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Abstract

The ability to coherently manipulate quantum systems enables a wide range
of applications in the field of quantum information. In this thesis we are going
to address two applications of quantum interaction between light and an atomic
medium. First, in the case of a single charged atom (ion), we propose a set of logical
gates for quantum computation. Second, we use a macroscopic ensemble of neutral
atoms as quantum memory for the storage of quantum entanglement to be used in
fundamental studies of the process of superradiance. The first part of this thesis
is a theoretical work with experimental perspectives. The traditional platform for
the development of quantum computing with a chain of ions confined in a Paul
trap is based on the model introduced in 1995 by Cirac and Zoller (CZ). In this
model the electronic levels describe the qubits and the collective vibrational modes
act as mediators between the qubits. In order to help mitigate the problems of
scalability, we have proposed a new architecture that is a true reversal of the CZ
scheme. Our approach consists in using the internal degrees of freedom of a single
ion as a mediator (bus) and harnessing the motion of ions as the unit of quantum
information, which leads us to a continuous variables picture of the problem. In
addition we developed a toolbox of quantum operations complete enough to achieve
computational universality. In the second part of the thesis, we develop a study
not only theoretical but also experimental using quantum memories in an atomic
ensemble. The idea here is to use a set of atoms to store quantum information over a
certain period of time. This stored information is originally packaged in a collective
atomic mode, which could subsequently be extracted on demand in a light field,
presenting non-classical correlations with a previously detected heralding field. The
atomic medium used is a cloud of cold Rubidium atoms obtained from a magneto-
optical trap, when the trap is off. The generation of photon pairs, correlated through
interaction with the atoms, is done by implementing a "write-read" scheme inspired
by the Duan-Lukin-Cirac-Zoller protocol for long-distance quantum communication.
A characteristic of the photons that mediate these interactions is that they are
narrowband enough to allow a direct study of the temporal shape of their wave
packet. Through the analysis and theoretical modeling of this wave packet, we
investigate the dynamics of extraction of the quantum information stored in the
quantum memory of the atomic ensemble. We report an experimental finding of
non-classical characteristics of superradiance by implementing the process not only
with a single excitation, but also with two-photon Fock states. Specifically, this
work presents the experimental measurement and the theoretical modeling of wave
packets in both single-photon and two-photon superradiance regimes. This new step
opens the way for the study of interactions between collective quantum memories
and light modes in a regime of higher-order components of the electromagnetic field.

Keywords: Quantum computing. Ion trap. Superradiance.



Resumo

A capacidade de manipular coerentemente os sistemas quânticos permite uma
ampla gama de aplicações no campo da informação quântica. Nesta tese vamos
abordar duas aplicações da interação quântica entre luz e um meio atômico. Pri-
meiro, no caso de um único átomo carregado (íon), propomos um conjunto de portas
lógicas para a computação quântica. Em segundo lugar, usamos um ensemble ma-
croscópico de átomos neutros como memória quântica para o armazenamento de
emaranhamento quântico a fim de ser usado em estudos fundamentais do processo
de superradiância. A primeira parte desta tese é um trabalho teórico com perspecti-
vas experimentais. A plataforma tradicional para o desenvolvimento da computação
quântica com uma cadeia de íons aprisionados em uma armadilha de Paul é ba-
seada no modelo introduzido em 1995 por Cirac e Zoller (CZ). Neste modelo os
níveis eletrônicos descrevem os qubits e os modos vibracionais coletivos atuam como
mediadores entre os qubits. Para ajudar a mitigar os problemas de escalabilidade,
temos proposto uma nova arquitetura que é uma verdadeira inversão do esquema
CZ. Nossa abordagem consiste em usar os graus de liberdade internos de um único
íon como um mediador (bus) e aproveitar o movimento dos íons como a unidade de
informação quântica, o que nos leva a um quadro de variáveis contínuas do problema.
Além disso, desenvolvemos uma caixa de ferramentas de operações quânticas com-
pleta o suficiente para alcançar a universalidade computacional. Na segunda parte
da tese, desenvolvemos um estudo não só teórico, mas também experimental usando
memórias quânticas em um ensemble atômico. A ideia aqui é usar um conjunto de
átomos para armazenar informação quântica durante um certo período de tempo.
Esta informação armazenada é originalmente anunciada por um modo atômico co-
letivo, o qual poderia ser posteriormente extraído ‘a pedido’ em um campo de luz,
apresentando correlações não clássicas com um campo ‘anunciante’ previamente de-
tectado. O meio atômico é uma nuvem de átomos frios de Rubídio obtida a partir
de uma armadilha magneto-óptica, quando a armadilha está desligada. A geração
de pares de fótons, correlacionados através da interação com os átomos, é feita atra-
vés da implementação de um esquema de “escrita-leitura” inspirado no protocolo
Duan-Lukin-Cirac-Zoller para comunicação quântica de longa distância. Uma ca-
racterística dos fótons que mediam essas interações é que eles são banda estreita
o suficiente para permitir um estudo direto da forma temporal de seu pacote de
onda. Através da análise e modelagem teórica deste pacote de onda, investigamos
a dinâmica de extração da informação quântica armazenada na memória quântica
do ensemble atômico. Reportamos um achado experimental das características não-
clássicas da superradiância, implementando o processo não apenas com uma única
excitação, mas também com estados de Fock de dois fótons. Especificamente, este
trabalho apresenta a medição experimental e a modelagem teórica de pacotes de
onda em ambos os regimes de superradiância, de um único fóton e dois fótons. Este
novo passo abre o caminho para o estudo das interações entre memórias quânticas
coletivas e modos de luz em um regime de componentes de mais alta ordem do campo
eletromagnético.

palavras-chave: Computação quântica. Armadilha de ions. Superradiância.
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1 Introduction

1.1 Overview

Quantum mechanics is the field of physics which is dedicated to understanding the uni-
verse on the atomic scale. Fundamental particles as atoms and photons obey the laws
of quantum mechanics and the probability distribution for the outcome of each possi-
ble measurement on the system is provided by the quantum state or a superposition of
quantum states. For more than six decades, quantum (coherent) superposition states
have been studied and used in applications such as photon interferometry and Ramsey
spectroscopy [1]. However, entangled states, specifically those ‘engineered’ for specific
tasks, have become completely accessible only in the last three decades. One of the main
achievements in this area were the early experiments of non-locality in quantum mechan-
ics [2] performed with pairs of entangled photons [3, 4]. Moreover, making use of the
quantum properties of fundamental particles, systems to transmit and process (quantum)
information can be built, which is the basis of what is called quantum communication and
quantum computation, respectively. As the technology is being miniaturized and electron-
ics is approaching the fundamental scale, the potential of these areas is becoming more
and more important and a detailed theory of quantum information processing has been
rapidly and steadly developed in the last twenty years. Simple quantum algorithms and
a wide variety of quantum communication protocols [5–9] have also been demonstrated
experimentally, including quantum teleportation and quantum cryptography.

Quantum information comes in two forms, discrete and continuous. The best-known
example of continuous variables quantum information [10–12] is the quantized harmonic
oscillator, which can be described by continuous variables such as position and momentum
(an alternative description is the discrete but infinite-dimensional representation in terms
of energy states). Examples of continuous-variable quantum systems include quantized
modes of bosonic systems such as the different degrees of freedom of the electromagnetic
field, vibrational modes of solids, atomic ensembles, nuclear spins in a quantum dot,
Josephson junctions, and Bose-Einstein condensates. Because they provide the quantum
description of the propagating electromagnetic field, continuous-variable quantum sys-
tems are particularly significant for quantum communication [13] and quantum-limited
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techniques for detection, sensing, and imaging [14,15]. Although encoding of continuous-
variable systems in solid-state or atomic media are used for quantum computation [16],
bosonic systems are important not only in the physical modeling of discrete-variable quan-
tum computation, e.g., the quantized vibrational modes of ions embody the quantum bus
between qubits in ion-trap quantum computers, but also allows for new approaches to
quantum computation, as can be verified in the chapter 2. On the other hand, the best-
known example of discrete quantum information is the quantum bit or ‘qubit’, a quantum
system with two distinguishable states. Examples of quantum systems that can be used
to register a qubit are spin-1/2 particles such as nuclear spins [17], the two lowest energy
states of semiconductor quantum dots [18] or quantized superconducting circuits [19], the
two polarization states of a single photon [20], and the the electronic levels of a two-level
atom as is going to be studied in the second part of this thesis, i.e. chapters 3, 4 and 5,
where single-photon and two-photon storage of quantum information is studied as well as
the phenomenon of superradiance in these two regimes.

In this thesis we will study quantum information processing in the two forms described
above, i.e. in continuous variables and in discrete variables regime. In the first case, when
we treat the situation of an ion trapped in a Paul trap, we will see how the motion of the
ion is quantized and can be coherently manipulated, not just to write, but also process
some amount of quantum information. Since motion is a continuous quantum variable,
then we are going to use a mathematical approach and treatment that is characteristic
of continuous variables quantum information. In the second part of the thesis we will
experimentally study the situation of a large ensemble of neutral atoms, which are also
trapped, however in a magneto-optical trap. This set of atoms is used to store quantum
information for a period of time. For this reason this implementation is called a “quan-
tum memory”. The quantum information in this case is written via an electronic energy
transition, which can only lead to one of two possible states, fundamental or excited, and
therefore it must be studied using tools of discrete variables quantum information. The
quantum state before and after the quantum memory is written in a light beam, so this
device is very interesting for quantum communication systems with photons.

1.2 Outline of the thesis

In chapter 2 we propose the architecture of a quantum processor based on a single trapped
ion as well as a toolbox of quantum operations in continuous variables to achieve computa-
tional universality. In chapter 3 we explain a theoretical framework for the understanding
of some cooperative effects in atomic systems, focusing mainly on the single-photon su-
perradiance process. The assembly of the magneto-optical trap and the experimental
setup concerning the measurement of two-photon superradiance in cold rubidium atoms
is detailed in chapter 4. In chapter 5 the main experimental results found in relation to
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the two-photon superradiance as well as some characterizations that are important for
the interpretation of the experimental data are presented. Finally the conclusions are
presented in chapter 6, regarding the two topics addressed in the thesis.
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2 Continuous variables quantum computation

In this chapter we are going to propose an architecture for a quantum processor based on
the motional modes of a trapped ion in a Paul trap. We focus not only on the theoretical
model, but also on the experimental details needed for an eventual implementation. The
first section is oriented to establish the present point of view of discrete variables quantum
computation as proposed by Cirac and Zoller in 1995 [21], and which has inspired the
majority of the improvements in this area in the last 20 years. We explain in detail the
CZ gate which represents the core of this paradigm, and will be our starting point for
the rest of the chapter. After that, we explain how that paradigm can be inverted, using
the internal degrees of freedom not for storing units of quantum information but just as
a mediator, and on the other hand, using the vibrational states of the single trapped ion
as the actual information unit, and not as a mediator. In summary it is an inversion of
the original proposal. The motivation of this new point of view is explained at the final
sections of the chapter, since we appeal to the use of an smaller physical size accessing a
larger Hilbert space.

2.1 Quantum computation over the internal degrees of freedom

A quantum processor consists of a collection of interacting quantum bits which can be
independently manipulated and measured. There are some platforms to embody it, how-
ever ion traps have stood as one of the most successful experimental implementations,
since requirements for computation universality [22–24] have been experimentally demon-
strated. On the other hand, scalability [25,26] showed to be a fundamental challenge for
quantum processors.

An ion chain works as a quantum register wherein each pair of energy eigenstates of
the ion’s electronic configuration encodes one qubit [21]. The electric repulsion among
ions and the external confinement give rise to collective modes of vibration which are
employed as mediators when any chosen pair of qubits are interacting. Resonant or near-
resonant lasers, with the qubit transitions, are used to carry out the quantum operations.
Other internal energy levels of the ions are employed to initialize and measure the qubits.
Despite the enormous evolution since the dawn of this scheme [23, 27–30], it would not
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be inappropriate to name it as the ‘Cirac & Zoller (CZ) paradigm’ of ion trap quantum
computing since it is based on a theoretical proposal of 1995 by Ignacio Cirac and Peter
Zoller. To sum up, the CZ paradigm conceives each ion as a storage unit for a single
qubit in internal electronic energy levels, with one or more vibrational modes mediating
interactions among different qubits.

2.1.1 Quantum description of the ion motion in a trap

Let’s start by assuming that the potential is quadratic in the three coordinates of the
center of mass of the trapped ion [31], so the problem can be separated into three
one-dimensional problems. Once in the one-dimensional situation, we substitute the x-
coordinate with the operator x̂ and so we can write the time-dependent potential operator

V̂ (t) =
m

2
W (t) x̂2,

where

W (t) =
ω2

rf

4
[ax + 2qx cos (ωrft)] ,

comes from the equation of Mathieu for a Paul trap

d2x

dξ2
+ [ax − 2qx cos (2ξ)]x = 0, (2.1.1)

which belongs to a general class of differential equations with periodic coefficients. The
general form of its stable solutions comes from the Floquet theorem [32,33]

x (ξ) = Aeiβxξ
∞∑

n=−∞

C2ne
i2nξ +Be−iβxξ

∞∑
n=−∞

C2ne
−i2nξ. (2.1.2)

Where the real characteristic exponents βx and the coefficients C2n are functions only of
ax and qx and do not depend on the initial conditions. We also have to note that the
independent variable ξ, according to the theoretical model describing Paul’s trap, is the
one that carries the temporal dependence, ξ = ωrft/2.

However, we will not delve into the origin of this function since it escapes the objec-
tives of this thesis and rather concerns the construction of the trap and its quadrupolar
potential. What is of vital importance is its interpretation, therefore we are going to
imagine that the particle is in a sort of harmonic oscillator potential, but instead with
another elastic constant (normally it is chosen ω2), and also variable in time.

With all of the above, we are in a position to construct the Hamiltonian motion for
the ion in the trap, which will be very similar to the known Hamiltonian of a harmonic
oscillator.
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Ĥ(m) =
p̂2

2m
+
m

2
W (t) x̂2. (2.1.3)

Immediately we can deduce the equations of motion associated with this Hamiltonian, in
the Heisenberg picture:

˙̂x =
1

i~

[
x̂, Ĥ(m)

]
=

p̂

m
,

˙̂p =
1

i~

[
p̂, Ĥ(m)

]
= −mW (t) x̂.

These equations of motion clearly satisfy

¨̂x+W (t) x̂ = 0,

which is equivalent to Mathieu’s equation (2.1.1). Let us also consider the same equation
but substituting x̂ by u (t). This is useful to find solutions by employing a special solution
of the Mathieu equation in the variable u considering the boundary conditions u (0) = 1

and u̇ (0) = iωt. This solution can be obtained through equation (2.1.2) with A = 1 and
B = 0,

u (t) = Aeiβxξ
∞∑

n=−∞

C2ne
i2nξ. (2.1.4)

Remembering the parameter ξ = ωrft/2 we must find a solution that is of the type

u (t) = eiβxωrft/2Φ (t) ,

being Φ (t) a periodic function with period T = 2π/ωrf.
In this way the boundary conditions become

u (0) =
∞∑

n=−∞

C2n = 1

and

ωt = ωrf

∞∑
n=−∞

C2n (βx/2 + n) .

This solution and its complex conjugate are linearly independent, so that they respond
to the Wronskian identity

u∗ (t) u̇ (t)− u (t) u̇∗ (t) = u∗ (0) u̇ (0)− u (0) u̇∗ (0)

= 2iωt.
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As the coordinates being studied x̂ (t) and u (t) satisfy the same differential equation,
then the following linear combination

Ĉ (t) =

√
m

2~ωt
i
[
u (t) ˙̂x (t)− u̇ (t) x̂ (t)

]
(2.1.5)

is proportional to its Wronskian identity and also constant over time

Ĉ (t) = Ĉ (0) =
1√

2m~ωt
[mωtx̂ (0) + ip̂ (0)] .

Even more, the right side of the equation is exactly the definition of the annihilation
operator for a static potential of harmonic oscillator of mass m and frequency ωt

Ĉ (t) = Ĉ (0) = â,

what immediately implies in the commutation relation
[
Ĉ, Ĉ†

]
=
[
â, â†

]
= 1. This static

potential oscillator will be named as reference oscillator from now on.
Finally we know that operators x̂ (t) and p̂ (t), in the Heisenberg picture, can be

restated in terms of u (t) and the reference oscillator operators. Using equation (2.1.5):

x̂ (t) =

√
~

2mωt

[
âu∗ (t) + â†u (t)

]
, (2.1.6)

p̂ (t) =

√
~m
2ωt

[
âu̇∗ (t) + â†u̇ (t)

]
. (2.1.7)

So that all temporal dependence is given by the special solution u (t) and its complex
conjugate.

2.1.2 Hamiltonian

When we work with strongly trapped atoms, we have the possibility of coherently ma-
nipulating an internal electronic state using another internal state or states of motion,
through the application of appropriate electromagnetic fields. In this section we consider
the trapped ions in a very reasonable approximation as if they were two-level systems,
with levels g and e and energy difference ~ω0 = ~(ωe − ωg) [34, 35]. This approximation
is appropriate if at least two fundamental conditions are met: the frequency of the light
producing the coupling is very close to the resonance for two internal levels, and if the
Rabi frequencies that describe the coupling strength are considerably smaller than the
relative detuning to other transitions close to the resonance. In this way we describe the
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Hamiltonian of the free atom under the approximation of a two-level system

Ĥ(e) = ~ (ωg |g〉 〈g| − ωe |e〉 〈e|)

= ~
ωg + ωe

2
(|g〉 〈g|+ |e〉 〈e|) + ~

ω0

2
(|g〉 〈g| − |e〉 〈e|) .

Since we are in a two-level system approximation, the operators we are using can be
mapped on a spin-1/2 operator basis, with their respective algebra, which is represented
by the identity (2× 2 ) and the three Pauli matrices:

Î ←→ |g〉 〈g|+ |e〉 〈e| σ̂x ←→ |g〉 〈e|+ |e〉 〈g|
σ̂y ←→ i (|g〉 〈e| − |e〉 〈g|) σ̂z ←→ |e〉 〈e| − |g〉 〈g|

In this way the Hamiltonian is expressed in terms of the identity and the Pauli matrix
σ̂z:

Ĥ(e) = ~
ωg + ωe

2
Î + ~

ω0

2
σ̂z,

where the first term is an energy contribution independent of the state. Therefore the
Hamiltonian can be rescaled by this quantity Ĥ(e) → Ĥ(e) − ~ωg+ωe

2
Î without losing its

physical interpretation:

Ĥ(e) = ~
ω0

2
σ̂z. (2.1.8)

In the later theoretical treatment, it is important to note that the light fields to
be used are being considered in the lowest order of their multipolar expansion, i.e., for
dipole-allowed transitions we will consider the dipolar approximation, whereas for dipole-
forbidden transitions we will only consider the quadrupole component. For Raman transi-
tions, the near resonant intermediate state is to be eliminated adiabatically, so that these
transitions are to be considered equivalent to other two-level transitions.

Finally we will introduce the interaction Hamiltonian, which corresponds to the inter-
action with an additional electromagnetic field applied to the ion. For simplicity we are
only considering the case where we have a single ion, a single applied field and a single
motional mode.

The electromagnetic field is assumed to be classical, periodically variable in time and
propagating in the x direction. This field is applied on an ion that is only free to oscillate
in the z axis with a frequency ωz. If we assume that the internal levels of the atom are
coupled by electric fields, then the interaction Hamiltonian is [36]

Ĥ(i) = − ~̂d · ~̂E (x, t) , (2.1.9)

where ~̂d is the electric dipole operator for the internal transition and ~̂E (x, t) comes from
the propagation of the uniform wave along the x-axis and with polarization in the z-
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direction. Considering x̂s as the coordinate operator in the Schrödinger picture we have

~̂E = ~Ez cos (kx̂s − ωLt+ ϕ)

=
~Ez
2

(
ei(kx̂s−ωLt+ϕ) + e−i(kx̂s−ωLt+ϕ)

)
,

being ωL the optical frequency, k the modulus of the wavevector, fulfilling k = 2π/λ, and
λ the wavelength.

The atomic dipole moment operator is given by ~̂d = −e~̂r = −~dge (ge+ eg), where
e is the electron’s charge, ~r is the relative coordinate of valence electron, ~dge is a real
numbered vector (not an operator) with direction given by the dipole polarization axis,
i.e. z-direction, and the magnitude given by the dipole matrix element for the transition
between g and e. The matrix elements dge can be calculated by using the Wigner-Eckart
theorem and the Clebsch-Gordan coefficients for the atomic transitions. So we can state
that

~̂d = −
~dge
2

(σ̂+ + σ̂−)

so that

H(i) = − ~̂d · ~̂E (x, t) = ~Ω (σ̂+ + σ̂−)
(
ei(kx̂s−ωLt+ϕ) + e−i(kx̂s−ωLt+ϕ)

)
, (2.1.10)

where ~Ω ≡ −dgeEz
4

, σ̂+ ≡ σ̂x + iσ̂y and σ̂− ≡ σ̂x − iσ̂y. We will also assume that the
lifetimes of the levels are long, i.e., the spectrum of transitions excited by the wave is well
resolved if Ω is small enough.

Now we are in a position to write our total Hamiltonian as the sum of the three
Hamiltonians that we have been studying so far (Eqs. 2.1.3, 2.1.8 and 2.1.10),

Ĥ = Ĥ(m) + Ĥ(e) + Ĥ(i). (2.1.11)

The simplest view of this dynamics, induced by the introduction of the light field, is
given by the interaction picture with the free Hamiltonian Ĥ0 = Ĥ(m) + Ĥ(e) and the
interaction V̂ = Ĥ(i).

With Û0 = exp
[
− (i/~) Ĥ0t

]
, the transformed interaction Hamiltonian is:

Ĥint = Û †0Ĥ
(i)Û0

= ~Ωe(i/~)Ĥ(e)t (σ̂+ + σ̂−) e−(i/~)Ĥ(e)t

×e(i/~)Ĥ(m)t
[
ei(kx̂s−ωLt+ϕ) + e−i(kx̂s−ωLt+ϕ)

]
e−(i/~)Ĥ(m)t

First we are going to develop the part of the electronic Hamiltonian. Here we find two
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terms that are going to be solved in an analogous way. Therefore we are going to develop
in detail only the solution for one of them:

~Ωe(i/~)Ĥ(e)tσ̂+e
−(i/~)Ĥ(e)t.

This expression can be rewritten through the Baker-Campbell-Hausdorf formula, eABe−A =

B + [A,B] + 1/2[A, [A,B]] + . . ., and making use of the algebra of the ladder operators
[σ̂z, σ̂±] = ±2σ̂±, thus

e(i/~)Ĥ(e)tσ̂+e
−(i/~)Ĥ(e)t = σ̂+ (1 + iω0t+ . . .) = σ̂+e

iω0t,

and similarly for σ̂−, in such a way that we can already write the Hamiltonian as

Ĥint = ~Ω
(
σ̂+e

iω0t + σ̂−e
−iω0t

)
e(i/~)Ĥ(m)t

[
ei(kx̂−ωLt+ϕ) + e−i(kx̂−ωLt+ϕ)

]
e−(i/~)Ĥ(m)t.

Now we apply the Rotating Wave Approximation (RWA). When we multiply the factors
that contain the temporal dependence, we find terms of the type exp [±i (ωL ± ω0) t]. Here
there are two terms corresponding to the sum of the frequencies ωL + ω0 and two other
terms that come from the subtraction of the frequencies δ = ωL − ω0. In this way, the
fast terms, coming from the sum of frequencies, can be neglected, since they are hardly
going to affect in any way the temporal evolution of the system:

Ĥint = ~Ω
(
σ̂+e

iω0t + σ̂−e
−iω0t

)
e(i/~)Ĥ(m)t

[
ei(kx̂−ωLt+ϕ) + e−i(kx̂−ωLt+ϕ)

]
e−(i/~)Ĥ(m)t

= ~Ωσ̂+e
iω0te(i/~)Ĥ(m)tei(kx̂−ωLt+ϕ)e−(i/~)Ĥ(m)t

+
((((((((((((((((((((((

~Ωσ̂+e
iω0te(i/~)Ĥ(m)te−i(kx̂−ωLt+ϕ)e−(i/~)Ĥ(m)t

+
((((((((((((((((((((((

~Ωσ̂−e
−iω0te(i/~)Ĥ(m)tei(kx̂−ωLt+ϕ)e−(i/~)Ĥ(m)t

+~Ωσ̂−e
−iω0te(i/~)Ĥ(m)te−i(kx̂−ωLt+ϕ)e−(i/~)Ĥ(m)t

= ~Ωe−i[δt−ϕ] + σ̂+e
(i/~)Ĥ(m)teikx̂e−(i/~)Ĥ(m)t

+~Ωei[δt−ϕ] + σ̂−e
(i/~)Ĥ(m)te−ikx̂e−(i/~)Ĥ(m)t

Now, we focus on the second part of the Hamiltonian, which concerns the Hamiltonian
of motion in the interaction picture. We see that it is equivalent to have carried this
Hamiltonian from the Schrödinger picture to the Heisenberg picture. In this way, the
operator x̂S will be replaced by the operator x̂ (t), in the Heisenberg picture, as shown in
equation (2.1.6):

e(i/~)Ĥ(m)te±ikx̂e−(i/~)Ĥ(m)t = e±ikx̂(t). (2.1.12)
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Figure 1: Energy level scheme of a single trapped ion. Ground state g and an excited state e are
considered in a harmonic trap. Oscillator states are 0, 1, . . . . The laser frequency is ωL and the qubit
(transition) frequency is ω0. Panel (a) shows δ = ωL − ω0 = ωt, (b) when δ = ωL − ω0 = 0 and (c) for
δ = ωL − ω0 = −ωt.

We now introduce the Lamb-Dicke parameter η = kx0, which gives the ratio between the
typical length scale of the ion’s oscillation amplitude and the projection of the wavelength
of the incident laser radiation, where x0 =

√
~/2mωt is the extension along the x-axis of

the ground state wave function of the reference oscillator. In this way we obtain that

kx̂ (t) = η
[
âu∗ (t) + â†u (t)

]
,

such that

e(i/~)Ĥ(m)te±ikx̂e−(i/~)Ĥ(m)t = e±iη[âu
∗(t)+â†u(t)].

Inserting this into the previous Hamiltonian:

Ĥint (t) = ~Ωσ̂+e
−i[δt−ϕ] exp

(
iη
[
âu∗ (t) + â†u (t)

])
+H.c.

Remembering the form of the solution (2.1.4), and considering some approximations
that fit the usual experimental conditions, as(|ax| , q2

x) � 1, so that βxωrf ≈ ωt and
C0 ≈ (1 + qx/2)−1, we can write a more simplified form of the function u (t) to be used
in the Hamiltonian

u (t) ≈ eiωtt

1 + qx/2
.

In addition, we are now going to rescale the interaction strength Ω → Ω (1 + qx/2), in
such a way that the interaction Hamiltonian takes a simpler form

Ĥint (t) = ~Ωσ̂+e
−i[δt−ϕ] exp

(
iη
[
âe−iωtt + â†eiωtt

])
+H.c.. (2.1.13)
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2.1.3 Qubits with trapped ions

Using the Lamb-Dicke approximation (η
√
〈â+ â†〉 � 1), we can rewrite Eq. (2.1.13) by

expanding the exponential [34,37]:

exp
(
±iη

[
âe−iωtt + â†eiωtt

])
≈ 1± iη

[
âe−iωtt + â†eiωtt

]
.

Such an approximation requires that the coupling between the qubit and the collective
vibration mode of the ions should be sufficiently weak. Thus,

Ĥint (t) =~Ω
{
σ̂+e

−i(δt−ϕ)
(
1 + iη

[
âe−iωtt + â†eiωtt

])
+ σ̂−e

i(δt−ϕ)
(
1− iη

[
âe−iωtt + â†eiωtt

])}
~Ω
{
σ̂+e

−i(δt−ϕ) + σ̂−e
i(δt−ϕ) +

(
σ̂+e

−i(δt−ϕ) − σ̂−ei(δt−ϕ)
)
iη
[
âe−iωtt + â†eiωtt

]}
.

Three cases of the laser detuning δ are of particular interest (see Fig. 1): δ = 0 and
δ = ±ωt. This becomes apparent if a second rotating wave approximation is carried out
where time dependent terms for the three cases above are discarded:

1. the Hamiltonian describing the carrier transition (δ = 0):

Ĥcar = ~Ω
(
σ+e

iϕ + σ−e
−iϕ) (2.1.14)

Here only the electronic states |g〉 and |e〉 of the ion are changed (carrier transitions).

2. the Hamiltonian describing the blue sideband transition (δ = ωt):

Ĥ+ = i~Ωη
(
σ+â

†eiϕ − σ−âe−iϕ
)
. (2.1.15)

Simultaneously to exciting the electronic state of the ion, in this case a motional
quantum (a phonon) is created. Within this two-level system, Rabi flopping with
the Rabi frequency

Ωn,n+1 =
√
n+ 1ηΩ (2.1.16)

occurs, where n describes the number of motional quanta (phonons). For conve-
nience, we define the blue sideband Rabi frequency Ω+ = Ω0,1 which describes the
flopping frequency between the |g, 0〉 and the |e, 1〉 state.

3. the Hamiltonian describing the red sideband transition (δ = −ωt):

Ĥ− = i~Ωη
(
σ−â

†e−iϕ + σ+âe
iϕ
)
. (2.1.17)

Simultaneously to exciting the electronic state, here a phonon is destroyed, and Rabi
flopping with the Rabi frequency

Ωn,n−1 =
√
nηΩ (2.1.18)
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Figure 2: Spectrum of 40Ca+ ion, showing carrier band, and red and blue sidebands with a detuning
∼ ±1 MHz from the carrier frequency.

takes place.

In Fig. 2 we can see an experimental spectrum of a single trapped 40Ca+ ion near the
qubit transition (experiment from [35]). When the laser frequency is in resonance with
the qubit transition (δ = 0), we can clearly observe the strong carrier transition, as well
as the blue (δ = ωt) and red (∆δ = −ωt) sidebands, corresponding to Eqs. 2.1.14, 2.1.15
and 2.1.17, respectively. The motional frequencies of the single ion can be deduced from
the spectrum to amount to ωz ≈ 2π × 1 MHz (axial frequency) and ωrx,y ≈ 2π × 5 MHz
(radial frequencies), since in sidebands the laser detuning is ωt, which precisely matches
the trap frequency, as can be seen in Fig. 1.

2.1.4 Single qubit operations

Quantum algorithms are often considered as a sequence of single-qubit operations plus a
specific two-qubit operation. The most common examples of this approach are the con-
ditional phase gate, the controlled-NOT gate, and the

√
SWAP gate [38,39]. Mathemat-

ically, we directly find single qubit operations by means of a resonant radiation inducing
such a coupling by a rotation R(θ, φ) acting on any state vector α |0〉 + β |1〉 [39], using
the Hamiltonian for Eq. (2.1.14):

R (θ, ϕ) = exp

[
i

(
θ

2

)(
eiϕσ̂+ + e−iϕσ̂−

)]
(2.1.19)

We know that

eiϕσ̂+ + e−iϕσ̂− = eiϕ
1

2
(σ̂x + iσ̂y) + e−iϕ

1

2
(σ̂x − iσ̂y) = σ̂x cosϕ− σ̂y sinϕ
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Figure 3: Bloch sphere

and thus

R (θ, ϕ) = exp

[
i

(
θ

2

)
(σ̂x cosϕ− σ̂y sinϕ)

]
=

∞∑
n=0

in
[
i
(
θ
2

)
(σ̂x cosϕ− σ̂y sinϕ)

]n
n!

=
∞∑
n=0

(−1)n [iθ/2 (σ̂x cosϕ− σ̂y sinϕ)]2n

(2n)!

+i
∞∑
n=0

(−1)n [iθ/2 (σ̂x cosϕ− σ̂y sinϕ)]2n+1

(2n+ 1)!

= I
∞∑
n=0

(−1)n [iθ/2]2n

(2n)!
+ i (σ̂x cosϕ− σ̂y sinϕ)

∞∑
n=0

(−1)n [iθ/2]2n+1

(2n+ 1)!

= I cos
θ

2
+ i (σ̂x cosϕ− σ̂y sinϕ) sin

θ

2

=

(
cos θ

2
ieiϕ sin θ

2

ie−iϕ sin θ
2

cos θ
2

)
. (2.1.20)

It is useful to understand how the single-qubit operations are represented on the Bloch-
sphere (see Fig. 3). We identify the north pole with the excited state (logical |0〉) and the
south pole with the ground state (1). In the Bloch sphere picture, the angle β specifies
the rotation in the equatorial plane, and thus it doesn’t represent any population change
but just a phase, and α is the angle in relation to the z axis, which actually is related to
the population inversion. Rotations around the z axis, amounting to a phase shift, can be
either decomposed into rotations around the x and the y axis or a far detuned laser beam
can shift the energies, due to an AC-Stark effect, to achieve the required phase shift.

The relevant control parameters in the experimental realization are the phase of the
laser field ϕ and the pulse area θ = Ωt, given by the product of the Rabi frequency Ω
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times the pulse length t. With these two parameters we can define the two angles of the
state in the Bloch sphere. These parameters can be controlled, for example, through an
acousto-optical modulator in double-pass configuration [40], manipulating the amplitude
and phase of the RF field wich drives the acousto-optical modulator. The θ angle in
the Bloch sphere is experimentally accessed via pulse area, which is easy to understand.
However, the phase angle ϕ can be a little confusing. After optical pumping, the experi-
ments start with the ion qubits in an energy eigenstate. Therefore the electric field of the
resonant excitation laser generates a dipole (or quadrupole) moment oscillating in phase
with the field at the laser frequency. In this way the first laser pulse (whose length is
not a multiple of π, in order to get out of the poles of the Bloch sphere) sets the phase
reference for all subsequent operations on that ion. Up to this point we can imagine, for
example, a π/2 rotation around the x axis until the equatorial plane. Using the phase of
this first laser as reference, now shifting the phase of a second excitation field by π, we
are going to apply the same rotation around the x axis as before, but starting from the
opposite side of the Bloch sphere. Therefore we will reverse the original evolution.

Single qubit operations are carried out normally with fidelities exceeding 0.99 [41],
which are usually limited by intensity fluctuations. Using single-qubit operations we are
able to perform single-qubit gates as, for example, Pauli gates and Hadamard gate, which
are the most useful in the traditional quantum computation scheme.

2.1.5 Two-qubit operations - The Cirac-Zoller approach

One route to achieve a universal set of gates [38] is to complement single-qubit operations
with two-qubit gate operations. These operations are one of the most important ingre-
dients of a quantum computer as they provide the possibility to entangle two qubits. In
combination with single-qubit operations they allow for implementation of any unitary
operation [42].

In ion trap quantum computing, the implementation of suitable two-qubit operations
is the most challenging task. The interest in two-qubit operations is documented by a
vast number of proposals [43,44], an important example is the Cirac-Zoller [21].

In this section we discuss the gate proposed by Cirac and Zoller (1995) in which
the motional mode acts directly as a mediator transmitting quantum information. The
explanation of this quantum gate will be representative for any other two-qubit gate in
the traditional scheme of dicrete-variables quantum computation. The idea is to outline
this gate in two ways, first developing an abstract explanation, i.e. without worrying
about how the operations could be performed physically, and secondly detailing how to
achieve these steps in an actual ion trap quantum processor, including the appropriate
electromagnetic fields to be applied.
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Abstract view

The Cirac-Zoller phase gate can be summarized in three steps, (i) to map the internal
state of one ion to the motion of an ion string, (ii) to flip the state of the target ion
conditioned on the motion of the ion string, and finally (iii) to map the motion of the ion
string back onto the original ion.

1. In the first step we will start considering that we have two ions in their fundamental
vibrational state, that is, without phonons. The possible quantum states here are
four, and they differ only by the internal states of each of them, thus having the
options of: both ions in the ground state, both in the excited state and two pos-
sibilities of being one in the ground state and the other in the excited state. Now
we apply an excitation in the first ion (so that when it is already in the excited
state it would have no effect) accompanied by the creation of a phonon. If it is not
possible to have an effect in both degrees of freedom at the same time, electronic
and vibrational, then the state is left unchanged

|ga〉 |gb〉 |0〉
|ga〉 |eb〉 |0〉
|ea〉 |gb〉 |0〉
|ea〉 |eb〉 |0〉

−→

|ea〉 |gb〉 |1〉
|ea〉 |eb〉 |1〉
|ea〉 |gb〉 |0〉
|ea〉 |eb〉 |0〉

2. Then we will exert a transition in the second (target) ion with the following charac-
teristics: if the electronic state is found to be the fundamental one it will take the
atom to an auxiliar excited state |a〉 accompanied by the creation of a phonon and,
on the other hand, if the second ion is in the excited state |e〉, it will go to ground
state |g〉 accompanied by the annihilation of a phonon, all this gaining a phase i.
If it is not possible to have an effect in both degrees of freedom at the same time,
electronic and vibrational, then the state is left unchanged

|ea〉 |gb〉 |1〉
|ea〉 |eb〉 |1〉
|ea〉 |gb〉 |0〉
|ea〉 |eb〉 |0〉

−→

i |ea〉 |ab〉 |2〉
i |ea〉 |gb〉 |0〉
i |ea〉 |ab〉 |1〉
|ea〉 |eb〉 |0〉

then we apply the inverse of this instruction, i.e. if the electronic state is found
to be the auxiliar excited state |a〉 it will take the atom to the fundamental one
accompanied by the annihilation of a phonon and, on the other hand, if the second
ion is in ground state |g〉, it will go to the excited state |e〉 accompanied by the
creation of a phonon, all this gaining a phase i. If it is not possible to have an effect
in both degrees of freedom at the same time, electronic and vibrational, then the
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state is left unchanged

i |ea〉 |ab〉 |2〉
i |ea〉 |gb〉 |0〉
i |ea〉 |ab〉 |1〉
|ea〉 |eb〉 |0〉

−→

−1 |ea〉 |gb〉 |1〉
−1 |ea〉 |eb〉 |1〉
−1 |ea〉 |gb〉 |0〉

1 |ea〉 |eb〉 |0〉

3. Finally we apply a transition in the first ion very similar to the one of the previous
step, only that the phase here will be of −1, in the following way: when the ion is in
the ground state it will be taken to the excited state accompanied by the creation
of a phonon, and when it is in the excited state it will end in the fundamental state
accompanied by the destruction of a phonon. If it is not possible to have an effect
in both degrees of freedom at the same time, electronic and vibrational, then the
state is left unchanged

−1 |ea〉 |gb〉 |1〉
−1 |ea〉 |eb〉 |1〉
−1 |ea〉 |gb〉 |0〉

1 |ea〉 |eb〉 |0〉

−→

1 |ga〉 |gb〉 |0〉
1 |ga〉 |eb〉 |0〉
1 |ea〉 |gb〉 |0〉
−1 |ea〉 |eb〉 |0〉

It is easy to observe that the final state will be, in 3 cases, identical to the initial one and,
in the remaining case, it will be different only by a minus sign. This conforms what we
call a controlled-Z gate, and takes this name because it effectively applies a Z operation
(Pauli matrix σ̂Z) on the target qubit (ion b) conditioned to the control qubit (ion a)
being in the excited state:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




cgg

cge

ceg

cee

 =


cgg

cge

ceg

−cee


Once one have managed to create this controlled-Z gate, one proceeds using a well-

known fact in the quantum computing literature:

CNOT = H × CZ ×H

being here, H a Hadamard gate, and CZ a controlled-Z gate.

Actual physical view

At the beginning, we consider that we have two ions in their ground vibrational state,
that is, without phonons, in the same way that was described in section 2.1.5. The
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Figure 4: Bloch sphere picture of the target ion in a Rphase gate. (a) and (c) show the rotation R+
t

(
π√
2
, 0
)
,

(b) and (d) correspond to R+
t

(
π, π2

)
. We can note that same rotations produce different effects depending

on the state it is applied in.
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coupling between the internal and external degrees of freedom is given by the momentum
conservation. The interaction between the ionic qubits can be mediated by motional
degrees of freedom, that serve as a quantum bus for distributing quantum information
between the ions. Therefore, we will discuss first the manipulation of the motion of single
ions and ion strings (see also [34]). The basic level scheme representing a single ion coupled
to a single motional mode is depicted in Fig. 1. If the laser field, however, is detuned by
the trap frequency towards higher energies, the so-called blue sideband is excited (see Eq.
(2.1.15)) and the operation

R+ (θ, φ) = exp

[
i
θ

2

(
eiϕσ̂+â

† + e−iϕσ̂−â
)]

(2.1.21)

is carried out. Here σ̂± are the atomic flip operators which act on the electronic quantum
state of an ion by inducing transitions from the |g〉 to the |e〉 state and vice versa. The
operators â and â† denote the annihilation and creation of a phonon at the trap frequency
ωt, i.e., they act on the motional quantum state. As in Eq. (2.1.20), the parameter θ de-
pends on the strength and duration of the applied pulse, and ϕ denotes the relative phase
between the optical field and the atomic polarization. Importantly, the electronic and
motional degrees of freedom change simultaneously. Similarly, for the opposite detuning
the red sideband can be excited.

1. In the first step we apply a laser pulse which produces a π rotation on the control
ion. In order to clarify let’s consider, for example, the state of the second line in
the previous subsection, |ψ0〉 = |ga, eb, 0〉, then we can generalize it to all possible
input states. The first operation is in the notation defined in 2.1.21:

R+
c (π, 0) .

The result of this rotation, over the example state, is |ψ1〉 = |ea, eb, 1〉. In general, the
effect of this first step is to change the traget ion basis from {|gb, 0〉 , |eb, 0〉 , |gb, 0〉 , |eb, 0〉}
to {|gb, 1〉 , |eb, 1〉 , |gb, 0〉 , |eb, 0〉}, in order to apply the next step.

2. Next we realize a composite 2π-rotation by driving a sequence of laser pulses in the
blue sideband [45] on the target ion, for example over the state |ψ2〉. First we apply
the operation (see Fig. 4a)

R+
t

(
π√
2
, 0

)
,

originating a transition to a superposition state

|ψ2〉 =
1

2−
√

2

[
1√
2
|gb〉+

(
1− 1√

2

)
|eb〉
]
|ea, 0〉 ,

here the vibrational state has lost one phonon. After this we apply a second blue
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sideband laser pulse (see Fig. 4b)

R+
t

(
π,
π

2

)
.

Now our state turns into another superposition state

|ψ3〉 =
i

2−
√

2

[(
1− 1√

2

)
|gb〉+

1√
2
|eb〉
]
|ea, 1〉 .

Here we have gained one phonon and additioned a phase i. Then we use a third laser
pulse, equal to the first one (see Fig. 4c). However, the effect now is completely
different, because we are in another state

R+
t

(
π√
2
, 0

)
.

Our resulting state is |ψ4〉 = i |ea, gb, 0〉. After that we apply the second pulse again
(see Fig. 4d)

R+
t

(
π,
π

2

)
,

and we have |ψ5〉 = − |ea, eb, 1〉 . If we study the net effect of these 4 pulses, we
have a phase gate in the basis {|gb, 1〉 , |eb, 1〉 , |gb, 0〉 , |eb, 0〉}

Rphase = R+
t (π,

π

2
)R+

t

(
π√
2
, 0

)
R+
t (π,

π

2
)R+

t

(
π√
2
, 0

)
or in matrix form

Rphase =


|gb, 1〉 |eb, 1〉 |gb, 0〉 |eb, 0〉

|gb, 1〉 −1 0 0 0

|eb, 1〉 0 −1 0 0

|gb, 0〉 0 0 −1 0

|eb, 0〉 0 0 0 1


3. Finally, we need another pulse but now applied on the control ion. Again we use a

blue sideband pulse, similar to that of step 1, except for the phase, that in this case
is −1:

R+
c (π, π) ,

finally, in our example, obtaining |ψ6〉 = |ga, eb, 1〉, i.e. unchanged compared to
the input one in the first step, ψ0. In general, the gloal of this step, is to get the
basis back to {|gb, 0〉 , |eb, 0〉 , |gb, 0〉 , |eb, 0〉} and simultaneously introduce a overall
−1 factor, and therefore be able to perform an operation in the vibrational ground
state basis.
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So that, when we put the whole effect of the 3 steps, in general, i.e. extending the example
|ψ0〉 → |ψ6〉 over the 4 cases, the output state is not going to be modified with respect
to the input but for a constant. Now what we have is the controlled-Z gate explained
earlier, in the original basis, as RZ = R+

c (π, 0)RphaseR
+
c (π, π) , and summarized in the

matrix below

RZ =


|gb, 0〉 |eb, 0〉 |gb, 0〉 |eb, 0〉

|gb, 0〉 1 0 0 0

|eb, 0〉 0 1 0 0

|gb, 0〉 0 0 1 0

|eb, 0〉 0 0 0 −1

 .

As explained earlier, if two Hadamard gates were applied, one before and one after
the controlled-Z gate, we would obtain an effective CNOT gate. However, there is a
completely equivalent way of performing this approach, as can be found in [46]. The
phase gate (Rphase) is transformed into a CNOT1100 operation, in the computational basis
{|gb, 1〉 , |eb, 1〉 , |gb, 0〉 , |eb, 0〉}, if it is sandwiched in between two appropriated π/2 car-
rier pulses, CNOT1100 = RC

t

(
π
2
, π
)
RphaseR

C
t

(
π
2
, 0
)
, then we change the basis and apply

the overall phase −1, by means the first and third steps mentioned earlier, CNOT =

R+
c (π, π)× CNOT1100 ×R+

c (π, 0). The full pulse sequence is:

CNOT = R+
c (π, π)

×RC
t

(π
2
, π
)

×R+
t (π,

π

2
)R+

t

(
π√
2
, 0

)
×R+

t (π,
π

2
)R+

t

(
π√
2
, 0

)
×RC

t

(π
2
, 0
)

×R+
c (π, 0) ,

or equivalentely

CNOT =


|gb, 0〉 |eb, 0〉 |gb, 0〉 |eb, 0〉

|gb, 0〉 1 0 0 0

|eb, 0〉 0 1 0 0

|gb, 0〉 0 0 0 1

|eb, 0〉 0 0 1 0

 ,

where the subscripts c and t label the control and target ion, and the superscripts +

and C label the blue sideband and carrier operations, respectively. Process fidelities of
up to 0.92 and entangled states with a fidelity of 0.95 have been demonstrated with this
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approach [47].
The observed gate fidelity is well understood in terms of a collection of experimental

imperfections. Actually, loss of qubit coherence causes a reduction of the fidelity which
can be countered with faster gates. However, this implies larger Rabi frequencies, which
in turn spoil the fidelity by uncontrolled AC-Stark shifts [48,49].

We have shown, up to now, just an example of controlled quantum gate over the
internal (discrete) degrees of freedom of trapped ions, the CNOT gate through the Cirac-
Zoller approach. However, this example is fundamental to understand how the present
view of quantum computation functions. We have shown that vibrational modes are
necessary in order to mediate the different energy level qubits, since we can use laser pulses
that have effect, simultaneously, in both the internal and external degrees of freedom of
the trapped ion. It is interesting to note that everything explained here with blue sideband
pulses can be accessed also through red sideband lasers, in a completely equivalent scheme.

2.2 Quantum computation over the vibrational modes

As shown in the previous section, one of the current proposals of quantum computing re-
gards sequences of quantum gates coherently manipulating discrete two-level systems, the
qubits [39]. An alternative picture considers physical observables with continuous spectra
– continuous variables (CV) – to accomplish the physical encoding and quantum process-
ing [50,51]. In the continuous variables quantum computing (CVQC) paradigm, Gaussian
states and Gaussian operations are the fundamental pillars of quantum logic [52, 53], as
well as a single non-Gaussian operation needed to attain computation universality [54,55].
In this case an infinite-dimensional Hilbert space holds the basic physical object of quan-
tum computing. This Hilbert space may be considered as continuous in the eigenbasis of
some observables, but also can be regarded as a discrete configuration space in the eigen-
basis of other observables. In particular, as regarded in this thesis, a motional mode of the
ion chain [56–60] can be either studied in terms of superpositions of the quantized energy
eigenstates of the harmonic oscillator, the number or Fock states [61] or in the continuous
phase space of position and momentum observables, e.g. by the Wigner function. Recent
literature on generation, control [62–64] and measurement [65–67] of vibrational modes
of trapped ions have been addressed in several manners: by entanglement with optical
resonator modes [68], using it as an equivalent model for the study of other systems [69],
exotic quantum states generation [70,71], or simulations of solid state systems [72–74].

In this section, we investigate the implementation of quantum gates in the motional
modes [75,76]. We consider the viability and features of turning the CZ paradigm around
to use the qubit degree of freedom to mediate the interaction among the vibrational states,
as can be seen in Fig. 5. Whereas our proposal can be scaled up to a system of different
single ions [77], we focus here on the simplest case of a single trapped ion and its set of
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three motional modes as a initial point. We try to establish the potential of this quantum
system as well as the expected limitations on the size of the configuration space made
possible by this simple change of perspective in the use of the ion trap. We present a
CVQC toolbox for manipulation of single modes and the interaction between them, in
particular to show which entangling gates would be available. The presented gates are
attainable by bichromatic laser fields with tunable frequencies. Number-dependent Rabi
flops on the qubit can be performed in order to readout the quantum state [78–80].

2.2.1 Basic implementation

Physical system

We will consider, in this proposal, the oscillation modes of the quantum harmonic oscilla-
tor as the physical objects to be manipulated [81]. There are three available modes in the
simplest case of a single trapped ion oscillator, e.g. x, y, and z axis. In actual experimen-
tal conditions, the eigenbasis of the number operator is the best option to quantify the
size of the Hilbert space associated with each vibrational mode and available to manipu-
lation. Since the anharmonicities of the actual potential and the unability to manilpulate
an unlimited phonon number, the basis for each mode is assumed to be truncated at a
maximum phonon number N , and is hence composed of the eigenstates

{0, 1, 2, . . . , N}. (2.2.1)

Figure 5: Proposal of CVQC using the ion trap. (a) The CZ paradigm employs one or more motional
modes of the quantum harmonic oscillator to mediate the interaction (the ‘quantum bus’) between pairs
of qubits. In the original proposal, one motional mode is essentially employed as a two-level system.
Increasing the size of the Hilbert space requires adding more ions to the physical system, reaching an
exponential increase. (b) Our proposal utilizes the qubit as the quantum bus that allows vibrational
modes to interact. Three harmonic oscillator form the Hilbert space available for manipulation. The
size of the Hilbert space available is outright larger than in the CZ paradigm, although it increases only
polynomially with the phonon cap number.

The quantum state represented in terms of phonon number eigenstates relates to a
‘particle-like’ picture of the system. The quantum state of the harmonic oscillator also
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admits a CV representation in the position and momentum phase space, a ‘wave-like’ de-
scription employing the Wigner function. This function is a quasiprobability distribution
which is devoted to the study of quantum corrections to classical statistical mechanics.
The goal is to link the wavefunction that appears in Schrödinger’s equation to a prob-
ability distribution in phase space. Quantum gates are transformations of the Wigner
function in phase space. In the ion trap processor, bichromatic laser light can be used
to perform quantum gates by coupling motional modes to the internal degrees of free-
dom [27, 28, 82, 83]. The qubit is by construction a highly non-linear physical system –
one that saturates with a single quantum –, a property here employed to generate non-
Gaussian operations on the vibrational modes. We impose that ρ̂ = ρ̂qρ̂m , where qubit
(ρ̂q) and motional modes (ρ̂m) states are separable before and after the application of
quantum gates, since in our proposed architecture the qubit is only an auxiliary source of
non-linearity and coupling among motional modes.

The proposed CVQC toolbox of operations can be divided in Gaussian and non-
Gaussian operations. The class of Gaussian operations is defined as which maintains as
Gaussian an initially Gaussian Wigner function. There are single- and two-mode Gaussian
operations. Single-mode displacements and squeezers, respectively, displace the origin of
phase space or change the scale of the position and momentum axis. Both of them have
already been experimentally demonstrated in the ion trap processor [84, 85]. Two-mode
operations comprise the beam splitter and the two-mode squeezer. The beam splitter is a
passive transformation that linearly combines two field modes. The two-mode squeezer,
an active transformation, can be understood as two single-mode squeezers simultaneously
acting on orthogonal combinations of two modes. It is also possible to comprise two-
mode conditional gates as generalizations of such operations. Examples of non-Gaussian
operations are obtained by the blue and red sideband interactions, producing single-mode
phonon creation or annihilation, as well as it is possible, through the cross Hamiltonian
counterpart, to achieve simultaneous creation or annihilation of two photons, one in each
mode.

Hamiltonian of the ion trap

The CV toolbox of quantum operations is developed concerning the simplest implemen-
tation of an ion trap processor: a single ion comprising the qubit and three independent
modes of vibration. We consider in this section the basic coherent manipulation of a single
trapped ion by an external source of coherent light [61, 86].

We recall the Hamiltonian regarding one qubit and two motional modes coupled to
it by a monochromatic external laser. The generalization of the interaction to three
oscillator modes and bichromatic lasers capable of producing the desired quantum gates
follows next.
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In the mentioned case, the ion trap Hamiltonian reads as

Ĥ = Ĥ0 + ĤI , (2.2.2)

where ĤI is the interaction Hamiltonian discussed below and Ĥ0 provides the free dy-
namics of qubit and motional modes,

Ĥ0 = 1
2
~ω0σ̂z + ~ωaâ†â+ ~ωbb̂†b̂. (2.2.3)

The frequency of the qubit transition is ω0 and its two-dimensional Hilbert space is de-
scribed in terms of the excited e and ground g internal states of the ion, with which
we write σ̂z = ee − gg. The two independent vibrational modes under consideration are
described in terms of the annihilation operators â and b̂ and the respective creation opera-
tors satisfying the commutation relations [â, â†] = [b̂, b̂†] = 1. Their oscillation frequencies
are ωs, where s ∈ {a, b} denotes the mode.

A dipolar coupling between the ion and an external coherent light source is modeled
by the simplest interaction Hamiltonian ĤI = −~d · ~E. The atomic dipole operator is
~d = ~µ(σ̂+ + σ̂−), with dipole moment ~µ and operators σ̂+ = eg and σ̂− = ge. The
light source drives the ion by means of the electric field ~E = ~E0 exp(i~k · ~r − iωLt) with
wavevector ~k and frequency ωL. The interaction Hamiltonian can be made to account for
the free evolution associated with Ĥ0 (interaction picture), yielding

H̃I = 1
2
~Ωσ̂−iδt+ exp[iηa(âe

−iωat + â†eiωat) (2.2.4)

+ iηb(b̂e
−iωbt + b̂†eiωbt)] + h.c.,

where Ω = |~µ · ~d|/~ is the Rabi frequency, δ = ωL−ω0 is the radiation-atom detuning, and
ηs = kxs cos θ are the Lamb-Dicke parameters, defined in terms of the typical scale of the
ground state oscillator wavefunction xs =

√
~/(2mωs) and the direction of propagation

θ of the laser with respect to the direction of vibration of mode s. Typical experimental
conditions in optical qubits imply ηs � 1, values for which the Lamb-Dicke regime can
be evoked to expand the interaction Hamiltonian in powers of ηs.

In the next section we consider CV quantum gates obtained via expansion of the
interaction Hamiltonian up to second order in ηs [87, 88], as

H̃I =Ĥ(0) + ηaĤ
(1)
a + ηbĤ

(1)
b

− η2
aĤ

(2)
a − η2

b Ĥ
(2)
b − 2ηaηbĤ

(2)
ab +O(η3

s).
(2.2.5)

Each term is studied in the Fock basis of the motional states. The single-quantum
saturation associated with the qubit degree of freedom plays the fundamental role of
allowing the coherent manipulation of single quanta in the motional modes.
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The first Hamiltonian, i.e. the zeroth-order term, considers the carrier transition,
resonant for δ = 0:

Ĥ(0) = 1
2
~Ω′

(−iδtσ̂+ +iδt σ̂−
)
. (2.2.6)

We can notice a modified Rabi frequency Ω′, which depends on the motional coupling as
Ω′ = (1 − η2

a − η2
b )Ω. This Hamiltonian induces qubit transitions without affecting the

motional state of the ion. It may be used to prepare the qubit quantum state in order to
apply a suitable control over the motional modes.

The next two first-order terms involve the blue- and red-sideband transitions of each
vibrational mode, through the Hamiltonians

Ĥ(1)
s = 1

2
~Ω
(−i(δ+ωs)tσ̂+ŝ+i(δ+ωs)t σ̂−ŝ

†)
+ 1

2
~Ω
(−i(δ−ωs)tσ̂+ŝ

† +i(δ−ωs)t σ̂−ŝ
)
.

(2.2.7)

The terms resonant for δ = −ωs, promote the excitation of the qubit while annihilating
a phonon in the motional mode, and conversely; the remaining two terms, resonant for
δ = ωs, excite the qubit while creating one additional phonon in mode ŝ, and vice-versa.
The CZ paradigm utilizes this Hamiltonian to map the qubit state into one motional
mode or to realize conditional logic between them, employing the vibrational mode as an
effective two-level ancilla system.

We focus mainly in the second-order terms of ĤI . They entail the creation or annihi-
lation of two phonons at a time together with the excitation or deexcitation of the qubit.
The single-mode Hamiltonians are

Ĥ(2)
s =1

2
~Ω
(−iδtσ̂+ +iδt σ̂−

)
ŝ†ŝ

+ 1
2
~Ω
(−i(δ+2ωs)tσ̂+ŝ

2 +i(δ+2ωs)t σ̂−ŝ
†2)

+ 1
2
~Ω
(−i(δ−2ωs)tσ̂+ŝ

†2 +i(δ−2ωs)t σ̂−ŝ
2
)
.

(2.2.8)

The second-order term Ĥ
(2)
ab , so-called cross Hamiltonian, creates or annihilates pairs

of phonons, one in each mode, via the interaction

Ĥ
(2)
ab =

~Ω

2

(
−i(δ+ωa−ωb)tσ̂+âb̂

† +i(δ+ωa−ωb)t σ̂−â
†b̂
)

+
~Ω

2

(
−i(δ−ωa+ωb)tσ̂+â

†b̂+i(δ−ωa+ωb)t σ̂−âb̂
†
)

+
~Ω

2

(
−i(δ+ωa+ωb)tσ̂+âb̂+i(δ+ωa+ωb)t σ̂−â

†b̂†
)

+
~Ω

2

(
−i(δ−ωa−ωb)tσ̂+â

†b̂† +i(δ−ωa−ωb)t σ̂−âb̂
)
.

(2.2.9)

Following the same reasoning, the nth-order term of ĤI , if considered, would coherently
distribute n phonons between the two modes, although with ever decreasing coupling
strength of order ηns , which would imply longer operation times.
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2.2.2 Bichromatic CV quantum gates

The qubit gives a convenient way to add or subtract individual phonons in motional
modes, due to its property of saturating with the absorption of a single quantum. At
the same time, it also prevents the motional state from attaining a fast increase in the
number of excitations.

Continuous variables quantum gates must be allowed to visit ever higher excitation
numbers without saturating, a feature that may require the qubit state to factor out of
the interaction. Hence to allow interesting combinations of terms of Ĥ(1)

s , Ĥ(2)
s , or Ĥ(2)

ab to
be simultaneously resonant, we consider bichromatic light sources to drive the quantum
dynamics [27, 28,82,83].

A more intuitive representation of CV operations in this case makes use of the phase
space of position and momentum observables, describing quantum gates in terms of the
transformations they produce in the Wigner function of the quantum system. We employ
this approach below to describe the quantum operations of the toolbox.

Single-mode Gaussian operations

We will now describe the set of single-mode Gaussian operations, which comprises dis-
placements and squeezers.

Displacements consist of a translation of the phase space, or equivalently a rigid motion
of the Wigner function. If the arguments of the single-mode Wigner function are xs and
ps, a displacement with parameter α = xα+ ipα produces the phase space transformations
xs → xs − xα and ps → ps − pα.

For their part, squeezers scale up the phase space, compressing and stretching different
directions, while respecting the conservation of areas . A squeezer with parameter ξ =

r exp(2iθ) affects the orthogonal axis xθ = cos θxs + sin θps and pθ = − sin θxs + cos θps

in phase space according to the transformations xθ → e−rxθ and pθ → erpθ. In the
description in terms of phonons, the most prominent characteristic of a squeezed state is
the primacy of even numbers of quanta.

Despite the Fourier transform operation being formally implicit in the squeezing op-
eration, we are going to consider them as separate quantum gates. In phase space, the
Fourier transform gate produces a rotation. It transforms position and momentum ac-
cording to the xs → xθ and ps → pθ defined above. In the phonon picture, the Fourier
gate introduces a number-dependent phase shift in the form ns → einθns, where ns is
the phonon number in mode ŝ, generating a dynamics akin to the free evolution of the
oscillator.

Let’s begin introducing the single-mode displacement Hamiltonian. Since we are in-
terested specifically on the ion trap processor, a single-mode displacement of mode ŝ is
performed by the Hamiltonian Ĥ(1)

s , given the conditions below. Two coherent radiation
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sources with the same intensity and opposite detunings δ1 = −δ2 = δ = ωs, according to
Eq. (2.2.7), generate the Hamiltonian

Ĥ(1)
s = i~σ̂φ−π/2

(
α̃ŝ† − α̃∗ŝ

)
, (2.2.10)

where the relative phase between the two frequency components of light is 2φ and σ̂φ =

σ̂x cosφ + σ̂y sinφ. This phase controls the displacement parameter per unit time, given
by α̃ = Ωi(φ−π2 ). The realization of a single-mode displacement operation requires the
qubit quantum state to be initialized in an eigenstate of the operator σ̂φ−π/2. This can
be done by a resonant pulse as in Eq. (2.2.6). Let us adopt the convention that the qubit
eigenstate +φ−π/2 with positive eigenvalue is chosen. Then the displacement D̂(α) :=

exp
(
αŝ† − α∗ŝ

)
of mode ŝ by the amplitude α = η2

s α̃t is produced by the evolution

operator D̂s = exp
(
−iη2

sĤ
(1)
s t/~

)
.

Hamiltonian Ĥ(2)
s gives rise to the single-mode squeezing operation. The bichromatic

field with detunings δ1 = −δ2 = δ = 2ωs will produce according to Eq. (2.2.8) the non-
linear dynamics

Ĥ(2)
s = i~σ̂φ

(
ξ̃∗ŝ2 − ξ̃ŝ†2

)
, (2.2.11)

which is expressed in terms of the squeezing parameter per unit time ξ̃ = Ωi(φ−π/2). Pro-
vided the qubit is prepared in the eigenstate +φ, acting with this Hamiltonian on the
motional state for a time t will implement the single-mode squeezing operator Ŝ(ξ) =

exp
(
ξ∗ŝ2 − ξŝ†2

)
, with squeezing parameter ξ = η2

s ξ̃t. The corresponding evolution oper-

ator is Ŝs = exp
(
−iη2

sĤ
(2)
s t/~

)
. Although not systematically investigated, quantum noise

reduction has been observed in the motional state of trapped ions [84, 85], revealing the
potential of the ion trap to produce large amounts of squeezing for quantum computing.

The Fourier transform operation is realized with δ = 0, i.e. by a monochromatic laser
tuned to the qubit transition. The Hamiltonian reads as

Ĥ ′(2)
s = 1

2
~Ωσ̂φŝ

†ŝ, (2.2.12)

and provides the evolution F̂ = eiθŝ
†ŝ, where the rotation phase is θ = η2

sΩt/2, provided
the qubit remains in the state +φ.

Two-mode Gaussian operations

Two-mode Gaussian operations act on two vibrational modes in order to produce transfor-
mations in linear combinations of modal operators. They can be either passive, promoting
the exchange of quanta between modes, or active, in which case quanta are concomitantly
added or removed from both modes in a correlated way.
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Beam splitter (named after its optical counterpart) is a passive quantum gate that
coherently combines the modal operators by amounts that vary with the interaction time.
On the other hand, the two-mode squeezer is an active operation which produces corre-
lated pairs of quanta, in the phonon picture, or EPR-like entangled states in the phase
space picture [89].

The mentioned two-mode operations are achieved in the ion trap processor by means
of the cross Hamiltonian H

(2)
ab . A bichromatic field may modify Eq. (2.2.9) to produce

two types of dynamics. On the first one, we choose radiation frequencies such that δ1 =

−δ2 = δ = ωa−ωb (we assume ωa > ωb for definiteness). The resulting Hamiltonian reads

Ĥ
(2)
ab = ~Ω σ̂φ

(
−iφâb̂† +iφ â†b̂

)
. (2.2.13)

Specifically, the beam splitter transformation is performed by the evolution operator Îab =

exp
(
−iηaηbĤ(2)

ab t/~
)
. It promotes the interference of modal operators in the form â →

â cos(φt) + b̂ sin(φt) and b̂ → −â sin(φt) + b̂ cos(φt), where φ = 2ηaηbΩ. For instance,
modes interfere maximally at half this time, for t = π/(2φ); for double that amount of
time, the quantum state of one mode is mapped into the other, and vice-versa, coherently
exchanging their local quantum states. In case the two-mode quantum state is initially
separable, the beam splitter dynamics will entangle the modes unless the initial state is
a coherent state.

The second kind of two-mode dynamics involves detunings δ1 = −δ2 = δ = ωa + ωb.
The resonant terms of Eq. (2.2.9) produce the interaction Hamiltonian

Ĥ
′(2)
ab = ~Ω σ̂φ

(
−iφâb̂+iφ â†b̂†

)
. (2.2.14)

The two-mode squeezer operation, Êab = exp
(
iĤ

′(2)
ab t/~

)
, produces EPR-type entangled

states between the motional modes when acting over the oscillator ground state. As in
previous cases, the relative phase between the laser frequency components controls the
operation phase as long as the qubit degree of freedom is prepared in the eigenstate +φ.

Non-Gaussian single- and two-mode operations

Starting from a Gaussian quantum state, Gaussian operations are restricted to produce
only Gaussian states. In order to get more general quantum states and achieve compu-
tational universality, at least one non-Gaussian operation is needed [54, 55]. In fact, the
ion trap quantum processor provides a wide variety of non-Gaussian operations, made
available by the strong non-linearity of the qubit degree of freedom, which saturates with
a sole quantum. The number of phonons in the CV degrees of freedom can thus be in-
creased by discrete amounts by coupling it with the qubit, thus producing non-Gaussian
quantum states.
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The most suitable operation of single-mode phonon creation or annihilation arises
from the red- and blue-sideband interactions produced by Ĥ(1)

s [Eq. (2.2.7)]. They can
be realized with a monochromatic laser beam with frequency δ = ωs (blue sideband) or
δ = −ωs (red sideband), respectively, yielding

Ĥs,blue = 1
2
~Ω
(
σ̂+ŝ

† + σ̂−ŝ
)
, (2.2.15)

Ĥs,red = 1
2
~Ω
(
σ̂+ŝ+ σ̂−ŝ

†) . (2.2.16)

We denote the blue sideband evolution operator as B̂s = exp
(
−iηsĤs,bluet/~

)
and the

red sideband as R̂s = exp
(
iηsĤs,redt/~

)
. Both interactions show linear coupling strength

on ηs, making them stronger in comparison with the Gaussian operations considered
previously. This property favors the creation or annihilation of any number of phonons
in a stepwise process, by applying blue or red sidebands intercalated by π-pulses in the
carrier transition (δ = 0). In this manner, the Fock state n can be generated.

In the case of two-mode non-Gaussian operations, the cross Hamiltonian Ĥ(2)
ab allows

the simultaneous creation or annihilation of two phonons, one in each mode, by also
employing a laser of single frequency. For example, a laser with detuning δ = ±(ωa − ωb)
will remove one phonon from one mode and create one phonon in the other, promoting
the coherent exchange of a single excitation between modes.

Processes of creation or annihilation of phonons must be realized over suitable initial
states, such as the ground state of the oscillator, in order to avoid entanglement between
qubit and vibrational modes. In this manner, non-Gaussian features can be used as
resources introduced at certain steps of the computation obeying such constraint (e.g. at
its beginning).

If operations in other modes were needed, a third vibrational mode (ancilla) can be
employed. For instance, in the case of Gaussian operations, a displacement operation
can be realized by writing a coherent state with large amplitude on the ancilla mode
and applying the beam splitter operation for a short duration to coherently combine its
quantum state with that of mode â or b̂. Non-Gaussian features could also be written in
the third mode and then introduced in other modes by the two-mode Gaussian operators
mentioned previously. Operations such as sum or subtraction of phonons could be realized
in a similar manner.

Two-mode conditional operations

As seen in the previous section, controlled gates are the core of quantum computation.
Two-mode controlled operations are intended to change the quantum state of one mode
conditioned on the state of another, usually generating entanglement [51]. One example



46

of such operation is the controlled displacement, represented by the operator

Ĉx̂a = exp(−ix̂a ⊗ p̂b) , (2.2.17)

where the order of the systems is control ⊗ target. For instance, if both modes start
as independent coherent states, this gate displaces the average momentum of the target
mode by the average position of the control mode. Other types of controlled gates can be
devised by taking Eq. (2.2.17) as model.

In our proposal, controlled gates can be deployed by two bichromatic lasers, i.e. by
tetrachromatic light. In fact, by the form of Eq. (2.2.17), conditioned dynamics can be
seen to involve a combination of beam splitter and squeezing operations. A tetrachromatic
laser with frequency components δ1 = −δ2 := ωa − ωb and δ3 = −δ4 := ωa + ωb with the
same intensity gives rise to the dynamics

Ĥ
′′(2)
ab = ~Ω σ̂φx̂ax̂φ,b, (2.2.18)

where x̂φ,b = e−iφb̂ + eiφb̂† = x̂b cosφ + p̂b sinφ is a rotated coordinate in the phase space
of mode b̂. The evolution operator is Ĉab = exp

(
−iηaηbĤ

′′(2)
ab t/~

)
.

Schwinger map

Considering two harmonic oscillators, we can derive the algebra of angular momentum of
the associated operators according to the map Ĵ+ = â†b̂ and Ĵ− = âb̂†, where Ĵ± = Ĵx±iĴy
are the raising and lowering operators defined in terms of the x- and y-components of
the angular momentum vector. The corresponding z-component is represented by the
operator Ĵz = (â†â − b̂†b̂)/2. Each eigenvalue of the angular momentum magnitude Ĵ2

corresponds to a fixed total number N = na + nb of phonons available in the two modes.
Eigenstates of Ĵ2 can be represented by an angular momentum vector over a sphere.
The poles of the sphere are the eigenstates N and −N of Ĵz. They correspond to the
harmonic oscillator states Na0b and 0aNb, respectively. The other eigenstates of Ĵz exist
as superpositions of Fock states naN − nb, where n is the difference of quanta between
modes â and b̂ (equal to half the eigenvalue of Ĵz).

Sometimes, the two-mode quantum operations described above, can be understood
as manipulations of such angular momentum vector, even though in most cases the two-
mode motional quantum state will not be in a superposition of Fock states satisfying the
property na + nb = N . The Schwinger map is particularly suitable to treat the beam
splitter operation, since it conserves the total number of excitations in the two modes. In
the Schwinger map, the beam splitter Hamiltonian of Eq. (2.2.13) reads as

Ĥ
(2)
ab = ~Ω σ̂φĴφ, (2.2.19)
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where Ĵφ = cosφĴx + sinφĴy. Hence the beam splitter operation can be interpreted as
a rotation of the angular momentum vector existing in the sphere associated with an
eigenstate of Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z . For quantum states inhabiting more than one sphere,
the beam splitter realizes a coherent superposition of rotations, one in each sphere.

2.2.3 Ion trap CVQC toolbox

Architecture

The CVQC implementation by means of the motional modes of trapped ions requires
the ability to select specific quantum dynamics by tuning the properties of the manipula-
tion laser. As presented above, quantum gates can be implemented with monochromatic
radiation or using a combination of frequency components commensurate with the fre-
quencies of vibration. They are selected by radiation frequency (detuning) and direction
of propagation (Lamb-Dicke parameter).

Figure 6: Toolbox of Gaussian operations available for the manipulation of the vibrational state of a single
trapped ion. The desired quantum gate is selected by radiation frequency. With the exception of the
Fourier transform operation F̂s which needs monochromatic light with δ = 0, all quantum gates require
bichromatic radiation with δ1 = −δ2 = δ. Possible values of detuning correspond to any of the: vibrational
frequencies ωs (continuous lines), double those frequencies (dashed lines), subtraction (dotted lines) or
sum (dash-dot lines) of pairs of frequencies. The corresponding Gaussian operations are displacements
D̂s, squeezers Ŝs, beam splitters Îss′ , and two-mode squeezers Êss′ , respectively, where s, s′ ∈ {a, b, c}.
In choosing the ratio of vibrational frequencies, we have adopted the proportion ωa : ωb : ωc = 7 : 5 : 4.

The set of all quantum gates described in Sec. 2.2.2 conform the basic toolbox to carry
out the coherent manipulation of the vibrational modes. Figure 6 shows the Gaussian
operations together with the bichromatic laser detunings required for their realization in
the case that all three vibrational modes of a single trapped ion are employed (the label
s now reads s ∈ {a, b, c}).
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The five single-mode quantum gates: the displacement D̂s, squeezer Ŝs, Fourier trans-
form F̂s, blue- B̂s, and red-sideband R̂s operations, were previously developed in detail,
however let’s summarize their necessary laser frequency components and evolution oper-
ators:

δ1 = −δ2 = ωs : D̂s = e−
i
~η

2
sĤ

(1)
s t,

δ1 = −δ2 = 2ωs : Ŝs = e−
i
~η

2
sĤ

(2)
s t,

δ = 0 : F̂s = e−
i
~η

2
sĤ
′(2)
s t,

δ = ωs B̂s = e−
i
~ηsĤs,bluet,

δ = −ωs : R̂s = e−
i
~ηsĤs,redt.

(2.2.20)

Two-mode operations must be applied to pairs of modes. To account for the three
combinations of mode pairs, we introduce a second index s′ ∈ {a, b, c}. The two-mode
gates are the beam splitter Îss′ , the two-mode squeezer Êss′ , and the general conditional
operation Ĉss′ . They require the radiation frequencies:

δ1 = −δ2 = ωs − ωs′ : Îss′ = e−
i
~ηsηs′Ĥ

(2)
ab t,

δ1 = −δ2 = ωs + ωs′ : Êss′ = e−
i
~ηsηs′Ĥ

′(2)
ab t,{

δ1 = −δ2 = ωs − ωs′
δ3 = −δ4 = ωs + ωs′

: Ĉss′ = e−
i
~ηsηs′Ĥ

′′(2)
ab t.

(2.2.21)

Three types of gates utilize monochromatic radiation (Fourier transform F̂s, blue-
sideband R̂s and red-sideband R̂s), four require bichromatic lasers (displacement D̂s,
squeezer Ŝs, beam splitter Îss′ , and two-mode squeezer Êss′), and one employs tetrachro-
matic light (the conditional operation Ĉss′).

Different operations are selected by laser detuning δ and propagation direction (through
ηs), so as to keep off-resonant terms of the complete Hamiltonian sufficiently detuned in
order to avoid exciting population in undesirable quantum states. Hence for a given pair
of modes the proposed CVQC architecture requires the frequencies ωs, ωs′ , 2ωs, 2ωs′ ,
ωs − ωs′ , and ωs + ωs′ to be incommensurate and sufficiently separated. For a processor
based on the three motional modes of a single trapped ion, a total of 12 incommensurate
frequencies must be available. For instance, the oscillation frequencies ωa = 2π× 7 MHz,
ωb = 2π × 5 MHz, and ωc = 2π × 4 MHz (i.e. in the proportion 7:5:4 adopted in Fig. 6)
would furnish 1 MHz as the free spectral interval between quantum gates. These vibra-
tional frequencies can be achieved by engineering the trap potential through the electrodes
geometry and the magnitudes of the applied external voltages. Asymmetric trap designs
producing vibrational frequencies as high as 50 MHz have been demonstrated [90].

Control of the Lamb-Dicke parameters ηs, although not necessary for all quantum
gates, also helps avert off-resonant excitations. Since these parameters depend on the
direction of laser propagation, it is possible to mitigate undesirable excitations by em-
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ploying laser beams propagating in suitable directions. The Fourier transform operation,
however, requires the ability to control the Lamb-Dicke parameters by laser direction,
given that it utilizes the qubit carrier frequency for the manipulation of all modes. The
Fourier transform can also be made to act simultaneously on more than one mode by
adapting the same idea.

The CVQC ion trap architecture utilizes the qubit degree of freedom as mediator for
the interaction between modes, and as such it must remain separable from the vibrational
modes once CV gates are applied. That requirement is automatically fulfilled by all
Gaussian quantum gates, since in those cases the qubit remains in an eigenstate of a
Pauli operator throughout the quantum evolution. The only cases in which the fulfillment
of this requirement must be verified are those involving the application of non-Gaussian
operations (i.e. blue- and red-sidebands), for which the saturation properties of the qubit
are harnessed and thus play a role in entangling it with the vibrational modes.

Considering a single motional mode for the sake of the argument, blue- and red-
sideband operations induce transitions between the basis states g, ns ↔ e, ns ± 1 with
effective coupling rates varying as Ωns = Ω0

√
n+ 1, where Ω0 = ηsΩ is the Rabi frequency

for the fundamental transition g, 0 ↔ e, 1, in case of the blue-sideband operation, or
e, 0 ↔ g, 1 for the red-sideband. For instance, the creation of an additional phonon
on the quantum state g, ns would require a π pulse, corresponding to the interaction
time τns = π/Ω0

√
ns + 1 which depends on ns. Thus a general single-mode vibrational

quantum state initially separable from the qubit state and written as ψs =
∑

ns
dnsns

would become entangled with the qubit after application of any of these non-Gaussian
pulses.

To avoid this situation, non-Gaussian operations cannot be applied to any quantum
state, but must be restricted to initial states capable of satisfying the requirement of
factorization of the qubit upon completion of the quantum gate, in order to avoid mixed
states at the final measurement step. The ground state is an obvious choice of initial-
ization. A sequence of blue-sideband pulses and carrier pulses can then be applied to
produce any Fock state na, nb, nc.

In the first order Lamb-Dicke approximation (η � 1), the phonon number of other
vibrational modes, different than the ground state, does not affect the dynamics of the
system. But, as a second order effect, the occupation of these modes changes the ion-light
coupling strength, which causes an effective fluctuation on Rabi frequency as the number
of phonons follows a thermal distribution after cooling [91,92]. However, the Lamb-Dicke
parameter, which depends on the angle between the direction of oscillation of the ion and
the propagation of the laser, can and should be used to minimize undesired excitations of
other modes of vibration.

In truth, the class of non-Gaussian quantum states available can be increased by
employing the Schwinger map. Considering a pair of modes, states with the form ns, 0s′
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possess well defined value of Ĵz. The beam splitter operation can then be applied to
distribute the ns quanta between the modes while keeping the qubit separable. Then
two-mode non-Gaussian states are also available which are built as superpositions of the
basis states ns, ns′ satisfying ns + ns′ = N ′, where N ′ is a constant.

Dimension of the motional Hilbert space

It is a useful exercise to estimate the potential limits of CVQC with the motional modes
of a trapped ion. The number of modes would probably be limited to a few, owing to
the requirement of frequency selectivity in the coherent manipulation. Here we estimate
the limitations of the most basic architecture composed of a single trapped ion and three
motional modes.

Let us first estimate the expected performance of the ion trap motional modes with
proven technology. Typical large ion traps, with electrode distances on the order of
1 mm, although not built for the purpose of CVQC, can currently handle at least N ≈
100 phonons according to experiment [93]. The Hilbert space readily available in the three
motional modes of such traps would have dimension D ≈ 106. The equivalent number
Nqubit of ions needed to produce a Hilbert space of the same dimension in the CZ paradigm
would be Nqubit ≈ log 106/ log 2 ≈ 20. Hence we can safely estimate that transitioning to
the CVQC could in principle increase the Hilbert space available in the current ion trap
processor to values much larger than the best limits demonstrated to date [94].

Ultimately, the size of the Hilbert space associated with each mode is limited by
anharmonicities in the trap potencial, which make the energy separation between adjacent
Fock states dependent on the number of phonons. Since actual implementations of the
harmonic potential can only be valid in a restricted physical volume, anarmonicities will
introduce a maximum phonon number cap N per mode. Hence for a single trapped ion
the three vibrational modes available would entail a Hilbert space of dimension D ≈ N3.
To estimate practical values of N , we may consider the typical length of a long ion chain
available with current technology (` ≈ 100 µm) as providing the maximum attainable
length for the wavefunction of a single trapped ion. Imposing ` ≈

√
N + 1xs, the phonon

cap would thus be limited to N ≈ (`/xs)
2 ≈ 108. The three modes would together visit

a Hilbert space of dimension N ≈ 1024. The same Hilbert space could be accessed in the
CZ paradigm by employing Nqubit ≈ 80 ionic qubits. This value represents the limitations
imposed by the hardware on our CVQC architecture in the simplest scenario using proven
technology (i.e. wherein a single trapped ion is utilized and the harmonic potential is not
optimized to cover a larger volume in space).

A more stringent limit would consider the onset of undesirable effects on the CV
quantum gates as they start to show dependence on the phonon number for large N . In
fact, higher order terms can be neglected in the expansion of Eq. (2.2.5) only if η2

sN � 1.
We hence consider N ≈ 0.01/(η2

s) as the reasonable phonon cap of our architecture. For
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laser excitation of fixed frequency, the Lamb-Dicke parameter scales with the oscillator
frequency as ω−1/2

s . Increasing the trap stiffness thus allows for a larger Hilbert space while
decreasing the interaction strength and hence extending the duration of quantum gates,
which limits the maximum number of gates whithin the coherence time of the motional
modes. This latter side effect could be compensated by increasing the laser power as
long as off-resonant excitations can be neglected. A credible scenario considering the
balance between gate speed and trap stiffness would put the Lamb-Dicke parameter at
values around ηs ≈ 10−3, allowing for the three-mode Hilbert space to achieve the realistic
dimension ofD ≈ 1012. The equivalent number of qubits would be in this case Nqubit ≈ 40.
Interesting applications in quantum simulations already exist for a configuration space of
this size [60,95–97].

Another important aspect to consider in this trap architecture is the heating effect on
the coherence time. The Innsbruck group has seen a coherence time for the vibrational
state of the order of 100 ms [98] in the center of mass mode, which is consistent with
voltage fluctuations expected to be around 10−5, they measure the increase in the number
of phonons by the observation of the Rabi oscillation signal on the blue sideband in a
Ramsey experiment. Specifically, it can be seen that the creation time of one phonon is
measured again by the Innsbruck group, being about 140 ms, and the decoherence time
of the information stored in the vibrational mode of the order of 85 ms [99]. Furthermore,
the Oxford group observed in a single calcium ion a coherence time of 182 ms for the
motion state, limited by movement heating of around 3 quanta/s [100]. However, the
Innsbruck group found that in the case of a chain of ions, for the axial breathing mode
(and other higher axial modes) coherence times of about 5 ms are more typical [101].
Therefore, it is clear the advantage of using a single ion to protect the states of motion
from decoherence.

It is known that the number of motional modes in frequency space increases with the
number of ions which prohibits the addressing of single motional modes. This problem,
so-called “spectral crowding”, will not be, in principle, present in our system since our
proposal is indeed made for a single ion, although we do not disregard as a perspective to
explore the possibility of extending it to more than one atom. However if we consider the
ability to scale the system for more than one ion, a possible way to overcome the problem
of spectral crowding is adopting a modular design, i.e. the decomposition of the device
in a larger number of interconnected traps, either using a complicated geometry to allow
ions exchange from a trap to another or following a hybrid system, for example making
use of photonics interfaces which, according to recent studies [102], are proving to be less
and less disadvantageous in terms of noise and speed efficiency of operations, compared
to an isolated ion crystal.

As a side advantage, in an actual experimental implementation scale and not in the
asymptotic limit, the vibrational modes of trapped ions can be made to attain a large
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Hilbert space while producing modest increase in the physical volume occupied by the
quantum system (and thus decreasing the experimental complexity), a feature that should
help protect it from environmental decoherence.
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3 Single-photon generation from an atomic ensemble

Quantum technologies such as quantum networks and quantum cryptography, need a key
piece: the distribution of quantum states over long distances [103].

The channels for the transmission of quantum information are mainly two, optical
fibers and free space, at least for the case of qubits written in light, which is the best can-
didate for quantum communication for reasons of speed and size, up to now. These chan-
nels, however, have two more fundamental problems when attempting to make quantum
communication over long distances, photon losses and decoherence. The most immediate
problem, however, is the loss of photons.

This problem is not exclusive to quantum communication. In the processes of classic
communication at long distances (telecommunication) it is standard the use of various
mechanisms to overcome the losses in the system. Currently, this is primarily done by
using signal amplifiers, which are nothing more than devices that generate copies of the
information, and forward it to the next amplifier node, in this way they can also be
referred by the name of “repeaters”.

In the case of quantum communication this approach does not overcome the problem
of losses due to the no-cloning theorem [104, 105]. Fortunately there is a solution to this
limitation, known as the “quantum repeater”, based on a more complex method employing
an inherently quantum characteristic: entanglement.

The key feature of the entanglement that helps to overcome the above-mentioned
limitations is that entanglement can be "swapped" [106]. To understand the entanglement
swapping we start with two entangled states, the first of them entangling two systems, A
and B. The second entangles, in an analogous way, the systems C and D. It is interesting
to mention that none of the A or B systems need to have ever interacted with C or D.
Now, if we apply a joint measurement of systems B and C, on a basis of entangled states,
accompanied by a classical communication of the result to the remaining systems, it is
possible to create an entangled state between A and D.

In this way, the key idea of the quantum repeater could be explained as follows: The
entanglement between two points, with a distance L between them, can be achieved by
entanglement swapping between two entangled pairs, each covering half of the distance



54

(L/2). The great advantage of this approach is that its scaling is direct, i.e. to generate
the entanglement at the distance L/2, it is enough to apply the same reasoning with two
entangled pairs that are L/4 apart, and so on. Generally speaking, if we want to divide
our distance into N equal parts, L0 = L/N , small enough to be significantly unaffected
by losses, we will have n = log2N entanglement swapping operations.

For the actual implementation of this quantum repeater scheme we need to store the
entanglement in one of the elemental units (links) while getting the entanglement on
the other units. When two entangled pairs have been synchronized we can perform the
entanglement swapping. At the next level it will also be necessary to store the information
to properly perform the next entanglement swapping operation, and so on at all levels
until reaching the main distance connection L.

The device performing this quantum information storage function is called a quantum
memory and lies at the heart of the quantum repeater. The original proposal of quantum
repeater [107] also contains other ingredients, such as for example heralded entanglement
and entanglement purification. However, most of the efforts made by the scientific commu-
nity have not yet gone beyond quantum memory with heralded entanglement, in order to
achieve simplified architectures of quantum repeater, as a first step in the great challenge
that a future quantum internet [108]would present, which is nothing more than a large
quantum network of collaboration between quantum computers, through super-secure
long-distance communications.

One of the great challenges of quantum information today is the realistic implemen-
tation of a quantum internet [109]. A somewhat less ambitious goal is the realization of
elemental quantum networks, which are constituted by quantum nodes and channels for
interconnection. The most reasonable thing seems to be, until now, to use light fields
as carriers of information through optical fibers and to use matter, either as individual
atoms or atomic ensembles, to implement fixed nodes (quantum memories).

From this point of view, the interface between matter and light at the quantum level
is key in this technological development. The prototypical model of quantum informa-
tion processing understands the concept of information as string of qubits, and performs
operations through elementary quantum logic gates. A qubit is a single particle state in
a Hilbert space of dimension 2. This particle can be any fundamental quantum system,
such as a photon, so that it can encode information in various ways. If the coding of
the states |0〉 and |1〉 is performed through polarization, these states may be the two
possible linear polarizations (|H〉 and |V 〉) or some change of basis from them (right and
left-handed circular polarization, for example). Qubit encodings on path, number of pho-
tons, or time-bin are also common. A superposition state between |0〉 and |1〉 represents
a qubit in its most general form. From these definitions we can more precisely describe
the role of a quantum memory: it must be able to store strings of qubits, or parts of
strings correctly and also re-emmit this information on demand. In this way, a more
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elementary implementation of a quantum memory considers the simplest case of storage
and delivery of information, through a photon. The generation of single photons, how-
ever, is not so simple, and has also been a topic of great interest among researchers for
some time [110–112]. A standard and fairly common way of generating single photons is
actually generating pairs of correlated photons and taking advantage of only one of them,
leaving the other to herald the appearance of the first one [113]. This method is usually
simpler to implement experimentally than an individual-photon generator device, and at
the same time one can take advantage of its heralding when wants to scale this model of
one link to a more complex architecture [114,115]. In this chapter we explain the original
DLCZ-protocol scheme, which is one of the most successful experimental implementations
of quantum memory, proposed by Duan et al. in his seminal work published in 2001 [103].
We emphasize the symmetrical collective state in which the quantum information is stored
and its relation to a two-mode squeezed vacuum. In the sequence we present a theoretical
derivation of how to model a single-photon wave packet emitted in the read process of
this quantum memory and how it is possible through this to understand the role played
by the superradiance process in this dynamics. At the end of the chapter we discuss the
scope and limitations of working on the single-photon approach.

3.1 Photon-pairs from the DLCZ-protocol scheme

3.1.1 Single-photon generation for DLCZ

The generation of single photons with well-defined spatial and temporal modes is an
essential feature for the development of elementary logic gates, whether for quantum
computation or quantum communication, among other applications. These single photons
have already been studied and have been of great use in pioneering works of quantum
computing [116–118]. In practice, recent works have demonstrated their wide range of
use in quantum cryptography [119], scalable quantum computing [120] and especially in
what most interests us, quantum networks [103,121,122].

In the problem of generation of single photons, there are, roughly speaking, two main
approaches. The first is the generation of single photons in a deterministic way, through
a "Turnstile Device" that is usually based on quantum dots or individual atoms trapped
in a cavity. The second class is the conditional generation of single photons from a
correlated quantum system in which a conditional measure is made. The first articles
that presented this last approach for generating single photons were in photon pairs from
atomic cascades [123] and spontaneous parametric down conversion (SPDC) [124]. Since
more than a decade, a third strategy emerges, born naturally along with the DLCZ
protocol, using thick atomic samples [125]. Other further works, although clearly still
inspired by the DLCZ protocol, have made great strides not only in the generation of
single photons through conditional measurements, but also in relation to the storage of
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Figure 7: Schematic description for photon-pair generation from a cold atomic ensemble. First the Write
classical beam is applied on the cloud generating Field 1. After a programable time, the ensemble is
illuminated by the Read beam, inducing the emmision of Field 2.

these states in the atomic medium [?, 114,121,125–131].

3.1.2 Operation of the DLCZ single-photon generator

The operation scheme for photon-pair generation using the DLCZ scheme is detailed
below.

Observing Fig. 7 we see a sample of cold atoms illuminated by 2 classical laser beams.
From the atomic sample, two (non-classical) fields are emmited, oriented in counterprop-
agating directions, one from each other, and also in a slightly different direction to the
classical fields. These 2 emmited fields are detected thanks to photo-counters that deliver
this information for an analysis system that will determine the quality of the correlation
between the detected photons. Classical beams are called "write" and “read”. They are
aligned one against the other in a counterpropagant way, crossing the cloud of atoms more
or less in the middle. The emitted beams are called “field 1” and “field 2”. The write laser
is simultaneous to field 1 and the read beam is simultaneous to field 2, since fields 1 and
2, correspond to the spontaneous emissions generated from the write and read excited
transitions respectively.

As shown in Fig. 7, write is the initial pulse and creates a collective excitation state
in the ensemble of atoms, as may be determined by the photoelectric detection of field
1. This step is completely probabilistic. However, once a click has been detected in field
1, we can be sure that there is a collective state stored in the atomic vapor. We then
let a programmable period of time δt pass, before illuminating the sample with another
classic beam, the read pulse. This transforms the collective state into an excitation of
the electromagnetic field, i.e. a photon whose temporal and spatial mode is well defined,
the field 2. Fields 1 and 2 are quantum correlated since they violate a Cauchy-Schwartz
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Figure 8: Two laser sources are used for all the beams in the experiment, which are locked in the cross-
over between F ′ = 1 and F ′ = 2 and the cross-over between F ′ = 1 and F ′ = 3, tuning the frequencies
by means of acusto-optical modulators. Write and read frequencies, related to the energy structure of
87Rb, are depicted in red arrows.

inequality [125].
Observing Fig. 7 we can understand the arrangement of the beams in the experiment,

in which the correlated photons are produced from a sample, that is a cloud of rubidium
atoms trapped in a magneto-optical trap (MOT). The hyperfine energy levels of the 87Rb

participating in the experiment are shown in Fig. 8.
The protocol begins by turning off all lasers responsible for trapping and cooling for

a certain period of time. During this time, a train of write and read pulses is initiated.
Nevertheless, we are going to describe only a j-th write pulse with its respective read
pulse, this description will be valid for all 1000 trials that occur along the train. The
write beam of the j-th trial is a rectangular pulse of 52 ns duration and tuned in the
transition of |F = 2〉 to |F ′ = 2〉. This pulse induces a spontaneous Raman scattering
towards the level |F = 1〉, via |F = 2〉 −→ |F ′ = 2〉 −→ |F = 1〉. The write pulse is very
weak, so to scatter a Raman photon in a forward wave packet ψ(1)

(
~r, t

(1)
j

)
occurs with a

very small probability for each pulse. A photon of field 1 may then be detected with this
probability. When it actually happens, it means that this photon guarantees the storage of
an excitation distributed coherently and symmetrically over the N atoms illuminated by
the write pulse. From this moment on, the collective excitation can be mapped in another
photon, but at a later time controlled by the experimentalist, provided it is not so long that
the environmental decoherence destroy the state. We define this second instant as t(2)

j =

t
(1)
j + δt. During this time t(2)

j we are going to illuminate the sample with a rectangular



58

laser pulse of 191 ns duration and resonant with the transition |F = 1〉 −→ |F ′ = 2〉. This
pulse will induce a Raman transition |F = 1〉 −→ |F ′ = 2〉 −→ |F = 2〉, accompanied by
the emission of a photon in field 2 due to the transition |F ′ = 2〉 −→ |F = 2〉, whose wave
packet is ψ(1,2)(~r, t

(2)
j ). This wave packet is going to be studied in more detail in the next

section.
The light scattered by the write and read lasers is captured and taken to 4 avalanche

photodiode detectors (APD), 2 detectors for each field (D1A, D1B for field 1 and D2A, D2B

for field 2), since they are needed to study the violation of the Cauchy-Schwarz inequality
as will be explained in detail later. The detection events (clicks) from field 1 are recorded
within a time interval from t

(1)
j to t(1)

j + T (1), similarly field 2 is detected within a time
window from t

(2)
j to t(2)

j + T (2), where T (1)(T (2)) similar to the write (read) duration.
Once a measurement has been made for long enough to accumulate statistics, we can

calculate the single probabilities p1 and p2, of detecting a photon in each field irrespective
to what happened in the other and p12, the joint probability of detecting a photon at each
field in the same trial. Also, the fact of having 2 detectors in each field, allows to measure
probabilities of the type p11 and p22, the probabilities of 2 detectors firing due to the same
field.

The total count of singles (clicks on a detector) will be used to calculate p1 and p2, while
coincidences (when 2 APD’s have clicked on the same trial) will be useful for calculating
p11, p12 and p22. So p1 = (n1A + n1B) /NTOT and p2 = (n2A + n2B) /NTOT where n1A,
n1B,n2A and n2B are the number of singles of each detector and NTOT is the total number
of trials used throughout the measurement time.

For joint detections we have to p11 = N11/NTOT , p22 = N22/NTOT and p12 = N12/NTOT ,
where N11 is the number of coincidences in which both APD’s of field 1 have fired, N22

the equivalent for field 2, N12 is the number of times in which an APD of field 1 and an
APD of field 2 have fired in the same trial. Combinations allow to do other counts of 3
or 4 clicks in the same trial, but for now we will focus on those.

From p1, p2, p11, p22 and p12 we can derive normalized intensity correlation functions.
There are three that are going to be of more interest initially g11, g22 and g12. The
first two are called autocorrelation functions and are calculated as g11 = p11/ (p1p2), and
g22 = p22/ (p1p2). Similarly we have the cross-correlation function g12 = p12/ (p1p2).

3.1.3 Non-classical nature of states in DLCZ

When the sample of atoms is illuminated by the write laser, a Raman transition is induced
and the emission of a photon occurs in field 1, which heralds the storage of a collective
state coherently shared among all the atoms illuminated by the write beam. However we
have not explained in depth so far how this happens. When a single photon is detected
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in field 1, the atomic state is

|1a〉 =
1√
N

N∑
i=0

|g1〉 . . . |si〉 . . . |gN〉 , (3.1.1)

which is a superposition of all the individual atomic states in |g〉 and only one atom in
|s〉. The truth is that there are other possibilities, such as n atoms transferred to the |s〉:

|na〉 =

(
N

n

)− 1
2 N∑
i=0

|g1〉 . . . |si〉 . . . |si+n−1〉 . . . |gN〉 . (3.1.2)

This state will be produced with a certain probability, so that the larger n, the lower that
probability is. These types of states will be important in other sections of this thesis. For
now we are going to study the standard DLCZ scheme that uses only the state of Eq.
(3.1.1). To understand what happens to the joint state of the atomic ensemble and field
1 we are going to start by looking at the Hamiltonian that describes in a general way this
dynamics

Ĥ = χ
(
â†1â

†
a + â1âa

)
, (3.1.3)

where χ is a coupling constant that depends on the intensity and detuning of the laser,
number of atoms, and the strengths of the transitions |g〉 → |e〉 and |e〉 → |s〉, â†1 is the
photon creation operator and â†a is the creation operator of the atomic excitation. This
Hamiltonian can be obtained through the detailed derivation in [132]. It is important
to mention that this Hamiltonian is formally equivalent to that of the nonlinear optical
process of parametric down-conversion [133–136]. Using ordering techniques developed
in [137], we can show that the application of this Hamiltonian in a two-mode vacuum
state creates an entangled state. This entangled state is known in the literature as "two-
mode squeezed vacuum". As this Hamiltonian represents a squeezing operation, we can
now define a squeezing operator:

Ŝ1a (ξ) = exp
[
ξâ†1â

†
a − ξ∗â1âa

]
(3.1.4)

where ξ is related to χ of the Hamiltonian.
Now we define the operators:

K̂− = â1âa , K̂+ = â†1â
†
a , K̂0 =

(
â1â1 + â†aâ

†
a

)
/2,

that conform to a SU(1,1) group and define a Lie algebra:
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[
K̂−, K̂+

]
= 2K̂0[

K̂0, K̂±

]
= ±2K̂±.

Using the "Disentanglement Theorem" [138], the following equality is valid for any SU(1,1)
group

exp
(
α0K̂0 + α+K̂+ + α−K̂−

)
= exp

(
γ+K̂+

)
exp

(
ln
[
γ0K̂0

])
exp

(
γ−K̂−

)
, (3.1.5)

where

γ0 =
(

cosh θ − α0

2θ
sinh θ

)−2

, (3.1.6)

γ± =
2α± sinh θ

2θ cosh θ − α0 sinh θ
, (3.1.7)

are the similarity constants parameterized in θ, through

θ2 =
α2

0

4
− α+α− (3.1.8)

In our case we want to rewrite the squeezing operator of Eq. (3.1.4). Then we will focus
on the case where

α0 = 0 , α+ = ξ , α− = −ξ∗.

If we write ξ in the polar form, ξ = reiφ, then from (3.1.8) we have

θ = r.

From (3.1.6) and (3.1.7), we get

γ0 = (cosh r)−2 ; γ± = ±e±iφ tanh r

so we can write

Ŝ1a (r) = e[e
iφ tanh r]â†1â

†
aeln[(cosh r)−2](â†1â

†
1−âaâa)/2e[−e

−iφ tanh r]â1âa . (3.1.9)

Now we are going to apply this two-mode squeezing operator (with squeezing parameter
r), on a two-mode vacuum state. However, before that, it is interesting to calculate some
operations of creation and annihilation on a vacuum state to go ahead of what is going
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to happen:

ekâ1âa010a = I1a010a + kâ101âa0a +
k2

2
â2

101â
2
a0a + . . .

= 010a.

(3.1.10)

On the other hand we have

ek(â
†
1â1+âaâ

†
a)010a = ekâ

†
1â101e

k(â†aâa+1)0a. (3.1.11)

Since the vacuum states are eigenstates of all the operators in the exponents, we can
place the eigenvalues directly in the exponent

ekâ
†
1â101 = 01 (3.1.12)

ek(â
†
aâa+1)0a = ek0a. (3.1.13)

Finally we write the squeezing operator

Ŝ1a (r) =
1

cosh r
e[e

iφ tanh râ†1â
†
a]

=
1

cosh r

∞∑
n=1

einφ (tanh r)n
(
â†1

)n (
â†a
)n (3.1.14)

so that the two-mode squeezed vacuum state is

Ŝ1a (r) 010a =
1

cosh r

∞∑
n=1

einφ [tanh r]n n1na. (3.1.15)

At the limit of r � 1, tanh r ≈ r, cosh r ≈ 1, and

Ŝ1a (r) 010a ≈ 010a + eiφr111a + ei2φr2212a + . . . . (3.1.16)

Finally, we can then say that the joint state of the atomic ensemble with field 1, for a
sufficiently low write power, is

ψ1,a =
√

1− p
[
010a + eiβ

√
p111a + e2iβp212a +O

(
p3/2

)]
, (3.1.17)

where we use the basis of the excitation number in the description of the state, so that n1

corresponds to the state of field 1 with n photons, associated to the atomic state na which
has n atoms transferred to s. The excitation probability of a single atom transferred
fromg to s is p, and the probabilities to transfer two or more atoms of g to s associated
with the presence of two or more photons in field 1 shall be equal to or less than p2 as
can be seen in the equation. We also observed a phase β determined by the propagation
of the write field.
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In the next step, and after a programmable time, we want to access the stored informa-
tion. We send, as detailed above, a second pulse to the ensemble, the read laser, resonant
with the transition s → e. Thanks to this new interaction between light and the atomic
medium, the symmetrical collective atomic state is transferred to another photonic mode,
field 2, in the transition e → g. Because of the collective effect, the probability of all
atoms returning to the initial state, grows with the number of atoms squared [126] which
makes the read process highly efficient. If we now look at the joint state between field 1
and field 2, we obtain a state identical to the previous one, just substituting the atomic
kets by the photonic kets of field 2, so assuming efficiency equals to 1 for simplicity.

ψ1,2 =
√

1− p
[
0102 + eiβ

′√
p1112 + e2iβ′p2122 +O

(
p3/2

)]
=
√

1− p
∞∑
n=0

inβ′pn/2n1, n2.
(3.1.18)

Looking at this expression we see that the phase β′ now includes also the propagation
of the read field. The nature of this state, as the previous one, is entangled in the basis
of number of photons, in the same way as in the case of SPDC [103, 139]. It is then
necessary to verify the quantum character of the process through a set of parameters
and measurements. It is possible to obtain correlation functions for this characterization,
through a Cauchy-Schwarz inequality for classical fields, [125]. We will use second-order
correlation functions to analyze the non-classical character of the correlations between
the field 1 and field 2 detections, following the Clauser approach [123] when analyzing the
experimental results.

There is a set of experimental factors that will lead to the deterioration of the correla-
tions between fields 1 and 2 photons, for example losses, mode couplings, background fluo-
rescence, etc. Fortunately there is a single well-defined boundary between the classical and
quantum domains that can be verified operationally through coincidence detection [123].

Classically, the light collected by a detector is measured as a time-average of the field
intensity, given by the detector’s response time. If we are considering classical fields
described by complex amplitudes, the mean intensities detected for two distinct fields can
be characterized by three different quantities, I2

1 , I2
2 and I1I2. These quantities obey a

Cauchy-Schwarz inequality [123,139,140] valid for all classical fields:

I2
1I

2
2 ≥ I1I2

2. (3.1.19)

When we approach the quantum limit of a weak light field, our detectors are no longer
measuring the light in the same way, they do a photo-counting, in our case, both in field
1 and field 2. As already explained above, a set of probabilities that characterize the
system are defined: p1, p2, p11, p22 and p12.

If we divide the probability of generating a pair of photons by the probability of
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observing an event of accidental coincidence of each photon, we define a normalized cross-
correlation function between fields 1 and 2

g12 =
p12

p1p2

=
: Î1Î2 :

Î1Î2

. (3.1.20)

Similarly, we can define autocorrelation functions for fields i ∈ {1, 2}

gii =
pii
p2
i

=
: Î2

i :

Î2
i

. (3.1.21)

In these correlation functions we have also placed a definition using intensity operators
Îi. It describes the field in a detector, after an average over the state (colon means
normal ordering) in order to facilitate the connection of these quantities with the classical
expressions I1, I2 and I1I2.

In terms of the cross-correlation function and autocorrelation function, we can rewrite
the Cauchy-Schwarz inequality 3.1.19:

g2
12 ≤ g11g22 (3.1.22)

and the ratio between the two sides of the previous inequality is known as the parameter
R

R =
g2

12

g11g22

≤ 1. (3.1.23)

Now we are going to analyze what values we could expect for these characterization pa-
rameters from states like the two-mode squeezed vacuum obtained with our experimental
apparatus.

The intensity operators are defined as

Îi = ηiâ
†
i âi, (3.1.24)

where ηi is the detection efficiency and has intensity dimension.
So we rewrite g12 as

g12 =
: â†1â1â

†
2â2 :

â†1â1â
†
2â2

=
â†1â

†
2â1â2

â†1â1â
†
2â2

, (3.1.25)

where we have applied the normal ordering between the creation and annihilation opera-
tors.

Let’s start by evaluating the mean number of photons in field 1, â†1â1, over the state
ψ1,2:

ψ1,2

∣∣∣â†1â1

∣∣∣ψ1,2 = |â1ψ1,2|2 , (3.1.26)
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where we know

â1ψ1,2 =
√

1− p
∞∑
n=0

pn/2
√
nn1 − 1, n2 (3.1.27)

so

p1 = |â1ψ1,2|2 = (1− p)
∞∑
n=0

pnn =
p

1− p
. (3.1.28)

Similarly, by symmetry, we obtain the same result for field 2

â†1â1 = â†2â2 =
p

1− p
= p2. (3.1.29)

For the number of coincidences â†1â
†
2â1â2 we start by calculating

â1â2ψ1,2 =
√

1− p
∞∑
n=0

pn/2
√
n
√
nn1 − 1, n2 − 1 (3.1.30)

so that

p12 = |â1â2ψ1,2|2 = (1− p)
∞∑
n=0

pnn2 =
p (1 + p)

(1− p)2 (3.1.31)

Combining the equations 3.1.28, 3.1.29 and 3.1.31 we obtain the cross-correlation function

g12 = 1 +
1

p
. (3.1.32)

For the calculation of autocorrelations, we need â†i â
†
i âiâi

â1â1ψ1,2 =
√

1− p
∞∑
n=0

pn/2
√
n
√
n− 1n1 − 2, n2 (3.1.33)

so that

|â1â1ψ1,2|2 = (1− p)
∞∑
n=0

pnn (n− 1)

=
2p2

(1− p)2

(3.1.34)

and
: Î2

1 : =
(
â†1

)2

(â1)2 = 2: Î1 :
2
. (3.1.35)

Therefore

g11 =
: Î2

1 :

: Î1 :
2 = 2 (3.1.36)

and similarly, g22 = 2.
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Now we are ready to calculate the parameter R, for the two-photon state ψ1,2:

R =
g12

g11g22

=

(
1+p
p

)
4

=

(
1 + p

2p

)2

. (3.1.37)

As an example, if we consider p ∼ 0.1, which can be a possible experimental value, then
R ∼ 30 and the smaller the probability p of find a pair of correlated photons, the higher
the parameter R, that is to say, the greater the violation of the Cauchy-Schwarz inequality,
as well as its quantum character.

A demonstration of the non-classical nature of correlations requires the measurement
of R. However, since g11 = g22 = 2 the verification of g12 > 2 is, by itself, strong evidence
of the quantum nature. To get p� 1, and therefore g12 � 2, we are going to use a very
low power of the write beam, in order to try to produce excitations of a single photon
with a small probability. This leads to a tradeoff which is an experimental challenge, since
when the write power is decreased, there comes a threshold when noise introducing errors
in the system begin to be more perceptible than the excitations written in the atomic
ensemble.

A final measure to characterize the cooperative nature of the emission process is the
probability of detecting a pair of photons, conditioned to the detection of the first of them,
called pc

pc =
p12

p1

=
ψ1,2

∣∣∣: Î1Î2 :
∣∣∣ψ1,2

ψ1,2

∣∣∣Î1

∣∣∣ψ1,2

=
1 + p

1− p
(3.1.38)

There is a problem with this estimate, since pc becomes an unbounded quantity and,
therefore not normalized. It is only valid in the p � 1 regime, where pc = 1. In order
to overcome this limitation for general situations, there is a more appropriate approach
using POVM operators [141]. However given the magnitude of our probabilities, a POVM
approach will be unnecessary.

3.2 Single-photon superradiance

As already explained above, the DLCZ scheme is devised to create quantum memories,
which generates entangled states that last for long periods of time. The operation of
this scheme consists of two parts, the writing of the state, which is very inefficient and
is performed with a very low probability, and second, the reading process that is per-
formed with high efficiency and with higher probability. This last part of the process is
connected with the phenomenon of superradiance, which explains the increase of prob-
ability that comes from its high directionality [103]. After the first implementations of
this process [113, 125, 142], a major development was introduced in 2005 by the use of
the FWM configuration in the generation of photons [143,144], which solved most of the
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complications related to diffraction in the superradiant emission . In this configuration,
the write pulse has a spatial mode considerably wider than field 1, which is coupled in
fiber and detected at a small angle with respect to the direction of the write beam. In
this way the optical fiber that captures field 1 defines the spatial mode of the collective
state stored in the atomic vapor. On the other hand, the read pulse must have a large
waist, same as the write pulse, and counterpropagate to it. Then field 2 is generated in
the conjugate mode to field 1 [145]. The result of all this is a superradiant emission of
photon 2 in a well-defined single-mode that can be coupled to an optical fiber with high
efficiency [127]. It should be noted that the superradiance process in the emission of field
2 also modifies the emission rate of field 2 [145] as a function of the number of atoms in-
volved in the process, which in turn can be controlled in the experiment by manipulating
the optical depth of the medium. Since the atomic transitions involved in the process are
narrow band, on the order of some MHz, it implies that the temporal size of the wave
packet is sufficiently large to be resolved by photodetectors and photo-counting boards,
that normally have sensitivity of the order of ns. In this section we study in detail the case
of single-photon superradiance emitted in the reading process [146] and we also discuss
the potential of studying the equivalent case when two or more photons are generated,
clearly with much lower probabilities.

3.2.1 Hamiltonian for atom-field interaction

From the quantized description of the electromagnetic field, we can reconstruct the Hamil-
tonian that describes the light-atom interaction. In the electric-dipole approach, we have

Ĥ = ĤA + ĤL − e~r · ~E, (3.2.1)

where ĤA and ĤL are the free Hamiltonians for atoms (A) and light fields (L), respectively,
and ~r is the position vector of the electron in the atom. Thus we have

ĤA =
∑
i

Ei|i〉〈i|, (3.2.2)

ĤL =
∑
~k

~
(
â†~kâ~k +

1

2

)
, (3.2.3)

e~r =
∑
i,j

〈i|e~r|j〉|i〉〈j| =
∑
i,j

~tij|i〉〈j|, (3.2.4)

with {|i〉} representing a complete set of atomic energy eigenstates, Ei being the eigenstate
energy of |i〉, and ~tij being an element of the electric dipole transition matrix.

For the electric-dipole term in eq. (3.2.1), we consider, initially, a single atom at the
origin, that is, we neglect the z dependence of the field because of the long wavelength
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Figure 9: Two-level system with fundamental state a and excited state b. Transition frequency ω0.

approximation. The electric field is given by ~̂E (~r, t) =
∑

~k ε̂~kE~kâ~k exp
(
−iω~kt+ i~k · ~r

)
+

H.c., with E~k =
(

~ω~k
2ε0V

)1/2

, ε̂~k polariazation, and V a quantization volume. Note that the
field in this equation depends on time. We introduce the field in this way to facilitate
the connection with our classical view of the field, but the quantum treatment divides
the description of the physical systems between operators and states. In Schrödinger
representation all temporal dependence is in the quantum state and not in the operator,
so that the quantized electric field operator becomes

~̂E =
∑
~k

ε̂~kE~k
(
â~k + â†~k

)
. (3.2.5)

For simplicity, we also consider a basis of linear polarization and the polarization versors
as being reals. Finally, let us remember that the temporal dependence of light will again
emerge in the Schrödinger representation. Substituting Eqs. 3.2.2 to 3.2.5 into Eq. 3.2.1,
we get

Ĥ =
∑
~k

~ω~kâ
†
~k
â~k +

∑
i

Ei|i〉〈i|+ ~
∑
i,j

∑
~k

gij~k |i〉〈j|
(
â~k + â†~k

)
, (3.2.6)

where

gij~k = −
~tij · ε̂~kE~k

~
. (3.2.7)

In Eq. 3.2.6, we have omitted the zero-point energy of the first term, since it implies in
a constant level of energy. Also for simplicity we consider ~tij real.

3.2.2 Two-level atom

We now consider the case of a 2-level atom {|a〉, |b〉}, as depicted in figure 9. For gab~k real,
we get

g~k = gab~k = gba~k . (3.2.8)

It follows that the Hamiltonian 3.2.6 reads
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Ĥ =
∑
~k

~ω~kâ
†
~k
â~k + Ea|a〉〈a|+ Eb|b〉〈b|+ ~

∑
~k

g~k (|a〉〈b|+ |b〉〈a|)
(
â~k + â†~k

)
. (3.2.9)

Defining the atomic raising σ̂+ and lowering σ̂− operators

σ̂+ = |b〉〈a|, (3.2.10)

σ̂− = |a〉〈b|, (3.2.11)

and taking Ea = 0, we can write

Ĥ =
∑
~k

~ω~kâ
†
~k
â~k + Eb|b〉〈b|+ ~

∑
~k

g~k

(
σ̂+â~k + σ̂−â†~k + σ̂+â†~k + σ̂−â~k

)
. (3.2.12)

The interaction energy in the Hamiltonian 3.2.12 consists in 4 terms. The first one,
σ̂+â~k, represents a situation in which one atom is excited to the level |b〉 at the same time
that one photon disappears from the field. The second term, σ̂−â†~k, represents the inverse
process. Energy is conserved in both processes. Now for the third term, σ̂+â†~k, we would
have a process with an energy gain of approximately 2~ω0. In an analogous way, the term
σ̂−â~k implies in a loss of energy of ∼ 2~ω0. Neglecting these terms that don’t conserve
energy corresponds to the rotating wave approximation. The resulting Hamiltonian

Ĥ =
∑
~k

~ω~kâ
†
~k
â~k + Eb|b〉〈b|+ ~

∑
~k

g~k

(
σ̂+â~k + σ̂−â†~k

)
, (3.2.13)

will be the starting point of all the treatment that follows.

3.2.3 Spontaneous emission in 2-level atoms (Weisskopf-Wigner Theory)

If we want to treat the temporal evolution of the 2-level atom in free space, we need the
Hamiltonian of Eq. 3.2.13:

Ĥ =
∑
~k

~ω~kâ~k + Eb|b〉〈b|+ ~
∑
~k

[
g~k (~r0) σ̂+â~k + H. c.

]
. (3.2.14)

where we come to consider g∗~k (~r) = g~k exp
(
−i~k · ~r

)
as complex to include the dependence

of the spatial phase on the position of the atom.
The interaction potential in the interaction picture will then be

V̂I = ~
∑
~k

[
g~k (~r0) σ̂+â~ke

i(ω0−ω~k)t + H. c.
]
. (3.2.15)

We assume that in t = 0 the atom is on the excited level |b〉 and the field is in the
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vacuum mode |0〉. The state vector then evolves into a space of eigenstates restricted in
maximum to n = 1 for the number of photons in the field:

|ψ(t)〉I = cb(t)|b, 0〉+
∑
~k

ca,~k|a, 1~k〉, (3.2.16)

with

cb(0) = 1 and ca,~k(0) = 0. (3.2.17)

Note that the eigenstate |a, 0〉 does not participate in the evolution either. To determine
the temporal evolution of the system, we use

∂|ψ(t)〉I
∂t

= − i
~
V̂I |ψ(t)〉I , (3.2.18)

from which follows that

∂cb(t)

∂t
=− i

~
〈b, 0|V̂I |ψ(t)〉I

=− i
∑
~k

g~k (~r0) ei(ω0−ω~k)tca,~k, (3.2.19)

∂ca,~k(t)

∂t
=− i

~
〈a, 1~k|V̂I |ψ(t)〉

=− ig∗~k (~r0) e−i(ω0−ω~k)tcb,(t). (3.2.20)

Let’s now integrate Eq. 3.2.20 up to any instant t:

ca,~k(t) = −ig∗~k (~r0)

∫ t

0

dt′e−i(ω0−ω~k)t′cb(t
′), (3.2.21)

where we use the fact that ca,~k(0) = 0. Substituting 3.2.21 in 3.2.19, we get

∂cb
∂t

= −
∑
~k

|g~k (~r) |2
∫ t

0

dt′ei(ω0−ω~k)(t−t′)cb(t
′). (3.2.22)

So far no approximation has been made. From here we make approximations considering
the distribution of vacuum modes. Assuming that the field modes are closely spaced in
frequency, the sum in ~k may be replaced by an integral:

∑
~k

→ 2
V

(2π)3

∫
d3~k −→︸︷︷︸

Sph. coord

2
V

(2π)3

∫ ∞
0

dk

∫ π

0

dθ

∫ 2π

0

dϕk2 sin θ, (3.2.23)

where V is the quantization volume. In addition, from eq. 3.2.7 and definition of E~k, we
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have
|g~k (~r0) |2 =

ω~k
2~ε0V

t2ij cos2 θ, (3.2.24)

where θ is the angle between the atomic dipole moment ~tij and the versors ε̂~k of the
polarization of the electric field. Note that the integral 3.2.23 scans all possible vectors ~k,
however it is from Eq. 3.2.24 that the coordinate axis of the problem are defined. Using
Eqs. 3.2.23 and 3.2.24 in 3.2.22, we have

∂cb
∂t

=−
t2ij

(2π)3~ε0

∫ π

0

dθ sin θ cos2 θ︸ ︷︷ ︸
2/3

∫ 2π

0

dϕ︸ ︷︷ ︸
2π

∫ ∞
0

dkk2︸︷︷︸
dω~k

ω2
~k

c3

ω~k

∫ t

0

dt′ei(ω0−ω~k)(t−t′)cb(t
′)

=−
2t2ij

(2π)2~ε03c3

∫ ∞
0

dω~kω
3
~k

∫ t

0

dt′ei(ω0−ω~k)(t−t′)cb(t
′). (3.2.25)

The time integral in Eq. 3.2.25 will lead to negligible values unless ω~k ≈ ω0. Around this
value ω3

~k
does not vary much, and the integral in ω~k can be formally extended to −∞.

Therefore Eq. 3.2.25 reads

∂cb
∂t

= −
2t2ijω

3
0

(2π)2~ε03c3

∫ t

0

dt′cb(t
′)

∫ ∞
−∞

dω~ke
i(ω0−ω~k)(t−t′)︸ ︷︷ ︸

2πδ(t−t′)

(3.2.26)

⇒ ∂cb
∂t

= −Γ

2
cb(t), (3.2.27)

with

Γ =
1

4πε0

4ω3
0t

3
ij

3~c3
. (spontaneous decay rate) (3.2.28)

It follows that
ρbb = |cb(t)|2 = e−Γt. (3.2.29)

We then show that an atom initially in the excited state |b〉 in the vacuum decays expo-
nentially with time to the state |a〉 with a lifetime of τ = 1/Γ .

3.2.4 Collective quantum memory

We will now explore more "exotic" consequences of the first principles treatment of spon-
taneous emission. We consider a system that has memory: an ensemble of 3-level atoms
in lambda-like configuration, where we initially pump all atoms to one of the fundamental
levels, |g〉, see Fig. 10. The other fundamental level is |s〉 and |e〉 is the excited level. The
system is excited by a “write” field ~EW acting in the transition g → e and quite detuned,
by ∆, with respect to resonance. This field acts in the form of a weak square pulse for
ease of calculation. With a small probability, a spontaneous emission in the transition
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Figure 10: Lambda configuration

e→ s may occur and an atom is transferred from |g〉 to |s〉. This process is often called
spontaneous Raman transition. The write field can be an intense laser, so we will model
it by a classical field of amplitude EW inducing a Rabi frequency

ΩW,i =
µgeEW

~
e−i

~kW ·~ri (3.2.30)

for the excitation of the transition g → e. For the transition e → s, each mode ~k of the
vacuum acts with an effective Rabi frequency given by the coupling constant

g∗~k,i = µes

(
ω~k

2~ε0V

)1/2

e−i
~k·~ri , (3.2.31)

where ~ri indicates the position of the i-th atom. We therefore include the spatial phase
of the fields at the respective complex Rabi frequencies. Whereas ∆ is much larger than
the natural decay rate Γ of level |e〉, we can then eliminate adiabatically the excited level
and describe the Raman process as a direct transition g → s with the two-photon Rabi
frequency

Ω~k,i =
ΩW,ig

∗
~k,i

2∆
(3.2.32)

The effective Hamiltonian of the two-photon transition is then

Ĥf =
∑
~k

~ω~kâ
†
~k
â~k +

Na∑
i=1

[Eg|gi〉〈gi|+ Es|si〉〈si|] + ~
∑
~k

Na∑
i=1

[
Ω~k,ie

iωW tσ̂+
i â~k +H.c.

]
,

(3.2.33)
with {

σ̂+
i = |gi〉〈si|,
σ̂−i = |si〉〈gi|.

(3.2.34)

the Stark shifts are not critical to the discussion that follows, and can be directly incor-
porated from redefinitions of Eg and Es.
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The first two terms of Eq. 3.2.33 then provide the free Hamiltonian ĤF and the last
term is the interaction potential V̂ . To work on the interaction picture, we must therefore
calculate

V̂I = eiĤLt/~V̂ e−iĤLt/~

= ~
∑
~k

Na∑
i=1

[
Ω~k,ie

iωW te−iω~ktei(Eg−Es)t/~σ̂+
i â~k +H.c.

]
, (3.2.35)

where we used

ei[Eg |gi〉〈gi|+Es|si〉〈si|]t/~|gi〉〈si|e−i[Eg |gi〉〈gi|+Es|si〉〈si|]t/~ =

= |gi〉〈si|+
it

~
[Eg|gi〉〈gi|+ Es|si〉〈si|, |gi〉〈si|]

+
1

2!

(
it

~

)2

[Eg|gi〉〈gi|+ Es|si〉〈si, [Eg|gi〉〈gi|+ Es|si〉〈si| |gi〉〈si|]] + . . .

= |gi〉〈si|+
i (Eg − Es) t

~
|gi〉〈si|+

1

2!

[
i (Eg − Es) t

~

]2

|gi〉〈si|+ . . .

= σ̂+
i e

i(Eg−Es)t/~. (3.2.36)

Defining ωgs =
Eg − Es

~
, Eq. 3.2.35 reads

V̂I(t) = ~
∑
~k

Na∑
i=1

[
Ω~k,ie

i(ωW+ωgs−ω~k)tσ̂+
i â~k +H.c.

]
. (3.2.37)

The initial state of the system is given by

|ψ(t = 0)〉I = |g1, g2, . . . , gi, . . . , gNa〉|0〉 = |g, 0〉, (3.2.38)

with all Na atoms in state |g〉 and the field in the transition e → s in the vacuum state
|0〉.

It follows that the state of the system in an instant t can be calculated from

|ψ(t)〉I = ÛI(t, 0)|ψ(0)〉I , (3.2.39)

with ÛI(t, 0) the temporal propagation operator in the interaction picture. In terms of
the Dyson series for Û(t, 0), eq. 3.2.39 can be rewritten as

|ψ(t)〉I = |g, 0〉+

(
− i
~

)∫ t

0

dt′V̂I(t
′)|g, 0〉+

(
− i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′V̂I(t
′)V̂I(t

′′)|g, 0〉+ . . . .

(3.2.40)
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Substituting Eq. 3.2.37 in 3.2.40, we have

|ψ(t)〉I = |g, 0〉+ (−i)
∑
~k

Na∑
i=1

Ω∗~k,i

∫ t

0

dt′e−i(ωW+ωgs−ω~k)t′ |si, 1~k〉

+ (−i)2
∑
~k,~k′

Na∑
i,j=1

Ω∗~k,iΩ
∗
~k′,j

∫ t

0

dt′
∫ t′

0

dt′′e−i(ωW+ωgs−ω~k′ )t
′
e−i(ωW+ωgs−ω~k)t′′ |si, sj; 1~k, 1~k′〉

+ (−i)2
∑
~k,~k′

Na∑
i,j=1

|Ω~k,i|
2

∫ t

0

dt′
∫ t′

0

dt′′ei(ωW+ωgs−ω~k)t′e−i(ωW+ωgs−ω~k)t′′ |g, 0〉

+ . . . (3.2.41)

where we define
|si, 1~k〉 ≡ state with all atoms in |g〉 except the atom i, that is in |s〉; the field is the

vacuum plus a photon in mode ~k.
|si, sj; 1~k, 1~k′〉 ≡ state with all atoms in |g〉 except the atoms i and j that are in |s〉;

the field is the vacuum plus two photons, one in mode ~k and another in ~k′.
The state of Eq. 3.2.41 presents intricate entanglement between the atomic state and

the light modes. To explore many of the consequences of this kind of entanglement, it is
enough to focus on the first order term on Ω. Let us then consider a physical situation in
which Ω is small enough to allow us to keep only the first-order term in the series of Eq.
3.2.41:

|ψ(t)〉 ≈ |g, 0〉+ (−i)
∑
~k

Na∑
i=1

Ω∗~k,i

∫ t

0

dt′e−i(ωW+ωgs−ω~k)t′|si, 1~k〉. (3.2.42)

The quantum entanglement in Eq. 3.2.42 is that of a photon in the light mode with an
atomic collective state where an atom has been transferred to the state |s〉, but we do
not know which one. The light mode in Eq. 3.2.42, however, is not very well defined. In
principle, the photon

∣∣1~k〉 can point in any direction. This problem can be overcome by
concentrating on a single mode of emission, which will then be entangled with a single
well-defined collective mode. For this, the first step is to use a write beam that can be
approximated by a plane wave, that is, for which we can neglect the variation of EW in
the transverse direction to the propagation of the beam. Next, we consider the projection
in a specific mode â1 of the field, which we name 1. This mode can be written as a
superposition of modes â~k of plane wave that we have been working up to here:

â1 =

∫
d~q1φ1(~q1)â

~q1+
√
k21−q21 ẑ

, (3.2.43)

with ~q1 a two-dimensional vector in the transverse plane of ~k1, with k1 = ω1/c. The mode
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Figure 11: Gaussian mode defined by the optical fiber

â1 is, therefore, an arbitrary superposition of plane waves around the direction ~k1. The
function φ1(~q1) defines the mode, that we consider to be monochromatic. A quantum
state with a photon in this mode can be written as â†1|0〉, so that the projection in that
state is made from the operator 〈0|â1. The form of the eq. 3.2.43 allows, for example,
to define â1 as a Gaussian mode within the paraxial approximation (of propagation close
to an axis such as ~k1). Such modes can be commonly obtained from resonant cavities
or optical fibers. A possible physical situation with â1 being a Gaussian mode is shown
in the figure 11. In the discussion above, we assumed a well defined frequency ω1. This
frequency selection happens through the time integral of Eq. 3.2.42. Let’s consider the
state of the system after the action of the write pulse of temporal width Tp and already
transforming the summation over ~k into an integral:

|ψ(t〉Tp)〉I = |g, 0〉+
(−i)2V
(2π)3

∫
d3~k

Na∑
i=1

Ω∗~k,i

∫ Tp

0

dt′e−i(ωW+ωgs−ω~k)t′ |si, 1~k〉. (3.2.44)

From the definition of Ω∗~k,i, Eq. 3.2.32, we have

Ω∗~k,i =
Ω∗W,ig~k,i

2∆
=

µgeµesEW
(2~)3/2∆(ε0V )1/2

ei
~kW ·~riω

1/2
~k
e−i

~k·~ri . (3.2.45)

Note that in the usual treatment of spontaneous emission, it was necessary to take into
account an angle between the atomic polarization and an arbitrary polarization of the
emitted electric field. The arbitrary direction of polarization in that case came mainly
from the arbitrary ~k. In the situation we are now considering, the direction of ~k is
approximately fixed, so that the two possible polarization-vector directions are also fixed,
parallel or perpendicular to the direction of the polarization of the write beam (which we
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can take as the quantization axis). In any case, the transition to |s〉 will occur only if g~k,i
couples the polarization of the field to its atomic polarization parallel to it. We can thus
consider as zero the angle between these two vectors. A more detailed description of this
aspect of the problem would have required the introduction of the Zeeman structure of
the atom into our model [126]. Substituting Eq. 3.2.45 in 3.2.44:

|ψ(t〉Tp)〉I = |g, 0〉+
(−i)µgeµesEWV 1/2

~3/2∆(2ε0)1/2(2π)3

Na∑
i=1

ei
~kW ·~ri

∫
d3~kω

1/2
~k
e−i

~kW ·~ri

∫ Tp

0

dt′e−i(ωW+ωgs−ω~k)t′ |si, 1~k〉. (3.2.46)

In spherical coordinates, the integral above is∫ π

0

dθ sin θ

∫ 2π

0

dϕ

∫ ∞
0

dω~kω
2
~k

c3
· ω1/2

~k
e−ik(cos θzi+sin θ cosϕxi+sin θ sinϕyi)×

×
∫ Tp

0

dt′e−i(ωW+ωgs−ω~k)t′ |si, 1~k〉.

(3.2.47)

If Tp is long enough, the time integral implies that ω~k have a value around ω1 = ωW +ωgs

and can be approximated by∫ Tp

0

dt′e−i(ωi−ω~k)t′ ≈ δ(ωi − ω~k), (3.2.48)

which replacing in 3.2.47 results in

ω
5/2
1

c3

∫ π

0

dθ sin θ

∫ 2π

0

dϕe−ik1(cos θzi+sin θ cosϕxi+sin θ sinϕyi)|si, 1~k〉. (3.2.49)

Note that we have already chosen the axis z as the direction of the mode we want to
detect. The Eq. 3.2.49 involves a general sum over modes with constant modulus of ~k,
|~k| = k1. Now we have to perform the projection in the detected mode:

〈0|â1|ψ(t > Tp)〉I =
(−i)µgeµesEWV 1/2ω

5/2
1

~3/2∆(2ε0)1/2(2π)3c3

Na∑
i=1

ei
~kW ·~ri

∫ π

0

dθ sin θ

×
∫ 2π

0

dϕe−ik1(cos θz1+sin θ cosϕxi+sin θ sinϕyi)〈0|â1|si, 1~k〉,

=
(−i)µgeµesEWV 1/2ω

5/2
1

~3/2∆(2ε0)1/2(2π)3c3

Na∑
i=1

ei
~kW ·~ri

∫
d~q1φ1(q1)e−i(~q1+

√
k21−q21 ẑ)·~ri |si〉, (3.2.50)
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Figure 12: Reading process, a classical laser induce a superradiant emission of field 2.

or even

〈0|â1|ψ(t > Tp)〉I =
(−i)µgeµesEWV 1/2ω

5/2
1

√
Na

~3/2∆(2ε0)1/2(2π)3c3
|1a〉, (3.2.51)

with

|1a〉 =
1√
Na

Na∑
i=1

cie
i(~kW−k1ẑ)|si〉, (3.2.52)

and
ci =

∫
d~q1φ1(~q1)ei[−~q1·~ρi+ziq

2
1/2k1]. (3.2.53)

~ρi is component of ~ri in the XY plane and we have

∑
i

|ci|2 =

∫
d~q1

∫
d~q
′

1φ1(~q1)φ1(~q
′

1)
∑
i

e

i

−(~q1−~q
′
1)·~ρi+zi

 q2
1

2k1

−
q
′2
1

2k1




︸ ︷︷ ︸
≈δ(~q1−~q

′
1)∫

d~q1|φ1(~q1)|2︸ ︷︷ ︸
⇓ mode â1 normalized

= 1. (3.2.54)

Equation 3.2.51 provides, in a simplified way, the result of the projection of the atomic
state due to the detection of a photon in mode 1. Once this detection has occurred, the
resulting state needs to be normalized again, leading to the final state of the detection
process

|ψf〉I = |1a〉. (3.2.55)

This is a macroscopic collective entangled state, where we have an atom of the ensemble
in the state s, but we do not know which one. Each atom is excited with a different
amplitude and phase, given by the coefficient ciei(

~kW−k1ẑ), but fixed. The important point
is to notice that detecting a photon in mode 1 "prepared" the ensemble in a very well
defined collective state, which can be exploited in different contexts from now on.

The first important property of the state of Eq. 3.2.55 is its possibility of conversion
to a second mode of the light field, field 2, with high efficiency. In what follows, we discuss
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in detail this conversion process. We begin with the incidence of another intense field,
the read field, in the transition s→ e. Just as for the write field, we can describe it as a
classical field. We act with the read field in resonance because of two reasons: to increase
the probability of the mapping |s〉 → |e〉, and to induce transparency in the medium to
increase the extraction efficiency of light emitted in the transition e→ g, since it prevents
the emission from the reabsorption effects. The read beam therefore also needs to be
intense. Once excited to level |e〉, the atom can decay spontaneously to the levels |g〉 or
|s〉, as depicted in Figure 12. It is important to keep in mind from the beginning that the
process s → e → g must be much more probable, because here all the atoms end in the
same state of the ensemble |g1, g2, . . . , gn〉. This results in a large constructive interference
reinforcing a global parametric process (same initial and final state), with conservation
of momentum and energy in the atomic environment. Even so, taking into account also
the s → e → s helps in obtaining a better quantitative description of the model. The
Hamiltonian of the system can then be written as

Ĥ = ĤF + V̂ , (3.2.56)

with the free Hamiltonian

ĤF =
∑
i

[Eg|gi〉〈gi|+ Es|si〉〈si|+ Ee|ei〉〈ei|] +
∑
~k

~ωkâ†kâ~k, (3.2.57)

being the same of the writing process and the interaction potential being constituted of
three parts.

V̂ = V̂1 + V̂2 + V̂3, (3.2.58)

excitation by the read beam⇒ V̂1 = −
∑
i

~ΩRe
i(~kR,~ri−ωRt)|ei〉〈si|+H.c., (3.2.59)

spontaneous emission e→ g ⇒ V̂2 = −
∑
i

∑
~k

~geg,~ke
i~k·~ri|ei〉〈gi|â~k +H.c., (3.2.60)

spontaneous emission e→ s⇒ V̂3 = −
∑
i

∑
~k

~ges,~ke
i~k·~ri |ei〉〈si|â~k +H.c., (3.2.61)

with ΩR = µseER/~, geg,~k = µge(ω~k/2~ε0v)1/2, and ges,~k = µse(ω~k/2~ε0V )1/2. In the
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interaction picture, we have

V̂I(t) =eiĤLt/~V̂ e−iĤLt/~

=−
∑
i

{[
~ΩRe

i~kR·~riei(ωes−ωR)t|ei〉〈si|+H.c.
]

+

∑
~k

~geg,~ke
i~k·~riei(ωeg−ω~k)t|ei〉〈gi|â~k +H.c.


+

∑
~k

~ges,~ke
i~k·~riei(ωes−ω~k)t|ei〉〈si|â~k +H.c.

 . (3.2.62)

The initial state of the system is obtained from Eq. 3.2.55:

|ψ(0)〉 = |1a〉|0〉 =
1√
Na

Na∑
i=1

cie
i(~kW−k,ẑ)·~ri |si, 0〉. (3.2.63)

Since there is initially only one excitation in level |s〉, the temporal evolution remains
essentially restricted to the space of a single excitation. In the interaction picture, we can
write

|ψ(t)〉I =
∑
i

ei(
~kW−k,ẑ)·~ri [Ai(t)|si, 0〉+Bi(t)|ei, 0〉] +

∫
d3~kC~k(t)|g, 1~k〉+

∑
i

∫
d3~kDi~k(t)|s, 1~k〉,

(3.2.64)

with Ai(t), Bi(t), C~k(t) and Di~k(t) coefficients of slow variation to be determined from
the Schrödinger equation. There are four possibilities of evolution, first term represents
the case when the state |si, 0〉 remains unchanged, the second considers the atomic state
in the excited level, so there isn’t any photon involved in the process, third and fourth
terms regard the emission of one spontaneous photon, in the case of third term we have
that the atomic state has decayed from the excited level to the g level and the emission
of one photon in the e → g transition. The fourth term considers that the atomic state
has decayed from the excited level to the s level and a photon with frequency associated
to the transition e → s is emited. We have also isolated the write spatial phase of the
coefficients Ai and Bi. So we have

i~
∂|ψ(t)〉I
∂t

= V̂I |ψ(t)〉I ,

and

i~
∂

∂t
〈si, 0|ψ(t)〉I =i~

∂Ai
∂t

=− ~Ω∗Re
−i~kR·~rie−i(ωes−ωR)tBi(t); (3.2.65)
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i~
∂

∂t
〈ei, 0|ψ(t)〉I =i~

∂Bi

∂t

=− ~ΩRe
i~kR·~riei(ωes−ωR)tAi(t)

−
∑
~k

~geg,~ke
i(~kW+k1ẑ+~k)·~riei(ωeg−ω~k)tC~k(t)

−
∑
~k

~geg,~ke
i(~kW+k1ẑ+~k)·~riei(ωeg−ω~k)tDi~k(t); (3.2.66)

i~
∂

∂t
〈g, 1~k|ψ(t)〉I =i~

∂C~k
∂t

=−
∑
i

~g∗
eg,~k

ei(
~kW−k1ẑ−~k)·~rie−i(ωeg−ω~k)tBi(t); (3.2.67)

i~
∂

∂t
〈si, 1~k|ψ(t)〉I =i~

∂Di,~k

∂t

=− ~g∗
es,~k

ei(
~kW−k1ẑ−~k)·~rie−i(ωes−ω~k)tBi(t). (3.2.68)

Grouping Eqs. 3.2.65, 3.2.66, 3.2.67 and 3.2.68, we have

∂Ai
∂t

= iΩ∗Re
−i~kR·~riBi(t), (3.2.69)

∂Bi

∂t
=iΩRe

i~kR·~riAi(t) + i
∑
~k

ei(−
~kW+k1ẑ+~k·~ri)

[
geg,~ke

i(ωeg−ω~kt)C~k(t)

+ ges,~ke
i(ωes−ω~k)Di~k(t)

]
, (3.2.70)

∂C~k
∂t

= i
∑
i

g∗
eg,~k

ei(
~kW−k1ẑ−~k·~ri)e−i(ωeg−ω~k)tBi(t), (3.2.71)

∂Di~k

∂t
= ig∗

es,~k
ei(

~kW−k1ẑ−~k·~ri)e−i(ωes−ω~k)tBi(t). (3.2.72)

To solve this system of equations, we assume the following tentative form to Bi(t) [145]:

Bi(t) = βi(t)bi(t)e
i~kR·~ri , (3.2.73)

such that
βi(t) =

∂bi(t)

∂t
= iΩRAi(t), (3.2.74)
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∂βi(t)

∂t
· bi(t) =i

∑
~k

ei(−
~kW+k1ẑ+~k−~kR)·~ri

[
geg,~ke

i(ωeg−ω~kt)C~k(t) + ges,~ke
i(ωes−ω~k)Di~k(t)

]
.

(3.2.75)

The advantage of taking the solution 3.2.73 is that we now have two systems of equations
with clearly distinct roles in the problem. The system 3.2.69 + 3.2.74 describes a dynamics
of Rabi oscillations. The system 3.2.71 + 3.2.72 + 3.2.75 describes a spontaneous emission
dynamics. Let’s start by solving the second set of equations. In integral form, Eqs. 3.2.71
and 3.2.72 reads

C~k(t) = i

∫ t

0

dt′
∑
j

g∗
eg,~k

ei(
~kW−k1ẑ−~k+~kR)·~rje−i(ωeg−ω~kt

′)βj(t
′)bj(t

′), (3.2.76)

Di~k(t) = i

∫ t

0

dt′g∗
es,~k

ei(
~kW−k1ẑ−~k+~kR)·~rie−i(ωes−ω~kt

′)βi(t
′)bi(t

′), (3.2.77)

where we already applied the initial conditions C~k(0) = Di,~k(0) = 0. Substituting Eqs.
3.2.76 and 3.2.77 in 3.2.75, we have

∂βi(t)

∂t
=−

∫ t

0

dt′
∑
~k

{
|ges,~k|

2ei(ωes−ω~k)(t−t′) bi(t
′)

bi(t)
βi(t

′)

+
∑
j

|ges,~k|
2ei(

~kW−k1ẑ−~k+~kR)·(~rj−~ri)+i(ωeg−ω~k)(t−t′) bj(t
′)

bi(t)
βj(t

′)

}
. (3.2.78)

Now we turn the sum over ~k in an integral in spherical variables:

∑
~k

→ 2
V

(2π)3

∫
d3~k → 2

V

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
0

dω~k
ω2
~k

c3
(3.2.79)

As in Weisskopf-Wigner’s theory, we use∫ ∞
0

dω~kω
2
~k
ei(ω0−ω~k)(t−t′)) ≈ 2πδ(t− t′)ω0. (3.2.80)

From the Eqs. 3.2.79 and 3.2.80, Eq. 3.2.78 can be rewritten as

∂βi(t)

∂t
=− 2V

(2π)2

∫ 2π

0

dφ

∫ π

0

dθ sin θ

{
ω2
es|ges,~k|2

2c3
+
ω2
eg|geg,~k|2

2c3

+
ω2
eg|geg,~k|2

2c3

∑
j 6=i

ei(
~kW−k1ẑ−~k+~kR)·(~rj−~ri) bi(t)βj(t)

bi(t)βi(t)

}
βi(t). (3.2.81)
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Recalling the discussion of the Weisskopf-Wigner’s theory, we have

|ges,~k|
2 =

µ2
seωes

2~ε0V
cos2 θ, (3.2.82)

|geg,~k|
2 =

µ2
geωeg

2~ε0V
cos2 θ. (3.2.83)

Then defining the rates of spontaneous decay Γeg and Γes, of e to g and s, respectively:

Γeg =
1

4πε0

4ω3
egµ

2
ge

3~c3
, (3.2.84)

Γes =
1

4πε0

4ω3
esµ

2
se

3~c3
, (3.2.85)

eq. 3.2.81 reads

∂βi(t)

∂t
=− 1

2

{
Γeg + Γes +

2ω3
egµ

2
ge

2(2π)2ε0~c3

∑
i 6=i

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos2 θ

×ei(~kW−k1ẑ−~k+~kR)·(~rj−~ri) bi(t)βj(t)

bi(t)βi(t)

}
βi(t).

∂βi(t)

∂t
=− Γ

2

{
1 +

3

4π

Γeg
Γ

∑
i 6=i

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos2 θei(
~kW−k1ẑ−~k+~kR)·(~rj−~ri)

×bi(t)βj(t)
bi(t)βi(t)

}
βi(t). (3.2.86)

where we consider the total rate of spontaneous decay of the level as

Γ = Γeg + Γes. (3.2.87)

3.2.5 Uniform excitation approximation

If the atoms are illuminated approximately uniformly both by the write beam and by
the read beam, the atomic dynamics for the optical excitation s → e should not vary
appreciably from one atom to another. Because of this, we can approximate bi(t) ≈ bj(t)

and βi(t) ≈ βj(t). Then defining the superradiance parameter:

χi = 1 +
3

4π

Γeg
Γ

∑
i 6=i

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos2 θei(
~kW−k1ẑ−~k+~kR)·(~rj−~ri), (3.2.88)

eq. 3.2.86 becomes
∂βi(t)

∂t
= −χiΓ

2
βi(t), (3.2.89)
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⇒ βi(t) = e−χiΓt/2, (3.2.90)

considering βi(0) = 1 and βi(∞) = 0.
If χi > 1,we have an increase in the rate of spontaneous decay induced by the presence

of other atoms, a phenomenon known as superradiance [147]. At the level of a single
photon, as discussed above, the purely quantum nature of the effect becomes quite ex-
plicit. Note that this increase in the emission rate is not the result of stimulated emission
since only one photon is emitted by the ensemble. It’s an effect that depends on the
coherent distribution of excitation by the atoms of the ensemble, that is, it depends on a
strong constructive interference of the atoms induced by the entanglement of the system.
Substituting eq. 3.2.90 in 3.2.69 and 3.2.74, we get

∂Ai
∂t

= iΩ∗Re
−χiΓt/2bi(t),

∂bi
∂t

= iΩRe
χiΓt/2Ai(t).

(3.2.91)

Derivating 3.2.91:
∂2bi
∂t2

=
χiΓ

2

∂bi
∂t

+ iΩRe
χiΓt/2

(
iΩ∗Re

−χiΓt/2bi
)

⇒ ∂2bi
∂t2
− χiΓ

2

∂bi
∂t

+ |ΩR|2bi = 0

with bi = Aeλt, we have

λ2 − χiΓ

2
λ+ |ΩR|2 = 0⇒ λ± =

χiΓ

2
±
√
χ2
iΓ

2

4
− 4|ΩR|2

2

and therefore
bi(t) = A+e

λ+t + A−e
λ−t.

With the initial conditions
bi(0) = 0,

∂bi(0)

∂t
= iΩRAi(0) +

iΩRci√
Na

,

where ci/
√
Na comes from the constant in Eq. 3.2.63, we get

bi(t) =
2iΩRcie

λiΓ/4

√
Na

√
χ2
iΓ

2

4|ΩR|2

sinh

(√
χ2
iΓ

2

4
− 4|ΩR|2t

)
, (3.2.92)
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and

B(t) = i
ciΩRe

−λiΓ/4

√
Na

√
χ2
iΓ

2

4|ΩR|2

sinh

(√
χ2
iΓ

2

4
− 4|ΩR|2t

)
. (3.2.93)

Eq. 3.2.93 gives us the evolution of the probability amplitude of the excited state of
the atoms of the system over time. We then see clearly the Rabi oscillation behavior
superposed with the spontaneous emission. Unlike the semiclassic treatment, however,
we now have a spontaneous superradiant emission with a single photon being emitted
collectively by the ensemble of atoms.

3.2.6 Wave function of the emitted photon in the reading process

So far we have focused our analysis on the time evolution of the atomic state, we can now
come back to the spatial mode and time dependence of the photons emitted in the reading
process. In this case, we have two possibilities for the generation of a photon from the
spontaneous emission of the level |e〉. It can be generated in the transition e→ s or in e→
g. In case of transition e→ s, we necessarily have that the atom that was in si will return
to si. When realizing the trace over the atomic degrees freedom, we have an expression
of the type

∑
i |Di,~k(t)|2 for each component ~k of the field. The dependence of Di,~k on the

spatial phase ei(~kW−k1ẑ−~k+~kR)·~ri does not affect the photon emitted in that transition, which
thus has no preferential direction of emission. After the photon emission in the transition
e→ s, all the spatial coherence information of the state originally stored is lost, and this
can no longer be efficiently extracted from the atomic ensemble into field 2. In the case
of the transition e→ g, all atoms will end up in the same state |g, 1~k〉.When tracing out
over atomic degrees of freedom, we have then an expression such as |

∫
d3~kc~k(t)|2, highly

sensitive to the spatial phase ei(~kW−k1ẑ−~k+~kR)·~ri of each atom. Note that both c~k and χi

have sums over this spatial phase of the atoms, implying that the limit of superradiant
behavior manifests in parallel in these two quantities. The constructive interference on
the spatial phases in c~k leads to the directionality of the superradiant emission, while its
manifestation on χi leads to the acceleration of the emission. When Na begins to grow,
the process e → g of spontaneous emission dominates, because χi is increased and the
process e → g occurs before e → s. In addition, the probability of e → g increases with
N2
a (|
∑

i |2), while the probability of e → s increases with Na(|
∑

i |2). Let us, therefore,
focus only on the calculation of the emission of a photon in e → g. The decomposition
into wave vectors of the state of the emitted photon is given by limt→∞C~k(t), with C~k(t)
given by Eq. 3.2.76. To find the temporal dependence of the emitted photon we must
apply a Fourier transform over its frequency spectrum. Let’s define the photonic mode
ψ2 in terms of ~q, the wave vector component of photon 2 extracted in the XY plane. We
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have thus
ψ2 (~q, t) ∝

∫
dω~ke

−iω~kt lim
t′→∞

C~k(t
′). (3.2.94)

In order to obtain an analytical expression for the photonic wave packet extracted from
the memory, we consider another important approximation: χi will have the same value
for all atoms in the ensemble, that is, χi ≈ χ. Equation 3.2.93 then becomes

βi(t) = cie
i~kR·~riβ(t), (3.2.95)

with

β(t) = i
2ΩRe

−χΓt/4

√
Na

√
χ2Γ2

4
− 4|ΩR|2

sinh

(√
χ2Γ2

4
− 4|ΩR|2t

)
(3.2.96)

being the same for all atoms in the ensemble. Replacing eq. 3.2.76 in 3.2.94 and using
Eqs. 3.2.92, 3.2.90 and 3.2.53, we get

ψ2(~q, t) ∝
∑
j

g∗
eg,~k

ei(
~kW−k1ẑ−

−~q·~ρ−kzzj︷︸︸︷
~k +~kR)·~rje−iωegtcjB(t).

Assuming ~kW = −~kR

ψ2(~q, t) ∝ B(t)e−iωegt
∫
d~q1φ1(~q1)

∑
j

e−i(~q+~q1)·~ρje−i[k1z+kz ]zj . (3.2.97)

To introduce the distribution of atoms in the medium, we define the atomic density
ρ(~r) ∝ e−z

2/(2L2), with L the length of the ensemble in the direction z. In the directions
x and y, we assume a uniform density, since we consider the transverse mode in these
directions as defined by ci, with the distribution of atoms being much more extensive in
these directions than the width of the Gaussian mode φ1. From this density function the
sum over j can be transformed into an integral:

ψ2(~q, t) ∝ B(t)e−iωegt
∫
d~q1φ1(~q1)

∫
d~ρ

∫ ∞
−∞

dzez
2/(2L2)e−i(~q+~q1)·~ρe−i(k1z+kz)z

∝ B(t)e−iωegt
∫
d~q1φ1(~q1)δ(~q + ~q1)e−L

2(k1z+kz)2/2

∝ φ1(−~q)e−L2(k1z+kz)2/2B(t)e−iωegt. (3.2.98)

This expression then shows that the second photon is extracted in the conjugated mode
to the field 1, with kz ≈ −k1z and the corresponding transverse mode φ1. Note that we
also see that its wave packet oscillates with a central frequency ωeg. The probability pc(t)
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of detecting a photon around the instant t is then

pc(t) = F |B(t)|2, (3.2.99)

with F being a proportionality constant including, among other factors, the detection
efficiency and the temporal width of the detection window. Obviously, in Eq. 3.2.99 we
assume a very small detection window, so we can assume B(t) constant throughout its
duration. Another important quantity is the integral of 3.2.99 over all times

Pc =

∫ ∞
0

pcdt, (3.2.100)

which provides the total probability of extracting the information stored in the medium,
maping it in a photon in mode 2. To compare theory and experiment, the normalized
conditional probability is particularly important:

pc(t)

Pc
=

|B(t)|2∫∞
0
|B(t)|2dt

, (3.2.101)

which is independent of F . So, finally, we get

pc(t)

Pc
= α e−χΓt/2 sin2

(
Ωt

2

)
∆t , (3.2.102)

with α = χΓΩ2
0/Ω

2, Ω =
√

Ω2
0 − χ2Γ2/4, Γ/2π = 6.065 MHz the natural linewidth for

level |e〉, Ω0 the Rabi frequency for the transition |s〉 → |e〉, and χ the superradiant
enhancement for the decay |e〉 → |g〉, in case of the Rb atoms considered in this thesis.

3.2.7 Superradiant amplification

Let’s now look for an expression for the superradiant amplification factor χ. Let’s start
by Eq. 3.2.88:

χi = 1 +
3

4π

Γeg
Γ

∑
j 6=i

∫ 2π

0

dϕ

∫ π

0

dθ sin θ cos2 θei(
~kW−k1ẑ−~k+~kR)·(~rj−~ri) (3.2.103)

Now we approximate Γeg/Γ ≈ 1/2 and neglect the pattern of dipole radiation, considering
it isotropic, which is equivalent of doing cos2 θ ≈ 1 in the integral. With this we have

χi = 1 +
3

8π

∫ ∫
dϕdθ sin θ

∑
j 6=i

ei(
~kW−k1ẑ−~k+~kR)·(~rj−~ri), (3.2.104)

where we have already used ~kW = −~kR and k1 ≈ k. Let us note now that we can write
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dΩ = dϕdθ sin θ =
dqxdqy
k2

, (3.2.105)

with ~q the component of ~k perpendicular to the Z axis. Using 3.2.105 and assuming the
constraint k2 = q2

x + q2
y + k2

z , Eq. 3.2.104 becomes

χi = 1+
3

8πk2

∫ k

−k
dqx

∫ √k2−q2x

−
√
k2−q2x

∑
j 6=i

[
ei(−kẑ−qxx̂−qy ŷ+

√
k2−q2x−q2y ẑ)·(~rj−~ri)

+ ei(−kẑ−qxx̂−qy ŷ−
√
k2−q2x−q2y ẑ)·(~rj−~ri)

]
(3.2.106)

where we use that each pair of values (qx, qy) implies in two possible values for kz :

±
√
k2 − q2

x − q2
y. We now introduce the atomic density function

ρ(~r) =
N

(2π)3/2W 2L
e−(x2+y2)/(2W 2)e−z

2/(2L2), (3.2.107)

Which describes an atomic ensemble with atoms distributed in Gaussian modes of width
W in the X, Y directions (given by the width of the detection mode φ1) and length L in
the direction Z (given by the total length of the ensemble). From that atomic density,
Eq. 3.2.106 can be written as

χi = 1+
3

8π12
k

∫ k

−k
dqx

∫ √k2−q2x

−
√
k2−q2x

dqy

∫
d3~rρ(~r)e−i[qx(x−xi)+qy(y−yi)]

×
[
e−i(k−

√
k2−q2x−q2y)(z−zi) + e−i(k+

√
k2−q2x−q2y)(z−zi)

]
. (3.2.108)

using ∫
dse−s

2/(2ω2)e−iqs

(2π)1/2
= ωe−ω

2q2/2, (3.2.109)

we get therefore

χi = 1+
3N

8πk2

∫ k

−k
dqx

∫ √k2−q2x

−
√
k2−q2x

dqye
−W 2(q2x+q2y)/2ei(qxxi+qyyi)

×
[
e−L

2
(
k −

√
k2 − q2

x − q2
y

)2

/2ei(k−
√
k2−q2x−q2y)zi

+ e−L
2
(
k +

√
k2 − q2

x − q2
y

)2

/2ei(k+
√
k2−q2x−q2y)zi

]
. (3.2.110)

Typical values for the quantities k,W and L for atomic systems used in quantum memories
are k ≈ 107m−1, W ≈ 100µm = 10−4m and L ≈ 1mm = 10−3m. From there we see that
the function e−W

2(q2x+q2y)/2 has a width 1/W � k in qx and qy, so that the integrals in
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those quantities can be extended to −∞ and +∞. We can still approximate

k −
√
k2 − q2

x − q2
y ≈

q2
x + q2

y

2k
,

k +
√
k2 − q2

x − q2
y ≈ 2k,

and rewritre 3.2.110 as

χi = 1+
3N

8πk2

∫ ∞
−∞

dqx

∫ ∞
−∞

dqye
−W 2(q2x+q2y)/2ei(qxxi+qyyi)

×

[
e−L

2(q2x+q2y)2/(8k2)ei(q
2
x+q2y)zi/2k + e−2L2k2︸ ︷︷ ︸

0

e2ikzi

]
. (3.2.111)

In addition to the fact that the second term in the second line of Eq. 3.2.111 is
zero, note that 1/W 2 �

√
2k/L, so that the width of the function e−W 2(q2x+q2y)/2 is much

smaller than the width of the first term in the second line of 3.2.111. With this, we can
approximate

e−L
2(q2x+q2y)/(8k2)ei(q

2
x+q2y)zi/2k ≈ 1

in the integral. Equation 3.2.111 then reads

χi ≈ 1 +
3N

8πk2

∫ ∞
−∞

dqx

∫ ∞
−∞

dqye
−W 2(q2x+q2y)/2ei(qxxi+qyyi)︸ ︷︷ ︸

2π/W 2e−(x2
i
+y2
i
)/2W2

⇒ χi = 1 +
3N

4W 2k2
e−(x2i+y

2
i )/2W 2

(3.2.112)

Finally, defining [145]:

χ = 〈χi〉 = 1 +
3N

4W 2k2

[
1

N
·
∫
d3~rρ(~r)e−(x2+y2)/2w2

]
︸ ︷︷ ︸

1/2

⇒ χ ≈ 1 +
N

2W 2k2
. (3.2.113)

An important point to note in this expression is the independence of χ on L, typical of
a superradiant emission from a cigar-shaped ensemble. Optical depth (OD) is defined
as the natural logarithm of the ratio of incident to transmitted radiant power through a
material. From an experimental point of view, as we have N ∝ OD. In this way, optical
depth parameterize the modification of χ in the sample.
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3.2.8 Next step

As discussed above, there is already a fairly well-established technology for the study
of quantum memories of a single photon. In addition there are some works involving
fundamental studies on the quantum nature of superradiance in the reading process, at
least for the regime of a single excitation [146,148–150].

However, if we look again at the need for quantum repeaters in the context of im-
plementing a real quantum network, we see that there are a number of other challenges
to overcome. There are reviews [151–155] devoted to explaining which the main ideal
characteristics are to have different quantum memories to execute all type of tasks in an
ambitious picture of a general quantum communication. Characteristics such as efficiency,
fidelity, bandwidth, storage time and number of excitations are the most frequent in the
debate. Depending on the platform used, that is, type of atomic medium and trapping
mechanism, etc., different quantum memory models have proven to be better or worse in
different aspects. It is always interesting that one platform presents the greatest versatility
in terms of these characteristics. Until now the DLCZ scheme has always been exploited
in the single photon regime. However, in principle this is not an inherent limitation. In
fact, other numbers of excitations [156] are deliberately excluded, either by simplicity, to
model the phenomena, or by the low probability that would lead to large measurement
times. In the following chapters, we are interested in studying the phenomenon of super-
radiance in the 2-photon regime, under conditions practically identical to those that have
already been applied to a single excitation in various articles [146,148–150,157,158]. We
thus demonstrate that the DLCZ scheme is a more versatile alternative than what has
been done so far, at least in its multiple-excitation storage feature.
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4 Experimental apparatus

The mechanisms of neutral atom trapping use the interaction of an atom with a laser
beam, with a static magnetic field, or a combination of both [159]. A single laser beam
can be used to trap atoms through the dipolar force, proportional to the intensity gradient
of the beam. On the other hand, a single static magnetic field can also be used to trap
atoms through the interaction between the field and the magnetic dipole moment of the
atom [160]. However, optical traps as well as magnetic traps suffer some limitations. They
are extremely inefficient without some other prior cooling mechanism to help load colder
atoms into the trap.

This problem is usually solved thanks to the magneto-optical trap (MOT) (see exam-
ples in [161–163]). This is a very efficient technique to produce a dense ensemble of cold
atoms that can be used in a variety of atomic physics experiments [164,165]. The magneto-
optical trap consists of six circularly polarized laser beams, as in a three-dimensional array
of optical molasses, in combination with a magnetic field, and was originally demonstrated
by Raab et al. [166].

In the MOT region, an atom experiences a force typical of a damped harmonic oscil-
lator, due to the optical molasses forces created by the intersection of the cooling laser
beams. It occurs by detuning the laser beam to a frequency smaller than the resonant
frequency (also known as red detuning), since laser light is only absorbed if the light is
frequency up-shifted by the Doppler effect, which occurs whenever the atom is moving
towards the laser source. Then, for total confinement we need lasers in any set of three
orthogonal directions. As an atom at room temperature has many thousands times the
momentum of a single photon, the cooling of an atom must involve many cycles of ab-
sorption and spontaneous emission, with the atom losing up to èk of momentum in each
cycle. Because of this, if an atom is to be laser cooled, it must have a specific energy level
structure known as a closed optical loop, where after an excitation-spontaneous emission
event, the atom always returns to its original state. Sometimes either the atom doesn’t
contain closed optical loops or we are interested in certain levels of its energy structure
that makes the atom to decay to a "dark" state, which would stop the cooling process.
However, this atom can also be laser-cooled by using a second laser beam that re-excites
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Figure 13: A conceptual scheme for a general one-dimensional MOT with two counterpropagating beams
with frequency ω and circular polarizations σ+ and σ− are shown. The separation between the Zeeman
sub-levels mF of the hyperfine energy level F ′ = 1 increases proportional to the magnetic field B, this
field increases linearly from z = 0 in the positive and negative Z-axis directions.

the population back to the optical loop after it has decayed to an out-of-cycle state. This
is called a repumping laser.

On the other hand, the magnetic field varies linearly causing a Zeeman shift in the
magnetic-sensitive levels. This magnetic field increases with the radial distance from the
center of the trap, so that as an atom moves away from the center of the trap, the atomic
resonance moves closer to the frequency of the trapping light, beacuse of the doppler
effect, and the atom becomes more susceptible to interact with a photon in the direction
towards the center of the trap, as depicted in Fig. 13. In this way, the magnetic field
together with the optical molasses provides the restoring force to confine the atoms at
the zero point of the magnetic field. The MOT is highly robust and insensitive to power
imbalances between different laser beams.

In short, we know that a MOT must have, in general, 3 basic components already
mentioned above, i.e. atoms, cooling lasers and a magnetic field. A fourth condition
is the vacuum, since the trapping potential is small in comparison to the thermal ener-
gies of atoms at room temperature and most collisions between trapped atoms and the
background gas supply enough energy to the trapped atom to kick it out of the trap.
Finally, in some cases, like the one in this thesis, it will be necessary to incorporate a fifth
component, the repumping laser to return the population of atoms to the optical cycle.

The experimental setup used in this thesis follows the standard of several experiments
performed for fundamental studies in the DLCZ scheme in the literature [113, 125–131,
144, 146, 167–172]. In particular, some modifications have been made with respect to
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the traditional one in the stage in which the superradiance of two photons emitted in the
reading process is studied. The core of the experiment is a magneto-optical trap of neutral
atoms of 87Rb. In this chapter we are going to explain all the components that allow the
creation of a confined cloud of atoms, which we call "sample". In the next section we focus
on the writing and reading processes, which basically correspond to the laser system with
which the sample is illuminated in the experiment, giving rise to the interaction between
light and atoms. In this section we will also detail not only the spatial distribution of
the write and read pulses, but also delving into their temporal configuration. From the
write and read pulses, fields 1 and 2 are generated, respectively, which lead to the need
to explain the detection scheme, i.e. the photo-counting of these 2 fields. We emphasize
the modifications made to the scheme, when we go from the regime of a single-photon
to the one of two photons stored. In the latter, higher order correlations are required,
and therefore a higher number of detectors. To increase the number of detectors in the
reading process, a time-multiplexed detector (TMD) system is set up, in which 2 APD’s
can be exploited as 4, in the time domain.

4.1 Creation of the atomic ensemble

In this section we are going to explain the processes involved in the formation of a cloud of
atoms by a MOT. First we detail the energy structure of any general Hydrogen-like atom,
and particularly our Rb atom, and how the polarization scheme is related to it. After
that we describe the principal parts of the setup related to the creation of the ensemble
of atoms, and how they are combined to operate as a MOT.

4.1.1 Structure of energy levels

Let’s start with a simplified model of a hydrogen-like atom where we will only take into
account the structure due to the main quantum number n and orbital angular momentum
`.

Here the notation we use is n`, where n is related to the potential energy of the electron
with respect to the nucleus, and ` is the azimuthal quantum number that relates to the
shape of the electronic orbitals and we find that for a level n there are n possible values
of `, counting from 0 to n− 1. In spectroscopic notation for ` = 0 we use s, for ` = 1 we
denote p, d for ` = 2, f in case of ` = 3 and for the rest we continue alphabetically from
g onwards (see Fig. 14).

This simplified model can take many corrections, but here we focus on 3 main correc-
tions, adding the spin of the electron, the spin of the nucleus, and an external magnetic
field.
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Figure 14: Levels from principal quantum number

Figure 15: Fine structure of 87Rb, example of levels 5s and 5p. When introducing the spin of the electron
only 5p is going to split in two fine levels.

Introducing the electron spin

The orbital motion of the electron around the nucleus results in an effective magnetic
field acting over the electron. Since the electron has an intrinsic magnetic moment, the
energy levels that we were considering in the section above will be altered depending on
whether the electron is aligned with this effective magnetic field or if it is in the opposite
direction. In the latter case the energy should be higher.

This consideration gives rise to the so-called fine structure, where the levels with ` 6= 0

are affected because they have a magnetic nature. Its name comes from the fact that the
involved energy differences are very small.

The notation here is the "modified spectroscopic notation" or "Russel-Saunders nota-
tion", which labels energy states as 2S+1LJ with, in our case S = 1/2 being the spin of
the single optical electron. In this way, the superscript will be 2 in our entire structure.
L represents the orbital angular momentum in spectroscopic notation with the difference
that now it is in capital letters, and finally J corresponds to the total electronic angu-
lar momentum that can vary from |L− S| to |L+ S|, which will be our new degree of
freedom.
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Figure 16: Hyperfine structure of levels 5s and 5p. We see that 5s turns into two hyperfine levels and 5p
into 6 hyperfine levels.

Introducing the nuclear spin

Now we move on to a new level unfolding scale, which involves the addition of the nuclear
spin, forming a new quantity we call "total magnetic momentum" F = I + J , which
maintains a close analogy to the fine structure. Now our degree of freedom varies from
F = |I − J | to F = |I + J |. It is called hyperfine structure and its name is due to the
fact that the levels are even closer than in the case of the fine structure.

It is interesting to observe a specific case to have a better intuition of what happens.
We take 87Rb, where I = 3/2, and in Fig. 16 we see that for 5s the fine structure
52S1/2 does not present unfolding as opposed to its hyperfine structure that has 2 levels
F = 3/2 − 1/2 = 1 and F = 3/2 + 1/2 = 2. In the case of 5p, we see 6 hyperfine levels,
the 2 first levels come from the fine level 52P1/2, where we have J = 1/2, with a hyperfine
spectrum of F = 3/2−1/2 = 1 and F = 3/2+1/2 = 2 . On the other hand we have 52P3/2

with J = 3/2, which leads to F = 3/2− 3/2 = 0, F = 3/2− 1/2 = 1, F = 3/2 + 1/2 = 2

and F = 3/2 + 3/2 = 3, as shown in figure 16.

Introducing an external magnetic field

Our last consideration to the energy structure of hydrogen-like atoms involves the appli-
cation of an external magnetic field. Under the action of this external field, the atom will
suffer what is known as the "Zeeman effect", which is an effect analogous to that of fine
and hyperfine structures, but has an external origin. In this case, the energy dislocation
for the different Zeeman levels, Ez, is

Ez = gFµ0BM,

where the magnitude of the applied magnetic field is B, µ0 is the Bohr magneton and
gF is the Landé g factor. M is known as the projection number, which is the degree of
freedom in this structure. It is important to mention that gF is different in each hyperfine
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Figure 17: Zeeman structure for Rb, levels 52S1/2, 52P1/2 and 52P3/2. It presents 8 Zeeman levels for
52S1/2, 8 for 52P1/2 and 16 for 52P3/2.

level

gF = gJ
F (F + 1) + J (J + 1)− I (I + 1)

2F (F + 1)

where

gJ = 1 +
J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)

Here, for a hyperfine level F , these are 2F + 1 possible Zeeman levels, ranging from
M = −F to M = F , always passing through zero, so that in the example mentioned
above, there will be 5 Zeeman levels for F = 2 and 3 Zeeman levels for F = 1. See Fig.
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Figure 18: Hyperfine picture of λ configuration. In left panel, selected hyperfine levels to be used in
configuration.

mF = −1 mF = 0 mF = 1

σ+
√

1/24
√

1/8
√

1/4

π −
√

1/8 −
√

1/6 −
√

1/8

σ−
√

1/4
√

1/8
√

1/24

Table 1: Dipole matrix elements for transition F = 1→ F ′ = 2

17 for complete Zeeman structure of levels 52S1/2, 52P1/2 and 52P3/2.

Zeeman structure for the experiment

The Λ configuration of atoms of our experiment has two fundamental levels g and s and
one excited e, which are those shown in figure 18. As explained above, this description
corresponds to the hyperfine structure which still comprises some level degeneracy. As
seen in the previous examples, in fact, this Λ configuration is actually a family of Λ

configurations when the Zeeman structure is taken into account.
We must also regard the polarization of the lasers, since it determines the possible

transmitions between Zeeman sub-levels. The elements of the dipole matrix [173] for the
transition F = 1→ F ′ = 2 are given in table 1 and for the transition F = 2→ F ′ = 2 are
given in table 2. We see that for right-handed circularly polarized light, σ+, there is a case
F = 2,mF = 2→ F ′ = 2 that no value appears on the table. This occurs because there is
no level to connect with F = 2,mF = 2 in which m′F = mF +1, which is required for a σ+

transition, since we are at the highest Zeeman level of the fundamental state. Similarly,
for the fact that we have no value for the σ− transition F = 2,mF = −2 → F ′ = 2. To
calculate these matrix elements, it is useful to factor out the angular dependence and write
the matrix element as a product of a Clebsch-Gordan coefficient and a reduced matrix
element, using the Wigner-Eckart theorem [173].
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mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

σ+
√

1/12
√

1/8
√

1/8
√

1/12

π −
√

1/6 −
√

1/24 0
√

1/24
√

1/6

σ− −
√

1/12 −
√

1/8 −
√

1/8 −
√

1/12

Table 2: Dipole matrix elements for transition F = 2→ F ′ = 2

Figure 19: DLCZ scheme with linear polarizations. Write and Field 2 have vertical polarization, Read
and Field 1 have horizontal polarizations. Field 1 and Field 2 have orthogonal polarizatons and are
conjugated modes of a four-wave mixing process.

Linear Polarization

Consider the case where the write, read, field 1 and field 2 polarizations are all linear as
shown in Fig. 19.

Here the write beam has vertical polarization and read laser has horizontal polariza-
tion, while field 1 and field 2 are detected, by means polarizers, in polarizations orthogonal
to them, respectively. The diagram of levels of the Λ configuration will be unfolded in
Fig. 20. Note that if a vertical polarization induces π transitions, then the horizontal
polarization induces σ+ and σ− transitions.

We see that the elements of the dipole matrix are different for the read frequency on
the different FWM processes. Thus, in the wave packets, we may have different Rabi
frequencies and a beating between them. As this situation is not ideal we consider now a
scheme using circular polarizations.
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Figure 20: Λ configuration considering the Zeeman structure for linear polarizations.

Figure 21: DLCZ scheme with circular polarizations. Write and Field 2 have Right-handed cricular
polarization, Read and Field 1 have Left-handed cricular polarization. Field 1 and Field 2 have orthogonal
polarizatons.

Circular polarization

In the experimental setup shown in Fig. 25, with which the final superradiance mea-
surements were made, we have the polarization scheme presented in Fig. 21. In this
case we see that the write and field-2 transitions employ right-handed circularly polarized
light (σ+), which largely limits the transition possibilities we had before. On the other
hand the read beam and field 1 employ left-handed circularly polarized light (σ−). It is
important to note that the polarizations of both field 1 and field 2 are defined by con-
struction, through polarizers placed in the detection channel. Considering all the above,
the Λ scheme of levels turns into that shown in Fig. 22.

As we know that Rabi frequency is proportional to the dipole matrix element in each
transition, we see that the 2 FWM processes that we have in Fig. 22, generate 2 different
Rabi frequencies in the read process, with a possible beat between them. It is then
necessary to use some method to simplify the model: this is the optical pump presented
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Figure 22: Λ configuration considering Zeeman structure for all possible circular polarizations, not only
the 2 FWM processes we are interested in.

in section 5.3.

4.1.2 Atom source

As a source of atoms we use a rubidium dispenser (Alvatec AS-Rb-60-S) consisting of
a small stainless steel tube filled with 60 mg of rubidium metal. The tube is crimped
closed at one end, and the other end is sealed by an indium plug since alkali metals
are highly reactive. Flattened tags are provided at each end for mounting and electrical
connection. With the indium seal intact, the dispensers can be easily handled under
ambient conditions. Once mounted in the cell and under vacuum, the dispenser is heated
by passing an electrical current through the steel tube. During a preliminary activation
step, the dispenser is heated until the indium seal melts. After activation, passing a larger
current through the dispenser causes the rubidium to evaporate and a broad, weakly
collimated atomic jet is emitted from the unsealed end.

4.1.3 Lasers: Doppler cooling and repumping

In order to generate the cooling and the repumping beams we used two diode lasers,
so-called TICO and TECO, respectively. The diode lasers used in the experiment are
THORLABS DL7140-201S and emit at a wavelength around 785 nm. The power of
the TICO laser after the optical isolator is 40 mW when we supply it with a current of
approximately 100 mA, and the TECO laser, approximately 59 mW for a current of 114

mA. For the frequency stabilization of the lasers a servo lock-in circuit is used, which takes
the signal obtained in the saturated absorption experiment as a frequency reference.

The complete saturated absorption spectrum for line D2 of 87Rb and 85Rb is shown
in figure 23, where we can observe the 4 Doppler absorption wells. The TICO (cooling)
laser is locked in the cross-over Fc = 1 − 3 (between the transitions F = 2 → F ′ = 1

and F = 2 → F ′ = 3), represented by the third peak of the fourth well, with decreasing
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Figure 23: Rubidium spectrum obtained via saturated absorption measurement in a vapor cell of rubidium
atoms at room temperature. It is empoyed as frequency reference of lasers TICO and TECO, which
generate all beams of the experiment.

Figure 24: Rubidium scheme of energy levels showing transitions used for cooling and repumping lasers.
In the case of the cooling and trapping system we employ lasers red detuned from the F = 2 → F ′ = 3
transition. The repump laser is resonant with the F = 1→ F ′ = 2 transition.
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frequency. The TECO (repumping) laser was locked in the second peak of the first well,
which corresponds to the cross-over Fc = 1− 2 (between the transitions F = 1→ F ′ = 1

and F = 1→ F ′ = 2). These two beams are then tuned to the desired frequencies, using
Acoustic-Optical Modulators (AOM). We tune the cooling beams near the resonance
with the F = 2 → F ′ = 3 transition, through an AOM with a central frequency at 200

MHz which detunes the locked frequency in about 211.75 MHz. As shown in Fig. 24,
this detuning can be modified in order to produce the negative δ needed for the optical
molasses. The atoms excited to the level F ′ = 3, can only decay to the ground state
F = 2, which corresponds to a cyclic transition. However, there is a small probability for
the atoms to be excited to the F ′ = 2 level. Thus, they can decay to the fundamental
level F =1, accumulating atoms at this level, which would interrupt the cooling cycle.
This creates the need for using a repumping beam, for which we use a AOM with a central
frequency of 110 MHz in order to achieve a 78.45 MHz detuning from the frequency at
which it was locked, leaving it resonant with the F = 1→ F ′ = 2 transition.

4.1.4 Magnetic trapping

There is a pair of coils in order to generate a magnetic field gradient in anti-Helmholtz
configuration, in which the currents are running through the two coils in opposite di-
rections. Thus, we will have a magnetic field equal to zero in the center and increasing
approximately linearly in all directions in its closest neighborhood. Their diameter is
10.5 cm, being composed of 207 turns of copper wire. The current is around 4 A passing
through the coils, so we estimate a gradient of 10 G/cm in the MOT region.

Due to spurious magnetic fields from different sources, such as the earth magnetic field,
other magnetic elements within the experimental setup, or imperfections in the creation
of the magnetic field gradient, etc. we require, then, the use of a compensation-field
system capable of generating a constant field in any direction by the superposition of three
fully controllable orthogonal components. In order to find exactly the best compensation
magnetic field vector, a microwave spectroscopy experiment is performed exploiting the
Zeeman spectral splitting [174]. The compensation coils are three pairs of square coils
in Helmholtz configuration, each composed of 52 turns of 1 mm diameter copper wire.
Its size is 22.5 cm at each side. When a current of 1A passes through one pair of coils,
a magnetic field of 1 G is generated in the middle point. Each coil has an independent
current control circuit with a current stability around 1 mA, therefore the magnetic field
stability is about 1 mG.

4.1.5 Vacuum system

The potential well generated by the MOT is not very deep so that the atoms easily escape
from it. The rubidium atoms, that despite being under the influence of the cooling lasers
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and the magnetic field, can easily reach speeds sufficient to escape from the confinement
region if they collide with fast atoms of the background gas, so it is essential to find a way
to isolate them from all material medium that can influence them. From the experimental
point of view, this can mean only one thing: a sufficient level of vaccum. For this purpose,
we use a system consisting of three different pumps: an ion pump (VacIon plus 20),
a mechanical (Varian Mechanical Vacuum Pumps sd 40) and a turbomolecular pump
(Agilent Turbo V81-AG), which are connected to the vacuum chamber system. In this
system, there is also a valve separating the tube where the mechanical and turbomolecular
pumps are connected from the rest of the system. Before assembling the parts, they were
washed thoroughly with acetone and isopropanol to remove any dirt. Flanges using a
copper ring gasket were used in the fittings to join the assembly components. In this
assembly, we also coupled the dispensers (getters) of Rubidium atoms. These getters
release Rubidium atoms when a current between 4 and 8 A is applied. After complete
assembly of the system, two steps were performed to achieve the desired vacuum level of
the order of 10−8 mbar. In the first stage, we connect the mechanical pump, which initially
can reach 10−3 mbar. When the pressure reaches a suitable level, the turbomolecular
pump starts to operate automatically. This pump has a rotary turbine that is controlled
by an electric motor that reaches a speed of 81000 rpm and a pumping speed of 50 L/s
for Nitrogen. Under these conditions, the pump reaches approximately 1, 4× 10−7 mbar,
from where the ionic pump can be connected. The latter has a pumping rate of 20 L/s
for Nitrogen and a maximum initial operating pressure of 5× 10−2 mbar. The ion pump
results in a pressure of about 1 × 10−8 mbar. From that moment, the chamber valve is
closed and the mechanical and turbomolecular pumps are disconnected from the system.
The vacuum chamber for the MOT is made of glass, with dimensions of 5.5 cm in height
and 11.0 cm in diameter. The side walls have 8 windows with a diameter of 5.0 cm each.
The pressure is measured by means of the ionic pump current and it is mapped into
pressure through a chart provided in the manufacturer datasheet.

Formation of the cloud

The elements mentioned above are combined in the manner shown in figure 25. The
vacuum chamber is suspended and connected directly to the vacuum system (pumps).
The process of creating the atomic cloud begins precisely from the release of rubidium
atoms into one of the tubes of the vacuum system, nexto to the valve that maintains the
vacuum, although ionic pump remains in operation. A current of approximately 9 A is
applied over the dispensers (getters) through a feedthrough to proceed with the release
of atoms. This liberation of rubidium is going to circulate, by free diffusion, through all
the tubes that are open for circulation, arriving quickly at the glass chamber, with an
inhomogeneous concentration, since the dispenser is oriented towards the chamber and
not towards the ion pump.
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Figure 25: Experimental setup. TMD must be removed for standard DLCZ scheme.

When rubidium vapor enters the science chamber, through it there are 3 pairs of lasers
crossing orthogonally to each other near the geometric center of the chamber. These 6
lasers are arranged as counterpropagating pairs, there being 2 pairs in the horizontal plane,
each of them with a power around 13 mW, and a pair in the vertical axis through the
large circular, upper and lower windows, with a power around 26 mW. All these powers
are attained by means a laser amplifier.

In practice, the 6 lasers are usually constructed and arranged, for simplicity, like 3
lasers retroreflected in mirrors that make them return over themselves. This arrangement
usually presents the problem that the reflected beam carries the shadow produced by the
cloud of atoms, although this drawback is more critical when working with high optical
depths. During the development of our experiments we started with the basic scheme of 3

retroreflected beams. However, the optical depths measured was limited to 2, mainly due
to the lack of independence in the directions of the beams. Another reason that explains
the problem of not reaching sufficiently high optical depths was the unbalance of the
powers, since the reflected beams not only carries the shadow, but also were attenuated
by the diverse losses in transmissions and reflections in the system. In a second stage we
decided to replace the arrangement of the trapping beams in the horizontal plane. In the
new configuration, the beams of the horizontal plane are now independent of each other,
and only the vertical axis remained retroreflected. In order to obtain the 4 beams for the
horizontal plane, it was necessary to divide the old retroreflected lasers with a polarizing
beam splitter (PBS) cube prior to arrival in the vicinity of the chamber. The transmitted
beam is carried to one of the windows of the science chamber, while the reflected beam
goes to the opposite window. The disadvantage of this scheme is that the powers are
now about half of the originals. Under this configuration, the optical depth has reached,
without much difficulty, values greater than 3. However, the new limitation is now the
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Figure 26: Experimental setup for the magneto-optical trap.

power because it is important to achieve a tighter confinement, so it was not possible to
reach OD = 4. The measurements of OD were made through the absorption of light at
resonance.

Figure 26 shows that the 4 beams of the horizontal plane, actually come from 2 beams
through PBS cubes, as explained above. However, these 2 beams, in turn, come from the
2 outputs of a beam splitter in fiber, whose two inputs are, on the one hand a laser tuned
at the cooling frequency and, on the other input, the repump laser. In this way we see
that the repump is going to be involved in the 4 beams of the horizontal plane, all being
bichromatic.

So far we have described the arrival of the atoms in the region where the laser beams
cross one another. Considering only these elements, what we have is a very small region
of the atomic vapor where the atoms have slowed their speed. The 3 pairs of detuned
lasers, via Doppler effect, produce an effective viscous frictional force on the atoms (optical
molasses). Then the magnetic field comes into play. As described above, through 2 coils
in anti-Helmholtz configuration, we generate a magnetic field gradient, with zero field
just in the center of the intersection of the lasers. Thanks to the presence of the field,
atoms become sensitive to polarization, either to the right-handed circularly polarized
light, σ+, or left-handed circularly polarized light, σ−, of the lasers that illuminate them
(Zeeman effect). Like each pair of counterpropagating lasers consists of a laser with
polarization σ+ and the other with σ−, then those atoms (slowed by the molasses) that
travel away from the center of the trap, feel a magnetic field that increases linearly, at
least in the neighborhood of the cloud. As the magnetic field grows, the Zeeman sub-
levels become more and more separate. On the other hand, by doing a one-dimensional
analysis, these atoms are still illuminated by two lasers (one in each direction); however,
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the laser propagating in the same direction as the atom is no longer of interest in our
model, since its Doppler frequency decreases and it goes further away from the resonance
than it already was because of the detuning. Let us now concentrate on the laser that
propagates opposite to the direction in which the atom travels. If this laser is σ+, then the
atom will only have the ∆mF = 1 transition available. Since the Zeeman levels separate
in energy proportional to the distance due to the magnetic field, it is enough that the
atom moves away from the center of the trap so that the frequency of the transition tunes
to the frequency of the laser and produces the absorption of a photon, and an exchange
of momentum. If this happens many times in each atom, the net effect will be that of
a restoring force that increases linearly with distance, similar to the case of a simple
harmonic oscillator.

4.2 Experimental setup for the write-read process

Now we have prepared a sample of cold atoms. What we need to do is to turn off all the
elements that allowed us to create the ensemble and perform the writing process, with its
simultaneous detection of field 1, as well as the subsequent reading process accompanied
by the detection of field 2. This process is very fast, write and read can be done in less
than 1 µs, and on the other hand, the atoms in the cloud, comparatively, are very slow
to leave the trap region, thus allowing us to make several repetitions of the write-read
process before the cloud disappears. Below we detail the timing of the pulses.

4.2.1 Setup

Let’s start with the explanation of the spatial distribution and polarizations of the pulses
involved in the process. For simplicity we say that the pulses involved are 5, although in
fact 2 of them are spontaneous photons emitted by the atoms themselves. These 5 pulses
are, optical pumping, write, field 1, read and field 2.

As can be seen in figure 25, the optical pumping (OP) comes from an optical fiber
that passes through an intensity modulator to perform its time-switching. It then passes
through a PBS cube that cleans its polarization, leaving it as linear (horizontal). In a
first stage its polarization is rotated to vertical through a half-wave plate, and then passes
through a quarter-wave plate that turns it circular (σ−) inside the science chamber. As
soon as it leaves through the other window, it passes through another λ/4 plate which
makes its polarization horizontal. It propagates through the free space approximately 50
cm and passes through another λ/4 plate, being reflected in a mirror and finally going back
through the same λ/4 plate, so that the double pass acts as an effective λ/2 plate. The
OP beam has been aligned so that it returns over itself in order to reduce the mechanical
effect over the atoms. The beam passes back through the same optical elements, although
this time, as is obvious, in reverse order, generating thus a σ− light in opposite direction
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over the ensemble of atoms.
The write beam is born from the same end of the optical table as the optical pump

with horizontal polarization, opposite to the OP. Until reaching the ensemble of atoms, it
passes through the same optical elements so that its polarization in this direction is σ+,
although they have an angle of approximately 3º among them. Once on the other side of
the chamber, the write beam also becomes horizontal and couples in the read optical fiber,
thus ensuring the mode coupling between read and write (coupling efficiency∼ 80%). The
write beam focused by a lens of focal length 1 m is used near its exit from the optical
fiber in order to smoothly focus the beam in the region of the MOT with a diameter of
approximately 420 µm. The Rayleigh lenght is approximately 17 cm, which guarantees
that, at least in the MOT region, the beam is practically collimated and Gaussian. For
its part the OP has no lens and is noticeably wider than the write beam, thus covering
almost the entire atomic cloud that has a diameter around 1 mm.

Field 1, although ultimately a field born in the atomic cloud, is going to be coupled in
an optical fiber and detected. We need to define and characterize it. To do this we place a
laser beam in the opposite direction, that is, we use the optical fiber with which we collect
field 1 to emit a laser beam. With this beam, in the opposite direction, we can make the
relevant alignments, and determine its waist and position within the cloud. As can be
seen in figure 25, we have that this field is born in the atoms and detected with an angle
of 3o, and opposite polarization to the write laser, i.e. σ−, then passes through a λ/4 plate
close to the window where it leaves the science chamber, becoming vertically polarized. It
is interesting to mention that the 3o angle is defined for experimental simplicity since the
emission is generated in all directions. In the next stage, it is reflected perpendicularly
to take away from the transmitted write beam and avoid contamination, despite being in
opposite polarizations. Finally it is passed through another λ/2 plate which turns it into
horizontal polarization, the polarization is cleaned via 2 PBS and it is finally coupled in
the optical fiber that will take it to the detection system.

The test laser for alignment serves to determine the collimation that is wanted to have
at the center of the MOT. Through a lens of focal length of 1m also, we get a diameter
of field 1 of approximately 150 µm. The reason why this waist is smaller, having used a
lens similar to the one of the write beam, is because the diameter of the beam before the
lens is greater in the case of field 1.

The read beam, as in the case of the OP, first passes through an on-fiber intensity
modulator, which is responsible for its switching. It then passes through 2 PBS cubes and
reaches a λ/4 plate, which is responsible for converting its original horizontal polarization
into σ−, with which the atoms are illumminted. Once on the other side of the MOT, this
beam becomes vertically polarized by the λ/4 plate on the other side of the chamber.
Then it passes through a λ/2 plate that leaves it with horizontal polarization, passes
through 2 PBS cubes and is coupled in the optical fiber that emits the write pulse with
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good efficiency, to guarantee the mode coupling.
Finally, the field 2 pulse is born in the atoms with polarization σ+. Thanks to the λ/4

plate that is just at the exit of the chamber, its polarization becomes horizontal. Then
it goes through a λ/2 plate that leaves it with vertical polarization. It is then reflected
perpendicularly to separate from the read beam. Once away from the read laser optical
axis, it is passed through another λ/2 plate that converts it to horizontal polarization,
and then enters a polarization filter. The polarization is filtered through another set of
2 PBS cubes. Finally, this field is coupled in a optical fiber to guide to the detection
system. The read and field-2 pulses have the same alignment and collimation process as
the write beam and field 1, respectively, as detailed above, generating the same waists
and positions in the cloud.

Detection system

When the photons in fields 1 and 2 are coupled in the optical fibers, they enter directly
into one of the two arms of a single mode on-fiber beam splitter, while the other arm
is unused and is covered to avoid contamination by spurious light. The beam splitter
outputs have approximately the same power, for both the beam-splitters of fields 1 and 2.
These beam-splitter arms are connected directly to an APD. Therefore we have 4 APD’s in
total, 2 for field 1 and 2 for field 2. The APD’s are turned on and off through a logic pulse
that is generated by an Arduino board. This pulse, which will be explained in more detail
below, remains on for approximately the time the trapping lasers are off, so that the APD
is ready to detect the approximately 1000 write and read trials. The APD’s also have an
output, which is a TTL logic pulse. Each output pulse of the APD corresponds to a photon
that fired it. This electronic signal then passes through a TTL-NIM converter and then
enters a photo-counting board. The converter is necessary since the board only receives
the NIM (Nuclear Instrumentation Module) standard, also known as fast logic standard,
a current-based logic with negative true, commnonly used in experimental particle and
nuclear physics. The board used is FAST ComTec model MCS6A. Its temporal resolution
is 0.1 ns, in the mode of operation employed in our experiments, and through it we
can have the complete record of everything that happened during the experiment. In
order to avoid storing more information than necessary, as the APD’s are continuously
on throughout the pulse train, it is necessary to remove the photocount information in
the periods when no photons are expected coming from fields 1 or 2, which actually is
most of the measurement time. For this purpose the electronic signal coming out of
the APD’s passes through an electronic switch, which is also controled by the Arduino
board. Finally what we get is a computer file that contains all the information of the
experiment encoded as a list of numerals in hexadecimal language. This file is decoded
and analyzed by programs home-made specifically for these tasks, extracting both the
general statistics of how many pulses were counted in each APD, as well as the histogram
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Figure 27: Timing for DLCZ scheme experiment, for both single-photon and two-photon generation.

as a function of the time of the singles (one click), doubles (2 APD’s clicks), triples (three
clicks) or quadruples (all APD’s clicks). The most important thing is that, from this file,
it is possible to get all the information to plot the wave packets we want, or any other
parameter that we want investigate a posteriori.

In a second phase of the experiment, when we want to detect the generation of 2

photons in field 2, it will be necessary to make some modifications. Basically the simplest
would be to place 4 APD’s in the fiber that couples field 2, using a pyramidal array of
3 on-fiber beam splitters, i.e. 2 beam splitters connected to the outputs of a third beam
splitter. However, another equivalent approach is the use of a Time-Multiplexed Detector
(TMD), which is basically a modified on-fiber beam splitter, where one of the output arms
is elongated by, in our case, ∼ 20 m, then recombine both arms until the two outputs are
again opened. In this way two simultaneous pulses are to be, with certain probability,
temporarily separated, and thus with only 2 APD’s we can access the capabilities of a
system of 4 effective APD’s in a totally equivalent way, with smaller efficiency, though,
see Fig. 25 and its inset. The fact of needing 4 APD’s, when we are only interested in a
maximum of 2 clicks on field 2, is to analize the suppression of the 3-photon component.
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4.2.2 Pulse system

The experiment is carried out in a pulsed manner, similar to the presented in [66], i.e. a
sampling of write and read pulses is repeated several times in a very short time interval
in order to achieve sufficient statistics on the experimental results, see figure 27.

Switching is performed on two time scales, which we call fast switching and slow
switching. In the fast one we have the generation of a train of short pulses, in groups of
3 pulses, which are repeated a thousand times within a range of 1ms. In slow switching
we have 4 quasi-simultaneous pulses that are repeated at a rate of 40 Hz.

It is worth noting that the fast pulse train fits entirely within a small portion of the
slow switching, so we see that fast pulses are not uniformly distributed over time as the
slow pulses are.

Slow switching

Slow pulses control the trapping lasers, the magnetic field, the APD pulses and the repump
laser. Next we detail the functioning of each one of them.

• Trapping lasers and magnetic field

As discussed above, for the conformation of the cloud of atoms it is necessary to create a
MOT. Two essential components are the trapping (cooling) lasers, as well as the magnetic
field.

Since the realization of our experiment must be in absence of these two factors because
they introduce decoherence to the system, we need to turn them off for a period of time
long enough to perform all possible sampling before the cloud expands apreciably and
then restart the MOT for another period to recover the cloud and repeat the cycle once
again.

The time interval in which the trap is off must be short enough to prevent the escape
of a significant number of atoms from the region of interaction with the trapping beams.
Then we must determine the longest time that a peripheral atom needs to cross the inter-
action region of the MOT. Considering the temperature of the MOT as 1 mK, according
to the Maxwell-Boltzmann distribution the mean velocity of the atoms is around 30 cm/s,
so the atoms will take approximately 3 ms to cross the trap region of diameter 1 mm,
which is even considerably smaller than the cloud dimensions. Therefore we need to make
sure that the MOT must be turned off over a period of time less than 3 ms, so that almost
none of the initially trapped atoms will be able to get out of the interaction region. In
view of the above, we decided to use a 2 ms interval with the trap off and 23 ms with the
trap on, giving a total period of 25 ms, i.e. a slow frequency of 40 Hz. These times are
valid for both the cooling lasers and the magnetic field .

• Repump
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In order to make the molasses we use the trapping lasers slightly detuned (∼ 20 MHz).
This detuning, on the other hand, generates the possibility of populating not only the
level F ’=3, but also the level F ’=2. Once an atom is in F ′ = 2, it can spontaneously
decay to F = 2 as well as to F = 1 (see figure 24). If it decays to F = 2 there is no
problem, because it will be back to the optical cycle of cooling again. However, if it falls
to the level F = 1, these atoms will no longer be able to get out of there simply through
the cooling lasers. Then, it will be necessary to "repump" them back into the optical
cycle. That’s when the repump laser comes in acting on the transition F = 1 −→ F ′ = 2.
Its switching will be very similar to that of the trapping lasers and magnetic field, except
that in this case we leave the repump on for 900 µs after turning off the other pulses
so as to ensure that once the optical cycles are finished, all the atoms that have been
accumulated in F = 1 can return to the excited state F ′ = 2.

• APD Pulse

Our system of detection of fields 1 and 2, generated from the write-read process, is per-
formed through ultra-sensitive Avalanche Photodiodes (APD). In this way, as the fast
pulse train acts while the MOT and repump are off, it is necessary to have the detectors
on during this time period. The APD’s are turned on 50 µs after the repump is switched
off and are turned off 50 µs before the repump and the MOT are turned on again. The pe-
riod of time while the APD’s remain on is 1 ms and being sufficient time for the complete
train of fast pulses. As each trial (made of three different pulses) has an approximate
duration of 1 µs , we can estimate that we will have about 1000 fast trials in each train
within the period in which the APD’s are on. Once the pulse train is complete, the APD
pulse is turned off and remains off for the remaining 24 ms.

Fast switching

In a first round of measurements we realized that our wave packet for field 2, did not show
sharp Rabi oscillations. After several measures to solve this problem we ended up finding
that the problem was because the read pulse and optical pump were rising very slowly
since they used to be switched on by acusto-optical modulators (AOM), with minimum
rising time of 20 ns. To solve this problem, two fiber-coupled intensity modulators (IM)
were added to the scheme, in addition to the AOM’s, so read and optical pump lasers
now are switched twice. IM’s are much faster, indeed they operate within the duration of
AOM pulses. In this way, in the remainder of this section, when we talk about the read
and OP pulses, we are referring to the IM’s switching.

Fast switching consists of two time periods, during the first one, the pulses remain
off for 24 ms and during the second interval, there is a pulse train that lasts 1 ms.
Approximately, fast switching has the inverse behaviour of the APD slow pulse.
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The pulses that make up the fast switching are 4: optical pump, write, read and start
pulse. However, hereinafter we will talk about a trio (or simply trial), since the start
is just an electronic reference pulse and do not control any laser. This trio of pulses is
performed in sequence within a period about 1 ms, then this trio is repeated again to
complete about 1000 trials. Next we will detail how each pulse works.

• Optical pump pulse

As already explained in subsection 4.1.1, there are many Zeeman levels in the same
configuration of the atoms under study. This is, basically, because the configuration
is described based on hyperfine levels. As a result, more than a single Rabi frequency
may appear in the experimental results, making them harder to interpret. To solve this
problem we have added a laser, called optical pump (OP) that is going to pump the
atoms to an extreme Zeeman level, and thus no more than a single Rabi frequency will be
involved in each process. However the application of the OP can not be at any random
time, it must be performed just before the write and read lasers. On the other hand, it
can’t be switched on so close to the write pulse, otherwise the detection of field 1, which
is simultaneous with the write, can be contaminated with photons of OP. This fast pulse
will have a duration of 216 ns, has a repetition period of 1 µs , for 1000 times, and after
that it remains off for 24 ms.

• Write pulse

The write pulse turns on 105 ns after turning off the OP and has a duration of 52 ns. This
pulse is responsible for turning on and off the AOM that tunes the frequency of the write
laser. When the write pulse is turned off, we let 202 ns pass before continuing with the
next pulse corresponding to the read pulse. Almost simultaneously with the arrival of the
write laser on the cloud, we detect spontaneously emitted photons from the excited state
in which the atoms are. This field 1 is to be detected by the APD’s, which as explained
above, are switched on throughout the pulse train. In order to the photo-counting board
not to accumulate too much information, we apply electronic switches to the photo-counts
emitted by the APD’s, in such a way that these switches will only let pass the counts in
the intervals in which the switch is on, and will show zero counts in the periods when it is
off. These switches will be also controlled by rapid pulses that basically cover the sensing
regions of field 1 (and also of field 2). The pulse that controls the electronic switch of
field 1, has a duration of 132 ns.

• Read pulse

The read pulse turns on 202 ns after the write pulse is turned off, although this time could
be much longer if the quantum memory properties of the system were to be exploited (up
to µs), however it wasn’t explored in this thesis. The reading pulse duration is 191 µs
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and, once it is turned off, the three fast laser pulses are left off for a sufficient time for the
period to be 1 µs . This means that after the reading pulse is turned off, it will remain off
by 234 ns until we meet the next OP pulse. Similar to the case of the write pulse, here we
will have the generation of field 2 simultaneously with the read pulse, so that its detection
by the APD’s will be guaranteed by the fact of having an APD pulse on, permanently
throughout the train of 1000 read pulses. Now this will generate unnecessary detections,
in times when no photons are expected from field 2, and that in the case of detecting
something its source will evidently be spurious, so we will see that our photo-counting
board will be forced to record much more information than necessary. The solution will
be, as in the case of the write laser, the use of an electronic switch that filters the counts
and let the photo-counting board to get only counts coming from the temporal regions in
which it is expected to have photons of field 2. This pulse is called “detection 2” and will
be turned on 31 ns after the “detection 1”, for field 1, is off, and its duration is 359 ns.
As we can calculate, in this way we are going to turn off this pulse before the read pulse
is off, and this is because the read is longer than necessary to generate the field 2. The
read laser has a double function, in its first 50 or 60 ns it generates the excitation that
produces the photons of field 2, where the information stored in the atomic ensemble is
extracted. The next 130 or 140 ns have been intentionally left to pump the atoms back
to F = 2, in the same way as the repump laser does, since the read is tuned in the same
transition as the repump (F = 1 −→ F ′ = 2).

• Start

The Start pulse is a time reference pulse that goes directly to the photo-counting board,
where it serves as a trigger to indicate the relative delay of all pulses with respect to it.
The photo-counting board only needs a pulse that goes from off to on, at a certain time.
In order to be ready to turn on again, in the next trial of the fast pulse train, it will have
to be turned off at some point, despite that the exact moment in which it is turned off
does not matter. This pulse is switched on simultaneously when the OP is switched off,
which gives us the time reference (t = 0) from that point on, and until the next start
pulse.

With the experimental setup and all pulses described above, we can realize the exper-
imental measurements for coincidences and wavepackets as detailed in the next chapter.
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5 Heralded two-photon generation

As can be verified in the literature, the state-of-the-art in the area of single-photon quan-
tum repeaters has a well-established foundation, particularly in the case of the DLCZ
protocol [113, 125–131, 144, 146, 167–172]. Additionally, it is also possible to find fun-
damental studies [146, 148–150] on the reading process, which as we currently know is
characterized by a superradiant phenomenon, which justifies the high efficiency of the
stage. However, scaling up the discussion, when it comes to overcoming the challenges
of building a quantum network, there are several aspects to consider. The specialized
scientific community has been concerned with studying the various specific functions that
quantum memories should eventually render as fundamental pieces of different kinds of
repeater nodes in the long distance quantum communication scenario. It is possible to
find that a single type of quantum memory could become insufficient to execute the di-
versity of tasks and it is, therefore, desirable to investigate different platforms, usually
atomic. The variety of atom-light interfaces for the storage of quantum information will
obviously go hand in hand with a diversity of characteristics, in which some systems will
be better than others. Some reviews have already focused on it, and certain groups of
features have been classified as the most common to several types of quantum memories.
These characteristics are, among others, efficiency, fidelity, bandwidth, storage time and
number of excitations, etc. To date, the DLCZ quantum-memory scheme has performed
well compared to others in several of these features, but always in a single excitation
regime. It is important to say that the fact that the DLCZ protocol has so far exploited
only the storage of quantum information in a single excitation does not respond to a
natural limitation of the system, but simply to a technical decision. What we propose in
this thesis is to take the next step, that is, to explore for the first time the DLCZ scheme
in the two-photon regime. This regime brings with it some limitations and difficulties
that are worth mentioning. The probability of two photons being able to write quantum
information in the atomic system, that is, inducing an atomic transition in two atoms of
the ensemble simultaneously, is much lower than in the case of a single photon. On the
other hand, the process of reading these two excitations is also more complex, although,
as we detail in this chapter, it presents a superradiant behavior. In the present chapter
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we begin by presenting some features for both the case of the single-photon superradiance
and for the case of two-photon superradiance. An important characterization is the sup-
pression of components of two excitations, in the case of the single-photon regime, thus
ensuring that the power region used in those experiments makes the single excitation more
likely than two or more. As a natural extension of this characterization we also present
the suppression of components of 3 or more photons in the case of two photon superra-
diance. Our experimental results were developed for two different optical depths, which
allows us to compare how superradiance behaves according to this parameter. Zeeman
splitting also generates an important technical difficulty affecting our wave packets, so in
this chapter we also detail the need to pump all the atoms to a specific Zeeman level.
In the second section we focus specifically on the temporal behavior of the wave packets
of the photon(s) emitted in field 2. Through these observations we can unveil several
characteristics of both single-photon and two-photon superradiance processes . We are
going to explore various possibilities when studying the storage of 2 excitations, then wave
packets conditioned in various ways in this new regime are presented.

5.1 Measurement implementations

Next we will detail how we use the information provided by the photon counting board in
the experiments. This method will be the same used in all the measurements considered in
this chapter, except those in which a TMD has been used, for which there are specifications
that will be explained later. At the end of any measurement, whether it’s a test or an
official measurement, we obtain a file where all data is recorded. From this file we can find
the number of clicks of each of the 4 detectors, in two different ways. The first way is for
each trial, that is, this file will provide us the information of which detectors clicked on
every trial. However, the level of detail is very high, since this file gives us the information
for each of the trials (there can be millions), one by one, and in addition it informs us
in what time (with resolution of 0.1 ns) each detector fired, considering time equal to
zero at the beginning of each trial. For this reason, the file that stores this information is
typically large and grows proportionally to the measurement time. With this information
it is possible to construct a histogram of the number of events in which one detector
of field 1 and one of field 2 fired, as a function of the detection time of field 2, which
represents the wave packet of the extracted photon, and which will be of fundamental
importance in what follows for this chapter. The second way of studying the number
of clicks is in a global way, that is, it is rather a summary of the previous way. In this
case, what we have is a number of clicks for the entire measurement, in every possible
way. Using a notation N1a,1b,2a,2b, where the subscripts represent the different APD’s in
the way they were named in figure 28, and the possible values that these subscripts can
take are only 0, 1 and X. It takes the value 0 when the detector corresponding to the
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subscript has not fired, the value 1 when the detector detects a photon, and we use the
value X to indicate that we are not interested in this information, i.e. we are going to
count here both cases, when the corresponding APD fires and when it does not. For
example, N10XX means that the detector 1a detected a photon, while we are sure that the
other detector of field 1 (1b) hasn’t detected anything and that both detectors of field 2
(2a and 2b ) may have clicked or not. Analogously to this case, there are a large number
of combinations that can be explored, and some will be more useful than others. What is
done to obtain these values is to count the number of trials in which this combination of
detections occurred throughout the whole measurement. As during a measurement, even
of the order of only a few minutes, there are many many trials, these values N1a,1b,2a,2b,
are usually large numbers. These statistical measurements are completely dispossessed
of time information. However, as part of an initial characterization, they are very useful.
Finally, it will also be interesting to know what is the total number of trials, NTOT ,
performed during the whole measurement time, which is obtained directly, as well as the
total measurement time in seconds, tTOT .

To obtain the probability of detection of only one photon in field 1, regardless of what
happened on field 2, we will use the relation

p1 = (N10XX +N01XX) /NTOT .

Similarly we have the probability of detecting only 1 photon on field 2

p2 = (NXX10 +NXX01) /NTOT ,

and the probability of having 2 photons, but only 1 photon in each field

p12 = (N1010 +N1001 +N0110 +N0101) /NTOT .

The generation rate of photon pairs will represent the number of trials with a click on
only one of the detectors in each field, for 1 second of measurement time. On an average
over the whole time of measurement, this number will be called the “Twin Generation
Rate” (TGR), given by

TGR = (N1010 +N1001 +N0110 +N0101) /tTOT ,

and is measured in units of Hz.

5.2 Without optical pump

The experimental setup of our first round of experiments is that shown in Figure 28,
where an optical pumping laser was not used yet, so that we will not have the atoms on
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Figure 28: Setup with linear polarizations. There is no optical pump. The half wave plate is placed to
rotate the transmitted polarizations by 90°.

a single Zeeman level. Here we can see that linear polarizations were used both in the
write and read beams, as well as in the detected fields. We use a write pulse of 48 ns
and a read pulse of 350 ns duration. The remaining characteristics are the same as those
described in Chapter 4.

The most traditional characterizations for observing the behavior of the system are
the optical depth, g12, pc, and TGR. These characterizations are basically focused on
analyzing the single-photon regime. However, once this regime gets well defined, we are
going to start moving to the 2-photon regime.

We first conduct a survey of the experimental conditions before starting a longer
measurement. For this we are going to make a series of measurements for different values
of p1. In order to be able to vary p1 in a controlled way, which corresponds to the
probability that a photon is detected by one of the APD’s of field 1 regardless of how
many photons were detected on field 2, and without worrying about what happens to
detections of field 2, it is necessary to vary the power of the write laser. The way in which
we vary the power of the write beam is by using different filters before the coupling of
this beam into its optical fiber.

Before beginning any experiment, we need to know some basic statistics of our system,
so we need to run our experiment in different conditions. This measurement is performed
for a tentative amount of time, typically about 10 minutes. The exact duration of the
measurement will be inversely proportional to the power of the write laser used, since the
lower this power is, the smaller the number of registered counts and therefore the errors
are more significant.

The first characterization of the system presented in figure 29(b) corresponds to the
cross-correlation function g12. Different values of write power correspond to different
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Figure 29: Characterization of first round of measurements, without optical pump and without intensity
modulator as a function of p1. Panel (a) shows TGR (twin generation rate), panel (b) is g12, and (c)
plots the conditional probability pc. The actual measurement is realized with p1 = 0.0164, highlighted on
a blue vertical bar, where pc = 0.0951, g12 = 5.25 and TGR = 62.5Hz. The region p1 → 0, where noise
is dominant, is in orange background. The many-excitations region is in green. In the middle, there is
the few (single or two) excitation regime with a blue background.
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values of p1. Recall from Chapter 3 that g12 = p12/ (p1p2), so we can generate the different
points on the curve 29 simply from the set of counts already described above, i.e. N1010,
N1001, N0110, N0101, , N10XX , N01XX , NXX10, NXX01, NXX01 and NTOT . We can see in this
curve that for very low values of p1 the value of g12 becomes small, as well as for very high
values of p1. The region in which we will be interested in realizing the measurement is
close to the higher values of g12, since these indicate a greater correlation between the pair
of photons. However, it should also be noted that the probability of detecting a photon
pair conditioned upon the detection of a photon in field 1, explained in Chapter 3, and
denoted as pc, must be within reasonable values for this measurement as well.

It is for this reason that our second characterization will be precisely pc as a function
of p1, for the same values of p1 we showed in g12, since in fact, we obtain these results
from the same set of measurements. As we see in figure 29(b), there are three regions,
for small values of p1 we have that pc grows approximately linearly, in the intermediate
region of p1 we have that pc remains almost constant, and finally in the a third region, for
high values of p1 where again pc grows again approximately linearly. The explanation for
this is because in the region of p1 → 0 the write power is so low that the detectors click
more frequently because of spurious light than for the photons emitted in the write-read
process. As the spurious light has no correlation, the coincidence detections are much less
likely than the singles (p12 � p1), in this way pc → 0. Already in the intermediate region,
which we call "single-photon region", we have that pc becomes practically independent of
p1, and this is justified by observing that the term of a single photon in the expansion that
defines our "two-mode squeezed vacuum state" is independent of the parameter p (see
Eq. 3.1.18), where theoretical p is related to the experimental p1 through the detection
efficiency η1, so p1 ≈ η1p. In the third region, again we see an increase proportional to p1

since here we are not only observing a single excitation in the write field but the power is
so high that the components due to several excitations appear, getting closer and closer
to the classical regime. By observing together the curves of g12 and pc we can determine a
trade-off between these two parameters. The best region of p1 to perform the experiment
will be where g12 is as large as possible but without leaving the region of a single photon
at pc.

A third curve is shown in figure 29(a), which corresponds to the "twin generation
rate". This measurement tells us about the generation efficiency of pairs in Hz units. It
is notorious that it is monotonically increasing as a function of the write power. Through
the analysis of this measurement we can predict if the write power that we are going to use
is going to lead us to a measurement time excessively long. A typical measurement time
in these conditions must be around some tens of hours at maximum. We try to always
take the value of TGR as high as possible, although always respecting the optimization
criteria for the other two curves first.

Considering all of the above, we have chosen that the point to make this measurement
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would be p1 ≈ 0.0164, where we can see that g12 = 5.25, pc = 0.0951 and TGR = 62.5

Hz. The choice for these values corresponds finally to the choice of a certain write power.
On the other hand we have that the read power has been left fixed in a much greater
value, since the extraction of the photon in field 2 is a process that must be realized with
greater efficiency. The variation in the read power will lead to a modification of the Rabi
frequency in the photonic wave packet, so for now it is not critical.

As explained above, the file given by the photon counting board provides us much more
information than the global parameters with which we have done the characterization
that led us to choose a certain write power. Through programs made in C++ language,
specifically for this task, we are able to review each of the millions of trials that were
recorded during a measurement. Just to get an idea, if we consider that during one of the
fast pulse train we have 1000 trials, and that train is sent towards the ensemble with a
rate of 40 Hz, we can estimate that there are approximately 40000 trials per second, that
is about 2.6 billion trials during the 18 hours that lasted the present measurement. The
most interesting thing is that we are able to access the information of each of the trials
specifically, knowing exactly which detectors fired and at what time, with respect to a
time origin that is set at the beginning of each new trial. With this detailed information,
we were able to do a statistical study of the different detectors that clicked at each instant
of time, with a resolution of 0.1 ns. That is, we can know how many trials presented a
photon pair coincidence detection (N1010 + N1001 + N0110 + N0101), always satisfying the
condition that the photon detected in field 2 clicked at time 0.1 ns from the beginning of
the trial. Then we determine the number of trials that presented photon pair coincidence,
but now the condition is when the detector of field 2 fired in 0.2 ns from the beginning of
the trial, and so on until completing all possible times. From this big set of numbers, we
can calculate the conditional probability as a function of time, pc (t), using the ordinary
definition of pc for each time bin. By making a histogram of pc (t) as a function of the
clicking time of field 2, we get precisely the wave packet of a single-photon emitted in field
2. This wave packet must be normalized, so what is done is to calculate Pc =

∑
pc (t) ∆t

over the entire time spectrum, where the factor ∆t comes from the time interval between
one time bin and the next, with ∆t = 0.1 ns. Then we plot the wave packet as pc (t) /Pc,
as seen in Fig. 30.

By doing a detailed analysis of the wave packet of figure 30, we can see that the
Rabi oscillations are not sharp enough and we also observe that there are some structures
within them that do not correspond to a single frequency. Anyway, we are going to be
interested to see what happens when we consider the generation of 2 photons in this
same regime of p1. Analogously to the case of the single-photon wave packets, in the
case of the emission of 2 photons in field 2 we take advantage of the detailed information
in each of the trials. First it will be necessary to count every single trial in which the
four detectors fired, this must be done for each time bin, which will allow us to find
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Figure 30: Single-photon wave packet, over 40 hours of measurement time, without optical pump and
without intensity modulator.

the probability p1122(t1) = N1111(t1)/NTOT as a function of the detection time t1 of the
first of the two photons of field 2. Secondly we will need to find the probability that
both APD’s of field 1 have clicked, no matter what happened in field 2, let’s call this
probability p11 = N11XX/NTOT , which is a global probability and doesn’t depend on
time, since we are not interested in what happens to the field 2. Finally, in order to
determine a histogram similar to that of a single-photon emitted in field 2, we must
compute pc1(t1) = p1122(t1)/p11. This histogram is normalized by Pc1 =

∑
pc1(t1) × 0.1

and we finally get the 2-photon wave packet shown in Fig. 31, error bars correspond to
poissonian statistics.

As can be noted in the graph of figure 31, the 2-photon wave packet, resembles the
single-photon wave packet 30 and this is due to an effect which will be explained below,
related to the theoretical model of superradiance of 2 photons when interaction effects
between the excitations are neglected. Although we found interesting curves to study the
generation and storage of 2 excitations in an atomic ensemble, as our aim is to study
the phenomenon of superradiance in the reading process of the emitted photons, we see
that the current configuration is unsatisfactory. The main reason is because we have not
used optical pumping, so that more than a single Rabi frequency is found, leading to the
appearance of structures due to beat-note frequencies. We also suspected that the lack
of definition in Rabi oscillations is enhanced due to decoherence, leading to the loss of
quantum information during the storage time. In the next sections we will try to overcome
these problems. On the other hand, in figure 32 we observe the 2-photon wave packet as
a function of the period of time between the first emitted photon and the second one in
field 2.
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Figure 31: Two-photon wave packet for the same data set of single-photon wave packet shown in Figure
30, considering only the time of the first of the two photons.
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Figure 32: Two-photon wave packet as function of the time difference τ between the two emitted photons.
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Figure 33: Optical pump process. σ− transitions are induced for excitation in every Zeeman level of
F = 2, however spontaneous emissions are not forced to be in any particular polarization, thus atoms
tend to accumulate on the cyclic transition F = 2,mF = −2→ F ′ = 3,mF = −3.

5.3 Optical pump

A well-known way to simplify the structure of levels of our system is to “pump” the
atoms to a certain level in order to depopulate all other Zeeman levels and only one Λ

configuration be present. Through the optical pump, we will polarize the medium, i.e.
we will have the atoms at a certain extreme Zeeman level, either maximum or minimum,
so that the spontaneous emission will also have a certain polarization, see Fig. 33.

If our atomic gas is illuminated by a polarized σ− laser, the absorption will force
∆M = +1 transitions. However, the emission will present, on average, ∆M = 0. As we
can see in figure 33, spontaneous emissions are unbalanced only in F = 2,mF = −2 →
F ′ = 3,mF = −3, since there is not any other level to go. Because of that, it is called
a cyclic transition and, if this process is repeated a considerable number of times, the
net effect will be that the electrons will populate completely the F = 2,mF = −2 level.
The final state is not a dark state, so there will be an effective mechanical force over
the atoms in the wave vector direction. In order to cancel out this effect, it is necessary
that atoms experience the same process in opposite directions, i.e. another beam with
σ− polarization from the other side. The polarization must be σ− in the atom’s frame, so
in our laboratory’s frame, this beam must be σ+. With this process, our Λ configuration
now is unique because the level |g〉 now can only be

∣∣52S1/2, F = 2,mF = −2
〉
, and by

the polarizations and FWM condition the other levels involved now are unique as well,
see Fig. 34. This will have important consequences on our wave packets, since we see
that the Rabi oscillations will be much better defined, because we have only one element
of the dipole matrix in the read process, which will consequently lead to a single Rabi
frequency in the wave packets.

As previously explained, a consequence of the optical pump is that the medium is
polarized, because all the atoms are going to stay with the electrons in the same extreme
Zeeman level. One way of observing some characteristics of the experimental application
of the optical pump, is through the measurement of this polarization of the medium. In a
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Figure 34: Λ configuration after optical pump. It pumps atoms to the F = 2,mF = −2 state, which
selects uniquely the other two states involved on the induced transitions by the chosen polarizations, σ+

and σ− for write and read beams, respectively. On the other hand, since we are considering a FWM
process, the conjugated modes 1 and 2, are considered in the same transitions.

traditional optical pump scheme, we can measure the polarization of the light emitted by
the medium, that in the case where the OP has been effectively carried out, will be highly
polarized. As our optical pump is not the the most standard scheme, we will explain
below that, in fact we observe the medium apparently less polarized than without OP,
but this is related to the possible allowed transitions in each case.

We can consider the write pulse acts as a low, but effective, optical pump, since
with its σ+ polarization it induce the population to be accumulated on the levels with
higher mF values. When a measurement is done without the use of the optical pump,
population is more concentrated in levels mF = 1 and mF = 2. The ensemble, when
polarized in this way, can’t emit photons of field 2 in a σ− polarization, because it doesn’t
have any level to go to, then the spontaneous emissions are mostly pure σ+. After the
action of the optical pump this situation changes considerably. As a consequence of the
optical pump, most of the atoms tends to populate mainly the level F = 2,mF = −2,
and a subsequent write pulse is applied preparing the state F ′ = 2,mF = −1. With
this we have 3 possible spontaneous emissions in the circular polarization basis. First
F ′ = 2,mF = −1→ F = 2,mF = 0, second we have, with a different transition frequency,
F ′ = 2,mF = −1→ F = 1,mF = 0, both with σ− spontaneous emissions. Finally we have
F ′ = 2,mF = −1→ F = 2,mF = −2 which is σ+ polarized. So what we have is a set of
two σ− and just one σ+ spontaneous emission that we can detect.

At the emission direction of field 2, let’s place a quarter-wave plate (λ
4
plate), a half-

wave plate (λ
2
plate), a polarizing beam splitter cube (PBS) and finally a photodetector.

It is important to mention that this characterization is done with only write beam. We
have fixed the λ

4
plate in such a way the light that arrives circularly polarized turns into

linearly polarized light, and we have control to rotate the λ
2
plate, in order to rotate that

linear polarization in any direction.
If the optical pump is not performed, as shown in figure 35a, we see that the light

emitted by the ensemble will be highly σ+ polarized thanks to the write pulse. However,
as we can see in figure 36, this situation is not optimal since we have a considerable
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Figure 35: Study of the polarization of the atomic medium as a function of the λ/2 angle. Panel (a) shows
the case without OP, (b) with two counter-propagating OP beams in orthogonal circular polarizations in
the laboratory frame, and (c) with two counter-propagating σ− OP beams in the laboratory frame.
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Figure 36: The action of write pulse polarizing the medium

amount of population stuck in level F = 2,mF = 2, after applying the write pulse, that
will be invisible for the rest of the process. If we use an OP beam, our polarization will
have two components, σ+ and σ−, in a proportion of 1 : 2 respectively. What we measure
in figure 35b is the competition of these two components, so it explains why we observe
an oscillatory behaviour that is not going to zero. In this case we have that most of the
population is being taken into account because they are located at F = 2,mF = −2. In
figure 35c we show the situation when the counter-propagating OP beam is σ− (in our
frame). The medium is then less polarized since the counter-propagating laser is viewed
as σ+ by the ensemble, in such a way it tends to cancel the effect of the forward OP, and
finally the write pulse pumping wins. As we can observe in figures 35a and c, compared
with figure 35b, we have an opposite phase of the oscillatory behaviour which means
exactly the change in the polarization from σ+ to σ−, respectively.

5.4 With optical pump but without intensity modulator

In a second round of experiments we incorporate the optical pump laser to perform the
same measurements that were made before. In order to use this OP we have to move
from linear polarizations to another basis of circular polarizations for all the beams of the
experiment, i.e. write, read, field 1 and field 2. To achieve this change we use a quarter
wave plate in each arm, before and after the atomic cloud, as shown in figure 37. In this
way the fields detected at the APD’s, remain linearly polarized. The OP laser is obtained
by taking advantage of a mode deflected by one of the acusto-optical modulators (AOM)
that generate the write laser, so that it is not necessary to install new light sources.

In this new configuration we perform the same characterizations as mentioned in the
previous section, i.e. pc, g12 and TGR, for different powers of the write beam. With this
set of measurements we can plot the curves as a function of p1, as can be seen in figure
38. By observing these characterizations, we find the value of p1 to be used in the final
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Figure 37: Experimental setup using optical pump and circular polarizations in all beams.

measurement as p1 = 0.018.
In Figure 39 we can see the single-photon wave packet of the measurement made with

circular polarizations, and with optical pumping polarization σ−. Problems still exist to
be able to correctly interpret this curve, mainly by the fact of not having a sharp enough
Rabi frequency. One of the suspicions we had at this point, in our study, was that we were
experiencing leakage radiation problems in our system. This decoherence could be due to
the fact that our switching is always done through AOM’s, these AOM’s have an extinction
ratio of 1000 to 1, as reported by the manufacturer. However, for more powerful beams
this can be insufficient, since the light that is not perfectly canceled passes from one trial
to the next, contaminating the stored information. In order to solve this problem, we will
place in the next stage some intensity modulators (IM), whose cancellation ratio should
be multiplied with the ratio of the AOM, since we will make the pulse to be switched by
both devices at the same time.

Some characteristics of single-photon wavepackets are completely replicated in 2-
photon wavepackets, e.g. shape of the Rabi oscillations. Since the TGR is always much
greater than the generation rate of four coincidences, it is convenient to infer the overall
behaviour of 2-photon wavepacket based on the single-photon one. We decided to stop
the measurement when half an hour has passed by. It was simply not necessary to per-
form a 2-photon wave packet analysis, since the expected behaviour of the single-photon
wavepacket was inappropriate to our purposes, due to switching problems that still had
to be solved.
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Figure 38: Characterization of measurements with optical pump but without intensity modulator as a
function of p1. Panel (a) shows TGR (twin generetion rate). Panel (b) is g12, and (c) plots the conditional
probability pc. The actual measurement is realized with p1 = 0.018, highlighted on a blue vertical bar.
Here pc = 0.063, g12 = 7.5, TGR = 38 Hz.
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Figure 39: Single-photon wave packet using optical pump but still without the intensity modulators. We
have a short measurement, just for showing the lack of definition in Rabi flops, but at least without
multiple frequency components.



127

5.5 With optical pump and with intensity modulator

Finally, let’s start the last stage of our experiment. Here we have exactly the same con-
figuration shown in the previous section, but now we are going to improve the switching.
The pulses of highest power that we are using are the read pulse and optical pumping,
both of the order of mW. We have installed two on-fiber intensity modulators, one in the
read laser and another in the optical pump, to help with the switching of these fields,
in order to increase the coherence time of the quantum state. These IM have an inter-
ferometric nature, so they must be thermally insulated in order to prevent fluctuations
of their transmission during a long measurement. These devices must be switched by a
logical electronic pulse. Like all other pulses used in the experiment, we control this IM
by means of the same Arduino board. Another caution that we must have with the IM
is that the bias DC voltage modify the quality of the switching, that is to say, there is a
specific voltage for which this device generates the greatest ratio between power of the IM
pulse turned on and power of the IM pulse off. This ratio can be altered by temperature
variations as well.

The characterizations for this configuration are the same as presented in the case
without intensity modulator shown in figure 38, but in this case we determine that the
best value to perform the measurement is p1 = 0.0152, where we expect values of pc =

0.0627, g12 = 7.50 and TGR = 38 Hz. Single-photon and a 2-photons superradiance
measurements were realized during a period of 43 hours. The optical depth used in this
measurement was the same as that used in all previous measurements, of the order of
OD = 3.4. In addition, a second measurement was made equivalent to the previous one,
but modifying the optical depth to OD = 2.0, where we used p1 = 0.0152, pc = 0.0449,
g12 = 6.35 and TGR = 27 Hz. The way in which the optical depth is controlled, is altering
the power of the trapping beams [146]. To modify the power of these beams, the current
supply of the laser amplifier that generates the trapping beams is altered. In figure 40 we
can see how the optical depth varies as a function of the current of the amplifier, when
measurements are performed at the peak of the atomic resonance.

The decision to perform two measurements of single-photon and two photons wave
packets, for optical depths of OD = 3.4 and OD = 2.0, is due to the fact that when we
compare the parameters that are used to adjust the theoretical curve on the experimen-
tal data, it will be interesting to observe the dependence with the optical depth. This
is a characteristic that we already knew from the standard single-photon superradiance
experiments [146], and according to the theory developed to explain the two-photon su-
perradiance, see section 3.2, optical depth must remain a key parameter in the behavior
of the phenomenon.

We acquired three wavepackets for the state conditioned on one detection on field 1,
i.e. single-photon wavepackets, all plotted on Fig. 41. The black curve on both Figs. 41a



128

Figure 40: Relation of optical depth on current of the optical amplifier for the trapping beams.

Figure 41: Single-photon wavepackets. Conditional probability pc(t) to detect a single photon on field 2
at time t once a single detection was registered on field 1, normalized by the total conditional probability
Pc to detect a single-photon in field 2 at any time. (a) For OD = 3.4, wave packets for IR = 3.95 mW
(black curve) and IR = 1.76 mW (red curve). (b) For IR = 3.95 mW, wave packets for OD = 3.4 (black
curve) and OD = 2.0 (red curve). The insets plot the corresponding theoretical curves according to Eq.
3.2.102.



129

and 41b is the single-photon wavepacket for an optical depth of 3.4 and a peak read power
of IR = 3.95 mW. This single-photon wavepacket is given by the conditioned probability
pc(t) to detect a single photon on field 2 on time t after turning on the read pulse [146],
with an integration window of ∆t = 0.5 ns, conditioned on the detection of a single
photon in field 1. The curve is normalized by the total probability Pc = 6.3% to detect
a single photon on field 2 after detecting a single photon on field 1. Other important
parameters for this curve are p1 = 0.015 and a suppression of two-photon component
g2 = 0.405± 0.004 ≈ P1,2/P

2
1,1, significantly below the poissonian level of 1 [175]. The red

curves on panels (a) and (b) modifies the situation of the black curve to IR = 1.76 mW
and OD = 2.0, respectively.

The inset in panels (a) and (b) of Fig. 41 provide the corresponding theoretical pre-
dictions as coming from the expression 3.2.102 with α = χΓΩ2

0/Ω
2, Ω =

√
Ω2

0 − χ2Γ2/4,
Γ/2π = 6.065 MHz the natural linewidth for level |e〉, Ω0 the Rabi frequency for the
transition |s〉 → |e〉, and χ the superradiant enhancement for the decay |e〉 → |g〉. The
horizontal and vertical scales are the same for the insets as for panels (a) and (b). For the
black curve on the insets we assumed χ = 4.0 and Ω0 = 0.4× 109rad/s. For the red curve
on the inset to panel (a) we modify the Rabi frequency to 0.27 × 109rad/s, consistent
with the read-power relation

√
1.76/3.95 ≈ 0.67 between the red and black experimental

curves. On the inset of panel (b) the red curve is for χ = 2.76 = 1 + (4.0 − 1)(2.0/3.4),
since χ− 1 and OD are both proportional to the number of atoms [145,146].

Figure 41 shows that the experimental curves for the single-photon wavepackets follow
qualitatively well the previously introduced theoretical treatment of the problem, as ob-
served in Ref [146], with a few remarks. For start, the first minimum of the experimental
curves, at t = 7 ns, has no relation to the underlining dynamics we are investigating, and
thus it is not affected by the variation of the control parameters. It comes from a small
oscillation on the beginning of the read pulse that we were not able to fully eliminate due
to the switching made by the intensity modulator. Second, we now have a larger back-
ground for the single-photon wavepacket, when compared to previous results [146], and
it now reaches a small plateau for long times. This probably comes from a larger noise
level due to the removal of a frequency filter in field 1 used on Ref. [146]. The removal
of this filter resulted in a significant increase in photon-pair generation rate, up to 40 Hz.
Finally, the number of atoms was changed by a relatively small amount in Fig. 39b, so
as to not decrease significantly the rate of four-photons detections. Both compromises to
improve the count rates were crucial for the two-photon wavepackets measurements.

Our measurements for the superradiant two-photon wavepackets, in which we detect
two photons on field 2 conditioned on the detection of two photons on field 1, are shown
in Fig. 42. They were obtained for two different optical depths, from the same data
that generated the two curves on Fig. 41b. Figures 42a and 42c, then, were obtained on
the same conditions of the black curve in Fig. 41b, and Figs. 42b and 42d on the same
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Figure 42: Two-photon wavepackets with read pulse intensity IR = 3.95 mW. Panels (a) and (b): Proba-
bility pc1(t1) to detect the first photon of a pair on field 2 at t1 conditioned on two detections on field 1,
with an integration window of ∆t1 = 0.5 ns and normalized by the area Pc1 of the curve. Panels (c) and
(d): Probability pcτ (τ) of detecting a second photon on field 2 at time τ after the first detection shown
on panels (a) and (b), respectively, and normalized by the area Pcτ of the curve. Data on panels (a) and
(c) , with OD = 3.4, resulted from the same measurements as for the experimental black curves on Fig.
41. Panels (b) and (d), with OD = 2.0, came from the measurements of the red curve on Fig. 41b. Red
curves are the theoretical fittings.
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conditions of the red curve. Since we have now two photons on field 2, the information
on each wavepacket was divided on two parts. In panels (a) and (b) of Fig. 42 we plot
the probability pc1(t1) of detecting the first photon of the pair in field 2 at a time t1 after
turning on the read field, conditioned on two detections on field 1. In panels (c) and (d)
we plot the conditional probability pcτ (τ) of detecting the second photon of the pair at a
time τ after the first one. Our largest rate of four-photon generation, for the largest OD,
was 14 mHz.

It is interesting to find out that effectively the 2-photon superradiance of both optical
depth values, is well explained by what is expected on the theoretical model, both when
it is done as a function of the detection time of the first photon on field 2, t and the other
one which depends on the difference between the detection time of both photons on field
2, τ . In particular, it is worth noting that the use of optical pumping helped to define the
Rabi frequency, but more important was the use of a intensity modulator so that the Rabi
flops were sharpened enough to better fit the model. The explanation of this isn’t related
to the original purpose of installing the IM, which was decoherence reduction, but with
the speed increase of the IM. Previously the read pulse was generated via just an AOM.
However, in practice this pulse was not really rectangular. When the IM was installed,
the pulse now became more similar to a rectangular pulse, at least on a certain scale of
observation, and this rate of increase of the read pulse was crucial in order to better define
the wavepackets.

5.6 Theoretical model for two-photon superradiance

If we neglect the reabsorption of the photons by the atomic ensemble, a theoretical analysis
of the reading process starting with a two-photon Fock state |2a〉 stored in the atomic
ensemble leads to a simple result for the two-photon wavepacket [176]:

pcc(t1, t2) = pc(t1)pc(t2). (5.6.1)

This approximation is well justified in our system since the read process occurs in a
condition of Electromagnetically Induced Transparency (EIT) [177], in which the read
pulse induces a transparency in the medium for the outgoing photons. As highlighted
in Ref. [146], this is an interesting feature of the present system to study superradiance,
since it eliminates various complications coming from propagation effects mixed with the
superradiant dynamics [178]. Figure 43 presents the level scheme and fields for the two-
photon superradiance process, outlining how two excitations are mapped on the atomic
ensemble, and the extraction of two photons in the superradiant reading process.

From Eq. (3.2.102) and the simple expression above relating it to the two-photon
wavepacket, we derive then the theoretical functions [176] to directly compare to the
experimental results of Fig. 42. By having t2 = t1 + τ > t1, we can integrate over τ to
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Figure 43: Level scheme and fields for two-photon superradiance.

obtain the normalized probability to detect in t1 the first photon of the pair in field 2:

pc1(t1)

Pc1
= 2α∆t e−χΓt sin2

(
Ωt

2

)
×

×

[
1 +

χΓΩ

2Ω2
0

sin (Ωt)−
(
χΓ

2Ω0

)2

cos (Ωt)

]
, (5.6.2)

where Pc1 is a constant equal to the area under the curve for pc1(t1). Equation (5.6.2) is
plotted as the red curves on Fig. 42a and 42b, for the same parameter, respectively, as
the black and red curves of Fig. 41b. On the other hand, if the integration run over t1,
we obtain the probability to detect the second photon in field 2 at a time τ after the first
one was detected:

pcτ (τ)

Pcτ
=
χΓΩ4

0∆τ

2Ω4
e−χΓτ/2

{
Ω2

Ω2 + χ2Γ2
+

+

(
Ω

Ω2 + χ2Γ2
− Ω

2Ω2
0

)
[Ω cos (Ωτ) + χΓ sin (Ωτ)]

}
, (5.6.3)

with Pcτ another normalization constant to keep the area under the curve equal to one.
Equation (5.6.3) provides the theoretical curves on Fig. 42c and 42d, for the same pa-
rameters as Figs. 42a and 42b, respectively. The results of Eqs. (5.6.2) and (5.6.3) clearly
capture the essential aspects of the two-photon wavepackets, with the decay of pc1(t1)

with twice the rate of pcτ (τ) and the observation of Rabi oscillation in both curves.

5.7 Suppression of higher order components

The second term in the "two-mode squeezed vacuum" series is related to the single-photon
state. To know if this state is really what we need, it is necessary to study how important
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the next terms of the series are, in order to really know that we are in a write power
region in which the single-photon component predominates over the 2-photons regime.
We have to perform a similar analysis in the case of a state of 2 excitations. To verify
that the next terms, i.e. three excitations component and higher, in the series has a low
probability, it is also important to analyze certain conditional probabilities.

For the experimental realization of this characterization, we must use a slightly dif-
ferent scheme from the one of a normal measurement. First of all, in order to measure
conditional probabilities for 3 and 4 photons, it is necessary to have, at least in field 2,
more than 2 detectors. In practice, we employed 2 detectors in field 1 and 4 detectors in
field 2, so we can have several types of conditional probabilities, using all combinations
of clicks that can be given in this setup. To have 4 detectors in field 2, it is not always
necessary to have 4 APD’s, what we do is to use the 2 APD’s of the standard scheme
as if they were 4, by using a TMD system. This TMD is nothing more than 2 fiber
beam-splitters, arranged in a cascade configuration (see Fig. 25 and its inset), but with
the optical path of one of the two arms being much larger than the other. In this way,
the 2 APD’s act as if they were 4 APD’s but in the temporal domain.

Let’s recall that, using non-number-resolving detectors with an overall low efficiency
(the usual case), the detection of a single photon in field 1 ideally projects the atomic
ensemble in a state

|ψ1〉 ∝ |1a〉+ p1/2|2a〉+ p|3a〉+ · · · . (5.7.1)

On the other hand, the detection of two photons in field 1 would result in the state

|ψ2〉 ∝ |2a〉+ p1/2|3a〉+ · · · . (5.7.2)

During this characterization, we have also modified the reading pulse size for a very
short duration of only 20 ns. A series of measurements is performed, for different values
of the reading power, similar to what was done when characterizing pc. As measurements
were made for lower write powers, the measurement times increase rapidly, up to tens of
hours in some cases.

The photon-number analysis of field 2 conditioned on one or two detections in field
1 are presented in Figs. 44a and 44b, respectively, as a function of the probability p1

to detect a single event in field 1. Pi,j indicates the probability to detect j photons in
field 2 conditioned to the detection of i photons in field 1. In this way, Fig. 44a plots
the values of P1,j, related to |ψ1〉, and Fig. 44b the values of P2,j, related to |ψ2〉. They
represent average values for the various configurations of detectors in field 2 connected
to each quantity. For example, P1,1 is the average over the corresponding results for each
of the four detectors in our TMD apparatus, but conditioned on the firing of either of
the two detectors for field 1. P1,2 is an average over six different configurations of pair of
detectors in field 2, and so on for all the other quantities. The results for the two panels
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Figure 44: Probabilities Pi,j to detect j photons of field 2 conditioned on the detection of i photons in
field 1 as a function of the probability p1 to detect one photon in field 1. (a) Probabilities conditioned
to one detection in field 1. (b) Probabilities conditioned to two detections on field 1. Circles, squares,
and diamonds plot the probabilities for the detection of one, two, and three photons on field 2. The solid
lines are linear fits. The black dashed line provide the value for the plateau of P1,i, which is explicitly
indicated as 0.0085 for (a) and 0.0170 for (b). The red and blue dashed lines gives the square and cube,
respectively, of the black one.

were obtained from the same data set.
In order to compare Fig. 44 to the expected results from Eq. (3.1.17), note first that

p1 ≈ η1p, with η1 the detection efficiency for field 1. As p1 decreases, then, we observe two
plateaus forming for P1,1 and P2,2, since those quantities should be roughly independent of
p in this limit, as can be seen from Eqs. (5.7.1) and (5.7.2) for |ψ1〉 and |ψ2〉, respectively.
If we had perfect detection, 100% efficiency and number-resolving, we should not see a
component P2,1, since only pairs of photons would be generated in field 2 after detecting
two photons in field 1. However, in our limit of low detection efficiency, the loss of a
photon in the pair leads to a plateau on P2,1, but with twice the value of P1,1, since we
have now two photons entering the TMD apparatus. As explicitly indicated in Fig. 44,
we observe P1,1(p1 → 0) ≈ 0.0085 and P2,1(p1 → 0) ≈ 0.017, as expected. Ideally, the
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detection efficiency η2 for field 2 should be given by P1,1, with an overall probability to
detect a photon in field 2 of 4P1,1 = 3.4%.

The Fock states |1a〉 and |2a〉 are limits of |ψ1〉 and |ψ2〉, respectively, when p → 0.
For finite p, there are always some higher order components, but with smaller values as
p decreases. For instance, from Eq. (5.7.1) we expect the probabilities P1,2 and P1,3 to
decrease proportional to p and p2, respectively. From the log-log plot in Fig. 44a, we
obtain P1,2 ∝ ps121 and P1,3 ∝ ps131 , with s12 = 1.07 ± 0.02 and s13 = 1.99 ± 0.07, as
expected. From Eq. (5.7.2), on the other hand, we expect P2,3 to be proportional to p,
obtaining P2,3 ∝ ps231 with s23 = 1.10± 0.07 from Fig. 44b.

We observe then the suppression of higher order components as expected for the
states on Eqs. (5.7.1) and (5.7.2), resulting from corresponding projective measurements.
However, it is also interesting to compare these suppressed components with the expected
values for a coherent state with the level of single-photon detection probability observed
in the plateaus of Figs. 44a and 44b, given by the upper dashed line. In both panels,
the dashed lines in the middle and on the bottom give the square and the cube of the
value for the single-photon detection level, the expected values for a coherent state. We
measure then clear suppressions of P1,2 and P1,3 down to sub-poissonian levels. On the
other hand, due to the low efficiency for detecting coincidences between five events (2 in
field 1 and 3 in field 2), we could not measure P2,3 in a clear sub-poissonian regime.
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6 Conclusions

6.1 Continuous variables quantum computation

After many years of intense progress in experiments, one of the most pressing challenges
of quantum computation nowadays is the enlargement of the Hilbert space available. In
the CZ paradigm of ion trap quantum computing, extending the Hilbert space requires
adding ever more ions to the quantum processor. As the number of ions increases, so does
the influence of the environment in the form of natural decay and stray magnetic fields,
the most relevant sources of environmentally driven decoherence in this kind of system.
It may be said that, for general experimental realizations of a quantum processor, the
desired enlargement of the Hilbert space implies as penalty greatly enlarging the physical
size of the quantum processor, and thus the volume of actual space, i.e. the ‘size’ of the
environment, probed by the quantum system.

In this thesis, we have tried to pursue a different route to enlarge the quantum config-
uration space, by using the volume in actual physical space sparingly, for a finite phonon
number: a more feasible quantum computer might be that which packs a large config-
uration space in a small physical volume. We have here followed an alternative route
that could help to mitigate the scalability problem of the ion trap quantum processor
up to a certain point. The motional degrees of freedom of a single trapped ion offer,
in principle, a configuration space with dimensionality restricted only by non-linearities
of the trap harmonic potential. This approach has the practical advantage of causing
only modest increase (polynomial) of the physical volume occupied by the atomic wave
function employed in the computation, without considering an asymptotic limit though.

The main advantage of the ion trap CVQC approach might be the ability to harness
sectors of the computational configuration space which are mostly disregarded in the
CZ paradigm. The CVQC approach could, in principle, allow for a substantial increase
in the size of the Hilbert space available for quantum computing while using current
ion trap technology. The increase in manipulation and measurement complexity implied
by our scheme would not be particular to it, but rather a common trait to any actual
implementation of quantum computing. The fact that our scheme seems to put those
challenges within the grasp of current technology, and hence bring them to our minds as
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urgent matters, should be seen not only as a positive trait of our proposal, but also as a
reminder of the daunting endeavor entailed in building a working quantum computer.

6.2 Two-photon superradiance

In conclusion, we demonstrated the ability to investigate the effect of superradiance in a
large ensemble but with a small, controllable number of atoms in the excited state. We
characterized the corresponding symmetric collective states through the photon statistics
of the light emitted in the superradiance process. We also investigated the temporal
dynamics of this light for both single-photon and two-photon wavepackets. There are still
plenty of room to improve the system both in terms of four-photon generation rate and
number of atoms in the ensemble. Larger generation rates may lead to purer single- and
two-excitation states, but also to investigations of larger collective states, with three or
four excitations. On the other hand, larger number of atoms, through larger optical depths
of the atomic ensemble, may lead to different superradiant regimes, possibly presenting
some interaction between the extracted photons. As a whole, such developments point
to the feasibility of a new approach to generate and control larger and purer Fock states
connected to long-lived atomic memories.
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