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Resumo

Propostas recentes foram feitas para associar os graus de liberdade (cabelos) de buracos negros
com as isometrias do horizonte de eventos. Essas abordagens, porém, sofrem da falta de in-
variância de calibre de forma explícita, normalmente dependendo de sistemas de coordenadas
específicos. Neste trabalho, propomos um método para associar uma isometria assintótica cor-
respondente para cada isometria do horizonte por meio de procedimentos usuais de fixação de
calibre em Relatividade Geral clássica. As simetrias assintóticas podem ser definidas de uma
forma puramente geométrica, independente de escolha de coordenadas, por meio da construção
do infinito conforme e, então, nosso procedimento resulta em uma definição mais precisa para
os cabelos dos buracos negros. Primeiramente revisamos algumas noções gerais sobre infinito
conforme e definimos os difeomorfismos grandes que mapeam isometrias assintóticas para
transformações no interior do espaço-tempo. Nós, então, calculamos as soluções para os bu-
racos negros de BTZ e Kerr. No primeiro caso, as simetrias de AdS3 nos permitem encontrar
soluções fechadas.

Palavras-chave: BTZ. Kerr. Cabelo de buraco negro. Isometria do horizonte. Difeomorfismo
grande.



Abstract

Recent proposals to associate degrees of freedom (“hair”) of black hole backgrounds with
isometries of the event horizon have been put forward. These approaches suffer, however,
from lack of explicit gauge-invariance in their construction, usually relying on some preferred
coordinate system. In this work, we propose a way of assigning a corresponding asymptotic
isometry to each horizon isometry by means of the usual gauge fixing procedures of classi-
cal General Relativity. The asymptotic symmetries can be defined in a gauge-invariant way
through the framework of conformal infinity and thus our recipe makes the definitions of black
hole hair more precise. We first review some general notions of conformal infinity and define
the large diffeomorphisms that map asymptotic isometries to bulk transformations. We then
calculate the solutions for the BTZ and Kerr black holes. In the first case, the symmetries of
AdS3 allow us to find closed solutions.

Keywords: BTZ. Kerr. Black hole hair. Horizon isometry. Large diffeomorphism.
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1 Introduction

In some ways, black hole solutions may be thought of as point particle solutions of the Ein-
stein’s equations. Drawing a parallel with Maxwell’s equations, the Schwarzschild black hole
resembles the electrostatic Coulomb’s law, both being the vacuum solutions with a singularity
at the origin. However, the intrinsic geometrical character of General Relativity makes these
solutions divert from the structureless point particle picture. In particular, the existence of an
event horizon endows black holes with not only a geometrical structure but also thermodynamic
properties, which have been essential guidelines in the search of a quantum theory of gravity.

The black hole horizon can be defined in more than one way. One definition involves the
notion of trapped surfaces, which formalizes the idea that nearby trajectories tend to converge
to it, being a local description of the horizon. From a global point of view, the horizon gives a
non-trivial causal structure to spacetime; an infalling object will experience an infinite redshift
while crossing the horizon and hence it will lose causal contact with an observer outside. More
precisely, the event horizon is the boundary of the causal future for ingoing observers, and of
the causal past for outgoing observers, in the case of eternal black holes.

The observable charges of black holes are subject to a first law of thermodynamics, with
the area of the event horizon playing the role of entropy. The Bekenstein-Hawking entropy,

S =
A

4
, (1.1)

in natural units, was found in the 1970’s and it was shown to satisfy the second law of thermo-
dynamics. From a statistical point of view, there must be a microscopic description of the black
hole degrees of freedom that give rise to these effective, thermodynamic properties. What is
this microscopic description? The correct answer to this question should be an invaluable guide
to consistently unify gravity and quantum mechanics.

Some answers have been found in different frameworks but with limited validity. In string
theory, the degeneracy of BPS bound states correctly counts the degrees of freedom of higher
dimensional supersymmetric black holes [1]. The counting also matches in Loop Quantum
Gravity, after fixing a free parameter of the theory [2]. General Relativity was also able to



1 INTRODUCTION 8

predict the correct value of the entropy in some cases [3]. The latter case generally relies on the
idea of Holography: the degrees of freedom are encoded in a lower dimensional surface. The
Bekenstein-Hawking entropy formula corroborates this viewpoint, since it is proportional to
the surface area of the event horizon. Intimately tied to this description is the notion of asymp-
totic symmetries; the holographic surface should inherit its symmetries from the spacetime and
a great deal of information can be attained by the symmetries alone. This program is particu-
larly successful in asymptotically AdS3 black holes by studying the asymptotic symmetries at
infinity [4].

The idea of asymptotic infinity is necessary for a proper definition of spacetime observ-
ables, like energy and angular momentum, which are dependent on a notion of Poincaré in-
variance. This symmetry is expected to hold only infinitely far from sources and one is thus
led to the notion of asymptotic isometries. The most famous examples are the Bondi-Metzner-
Sachs (BMS) group in four dimensions with zero cosmological constant [5, 6] and the Brown-
Henneaux group in three dimensions with negative cosmological constant [7]. In each case, the
asymptotic isometries include the expected symmetries of Poincaré and AdS3, but come with
infinitely many non-trivial transformations other than those. In the Brown-Hennaux case, the
classical charges associated with the asymptotic isometries generates a Virasoro algebra and
result in a consistent way of counting the black hole degrees of freedom. This has not been
achieved for the BMS case in four dimensions yet.

Proposals for local, geometric diffeomorphisms that count the black hole degrees of free-
dom – black hole hair – have been put forward by a number of authors over the years, see,
e.g., [3, 8]. Recently, Hawking and collaborators proposed the idea of associating the hair with
isometries of the black hole horizon [9, 10] – see also Donnay et al. [11, 12]. This could in
principle solve the problems of counting the Bekenstein-Hawking entropy. Like others before,
their construction suffer from an unclear gauge invariance.

In this work , we propose a way of assigning a corresponding asymptotic isometry to each
horizon isometry by means of the usual gauge fixing procedures of classical General Relativity
[13]. The recipe given allows the extension of the asymptotic isometries to bulk transforma-
tions, which will induce transformations at the event horizon, by means of a large diffeomor-
phism acting on the entire space. Since asymptotic symmetries can be defined in a gauge-
invariant way, this identification highlights the gauge invariance on the definition of black hole
hair.

This dissertation is organized as follows. In chapter 2 we review the notions of asymptotic
infinity and give the procedure of gauge fixing. We use the notion of conformal infinity to
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fix the boundary conditions we will consider asymptotically. In the following chapters, 3 and
4, we work out the explicit calculations for the BTZ and Kerr black holes, respectively. In
BTZ we were able to find closed solutions for the large diffeomorphism matching the Brown-
Henneaux generators at the AdS boundary. In Kerr we present preliminary results along with
some specific solutions matching some generators of the Poincaré group at conformal infinity.
We conclude with a summary and prospects.



2 Asymptotics and Symmetries

The study of the symmetries of a given theory is indispensable if one wants to fully understand
it. Sometimes the knowledge about the symmetries precedes the theory; Newtonian mechanics
arose as a theory that accommodated the symmetries of Galileo: translations, rotations and
Galilean boost – change of inertial frames. But it is often found a posteriori, like the discovery
of another symmetry group, with Maxwell’s electromagnetism, which replaced the Galilean
with the Lorentz boosts and put time and space on equal footing. These compose the Poincaré
group that is understood today as the fundamental symmetry group of nature, being the most
basic ingredient in the Standard Model of particles.

In General Relativity, Lorentz symmetry is only locally valid; it does not have the status
of a global symmetry anymore. It was usually assumed that when going infinitely far from
gravitational sources, one would recover the symmetries of Special Relativity. However, in
1962 Sachs found a much larger symmetry group while studying gravitational radiation in 4d
asymptotically flat spacetimes [5]. Bondi, van de Burg and Metzner also contributed in the
study of gravitational radiation [6, 14]. The discovery of the so called BMS group gave rise to
the study of asymptotic symmetries in Einstein’s gravity.

In this chapter we will study the notions of conformal infinity, a geometric framework
developed to study the asymptotics of spacetimes, and derive its symmetries. We then define
large diffeomorphisms as the coordinate transformations in spacetime that act non trivially
at infinity, modifying the conserved charges, and give a way of extending the action of the
asymptotic symmetries to the bulk.

2.1 Conformal Infinity

One of the notions that is familiar in prerelativistic theories is that of an object located infinitely
far from an observer. One usually uses such construction in order to define conserved charges
- be it mass, in Newtonian gravity, or electric charge, in classical electromagnetism - through
an integral evaluated on a surface at infinity. In general relativity, however, limits like r → ∞
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become less precise, since the metric tensor, what is used to measure distance, is dynamical.
Thus a more geometrical, coordinate independent definition of infinity is needed. Such a con-
struction was originally made by Penrose [15] and further studied by many others in different
settings [16]. In this section we will review the idea of conformal infinity and its symmetries,
first from a general point of view, in a d-dimensional spacetime satisfying Einstein’s equations
possibly with a cosmological constant, and then specializing for (anti)-de Sitter and flat space
asymptotics.

2.1.1 Asymptotically Simple Spacetimes

Let (M, gab) be a d-dimensional spacetime of Lorentzian signature (− + · · ·+). In order to
work with infinity as a true boundary of spacetime, the points at "r = ∞" must somehow be
added to M. The idea is to bring them to a "finite distance" by a suitable coordinate trans-
formation. However, what happens in general is that the metric will be ill defined at those
points and an auxiliary, unphysical spacetime M̂, conformally related toM, will be defined to
include them.

Let us illustrate this with 4d Minkowski space. The metric, in spherical coordinates, is
given by

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) . (2.1)

Define null coordinates u = t− r and v = t+ r. Light rays propagating in the radial direction
move in trajectories given by constant u, if moving outwards, or constant v, if ingoing. The
endpoints of these trajectories are given by u = −∞ (past) and v =∞ (future). Note that after
crossing r = 0 an ingoing ray becomes outgoing, thus u = ∞ must be identified with v = ∞
and the same applies for u, v = −∞. These endpoints may be brought to a "finite distance" by
the following coordinate transformations:

u = tan p , v = tan q , (2.2)

which takes the metric to

ds2 =
1

cos2 p cos2 q

[
−dpdq +

sin2(p− q)
4

(
dθ2 + sin2 θdφ2

)]
. (2.3)

As advertised, the metric diverges at infinity, now labeled by the points at p, q = ±π/2. If
we define an unphysical spacetime (M̂, ĝab) with metric related to that of the physical space-
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Figure 2.1: Penrose diagram of Minkowski space.

time by a conformal transformation

dŝ2 = Ω2 ds2 , (2.4)

with
Ω = cos p cos q , (2.5)

the unphysical metric (2.4) is now regular at infinity and these points may be added to the
unphysical spacetime. In a general spacetime, the metric is not that of Minkowski space. How-
ever, if one assumes that the fields in it satisfy appropriate asymptotic conditions, it is expected
that the space will be asymptotically flat (if the cosmological constant is nonzero, the asymp-
totic behavior should be that of (anti-)de Sitter space).

Using the example above, we may extract some general information. First note that in
order to add the points at infinity we had to define an unphysical spacetime whose metric is
conformally related to the physical metric. The conformal factor (2.5) vanishes at infinity. That
can be understood as a means of renormalizing the infinite distances at the boundary. The
boundary (infinity) is then labeled by Ω = 0 and has the feature that ∇a Ω does not vanish
there. Using these as general properties, we may extend to other spacetimes.

Let I be the set of all points at infinity. Penrose defined an asymptotically simple spacetime

M as that satisfying [15]

1. There exists a conformal factor Ω such that dŝ = Ω ds is smooth on M̂ 'M∪ I;

2. Ω
∣∣
I = 0 and nowhere else vanishing; and
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3. ∇a Ω
∣∣
I 6= 0 .

Here, A ' B means that A and B are homeomorphic. There is one extra property in the
original definition for asymptotically flat spaces: every null geodesic must have two endpoints
on I. This will not hold in the presence of a black hole due to its event horizon, hence we will
not require such property.

We will now show that the local properties of I depend on the value of the cosmological
constant given that matter fields satisfy appropriate boundary conditions. To do so, we shall
work on the unphysical spacetime M̂, where infinity is included as its boundary. The unphys-
ical metric ĝab = Ω2 gab has its compatible covariant derivative ∇̂a related to physical ∇a by
the connection

C c
ab =

1

2
ĝcd (∇aĝbd +∇bĝad −∇dĝab) , (2.6)

where
∇̂aωb = ∇aωb − C c

abωc , (2.7)

for any ωc. Using this last equation, one can relate the Riemann tensor in M̂ with that ofM.
In particular, the Ricci tensor and scalar transform as [17]

R̂ab = Rab − gab∇2 log Ω− (d− 2) (∇a∇b log Ω−∇a log Ω∇b log Ω + gab∇c log Ω∇c log Ω) ,

R̂ = Ω−2
[
R− (d− 1)

(
2∇2 log Ω + (d− 2)∇c log Ω∇c log Ω

)]
.

(2.8)

Instead of using the Ricci tensor, let us reformulate the transformation in terms of1

Pab =
1

d− 2

(
Rab −

R

2(d− 1)
gab

)
. (2.9)

If Einstein’s equations hold onM,

Rab −
R

2
gab + Λgab = 8πG(d)Tab , (2.10)

then

Pab =
Λ

(d− 1)(d− 2)
gab +

8πG(d)

d− 2

(
Tab −

T

d− 1
gab

)
. (2.11)

1Note that in terms of Pab, the Riemann tensor decomposition is simply

Rabcd = Cabcd + 2
(
ga[cPd]b − gb[cPd]b

)
.
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Using (2.8), it can be shown that

Pab = P̂ab + Ω−1∇̂a∇̂bΩ−
1

2
Ω−2ĝabĝ

cd∇̂cΩ∇̂dΩ . (2.12)

By construction, the curvature tensors on the unphysical spacetime are all regular at I.
Thus, multiplying (2.12) by Ω2 and evaluating the result at I, where Ω vanishes, leaves only
the last term on the RHS finite. Defining n̂a = ∇̂aΩ, this procedure gives

ĝab n̂a n̂b
∣∣
I = − 2Λ

(d− 1)(d− 2)
+

16πG(d)

(d− 1)(d− 2)

(
Ω2 T

) ∣∣
I . (2.13)

Here, and in what follows, indices of hatted tensors are raised and lowered using the unphysical
metric ĝ. If we require the asymptotic condition (Ω2 T )

∣∣
I = 0, which is not very restrictive,

since one expects that the energy-momentum tensor itself vanish at infinity, then

ĝab n̂a n̂b
∣∣
I = − 2Λ

(d− 1)(d− 2)
= − ε

l2
, (2.14)

where l is the (A)dS radius and (ε = −1) ε = 1. The asymptotically flat case can be recovered
either by putting ε = 0 or in the limit l→∞. Note that n̂a is normal to I and hence (2.14) is a
statement about the geometry of infinity. Three distinct cases arise:

(i) Asymptotically AdS (Λ < 0): I is a timelike hypersurface;

(ii) Asymptotically flat (Λ = 0): I is a null hypersurface; and

(iii) Asymptotically dS (Λ > 0): I is a spacelike hypersurface.

In order to define quantities on I, we need to project the tensors on M̂ at Ω = 0. To
do so, define a projection operator Πa

b that can be viewed as a map between both the tangent
or cotangent spaces of the unphysical spacetime and the conformal infinity at corresponding
points. This operator must satisfy

Πa
c Πc

b = Πa
b ,

n̂a Πa
b = 0 .

(2.15)

The first identity is the usual property of projection operators, while the second states that n̂a
is normal to I. Define a vector l̂a such that

l̂a n̂a = 1 ; (2.16)
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the projection operator can then be written as

Πa
b = δab − l̂a n̂b . (2.17)

The vector l̂a is (almost) determined by noting that

Πa
b l̂
b = 0 , (2.18)

i.e., l̂a is also normal to I. One may then project the metric tensor ĝab to define the induced
metric at I

γab = ĝcd Πc
a Πd

b . (2.19)

Depending on the value of ε – the sign of the cosmological constant – the (d− 1)-dimensional
induced metric has different signatures. In the AdS case (i), its signature is (− + · · ·+); for
asymptically flat (ii), the signature is (0+· · ·+); and in de Sitter asymptotics (iii) is (++· · ·+).

We may then decompose the unphysical metric near I as

ĝab = −L n̂a n̂b + 2l̂(a n̂b) + γab , (2.20)

with the norm of l̂a,
L = ĝab l̂

a l̂b , (2.21)

undetermined. Some other properties arise from this conformal compactification of spacetime.
In particular, take the trace free part of (2.12) multiplied by Ω and evaluate it at infinity. If the
energy momentum tensor satisfies (

Tab −
T

d
gab

)
Ω
∣∣∣
I

= 0 , (2.22)

then it follows that
∇̂an̂b =

1

d
(∇̂2Ω) ĝab +O (Ω) . (2.23)

Note that, anywhere on M̂, ∇̂a n̂b = ∇̂(a n̂b), assuming there is no torsion. Hence, using (2.16),
one can see that

Ll̂ n̂a = l̂b ∇̂b n̂a + n̂b ∇̂a l̂
b = 2l̂b ∇̂[b n̂a]

= 0 .
(2.24)

A direct consequence of this is that the projection operator (2.17) is also constant along the inte-
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gral lines of l̂a, and thus we can use it to project tensors at any point of the unphysical spacetime
into hypersurfaces normal to n̂a, i.e., we can foliate M̂ with hypersurfaces Σ Ω labeled by con-
stant Ω and use Πa

b to project tensors on M̂ onto Σ Ω. The unphysical metric (2.20) may then
be seen as defined throughout M̂ with L and γab – the norm of l̂ and the induced metric at Σ Ω

– now functions of Ω.

2.1.2 Residual Conformal Transformation and Asymptotic Symmetry

The definition of the conformal infinity relied on the existence of a function Ω on M̂ that
vanishes asymptotically and satisfies the conditions stated in the previous subsection. However,
this function is not uniquely determined; one may consider instead Ω′ given by

Ω′ = eω Ω , (2.25)

where ω is a function on M̂. The new conformal factor still vanishes at infinity and has nonzero
gradient. Hence all properties discussed in last section should hold if we "prime" all quantities.
The transformed metric tensor is

ĝ′ab = e2ω ĝab , (2.26)

while the new normal at I is
n̂′a = ∇̂a(e

ω Ω) . (2.27)

The new normal vector can be defined as before by l̂′a n̂′a = 1. In general it is not possible
to write l̂′a exactly in terms of l̂a; there is no unique way of choosing a vector satisfying this
relation. This is not a problem here for we do not need an explicit expression for this vector.

Further conformal transformations can now be dubbed as ω → ω′. This is a residual trans-
formation, for it does not hinder the properties of conformal infinity as long as ω′ is non sin-
gular. Thus the group of asymptotic symmetries must be isomorphic to the residual conformal
transformations. It may seem unnatural that these symmetries should be conformal; the first
guess would be that they are isometries. But remember that infinity is well defined in M̂, and
not in the physical spacetimeM, so when viewed as symmetries on the unphysical space, this
should not be very counterintuitive. In particular, isometries in M correspond to conformal
transformations in M̂. To see this, suppose that ηa is an isometry of the physical spacetime:

Lη gab = 0 . (2.28)



2.1 CONFORMAL INFINITY 17

This vector can be naturally extended to M̂ \ I and thus

Lη ĝab = 2
(
Ω−1 Lη Ω

)
ĝab . (2.29)

If ηa has no component along l̂a, or it is at least of order Ω in that direction, near infinity, then
it can be defined at I as well. Hence, Killing vectors on the physical spacetime are conformal
Killing vectors on the unphysical.

We shall then define the (infinitesimal) Asymptotic Symmetry Group (ASG) to be the (in-
finitesimal) diffeomorphisms generated by vectors ξaα that induce a residual conformal trans-
formation ω → ω + α near infinity. Writing δα instead of Lξα , the ASG acts on M̂ as

δα ĝab = 2α ĝab ,

δα n̂a = ∇̂a(αΩ) .
(2.30)

We will show that the vectors ξaα form a group under the Lie algebra, given that they satisfy
some condition stated below.

Define
[α, β] = δα β − δβ α . (2.31)

It is straightforward to show that

δ[α δβ] ĝab = 2[α, β] ĝab , (2.32)

where δ[α δβ] = δα δβ − δβ δα = L[ξα,ξβ ]. It then seems that the algebra of ASG is isomorphic
to the Lie algebra of vectors. However, the situation is not so simple with variation of n̂a in
(2.30). Namely,

δ[α δβ] n̂a = ∇̂a([α, β] Ω)− ∇̂a (α δβ Ω− β δα Ω) (2.33)

There are two approaches for this issue. First note that this does not correspond to a central
extension of the Lie algebra of the generating vectors, since the extra term is not present at the
variation of the metric. Hence we can either restrict our attention to vectors satisfying

α δβ Ω = β δα Ω , (2.34)

or modify the algebra of the ASG, as is common when dealing with field-dependent transfor-
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mations – see [18]. The modified algebra that accommodates the changes above is

δ[α,β] = δ[α δβ] − δΩ
α δβ + δΩ

β δα , (2.35)

where δΩ
α X denotes the variation in X – an arbitrary tensor – due to the variation of the con-

formal factor induced by ξα, i.e., δΩ
α X = X(Ω + δα Ω)−X(Ω).

We shall initially take the conservative approach and consider those symmetries satisfying
(2.34). Any vector can be decomposed as a vector along l̂a and another perpendicular to it,
using δab = Πa

b + l̂a n̂b. One can see that δα Ω = ξaα n̂a, and thus (2.34) is a condition imposed
on the l̂a component of the ASG generators. It can be fulfilled if

ξaα = αΩ l̂a + ξa‖α , (2.36)

where ξa‖α = Πa
b ξ

b
α. We must then plug this into (2.30) to find the conditions imposed on α

and the component parallel to I. The second equation turns out to be automatically satisfied:

δα n̂a = LαΩl̂ n̂a + Lξ‖α n̂a
= ∇̂a(αΩ) + αΩLl̂ n̂a + Lξ‖α n̂a
= ∇̂a(αΩ) + 2ξaα ∇̂[b n̂a]

= ∇̂a(αΩ) .

(2.37)

From the second to third line we used l̂a n̂a = 1 and ξa‖α n̂a = 0 to organize the terms in a similar
way as in (2.24). The last line results from the fact that n̂a is a gradient, hence its derivative
is symmetric. Note that there is really no need for the modified algebra (2.35), unless we
require that the variation of n̂a induced by the ASG agrees with (2.30) only to order zero on
Ω. This means including terms of order Ω2 in ξaα, which are really small diffeomorphisms on
spacetime and thus have no physical consequences. Hence vectors of the form (2.36) exhaust
all possibilities.

It is desired that after the transformation, the projection operator (2.17) does not change to
order zero in order to allow quantities on I to remain there. Let us first calculate the change in
l̂a:

δα l̂
a = LαΩl̂ l̂

a + Lξ‖α l̂
a

= −Ll̂(αΩ)l̂a − ∂Ω ξ
a
‖α ,

(2.38)

where the second term on the RHS of the last line comes from using the ordinary derivative
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∂a for evaluation of the Lie derivative along ξa‖α and noting the l̂a∂a = ∂Ω. The change in the
projection operator is then

δα Πa
b = −δα l̂a n̂b − l̂a δα n̂b

= −
(
∂Ω ξ

a
‖α
)
n̂b − Ω l̂a Πc

b ∇̂c α +O
(
Ω2
)
.

(2.39)

We shall require that ξa‖α deviates from its value at I only to second order in Ω. Thus (2.36)
corresponds to all diffeomorphisms on spacetime modulo the small diffeos – those resulting in
naive coordinate transformations.

In order to determine ξa‖α, let us project the first equation in (2.30) into ΣΩ:

Πc
a Πd

b δα ĝcd = δα γab − 2ĝcd Πc
(a δα Πd

b)

= δα γab + 2Ω ĝcd l̂
c Πd

(a Πe
b) ∇̂e α +O

(
Ω2
)
.

(2.40)

The variation of the induced metric on ΣΩ can be separated from contributions normal and
parallel to the hypersurface; namely

δα γab = αΩLl̂ γab + Lξ‖α γab . (2.41)

Plugging this all in the first equation of (2.30) results in

Lξ‖α γab = 2α γab − Ω
[
αLl̂ γab + 2ĝcd l̂

c Πd
(a Πd

b) ∇̂e α
]

+O
(
Ω2
)
. (2.42)

Evaluation of the equation above at Ω = 0 shows that the projection of the ASG generating
vector is a conformal Killing vector of I. This can be written in a better way if we define a map
π : M̂ → I. We can then define the pushforward of a general tensor on M̂ to tensors on I by
the operation

π∗ T̂ a1···anb1···bm = Πa1
c1 · · ·Πan

cnT̂
c1···cn

d1···dmΠd1
b1 · · ·Πdm

bm

∣∣
Ω=0

(2.43)

We shall denote the pushforward by TA1···An
B1···Bm; capital letters will be used to denote tensors

on I. Note that this operation is not hindered by ASG transformations, for the projection
operator is unchanged at I. Then, let ξAα = π∗ξaα = π∗ξa‖α and γAB = π∗γab, we have

Lξα γAB = 2α γAB . (2.44)

The discussion up to this point was completely general in the sense that it is equally appli-
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(a) (b)

Figure 2.2: (a) Topological structure of AdS spaces. (b) Penrose diagram of asymptotically
AdS space with an event horizonH.

cable to any of the three cases of asymptotics discussed in the last subsection: de Sitter, anti-de
Sitter or flat space. In the next two subsections we shall discuss specific properties of asymp-
totically (A)dS and flat spacetimes separately; the (non)degeneracy of the induced metric at I
poses some constraints on the vector l̂a that was not completely determined by the conditions
of asymptotic simplicity.

2.1.3 (Anti)-de Sitter Asymptotics

While the treatment of conformal infinity in de Sitter and (Anti)-de Sitter spaces are similar –
only differing on the sign of the cosmological constant – the structure of infinity is different.
In de Sitter, the positive cosmological constant acts accelerating the expansion of spacetime
and hence no observer, or light rays, manage to reach spatial infinity; the infinity is located
in the absolute future and/or absolute past [19]. We shall consider only the absolute future
infinity ı+ (treatment of past infinity ı− is equivalent). The boundary of ı+ can only be reached
by light rays and corresponds to a codimension 2 surface I+, future null infinity. In anti-
de Sitter, on the other hand, the negative cosmological constant renders spatial infinity ı0 as a
possible destination for observers. The boundaries of ı0 are two disjoint codimension 2 surfaces
corresponding to temporal infinities ı±, if no black hole is present, or future and past null
infinities I±, otherwise. In what follows we will refer to the codimension 1 part of conformal
infinity – ı+ for dS and ı0 for AdS asymptotics – simply as infinity, still being referred to by I,
and treat them on equal footing unless some specification is necessary.
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The induced metric at infinity is nondegenerate and thus there exists a well defined inverse.
Instead of inverting the induced metric itself, we may calculate the induced inverse metric using
the projection operator defined in last subsection, i.e.,

γab = Πa
c Πb

d ĝ
cd

= ĝab − 2l̂(a n̂b) +Nl̂a l̂b ,
(2.45)

where N = ĝab n̂a n̂b. Nondegeneracy implies that γab is the inverse of γab, and thus

γac γcb = Πa
b , (2.46)

for the projection operator acts as the (d− 1) identity operator when restricted to tensors on I.
This implies that

l̂a = L n̂a , (2.47)

so that n̂a has no component tangent to I. The metric then assumes the simpler form

ĝab =
1

N
n̂a n̂b + γab , (2.48)

with N given by (2.14)

Equation (2.44) simply tells us that ξAα is a conformal Killing vector on infinity; let DA be
the derivative compatible with γAB2, then

D(A(ξα)B) = α γAB , (2.49)

where (ξα)A = γAB ξ
B
α . The ASG is then isomorphic to the conformal group of I.

2.1.4 Flat Space Asymptotics

The structure of infinity when the cosmological constant is zero (ii) is different. The codimen-
sion 1 part of the conformal infinity is now the destination of outgoing light rays, future null
infinity I+. Its boundaries correspond to future infinity ı+ and spatial infinity ı0. By time re-
version, conformal infinity actually is composed by another, disjoint part: past null infinity I−,

2In [17] it is shown that this derivative is unique. In our notation, it given by

DC T
A1···An

B1···Bm
= π∗∇̂c

(
Πa1

c1 · · ·Πan
cn T̂

c1···cn
d1···dm

Πd1
b1 · · ·Πdm

bm

)
.
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Figure 2.3: Penrose diagram of an asymptotically flat spacetime in the the presence of a black
hole with event horizonH.

which is the origin of ingoing null rays and has ı− and ı0 and its boundaries. We will primarily
be concerned in describing the symmetries of I+ and shall mention the corresponding results
for I− whenever relevant.

Note that
Πa

b n̂
b = n̂a , (2.50)

for n̂a n̂a = 0, cf. (2.14). Thus n̂a is parallel to null infinity and we may write nA as its
pushforward π∗n̂a on I. From the definition of the induced metric, one may check that it is
degenerate and its null direction corresponds to that of nA:

γAB n
B = 0 . (2.51)

In the 4d case, Geroch proved that the topology of null infinity is R×S2, the R part correspond-
ing to the null direction generated by nA [20]. We shall consider the more general situation in
which the topology of I± is R×B, where B is a (d− 2) dimensional compact space. It is then
natural to assume that γAB is associated to a positive definite metric σAB over B; we shall soon
make that more precise.

We also note that l̂a − Ln̂a is parallel to null infinity and satisfies γab(l̂b − Ln̂b) = −Ln̂a,
where γab is the induced inverse metric defined in (2.45). We would like to think of the induced
inverse metric as being related to the inverse of σAB, hence we shall take L = 0. This implies
that lA = π∗l̂a is also related to the null direction on I+. The metric on M̂ near null infinity is
thus given by

ĝab = 2l̂(an̂b) + γab . (2.52)
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It is now possible to define an operator that projects any tensor to components perpendicular
to the null direction. Let PAB be such operator. It must annihilate both nA and lA, thus

PAB = δAB − nAlB , (2.53)

where δAB = π∗Πa
b is the identity on I+. We may then decompose any vector in a uniquely

defined way. In particular, the restriction ξAα of the ASG generator on null infinity may be
written as

ξAα = κnA + PξAα , (2.54)

where PξA = PABξB. We have all the tools to analyze the ASG on null infinity. When
restricted to I+, the residual conformal transformations act as

δα γAB = 2αγAB .

δα n
A = −αnA .

(2.55)

These two equations lead to

κLn γAB + LPξα γAB = 2αγAB (2.56)

and
− (Lnκ)nA − LnPξAα = −αnA . (2.57)

We now pause to give some physical arguments leading to constraints on the geometry of
conformal infinity that will allow us to solve these two equations.

There are no conditions imposed on the dynamics of the physical spacetime for the con-
struction of conformal infinity. In particular, M need not even be stationary. We shall then
assume that time evolution does not hinder the conditions of asymptotic simplicity. Apart from
the de Sitter case, this poses some interesting physical consequences on the structure of infinity.
Basically, since one can think of time evolution as changing the physical spacetime to differ-
ent configurations that are still asymptotically simple, the geometrical features on I should
remain unchanged. In the asymptotically flat case, it means that the induced metric on I+(−) is
unchanged under variations of the retarded (advanced) time:

Ln γAB = 0 . (2.58)

Since this direction is unique, i.e., invariant under residual conformal transformations, we must
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restrict the ASG to those ξaα with
Ln α = 0 . (2.59)

In the AdS case, there should be a timelike Killing vector ηA on spatial infinity. In that case,
however, there is no preferred time direction and α may be time dependent. This is not a
problem since ηA + δαη

A is a (timelike) Killing vector of γAB + δαγAB, and so the existence of
such symmetry is gauge independent. This suggests that the topology of spatial infinity in AdS
asymptotics should also be R× B.

As done by Geroch in [20], we can define a map from null infinity to B, its base space,
ζ : I+ → B, and view I as a fiber bundle over the base space. A cross section of I+ is a
(d− 2) surface homeomorphic to B that intercepts the integral curves nA only once. Equation
(2.58) implies that the metric is the same in any cross section of I+, hence it can be identified
with a metric σAB over the base space B: γAB = ζ∗σAB. The conclusion also holds for the
parameter α of the ASG generators; it is the pushforward of a field over the base space.

These considerations lead us to view PξAα in (2.56) as a vector field on the base space and
that equation can be written as

LPξα σAB = 2ασAB , (2.60)

where all fields are thought of as defined over B. In doing so, we have assumed that

LnPξAα = 0 , (2.61)

hence (2.57) implies that
κ = αu+ α0 . (2.62)

We defined the null coordinate u, such that nADA = ∂u. The term α0 is u-independent and
thus viewed as a field over B. The whole generator on M̂ is

ξaα,α0
= αΩl̂a + (αu+ α0)n̂a + Pξaα , (2.63)

where Pξα is a conformal Killing vector on the base space B. It has now a dependence on two
parameters α and α0. It is suggestive to write ξaα,α0

= ξaα + α0 n̂
a and analyze the algebras

separately. One can see that

[ξα, ξβ] = ξ[α,β] ,

[ξα, β0 n̂] = (LPξα β0 − αβ0) n̂ ,

[α0 n̂, β0 n̂] = 0 .

(2.64)
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Thus, the ASG is the semidirect sum of two algebras that are commonly called superrotations,
generated by ξaα, and supertranslations, generated by α0 n̂

a. The former is a subalgebra of the
ASG isomorphic to the conformal algebra of B and the latter is an abelian subalgebra that is an
ideal of the whole group.

2.2 Perturbations and Large Diffeomorphisms

Before turning to specific cases, let us digress over metric perturbations. Suppose we have
a solution to Einstein’s equations in vacuum and possibly with a cosmological constant in d
dimensions, like the black holes we will study in chapters 3 and 4,

Rab =
ε(d− 1)

l2
gab . (2.65)

(See eq. (2.14) for the relation between l and the cosmological constant.) If we vary the metric
by a "small amount" δgab = hab around the solution, the change in the Ricci tensor is, to first
order, [17]

δRab = −1

2
∇a∇bhc

c − 1

2
∇c∇chab +∇(a∇chb)c +Rcabdh

cd +R(a
chb)c . (2.66)

Here we raise and lower indices with the background metric gab.

The linearized Einstein’s equations

δRab =
ε(d− 1)

l2
δgab (2.67)

thus puts d(d + 1)/2 dynamical constraints in the metric perturbation, assuming it is on-shell.
However, diffeomorphism invariance of the background metric can be translated into the per-
turbation by saying that hab and hab + ∇aξb + ∇bξa are physically equivalent for well be-
haved vector fields ξa. This allows us to choose a gauge in which the perturbation is traceless,
gabhab = 0, and transverse ∇ahab = 0. To see this, let h′ab = hab + 2∇(aξb) be the gauge
transformed perturbation. One can see that

gabh′ab = gabhab + 2∇aξa , ∇ah′ab = ∇ahab +∇2ξb +∇c∇bξc . (2.68)

The vanishing of the left hand side of both equations yields differential equations for ξa that
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can be solved generically.3

We still have the freedom of doing residual gauge transformations, those that do not hinder
the traceless transverse gauge. The generating vector must satisfy

∇aξ
a = 0 , ∇2ξa +Ra

bξ
b = 0 . (2.69)

Note that each of the above transformations eliminates d degrees of freedom from the metric
perturbation, thus leaving only d(d − 3)/2 independent components. This amounts to the 2
polarizations of the graviton in four dimensions and zero in the three dimensional case. The
latter is a statement that Einstein’s gravity in three dimensions is a topological theory; it has no
dynamics in the bulk. In solving the gauge imposing equations, one usually assume fast enough
fall-offs at infinity – the small gauge transformations, or small diffeos.

Our idea is to relax this last condition. Instead, we will seek solutions of the residual
gauge transformations with the condition that the vector will tend to an asymptotic symmetry
at conformal infinity, as described in section 2.1. These are the so called large diffeos, would-
be gauge transformations that leads to a different physical situation. For instance, by such
transformation, one can turn a stationary black hole to a moving black hole by means of the
action of the Poincaré group at infinity.

Said in a different way, the solutions of (2.69) which tends to asymptotic symmetries at
conformal infinity will induce an "active" transformation in the interior. Following [21], one
can associate a conserved charge to an infinitesimal coordinate transformation ξa. In Einstein’s
gravity, this is

Q[ξ] = − 1

16πG

∫
Σ

∇bξcεbca1···ad−2
. (2.70)

One can calculate the total mass M, associated with time translation, and angular momentum
J, related to azimuthal rotation. The charge associated with a general asymptotic symmetry is
less clear. But regardless of their interpretation, asymptotic symmetries that fail to commute
with time translation or azimuthal rotation, for instance, cannot be pure gauge transformations
because they will change the total mass or angular momentum of spacetime. We will save
further discussion for when they are due. In chapter 3 we will apply these ideas to the BTZ
black hole, where the lack of dynamics in 3d gravity will allow us to find analytic solutions.
Finally, we will tackle the same problem for the Kerr black hole in chapter 4.

3One can always make h̄ab = hab − 1
2hgab transverse [17]. So even in case where the traceless transverse

gauge cannot be achieved, one can think of the residual gauge transformations (2.69) as preserving the transverse
condition on h̄ab, though the condition∇aξ

a = 0 is unnecessary in this case.



3 BTZ Black Hole

It has been known that in flat three dimensional Einstein’s gravity there is no solution with
a black hole event horizon. So in 1992 it came as a surprise when Bañados, Teitelboim and
Zanelli found a black hole solution for the case of negative cosmological constant [22]. It is
very similar to the four-dimensional flat black hole, although much simpler to treat. Hence the
BTZ solution has been used extensively in the last two decades as a toy model for the more
realistic Kerr black hole. We shall do so as well; this chapter covers the action of large diffeos
in BTZ black hole.

The metric, in BTZ coordinates, is given by

ds2 = −
(r2 − r2

+)(r2 − r2
−)

l2r2
dt2 +

l2r2dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dφ− r+r−

lr2
dt
)2

. (3.1)

Here l is the AdS radius. The two parameters r± are the radial locations of the event and
Cauchy, or outer and inner, horizons. They are also related to the mass and angular momentum

M =
r2

+ + r2
−

l2
, J =

2r+r−
l

. (3.2)

The global AdS solution is separated by a mass gap from the black hole spectrum. It is obtained
by setting M = −1 and J = 0, or r+ = il and r− = 0. The Killing vectors whose norm vanish
at the horizons are

χ± = ∂t + Ω±∂φ , (3.3)

where
Ω± =

r∓
lr±

(3.4)

are the angular velocities of the horizons. The surface gravities are

κ± =
r2

+ − r2
−

l2r±
. (3.5)

See [23] for more details.
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3.1 AdS3 Kinematics

AdS3 can be viewed as the universal covering of the hyperboloid −T 2
1 − T 2

2 +X2
1 +X2

2 = −l2

in R(2,2) with flat metric metric ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 . For instance, if

X1 = l

√
r2 − r2

−

r2
+ − r2

−
sinh

(r+

l
φ− r−

l2
t
)
, X2 = l

√
r2 − r2

+

r2
+ − r2

−
cosh

(r+

l2
t− r−

l
φ
)
,

T1 = l

√
r2 − r2

−

r2
+ − r2

−
cosh

(r+

l
φ− r−

l2
t
)
, T2 = l

√
r2 − r2

+

r2
+ − r2

−
sinh

(r+

l2
t− r−

l
φ
)
,

(3.6)

one obtains the region r > r+ of the BTZ black hole. Other parametrizations give the remaining
regions [23]. Let us explore this construction in a general setting.

Points in the hyperboloid can be viewed as elements of SL(2,R), the group of 2x2 matrices
with unit determinant:

g =
1

l

(
T1 +X1 T2 +X2

−T2 +X2 T1 −X1

)
=

(
U1 U2

−V2 V1

)
, (3.7)

where we defined lightcone coordinates Ui = (Ti + Xi)/l and Vi = (Ti − Xi)/l. In this
context, the points are defined up to the action of elements of the group, i.e., g and hL g hR are
equivalent, as long as hL,R are elements of SL(2,R). Thus the isometry group is recognized as
two copies of SL(2,R)acting on the left and right: SL(2,R)L×SL(2,R)R. By introducing the
Pauli matrices σi as the Lie generators of the group, one can endow it with a metric structure
by defining the Killing-Cartan form

ηij =
1

2
Tr(σiσj) (3.8)

and its inverse ηij . Let us now transfer these group properties into spacetime.

We first need to define the spacetime metric, which takes the form ds2 = −dU1dV1−dU2dV2

in terms of the lightcone coordinates. To respect the symmetries above, the metric should be
obtained from a symmetric bilinear form that is invariant under g → hL g hR. The only such
structure available is the SL(2,R) bi-invariant Tr(g−1dg)2. Explicit evaluation shows that the
metric is

ds2 =
1

2
Tr(g−1dg)2 . (3.9)

Using spacetime tensor notation, the metric is gab = Tr(g−1(dg)a g
−1(dg)b)/2, where (dg)a =
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∂ag.

The group isometries induce a set of Killing vectors on spacetime. To see this, let us
consider infinitesimal SL(2,R)L transformations hL ≈ 1 + αLi σ

i, where αLi are infinitesimal
parameters. The infinitesimal change due to the left action δg = αLi σ

i g, induces a change on
scalar functions that are generated by the vector fields. On g itself, we have

σig = J i,a(dg)a . (3.10)

The right hand side is the Lie derivative of g along J i, the generators of left transformations on
spacetime. The equation above can be solved for the vector field by multiplying both sides with
g−1(dg)b g

−1 on the right and taking the trace. The right hand side will result in 2J i,agab = 2J ib.
Therefore,

J ia =
1

2
Tr((dg)a g

−1σi) . (3.11)

Note that J i is the σi component of the SL(2,R) element current

Ja = (dg)a g
−1 = J iaσi . (3.12)

This is also called the right invariant current, since it is unchanged under global transformations
g → ghR. A few properties follow from the definitions above, namely

gab = J iaJi,b , ηij = J iaJ
j,a . (3.13)

Also, from (3.10), one can derive the commutation relations among the J i. All one has to do
is take the Lie derivative of both sides with respect to J j and then subtract the i↔ j equation.
Using the identity L[Ji,Jj ] = LJiLJj − LJjLJi , we see that if [σi, σj] = −Cij

kσ
k, then

[J i, J j] = Cij
kJ

k ; (3.14)

i.e, the Lie algebra of spacetime generators is isomorphic to the algebra of the group generators.

The same can be done for the SL(2,R)R symmetry. Now, the infinitesimal transformation
generated by hR = 1 + αRi σ

i is
gσi = J̄ i,a(dg)a , (3.15)

where J̄ i are the generators of right transformations on spacetime. Inversion of (3.15) is done
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by multiplying both sides by g−1(dg)b g
−1 on the left and taking the trace. This yields

J̄ i
a =

1

2
Tr(g−1(dg)a σ

i) . (3.16)

The same identities (3.13) hold for the barred, left invariant currents, J̄a = g−1(dg)a. And it
follows from (3.15), through the same calculation performed for the left generators, that

[J̄ i, J̄ j] = −Cij
kJ̄

k , (3.17)

with the same structure constants, apart from the minus sign. It also follows from (3.10) and
(3.15) that

[J i, J̄ j] = 0 . (3.18)

Thus the isometry algebra on spacetime is exactly SL(2,R)L×SL(2,R)R.

Now, introduce the Gauss parametrization for SL(2,R),

g = euσ
3

e%σ
1

evσ
3

=

(
eu+v cosh % eu−v sinh %

e−u+v sinh % e−u−v cosh %

)
. (3.19)

The left and right currents are

J = (du+ cosh 2% dv)σ3 + e2u(d%− sinh 2% dv)σ+ + e−2u(d%+ sinh 2% dv)σ− ,

J̄ = (dv + cosh 2% du)σ3 + e−2v(d%+ sinh 2% du)σ+ + e2v(d%− sinh 2% du)σ− ,
(3.20)

where σ± = (σ1 ± iσ2)/2. From the expressions above we may read the components of the
one-forms in the basis (σ3, σ+, σ−). In this basis, the Killing-Cartan form (3.8) and its inverse
are

ηij =

1 0 0

0 0 1
2

0 1
2

0

 , ηij =

1 0 0

0 0 2

0 2 0

 . (3.21)

It then follow from (3.13) that the spacetime metric is

ds2 = d%2 + du2 + dv2 + 2 cosh 2% dudv . (3.22)
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Using the inverse metric, we find the isometry generating vectors

J3 = ∂u , J± = e±2u

(
∂% ∓

cosh 2%

sinh 2%
∂u ±

1

sinh 2%
∂v

)
, (3.23)

J̄3 = ∂v , J̄± = e∓2v

(
∂ρ ±

cosh 2%

sinh 2%
∂v ∓

1

sinh 2%
∂u

)
. (3.24)

The Lie algebra is
[J3, J±] = ±2J± , [J+, J−] = 4J3 , (3.25)

[J̄3, J̄±] = ∓2J̄± , [J̄+, J̄−] = −4J̄3 . (3.26)

The structure constants are completely antisymmetric with C3+− = 4 and C3+− = −1. One
can show that

CijkCijk = 3! det(ηij) = −24 . (3.27)

One last result, obtained after a little algebra from the commutation relations and with the aid
of (3.13), is

∇a(Ji)b = εabcJ
c
i , ∇a(J̄i)b = −εabcJ ci . (3.28)

Here,∇a is the derivative compatible with the metric and

εabc = −1

2
CijkJ

i
aJ

j
bJ

k
c =

1

2
CijkJ̄

i
aJ̄

j
b J̄

k
c (3.29)

is the volume form obtained from (3.22).

The general BTZ metric (3.1) can be obtained from the SL(2,R)metric (3.22) by the change
of variables

u =
r+ − r−

2
(φ+ t) , cosh2 % =

r2 − r2
−

r2
+ − r2

−
, v =

r+ + r−
2

(φ− t) , (3.30)

where we set l = 1. Note that this is much in the spirit of what we will be studying here:
coordinate transformations that change the value of charges, like mass and angular momentum.
We can foresee that the situation is indeed simple in the BTZ case, for we can obtain any
solution from the general SL(2,R)metric through the coordinate choice above.

A final remark concerns the eigenvalues of J3 and J̄3. One can see that the Killing vectors
J3 and J̄3 are linear combinations of the time translation and azimuthal rotation vectors. Thus
the eigenvalues 2p and 2q of J3 and J̄3, respectively, are related to those of ∂t, −iω, and ∂φ,
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im, by

p =
i

2

m− ω
r+ − r−

, q =
i

2

m+ ω

r+ + r−
. (3.31)

3.2 Brown-Henneaux group

The asymptotic symmetry group of anti-de Sitter space in three dimensions was studied by
Brown and Henneaux in 1986 when they derived it by assuming appropriate boundary condi-
tions for the falloff of the metric at spatial infinity [7]; they obtained two copies of the Witt
algebra. We shall derive it from the framework built in chapter 2, where we showed that the
generators of the ASG for asymptotically AdS spaces are isomorphic to the conformal Killing
vectors of the boundary, spatial infinity.

From the relations to BTZ coordinates, (3.30), we can see that spatial infinity is approached
as % → ∞. In this limit, the metric (3.22) tends to ds2 = e2%dudv. Thus a possible choice for
the conformal factor is Ω = e−%. The induced metric at infinity is

dŝ2 = dudv (3.32)

This form of the metric allows us to easily visualize the types of diffeos, or coordinate changes,
that give conformally related metrics, namely u→ f(u) and v → g(v) for arbitrary monotoni-
cally increasing functions. Each of these independent transformations have infinite degrees of
freedom. One way to label them as infinitesimal symmetries are

u→ u+
1

2
e2nu , v → v +

1

2
e2nv . (3.33)

These are generated by the vectors ln = 1
2
e2nu∂u and l̄n = 1

2
e2nv∂v at infinity, which correspond

to the parallel components ξ‖ of the ASG generators in (2.36).

In order to find the full generators, we need the metric rescaling factors α and ᾱ in (2.44).
Those are

α =
1

2
ne2nu , ᾱ =

1

2
ne2nv . (3.34)

The vector perpendicular to spatial infinity is l̂ = −e%∂%, for l̂a∂aΩ = 1. Plugging all in (2.36)
yields

ln =
1

2
e2nu (−n∂% + ∂u) (3.35)
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and
l̄n =

1

2
e2nv (−n∂% + ∂v) . (3.36)

These give exactly the algebra of conformal symmetries in 2d, two copies of the Witt algebra:

[ln, lm] = (m− n)ln+m , [l̄n, l̄m] = (m− n)l̄n+m , [ln, l̄m] = 0 . (3.37)

The global part of the algebra is generated by l−1, l0, l1 and l̄−1, l̄0, l̄1, which we recognize as
the limits of (3.25) and (3.26) when % → ∞, apart from 1/2 factors. Thus they realize the
SL(2,R)L×SL(2,R)R three dimensional anti-de Sitter algebra, while the remaining vectors
induce local conformal transformations at spatial infinity.

3.3 Large Diffeomorphisms

As discussed in the end of chapter 2, transformations at conformal infinity related to the asymp-
totic symmetries will induce a non trivial transformation in the bulk. In this section we will
solve the traceless transverse gauge preserving residual transformations (2.69) imposing the
boundary condition that ξa tends to the asymptotic symmetries of last section. Let us first find
solutions for which ξa → lan. The derivation of the barred counterpart will be equivalent and
we shall not delve into the details.

In order to solve the differential equations, we will make use of the properties of spacetime
inherited by the SL(2,R)symmetry derived in section 3.1 . Let ξi = Jai ξa and ∇i = Jai ∇a.
Using equations (3.13) and (3.29), one can show that

∇aξa = ∇iξi , Jai ∇2ξa = ∇2ξi + Ci
jk∇jξk + 2ξi . (3.38)

Define
λi = Ci

jk∇jξk . (3.39)

The idea here is to transform the second order differential equation in a set of two linear equa-
tions on ξi and λi. First notice that the second equation in (2.69) gives the relation

∇2ξi + λi = 0 . (3.40)
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Now take the curl of (3.39)

Ci
jk∇jλk = 4∇2ξi − 4Ci

jk∇jξk − 4∇i(∇jξj)

= −8λi − 4∇i(∇jξj) .
(3.41)

When we impose the condition that ξa is divergenceless, the equation above for λi decouples.
However, the solution fails to satisfy the required boundary condition. Therefore we shall set
λ = 0.1

The components of the vector field thus satisfy Laplace’s equation, though not quite inde-
pendently – they are subjected to the constraint Cijk∇jξk = 0. In terms of

z = cosh2 % =
r2 − r2

−

r2
+ − r2

−
, (3.42)

the Laplace’s equation is given by

∇2ξi =

[
∂

∂z

(
z(z − 1)

∂

∂z

)
+

1

16z(z − 1)

(
(2z − 1)

∂2

∂u∂v
− ∂2

∂u2
− ∂2

∂v2

)]
ξi = 0 . (3.43)

In general, a solution to this equation can be expanded in simultaneous eigenvalues of J3 and
J̄3, namely e2pu+2qv as discussed in the end of section 3.1. However, in order to have our
solution matching one of the asymptotic vectors ln, we must set q = 0. Hence ξa is only a
function of z and u. This simplifies the Laplace’s equation to the point that its solutions can be
written in terms of elementary functions. For instance, the solution for ξ3 is

ξ3 = −p
2 − 1

2

[
c+

(
z − 1

z

)p/2
+ c−

(
z

z − 1

)p/2]
e2pu . (3.44)

The reason for the choice of normalization will become apparent when we take the limit z →∞
and compare with the generators of the ASG. The other components can be obtained from
Ci

jk∇jξk = 0, yielding

ξ+ =
p(p− 1)

2

[
c+

(
z − 1

z

)(p+1)/2

+ c−

(
z

z − 1

)(p+1)/2
]

e2(p+1)u (3.45)

1In case the divergence of ξa is nonzero, as discussed in the footnote 3 of chapter 2, we still have that the
solutions of the homogeneous equation does not satisfy the boundary condition. However, one cannot set λi = 0.
It turns out that the solution of (3.41) is simple: λi = −∇i(∇jξj).
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and

ξ− = −p(p+ 1)

2

[
c+

(
z − 1

z

)(p−1)/2

+ c−

(
z

z − 1

)(p−1)/2
]

e2(p−1)u . (3.46)

When we relate to BTZ coordinates (3.30), the vanishing of the J̄3 eigenvalue q means that the
frequency and angular momentum are related by ω = −m (see (3.31)). We shall then refer to
these solutions as the left moving large diffeos or simply as left diffeos.

Going back to spacetime vector notation, we can write ξa = ηijJai ξj . Using coordinates
(z, u, v), we have

ξp =
c+

2
e2pu+

[
−p(p+ 2z − 1)∂z +

(
p(p+ 2z − 1)

4z(z − 1)
+ 1

)
∂u −

p(p(2z − 1) + 1)

4z(z − 1)
∂v

]
+
c−
2

e2pu−

[
p(p− 2z + 1)∂z +

(
p(p− 2z + 1)

4z(z − 1)
+ 1

)
∂u −

p(p(2z − 1)− 1)

4z(z − 1)
∂v

]
. (3.47)

where we defined null coordinates on the z − u plane

u± = u± 1

4
log

(
z − 1

z

)
, (3.48)

which are respectively ingoing and outgoing left moving coordinates. Notice that ξp reduces to
the SL(2,R)L current vectors when p = 0,±1. At spatial infinity both u± tends to u and the
vector

ξp → (c+ + c−) e2pu

(
−nz∂z +

1

2
∂u

)
, (3.49)

which is the expression for lp in terms of the z coordinate. Thus, the only restriction that must
be imposed on the coefficients c± is that their sum must not vanish, otherwise we end up with
a small diffeomorphism. The actual change in the metric can be calculated with the aid of
eq. (3.29). The result is

Lξpgab = 2p(1− p2)
[
c+e2pu+(du+)a(du+)b + c−e2pu−(du−)a(du−)b

]
. (3.50)

As expected, this vanishes for p = 0,±1, for these are Killing vectors. It should be noted that if
we loosen the constraints that the large diffeos must preserve the trace and divergence of metric
perturbations, we can readily obtain infinitely many solutions from (3.47). Namely [lp−n, ξn]

will tend to lp as one approaches spatial infinity, due to the Witt algebra of the ASG.

Before analyzing the effects of the large diffeos at the horizons, let us discuss the right
diffeos – the solutions to (2.69) that approach l̄n at spatial infinity. We can consider, in the same
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way, the components of tensors in the basis of the SL(2,R)R current vectors. For instance,
let ξ̄i = J̄ai ξa. All the calculations that follow are analogous to what was done above, the
only difference being the change of sign in (3.29), which will effectively make Cijk → −Cijk
in all equations. The solutions now will have zero eigenvalue of J3 and, in relation to BTZ
coordinates, will have ω = m.

The fact that when changing from left to right currents, we make u → v and J± → J̄∓,
implies that the components ξ̄i are not obtained by simply making u → v. However, since the
asymptotic vectors have this symmetry, the full vector ξ̄aq turns out to be related to ξap by u↔ v.
Thus

ξ̄q =
c̄+

2
e2qv+

[
−q(q + 2z − 1)∂z +

(
q(q + 2z − 1)

4z(z − 1)
+ 1

)
∂v −

q(q(2z − 1) + 1)

4z(z − 1)
∂u

]
+
c̄−
2

e2qv−

[
q(q − 2z + 1)∂z +

(
q(q − 2z + 1)

4z(z − 1)
+ 1

)
∂v −

q(q(2z − 1)− 1)

4z(z − 1)
∂u

]
. (3.51)

Now the null coordinates
v± = v ± 1

4
log

(
z − 1

z

)
(3.52)

represent outgoing and ingoing right moving coordinates, respectively. All the discussion fol-
lowing equation (3.47) has a straightforward parallel for the right diffeos.

3.4 Near horizon

In terms of the radial z coordinate, the inner and outer horizons are located at z = 0 and z = 1,
respectively. One can see that the vector fields (3.47) and (3.51) seem to be ill defined at the
horizons, but this is not true. The divergence of the expressions is just a reflection of the fact
that the coordinates u and v, or rather φ and t (see (3.30)), fail to cover the horizons; this is
simply an apparent singularity.

Consider the following. Particles travelling at constant values of u+, for instance, are in-
going and will eventually reach the event horizon and dive into the black hole. The situation
for u− is the opposite; particles in level curves of this coordinate will travel towards spatial
infinity. However, when we look at its time reversed trajectory, it seems it was originated at the
event horizon as well. This reasoning shows us that the event horizon has two disjoint surfaces:
future and past event horizon H±. This gives a reason for the failure of the time coordinate,
as measured by an observer at infinity; the infinite redshift caused by the event horizon implies
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that the future event horizon is located at t = ∞ and the past horizon at t = −∞. The bad
behavior with the angular coordinate φ only happens when the black hole has a nonzero angular
momentum, as it causes an indefinite amount of winding from the point of view of the observer
at infinity. Therefore, in order to describe the effect of the large diffeos near horizon, we must
find appropriate coordinates.

Concerning the left diffeos, from the near horizon perspective, the two solutions in (3.47)
controlled by the constants c± act in different parts of the event horizon: future or past, respec-
tively. From a physical point of view, black holes can arise by the collapse of matter and the
past event horizon is not a real location, unless one consider an unrealistic eternal black hole.
In any case, the idea here is to infer what changes are induced on the black hole through some
measurement made by an observer at spatial infinity. Causality thus restricts our attention to
the future event horizon H+. We shall then set c− = 0. As for the right diffeos, the ingoing
coordinate is v− and thus we set c̄+ = 0 in (3.51).

Let us get an intuition in to what the regular coordinates at H+ are by working with BTZ
coordinates, in which the metric is given by (3.1). We shall make a change of variables similar
to the ingoing Eddington-Finkelstein coordinates in 4d black holes. First define the tortoise
coordinate

r∗ =

∫
r2dr

(r2 − r2
+)(r2 − r2

−)
=

r+

2(r2
+ − r2

−)
log

(
r − r+

r + r+

)
− r−

2(r2
+ − r2

−)
log

(
r − r−
r + r−

)
(3.53)

and the retarded time t̃ = t + r∗. An angular comoving coordinate can then be defined by
φ̃ = φ+ r̂, where

r̂ =

∫
r+r−dr

(r2 − r2
+)(r2 − r2

−)
=

r−
2(r2

+ − r2
−)

log

(
r − r+

r + r+

)
− r+

2(r2
+ − r2

−)
log

(
r − r−
r + r−

)
.

(3.54)
The ingoing BTZ coordinates are (t̃, r, φ̃), in terms of which the metric is

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt̃ 2 + 2dt̃dr + r2

(
dφ̃− r+r−

r2
dt̃
)2

. (3.55)

It is now regular at both horizons. Note that the radial vector ∂r, in this coordinate system,
describes the path of ingoing null rays. The Killing vector that vanishes at the event horizon
(3.3) is given by χ+ = ∂t̃ + Ω+∂φ̃. It picks out a preferred corotating angular coordinate,

φH = φ̃− Ω+t̃ , (3.56)
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whose level surfaces are normal to χ+. We then define the event horizon coordinates (t̃, r, φH).
The metric now reads

ds2 = 2dt̃dr + r2dφ2
H −

r2 − r2
+

r+

dt̃
(
κ+dt̃− 2Ω+dφH

)
. (3.57)

At r = r+, the retarded time is the null coordinate corresponding to the null part of the
future event horizon and the vector field ∂t̃ coincides with the Killing vector that vanishes at
H+. Cross sections of the horizon yield a 1d compact space which is parametrized by the
corotating angular coordinate φH .

The description we will give of the large diffeos near the event horizon is not exactly ob-
tained from the coordinates above. One reason for that can be seen from the definition of u+

in (3.48); the z dependent part is not the same as the tortoise coordinate, it is, however, the
coordinate that puts the Laplacian (3.43) in the normal form. Yet, there is a close resemblance
between the event horizon coordinate system showed above and the ones we will use to de-
scribe the left and right diffeos. Note, for instance, that φ̃ + t̃ differs from u+ by an analytic
function at both horizons:

u+ =
r+ − r−

2
(φ̃+ t̃) +

1

2
log

(
r + r+

r + r−

)
. (3.58)

Thus we would like that our coordinate system have some similarities with the obtained above.
However, in order to keep explicit the chiral properties of our solution, we will have u+ as the
retarded time. Note that in (z, u, v) coordinates, the Killing vector that vanishes at the event
horizon is proportional to ∂u − ∂v. In order to mirror the properties of (t̃, r, φH), we want a
coordinate system in which the vector along u+ coincides with the Killing vector that vanishes
at the event horizon. After a little algebra, one can show that (u+, z, ψH), where

ψH = u+ v − 1

2
log z , (3.59)

accomplishes that. The metric,

ds2 = 2du+dz + dψ2
H − 4(z − 1)du+(du+ − dψH) , (3.60)

is regular at the event horizon and ψH functions as the angular coordinate there. In fact, since
u+v = r+(φ−Ω+t), one can see that ψH is closely related to the corotating angular coordinate
φH .
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Now, in order to write the left diffeo in this coordinate system, one only needs to calculate
the components ξap(du+)a, ξ

a
p(dz)a and ξap(dψH)a. This leads us to the expression

ξp =
1

2
e2pu+ [∂+ + (p+ 1)∂H − p(p+ 2z − 1)∂z] , (3.61)

where we set c+ = 1. In this coordinate system it is easy to verify that the ingoing part of the
left diffeos also satisfy the Witt algebra

[ξn, ξm] = (m− n)ξn+m , (3.62)

thus transposing the whole structure of the left ASG at spatial infinity to the bulk and, in par-
ticular, the event horizon. The transformations induced at the horizon are time dependent; each
cross section will be affected differently due to the e2pu+ factor. It is a composition of a time
dependent supertranslation, a rotation and a radial displacement.

Similarly for the right diffeos, we define the coordinate system (v−, z, φ̄H), where

ψ̄H = u+ v +
1

2
log z . (3.63)

The metric assumes a similar form,

ds2 = −2dv−dz + dψ̄2
H − 4(z − 1)dv−(dv− − dψ̄H), (3.64)

while the right diffeos with c̄− = 1 are

ξ̄q =
1

2
e2qv−

[
∂̄− − (q − 1)∂̄H + q(q − 2z + 1)∂̄z

]
, (3.65)

also satisfying the Witt algebra [ξ̄n, ξ̄m] = (m−n)ξ̄n+m. However, left and right diffeos do not
commute, as the ASG generators do. In fact, we have, in left ingoing coordinates,

[ξp, ξ̄q] =
pq(p− 1)(q + 1)

4z2
e2pu++2qv−

[
q − 1

2
∂+ + (q − 1)∂H + (q + p)z∂z

]
. (3.66)

Note that whenever p and q assume the values -1,0 or 1, the commutator vanishes, as expected
since one returns to the global SL(2,R)L×SL(2,R)R. It also vanishes as z →∞.



4 Kerr Black Hole

Shortly after General Relativity was proposed in 1915, a static black hole solution was found
by Schwarzschild [24]. A few years later another solution was found; a charged, yet still
static, black hole, discovered by Reissner [25] and Nordström [26]. It was only in 1963 that
a rotating solution was found by Kerr when the algebraic properties of spacetimes were better
understood [27]. Since the universe is, in general, electrically neutral, this is the solution that
most accurately describes the black holes found in our universe. In particular, gravitational
waves detected by LIGO in 2016 [28] originated from two Kerr black holes merging, with the
end state also being described by this solution. In this chapter we will study the action of large
diffeos in Kerr black holes.

In Boyer-Lindquist coordinates, the Kerr metric, with mass M and angular momentum
J = Ma, is

ds2 = −∆

Σ

(
dt− a sin2 θdφ

)2
+

Σ

∆
dr2 +

sin2 θ

Σ

(
(r2 + a2)dφ− adt

)2
+ Σdθ2 , (4.1)

where

∆ = r2 + a2 − 2Mr = (r − r+)(r − r−) ,

Σ = r2 + a2 cos2 θ .
(4.2)

The constant a is called rotation parameter; when it is set to zero, the metric becomes that of
the Schwarzschild black hole. Like BTZ, the Kerr black hole has two horizons, located at

r± = M ±
√
M2 − a2 . (4.3)

Both are Killing horizons with vanishing Killing vectors given by

χ± = ∂t + Ω±∂φ , (4.4)
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where the angular velocities of the horizons and their surface gravities are

Ω± =
a

2Mr±
. κ± =

r+ − r−
4Mr±

. (4.5)

For a recent review of the properties and history of the Kerr black hole, see [29].

4.1 Newman-Penrose formalism

Unlike anti-de Sitter space in three dimensions, flat 4d spaces have not enough symmetries that
allow for complete integrability. As stated earlier, the metric is dynamical and the graviton –
metric perturbations around a background solution – has two independent polarizations. There
are, however, some solutions of the Einstein’s equations that possess some algebraic properties
which provide great computational power. Those are properties of the null geodesics on the
spacetime. It was only after a systematic study of them that the Kerr black hole was found. In
1962, Newman and Penrose (NP) introduced a formalism based on null tetrads that make such
properties more explicit [30]. In this section we will review their formalism and apply to the
Kerr black hole.

In general, one may write the metric and its inverse in terms of a tetrad eaµ:

gab = ηµνeaµe
b
ν , (4.6)

where Greek indices label the tetrads and, as before, Latin indices are for spacetime tensors.
This relation can be inverted to

ηµν = gabe
a
µe
b
ν . (4.7)

Like the Killing-Cartan form of section 3.1, the constant invertible matrix ηµν may be used to
raise and lower tetrad indices. Now, instead of dealing with Christoffel symbols, one defines
the Ricci rotation coefficients,

λρµν = eaρe
b
µ∇a(eν)b , (4.8)

which are antisymmetric in the last two indices due to the identity (4.7). One has therefore 24
independent components, instead of the 40 Christoffel symbols. This equation can be inverted
to give ∇a(eν)b = (eµ)bλaµν , where λaµν = λρµνe

ρ
a. Using the spacetime differential form

notation eµ = (eµ)a and λµν = λaµν , one can rewrite (4.8) as

deµ = eν ∧ λµν , (4.9)
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where d is the exterior derivative. The same can be done for the Riemann tensor. Its components
on the tetrad basis may also be put in a differential form notation.

Rabµν = Rabcde
c
µe
d
ν = ecµ(∇a∇b −∇b∇a)(eν)c (4.10)

may be written as a 2-formRµν . Explicit evaluation of the derivatives above yields

Rµν = dλµν + λµ
ρ ∧ λρν . (4.11)

The two equations (4.9) and (4.11) are the first and second Cartan equations; complemented by
the Bianchi identities, they provide the full description of the space in the tetrad formalism.

Newman and Penrose considered the case in which the tetrad metric

ηµν =


0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

 = ηµν ; (4.12)

all vectors in the tetrad are null. Using the notation

eaµ = (la, na,ma,ma) , (4.13)

with tetrad indices assuming the values 1,2,3 and 4, we have

lana = −mama = −1 . (4.14)

and any other product vanishing. While there are many possible choices for these vectors, in
order to take full advantage of the formalism, it is more suitable to choose la and na to be the
generators of null geodesics on spacetime. With the freedom of rescaling these two vectors,
while maintaining their inner product equal to -1, la can be made affinely parametrized. The
remaining vectors are then chosen to satisfy the relations above. The resulting vectors, known
as the Kinnersley tetrad [31], are given by
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l =
r2 + a2

∆
∂t +

a

∆
∂φ + ∂r ,

n =
∆

2Σ

(
r2 + a2

∆
∂t +

a

∆
∂φ − ∂r

)
,

m =
1

σ
√

2

(
ia sin θ ∂t + ∂θ +

i

sin θ
∂φ

)
,

m = (m)∗ .

(4.15)

Here σ = r + ia cos θ, so that Σ = σσ∗. Note that la describes outgoing trajectories and
na, ingoing. From an outgoing perspective, ma and ma correspond to right and left circular
polarizations, respectively. From an ingoing perspective, the roles are reversed. For a nice
derivation of the null geodesics in Kerr using the Hamilton-Jacobi equation, see [32].

The Ricci rotation coefficients may be calculated with the aid of the structure constants in
the commutation relations [eµ, eν ] = Cρ

µνeρ. The left hand side can be written as (λµρν −
λνρµ)eρ, expressing C in terms of λ. Inverting this relation yields

λρµν =
1

2
(Cρµν − Cµρν − Cνρµ) . (4.16)

The commutation relations are easier to calculate because the ordinary derivative operator can
be used. The 24 independent coefficients may be written in terms of 12 complex quantities
known as the spin coefficients. Those come from a spinor formalism which is naturally related
to the null tetrad framework in the NP formalism. Please refer to their original paper [30] for
more details on the spinorial viewpoint. The coefficients are

κ = −λ131 = 0 , σ = −λ331 = 0 , ρ = −λ431 = − 1

σ∗
,

λ = −λ424 = 0 , ν = −λ224 = 0 , µ = −λ324 = − ∆

2|σ|2σ∗
,

τ = −λ231 = −ia sin θ

|σ|2
√

2
, π = −λ124 =

ia sin θ

(σ∗)2
√

2
,

ε = −1

2
(λ121 + λ134) = 0 , γ = −1

2
(λ221 + λ234) = − ∆

2|σ|2σ∗
+
∂r∆

4|σ|2
,

α = −1

2
(λ434 + λ421) =

ia sin θ

(σ∗)2
√

2
− cot θ

2σ∗
√

2
,

β = −1

2
(λ321 + λ334) =

cot θ

2σ
√

2
.

(4.17)



4.1 NEWMAN-PENROSE FORMALISM 44

See [32] for the explicit evaluation. The coefficients were barred to avoid confusion with sym-
bols used throughout this work.

The algebraic properties we referred to in the beginning of this section are those of the Weyl
tensor. Since Cabcd = C[ab][cd] = C[cd][ab], it can be regarded as a quadratic form on the space of
bivectors Xab = X [ab]. At any given event on spacetime there are four eigenbivectors, which
can be associated to null vectors, giving rise to the Principal Null Directions (PNDs). This
leads to the Petrov classification [33]; one can organize solutions of the Einstein’s equations
according to the degeneracies of the PNDs. Black holes are generally of type D, meaning they
have two double PNDs, corresponding to the ingoing and outgoing null directions. A double
PND has the property of being a shear-free null geodesic and this is directly encoded on the
spin coefficients; the vanishing of κ and σ is a reflection of the fact that la lies along a PND,
while λ̄ = ν = 0 is the corresponding result for na. The other vanishing coefficient, ε, is so
because la was chosen to be affinely parametrized. The corresponding coefficient for na is γ
and it cannot be made zero simultaneously due to the normalization lana = −1.

In the absence of cosmological constant, Einstein’s equations imply that the Ricci tensor
vanishes. Thus the Weyl tensor completely characterizes the curvature of spacetime. Due to
its symmetries and the fact that it is completely traceless, the Weyl tensor has 10 independent
components. In the NP formalism, the components Cµνρσ = Cabcde

a
µe
b
νe
c
ρe
d
σ are organized into

5 complex scalars given by

Ψ0 = C1313 , Ψ1 = C1213 , Ψ2 = C1342 , Ψ3 = C1242 , Ψ4 = C2424 . (4.18)

Now, the Goldberg-Sachs theorem states that, in type D spacetimes, the only nonzero compo-
nent is Ψ2. It can be calculated by using the equations (4.11). Those are listed in [30]. In
particular, using the equation (4.2f) in that reference,

Dγ−Dε = (τ +π∗)α+(τ ∗+π)β− (ε+ε∗)γ− (γ+γ∗)ε+τπ−νκ+Ψ2−Λ+Φ11 , (4.19)

where Λ = Ψ11 = 0 are components of the Ricci tensor, D = la∂a and D = na∂a. One finds
that

Ψ2 = − M

(σ∗)3
. (4.20)

This completes the description of the Kerr black hole in the NP formalism. Let us now discuss
the ASG of 4d asymptotic flat spaces.
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4.2 BMS group

As discussed in subsection 2.1.1, conformal infinity in asymptotically flat spacetimes is sepa-
rated in two null hypersurfaces, one in the future and other in the past. The Boyer-Lindquist
coordinates in which we described the Kerr black hole earlier is not suitable for future null
infinity I+ or past null infinity I−. For each case we will need appropriate coordinate systems
which are regular at the respective null infinity. Those are ingoing and outgoing Eddington-
Finkelstein-type coordinates [34].

For the outgoing coordinate system, we need a retarded time u = t− r∗, where the tortoise
coordinate

r∗ =

∫
r2 + a2

∆
dr = r +

2M

r+ − r−

(
r+ log

(
r

r+

− 1

)
− r− log

(
r

r−
− 1

))
, (4.21)

and a comoving angular coordinate φu = φ− r̂, with

r̂ =

∫
a

∆
dr =

a

r+ − r−
log

(
r − r+

r − r−

)
. (4.22)

Notice the similarities with the construction made in section 3.4 for the BTZ black hole, when
we considered coordinates that are regular at the future event horizon. It turns out that the
coordinates we will find here are also well defined in the future or past event horizon of the
Kerr black hole. The metric in outgoing Eddington-Finkelstein coordinates (u, r, θ, φu) is

ds2 = −2dr(du−a sin2 θdφu)−
∆

Σ
(du−a sin2 θdφu)

2+
sin2 θ

Σ

(
(r2 + a2)dφu − adu

)2
+Σdθ2 .

(4.23)
In the large r limit, the unphysical metric dŝ2 = Ω2ds2 with Ω = 1/r is given by

dŝ2 = 2dΩ(du− a sin2 θdφu) + dθ2 + sin2 θdφ2
u +O

(
Ω2
)
, (4.24)

with inverse metric

∂ŝ2 = 2∂u∂Ω + a∂u
(
a sin2 θ∂u + 2∂φu

)
+ ∂2

θ +
1

sin2 θ
∂2
φu +O

(
Ω2
)
. (4.25)

In this coordinate system, future null infinity is located at Ω = 0 and the null vector parallel
to I+ is n̂a = ∂au, according to the notation used in subsection 2.1.4. The base space of future
null infinity is the sphere S2 parametrized by the coordinates (θ, φu).
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The ASG at I+ is known as the BMS group, the semidirect sum of supertranslations and
superrotations. The former corresponds to angle dependent null translations and the latter are
isomorphic to the conformal group of the base space. Supertranslations are generated by vectors
of the form α(θ, φu)∂

a
u. The l = 0 and l = 1 modes of the decomposition in spherical harmonics

are the time and spatial translations, respectively. The conformal group of the sphere is best
visualized if we change to stereographic coordinates (ζu, ζu), where

ζu = eiφu cot
θ

2
, ζu = (ζu)

∗ . (4.26)

The metric of the sphere becomes

dσ2 =
dζudζu

4(1 + ζuζu)
2
, (4.27)

which is conformally related to the metric of the plane. Thus, just as in spatial infinity in AdS3,
conformal transformations are simply ζu → ζ ′u(ζu). The infinitesimal transformation has an
infinite number of generators given by

ln = ζnu ∂ζu , ln = ζnu ∂ζ̄u . (4.28)

Of those, only the n = 0, 1, 2 are globally defined on the sphere and these 6 degrees of freedom
correspond to the Lorentz group SO(3,1). Thus Poincaré is a subgroup of BMS. The other
modes induce local conformal transformations on the sphere. The conformal factor that arises
after the holomorphic conformal transformation above is

α =

(
n

2
− ζuζu

1 + ζuζu

)
ζn−1
u . (4.29)

Near I+, the generators of superrotations are thus

ξn =

(
n

2
+

ζuζu
1 + ζuζu

)
ζn−1
u (Ω∂Ω + u∂u) + ζnu∂ζu (4.30)

and their anti-holomorphic counterparts.

The description at I− is analogous. The ingoing Eddington-Finkelstein coordinates are
(v, r, θ, φv), where v = t + r∗ is the advanced time and φv = φ + r̂ is the comoving angular
coordinate. The metric is obtained from (4.23) by simply making u → v and dr → −dr.
Past null infinity is again located at Ω = 0, its null vector is n̂a = ∂av and the base space is
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the sphere, parametrized by (θ, φv). The ASG is another copy of the BMS group; we have
supertranslations generated by α′(θ, φv)∂av and superrotations as in equation (4.30), but with u
replaced by v.

4.3 Large Diffeomorphisms

Let us now solve the equations for the large diffeos – the traceless transverse gauge preserving
residual transformations (2.69),

∇2ξa = 0 , ∇aξ
a = 0 , (4.31)

that asymptote to the BMS group generators. In a Ricci-flat background, this problem can be
cast into the solutions of the vector potential of a spin-1 perturbation of the Kerr metric. These
satisfy the Maxwell’s equations

∇aFab = 0 , ∇[aFbc] = 0 . (4.32)

The electromagnetic field tensor is written as the exterior derivative of the vector potential,
Fab = ∇aAb − ∇bAa, where it is defined up to U(1) gauge transformations Aa ∼ Aa +∇aχ.
Equations (4.32) generate solutions for (4.31) if we choose the Lorenz gauge∇aA

a = 0. More
explicitly, just note that

∇aFab = ∇2Ab −∇a∇bAa = ∇2Ab −∇b(∇aAa)−Rb
cAc , (4.33)

reducing to the vector Laplacian in a Ricci-flat background if Lorenz gauge is imposed.

There is a simpler approach, which is to look for scalar modes. Suppose ξa = ∇aΦ. The
divergence condition implies that Φ satisfies Laplace’s equation

∇2Φ = 0 . (4.34)

It turns out that this is the only constraint on the scalar field, for

∇2∇aΦ = ∇a∇2Φ−Ra
b∇bΦ (4.35)

is automatically zero. From the point of view of spin-1 perturbation, these scalar modes are
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the trivial solutions with vanishing electromagnetic fields. In what follows, we will show that
they can only generate the spatial translations of the BMS group and then we will explore the
boundary conditions in the general case of the vector modes.

4.3.1 Scalar Modes

We need to impose appropriate boundary conditions on the scalar field Φ in order for the vector
field ξa = gab∇bΦ approach a generator of the BMS group. Since the inverse metric is of order
Ω2 at null infinity, the scalar field must be of order Ω−1 for ξa be finite and, in fact, the only
order zero component will be in the null direction. Thus, in principle, only supertranslations
can be generated by scalar modes. The boundary condition on Φ is

Φ = −Ω−1α(θ, φ) +O (1) , (4.36)

meaning that ξa = α(θ, φ)∂au + O (Ω). Note that translations in flat space can be expressed
as gradients (ζµ)a = ∇a(x

µ), while rotations cannot. Hence it seems reasonable that only
supertranslations can be described by a scalar mode.

In the tetrad formalism, the Laplacian can be written as

∇2Φ = ηµνeaµe
b
ν∇a∇bΦ = ηµν∇µ∇νΦ− ηµνηρσλµρν∇σΦ , (4.37)

where ∇µ = eaµ∇a = (D,D, δ, δ) are the directional derivatives along the tetrad vectors. The
Ricci rotation coefficients can be read off the spin coefficients (4.17) by noting that complex
conjugation is equivalent to interchange the indices 3 and 4, since m = (m)∗. The result is

∇2Φ = −DDΦ−DDΦ + δδΦ + δδΦ

+ (γ + γ∗ − µ− µ∗)DΦ + (ρ+ ρ∗ − ε− ε∗)DΦ

− (τ ∗ − π + α− β∗)δΦ− (τ − π∗ + α∗ − β)δΦ . (4.38)

Using the expressions (4.15) for the directional derivatives and (4.17) for the spin coefficients,
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we may write the Laplacian operator in terms of the Boyer-Lindquist coordinates:

∇2Φ =
1

Σ

[
∂

∂r
∆
∂

∂r
− 1

∆

(
(r2 + a2)

∂

∂t
+ a

∂

∂φ

)2

+
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

(
a sin2 θ

∂

∂t
+

∂

∂φ

)2
]
. (4.39)

This operator is separable and the equation can be split in two confluent Heun equations for
r and θ. Expanding the solution in terms of the eigenvalues of ∂t and ∂φ – the frequency ω
and angular momentum m – and an angular quantum number l, the general expression for the
scalar field is

Φω,l,m(t, r, θ, φ) = e−iωt
(
C+h

+
ω,l,m(r) + C−h

−
ω,l,m(r)

)
0Slm(cos θ)eimφ , (4.40)

where h± are confluent Heun functions [35] and 0Slm are the scalar spheroidal harmonics [36].
The radial function have the asymptotic behavior (see [37])

h±ω,l,m =
e±iωr∗

r

(
1 +O

(
r−1
))
, (4.41)

where r∗ is the tortoise coordinate (4.21). Taking into account the time dependence, we see
that the solutions have either an explicit dependence on u at I+ or on v at I−, thus violating
our boundary condition (4.36).

The only possibility is to look at solutions with zero frequency. In this case, the angular part
of the Laplacian corresponds to the Laplacian on the sphere whose solutions are the spherical
harmonics Y m

l with eigenvalue −l(l + 1). The radial part of the scalar field Φl,m(r, θ, φ) =

Rl,m(r)Y m
l (θ, φ) now satisfies the differential equation[

∂

∂r
∆
∂

∂r
+

(
a2m2

∆
− l(l + 1)

)]
Rl,m = 0 . (4.42)

The large r behavior is now either rl or r−l−1, and hence only the l = 1 modes satisfy our
boundary condition. The equation above has three regular singular points at r+, r− and infinity
and the general solution is a hypergeometric function. The critical exponents at both horizons
are

±i am

r+ − r−
.
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The solution that diverges as rl at infinity is

Rl,m(r) = −rl
(
r − r+

r − r−

)− iam
r+−r−

2F1

(
− 2iam

r+ − r−
− l,−l;−2l;

r+ − r−
r − r−

)
. (4.43)

Using (4.22), we can write the scalar field in terms of the comoving angular coordinate φu =

φ− r̂ as

Φl,m(r, θ, φu) = −2F1

(
− 2iam

r+ − r−
− l,−l;−2l;

r+ − r−
r − r−

)
rlY m

l (θ, φu) . (4.44)

Note that we could write the solution above making explicit the other critical exponent at the
horizon; this would lead to the expression

Φl,m(r, θ, φv) = −2F1

(
+

2iam

r+ − r−
− l,−l;−2l;

r+ − r−
r − r−

)
rlY m

l (θ, φv) , (4.45)

written in terms of the ingoing comoving angular coordinate φv = φ + r̂. Thus the analysis
above is equally applicable to future and past null infinities; the scalar modes induce changes
in both.

4.3.2 Vector modes

As argued in the beginning of this section, solutions of the Maxwell’s equations in Ricci-
flat spaces for the vector potential in the Lorenz gauge yield diffeomorphisms that preserve
the traceless-transverse gauge of metric perturbations. There remains the problem of finding
solutions that satisfy the boundary condition necessary for matching a generator of the ASG.
In this subsection we shall investigate the existence of such boundary conditions.

Let us start by writing Maxwell’s equation in the tetrad formalism. The components of the
field strength tensor are

Fµν = eaµe
b
νFab = ∇µAν −∇νAµ − ηρσAρ(λµσν − λνρµ) . (4.46)

There are 6 independent components in four dimensions, which are organized in 3 complex
components in the NP formalism; namely

φ0 = F13 , φ1 =
1

2
(F12 + F34) , φ2 = F42 . (4.47)
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In terms of the vector potential, these components are

φ0 = (D − ρ∗ + ε∗ − ε)A3 − (δ + π∗ − α∗ − β)A1 + κA2 − σA4 ,

φ1 =
1

2

[
(D − ρ∗ + ε∗ + ε)A2 − (δ + π∗ − α∗ + β)A4 + µA1 − πA3

]
+

1

2

[
(δ + β∗ − τ ∗ − α)A3 − (D + µ∗ − γ∗ − γ)A1 + ρA2 − τA4

]
,

φ2 = (δ + β∗ − τ ∗ + α)A2 − (D + µ∗ − γ∗ + γ)A4 + νA1 − λA3 .

(4.48)

The divergence of the potential reads

∇aA
a = eaµe

b
ν∇aAb = ηµν∇µAν − ηµνηρσAρλµσν

= −
[
(D − ρ∗ + ε∗ + ε)A2 − (δ + π∗ − α∗ + β)A4 + µA1 − πA3

]
+
[
(δ + β∗ − τ ∗ − α)A3 − (D + µ∗ − γ∗ − γ)A1 + ρA2 − τA4

]
.

(4.49)

Hence Lorenz gauge implies that both terms in square brackets in the expression for φ1 in (4.48)
are equal. Finally, the 8 Maxwell’s equations are written in the form of 4 complex equations
[30]:

(δ − 2α + π)φ0 = (D − 2ρ)φ1 + κφ2 ,

(D + 2ε− ρ)φ2 = (δ + π)φ1 − λφ0 ,

(D − 2γ + µ)φ0 = (δ − 2τ)φ1 + σφ2 ,

(δ + 2β − τ)φ2 = (D + 2µ)φ1 − νφ0 .

(4.50)

Let us consider the ASG at I+. In order to find out the boundary conditions the coeffi-
cients Aµ of the vector potential must satisfy, let us first write the tetrad in term of outgoing
coordinates (u, r, θ, φu):

l = ∂r ,

n = − ∆

2Σ
∂r +

r2 + a2

Σ
∂u +

a

Σ
∂φu ,

m =
1

σ
√

2

(
ia sin θ ∂u + ∂θ +

i

sin θ
∂φu

)
,

m = (m)∗ .

(4.51)



4.3 LARGE DIFFEOMORPHISMS 52

The expression for the vector Aa = ηµνAµe
a
ν in this coordinate system is thus

Aa =

[
−A1 + a sin2 θ

(
−A1

a

Σ
+

i√
2 sin θ

(
A4

σ
− A3

σ∗

))]
∂au +

(
A1

∆

2Σ
− A2

)
∂ar

+
1√
2

(
A4

σ
+
A3

σ∗

)
∂aθ +

(
−A1

a

Σ
+

i√
2 sin θ

(
A4

σ
− A3

σ∗

))
∂aφu (4.52)

and the Lorenz gauge condition is

0 =
∂

∂u

[
−A1 + a sin2 θ

(
−A1

a

Σ
+

i√
2 sin θ

(
A4

σ
− A3

σ∗

))]
+

1

Σ

∂

∂r

[
Σ

(
A1

∆

2Σ
− A2

)]
+

1

Σ sin θ

∂

∂θ

[
Σ sin θ√

2

(
A4

σ
+
A3

σ∗

)]
+

∂

∂φ

(
−A1

a

Σ
+

i√
2 sin θ

(
A4

σ
− A3

σ∗

))
. (4.53)

We will use a slightly different boundary condition for supertranslations, where we fix some
subleading order terms, cf. [38]:

ξ = α ∂u +
1

2
�α ∂r −

1

r

∂α

∂θ
∂θ −

1

r sin θ

∂α

∂φu
∂φu + . . . (4.54)

where � is the Laplacian on the sphere. See also [17]. The tetrad components of the vector
potential satisfying the asymptotic condition above, in the Lorenz gauge, are

A1 = −αP − a sin θ

2Σ

∂α

∂φ

∂F

∂r
,

A2 = −α∆P

2Σ
− a∆ sin θ

4Σ2

∂α

∂φ

∂F

∂r
− F

2Σ
�α ,

A3 = − 1

σ
√

2

(
1

2

∂α

∂θ

∂F

∂r
+ ia sin θαP + i

r2 + a2

2Σ

∂α

∂φ

∂F

∂r

)
,

A4 = (A3)∗ .

(4.55)

Here α = α(θ, φu), P = P (r, θ) and F = Fr(r) + Fθ(θ). Near infinity, these functions must
behave as P = 1 +O (r−1) and F = r2 +O (r). In the simplest case, when α = P = 1, the
vector potential corresponds to the time translation ∂au and the field strength tensor components
are

φ0 = 0 , φ1 = − M

(σ∗)2
, φ2 = 0 . (4.56)

One may recognize this as the electromagnetic field due to an electric charge M in Kerr [39].
This is just the conserved charge associated with time translation in the Kerr black hole, cf.
(2.70). The case for a general supertranslation is not as direct and we shall save the analysis for
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future work.

The boundary conditions for a superrotation at future null infinity is given in (4.30); in
outgoing coordinates, it reads

ξn = ζn−1
u

[
1

2
(n− 1− cos θ) (u∂u − r∂r)−

sin θ

2
∂θ −

i

2
∂φu

]
+ . . . (4.57)

Writing a set of expressions for the tetrad components of the vector potential satisfying this
boundary condition in the Lorenz gauge is not a trivial task for a superrotation. We postpone
the general analysis for future work as well, but give a description of the simplest of these
symmetries as follows. From (4.57), we can see that azimuthal rotation is generated by the
combination i(ξ1− ξ1), which is an isometry and automatically satisfy the equations for a large
diffeo. The field strengths are

φ0 = i
√

2 sin θ , φ1 =
aM sin2 θ

(σ∗)2
+
a+ ir cos θ

σ∗
, φ2 = −i ∆ sin θ

(σ∗)2
√

2
. (4.58)

The charge associated with this isometry is less direct, however an explicit calculation of (2.70)
can be done where one needs to integrate the F ur component of the electromagnetic tensor on
a sphere at infinity. This component can be expressed in terms of the φi above, and the charge
obtained is J = aM , the angular momentum of the Kerr black hole.

The same analysis can be done with ingoing coordinates to study the large diffeos acting at
past null infinity. It should be noted that the time translation is now generated ∂v and azimuthal
rotation by ∂φv . The charges associated with such symmetries are the same.

4.4 Near horizon

The general idea that one can map near horizon diffeomorphism to those acting non trivially
at infinity can also be applied to the Kerr black hole. We did not find yet the most general
solutions of the large diffeos in this case nor the behavior of the vector modes near horizon.
In what follows we shall only find what diffeos at the event horizon are mapped to the scalar
modes defining translations at infinity.

As discussed in the end of subsection 4.3.1, the two solutions obtained with ingoing and
outgoing coordinates are equal and, in fact, act in both null infinities. From a near horizon
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perspective, this is even more clear; the critical exponents of the radial part of the scalar modes,

±i am

r+ − r−
,

imply the following behavior for the translation modes:

Φ1,m = (C+Y
m

1 (θ, φv) + C−Y
m

1 (θ, φu)) +O (r − r+) . (4.59)

Here C± are the connection coefficients of the hypergeometric equation. In the case m = 0,
corresponding to a z-axis translation, both terms contribute equally in the future and past null
event horizons, since there is no azimuthal dependence. However, for the other translations,
generated by the m = ±1 modes, only one term will contribute in each case. Near the future
horizon, the outgoing coordinate φu winds indefinitely and thus the C− term averages to zero.
Similar reasoning implies that only the C− term acts at the past event horizon. More general
diffeos besides the above, time translations and azimuthal rotations, are expected to be included
in the vector modes of the previous section.



5 Conclusion

In this work we proposed to use the gauge fixing procedure for perturbations in classical general
relativity to associate asymptotic symmetries to bulk diffeomorphism. The idea was to relax
the boundary conditions of the residual diffeomorphisms, that left the trace and divergence of
metric perturbations invariant, to include the possibility of having a non trivial action at infinity,
i.e., the diffeomorphism should act as an asymptotic symmetry generator at infinity.

The large diffeomorphisms, defined this way, act on the entire space and, in the presence
of a black hole, associates an asymptotic symmetry to a near-horizon diffeomorphism. In the
three dimensional BTZ black hole, the complete integrability of Einstein’s equations allowed
us to find exact solutions for the large diffeomorphisms that shared some characteristics with
the asymptotic symmetries at spatial infinity. In the four dimensional case, the situation was
not as simple; special solutions were found that map spatial translations at null infinity to the
bulk, however a general solution for the supertranslations and superrotations was not found.
Instead, we presented partial calculation of the more general setting which may give rise to
large diffeomorphisms related to the rest of the BMS group.

Equipped with these solutions, one may work in the opposite way; an horizon isometry
can be written as a specific combination of large diffeos. This will allow the computation of
charges associated with black hole isometries as combinations of the ASG charges on phase
space. Note that the association is not unique; we chose the traceless-transverse gauge in
the definition of the large diffeos and different choices shall result in different descriptions.
However, we expect the physics to be the same, i.e., the algebra of charges should be invariant.
This non-uniqueness on the canonical generators of transformations in the phase space is a
key piece in the appearance of central terms in the algebra of charges in Classical Mechanics
[40]. An example, in the context of gravitation, was given by Brown and Henneaux in three
dimensions [7]. A positive result for the appearance of central terms could be enable us to
derive the Bekenstein-Hawking entropy in four dimensions.

This is not a finished work and much needs to be done. In Kerr, we intend to finish the
calculations for the large diffeos. A closed solution valid throughout the bulk is not necessary,
only the asymptotic behavior near horizon matching the asymptotic behavior at infinity, much
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like a scattering problem. We shall then investigate the charges associated with the event hori-
zon isometries in this context. We first work with the BTZ black hole trying to reproduce the
Bekenstein-Hawking entropy, a task already done with the charges of the asymptotic isometries
at spatial infinity. We will then apply to the four dimensional case and look for possible hints,
such as the existence of central extensions, on the algebra of observables that may aid us in the
task of counting the black hole entropy.
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