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Abstract

Since Albert Einstein established the foundations for stimulated emission of ra-
diation in 1916, he paved a long road that culminated in the beginning of the 1960s
with the invention of the laser. In a conventional laser avoiding losses by light scatter-
ing is very important. However, this paradigm is broken by the theoretical proposal
of Letokhov in 1968, which says that in a disordered with gain, the scattering of
light plays a positive role increasing the dwell time of light in an active medium,
thereby increasing the laser amplification. Due to the disordered nature of the mate-
rials used was adopted the name Random Lasers (RLs). Random lasers have taken
a new boom because they have recently been exploited as a photonic platform for
studies of complex systems. This thesis covers this interdisciplinary approach that
opens important new avenues for understanding the behavior of random lasers. We
recently studied the intensity fluctuations in the emission of Random lasers, finding
the existence of non-Gaussian statistics in these emissions behaving with Lévy-type
statistics. On the other hand, in another set of theoretical and experimental work,
the glassy behavior of random lasers was studied by other authors, which led to the
recent experimental demonstration of symmetry replica breaking phase transition.
The investigations mentioned above were taken separately, and in this work shows
that these two phenomena are connected. In the first chapter we study the most
important concepts of a conventional laser that are necessary to understand the ran-
dom lasers. In the second chapter, we present the random lasers. We begin with the
presentation of the main features of random lasers. Then, we present a connection
between the phenomenon of speckle and random lasers where Speckle Contrast is
used to demonstrate the multimodal nature of random lasers. This feature is ap-
plied to determine the number of modes in a random fiber laser. At the end of this
chapter a work is presented where it is demonstrated for the first time Bichromatic
random laser in a NdAl3 (BOs3), crystalline powder. This observation opens an
avenue for random lasers applications, and, as a proof of concept, we demonstrate
an optical thermometer owing to the thermal dependence of the RL emissions. The
third chapter is dedicated to studying the fundamental concepts of complex systems,
to understand the glassy behavior of light in random lasers. In chapter 4 essential
rudiments are also given to understand Lévy statistics. In chapter 5 we show a work
where we use employ the NdY BO random laser system to show that from a sin-
gle set of measurement the physical origin of the complex correspondence between
the Lévy fluctuation regime and the replica symmetry breaking transition to spin
glass phase occurs. In chapter 6 shows the observation of replica symmetry breaking
phase transition in a solution of Rhodamine and particles of T;02, where specially
designed amorphous T;0 particles were synthesized to obtain identical copies of the
System.

Keywords: Random Laser. Lévy statistics. Spin Glass.



Resumo

Desde que Albert Einstein estabeleceu as bases para a emissdo estimulada da
radiacao em 1916, ele pavimentou uma longa estrada que culminou, no comeco dos
anos 1960, com a inveng¢ao do laser. Em um laser convencional, evitar perdas por es-
palhamento de luz é muito importante. No entanto, este paradigma é quebrado pela
proposta tedrica de Letokhov em 1968, que diz que em um meio desordenado com
ganho, o espalhamento da luz desempenha um papel positivo aumentando a amplifi-
cacao do laser. Devido & natureza desordenada dos materiais utilizados foi adotado o
nome Random Lasers (RLs). Os lasers aleatorios tomaram um novo impulso porque
foram explorados recentemente como uma plataforma fotoénica para estudos de sis-
temas complexos. Esta tese estuda esta abordagem interdisciplinar que abre novas
e importantes vias para a compreensao do comportamento de lasers aleatérios. Re-
centemente estudamos as flutuagoes de intensidade na emissdo de lasers aleatoérios,
encontrando a existéncia de estatisticas ndo gaussianas nessas emissoes que se com-
portam como estatisticas tipo Lévy. Por outro lado, em outro conjunto de trabalhos
tedricos e experimentais, o comportamento tipo vidro de spin de lasers aleatérios
foi estudado por outros autores, o que levou & recente demonstragdo experimental
de transicdo de fase com quebra de simetria de réplica. As investigagoes mencio-
nadas acima foram realizadas separadamente, e neste trabalho mostramos que esses
dois fenémenos estao conectados. No primeiro capitulo estudamos os conceitos mais
importantes de um laser convencional que sao necessarios para entender os lasers
aleatorios. No segundo capitulo, apresentamos os lasers aleatérios. Comegamos com
a apresentagao das principais caracteristicas de lasers aleatérios. Em seguida, apre-
sentamos uma conexao entre o fenémeno de speckle e lasers aleatorios onde Speckle
Contrast é usado para demonstrar a natureza multimodal de lasers aleatorios. Esta
caracteristica é aplicada para determinar o nimero de modos de um laser aleatério
de fibra. No final deste capitulo é apresentado um trabalho onde é demonstrado
pela primeira vez o laser aleatorio bicroméatico em um po6 cristalino NdAls (BOs),.
Esta observacao abre caminho para aplicacoes lasers aleatorios e, como prova deste
conceito, demonstramos um termoémetro 6ptico devido & dependéncia térmica das
emissoes de RL. O terceiro capitulo é dedicado a estudar os conceitos fundamentais
de sistemas complexos, para entender o comportamento tipo vidro de spin da luz em
lasers aleatérios. No capitulo quatro, rudimentos essenciais também sao descritos
para entender as estatisticas de Lévy. No capitulo cinco mostramos um trabalho
onde usamos o sistema de laser aleatorio NdY BO para mostrar que a partir de
um tnico conjunto de medi¢des ocorre a origem fisica da correspondéncia complexa
entre o regime de flutuagdo de Lévy e a transicdo de simetria de réplicas para a
fase de vidro de spin. No capitulo seis, observa-se a transicao de fase de ruptura de
simetria de réplicas em uma solucdo de Rhodamine e particulas de T;04, onde se
sintetizaram particulas de T;02 amorfas especialmente projetadas para obter copias
idénticas do sistema.

palavras-chave: Laser aleatorio. Estatistica de Lévy. Vidro de spin.
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1 Laser

The random laser is related to light amplification in a disordered medium. Light ampli-
fication by stimulated emission is a fundamental process for generation of the laser-like
light. In this sense Random Lasers (RLs) have the same fundamental principles as a con-
ventional lasers. Therefore, in the first part of this chapter we will review the fundamental
rudiments necessary to have a general understanding of conventional lasers. Later, we will

continue with the discussion of RLs.

1.1 What is a Laser?

The word LASER is the acronym for Light Amplification by Stimulated Emission of Ra-
diation, emphasizing that the laser is an active, amplifying device. In 1917, Einstein pro-
posed the process that makes lasers possible, called stimulated emission. It was Einstein
who pointed out that stimulated emission of radiation could occur along with absorption
and spontaneous emission. Light interacts with atoms (gain medium) to emit a photon
at some random time in a random direction. If stimulated a brief moment of time the
atoms emit photons that go in the same direction and have exactly the same frequency as
the original photon. The stimulated emission process has several consequences, the most
notable of which is the existence of the Laser. Before the LASER there was the MASER,
a device a also based on the stimulated emission process. In 1954, Charles Townes and
Arthur Schawlow invented the MASER [39] (microwave amplification by stimulated emis-

sion of radiation). The technology is very close but does not use a visible light.

Absarptian Stimulated Emission Spontaneous Emission

Figure 1.1.1: Schematic representation of the three fundamental interaction between atoms and radiation.
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In the figure 1.1.1 shows a simplified two-level system in order to illustrate the inter-
action processes between atoms and light. N; and N, are the populations of atoms (or
molecules) found in states 1 and 2 respectively. These atoms can be excited at metastable
levels of energy through interactions with the environment that provide the energy differ-
ence required for the transition, the energy required is hv = AFE, where AF is the energy
difference between the initial and final states.

In the Absorption process, a photon is absorbed and the atom is promoted to the
excited state. More generally, if there are n photons to start with in some resonant mode,
then there are n — 1 photons after the absorption process. The probability of absorption
taking place is proportional to the population N; of the lowest energy level.

The Spontaneus emission They take place without external induction. That is,
the probability that the electron decays at the lowest energy level through a spontaneous
transition is fixed and fundamentally depends on the structure Of the atom. Both the
direction of the emitted photon and its phase are random, the overall light obtained will
be incoherent and directed in all directions.

In the case of Stimulated emission the process involves the atom initially being in
the excited state, and after the stimulated-emission event, the atom falls to the ground
state. The probability of a stimulated emission taking place is proportional to the popu-
lation Vs of the highest energy level. In thermal equilibrium the number of atoms excited
in the highest energy state is much lower than the number of atoms in the lowest energy
state Ny < N; . Therefore, the absorption predominates over the emission.

The absorption and stimulated emission coexist in all moment, they are equiprobables
and only depend on the populations Ny and N,. For a medium to amplify, it is necessary
that the population of Ny is more abundant than that of N;, so that, on average, more
photons are produced that are lost. This situation, called population inversion, is
achieved taking the system out of equilibrium with an external input of energy in the
form of, for example, light or electric current excitation.

There are basically three functional parts in a laser see Fig.1.1.2: a gain medium
with energy levels between which are produced radiative transitions which determine
the output wavelength, this medium converts the pump energy into the desired light; a
resonant cavity called also an optical resonator, which allows to accumulate the radiant
energy of frequency corresponding to the stimulated emission. The simplest configuration
is constituted by two mirrors where one of them has 100% of reflectivity and the second
mirror is partially reflective. It will be this mirror that will allow the emission of the
laser emission. With this cavity it is achieved that the emitted radiation passes many
times through the gain medium producing a feedback of the stimulated emission process.
The separation distance between the mirrors is fundamental in the selection of resonant
modes, we will elaborate later on.

Finally, to get the stimulated emission processes to happen we must have a pumping
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Laser beam

M2

M1

Figure 1.1.2: Schematics of the laser principle. M1 and M2 are the mirrors that make up the cavity, G
is the gain medium and P is pumping (excitation)

energy from an external source towards the laser gain medium. The energy will be
absorbed by the medium and will produce excited states. The external source of pumping
energy depends on the type of medium of gain, we usually find the optical and electric
pumping, however, more exotic pumping types such as chemical pumping can be found.
It is important to note that the pumping energy must be greater than the lasing threshold

of the laser.

1.2 The Laser Threshold

An important feature of a laser is the laser threshold. When the pumping rate is not large
enough, the passive losses in the cavity exceed the spontaneous and stimulated emission
gain, then no laser emission will occur. Thus, there is a pumping threshold where gain
outweigh losses and laser emission occurs. The operating threshold of the laser can be
analyzed through the rate equations [89]. To have a simpler vision but without loss of
generality consider a system of two levels of energy. Let N; and N, denote the number

density of atoms in ground state and excited state respectively,

dN.
—d; = R—nBN, — yN, (1.2.1)
dn

The Eq.(1.2.1) is the rate of variation of atoms in the excited state, where R is the
external pumping rate, v = 1/73, 79 is the upper-state lifetime and B = 7/p is a parameter
governing the stimulated emission rate, where p is the number of cavity modes within the

gain bandwidth of the medium. The Eq.(1.2.2) is the rate equation for the number of
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photons n in the cavity, in this equation 7.n is the cavity decay rate due to losses such as
mirror transmission, scattering and absorption and 8 = 1/p is the fraction of spontaneous

emission that contributes to lasing. Substituting 8 in the Eq. (1.2.2), we have

dn

==+ BNy (n+1). (1.2.3)

In the steady state we have dNy/dt = 0 and dn/dt = 0, thus hence

R—TLBNQ—’}/NQ =0

R
Ny = 1.24
2 nB + ( )

and
—¥en+ BNy (n+1) = 0
B BN,
"o Ve — BN2

Ny
n = ) 1.2.5
o (1.2:5)

Below the threshold we can consider n = 0 because there is no generation of photons

(actually n — 0), we have

Ny =—. (1.2.6)

We define the threshold inversion Ny, = v./B as the ratio between losses and the rate
of generation per excited particle in the gain medium. With this definition we can obtain
Ry, = P)/P)/C/B

Above the threshold n >> 1, the last term in the Eq.(1.2.3) which is the contribution

of the spontaneous emission becomes negligible, then

—yn+ BNon = 0

N =
Ny = N (1.2.7)

This result shows that once the threshold of excitation is crossed the population of
the excited state becomes constant.

In the case of the generated photons we have to
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Below Above
Threshold Threshold

Rip

R

Figure 1.2.1: The figure shows that there is a threshold energy represented by Ry in which the system
has laser emission. Below the threshold the increase of atoms N towards the excited state is linear with
respect to the increase in the energy R, in the case of the emission of photons inside the cavity n is almost
zero. Above the threshold the atoms in the excited state are saturated being equal to N = Ng,. On
the other hand the number of photons inside the cavity increases dramatically, so the system begins to
operate as a laser.

R

Ny = ————
h nB + vy
R

nB = -1

’Y(Nth’y )
v ( R

= —(=——-1]. 1.2.
" B(Rth ) (1.28)

The number of photons generated above the threshold increases linearly with R. We
must consider that R is related to the pumping energy and n is related to the output

power. Figure 1.2.1 represents the behaivor described mathematically above.
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1.3 Modes in a conventional laser

Previously we reviewed the main parts that make up a laser. In addition we found that for
the laser emission to take place the stimulated emission must be amplified over an energy
threshold. As already mentioned, the optical resonator is formed by separate mirrors at a
distance d. The shape and separation distance between the mirrors determines boundary
conditions for the electromagnetic wave. These boundary conditions and the special
characteristics of the gain medium generate characteristic modes in the laser emission.
Below we will see these characteristics and the necessary conditions for their generation.

Laser modes are the eigen-modes of a laser resonator: only specific distributions of
electro-magnetic field can "resonate" in each particular resonator. Due to the Three-
dimensional nature of the cavity space, each mode is described by 3 indices, n,m, q; the
first two indexes are related to the transverse modes and the third index indicates the
longitudinal modes.

The longitudinal modes are stationary waves along the optical axis of the laser. The
essential boundary condition is that the electric field must be zero on the surfaces of
the reflecting mirrors, so the laser oscillations occur when the wave inside the cavity is
repeated after two reflections in order that the electric fields are summed in phase. The
cavity resonates when there is a half-length integer \/2 that encompasses the region within
the cavity, see Fig. 1.3.1(a)

With the boundary conditions mentioned, we have that the wave inside the cavity is

a stationary wave mode, which is a left and right wave overlay

E (7:‘) _ Eoeikz+i¢1 + Eoefiszld)g
= By (Mo eI (1.3.1)

The sum of the waves have the same amplitude because it is assumed that the mirrors

are ideal, Multiplying the Eq.1.3.1 by the factor (ei%_i%> <e"¢2*2_i%2> and reorganizing,

we have to

B() = B [eme(3)a(95%) | oieri(352)0(53%)) (132

_ Eoei(Lg@) [eikzei(d’l*z'%) _‘_e—ikze_'(m;m)]’ (1.3.3)

where ¢; and ¢, are the phases of the first and second fields, respectively. We will
define the following amounts A¢ = ¢ —¢o and ¢ = (¢1 + ¢») /2, and replacing in Eq.1.3.3
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E@F = Eyeis (ei(kz+q’s) +6—z‘(kz+¢3)>

— 2Eye't cos (kz+¢), (1.3.4)

applying the boundary conditions in the above equation we have

E(z=0)=0 ;»qSZg (1.3.5)

E(F) = QEOGZ‘%COS (kz + g)

— 250 cos (k2) cos () = sin k) s (3

E (F) = 2By % sin (k2), (1.3.6)

applying the condition E (z=d)=0

sin (kd) =0 = kd = qn.

Thus, the round-trip accumulated phase must be some integer multiple of 27

2kd = 2mq (¢g=0,1,2...)

With this resonance condition inside the cavity, we have permitted standing waves, or
cavity modes satisfy
7
ky = gq. (1.3.7)

In terms of frequency this result is equivalent to

qc
= = 1.3.
I/q 2d7 ( 3 8)
the first mode of oscillation available for this optical cavity:
c
= —. 1.3.9
Y (1.3.9)

This mode is called basic longitudinal mode, and it has the basic frequency of the
optical cavity. The frequency of each laser mode is equal to integer (mode number gq)
times the frequency of the basic longitudinal mode. The frequency spacing is called the

free spectral range (FSR), defined as
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Figure 1.3.1: The allowed frequencies inside an optical cavity are determined by the length of the cavity
d and the index of refraction of the active medium. The difference between two resonant frequencies
defined the free spectral range (b).

Co
2nd’

where n is the refractive index of the active medium, see figure 1.3.1(b).

FSR=vg1 —vy, = (1.3.10)

Real cavities involve some loss of the light on each round trip. If the amplitude of the
wave is reduced by a factor of r on each round trip, we can write the finesse as [93]
/T

—r ’

7 =1

(1.3.11)

This amount is a parameter that characterizes the natural losses of the cavity. The
frequencies are not defined mathematically as single frequencies, but each have a width of
frequencies around the possible modes, with the value of the finesse and the free spectral

range we can define the characteristic width of the resonance frequencies inside the cavity

OVFPWHM = FTE\R (1.3.12)

We can summarize the characteristics of the Fabry-Perot cavity with these two pa-
rameters that completely specify the behavior of the cavity, see figure 1.3.2.

It is often the case that not all of the potential longitudinal modes will actually appear
in the laser output and only specific frequencies are possible inside the optical cavity of
a laser. In addition we must take into account the gain curve of the active medium, with
a pump rate sufficient to overcome the threshold. Any cavity mode falling within this
range are candidates for laser operation. From all these possible frequencies, only those

that have amplification above certain minimum, will be emitted at the laser output.

1.3.1 Tranversal modes

In an optical cavity in addition to generating modes along the optical axis, there are also

distributions of intensity in the section perpendicular to the optical axis of the laser. The
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Longitudinal modes

Intensity
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threshold

Figure 1.3.2: In the image on the left shows the resonant modes in the cavity with its spectral width given
by the division between free spectral range and the finese. The red line represents the gain curve of the
amplifier medium. The resulting laser cavity modes are shown on the right side when a gain bandwidth
of a laser amplifier is combined with resonances of a two-mirror laser cavity.

beam generated inside the cavity is not perfectly plane wave because both mirrors and
the amplifier means have finite dimensions. Considering that the mirrors are flat and of

circular form, the tranverse modes can be described mathematically by [90]

L (2, y) = 1o [Hm <@> e(wx;)] [Hn (%) e(_“y;)] ) (1.3.13)

w

Also known as Transverse Electromagnetic Modes (T'EM,,,,) (see figure 1.3.3), and
describe the shape of energy distribution in the beam cross section. In the Eq.(1.3.13) w
is a spatial scale factor and H,, is the Hermite polynomial of degree n:

dn
2 2
— . 1.3.14

The lowest mode is the T E My, mode corresponding to a Gaussian distribution of

intensities. Thus, the transverse modes determine the shape of the laser profile at the

H,(t)=(-1)"e

output. Where m is the number of points of zero illumination (between illuminated
regions) along x axis, and n is the number of points of zero illumination (between illu-
minated regions) along y axis. The output intensity profile of a laser can be reproduced
by superimposing all transverse modes allowed, although it is generally desirable for the

laser to operate only in the fundamental mode.
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Figure 1.3.3: The figure shows patterns of intensity determined by the different T EM modes of a cavity.
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2 Random Laser

Previously we saw that an essential element in a laser is the resonant cavity, and in this
element the quality plays a crucial role in the stability of the laser. The disorder in
these cavities introduces scattering in light that are considered highly detrimental in the
operation of the laser, as they lead to laser. Next we will study a type of laser that takes

advantage of the disorder, known as random lasers (RLs).

2.1 Letokhov ideas!

In a laser with a Fabry-Perot cavity and feedback resonance, the stimulated emission is
spatially coherent and its frequencies are determined by modes of the resonator. In 1966
[83], in order to have control over the spatial beam coherence of the laser, Ambartsumyan
et al. worked on a different type of laser that had a non-resonant feedback. This was
achieved by replacing the rear mirror with a scattering surface. With this, they ensured
that the light does not return to its original position after a round trip, so that the
spatial resonances for the electromagnetic field are absent in the cavity. Central emission
frequency of this laser is determined by the resonance frequency of a gain medium instead
of eigenmodes of the cavity.

In 1968, Letokhov theoretically proposed the possibility of generating laser radiation
in disordered dispersive media with gain [58]. The idea was that radiation with the same
characteristics of a conventional laser could be achieved in a dispersive and disordered
medium without the need for mirrors or resonant cavities. Figure 2.1.1 shows a scheme
comparing a conventional laser with the idea of a random laser. The condition imposed by
Letokhov was that the mean free path of the photon is much shorter than the dimension
of the scattering medium.

Letokhov solved the diffusion equation for the photon density W (7, ¢) in an amplified

medium.

oW (7,t)
ot

where v is the transport velocity of light inside the scattering medium, /, is the gain

= DV2W (7)) + —W (7,1), (2.1.1)

lg
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(a)

Figure 2.1.1: The figure shows a schematic comparison between a conventional laser and the random
laser. (a) Conventional laser usually consists of a gain media embedded in a pair of mirrors which
provides positive feedback. When the gain of the system is larger than the loss, lasing start to happen.
(b) In the case of a random laser the most important is the scattering and gain media, the trapping of
light is not achieved by mirrors, but by multiple scattering between sub-wavelength particles.

length, D is the diffusion constant given by
D=—, (2.1.2)

where [; is the mean free path. The last term in the Eq.(2.1.1) is the gain term. Later
we will make a more detailed development of the characteristic lengths [, and ;.

The solution to Eq.(2.1.1) can be written as
IEGHESY R Gl (2.1.3)

The Eq.(2.1.3) changes from exponential decay to increase in time upon crossing the
threshold

v

DB} — — =0, (2.1.4)
lg

where Bj is the lowest eigenvalue of the radial part of solution of the Eq.(2.1.3). If
the scattering medium has the shape of sphere of diameter L, the smallest eigenvalue is
By = 27 /L. Substituted into Eq.(2.1.4) the threshold condition predicts a critical volume

AN

Vo~ L3~ (?) : (2.1.5)

This result says that once the volume of the scattering medium exceeds the critical

volume V, increases exponentially with ¢, establishing a proportional relationship between
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the mean free path and the gain length. If we consider a gain length [, and transport
mean free path [;, once the volume Vof the scattering medium exceeds the critical volume
Ve, W (7,t) increases exponentially with . An extension of the calculations can be found
in [108].

Many experimental attempts were made in order to demonstrate the theoretical pro-
posal of Letokhov. In the 1970s, Fork et al. observed unusual optical properties in
microcrystals of different luminophosphors containing Fu** [30]. The anomalously effi-
cient and fast emission occurred in single microcrystals, the dimensions of which were on
the order of several optical wavelengths, A = 0.37um.

In 1971, Varsanyi experimentally observed optically excited stimulated emission (“su-
perradiant emission” as he called it) at the 3Py —3 F, Pr3T transition in individual powder
particles of PrCl; and PrBrs [103]. The stimulated emission, which was not supported
by any cavity, occurred in the volumes where linear size exceeded lum.

In 1986 Markushev and collegues reported intense stimulated radiation from NasLa;—,
Nd, (MyOy),, found that above a certain pumping energy threshold, the duration of the
emission pulse shortened by approximately four orders of magnitude [101]. Later on, was
reported similar phenomena in a wide range of Ndt actived scattering materials.

The unambiguous experimental demonstration of Letokhov’s theoretical works took
almost 25 years to arrive. In 1994 Lawandy et al. [56] demostrated isotropic laser-like
emission from an optically pumped laser dye solution of Rhodamine 640 perchlorate in
methanol, the scattered points used were particles of T;0, of mean diameter 250 nm ap-
proximately. The authors found that the emission from such systems can exhibit spectral
and temporal properties of multimode laser oscillator, even though the systems contain
no external cavity. A collapse of the linewidth of emission was observed above the thresh-
old pump power, and was interpreted as the onset of lasing. The explanation for the
first observed laser-like behavior of the optically pumped colloidal was not obvious, and
generated lots of research this type of non-resonant light was related to the theoretical

work of Letokhov. From this work begins to use the term Random Lasers (RLs).

2.1.1  The regimes of the random laser and its characteristic lengths

When light propagates through a scattering amplifyng medium performing random tra-
jectories, it is said that light takes a random walk. The multiple scattering increases the
length of the path or the residence time of the light in the active medium, thus enhancing
the amplification of the light by stimulated emission. As in the case of a conventional laser
where the distance between the mirrors of the optical resonator is essential for defining
the laser modes, in an RLs there are also relevant length scales describing the scattering

process.
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2.1.2  Scattering mean free path I

The scattering mean free path [, is defined as the average distance that light travels

between two consecutive scattering events and defined as

1
ls = : 2.1.6
o (2.1.6)

where ng is the number density os scatterers and o, is the scattering cross-section of
the individual scatter and . The o, depends on three variables, the size of the scatterer

and its refractive index, in addition to the incident wavelength.

2.1.3  Transport mean free path

The transport mean free path [; is defined as the averange distance that the light travels

before its direction of propagation is randomized, and defines as

lt = 5 (217)

where g = (cosf) is the anisotropiy parameter, 6 is the scattering angle for a sin-
gle scattering event in the sequence and (...) indicates an ensemble average over all the

scattering events of the sequence. For isotropic scattering g = 0.

2.1.4  Gain length 1, and Amplification length l,my

Light amplification by stimulated emission in random media is described by the gain length
l4 and the amplification length l,,,. The gain length is defined as the path length in the
active medium over which light intensity is amplified by a factor e. The amplification
length is defined as the (rms) average distance between the beginning and ending point
for paths of length [,. When the medium is homogeneous without scattering lym, = I,
In the diffusive regime, Iy, = V' Dt, where D is the diffusion coefficient and ¢ = I;/v, v
is the transport velocity. In a three-dimensional medium the diffusion is D = vl;/3, thus
Iyl
Lamp = \| —=2. 2.1.8
P 3 ( )
Similarly we can define the absorption length,
lil;
Lups = % (2.1.9)
where [; is the inelastic men free path, defined as the path length over wich light
intensity is reduced to 1/e due to absorption. Hence, the amplification length [y, is

analogous to the absorption length [s.
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2.1.5  Random Lasers with incoherent or non-resonant feedback

The lasers with non-resonant feedback is a terminology first proposed in the late 1960s
[58, 83]. The feedback in such a laser serves to return part of energy of photons to gain
medium. The light in the cavity suffers multiple scattering, changing its direction each
time it is scattered, thus any spatial resonance is absent.

As already indicated, Letokhov theoretically proposed self-generation of light in a
random amplified medium in the diffusive regime (L >> [, >> )). Letokhov showed
that as the volume of the scattering medium exceeds the critical volume, the photon energy
density increases exponentially with time. This process is analogous to the multiplication
of neutrons in an atomic bomb [95]. In this type of random laser, the phase condition
within the scattering medium is ignored because of the non-resonant nature of feedback
provided by the scatters. Consequently, the mean frequency of the random laser only
depends on the center frequency of the emission band of the gain media. Therefore, this
kinds of laser is called a random laser with non-resonant feedback. This terminology is
being argued by several authors.

In the references |56, 79] we can find examples of isotropic laser-like emission optically
pumped laser dye solution (Rhodamine 640) where a collapse of the linewidth of emission
was observed when it was added scattering particles (TiOsmicrospheres of mean diameter

< lum ).

2.1.6  Random Lasers with coherent or resonant feedback

When the scattered light is trapped to form a closed loop in the disordered medium,
the scattering can provide a coherent feedback. In this case to obtain the closed loops
a strong scattering medium and a high optical gain must be obtained. Thus the light
returns to a scatter where it was scattered before forming a closed "cavity" analogous
to two mirrors. The strong scattering condition is achieved when the mean free path
becomes comparable with the emission wavelength (localization regime, [, ~ X). If the
amplification along such a loop path exceeds the loss, the oscillation of the laser should
occur in the loop which serves as a laser resonator. The requirement that the phase shift
along the loop be a multiple of 27w (condition for constructive interference). Random
lasing with coherence feedback is characterized by the appearance of a narrow discrete
laser peak in the emission spectrum (Spikes) above the pump threshold in addition to a
drastic increase in the emission intensity. In references [17, 18] we can find examples of

coherent random laser.

2.1.7 Modes in Random laser

In conventional lasers, the optical cavity that confines the photons also determines essen-

tial characteristics of the lasing modes. Random lasers are disordered media with gain



29

(b) 4 (c) &
- -
Spikes free Spikes
Laser Output - Laser Qutput

Figure 2.1.2: The random laser regimes are illustrated in (a), the red arrow shows the case of incoherence
feedback while the green arrows represent the closed loops for th case of coherent feedback, where the
spikes free correspond to incoherent feedback (b), whereas the coherent feedback is recognized by its
spiky signature (c).

which do not have mirrors or a well-defined cavity, light is confined in the gain medium by
means of multiple scattering. Early random laser experiments showed emission spectra
that did not make it clear whether these systems could produce narrow laser lines emis-
sion dicrete line (Spikes)[56, 85]. In later studies it was shown that in some random laser
systems discrete lasing lines not necessarily located at the center of the gain curve could
be found [17, 18| demonstrating that in some cases random lasers behave very much like
conventional multimode lasers.

Spikes observations on some types of random lasers led to the proposal of a closed loop
model that emulates an optical mirror cavity, figure 2.1.2(a) shows the conceptual idea of
loops with a phase shift of 27 (green arrow). These closed loops have the probability of
starting at one point and returning to the same point with a phase shift of 27 (coherent
regime). The modes generated in this regime are also known as strongly localized ran-
dom laser modes. On the other hand the observation of a continuous emission spectrum
with absence of Spikes but with a decrease in the width of the emission spectrum that is
characteristic of a laser above the threshold, is known as random laser with weakly local-
ized modes. In this case the resonance occurs with respect to the center frequency line of
the gain medium, it is also known as an incoherent feedback regime, figure 2.1.2(a)
shows the conceptual idea of a random laser with incoherent feedback (red arrow). Figure
2.1.2(b) illustrate the spikes free correspond to incoherence feedback and figure 2.1.2(c)
shows typical spikes of the coherence feedback.

Another scenario is the case when we have coexistence of weakly and strongly localized
lasing modes that was presented in [28].

Different alternatives scenarios have been proposed to the early model of closed scat-
tering loops. For example another scenario was put forward where spontaneously emitted
photons accumulate gain along very long trajectories. This follows the observation of
random spikes in the emission spectrum of weakly active scattering systems in single-shot

experiments. For a more detailed review of these models see references [8, 9, 71].
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Figure 2.1.3: Bright emission from random Raman lasing. (a) Digital camera photo of random Raman
lasing in BaSO4 powder. (b) Spectrum of BaSO, taken through a 20.3 ¢m collection optic, 21 m away
from the sample. a.u., arbitrary unit.

(figure reprinted from the reference [41])

If we would like to make an analogy with a conventional laser, in any of the cases the
generation of the modes is related to the longitudinal modes. In the case of closed loops
we can say that they are cavity resonators with infinite walls, this completely eliminates

the possibility of having transverse modes in the random lasers.

2.1.8 Advances in Random Lasers

A major advantage of random laser over conventional lasers is that the required technology
is relatively simple. This and other advantages have provoked a great interest in this type
of lasers. It is the case of Raman based random lasers, where stimulated Raman
scattering has been used to achieve random lasers. In reference [41] the authors the
first experimental evidence of lasing via a Raman interaction in a bulk three-dimensional
random medium, with conversion efficiencies on the order of a few percent. The traditional
random lasers often have a relatively broad emission spectrum, a random laser that utilizes
vibration transitions via Raman scattering allows for an extremely narrow bandwidth, on
the order of 10cm ™. The random Raman laser was made of barium sulphate (BaSO,)
powder with particle diameters of 1 — 5 pum. BaSO, has the role of both the Raman gain
medium and the scattering centres. The astounding brightness of the random Raman laser
is illustrated in Fig. 2.1.3 with a digital photograph and with a spectrum taken from a
distance 21 m from the sample using a 20.3 cm off-axis parabolic mirror as a collection
optic. The special features of an random Raman laser that can produce a bright, speckle-
free, strobe light source with potential application in microscopy, with the most notable
application related to non-invasive biomedical imaging 88, 92, 81|.

Another case of vanguard are the Random Fiber Laser (RFL) that combine features
of traditional random lasers with characteristics of conventional fiber lasers, The first

work in this direction was reported in [22] where a directional pulsed random lasing was
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Figure 2.1.4: Side view of the experimental setup. Variable neutral density filter (VNDF); 50 mm focal
length cylindrical lens (CL); Sample holder (SH); 50 mm focal length spherical lens (SL); Spectrometer
(SPEC); Photonic crystal fiber (PFC) Inset: Scanning electron microscopy of the photonic crystal fiber
used in the experiment (provided by Crystal Fibre A/S).

(figure reprinted from the reference [22])

demonstrated in the photonic crystal fibre with the hollow core filled with a suspension
of T'70Oy nanoparticles in a Rhodamine 6G dye solution. So the fibre waveguide properties
are combined with traditional bulk random material providing one dimensional random
lasing. The experimental setup for the optical measurements is shown in Fig. 2.1.4. The
work presented in reference [22] as well as being the first demonstration of random fiber
laser, makes an important comparison with similar systems in bulk format shows that
the random fiber laser presents an efficiency that is at least 2 orders of magnitude higher.
The Random Fiber Laser uses also the Raman amplification for telecom applications in
quasi-lossless transmission systems [3, 4, 51|

In recent time the applications of the random lasers focused to the applications of
biological sensors have increased. The interest for the investigation of biological samples
has generated a wealth of different techniques and applications This is the case of two
interesting works [45, 33|. In [45] Ignesti and his collaborators take advantage of the fact
that the emission characteristics of a random laser are very susceptible to the scattering
details, to make active sensors that are used as a diagnostic tool for disordered media such
as biological samples. In [33] Ghofranina and his collaborators present a work in the field
of biomimetics!. They made disordered active materials mimicking the complex structure
of paper. The random lasers realized by this material exhibit sharp distinct resonances
with broad localization lengths. This is of great interest both in fundamental physics
research of random lasers and in research and production of new functional materials
advanced miniaturized photonic devices and applications in biomedicine and bioimaging.

In this section we have presented some of the most relevant advances in random

IBiomimetic refers to human-made processes, substances, devices, or systems that imitate nature.
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lasers. We have made it clear that projections in fundamental physics and applications

are immensely large.

2.2 Speckle in Random Laser

Next we will see how the statistical properties of the Speckle can be used to know the
number of modes present in a random laser emission. First we will see the static properties
of the speckle and then show in counting modes in an Random Fiber Laser that holds a

very narrow peak of laser.

2.2.1 Speckle

Speckle is the strongly fluctuating, grainy intensity pattern resulting from the interference
of a randomly scattered coherent wave.

When a coherent laser is scattered over a rough surface, the signal is decomposed
into multiple independent phases and amplitudes. If we project on a screen the different
phases and amplitudes after the scattering of the laser, we can treat this as the sum of a
set of independent, statistically independent phasors. When these components are added
together, they constitute what is know as a “random walk”. The resultant of the sum may
be large or small, depending on the relative phases of the various components of sum, and
in particular whether constructive or destructive interference, as detail in|[38|.

A random phasor sum may be described mathematically as follows, [38]

N
1 )
A= — E aner, (2.2.1)
N n=1

where N represent the number of phasor components in the sum, A represents the
resultant phasor. a, and ¢, are the amplitude and phase of the phasor n. It will be

convenient to adopt certain assumptions about the statistics of the component phasors:
e The amplitudes and phases a,, and ¢,, are statistically independent.
e The phases ¢, are uniformly distributed on the interval (—m, 7).

With these assumptions we can consider the real and imaginary parts of the resultant

phasor

N
R =Re{A} = \/LN Z A COSPr, (2.2.2)
n=1

and

N
T=1Im{A} = \/_IN > aypsing,. (2.2.3)
n=1
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Calculating the first moment of the real and imaginary part we have

(Ry =(Z) =0. (2.2.4)
Calculating the second moment of the real and imaginary part we have

2

1
op =03 =0"= N Z <a2”> (2.2.5)
n=1

The variance o of the real and imaginary parts of the result phasor are identical.
Generally the number of elementary phasor contributions is extremely large. From the
Central Limit Theorem N — oo, the joint probability density function for the real and
imaginary parts are asymptotically Gaussian,

1 ,M}
e 2052
2

Prz (R, I) = (2.2.6)

2o
Of equal interest are the statistics of the amplitude A and phase 6 of the result phasor.

considering that:

A = VR*+1? (2.2.7)
T

0 = t — 2.2.8

arctan {R} ( )

R = Acosb (2.2.9)

T = Asind, (2.2.10)

the joint probability density function of A and 6 are related with R and Z through

Pag (A, 0) = Prz (R,T) (Acost, Asinf) || ]|, (2.2.11)

where ||J|| represents the Jacobian of the transformation between the two sets of
variables. It follows that the joint probability density function of the amplitude and

phase of the resultant phasor is given by

_ A {4
PA@ (A’ 6) — 27T02€ 2 , (2212)
for A > 0 and (—7 < 0 < ) zero otherwise.
With the joint probability of A and 6, we can find the marginal statistics:
PlA) — / Pao (A, 6) db
A [_a?
P(A) = ;e{ i (2.2.13)
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this result is know as the Rayleigth density function. The density function of the

phase is

Po) — /0 " Pa(A.0)dA (2.2.14)

P = % (2.2.15)

The probability of the angle 6 of fasor is constant. In the speckle pattern we can
measure is the intensity. The amplitude of phasor is related to intensity through to
I = f(A) = A® Let us consider v a random variable that is related to a random variable
u through a monotonic transformation v = f(u). A fundamental result of probability
theory says that the probability density function P (v) can be found from the probability
density function P (u) through

du

Pw)=P(u)(f(v) ol (2.2.16)

Knowing the probability density function P (A) we can find the corresponding prob-
ability density function P (), thus

p(n = P (V1) ‘dA

P) = (A). (2.2.17)

1
P
2V1
When the number of contributing random phasors is large, the probalility density

function of the amplitud P (A) is the Eq.(2.2.13), applying the transformation law, the
probability density function for the Intensity I is

P(I) = = el-3i2} (2.2.18)

202
To find the variance in the Eq.(2.2.18) is convenient to calculate the gth moments of
this distribution

7y = /0 S Py d

S|
_ / jqﬁe{w%z}d[, (2.2.19)
0 g

after some calculations we have
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Figure 2.2.1: The figure shows a Speckle pattern produced by a laser CW He-Ne 632,8 nm (Left). The
right-hand image shows the distribution for a fully developed speckle.

(1) = (207)" ¢ (2.2.20)

From the first moment we can see that
(I) = 20°. (2.2.21)

Inserting Eq.(2.2.21) into Eq.(2.2.18) we have the probability density function can be

rewitten

1
P(I)= e .

<

(2.2.22)

Speckle with this intensity distribution is often referred to as fully developed speckle,
see fig 2.2.1. Later we will see as a fully developed speckle is related to a monomodal
laser.

Of special importance is the Speckle Contrast. Speckle contrast is a measure of how
strong are the intensity fluctuations in a speckle pattern compared to the average intensity,

given by the ratio of the standard deviation over the mean of the speckle intensity.

C ==L (2.2.23)

It is also necessary to know the characteristic function of the probability density func-

tion. It requires the Fourier transform of the Eq.(2.2.22), So then we have to

M; (w) = /0 Ooei‘”IP(I)dI
1
M (w) = e (2.2.24)
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Figure 2.3.1: Experimental setup. (1) Fiber pigtailed semiconductor laser, (2) fiber connector, (3) Er-
doped RFL, (4) WDM 1480-1550, (5) power meter to measure the output power, (6) RFL emission out
to spectrometer, (7) spectrometer, (8) liquid-N2N2 cooled InGaAs CCD camera.

The results of Eq.(2.2.23) and Eq.(2.2.24) will be used to calculate the number of
modes of a random laser emission. We will see this in the next section where we apply

the concepts studied to one of our experiments.

2.3 Experiment 1: Speckle contrast to count modes in Random Laser

In the experiment we present below?, Speckle contrast was used to measure the number
of modes present in a laser emission of a random laser and a random fiber laser. A RFL is
the one-dimensional fiber waveguide version of random lasers. It was first demonstrated
with dye:T;05 colloid in the hollow core of a photonic crystal fiber [22], and was followed
by the work of Gagné and Kashyap [31] and Lizarraga et al [60], who exploited an erbium
doped fiber with random fiber grating as the scattering elements. The work on RFL has
been recently reviewed in the Ref.[19].

In a recent publication [35] we demostrated experimentally the glassy behavior in a
one-dimensional continuous-wave erbium-doped random fiber laser (Er-RFL) through the
replica symmetry breaking method (RSB). This is a concept inherent to the of spin glass
theory. In the next chapter we will make an extensive analysis of this theory, for now it
is necessary to know that the experimental demonstration of this theory is closely linked
to the multimodal nature of the random laser. Figure 2.3.1 illustrates the experimental
setup. The fiber Bragg gratings are used as the scattering medium to obtain random fiber
lasers, where the gain is provided by Er ions. The characterization setup is fairly simple:
a fiber pigtailed 976 nm, or 1480 nm pump laser is connected to the RFL which in turn
is connected to a power meter and the spectrometer.

The important part of the analysis in this section is to notice that the narrowest
Er-RFL spectrum measured was limited by the instrument resolution of 0.06 nm, and
therefore does not show spikes representative of the longitudinal modes, see Figure 2.3.2.
Nevertheless, it has been shown in a recent work with Raman RLs [42] that, in spite

of a very narrow smooth spectrum with modes averaged out , the emission is actually

2The experiment described here is based, and in many parts is similar to the published article [35]
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multimode [43].
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Figure 2.3.2: (a) Spectral evolution as function of the pump power P, normalized by threshold power
Pij,. (b) Resolution limited of lasing spectrum, and therefore does not show spikes representative of the
longitudinal modes.

2.3.1 Speckle Contrast for measuring lasing modes

In the work of reference [43] the authors were able to measure the number of modes
present in an emission considering the Speckle contrast, because the contrast of a Speckle
pattern is an important measure of the coherence of the light source.

To address our discussion we will consider a highly coherent laser with a single output
mode. A laser with these characteristics is associated with a fully developed speckle, the
intensity distribution of the speckle pattern is given by the Eq.(2.2.22) and its character-
istic function by the Eq.(2.2.24), also the speckle contrast in this case is C' = 1. The loss
of contrast in a speckle pattern is due to the sum of statistically independent patterns,
this fact is related to a multimode laser. Next we will deduce this relation between the
loss of contrast and the number of modes.

To be able to add N speckle patterns we will occupy a result from probability theory
states that the probability density function of the sum of independent random variables
is the convolution of the probability density functions of components of the sum [37].
Equivalently, according to convolution theorem, the characteristic function of the sum is
the product of characteristic functions of the components of the sum. Thus, the product

of the characteristic function is

M, () =[] Ma (), (2.3.1)
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Figure 2.3.3: The figure shows the idea of the model. (a) To obtain a speckle contrast of less than 1, we
can add N speckle patterns, for example with a rotating diffuser and a monomodal laser. (b) The analog
model is using N monomodal lasers where each mode generates a separate Speckle pattern, leading to a
fully summed Speckle pattern. In (¢) three curves are shown for the Gamma Density Function of order
N. The three curves are for N = 1,2 and 10.

where M, (w) is the characteristic function of I,,, for this case the M, (w) becomes

M, (w) = H1 Ti([n) (2.3.2)

where (I,,) is the mean of the nth component speckle pattern. A Fourier inversion of
this characteristic function will yield the probability density function P (I5) for the total
intensity, assuming that all (I,,) are identical and equal I
NN-1
P(I) = %@—Nﬁ, (2.3.3)
where (I) = NIy. Such density function is know as a Gamma density function of
order N. This equation is important because we now have a probability distribution to
analyze a Speckle pattern that is mixed with the contribution of all Speckles, in our case
it contains the contribution of all the laser modes that contributed to the fall of speckle
contrast. Eq. (2.3.3) is plotted in the fig. 2.3.3 for different values of N, which also shows
how the measurement can be performed.
Finally we will calculate the contrast of the sum of N independent speckle pattern.

Let us consider that the total intensity as the sum of the partial intensities

I=) 1, (2.3.4)

the mean value of the intensity is

(L) =D (L) (2.3.5)
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The second moment of (I) is

2y => I+ > (L) In), (2.3.6)

n=1 n=1 m=1,m#n

we use the fact that individual component are fully developed speckle, therefore, we

use equation (2.2.20), thus

N N 2
(I2) = Y (L) + (Z <In>>
N
(I2) = Y (L) + (L), (2.3.7)
it follows that the variance of the total intensity is

o? = (I?) — (L) (2.3.8)

ol = Y (L), (2.3.9)

the speckle contrast is defined as

Os

(L)

¢ Ve s11)
2 n=1 {In)

Under the assumption that the average intensities are equal, i.e. (I,,) = Iy all n, this

C =

(2.3.10)

result reduces to the important expresion

C = VAU (2.3.12)

C=—— (2.3.13)
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Where N is the number of independent Speckle patterns. In our case it corresponds
to the independent number of random laser modes.
Finally we can see that

or 1

o= o= (2.3.14)

where o; and (I) are the standard deviation and mean of the speckle intensity, respec-

tively.
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2.3.2 Results

The problem we addressed was to confirm the multimodal nature of the Er-RFL. As
described in [35] to obtain the images of the speckle pattern a Kohler illumination system
was employed similar to the reference [81]. To generate light scattering and to obtain
speckle patterns a scattering medium with dried 7;0, of mean diameter 250 nm in water
solution on a microscope slide was used. The speckle pattern was captured by CCD

camera operating in the visible (400 — 900 nm) or in the near infrared (0.9 — 1.9 um).

@ L S )

Figure 2.3.4: (a) Schematic of experimental setup. O1 and O2 are objetive lens, S is the scattering
surface, the speckle pattern is collected on a CCD camera. (b) It is a scheme where it is shown that the
image for Speckle contrast analysis was obtained from the central part of the Speckle pattern and later
divided, obtaining the average of the contrasts of these subdivisions.

Once the speckle pattern image was obtained, the central part was selected to avoid
aberrations produced by the edges of the sensor. The selected area was 600 x 600 pixeles.
This area was divided into subareas of 80 x 80 pixeles, as shown in fig. 2.3.4, obtaining
the contrast for each subdivision and avering these result.

The system was tested with comercial laser cw helium-neon of 632.8nm yielding a
contrast of C' = 0.81, equivalent to ~ 2 modes. Furthermore, it was tested a well-
characterized RL based on a rhodamine 6G dye and 250nm T;0, particles, pumped by
the second harmonic 532nm of a pulsed (7ns, 5Hz) Nd:YAG laser yielding a contrast
C = 0.058 equivalent to ~ 297 modes. These two preliminary results ensure the validity

of the method used (see fig. 2.3.5 (a) and (b) and table 2.1).
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532nm (SH) of Rh6G+TiO2 RL @
pulsed Nd:YAG 590 nm
C=071,m=2 C=0.058, m=297
Diode Laser

@980nm Er-RFL@1540nm
C=054,m=3 C=0.065 m=236
Diode Laser Er-RFL@1540nm
@1480nm C = 0.070, m = 204
C=070,m=2

Figure 2.3.5: Speckle images of (a) second harmonic (532 nm) of a pulsed Nd:YAG laser, (b) Rh6G-T;04
RL (590 nm), (¢) 980 nm semicondutor laser, (d) Er-RFL pumped at 980 nm, (e) 1480 nm semiconductor
laser, and (f) Er-RFL pumped at 1480 nm.

The Er-RFL has been described in detail in 35, 31, 59]. A home- assembled semicon-
ductor laser operating in the continuous- wave (cw) regime at 1480 nm was used as the
pump source. The Er-RFL employs a polarization-maintaining erbium-doped fiber from
CorActive (peak absorption 28 dB/m at 1530 nm, NA 0.25, mode field diameter 5.7 um),
in which a grating with randomly distributed phase errors was written [31]. Figure 2.4
shown the spectral evolution as a function of pump power for the Er-RFL. As it can be
seen in Fig. 2.3.2(b), the resolution limited linewidth (~ 0.01nm) does not show any
spike, which would characterize a multimode RL.

Using the experimental setup of fig. 2.3.4, we show in figure 2.3.5 the results for the
number of modes for all lasers studied, including the pump lasers. The results are summa-
rized in Table 2.1. Therefore, it is clearly shown that the Er-RFL operates in a multimode

regime, a requirement for observation of RSB, since it relies on mode interactions.

‘ Laser wavelength ‘ Contrast and number of modes ‘
Pump laser @ 532 nm C=071,m=2
Pump laser @ 980 nm C=054,m=3
Pump Laser @ 1480 nm C=0.70,m=2
Rh6G+T;0, RL @ 590 nm C = 0.058, m = 297
1D Er-RFL @ 1540 nm C = 0.065, m = 236
1D Er-RFL @ 1540 nm C =0.070, m = 204

Table 2.1: Contrast ratio C' of modes m for pump lasers and RLs. The Er-RFL system pumped 980 and
1480 nm displays, respectively, m = 236 and m = 204 longitudinal modes.
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Figure 2.4.1: Energy level structure of the trivalent neodymium ion (with wavelength numbers for
Nd:YAG).

2.4 Random Laser application

In the context of the applications of random lasers we present below a work related to a

solid state RL system, which shows amazing characteristics®.

2.4.1 Ezperiment 2: Bichromatic Random Laser in a Nd*t powder

Neodymium (chemical symbol: Nd), is a chemical element belonging to the group of rare
earth metals that has had a tremendous impact in laser physics. The Neodymium is
widely used in the form of the trivalent ion Nd3* as the laser-active dopant of gain media
based on various host materials, including both crystals and glasses.

The Nd-laser operates operates as a four-level system where the energy of the lower
laser level is ~ 2000 cm ™" above the Nd** ground state *Iy/s. Usually, the Nd** is ex-
ited from the *Ig/; to the *Fj/o, *Hg/o states by light with wavelength around 810 nm;
afterwards, the electrons in the *Fj /2 Hy /2 states decay mainly to the iR, /2 state from
where laser action occurs as a transition to the *Iy; /2. For example, The usual pump
for Nd:YAG wavelength is 808 nm (wavelengths for other host materials can somewhat
differ), but a higher slope efficiency can be achieved by directly pumping into the upper
laser level 4F3/, with 869 nm light. The strongest laser transition is that from iF, /2 to
1112 for 1064 nm, but other transitions are available with longer or shorter wavelengths
(see Figure 2.4.1).

3The experiment described here is based, and in many parts is similar to the published article [70]
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RLs based on the neodymium ion (Nd*") are among the most studied because the
1.06 um laser emission is interesting for many applications. The RL action accurs when
the population inversion between the states *Fj3/5 and %115 are large enough to provide
gain and it is evidenced by narrowing of the emitted spectrum, and abrupt increasing of
the emitted intensity, and shortening of the temporal decay from the *Fj/, state as the
excitation pulse energy (EPE) is increased beyond certain threshold.

One of the current trends in the RL field is the search for optical effects analogs of
the ones observed in conventional lasers (CLs). For example, it was already reported
the second-harmonic (SGH) in a mixture of NdgsLag5Al3(BO3)s microcrystal and non-
centrosymmetric 2-methyl-4-nitroaniline particles [74], that is analogous to the intra-
cavity SHG observed for CLs. More recently, it was demostrated self-frequency conversion
of the RL emission at 1062 nm as SHG and sum-frequency generation involving the emis-
sion at 1062 nm and the exitation beam at 806 nm in a Ndgo4Y0.06Al3(BO3)4 crystalline
powder [69].

However, the operation of bichromatic RL based on Nd3* was not yet reported. Dual-
wavelength lasers (DWL) have been reported for CLs based on bulk crystals doped with
Nd**|[24, 46, 16] with basis on various mechanisms. The bichromatic emission was due to
transitions starting from the Stark levels associated to the *F3/ state [53]. If the reader
had interested in the preparation and characterization Neodymium crystalline powder,
you can review Appendix N1.

In this work we report a bichromatic RL based on sub-micrometer grains of crystalline
NdAl;(BOj3)4 labeled as NdAB.

2.4.2  Experimental methods

Optical experiments were conducted as in Refs. [10,14| with the powder gently pressed
into a sample-holder. The excitation source was an Optical Parametric Oscillator (OPO)
pumped by the secondharmonic of a Q-switched Nd:YAG laser (7ns, 10 Hz). The laser
repetition rate was low to prevent heating of the grains. The light beam from the OPO
(For more information about OPO system see Appendix 2) was focused on the sample
by a 10 em focal length lens and the illuminated area was 1.2 mm?. length lens and the
illuminated area was tuned around 811 nm to be in resonance with the Nd3* transition
g/ —*F5/2. The EPE was controlled by a pair of polarizers and measured with a
calibrated photodiode. The angle between the normal to the sample and the incident laser
beam was 35° and the scattered light was collected from the front surface of the sample.
Optical filters were used to eliminate the excitation laser residue from the collected signal.
To change the powder’s temperature, the sample-holder was placed on a hot-plate from
where the emitted light was collected with a 5 cm focal length lens, focused inside of an
optical fiber and sent to a spectrometer equipped with a cooled CCD (resolution: 0.024

nm). The powder temperature was determined by a thermocouple fitted in the sample
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Figure 2.4.2: setup experimental

holder. Unless specified, the measurements were performed at room temperature of 22
°C.

2.4.3 Result

The RL emission was characterized by recording the emitted spectra of the Nd3* tran-
sition 4F3/2 — 4y »2 and monitoring the emitted light intensity versus the EPE. Fig.
2.4.3(a), (b) and (c) shows the behavior for EPE corresponding to 0.2, 0.3, and 1.6 mJ,
respectively. The insets of Fig. 2.4.3(b) and (c) show the Nd3* energy levels diagram with
the transitions corresponding to the excitation at 811 nm nm and the emissions around
1.06 um. Two narrow emissions at 1063.5 and 1065.1 nm were unveiled as the EPE was
increased.

The intensity dependence of the Nd* emissions versus the EPE is shown in Fig. 3(a)
where the RL action is revealed by the change in the slope efficiencies for the emissions
at 1063.5 and 1065.1 nm. For 0.30mJ < EPE < 0.54 mJ only the emission at 1063.5nm
was observed. Another evidence of RL emission is the spectral narrowing that is notice-
able by comparing Fig. 2.4.3(a) and (b). The RL emission was also corroborated by the
reduction of the lifetime, 7, of the 4F3/2 state, e.g. for EPE < 0.30mJ we measured
7 = 50 pus while for EPE > 0.30 us it was measured to be 7 &~ 10ns. The emissions at
1063.5 and 1065.1 nm are attributed to the Nd** positioned in two different crystalline
sites labeled A and B, indicated in the inset of fig 2.4.3(c). The existence of nonequivalent
Nd** environments in the NdAl3(BO3)4 crystal was reported in Ref. [47]. Tt was demon-
strated that the ions in different sites feel different crystalline fields that correspond to
different absorption and emission spectra. Depending on the number of sites, it is possi-

ble to have multiline laser oscillation, as already reported in conventional lasers [49]|, and
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Figure 2.4.3: Spectra of Nd3* transition 4F3/2 %4111/2 for different excitation pulse energies (EPEs).
(a), (b) and (c) correspond to EPE=0.2, 0.3 and 1.6m.J, respectively. The inset in (b) is the Nd** energy
level diagram representing the transitions corresponding to the absorption at 811 nm and random laser
(RL) emissions around 1.06 m. The inset in (c) illustrates the RL emissions due to Nd3 in two different
site-symmetries.
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Figure 2.4.4: Intensity dependence of the emissions at 1063.5 and 1065.1 nm versus the excitation pulse
energy (EPE). (b) Intensity ratio of the RL emissions at 1065.1 and 1063.5 nm versus the EPE.

the laser spectrum can be strongly dependent on the excitation wavelength due to dif-
ferent absorption spectra of the Nd3* located in the different sites. In a similar manner,
the RL spectrum reported in the present manuscript was dependent on the excitation
wavelength as follows. For excitation at 810 nm, only the RL emission at 1063.5 nm was
observed with the peculiarity that the slope efficiency was larger than that obtained by
exciting at 811nm. For excitation wavelength beyond 811nm, the intensities of both
emissions decreased compared to the intensities when the excitation is tuned to 811 nm.
Although NdAl3(BO3)4 powders were investigated for RL emissions, the simultaneous RL
emissions at 1063.5 and 1065 nm were not observed, probably due to the fact that the
excitation wavelength was not scanned around the Nd3* absorption transitions, and this
experimental characteristic has not been reported.

The linear growth with the EPE of the two RL emissions and different thresholds in
Fig. 2.4.4(a) reinforce that the two RL lines are independent of each other in the sense
that the bichromatic emission is not due to energy transfer between the Nd3* in sites
A and B. The different thresholds and slope efficiencies are attributed to the different
stimulated emission cross section of the two centers. Due to the different EPE thresholds,
the intensity ratio of the two emissions is independent of the EPE only for large values
of the EPE, as described in Fig. 2.4.4(b). The smaller RL threshold, narrower linewidth,
larger efficiency and slope efficiency corresponding to the emission at 1063.5 nm, suggest
that the gain for RL emission from site A is larger than from the Nd3* in the B site. This
behavior indicates that more Nd3* ions are located in the site A and/or the stimulated
emission cross-section of the ions located in the site A is larger than that of the ions
located in site B. Regarding the thermal effects observed in a NdAB cavity laser [61],
since we used a pulsed laser operating at low repetition rate, the thermal effects are
negligible which is evidenced by the linear growth of the RL emissions in Fig. 2.4.4(a)
with the absence of deleterious effects.

In RLs, the output spectrum can change from shot-to-shot of the excitation beam

due to multimode competition, this change is pronounced around the EPE threshold, and
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Figure 2.4.5: Emited spectra of the Nd3* transition 4F3/2 —>4111/2 for different temperatures. (b)
Temperature dependence of the intensities ratio of the signals at 1065.1 (I1065.1) and 1063.5nm (I1063.5)-

presents a trend of suppression at larger EPE. In the present case, for EPE well-above the
RLs thresholds, the RL output spectrum was quite stable in intensity and wavelength.

Fig. 2.4.5(a) shows the RL spectra for different temperatures of the powder. Notice
that as the temperature increases, the peak at 1063.5nm shifts to longer wavelengths
while the one at 1065.1 nm shows a blue-shift. The peak intensities of both emissions at
1065.1 nm (I1p65.1) and 1063.5nm (I1pe3.5) decrease linearly as the temperature increases,
a behavior attributed to the decrease and broadening of the Nd3* stimulated emission
crosssection due to the phonon-ion interaction.

Fig. 2.4.5(b) presents the temperature dependence of the intensities ratio, R= I1065.1 /110635,
between the two spectral lines. As above mentioned, the intensities of both emissions de-
crease linearly with the temperature and the decreasing rate of the emission at 1063.5 nm
is smaller than that at 1065.1nm. Then, R presents a pseudo-linear behavior in the
temperature range of the experiments, which explains the linear behavior shown in Fig.
2.4.5(b). Owing to the thermal sensitivity of the RL emissions, we foresee the use of the
two-color RL emission as an optical sensor capable to determine the temperature of a

medium hosting the NdAB nanocrystals.

2.4.4  Possible future applications

By defining the thermal sensitivity S = RLO%’ as in Refs. [12, 21|, with Rg being the
intensity ratio at room temperature, the value of S is ~ 0.020°C~!. Notice that the herein
demonstrated temperature sensor can be applied for studies of biological systems because
the excitation and emission wavelengths are in the first and second biological windows,
respectively. It is known as biological windows to the regions of the electromagnetic
spectrum in which the absorption of light by the biological tissues is minimized. Biological
windows are the spectral ranges in which the tissues have a partial transparency due to
the reduction of both absorption and light scattering [55]. The first biological window

extends from 700 to 950 nm and corresponds to the spectral space defined between the
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visible absorption of hemoglobin* and the characteristic absorption band of water at
980 nm [48]. The second biological window extends from 1000 to 1350 nm, these limits
imposed by the specific absorption of water [91].

Moreover, the emitted wavelengths are close enough to be analyzed using simple de-
tection systems without requiring correction due to the wavelength sensitivity of the
equipment. Finally, we emphasize that the proposed optical thermometer can provide
excellent results and be an alternative to other thermal sensors based on luminescence

such as those shown in the references [50, 14].

4Red pigment contained in the blood, whose function is to capture the oxygen and communicate it to
the tissues, and to take carbon dioxide from them and transport it back to the lungs to expel it.
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3 Random Laser as a complex system

A system is complex if its behavior crucially depends on the details of the system. (G.

Parisi)

3.1 Glassy Systems

The idea of a glassy system comes from the behavior of a glass that can be considered as
a liquid in which the diffusive movement of the particles is enormously slow and its ability
to flow has been suppressed in experimentally accessible time scales. The slowing down
is described by a characteristic time, known as relaxation time, over which the slowest
measurable processes relax to equilibrium.

In solid-state physics, glassy dynamics designates the extremely slow dynamics ob-
served in disordered systems below and slightly above the glass transition. Generally
characterized as "relaxation", it comprises both the aging of quenched systems (relax-
ation into equilibrium) and fluctuations in a stationary state (relaxation in equilibrium).
In a more general sense, the term glassy dynamics designates dynamical processes which
are non-stationary on the time scales available to human observers. Such processes are
often encountered is systems possessing, for whatever reason, a very large number of

metastable configurations.

3.1.1  Spin glass Theory

In the 1960ies, certain magnetic alloys such as AuFe or CuMg, were found to have rather
anomalous magnetic and thermal properties that seemed to indicate the existence of a new
kind of phase transition, clearly distinct from conventional ferromagnetic materials. This
type of alloys are systems with localized electronic magnetic moments whose interactions
are characterized by quenched randomness': a given pair of localized moments (spins)
have a roughly equal a priori probability of having a ferromagnetic or an antiferromagnetic

interaction. Figure 3.1.1 shows in (a) and (b) a scheme of the spins in the ferromagnetic

Tn statistical physics, a system is said to present quenched disorder when some parameters defining
its behaviour are random variables which do not evolve with time, i.e.: they are quenched or frozen.
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Figure 3.1.1: Schematic representation of the order of the spines in the case (a) Ferromagnetic, consisting
of a array of parallel electron spins (nearest neighbor). (b) In materials that exhibit antiferromagnetism
the spins of electrons, align in a regular pattern with neighboring spins pointing in opposite directions.
(¢) In Spin Glass case the magnetic spin are not aligned in a regular pattern. This disorder generates
metastable states of energy.

and antiferromagnetic states. In (c) a random mixture of ferro and antiferromagnetic
systems that corresponds to a state of Spin Glass is shown.

The term “spin glass” is due to Bryan Coles in the late 1960s. The reason for the
name is twofold, first that in the state of the magnetic moments (spins) on the magnetic
ions seem to freeze in orientation but without any periodic ordering this reminds of the
amorphous freezing of the locations of atoms in a conventional glass, and secondly that
the low temperature specific heat is linear in T, again a feature of conventional glasses.
In other words, the interactions are characterized by a quenched randomness, a given pair
of localized moments have a roughly equal probability of having a ferromagnetic or an
antiferromagnetic interaction.

So then a spin glass is constituted by many interacting variables. A major charac-
teristic of these systems resides in the interacting couplings among the variables, if the
number of interactions among the modes is high enough, the phase space can decompose
in a high number of metastable states.

In a random laser, a similar situation can be expected owing to the large number of
random modes that compete for the available gain. This can lead in a random laser to a
behaviour similar to that of a glass transition, in which a certain configuration is 'frozen
in’. Mode coupling is particularly strong for extended modes that cover a large volume of
the sample. Several modes can partially occupy the same volume and therefore compete
for the same gain molecules. The mode coupling therefore takes place through the gain
mechanism, which means that modes of different wavelengths can still be coupled, even

if they are not spectrally overlapping.
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3.1.2  Edwards Anderson model

The modern theory of spin glasses began with the work of Edwards and Anderson
(EA model) [27], who proposed that the essential physics of spin glasses lie not in the
details of their microscopic interactions but rather in the competition between quenched
ferromagnetic and antiferromagnetic interactions. It should therefore be sufficient to study

the Hamiltonian

HJ:_%ZJijUin_hZUi (311)
1,5 %

where 7 is a site in a d-dimensional cubic lattice, o; = 41 is the is the Ising spin at site 1,
h is an external magnetic field, and the first sum is over nearest neighbor sites only. To
keep things simple, we take i = 0, and the spin couplings J;; to be independent Gaussian
random variables whose common distribution has mean zero and variance one. With
these simplications, the EA Hamiltonian has global spin inversion symmetry. We denote
by J a particular realization of the couplings, corresponding physically to a specific spin
glass sample. As already mentioned, each J;; is supposed to be distributed independently
according to a probability distribution P (J;;). Once often uses the Gaussian model and

+J model as typical examples of the distribution of P (.J;;). Their explicit forms are

. (J ) ) . { (Jm;;o) } (3 1 2)
i = \/We 1.
P(Jij) = p6(Jiy—J)+ (1 =p)d(Ji; +J), (3.1.3)

respectively. Eq. (3.1.2) is a Gaussian distribution with mean Jy and variance J* while
in Eq. (3.1.3) J;; is either J (> 0) with porbability p, or —J with probability 1 —p. In the
EA model the randomness in site positions (site randomness) is considerd less relevant
to the macroscopic properties of spin glasses compared to the randomness in interactions
(bond randmness). Thus J;; is supposed to be distributed randomly and independently
at each (ij) according to a probability like (3.1.2) and (3.1.3).

In this model was necessary to introduce a order parameter to describe magnetic
freezing without periodicity. In fact EA model gave two versions: one based explicitly on

temporal freezing

q(t,t+71) —%Zwi (t)-oi(t+7)), (3.1.4)

where (- ) refers to a dynamical average, and the other based on ensemble averaning,

=5 Sl (3.1.5)
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AF

Figure 3.1.2: An example of a 2 x 2 lattice frustrated. Where F correspond to Ferromagnetic couplings
(Jij > 0). AF corresponds to an antiferromagnetic coupling (J;; < 0). One possible arrangement of spins
at the corner sites is shown.

with (-) is referring to an ensemble-average restricted to one symmetry breaking

macro-state. The phase transition is signalled by ¢ becoming nonzero.

3.1.3  Sherrington-Kirkpatrick Model

An important, exactly solvable model of a spin glass was introduced by D. Sherrington
and S. Kirkpatrick in 1975. The important feature of Sherrington-Kirkpatrick model is
that this model includes frustration. A system is in a frustrated state when there is
no single configuration favorable to all spins interactions. In the figure 3.1.2 is shown a
schematic representation of the frustration where AF corresponds to an antiferromagnetic
coupling, two possible arrangement of spins at the corner sites can satisfy the condition.
So then the frustration favors the increase of configurations with the same energy.

The Hamiltonian system in the Sherrington-Kirkpatrick is

H(J, h,o) ijdlaj hZUZ (3.1.6)

Each 7 atom is assigned a o; corresponding to the magnetic moment, the interaction
between these moments is represented by the interchange interaction J;;, which are ran-
dom and independent values. The Spin Glass systems is related to a ferromagnetic type
interaction (J;; > 0) when the moments are of equal sign on antiferromagnetic (J;; < 0)
when the moments are of opposite signs.

The equilibrium solution of the model, after some initial attempts by Sherrington,

Kirkpatrick and others, was found by Giorgio Parisi in 1979 within the replica method.

3.1.4  Replica Symmetry Breaking

David Sherrington and Scott Kirkpatrick applied the ideas introduced by Edward and

Anderson to a model, which allowed an exact mean-field approach. They concluded that
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this approach was ill-defined as it led to a solution with negative entropy [87]. In the works
[76, 77], Giorgio Parisi introduced the so-called Replica Symmetry Breaking (RSB) scheme
for mean-field spin-glass models, which allowed to solve the negative-entropy conundrum
and to understand physical properties of the spin glass phase. In this method one considers
n non-interacting replicas of the system, which allows for replacing the quenched averages
by the n — 0 limit averages. In the year 1984 M. Mezard, G. Parisi and his collaborators
[67], proposed a probability distribution for an order parameter for Spin Glasses. In
addition they demonstrated that this probability depends on the particular realization of
the couplings even in the thermodynamic limit.

The essential idea is that the low-temperature phase consists not of a single spin-
reversed pair of states, but rather of "infinitely many pure thermodynamic states" [77],
not related by any simple symmetry transformations. In the low temperature phase, and
in the limit N — oo we can have ergodicity breaking: the system at equilibrium explores
only a sub-part of the phase space. When this happens the measure can be split into
sub-components, called pure states [73],

The approach to investigate the different phases of a physical system starts with the
mean field approximation. In the mean field approximation has been formulated by using

the infinite range model [87], where the partition function is given by

Z(B,J,h) =Y e PHIo) (3.1.7)
{o}

and the Hamiltonian is
H(J,h,o)==> Jjoio;—hY o (3.1.8)
] i

where the 0; i = 1,..., N are Ising spin, the sum ) runs over all pair of spins, and

]
J;; are random couplings obeying a given probability distribution, which we suppose to
be symmetric, with variance 1/+/N. In order to study the Hamiltonian (3.1.8) we used
the replica approach.We consider an Ising system, the total nymber of spin (N) being
sufficiently large so that we stay near the thermodynamic limit. As usual, the statistical

expectation values are given by

>0y O (0) e PR
- Yoy e @

(0 (o)) (3.1.9)

O (0) and H (o) being an observable and the Hamiltonian, respectively. which can be

decomposed as a sum over the pure equilibrium (clustering) states:

(- =D Palday D Pa=1 (3.1.10)
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For each of the pure states (labeled by «) the spontaneous magnetization may be
different from zero, while the connected correlation function should go to zero at large
distances (clustering). The local moment of a pure state « of a spin glass is m$ = (o),
at each point i of system. The overlap ¢®# of the two pure states o and 3 . In terms the
Replica Symmetry Breaking o and [ are replicas the systems (defined in the importance

reference |77])

N

Gop = %Z (0i)a (i) g (3.1.11)

i=1
Note that when oo = g, ¢ is the Edwards-Anderson order parameter (Eq. (3.1.5)).
Given the infinity of states, quantities referring to individual pure states are of little use,

what is really of interest is the distribution of overlaps

Py(g) =) PuPss (a— "), (3.1.12)
a,B

when Pj (q) is referred to as the Parisi overlap distribution. Is denoted by P (q)

the average of P;(q) over the coupling distribution:

P(q) = P;(q) (3.1.13)

This average is needed because the theory predicts that the function P; changes dra-
matically from system to system.

If there is a single pure state, such as the paramagnet at 7' > T, then Pj (q) is simply
a o-function at ¢ = 0. For ferromagnets with free or periodic boundary conditions, there
are only two pure states, namely the uniform positive and negative magnetization states.
According to the Parisi solution, for fixed J and large IV, it has the form qualitatively
sketched in fig. (3.1.3)(a). Let is consider P (q) = limn_ooPn (¢), the resulting distri-
bution P (¢q) will be supported on all values of ¢ in the interval [—gga, qpal; a sketch is
shown in figure 3.1.3(b).

3.1.5  Glassy behavior of light in random lasers

Since the 1970s, many authors have outlined that the threshold for lasing can be inter-
preted as a thermodynamic phase transition and these ideas spread out in the field of
photonics [1]. In this reference, the authors shows that when the average energy into each
mode increases (i.e., the “temperature” is decreased, in the case of magnetic transitions),
the system undergoes a glass transition, meaning that its dynamics slows down and an
exponentially large number of states appears. They correspond to "mode-locked" states
of a random laser. In this subsection we expand some calculations that are necessary

to understand results that will be important for a good understanding of the analyzed
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Figure 3.1.3: (a) Overlap distribution of function Pj(q) below T.. (b) Averagd distribution function
P (g) below T..

phenomenon.
We considere a dielectric resonator described by refractive index profile n (7). The

Maxwell’s equations in the presence of nonlinear polarization Py, are

= OF (7,1) oP (F,t,E)
— o 2 /= 9
V x H(rt) = eon”(7) T + T (3.1.14)
V x E(Ft) = _“0% (3.1.15)

In absence of nonlinear polarization Py; = 0, and multiplying Eq. (3.1.15) by Vx,

we have

O?E (7.1)
ot

the solution of equation (3.1.16) decomposed in normal modes is

V2E (7,t) — eopon® (1) =0 (3.1.16)

E (7,t) = Re

> O E (F) e em! (3.1.17)

where a,, and w,, are complex amplitude and angular frequencies respectively. The

average electromagnetic energy for each unnormalized mode is given by

& = [ {ean® OB G+ ol ()} av (3.1.18)

and the total energy stored in the cavity is

E= En= wnlaml" (3.1.19)
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The complex amplitude a,, are the fundamental degree in the statistical mechanical
modeling of interacting modes (see [5]). Random lasers present strong non-trivial intensity
spectral fluctuation from one excitation pulse of the pumping laser to another one. In

reference [2] it found the important result for the variation of a,,

day, (t
dt

) A@m [ m B
=i4 /VEm(F)Pm(r)dV. (3.1.20)

It was considered that the case in which many modes are put into oscillations and
interact due to the nonlinearity of the amplifying medium. Thus, the component of the

nonlinear susceptibility is written as

P = Z Xafys (Wins Wy, We, —wr, 7) BY EY B2 fwp wra,y0qa; (3.1.21)

Wmtwp=wq+wr

where y is the third order response suceptibility tensor, which in general depends on

the positions in the dielectric resonator. The coupled modes read as

da,, 1 .
- =5 ngmaqarap (3.1.22)
par
while
W W W g Wy
Gmpar = + / Xafvs (W W, Wq, —w,, 7) ESESEYEAV (3.1.23)
Vv

Eq. (3.1.22) is extended to all the modes combinations satisfying the frequency match-
ing condition w,, = w; + w, — w,, we recall that the frequencies satisfying this relation
can be divided into three categories (In reference [75| the reader will find a good support
for multi-mode lasers):

(a) Wy, = wy and w, = wy; (b) wy, = w, and w, = w,, These two categories determine
the energy oscillation values of modes E1, and provide terms such as auto saturation and
cross saturation.

(€) Wm = wy + w, — wy, this relationship is important when the number of competing
modes is large. The regime that interests us is when a large number of modes oscillate
in a limited spectral range around an oscillation frequency wg, which is the resonant
frequency of the gain medium, such is the case of a random laser. This opens the way to
a "mean field theory" in which all modes are coupled, i.e., the sum in Eq. (3.1.22) is over
all possible values of pgr. To summarize, it is assumed that all the lasing modes have

frequency w,, = wy, wy being the resonant frequency of a gain medium.
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3.1.6  Langevin equation for the phases

Let a,, (t) = A, (t) €»® where A,, as slowly varying with respect to ¢,,. The fact that
the temporal variation of the phases is on a faster time scale than that of the amplitudes,
takes place due to the random interference between the modes and not due to the intensity
fluctuations of the individual modes. This is established in the theory of mode-locking
of standard multimode lasers [40, 25|. The consequence of this is that all dependent
phase terms are eliminated in equation (3.1.22), and the resulting equations determine
the amplitudes A,,, and therefore the energy of each mode &;,, remains subject to this value
after the corresponding mode has been put into oscillation. If the phases can be taken as
independent, the output laser signal shows small oscillations around an equilibrium value
because the noises in each mode amplitude are independent.

We describe the gain by an amplification coefficient ,, and the losses by radiation as

Qm, these are included in the equation of motion by the complex amplitudes [40]

dan, 1 "
a2 Z ImpgrQqQray, + (Ym — ) @+ 1 (1) (3.1.24)

dt
pgr
having introduced, as usual, a complex noise term, mainly due to spontaneous emis-

sion. The tensor g is a quantity symmetric with respect to the exhange of m < p, g < r,

while under {m, p} <> {q,r} one has g4 see reference |75, 13]. Introducing the

- g;rmp’
real-value potential function

1
H = ZRe Z gmpqraqara;a’:n]
mpqr
1 * % 1 * %
- 4_1 Z gﬁpqraqa'rapam - E Z grlnpqraqa'rapam (3125)
mpqr mpqr
let
H= (@m =) lan|* + H, (3.1.26)

m

the equation (3.1.24) is rewritten as

da,, OH

7 = _(9a,*n + N (1) (3.1.27)

where

0 11 0 0
== |z +iz— 3.1.28

Ja* 2 L‘?aR "9l ] ( )

The previous equation is a standard Langevin model for a system of N particles moving

77777

as the relevant dynamic variables, due to the quenched approximation for the amplitudes
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A, (For a more extensive calculations suggest see Appendix A of the reference [2]),

1 1
Z gklkga’kl akg 2 Z glgrl)kgk3k’4akl akgak3ak47 (3]‘29)
{k1ko}' {k1kaksks}'

where {...}' implies the frequency matching condition |wg, — wi,| < v and |wp, — Wi, +
Wiy — Wr, S 7y in the quadratic and quartic terms, respectively, with v denoting the finite

linewidth of the modes.

3.1.7 RSB in Random Lasers

In the year 2015 was published the article of reference |7]. In this article the authors (An-
tenucci,F et al.) present new concepts that relate the traditional Spin Glass phenomena
to random lasers. This section of the chapter we review this work and summarize the
main ideas.

Recall that the frustration is given when in a magnetic system there are multiple
metastable states. In a random laser, a similar situation can be expected due to the
large number of random modes competing for the available gain. This glassy light regime
is associated to an effective thermodynamic phase where the tendency of the modes to
oscillate coherently in intensity is frustrated. The experimental validation between of the
random-glassy laser connection, and, particularly, of the RSB predicted by the theory,
has, nevertheless, recently been put forward in ref. [32]|, measuring the overlap between
intensity fluctuations of the spectral emission.

Consider that the behavior of the gain in the medium has an overall optical power
& = >, |ax|* that remains constant. To determine a spin-glass phase transition in random
lasers, the replicate method can be used. This method consists of considering identical
copies of the system that act as probes by exploring the multi-state phase space of the
system. An order parameter is introduced [77|, resulting from the overlap between the

amplitudes of the replica o and the replica (.

N
1 o *
Qaﬁ = Fﬁ E ag, <CL£> (3130)
k=1

where € = ¢/N. If the overlap is of the Parisi type then it is identified as the beginning
of the random laser regime for a given energy. Note that equation (3.1.30) is analogous
to equation (3.1.11), where the complex amplitude corresponds to a magnetization of a
pure state. Experimentally phase correlation measurements necessary for the assessment
of the complex amplitudes are not available (at least at this stage). In an experiment we
have access to the fluctuations of intensities of two real replicas through I,, (k) = |ag|?,
where « is the label of the replica (o =1,...,n).

Having the intensities as the only degree of freedom available experimentally as the
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intensities, a suitable overlap is defined based on its acquisition in different shots

e The average emission spectrum
_ 1 —
I(k)=— I, (k 3.1.31
CERIAL (3.131)

e the intensity fluctuation of shot a around the average profile
A, (k) =1, (k) — I (k) (3.1.32)

It defines the overlap between the normalized intensity fluctuation of shots a and 3 as [7]

Caﬁ — ZZ:l Aa (k> AB (k) (3133)

V2o A% (k) /25 AF (F)
where k denotes the frequency. From n measured spectra one can calculate the

n(n — 1) /2 values of the Cyp and the distribution P (C,pz), and the probability distribu-

tion can be calculated to have the information of the phase transition.

So far we have reviewed generalities about spin glass systems. We will then review the
progress in fluctuations in random lasers, with special attention to the conditions that
lead to a Lévy statistics. These ideas may seem unconnected, but in Chapter 5 we will

make the link between these two different areas.
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4 Fluctuations in RLs

Random lasers are complex systems with many internal elements that interact with each
other. The dynamics of these systems are difficult to understand due to the complexity
of such interactions and the number of factors that influence them. One can try to un-
derstand the laws that govern random lasers from studies of observable variables. The
fluctuations in intensity spectrum of a random laser emission is an easily accessible mea-
sure where a single measurement instrument (spectrometer) is needed. Fluctuations in
emission spectra can be modeled in a first approach by a Gaussian stochastic process
(Brownian motion). This model is natural if we consider that the fluctuation in intensity
is the result of many independent parameters, and using the Central Limit Theorem leads
to a Gaussian distribution. However, empirical studies of intensity fluctuations show that
under some given conditions, the associated probability density has a kurtosis larger than
that given by the Gaussian distribution.

The idea then of this chapter is to show that the Brownian motion under certain
conditions that we will detail later does not adjust adequately to the fluctuations of
emission in a random laser. The distributions of Lévy are presented. This distribution
is able to model the strong fluctuations. In addition we present the a-parameter that
indicates in which statistical regimen we are. Finally it is concluded that this parameter
is associated with the pumping energy, and that under certain conditions it can indicate

the emission threshold in a random laser.

4.1 Lévy statistics

In the last decades the economic and financial phenomena have begun to be studied
through rigorous mathematical models, standing out the models for breaks and finan-
cial collapses or “crashes”. The empirical characterization of stochastic processes usually
requires the determination of asymptotic probability densities functions (PDF). The sim-
plest model proposed to describe the evolution of these processes is known as Brownian
motion. However, the empirical study of the real series of prices of some of the most
important indexes showed that at short time scales, such as those used to study the evo-

lution of stock indexes near a financial collapse, the PDFs of these series have greater
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kurtosis than that of a Gaussian distribution [64]. The first attempt to explain this be-
havior was made in 1963 by Mandelbrot [62], who proposed to model the increase of the
cotton price with a stable stochastic process of non-Gaussian Lévy. Simultaneously there
was the birth of a new discipline called "Econophysics" [82]. Physicists have broadened
the scope of their interest, including research on animal foraging, [105] fluid dynamics

[104], and photons [11], just to name a few.

4.1.1 Random Walk

A random walk is defined as a path composed of many independent random steps. Alle-
gorically, it compares to the completely erratic movements of drunks wandering from one
pole of light to another. Brownian motion, which describes the completely erratic move-
ment of very small particles that collide with the surrounding particles, which strike them
from all sides, is the simplest of random walks. Dynamic processes, atomic and molecu-
lar diffusion on surfaces, and movement of microorganisms are some examples have been
described in terms of Brownian motion.

Einstein showed that the mean square displacement of a particle with Brownian motion
increases linearly with time, ({22 (t)) ~ t), which implies that the mean square displace-
ment of the Brownian particle from its starting point increases with the square root of
time (v/t), and not linearly. The probability that a Brownian particle is at a distance
d from its starting point after time ¢ is represented by a Gaussian distribution centered
on the origin that falls very quickly to zero. The width is proportional to v/t and is a
measure of the distance beyond which there is little probability of finding the particle,
that is, when the particle moves away from the mean value, the probability rapidly to

Zero.

4.1.2 Central Limit Theorem (CLT)

The theorem states that the distribution of the mean of a random sample of N indepen-
dent, identically distributed random variable with finite variance has an approximately
Gaussian distribution when the sample size is large regardless of the shape of the popu-
lation distribution.

Let x1, 29, x3, x4..., xy be N independent, identically distributed random variable, with

their sum
N

XN:in:xl—ka—l—...—i—xN with N — oo. (4.1.1)

i=1
The mean of each of the independent, identically distributed random variable is (x)
and variance be o2, then CLT states that the probability density function of Xy is given

as:
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1 ~(e=(=))”
p(Xy) = —e >~ . (4.1.2)

V2mo}
The CLT is valid under very general conditions. Irrespective of the law of probability
followed by ;. The Gaussian law predicted by the CLT for this problem is almost al-
ways observed experimentally. The CLT, however, fails when the second moment of the

distribution of random variable (z?) is infinite.

4.1.3 Lévy flights

There are physical phenomena that can exhibit properties that are beyond the Central
Limit Theorem. CLT is violated and a non-Gaussian distribution is obtained, where the
mean may or may not exist but the variance always diverges. These random walks termed
as Lévy flights arise from rare or atypical events that are so large in magnitude that many
small events dominate [68]. This results in a finite probability of observing improbable
events giving the distribution a "Fat or Heavy tail" in the asymptotic limit. Further, the
Lévy sums are exceptional in that they are rigorously hierarchy. A very small number of
terms dominate all other and the contribution of the latter to the sum Xy is negligible.
Thus, in the Lévy distributions, the determining event is the rare event and the sum
mainly reflects the value of the larger terms.

In particular, the probability density f (z) of a random variable x with power-laws

tails
1

l.lJra

() =

when x — oo (4.1.3)
if
e o > 2 the variace (x?) is finite and the classical CLT applies.

e o < 2 The probability of obtaining a given value of x decreases less rapidly than

1/23 for the large x.The usual CLT does not apply.

Paul Lévy, in the 1930s, generalized the Central Limit Theorem to take into account
the possibility of the existence of infinite moments, in particular divergent variance. He
showed that for such cases, the sum Xy increases faster than the square root of the
number of terms it contains, and the distribution obtained is no longer a Gaussian, but
obeys a law which is now called the stable or Lévy law.

The Generalized Central Limit Theorem (GCLT) states that the sum Xy of large
number of independent, identically distributed random variable z;, x5 ..., x3 converges to
a Lévy-stable law. Thus, GCLT shows that if the assumption of finite variance is dropped,

the only possible resulting non-trivial limits are Lévy-stable distribution.
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4.1.4 Stable Distribution

We have already mentioned that in some natural phenomena the Central Limit Theorem
is not a good modeling for heavy tail events. In response to the empirical evidence
Mandelbrot and Fama [29] proposed the stable distribution as an alternative model. The
stable distributions are supported by the generalized Central Limit Theorem, which states
that stable laws are the only possible limit distributions for properly normalized and
centered sums of independent, identically distributed random variables.

Stable Distribution also called a-stable or Lévy stable distribution, were introduced by
Lévy in 1925 During their investigations of the behavior of sums of independent random
variables.

The a-stable distribution requieres four parameters for complete description:
e o € (0,2]is the index of stability, also called the tail index or characteristic exponent.

e 3 € [—1,1] is the skewness parameter, is a measure of asymmetry. If g = 0, the
distribution is symmetric, if 8 > 0 it is skewed toward the right, if § < 0 it is skewed
toward the left.

The parameters o and 8 determine the shape of the distribution.
e v > ( is a scale parameter.

e ) € R. is a location parameter. It shifts the distribution right if 6 > 0, and left if
0 <0.

4.1.5  Characteristic function

Due to the lack of closed form formulas for densities for all but three distributions, the
a-stable law can be most conveniently described by its characteristic function ¢ (¢) that

is the inverse Fourier transform of the probability density function.

—ylt|* {1 — iBsign (t) tan™2 } +ivt, a#1

(4.1.4)
—[t] {1 + if8sign (t) %ln|t|} + int, a=1

ng (1) =
Gaussian distribution is realized when a« = 2. When «a < 2, the tails behave asymp-

totically as power-laws with exponent «.

4.1.6 FEstimation of o, 5,7, parameters

There are many ways to estimate characteristic parameters. We use the methods men-
tioned in [26, 66] to get the four parameters. Then the adjustment was improved by
calculating the inverse Fourier transform of the characteristic function from the parame-

ters calculated with the quantiles method. This is performed as follows.
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Under the definition of the characteritic function (Eq. (4.1.4)), define

T 95 — T 025
Uy = ————
L5 — X25

Togs5 + To5 — 2T 5
I/B =

To5 — .05
Here, z, represent the p-th population quantile. Since, v, and vz are function of «
and [, the relation can be inverted to estimate the parameters using the values found in
the tables of the article by McCulloch [66]. The relationship with the tables is:

where 1; and v, are the table as function of v, and vg. A similar procedure is used

to estimate 0 and 7.

4.1.7  Fluctuations in the emission intensity from a RLs

The first theoretical approach, that was proposed by Letokhov [58]|, was based on a
process of diffusion in an environment with optical gain. Optical transport was described
as a multiple scattering process in which light waves are dispersed by a large number
of randomly spaced elements. In such materials light is multiplied, dispersed, and also
amplified. Under this model, the best way to think of the dispersive movement within
the medium was a Brownian motion model. When the number of photons that describe
random walks is very large and summoning the Central Limit Theorem (CLT) should be
expected that the fluctuation in the intensity spectrum describe a Gaussian distribution.
This is partially true.

In the reference work [86], the authors studied the emissions of a dye scattering sys-
tem. They found that emissions exhibited non-Gaussian emission intensity statistics in
the system of random realizations, where the amplification was dominated by certain
improbable events that were "larger than rare", which gave a statistic of Lévy with a
tunable exponent. In this paper the authors further claim that, to their knowledge, the
first experimental realization of the Lévy statistic is provided in the optics of a random
amplifier medium.

In a simulation work based on a feedback model [57], it was shown that fluctuations
change under a control parameter, from a regime Gaussian to Lévy statistical regimes. In
this paper the authors say that the origin of the Lévy statistic can be understood from
the following reasoning: the spontaneously emitted photons are amplified in the active

medium due to the stimulated emission. Their emission energy is exponentially large in
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the path length [,
I(1) = Iye'e), (4.1.5)

where we have introduced the gain length /5. On the other hand, the path length in
a diffusing medium is a random variable with exponential probability distribution
e(=1/)
p(l) = o (4.1.6)
where and ([) is the average length of the photon path within the sample. The com-
bination of Eqgs. 4.1.5 and 4.1.6 provides that the probability distribution of the emitted

intensity follows a power law

PD)= FI0, 0= (417)
where [, is the gain length The most striking one is that for 0 < a < 2 the average
(I) exists but the variance ( and all higher-order moments) diverges. The gain length [,
is controlled by population inversion of the active medium. Increasing the latter, [, and
the exponent a decrease thus enhancing the fluctuations. Actually, the Lévy regime is
limited to a specific range of gain length, while Gaussian statistics occur with both low
and high pumping energy. Three different statistical regimes are then possible, depending
on the gain.

In the reference [44] the authors clarify the landscape with a theoretical and exper-
imental study aimed at characterizing statistical regimes in a random laser. Both the
theoretical simulations and the experimental results showed the possibility of three re-
gions of fluctuations when increasing the pumping energy. An initial Gaussian regime
is followed by Lévy statistics, and Gaussian statistics is recovered again for high pump
pulse energy. These different statistical regimes are possible in a weakly diffusive active
medium, while the region of Lévy statistics disappears when the medium is strongly diffu-
sive presenting always a Gaussian regime with smooth emission spectrum. In this paper,
the authors propose to establish the Gaussian regime 1.8 < a < 2, due to the finite
number of measurements it is in general rather difficult to reliably resolve the tail of the
distributions. Also performed experiments with different /; (mean free path) concluding
that in a medium strongly diffusive medium displays a Gaussian intensity distribution at
any value of the pump pulse. In the case of weaker diffusive media three different statis-
tical regimes are possible, increasing the pumping energy: The intensity distribution is
Gaussian at low pump energies, becomes a Lévy-type distribution at increasing pumping
energy and then becomes Gaussian again for higher pumping energies. Figure 4.1.1 shows
the scheme of the behavior of the a-parameter with respect to the Energy Pump where
the three regions can be seen.

In the works [100, 98, 99| critical excitation in random lasers under picosecond and



67

)

a=18-{---------

Gaussian

@ L2----------

Figure 4.1.1: The figure shows the scheme of the behavior of the a-parameter with respect to the Energy
Pump where the three regions can be seen. Below the threshold where the behavior of the fluctuations
follows a Gaussian regime. Close to threshold the fluctuations become strong, in the lower part of the
red curve you see the energy of the threshold. Finally for greater energies, the behavior returns to be a
Gaussian regime. Also emphasizes the region between 1.8 < « < 2 which is where it is considered that
the statistic of the fluctuations is Gaussian.

nanosecond pumping was experimentally studied. The resulting emission intensity statis-
tics were analyzed using fits to a-stable distributions. It was found that the transition
value of «, the tail exponent of the stable distribution, is a clear indicator of the threshold
of random lasing. They proposed this exponent as an identifier of the threshold. Com-
paring it with the conventional definitions for the threshold, namely, the probability of
random lasing in the case of coherent random lasers and the intensity enhancement and
bandwidth collapse for diffusive random lasing emission. This proposal is based on that
random lasers are inherently statistical systems, so any relevant parameter needs to take
the fluctuations into account. This criterion is satisfied by the a exponent. Using pa-
rameter « as a statistically consistent identifier precludes the subjectivity associated with

threshold identification, such as that in the case of the probability of random lasing.

4.1.8 Results

In this section we present results, obtained from a random laser system consisting of
Crystalline powders of Nd*™ doped YBO3 (Nd3*" 4.0% concentration). We show the
strong fluctuations near the threshold that are typical of the presence of Lévy statistics.
We also show a curve that relates the pumping energy to the a-parameter. In these
preliminary results the comparison of the a—parameter with the traditional methods to
identify the threshold of the laser emission is not made. That will be shown in the next
chapter, as we will show even deeper conclusions.

Figure 4.1.2 shows the fluctuations in the intensity. Figures 4.1.2(a) and (b) show
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the intensity fluctuations produced shot to shot, the energies are 1.4mJ and 2.1mJ
respectively. Note that in these figures the approximation symbol (~) for the intensity
fluctuations is used, that is because a drift with respect to the emission wavelength of
about AX ~ 0.5nm from one shot to another is perceived. This fluctuation is centered
on A = 1056 nm.

Figures 4.1.2(c) and (d) are the intensity fluctuations centered on A = 1056 nm. The
pumping energy used in the fluctuation of Figure 4.1.2(c) is very close to the threshold
of the laser action, the strong fluctuations can be appreciated. In this same figure two
yellow boxes help us to see the difference between fluctuations, where it is noticed that

the fluctuation can quickly change from almost zero to a maximum fluctuation.
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Figure 4.1.2: The figure shows the intensity fluctuations around the emission wavelength (1056 nm). (a)
and (b) show the intensity fluctuations in a three-dimensional perspective, The pumping energies are
1.4mJ ( close to threshold) and 2.10mJ (above the threshold) respectively. (c) and (d) they are the
fluctuations for one the emission wavelength (I = 1056 nm).
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Here we should be in the presence of a fluctuation of the Lévy type. The oscillation
shown in Figure 4.1.2(d) is clearly softer, this should be an indicator of a Gaussian regime.

In Figures 4.1.3(a), (b) and (c) histograms of intensity fluctuations for energies 1 m.J,
1.4mJ and 2.1 mJ respectively shown. Figures 4.1.3(d), (e) and (f) are representations
of the probability density function corresponding to the frequency histograms of Figures
4.1.3(a), (b) and (c) respectively. These figures are generated after using the quantiles
method to obtain the parameters «, 3, v and d. Subsequently, the inverse Fourier trans-
form of the characteristic function Eq.(4.1.4) is calculated using numerical methods.

Figure 4.1.3 shows the calculated values for parameter «, showing that for an energy
of 1.4mJ «a = 0.28, being clearly in a Lévy regime. Below and above the threshold a = 2,
which indicates that for these energies the regime is Gaussian. Although the comparison
of parameter o with the traditional methods of calculating the threshold will be done in

the next chapter, we inform for clarity of the reader that the threshold was calculated in
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Figure 4.1.3: Figures 4.1.3(a), (b) and (c) show the frequency histograms of the intensity fluctuations for
energies 1mJ, 1.4mJ and 2.1 mJ respectively. Figures 4.1.3(d), (e) and (f) show the probability density
functions calculated from the inverse Fourier transform.
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5 Experiment 3: Observation of Lévy distribution and RSB in RLs

from a single set of measurements

Among the most unique aspects of random lasers is that, for systems composed of a large
number of modes, if these modes do not respond to a specific frequency that dominates
the others, the narrow emission peaks in the spectra can change the frequency from one
excitation pulse to another with emission spectra that appear completely uncorrelated
from shot to shot [102|. Even in the case that the experimental conditions of the system
remain perfectly constant, strong fluctuations in intensity can be seen due to the "fight"
for the gain. In these conditions it is observed that the intensity distribution is not
Gaussian, but rather of the Lévy type. This is true close to the lasing threshold, where
the mentioned spectra fluctuations are expected, whereas far below and far above the
threshold the statistics remains Gaussian [106].

On the other hand, random lasers have been exploited as a platform to study complex
systems benefiting from the great progress that has occurred in recent decades in complex
systems theory. The value of complex systems theory for random lasers was realized very
soon. It was shown that using the replica method in a random laser where a large number
of random modes compete for the available gain can lead to a behavior similar to that of
a glass transition [32].

The arguments and works presented in chapters 3 and 4 have been separate investi-
gations considered so far two different areas of physics.

In this work, we employ the Nd:YBO random laser system to obtain, from a single
set of measurements, the physical origin of the complex correspondence between the Lévy
fluctuations regime and the replica-symmetry breaking transition to the spin-glass phase.

In the photonic context, the term spin glass (SG) means that intensity spectra emitted
under identical experimental conditions keep a complex pattern of correlations, as quan-
tified below. Moreover, the Lévy statistics implies strong fluctuations in the emission
intensity, with non-Gaussian heavy-tailed distribution.

In ref. [32] a replica-symmetry-breaking (RSB) transition to the spin glass phase was
experimentally reported for the first time in RLs employing a functionalized thiophene-

based oligomer (T50C,) in amorphous solid state with planar geometry. RL emission



71

was obtained by pumping with a frequency doubled pulsed Nd:YAG laser (10 Hz, 6
ns, 1.06 um). The RL spectrum with several spikes could be interpreted as depicting
the modes riding on a broad pedestal around 610 nm, as observed when high resolution
spectral measurements were employed. When a lower spectral resolution was employed,
a somewhat smooth spectrum was measured. The authors analyzed the shot-to-shot
intensity fluctuations in order to obtain the RSB signature and clearly demonstrated the
photonic paramagnetic to SG phase transition. Regarding this point we must highlight
that a random laser is always multimodal, despite having a smooth spectrum and no
spikes. Even in the case of presenting such an extremely fine spectrum that exceeds the
spectral resolution of the measuring equipment. This was demonstrated in an RFL system
where the emission spectrum is extremely thin. (See reference [35]).

Here, we advance on the understanding and characterization of the photonic behav-
iors of RLs by reporting on a remarkable match between the Lévy regime of intensity
emission and the critical region of the RSB glassy transition. The experimental results

were obtained from a single spectral set of data on the Nd:YBO RL system®.

5.1 Theoretical Framework

The complex correspondence between the RSB transition to the photonic SG phase and
the changes in the statistics of intensity fluctuations in RLs can be explained within the
same framework.
A phase diagram for lasers in random amplifying media has been recently built based
on the Langevin equations for the complex slow-amplitude modes ay, (¢),
day, OH

ok F 1.1
dt Oaj, + (5.1.1)

where F}, is a Gaussian (white) uncorrelated noise term and the general complex-valued
functional #H reads [6]

1

2 * 4 " N

H= Z gl(fl)kzak’lab + 92 E gl(gl)k;2k3k4a'k’1ak2ak3ak4 (5.1.2)
{k1ka}' {k1kokska}’

The symbol {...}' implies the frequency-matching condition |wy, — wi,| < v and
|wk, — Wi, + Wiy — wWi,| S v in the quadratic and quartic terms, respectively, with ~ de-
noting the finite linewidth of the modes. The physical origin of the quadratic coupling
g,(j)kQ lies in the spatially inhomogeneous refractive index, as well as in a nonuniform dis-
tribution of the gain and an effective damping contribution due to the “cavity” leakage.
In systems with null or weak leakage in which the off- diagonal contribution is negligible,

the real part of the diagonal coupling accounts for the coefficient rates of the amplifica-

!The experiment described here is based, and in many parts is similar to the published article [36]
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tion (gain) () and radiation loss (cy) through gl(i)R = Re {g,(jg)} = ap — Y- On the
other hand, the quartic coupling g,(jl‘),@ksm is related to a modulation of the nonlinear >
susceptibility with a random spatial profile [1, 5, 2, 7, 32, 6].

The spatial disorder generally makes the explicit calculation of the quadratic and quar-
tic couplings in equation (5.1.2) rather difficult. In fact, in refs. [1, 5, 2, 7, 32, 6] these
couplings have been considered as quenched Gaussian variables, with probability distri-
butions independent of the mode combinations {ki, ko} and {ky, ko, k3, ks}', respectively.
In a mean-field approach, all modes are coupled and the frequency-matching restrictions
are relaxed. In addition, by considering the total optical intensity, I = >, cx|ax|?, as a
constant, with time-independent prefactors ¢y, the real part " of the functional (5.1.2)
becomes analogue to the Hamiltonian of the p-spin model with spherical constraint [20],
which is given by a sum of quadratic (p = 2) and quartic (p = 4) terms with Gaussian-
distributed couplings. It is important to notice that in the photonic-to-magnetic analogy
the excitation (pump) energy plays the role of the inverse temperature. An equilibrium
statistical physics approach, with the replica trick applied to H® in terms of the slow-
amplitude modes ay, then led |7, 6] to a phase diagram for the pumping rate as a function
of the disorder strength. Photonic paramagnetic, ferromagnetic, phase-locking-wave and
RSB spin-glass phases have been characterized |7, 6], depending on the trend of the dis-
order to hamper the synchronous oscillation of the modes. A photonic order parameter
(maz, analogue to the Parisi parameter in SG theory, was suitably defined (see below), so
that ¢ = 0 in the prelasing replica-symmetric paramagnetic regime and ¢y,4, # 0 in the
random lasing RSB glassy phase. As a consequence, the RL threshold became identified
with the RSB phase transition to the photonic SG phase.

We now turn to the discussion on the statistical regimes of intensity fluctuations of
RL systems in disordered nonlinear media. Noteworthy, the set of Langevin equations,
given by equation (5.1.1), also provides the underlying theoretical basis for such analysis.

Indeed, by writing I = cx|ax|?, manipulation of equation (5.1.1) leads to

1 di Z 2 . 17 @1 4 . . .
Ck dt2 = —2Re gél)k?aklak? T 5 gl(ﬂl)k2k3k4 + g’(fl)/€4k3k2] oy Aoy Aoz A, + ak’szz
2 /
{ki}

(5.1.3)

The restricted sum in the quartic coupling generally involves three classes of mode
combinations [2, 75| wy, = wk, and wy, = wg,, Wk, = Wk, and wg, = wk,, and the
remaining possibilities satisfying the frequency-matching condition, which have been usu-
ally disregarded [2, 75|. We consider the diagonal contribution in the quadratic cou-
pling to dominate over the off-diagonal part. By expressing the optical noise as the sum
of additive and multiplicative statistically independent stochastic processes [84] so that
Fi (t) = FIEO) (t)+ag (t) F,gl) (t), and considering slow-amplitude modes ay, (t) (if compared
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to the rapidly evolving phase dynamics), we obtain the Fokker-Planck equation [84, 80|
for the probability density function (PDF) of emission intensity
or 0

—— [(=d Iy — b I} +2QI}) P] +2Q

— o 2 P) (5.1.4)
ot 0l R o

ar U

where the parameter () controls the magnitude of the multiplicative fluctuations
through <F,§”R (t) FSOR (t’)> = 2Q0,,0 (t — 1), by = 2921 /¢y, and

I
4)R 4)R 4R 4R n
n#k n

We notice that, by averaging out the rapidly evolving phases to obtain Eq. (5.1.4),
the so-called free running approximation has been employed in which the dynamics of the
phases and amplitudes are considered as eventually decoupled [2]. In this context, some
features of the original model are removed, such as the phase-locking regime. Also, in a
statistical physics approach we observe that integrating out irrelevant degrees of freedom
should be properly done in the partition function, rather than in the Hamiltonian level,
though the technical difficulties involved are rather challenging. The steady-state solution
of equation (5.1.4) is [84, 80|

,(M)
P(Ik> = Ak]k_'uke 2Q s (515)

with I, > 0, A as the normalization constant, and the power-law exponent p, =
1+ di/2Q. At this point we remark that, as the statistics of the sum of N independent
random variables x with power-law distribution P (z) = Az™*, 1 < pu < 3, is described
[63] by the a-stable Lévy distribution with o = p — 1, the PDF (5.1.5) thus identifies
an exponentially truncated Lévy-like distribution of intensities for 1 < pu; < 3 and 0 <
a < 2. In this case, strong fluctuations in I, emerge and the ultraslow convergence to
the a = 2 Gaussian behavior due to the presence of the exponential factor in equation
(5.1.5) is achieved only for a remarkably large N. In contrast, for ux < 1 or p > 3 the
central limit theorem assures fast convergence to the o = 2 Gaussian statistics of weakly-
fluctuating intensities. Therefore, for a given disorder strength, an increasing pumping
rate (or excitation pulse energy) raises [80] the value of u; and the statistics of emission
intensities shifts progressively from an initial Gaussian (u; < 1, @ = 2), to the Lévy-like
(1 < pp <3, a=pp—1), and to a subsequent Gaussian (> 3, a = 2) regime.

The correspondence with the RSB glassy transition relies foremost in the recent pro-
posals [57, 99| that assign the Lévy index « as an identifier of the RL threshold, which,
as discussed, can be also determined by the order parameter ¢,,,,. Indeed, the above
description matches accordingly with recent results on RL systems which report on

[100, 98, 99, 97]: (i) a prelasing weakly-fluctuating Gaussian regime at low pump en-
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ergies, corresponding in refs. 1, 5, 2, 7, 32, 6] to the photonic paramagnetic (or even the
phase-locking-wave) phase with ¢4, = 0; followed by (ii) an abrupt change in o at the
RL threshold to the strongly-fluctuating Lévy-like regime at intermediate pump energies,
signaled in [1, 5, 2, 7, 32, 6] by the RSB transition to the glassy regime with ¢4, # 0;
and (iii) a subsequent crossover at high pump energies to the so-called self-averaged RL
regime, with ¢,.. # 0 and Gaussian statistics of emitted intensities. Noticeably, this
latter Gaussian regime taking place deep in the glassy RL phase has not been anticipated
in refs. [1, 5, 2, 7, 32, 6], since the scope of these works did not include the analysis of

the statistics of intensity fluctuations.

5.2  Experimental Results and Discussion

The experimental investigation on the correspondence between the Lévy fluctuation regime
and the replica symmetry breaking transition to the spin-glass phase is possible through
the measurements in actual RLs systems of the order parameter ¢,,q., whose behavior
identifies the boundary between the prelasing paramagnetic and RLs glassy phases, and
the Lévy index «, that defines the statistics of the intensity fluctuations as being Gaussian
or Lévy type.

The RLs system investigated in this work consisted of crystalline powders of Nd3*
doped YBO3(Nd:YBO) (For more details see appendix 1). A feature of our system is that
dispersers nanoparticles also serve as the gain medium. An advantage of working with
this solid-state material is assumed, because replica symmetry theory works on systems
in identical experimental conditions. In the present case the positions of the scatterers
do not change from shot to shot, thus allowing fairly identical experimental conditions to
hold over subsequent excitation pulses.

Figure 5.2.1(a) displays the spectral emission of the Nd:YBO system for excitation
pulse energies below (1.2 m.J) and above (1.75m.J). The emission intensity and bandwidth
narrowing are shown in Fig. 5.2.1(b). With basis on the input-output measurement the
estimated RL threshold is 1.36 mJ, which closely agrees with the value 1.4 m.J determined
from the full width half maximum (FWHM) of the emitted spectrum. The error bar in
the energy measurements is less than 7%.

The characterization of the photonic RSB glassy transition requires the definition of an
overlap parameter ¢, analogue to the Parisi overlap parameter in SG theory (Eq. 3.1.33).
Two point correlations can be calculated either among mode amplitudes a, phases or
intensities I o< |ag|?, though the latter are the only ones accessible experimentally. In
particular, by measuring fluctuations in the spectral intensity averaged over N, system

replicas. Recalling Chapter 3, we know that the order parameter can be calculated as:
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Figure 5.2.1: Intensity spectra and the RL threshold. (a) Spectral emission of the Nd:YBO system
for two excitation pulse energies: below (green, 1.2mJ and above (magneta, 1.75mJ) the RL threshold.
(b) Emitted intensity (green) and bandwidth narrowing (FWHM, magenta) versus the excitation pulse
energy. The intensity measure of the RL threshold implies 1.36 mJ, in close agreement with the FWHM
value (1.4mJ).
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where a and 8 = 1,2, ..., Ny, with N, = 200, denote the replica labels. The average
intensity at the wavelength I (k) and the Intensity fluctuation given by A, (k) Are de-

(5.2.1)

fined by equations (3.1.31) and (3.1.32) respectively. Each excitation pulse (shot) of the
pumping laser defines a replica, i.e. a copy of the RL system under identical experimental
conditions. The PDF P (¢) describes the distribution of replica overlaps ¢,gs, signaling a
photonic uncorrelated paramagnetic or a SG phase if it peaks exclusively at ¢ = 0 (no
RSB) or also at values |g| # 0 (RSB), respectively.

In Figs. 5.2.2a-f the pulse-to-pulse intensity fluctuations in the Nd:YBO system can
be appreciated, as it evolves from the prelasing (Fig. 5.2.2a) to the RL regime (Figs.
5.2.2b-f). The corresponding plots of the PDFs P (q), shown in Figs. 5.2.2g-1, reveal a
rich phase structure, emerging from the photonic paramagnetic (Fig. 5.2.2g) to the glassy
RL behavior above the threshold. For excitation pulse energies below and just above the
threshold (Figs. 5.2.2g-i) the photonic behavior is similar to that described in [32].

For excitation pulse energies well above the RL threshold, the PDF P (q) starts to
broaden (Figs. 5.2.2j-1). This is the first report of such behavior, which is related to the
deep entry into the Gaussian statistical regime of intensity emission, as discussed below.

The value |g| = Gmar at which the distribution P (g) assumes the maximum value
defines the equivalent to the Parisi order parameter in SG theory. Its behavior for the
Nd:YBO system is displayed in Fig. 5.2.3a, indicating the low-energy prelasing param-
agnetic (gmae =~ 0), saturated RL SG (¢mne: = 1), and high-energy unsaturated RL SG
(Gmaz =~ 0.9) regimes. Differently from the results reported in [32], however, the behavior
of ¢mar does not remain nearly constant at the saturation value ¢,,., ~ 1, but starts to
roll over at high energies, consistently with Fig. 5.2.2. Indeed, as seen in Figs. 5.2.2e-f,
well above the threshold the fluctuations of intensities decline considerably, leading to a
decrease in the deviations from the pulse-to-pulse average. Correlations among intensity
fluctuations also reduce, causing ¢,,.. to decay.

The above results on the photonic behavior of the Nd:YBO system find an interrelated
counterpart in the statistical properties of intensity fluctuations. By analyzing the data
in Figs. 5.2.2a-f, the PDFs of intensities were identified with the family of a-stable
Lévy distributions, with Lévy index a € (0,2] and boundary value a = 2 corresponding
to the Gaussian behavior, according to the preceding discussion in the chapter 4. By
comparing Figs.5.2.3a and 5.2.3b, it is a remarkable fact that, after shifting from the
prelasing Gaussian (o = 2) regime corresponds to the narrow critical region of the RSB
transition from the photonic paramagnetic (¢mnqe: = 0) to the satured SG RL (¢mnaz =~ 1)
behaivor. Actually, due to the sharp bandwidth narrowing around the threshold, the

variation in « near the transition is also very acute. Moreover, as the excitation pulse
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Figure 5.2.2: Pulse-to pulse intensity fluctuations and corresponding overlap distributions
signalizing the photonic RSB glassy transition. (a)-(f) Intensity spectra showing the fluctuations
from shot to shot of the Nd:YBO system for excitation pulse energies (a) 1.2 m.J (below the RL threshold),
(b) 1.36mJ, (c) 1.41mdJ (both around the threshold), (d) 1.6mJ, (e) 2.20mJ and (f) 2.8 mJ (above
the threshold). (g)-(1) PDF distributions of the overlap parameter corresponding to the data in Figs.
5.2.2a-f. Fluctuations are stronger (Lévy-type) close to the threshold, in the critical region of the RSB
transition from the prelasing paramagnetic to the saturated RL glassy behavior. As the excitation pulse
energy increases well above the threshold, fluctuations decline considerably (Gaussian regime) and the
SG behavior tends to be suppressed.
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Figure 5.2.3: Lévy statistics of intensity emission and the RSB glassy transition. Dependence
on the excitation pulse energy of (a) the Parisi overlap order parameter ¢,,., and (b) the Lévy index
calculated from the data in Fig.5.2.2 of the Nd:YBO system. The regime of Lévy statistics (0 < o < 2)
coincides with the critical region of the RSB transition to the RL glassy behavior. The value = 2
identifies the Gaussian regimes below and above the transition. Notice that well above the threshold the
SG behavior tends to be suppressed as ¢mq. decreases.



79

-

) A

b
0.0 T ( )' T T T ¥
1.20 1.60 2.00 2.40 2.80

Excitation pulse energy (mJ)

T T

Figure 5.2.4: a-parameter dependent on the excitation energy. The figure shows three yellow
balls that indicate the values of the a-parameter dependent on the excitation energy, in the insert the
three frequency distributions corresponding to the yellow balls are shown.

energy increases further a subsequent a = 2 Gaussian RL regime sets in, with a trend
to suppress the photonic SG phase. Indeed, in this deep Gaussian regime the system
presents a considerable weakening of the intensity fluctuations, which also become less
correlated as indicated by the decrease in ¢4,

Overall, we remark that the experimental findings on the Nd:YBO system, displayed
in Figs. 5.2.2 and 5.2.3, corroborate the preceding theoretical discussion on the cor-
respondence between the photonic RSB glassy transition and the statistics of intensity
fluctuations in RLs.

From Figure 5.2.4 and 5.2.1b we can make a comparison with the traditional methods
of calculating the laser threshold. We can clearly see that the transition from the Gaussian
regime to a Lévy regime coincides with the threshold of the laser. This is in agreement
with the article, nevertheless we must be careful with the assertion of the authors of [99]
that propose to the a-parameter as a universal identifier of the of the threshold of the
random laser. In the article [44] they demonstrate that the manifestation of the Lévy
statistic depends on the concentration of the medium, that is, the mean free path of the
random laser system. On the other hand we have that the beginning of the transition
phase to spin glass, also coincides with the laser threshold, which leads us to think of the
g-parameter as an indicator of the laser threshold. At this point we will leave an open
question that we will answer in the following chapter: does the absence of a Lévy regime
imply absence of laser emission?

Finally, we have analyzed both theoretically and experimentally the physical origin
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of the complex correspondence between the Lévy flight statistics of intensity emission
and the photonic RSB glassy transition in RLs. The experimental demonstration from a
single set of spectral measurements on the Nd:YBO RL system indicated a remarkable
connection between the behaviors of the Lévy index and the equivalent of the Parisi order
parameter as a function of the excitation pulse energy. In particular, the Lévy statistical
regime of intensities sets in at the RL threshold concurrently with the RSB transition
from the photonic paramagnetic to SG behavior. Our results opens up new possibilities
to characterize other RLs such as random fiber lasers. Moreover, the statistical nature of
the emission provided by RLs can also have impact on their use as sources for speckle-free
laser imaging, which is one of the most promising RL applications that can benefit even
cancer research. Ultimately, these practical aspects are much strengthened by the recent
account [96] showing that the directionality degree of RLs raises to its peak value precisely

within the Lévy statistical regime.
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6 Experiment 4: Observation of photonic paramagnetic to spin-

glass transition in dye-colloidal RLs

A central concept in replica theory is that identical systems under identical conditions can
reach different states. This effect is known as a replica symmetry breaking and is revealed
by the form of the probability distribution function of an order parameter called Parisi
overlap. This was first demonstrated in the excellent work of Reference [32]. The random
laser system used in this reference mentioned was a amorphous solid state, this system
ensures the required replica condition. In this same work [32] was studied the behavior of
P (q) generated by an analysis of a liquid random laser system, where the dispersers were
particles of titanium dioxide in solution of rhodamine B-ethylene glycol. There were no
obvious signs of RSB above the lasing threshold.

In the present work!, specially-designed amorphous TiO, nanoparticles were synthe-
sized by a sol-gel method. As a consequence, this modified colloidal RL presents a clear
replica-symmetrybreaking phase transition from the paramagnetic fluorescence to spin-
glass RL behavior, which has not been observed in the system with non-functionalized
TiO, particles. We remark that transition coincides with the RL excitation threshold,

providing evidence of its role as an identifier of RL emission and threshold.

6.1 Need to specially-designed TiO5 particles

As we mentioned above, the demonstration of a transition from the photonic paramagnetic
phase to a glassy phase of light was performed in solid state RLs, our attempts to display
RSB in colloidal RLs were unsuccessful. This was an intriguing negative result, because
RLs based in colloidal systems have been well studied before. Possibly, the demonstration
of RSB failed because the positions of the scatterers changed considerably during the
experiment, so that system replicas, a concept central to the theory, could not establish,
and /or the excitation energy was not large enough.

Colloidal dye-based RLs are highly efficient and have been used as a platform for

the demonstration of optical effects, such as the bichromatic emission due to monomers

!The experiment described here is based, and in many parts is similar to the published article 78]
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and dimers in rhodamines [10], multi-photon excitation [34|, and low spatial coherence
[81]. In spite of the promising characteristics of dye-based RLs, the dye photodegradation
enhanced due to the presence of scatterers is a drawback for basic investigations and
practical applications [15, 52]. The most used scatterers are TiOq particles in the rutile
phase, due to its high refractive index (~ 2.6 at 638 nm) which implies a large index
contrast with the dye solution. However, the energy bandgap of rutile is ~ 3.2 eV, which
allows, by exciting with visible light, two-photon excitation of electrons from the valence
to the conduction band. As a consequence, a photocatalytic process occurs, leading to
fast dye degradation [107]. Nevertheless, two important points neglected in most works
are the particle precipitation and the chemical bonding with the cuvette walls. A relevant
consequence is the impossibility of making long-time observations of RL properties that
require the prevalence of disorder configurations over a large number of laser shots, in
contrast with the RL behavior observed in solid-state samples with quenched disorder
[32, 36].

The system studied here consists of amorphous TiO, particles suspended in an ethanol
solution containing Rhodamine 6G. The particles were functionalized to minimize precip-
itation in the timescale of the experiments, and do not make chemical bonds with silica

at the cuvette walls.

6.2 Experimental Results and Discussion

The excitation source was the second harmonic at 532nm of a Nd-YAG laser operating
at 5Hz, a 7ns pulse width, with a beam area of 0.7mm? , an incidence angle of 30°
with respect to the normal to the surface, and an excitation pulse energy (EPE) up to
4.6 mJ, mounting a scheme that can be seen in Figure 2.4.2. The shot-to-shot intensity
fluctuations of the pump laser were less than 5% and, since it was always operating well
above threshold, they caused no impact on the statistics of the RL intensity fluctuations,
as shown in [32]. For each excitation pulse, a single spectrum was recorded.

A dye-based colloid with commercial T;O, particles, acquired from Dupont Inc., dis-
playing the crystalline structure of rutile (the average diameter of 250 nm), was initially
studied. These particles present fast precipitation and attach to the cuvette walls. As
reported below, such features prevent both the existence of stable RL properties and the
RSB phase transition to the glassy behavior.

To compensate for these deleterious effects, amorphous TiOs particles with an average
diameter of 168 nm were synthesized by the sol-gel method, as described in [94].

The optimized samples consisted of an ethanol solution of Rhodamine 6G and TiO,

particles at concentrations of 107*M and 6.7 x 10 ¢m3

, respectively, placed in a quartz
cuvette with the dimensions 10 mm x 10 mm x 50 mm. Using the Mie scattering theory, we

estimate the mean free path of photons in the system to be ~ 57um, consistent with the
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Figure 6.2.1: Evaluation of dye photodegradation and precipitation of T;O2 particles in both nonfunc-
tionalized (rutile T;O2) and functionalized (amorphous T;02) samples. RL peak intensity as a function
of the number of shots, with measurements performed at 5 Hz and EPE 4.00 m.J (above threshold). The
inset shows, from right to left, solutions with rutile and amorphous T;0 particles, and an empty flask.

results described in [54] for 250 nm size T;04 particles. The x-ray diffraction pattern and
the measurement of the size distribution indicated that 100% of the in-house synthesized
T;05 particles are actually amorphous.

The functionalized amorphous T;05 particles do not precipitate in the ethanol solu-
tion during a time equivalent to hundreds of thousands of shots. This occurs because
they have hydroxyl groups on their surfaces that make hydrogen bonds with the ethanol
molecules. Also, due to this hydrogen bonding, the T;O5 particles do not make chemical
bonds with silica at the cuvette walls. A visual comparison of samples with commercial
nonfunctionalized and in-house synthesized T;0O, particles at the same concentration can
be appreciated in the inset of Fig. 6.2.1. The color of the solutions looks different be-
cause, after some time, only the commercial rutile particles attach to the cuvette walls,
preventing light transmission. Moreover, precipitation of the commercial T;O5 particles
is clearly noticed by the accumulation of powder at the bottom of the cuvette. Dye pho-
todegradation analysis was inferred in both nonfunctionalized and functionalized samples
by measuring the RL peak intensity with EPE 4.00 mJ (above the threshold), as a func-
tion of the number of shots, as also shown in Fig. 6.2.1. Unlike the dye solution with
commercial T;0,, which displays considerable decay of the intensity already in the first
100 shots, the functionalized solution with in-house synthesized T;05 does not present
any relevant indication of photodegradation for at least ~ 10° shots, being therefore useful

for RL studies and applications that require long exposure to the incident optical pulses.
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Figure 6.2.2: RL characterization of the functionalized sample with amorphous T;O particles. (a)
Emitted spectra for EPE of 0.015, 0.12, and 4.60 mJ, respectively, smaller, around, and larger than the
RL threshold of 0.11 mJ. (b) FWHM and peak intensity of the emitted spectra as a function of the EPE.
The solid line is a sigmoidal fit to the FWHM data.

6.2.1 Characterization of RL

The characterization of the RL emission of the functionalized solution is shown in Fig.
6.2.2. The emitted spectra for EPE smaller (0.015 mJ), around (0.12 mJ), and larger
(4.60 mJ) than the RL threshold of 0.11 mJ (see below) are displayed in Fig. 6.2.2(a),
from which the bandwidth narrowing and redshift of the spectra are evident. Figure
6.2.2(b) presents the bandwidth narrowing, characterized by the full width at half maxi-
mum (FWHM), and the peak intensity as a function of the EPE. The indicated threshold
separates the fluorescent and RL regimes. The smooth RL spectrum (without spikes) and
the spectral narrowing are typical of dye-based RLs, and it has been clearly shown that
it is not due to amplified spontaneous emission|56, 54, 23|

The RL threshold can be determined either from the input-output curve or from the
EPE corresponding to the median value of FWHM. As shown below, the threshold value
for the present RL system is determined by the FWHM narrowing median. The solid line
in Fig. 6.2.2(b) shows a sigmoidal fit to the FWHM data for better determination of the
EPE threshold, inferred to be at 0.11mJ. This value is in close agreement with the one
determined by the input-output curve, 0.18 mJ.
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Figure 6.2.3: (a)—(1) Overlap distribution for Ny = 1000 shots in the functionalized system. (m)—(p) Pulse-

to-pulse fluctuations for 20 emitted spectra of the functionalized system. EPE values are as indicated.
(The RL threshold is 0.11m.J.)

6.2.2 RSB with specially designed T10Os particles

As an interdisciplinary application and motivation for this article, we now demonstrate
that the photonic analogue of the spin-glass behavior in a colloidal RL is actually feasible,
as reported in [32, 36] for solid-state RLs, but not previously observed with conventional
TiO, particles and dye [32]. The characterization of the transition from the fluorescent
paramagnetic to the RL glassy behavior can be made by evaluating the two-point correla-
tion function that measures pulse-to-pulse fluctuations in the spectral intensity averaged
over Ny laser shots at each EPE, using the equation (5.2.1) defined in the previous chapter.

The concept of replica is central to the theory. In the present context, each laser shot
gives rise to a replica, i.e., a copy of the RL system under fairly identical experimental
conditions, if the disorder configuration set by the random positions of the scatterer
particles does not change sensitively during the N laser shots. Thus, a careful analysis
about the establishment or not of system replicas during the experiment is in order.
We start with the nonfunctionalized sample containing commercial rutile particles. As
discussed above, the fast precipitation of these particles prevents a stable RL emission.
Therefore, no RSB glassy transition can be established in the nonfunctionalized dye-based
system with commercial rutile TiO2 particles, a conclusion similarly reached in [32].

On the other hand, the existence of hydrogen bonds between amorphous TiO, particles
and ethanol molecules presents non appreciable precipitation over hundreds of thousands

of shots, so that L, < L,. This fact can be also read in terms of a much larger effective
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Figure 6.2.4: Agreement between photonic paramagnetic to spin-glass phase transition and the RL thresh-
old of 0.11mJ. Parisi overlap parameter at which P (¢) is maximum and bandwidth dependence as a
function of the EPE (in log scale) for Ny = 100 and Ny = 1000 shots in the functionalized system.

viscosity, which also reduces Lp considerably, yielding Ly < Ls. Thus, the conditions
for the existence of replicas are set in the functionalized system, and we analyze below its
behavior as a function of the EPE.

Figures 6.2.3(a)-6.2.3(1) display the PDF P (q) of the functionalized system for N, =
1000 shots at the EPE values indicated. In addition, the pulse-to-pulse intensity fluctua-
tions over 20 spectra are presented in Figs. 6.2.3(m)—6.2.3(p). We recall that the pulse-to-
pulse fluctuations are not correlated with the excitation source fluctuations, as described
in [109]. We also remind that in the RL framework the EPE plays the role of the inverse
temperature in spin-glass theory. The parameter ¢,,,, of the functionalized system is pre-
sented in Fig. 6.2.4 for Ny = 100 and N; = 1000 shots, together with the FWHM of the
emission bandwidth, as a function of the EPE. Although the FWHM changes smoothly as
the EPE increases, a RSB phase transition from the paramagnetic fluorescent to the spin-
glass RL phase is clearly observed for both Ny by the abrupt change of ¢, around the
EPE value of 0.11mJ, coinciding with the EPE threshold determined from the FWHM
variation.

Looking at the behavior of ¢,,4., the conclusion is that for values of EPE smaller than
the RL threshold the system is still in the photonic paramagnetic regime (g, = 0),
with the modes (analogue to the spins) uncorrelated. On the other hand, just above
the threshold, while the spectral narrowing is taking place, the system is already in the
photonic RSB spin-glass regime (g ~ 1). Interestingly, by investigating the RSB
behavior in a solid-state Nd** based RL, we have also identified [36] a broadening of the
P (q) distribution similar to that found in Figs. 6.2.3(k)-6.2.3(1).

In conclusion, in this chapter, we exploited specially synthesized amorphous TiO4 par-
ticles as random scatterers for RL characterization and application. Owing to hydroxyl

groups on the TiO, surface, these particles do not precipitate in ethanol solution and do
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not make chemical bonds at the cuvette walls, providing a nonphotodegraded and efficient
RL system. We used this functionalized system as a platform for the first demonstration
of RSB in a colloidal-based RL. A phase transition from the paramagnetic fluorescent
to the spin glass RL phase, evaluated by the Parisi parameter at which the overlap dis-
tribution is maximum, was observed, suggesting this parameter as an indicator of RL
threshold. Finally, the herein presented results also demonstrate that the intensity fluc-
tuation behavior and the RSB glassy transition of specially designed colloidal-based RLs

can be similar to the ones previously reported for solid-state RLs.
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7 General conclusions

The first thing I must say is that random lasers are an important research subject over
the lasts 20 years and novel investigations highlight their importance in the area of optics.
Throughout this thesis we review different works. After a general introduction in Chapter
1, Chapter 2 describes conventional and random lasers, and how the speckle phenomenon
was used to determine the number of modes in a random laser. This fact has major
implications because it was shown that a random laser is multimodal even in the absence
of pronounced spikes or with a very fine spectrum. In this same chapter and in the
context of the applications, a bichromatic random laser that has thermal sensitivity was
reported, showing that random lasers are systems with applicability in many areas. Deep
research into random lasers directed the attention of some research groups to analyzing
laser emission fluctuations. Those groups concluded that there is a transition between
statistical regime, from a Gaussian regime to a Lévy regime at the threshold of the random
laser, and for energies above the threshold the fluctuations return to the Gaussian type.
These conclusions led to the proposal that the Lévy parameter could be used as a universal
indicator of the threshold of the random laser. However, as shown in this thesis, Lévy
regimen can sometimes not be present in the particular random laser system studied. On
the other hand, investigations was dedicated to understand random lasers as a photonic
platform to observe phase transition similar to spin glass. In the reported works and in
this thesis, it was also conclusive that the phase change coincides with the threshold of
the random laser. In chapters 3 and 4 we give a brief theoretical description of Lévy
fluctuations and spin glass phenomena and theirs relation to random lasers. In chapter
5 we described a work where we unified these two areas, showing that the nature of
these two phenomena have a common origin. In this same work, the coincidence between
the phase change and the laser threshold results cearly demonstrated the understanding
the Parisi Overlap parameter as an indicator of the laser threshold. In Chapter 6 a
work was presented that I consider revolutionary because it was possible to observe the
paramagnetic photonic transition to spin glass in colloidal RL. Here the fundamental
condition of the replicate method is "Bypassed". This fact is drawing a lot of attention

from research groups because of the physical implications of applying the replicate method
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to a dynamic system. What are the limits to be able to occupy system of replicas in a
dynamic system 7. This question is valid since in the first investigations with this type
of system, namely a coloidal based RL, the authors were not able to observe the phase
change. Finally, it is necessary to know the robustness of the parameter of order of Parisi
in terms of universal indicator of the laser threshold, and to consider o -parameter as an
indicator of the weak or strong regime of the random laser. These aspects deserve further

studies.
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Appendix

Appendix 1: Neodymium crystalline powder, preparation and characterization

The NdAB powder was synthesized by the polymeric precursor method using aluminum
nitrate nonahydrate (Al(NOj3)3.9H20), neodymium hexahydrate (Nd(NO3.6H20), boric
acid (H3BO3), citric acid (C507;Hg) as a complexing agent, and d-sorbitol (C¢OgH14)
as polymerizing agent. The synthesis was achieved by dissolving the aluminum and
neodymium nitrates in an aqueous solution of citric acid at room temperature. This
solution was added to another solution of d-sorbitol and boric acid previously dissolved
in water. The obtained solution was annealed at 150 °C in an oven to prompt the poly-
merization process and to form a dried resin. The molar ratio of citric acid to metals plus
boron was 3:1. The citric acid/d-sorbitol mass ratio was set to 3:2. The dried resin was
calcinated at 400 °C during 24 h, heat-treated at 700 °C during 24 h and finally annealed
at 1150 °C for 5 min under richoxygen atmosphere. The powder was characterized using
a JEOL JEM 2010 high-resolution transmission electron microscope (HRTEM) operating
at 200 keV.

Images of the particles are presented in Fig. 7.0.1(a) and (b) and the particles’ size
histogram, shown in Fig. 7.0.1(c), was obtained by measuring 110 particles with most
particles having dimension of 55 nm. The crystalline NdA13(BO3)4 particles present well
defined structural planes, and Fig. 1(b) shows that the powder is composed of non-

spherical particles of irregular forms.
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Figure 7.0.1: (a) TEM, (b) HRTEM images and (c) particle size histogram of the NdAl3(BO3)4 powder.



101

Appendix 2: Optical parametric oscillators

Optical parametric oscillators (OPOs) are convenient sources of coherent light that suit
numerous scientific applications, including various types of spectroscopy, multiphoton
excitation, and light detection and ranging.

In contrast to a laser, which relies on stimulated emission from a gain medium, OPOs
use a nonlinear crystal to convert a pump beam into an idler beam and a signal beam. By
placing the nonlinear crystal in a cavity, an oscillator is formed and operation commences
when the pump power is above a certain threshold value. Figure 7.0.2(a) show a Opolette
532 tunelable laser system used in our experiments. Figure 7.0.2(b) show a scheme of a
OPO system, in a suitable nonlinear crystal, a high frequency and high intensity pump
beam \,,m, amplifies a lower frequency, lower intensity beam (the signal beam Agignar);
in addition a third beam (the idler beam \;g4.,.) is generated.

A unique feature of OPOs is that the output wavelengths of the idler and signal beams
can be tuned by changing the phase-matching properties of the nonlinear crystal. This is
often accomplished by altering the temperature or orientation of the crystal, or by using
a crystal that contains a grating.

An important benefit of OPOs is that their wide wavelength tunability allows them to
produce wavelengths that are inaccessible to conventional lasers. Emission can typically be

tuned over hundreds of nanometres, giving researchers selectable access to all wavelengths

spanning from the ultraviolet to the near-infrared — and all from a single source.
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Figure 7.0.2: (a) The Opolette 532 tunable laser system utilizes patented optical parametric oscillator
(OPO) technology to generate wavelengths over a broad range in the NIR. (b) An scheme of a typical
optical parametric oscillator is shown, when a nonlinear crystal is placed inside a optics cavity an optical
parametric oscillator is established.
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