

sinh2 (θk)βkβk
] [
− cosh

(
θk′
)

sinh
(
θk′
)
αk′α†

k′ + cosh
(
θk′
)

cosh
(
θk′
)
αk′βk′

− sinh
(
θk′
)

sinh
(
θk′
)
β†
k′αk′ + sinh

(
θk′
)

cosh
(
θk′
)
β†
k′βk′

]
. (A.52)

We now substitute Eqs. (A.48), (A.49), (A.50), (A.51) and (A.52) into Eq.
(A.47); after a pretty long calculation together with a careful analysis, the relevant
terms of H2 which contribute to the ground-state energy are

H2 = − zJ
4N

∑
k,k′

{
sinh2 (θk) sinh2

(
θk′
)
− | γk |

2

[
−2 sinh2

(
θk′
)

sinh (θk) cosh (θk)

−2 sinh2 (θk) cosh
(
θk′
)

sinh
(
θk′
)]
− | γk |2

[
− cosh

(
θk′
)

sinh
(
θk′
)

cosh
(
θk′
)

× sinh
(
θk′
)
− sinh (θk) cosh (θk) sinh

(
θk′
)

cosh
(
θk′
)]}
− 2zJ

N

∑
k,k′

α†kαkβ
†
k′βk′ .

(A.53)

A slightly rearrangement of the terms yields:

H2 = − zJ
4N

{∑
k

[
sinh2 (θk) +

| γk |
2

sinh (2θk)

]}2

− 2zJ

N

∑
k,k′

α†kαkβ
†
k′βk′ .

(A.54)
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With the help of Eq. (A.41), we find that the energetic contribution of H2 reads:

ε2k = − zJ
4N

[∑
k

(√
1− γk − 1

)]2

. (A.55)

Therefore, by adding Eqs. (A.29), (A.44) and (A.54), the resulting diagonalized
Hamiltonian up to O

(
1/S2

)
, in k-space, takes the form:

Hsk = −zS
2JN

2
+ hSN + zSJ

∑
k

[(√
1− γ2

k − 1

)

+
√

1− γ2
k

(
α†kαk + β†kβk

)]
− zJ

2N

[∑
k

(√
1− γ2

k − 1

)]2

−h
∑
k

 1√
1− γ2

k

− 1

+
α†kαk + β†kβk√

1− γ2
k

− zJN

8

−2zJ

N

∑
k,k′

α†kαkβ
†
k′βk′ . (A.56)

Finally, by adding Eqs. (A.29), (A.45) and (A.55), the ground-state energy per
site in the presence of a magnetic field, in the thermodynamic limit, becomes:

Eh
N

= −zS
2J

2
+ hS +

zSJ

4π2

∫
BZ
d2k

(√
1− γ2

k − 1

)

− zJ

32π4

[∫
BZ
d2k

(√
1− γ2

k − 1

)]2

− h

4π2

∫
BZ
d2k

 1√
1− γ2

k

− 1

− zJ

8
. (A.57)
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B.Derivation of Eq. (4.10)

We begin by writing the Hamiltonian of the Hubbard model on the honeycomb
lattice, with the chemical potential µ, in the form:

H = −t
∑
ijαβσ

(
ĉ†iασ ĉjβσ + ĉ†jβσ ĉiασ

)
+U

∑
iα

n̂iα↑n̂iα↓−µ
∑
iα

(n̂iα↑ + n̂iα↓) . (B.1)

Now, by performing the same calculation routine of Chapter 2, we summarize
the main equations of which were altered due to the inclusion of the chemical
potential and that are necessaries to analyze the doped regime. Hence, the La-
grangian density reads:

L(τ) =
∑
iασ

a†iασ (∂τ − µ) aiασ +
∑
iασσ′

a†iσ′(Uiα)†σ′σ∂τ (Uiα)σ′σaiασ

− t
∑
ijαβσ

(
a†iασajβσ + H.c.

)
− t

∑
ijαβσσ′

[
a†iασ′

(
U †iαUjβ − 1

)
σ′σ

ajβσ

+H.c.] +
U

2

∑
iασ

(1− piασ)a†iασaiασ. (B.2)

For simplicity, let us decompose the above equation in two parts:

L0 =
∑
iαβσ

a†iασ (∂τ − µ) aiασ − t
∑
ijαβσ

(
a†iασajβσ + H.c.

)
+
U

2

∑
iασ

(1− piασ)a†iασaiασ, (B.3)

and

Ln =
∑
iασσ′

aa†iασ′(Uiα)†σ′σ∂τ (Uiα)σ′σaiασ

− t
∑

ijαβσσ′

[
a†iασ′

(
U †iαUjβ − 1

)
σ′σ

ajβσ + H.c.
]
. (B.4)

The Hamiltonian associated with L0, in Eq.(B.3), takes the form:

H0 = −t
∑
ijαβσ

(
a†iασajβσ + H.c.

)
+
U

2

∑
iασ

(1− piασ)a†iασaiασ − µ
∑
iασ

a†iασaiασ.

(B.5)
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Moreover, in k-space, H0:

H0 =
∑
kσ

[(
−Ek +

U − µ
2

)
α†kσαkσ +

(
Ek +

U − µ
2

)
β†kσβkσ

]
, (B.6)

where

uk =
1√
2

√
1 +
|εk|
Ek

and vk =
1√
2

√
1− |εk|

Ek
, (B.7)

with

Ek =

√
ε2k +

(U − µ)2

4
, (B.8)

and

εk = t

√√√√3 + 2 cos (
√

3 ky) + 4 cos

(
3kx
2

)
cos

(√
3 ky
2

)
. (B.9)

Notice that at half-filling the chemical potential µ = 0.
In the strong-coupling regime, the Hamiltonian H0 in Eq. (B.5) becomes:

H0 = − (J − µ)
∑
i

α†iαi + (J + µ)
∑
i

β†iβi −
J

8

∑
ij

(
α†iαi+êj

−β†iβi+êj + H.c.
)

+ U
∑
i

β†iβi. (B.10)

Correspondingly, the Lagrangian density related to the above equation reads:

L0 = α†i∂ταi − β
†
i∂τβi − (J − µ)

∑
i

α†iαi −
J

8

∑
ij

(
α†iαi+êj

−β†iβi+êj + H.c.
)

+ (U + J + µ)
∑
i

β†iβi. (B.11)

Therefore, we find that the effective low-energy Lagrangian of the honeycomb
Hubbard model in the large-U limit, up to J order, is given by

L =
∑
i

α†i (∂τ − µ)αi +
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ
α†iαi −

J

8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2
+
(U †iαUi−êjβ

)
σσ

2
]
α†iαi +

J

8t

∑
ijασ

(
U †iα∂τUiα

)
σ,−σ[

θ(σ)α†i
(
αi+êj + αi−êj

)
+ θ(−σ)

(
α†i+êj

+ α†i−êj

)
αi

]
− t

∑
ijαβσ

[θ(σ)

(
U †iαUi+êjβ

)
σ,−σ

α†iαi+êj + H.c.

]
. (B.12)
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Further, by performing the Legendre transform:

H = −
∑
i

∂L
∂ (∂τhi)

∂τhi + L, (B.13)

where
∂L

∂ (∂τhi)
= h†i, (B.14)

we can write down the corresponding Hamiltonian as:

H =
∑
iασ

θ(σ)
(
U †iα∂τUiα

)
σσ

(
1− h†ihi

)
− J

8

∑
ijαβσ

θ(σ)

[(U †iαUi+êjβ

)
σσ

2

+
(U †iαUi−êjβ

)
σσ

2
](

1− h†ihi
)

+
J

8t

∑
ijασ

(
U †iα∂τUiα

)
σ,−σ

[
θ(σ)h†i

(
hi+êj

+hi−êj
)

+ H.c.
]
− t

∑
ijαβσ

[
θ(σ)

(
U †iαUi+êjβ

)
σ,−σ

h†ihi+êj + H.c.
]
− µ

∑
i

(
1− h†ihi

)
. (B.15)

Let us now introduce the SU(2)-matrix, USCiα , in the form :

USC
iα =

[ ∑
j χêj −

∑
j ∆êj∑

j ∆êj

∑
j χêj

]
, (B.16)

where ∆êj is the nearest-neighbor spin-singlet pairing correlation and χêj is the
nearest-neighbor single-particle hopping correlation.

In the sequence, we explicit the elements of the matrix product that appears
in Eq.(B.15), for instance, for the diagonal and off-diagonal terms:(

U †iαUi+êjβ

)
σσ

=
∑
j

(
χêj + ∆êj

)
, (B.17)

(
U †iαUi+êjβ

)
σ,−σ

=
∑
j

2χêj∆êj , (B.18)

Now, by inserting the Eq. (B.17) and (B.18) into Eq. (B.15), we obtain that
the Hamiltonian, H, in k-space, assumes the form:

H = −J
4

∑
k

{
[(∆c

k + ∆s
k)wk]2 b†kbk + H.c.

}
− J

2

∑
kj

|∆êj |
2
(

1− a†kak
)

− 2t
∑
kj

χêj

[
(∆c

k + ∆s
k)wka

†
kbk + H.c.

]
− µ

∑
k

(
1− a†kak

)
, (B.19)
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where we defined:
∆c

k ≡
∑
j

∆êj cos (k · êj) , (B.20)

∆s
k ≡ i

∑
j

∆êj sin (k · êj) , (B.21)

and
wk ≡

∑
j

exp (ik · êj) . (B.22)

At this stage, let us introduce the new set of fields:

Ak =
ak√

2
+

wk√
2 |wk|

bk, (B.23)

Bk =
ak√

2
− wk√

2 |wk|
bk. (B.24)

So that, by placing the Eqs. (B.23) and (B.24) into Eq. (B.19), we get

H =
∑
k


−εkχk∆c

k −
J |wk|2

[
(∆c

k)2 + (∆s
k)2
]

4
−
J |wk|2χ2

k

4
+
Jχk∆c

k|wk|2

2
− µ

2

A†kAk

+

εkχk∆s
k +

J |wk|2
[
(∆c

k)2 + (∆s
k)2
]

4
+
J |wk|2χ2

k

4
−
Jχk∆c

k|wk|2

2
+
µ

2

A†kBk

+

εkχk∆s
k +

J |wk|2
[
(∆c

k)2 + (∆s
k)2
]

4
+
J |wk|2χ2

k

4
−
Jχk∆c

k|wk|2

2
+
µ

2

B†kAk

+

εkχk∆c
k −

J |wk|2
[
(∆c

k)2 + (∆s
k)2
]

4
−
J |wk|2χ2

k

4
+
Jχk∆c

k|wk|2

2
− µ

2

B†kBk

 ,

(B.25)

with εk ≡ t|wk|.
Let us introduce the Bogoliubov transformation:

Ak = ukαk − vkβk, Bk = vkαk + ukβk, (B.26)

restricted to the canonical constraint (uk)2 + (vk)2 = 1. Furthermore, it is conve-
nient to use the Nambu spinor representation [36]

Ψk =

(
αk

βk

)
, (B.27)
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such that, by plugging the Eqs. (B.26) and (B.27) into Eq. (B.25), after a pretty
long calculation, we obtain:

H =
∑
k

Ψ†kẼ
SC
k Ψk +

3JNcχ
2

2
+
∑
j

JNc∆
2
êj

2
−Ncµ, (B.28)

with

ẼSCk =

(
−ESCk 0

0 ESCk

)
, (B.29)

and ESCk , that defines the band spectrum of the superconducting phases, is given
by

ESCk =

{[
εkχk∆k +

J

4t2
χ2
kε

2
k −

µ

2
+

J

4t2
χk∆kε

2
k

]2

+ (εkχk∆k)2

}1/2

,

(B.30)

in which
∆k ≡

∑
j

∆êj cos (k · êj) , (B.31)

χk ≡
∑
j

χêj cos (k · êj) . (B.32)
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C.Tight-Binding Density of States

The non-interacting density of states per unit cell ρ (ε) is defined by

ρ (ε) = lim
Nc−→∞

1

Nc

∑
k,s

δ
(εk,s
t
− ε
)
, (C.1)

in the thermodynamic limit, Eq. C.1 can be written in the convenient form:

ρ (ε) =
1

4π2

∑
s=±

∫ 2π

0
dx

∫ 2π

0
dyδ

[
s
√

3 + 2 cos (x) + 2 cos (y) + 2 cos (x+ y) − ε
]
,

(C.2)
where we have used the tight-binding spectrum:

εk = t

√√√√3 + 2 cos (
√

3 ky) + 4 cos

(
3kx
2

)
cos

(√
3 ky
2

)
. (C.3)

We now proceed by calculating the number of frequencies whose squared-values
lie between ε2 and ε2 + dε2, i.e., we search the frequency distribution g

(
ε2
)
dε2,

such that ρ (ε) = 2 | ε | g
(
ε2
)
. We thus have

g
(
ε2
)

=
1

π2

∫ π

0
dθ

∫ π

0
δ
[
1 + 4 cos (2θ) cos (φ) + 4 cos2 (2θ)− ε2

]
, (C.4)

in which we employed the substitutions:

x = 2θ + φ; y = 2θ − φ, (C.5)

where 0 ≤ θ and φ ≤ π. Moreover, upon using the following substitutions:

u = cos (2θ) ; υ = cos (φ) , (C.6)

we can rewrite Eq. (C.4) in the form:

g
(
ε2
)

=
2

π2

∫ 1

−1
du

∫ 1

−1
dυ
δ
(
1 + 4uυ + 4u2 − ε2

)
2
√

1− u2
√

1− υ2
. (C.7)

At this stage, we define:

I
(
u, ε2

)
≡
∫ 1

−1
dυ
δ
(
1 + 4uυ + 4u2 − ε2

)
√

1− υ2
, (C.8)
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and applying the substitution z = u (u+ υ), we can write down Eq. (C.8) as:

I
(
u, ε2

)
=

∫ u(u+1)

u(u−1)
dz

sgn (u) δ
(
1 + 4z − ε2

)√
(z − u (u− 1)) (u (u+ 1)− 1)

. (C.9)

The integral in Eq. (C.9) is of form:

I =

∫ b

a
f (z) δ [p (z)] dz. (C.10)

It can be calculated by defining w ≡ p (z) and the solution z = q (w), such that
dz = q

′
(w) dw in which q

′
(w) = dq (w) /dw [94]. Thus, by using the following

property of Dirac delta function:∫ β

α
F (w) δ (w) dw =

{
F (0) , for αβ < 0,

0, otherwise,
(C.11)

we get

I =

{
f [q (0)] q

′
(0) , p (a) p (b) < 0,

0, otherwise.
(C.12)

In order to relate the above result to the integral in Eq.(C.9), we write down:

f (z) =
1√

(z − a) (b− z)
, (C.13)

with

a =

{
u (u− 1) , for u > 0,
u (u+ 1) , for u < 0,

(C.14)

and

b =

{
u (u+ 1) , for u > 0,
u (u− 1) , for u < 0,

(C.15)

as well as

q (w) =
1
[
w −

(
1− ε2

)]
4

, (C.16)

and
p (z) = 1 + 4z − ε2. (C.17)

Thus, by substituting Eqs. (C.13) (C.14), (C.15), (C.16) and (C.17) into Eq.
(C.9), we obtain:

I =

{
1

4
√

[q(0)−a][b−q(0)]
, [q (0)− a] [b− q (0)] > 0

0, otherwise.
(C.18)

In the sequence, we define ξ ≡ u2, so that [q (0)− a] [b− q (0)] we can be
written as (ξ+ − ξ) (ξ− − ξ), where

ξ± =
(| ξ | ±1)2

4
. (C.19)
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At this point, to evaluate g
(
ε2
)
, it is important to use the following identity

[74]: ∫ β

α

dx

x (γ − x) (β − x) (α− x)
=

2√
β (α− γ)

F

(
π

2
,

√
α (β − γ)

β (α− γ)

)
, (C.20)

in which α ≥ β ≥ γ ≥ 0 and F (π/2, k) is the complete elliptical integral of the first
kind. Thus, for | ξ |≤ 1, we have 1 ≥ ξ+ ≥ ξ− ≥ 0, while we have ξ+ ≥ 1 ≥ ξ− ≥ 0,
when 1 ≤| ξ |≤ 3.

Now, let us take Z0 = 4β (α− γ) and Z1 = 4α (β − γ), such that substituting
Eqs. (C.18) and (C.20) into Eq. (C.7) yields:

g
(
ξ2
)

=
1

π2
√
Z0

F

(
π

2
,

√
Z1

Z0

)
. (C.21)

Correspondingly,

ρ (ε) =
4 | ε |

π2t2
√
Z0

F

(
π

2
,

√
Z0

Z1

)
, (C.22)

in which

Z0 =

{
(1+ | ε |)2 − 1

4

(
| ε |2 −1

)2
, for | ε |≤ 1,

4 | ε |, for 1 ≤| ε |≤ 3,
(C.23)

and

Z1 =

{
4 | ε |, for | ε |≤ 1,

(1+ | ε |)2 − 1
4

(
| ε |2 −1

)2
, for 1 ≤| ε |≤ 3,

(C.24)

with

F
(π

2
, k
)

=

∫ π
2

0

dθ√
1− k2 sin2 (θ)

. (C.25)
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