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Abstract
Even the simplest outbreaks might not be easily predictable. Fortunately, deterministic
and stochastic models, systems differential equations and computational simulations have
proved to be useful to a better understanding of the mechanics that leads to an epidemic
outbreak. Whilst such systems are regularly studied from a modelling viewpoint using
stochastic simulation algorithms, numerous potential analytical tools can be inherited
from statistical and quantum physics, replacing randomness due to quantum fluctuations
with low copy number stochasticity. Here, the Fock space representation, used in quantum
mechanics, is combined with the symbolic algebra of creation and annihilation operators
to consider explicit solutions for the master equations describing epidemics represented
via the SIR model (Susceptible-Infected-Recovered), originally developed via Kermack
and McKendrick’s theory. This is illustrated with an exact solution for a short size of
population, including a consideration of very short time scales for the next infection, which
emphasises when stiffness is present even for small copy numbers. Furthermore, we present
a general matrix representation for the SIR model with an arbitrary number of individuals
following diagonalization. This leads to the solution of this complex stochastic problem,
including an explicit way to express the mean time of epidemic and basic reproduction
number depending on the size of population and parameters of infection and recovery.
Specifically, the project objective to apply use of the same tools in the approach of system
governed by law of mass action, as previously developed for the Michaelis-Menten enzyme
kinetics model [Santos et. al. Phys Rev. E 92, 062714 (2015)]. For this, a flexible symbolic
Maple code is provided, demonstrating the prospective advantages of this framework
compared to Gillespie stochastic simulation algorithms.

Key-words: Fock space. Epidemic models. Exact solutions.



Resumo
Mesmo os surtos mais simples podem não ser facilmente previsíveis. Felizmente, modelos
determinísticos e estocásticos, equações diferenciais de sistemas e simulações computa-
cionais provaram ser úteis para uma melhor compreensão da mecânica que leva a um surto
epidêmico. Enquanto tais sistemas são regularmente estudados a partir de um ponto de
vista de modelagem usando algoritmos de simulação estocástica, inúmeras ferramentas
analíticas potenciais podem ser herdadas da física estatística e quântica, substituindo
aleatoriedade devido a flutuações quânticas com baixa estocástica de número de cópias.
Aqui, a representação do espaço de Fock, usada na mecânica quântica, é combinada com
a álgebra simbólica dos operadores de criação e aniquilação para considerar soluções
explícitas para as equações mestra que descrevem epidemias representadas via modelo SIR
(Suscetível-Infectado-Recuperado), originalmente desenvolvido pela teoria de Kermack
e McKendrick. Isto é ilustrado com uma solução exata para um tamanho pequeno de
população, considerando escalas de tempo muito curtas para a próxima infecção, que
enfatiza quando a rigidez está presente mesmo para números de cópias pequenos. Além
disso, apresentamos uma representação matricial geral para o modelo SIR com um número
arbitrário de indivíduos após diagonalização. Isto nos leva à solução deste problema es-
tocástico complexo, além de ter uma maneira explícita de expressar o tempo médio de
epidemia e o número básico de reprodução, ambos dependendo do tamanho da população
e parâmetros de infecção e recuperação. Especificamente, o objetivo é utilizar as mesmas
ferramentas na abordagem de um sistema regido por lei de ação das massas, como anterior-
mente desenvolvido para o modelo de cinética enzimática de Michaelis-Menten [Santos et.
Al PRE 2015]. Para isso, é fornecido um código Maple simbólico flexível, demonstrando as
vantagens potenciais desta estrutura comparados aos algoritmos de simulação estocástica
de Gillespie.

Palavras-chaves: Espaços de Fock. Modelos epidêmicos. Soluções exatas.
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1 INTRODUCTION

The SIR model (Susceptible-Infected-Recovered) inaugurated the theory of epidemi-
ology (Kermack and Mc Kendrick in the 1920s ) (KERMACK; MCKENDRICK, 1927),
proposed to explain the dynamics of infected patients observed in epidemics such as the
plague and cholera. This type of model is based on our intuitive understanding of how an
epidemic occurs in the real world. In this system, we have three categories of individuals:
those who are susceptible to disease (S), those who are infected and can spread the disease
to susceptible (I), and those who have recovered from previous infection and can no longer
spread or catch the disease (R). Differential equations are used to model the dynamics
of each of these subpopulations through the course of an epidemic. Disease transmission
occurs by the stochastic infection of a susceptible by a neighboring infective, and spread
takes place when infected individuals mix among susceptible (CHEN BERNARD MOULIN,
2015). In fact, an epidemic spread depends of a contact between susceptible and infected
individuals, i.e., satisfying the mass action principle of transmission for directly transmitted
viral and bacterial infections (ANDERSON, 1991). From this, all the theory used made
possible the construction of the mathematical model from differential equations to express
its dynamics and further the behavior of the population starting an infection. In both of
cases, the approach requires several works on statistics tools and differential equations in
order to estimate the minimum understanding of the dynamics. Unfortunately, due to all
inherent difficulty in terms of algebra computation of nonlinear differential equations, the
analytic solutions of the system of differential equation cannot be found by the methods
used until now, even for the deterministic model. Very recently, methods adapted from
quantum mechanics have been used to improve the approach of the epidemic dynamics
(SANTOS; GADÊLHA; GAFFNEY, 2015).

In this dissertation, we will introduce a new approach to treat epidemic stochastic
models using tools inherited from quantum physics that allow us to express an analytical
solution for the stochastic SIR model. Furthermore, this technique can be used to express
the same statistical results presented by Bailey (BAILEY et al., 1975). All this is now
possible due to the quantum operators expressed in the Fock-space and linear algebra
results implemented in a Maple software code. The same technique was implemented in
the modeling of enzymes interaction and was successful in finding analytical solutions for
Michaelis-Menten Enzyme Kinectics (SANTOS; GADÊLHA; GAFFNEY, 2015).

Currently, the Zika-virus has taking a big dimension of the Brazilian territory and
spreading to another 46 countries. The same virus is suspected of causing Gillain-Barré
syndrome in adults and microcephaly in newborns. Since May 2015, Brasil has been hit
by the disease, where we have at least 148905 confirmed cases of Zika-virus, 12612 of this
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cases are pregnant. Furthermore, in the State of Pernambuco, has a warning suspect of
1968 new cases of microcephaly whose 359 was confirmed, according to World Health
Organization (August 4, 2015 report). Such circumstances give us a motivation to improve
our work made in this thesis and adopt some others suitable techniques to make possible
a new stochastic epidemic model characterizing this viral behavior via Master equations.

This work is written as follows: We will start our construction of modeling by Petri
Nets in the section 1.1 and apply its results to epidemic models either in the deterministic
and stochastic versions, in section 2. Important techniques can be shown from (BAILEY
et al., 1975), as the control of the percentage of infections and removals according to the
intensity of an epidemic in the deterministic model, the total size of epidemic in terms of
the rate of infection and the parameter estimation, for the stochastic model. In sections
3 and 4 we will introduce all the tools necessary to search for analytical solution of a
general stochastic model from the expression of the quantum operators in the Fock space
and show how this techniques can be applied to the SIR. In the same section, we have
a didactic example for a small number of individuals and the general expression for the
analytic solution in terms of the eigenvalues of the Hamilton operator expressing the
dynamics in question. Furthermore, we have the comparison between the numeric Fock
space approach and the Gillespie stochastic simulation, for different values of the rates
of infection. All the complete discussion can be summarized in the section 5. For future
work, we intend to adapt these techniques for study of arbovirus models, as shown is the
section 5.1. All the computational tools was made in a Maple code and is presented in the
Appendix. Beforehand, we can conclude that the new approach of SIR model enables all
the statistical work by Kermack and McKendrick to be considered in a simpler way. A
subtle difference between this work and (SANTOS; GADÊLHA; GAFFNEY, 2015) is that
this new treatment of SIR model in the Fock-space make it possible to find a direct or a
recursive formula to the eigenvalues of the Hamiltonian matrix, which could not be found
in the work of the enzyme kinetics treatment. Furthermore, the Fock-space method allows
as to compute the stochastic basic reproduction number (R0) and the mean time of the
epidemic as well.

1.1 PETRI NETS
In order to introduce the population dynamics for deterministic models we will

use a very important tool commonly adopted, called Petri Nets. Petri Net are visual
tools used to symbolic representation that help us to simplify the understanding about
the dynamic of modeling. It is often used in Chemistry (GOSS; PECCOUD, 1998) and
Engineering (GIRAULT; VALK, 2013). Once applied to population models, in Biology, the
approach becomes more clear in sense of obtain the deterministic and stochastic differential
equations of the model in question. In general, are diagrams with figures and arrows that
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helps to model some dynamics behavior from visual tools. We have some examples bellow:

Figure 1: Petri Net model used to show the process of dissociation of Sodium Chloride by
electrolysis.

Figure 2: Petri Net model applied in the process of infection and recovery of some species
in Biology. This is called SIR model (Susceptible, Infected and Recovered).

Figure 3: Simplified model of some logistics process.

In general, we will have something like the figure bellow, i.e., we have a set of things as
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input that, over a set of actions, becomes a set of other things as output. This set of things
will be called species, while the set of this actions will be called transitions.

Formally, a Petri Net is a set of species S and a set of transitions T with a function

i : S × T → N

that will tell us how many copies of each species appears as input for each transition, and
a function

o : S × T → N

that will count how many times they appears as output.

A Stochastic Petri Net is a Petri Net with a fuction

r : T → (0,∞),

where r is a constant rate for each transition. Given a Stochastic Petri Net we are able
to obtain a Rate Equation and the Master Equation, that will be discussed in the next
sections.

1.2 STOCHASTIC PETRI NET
A Stochastic Petri Net is provided for a set of species and a set of transitions. At

first, consider just one transition and k species, x1, ..., xk, where each species xi appears mi

times as input and ni times as output. Suppose also that each transition has a Reaction
rate, r ∈ (0,∞). Thus, we define the Rate Equation by

dxi
dt

= r(ni −mi)xm1
1 · · ·x

mk
k . (1.2.1)

For an example with a transition only, consider the Petri net in the figure 1. We have a
dissociation of the sodium chloride (NaCl) in sodium (Na) and chloride (Cl) via electrolysis
with reaction rate r. The chemical reaction can be written as

NaCl → Na+ + Cl−

Considering the changing rate of sodium, chloride and sodium chloride as d[Na]
dt

,d[Cl]
dt

and
d[NaCl]

dt
, respectively, the rate equation for sodium is given by

d[Na]
dt

= r(1− 0)[Na]0[Cl]0[NaCl]1 = r[NaCl].

Analogously, we have the rate equations to chloride and sodium chloride as follows

d[Cl]
dt

= r(1− 0)[Na]0[Cl]0[NaCl]1 = r[NaCl]
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d[NaCl]
dt

= r(0− 1)[Na]0[Cl]0[NaCl]1 = −r[NaCl].

Thus, the rate equation of each species give us the following ODE’s system

d[Na]
dt

= r[NaCl]

d[Cl]
dt

= r[NaCl]

d[NaCl]
dt

= −r[NaCl]

Consider now a chemical model with two reactions. The first reaction gives carbon dioxide

Figure 4: Two chemical reactions represented by a Petri net.

(CO2) from Carbon (C) and oxygen (O2), while the second reaction between carbon
dioxide and calcium oxide (CaO) results in calcium carbonate (CaCO3). The chemical
model is represented by

C +O2 → CO2

CO2 + CaO → CaCO3.

Considering the first reaction of the figure 4 has rate α and the second has rate β and
each species are represented by [C],[O],[CO2],[CaO] and [CaCO3], we are able to obtain
the rate equation of each species by the following ODE’s sistem:

d[C]
dt

= −α[C][O]2

d[O]
dt

= −2α[C][O]2

d[CO2]
dt

= α[C][O]2 −β[CO2][CaO]

d[CaCO3]
dt

= β[CO2][CaO]
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For a biological example, we have a Petri net modeling the rising of a population due to its
natural resources and its decrising due to competition. Considering P as the population

variable, α and β the rate transitions of population resources and competition, respectively.
The diagram can be intepreted by

P
α−→ P + P

P + P
β−→ P.

Than its rate equation is written as

dP

dt
= αP − βP 2.

This is the Logistic Equation. In general, consider a system with k species. We will use
the notation

x = (x1, ..., xk)

to define the vector of species x1, x2, ..., xi,

m = (m1, ...,mk)

to define the vector of the quantity of elements of each species in input xi. Analogously,
we have

n = (n1, ..., nk).

Also, we will define
xm = xm1

1 · xm2
2 · ... · x

mk
k .

Thus, our system of rate equations with constant rate 0 < r <∞ can be written as

dx

dt
= r(n−m)xm

Furthermore, consider T the set of transitions and r(τ) the rate constant of the transition
τ ∈ T . If m(τ) and n(τ) are the input and output vectors of the transition τ then we can
write our rate equations of stochastic Petri Net in the form

dx

dt
=
∑
τ∈T

r(τ)(n(τ)−m(τ))xm(τ). (1.2.2)

This is the deterministic model for chemical reactions in general. The term for the reaction
is proportional to the rate constant r(τ). Each reaction goes between two complexes, so
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we can write it as m(τ) → n(τ). Among chemists the input m(τ) is called the reactant
complex, and the output is called the product complex. The difference ni(τ)−mi(τ) tells
us how many items of species i get created, minus how many get destroyed. So, it’s
the net amount of this species that gets produced by the reaction τ . The term for the
reaction is proportional to this τ . Finally, the law of mass action says that the rate of
a reaction is proportional to the product of the concentrations of the species that enter
as inputs. More precisely, if we have a reaction τ where the input is the complex m(τ),
then xm(τ) = x1

m1(τ) . . . xk
mk(τ). The law of mass action says the term for the reaction is

proportional to τ (BAEZ; FONG, 2013). The rate equation in (1.2.2) will be useful to
construct the deterministic SI and SIR epidemic models in the next sections. Further, the
Petri nets will be crucial to construct the Master equations of the stochastic SIR model
from the Hamiltonian built from creation and annihilation operators.
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2 EPIDEMIC MODELS

In this section we will treat some known specific epidemic models whose modeling
are simple comparing to the reality, but the systematic is enough in order to understanding
the population dynamics. At first, in this models, we are considering that every event
(contagion, recovery, predation, etc) is always happening, that is, for example, we are
not considering that an infection may occur properly just because someone of that
species is susceptible. In nature, it does not happens this way. We need to consider the
randomness involved. The contagion between individuals may occurs or not according to
the circumstances that makes the event probable or not. Otherwise, models that ignores
this randomness can be useful to estimate the dynamics involved by a simpler problem,
but the approximation to the reality may not be satisfactory. In general, this models are
used to express the dynamics of some phenomenal whose actions are well predictable and
determined. This kind of model is called deterministic. For example, patients exposed to
excessive radiation have a great chance of having its health compromised and the risks
are growing larger with the time of exposition. In this case, we can use a deterministic
differential equation to model this dynamic. Otherwise, if we are trying to understand
the dynamic of contagion between a patient exposed to radiation and another healthy we
need to consider that the contact or the intensity of radiation emanated from the infected
may not be sufficient to turn the other one sick too. A model that treats this kind of
phenomenon are called stochastic. The same reasoning is applied to epidemic models in
general. Even, sometimes, not being the better way to express its dynamics compared to
reality, the study of stochastic processes by a deterministic model can open the mind to a
better approach in future. Furthermore, for a large number of population, the deterministic
approach may be close to the stochastic dynamics as well. To start our discussion in this
section we will pay attention to the Petri net of two classic epidemic models, the SI and
SIR, and we will give to them the basic treatment made by (BAILEY et al., 1975).

2.1 DETERMINISTIC SI MODEL
This model can be considered the simplest in epidemiology. We have a population

distributed as susceptible (S) and infected or infectious (I), where a susceptible can
be infected an infectious over some rate of infection, α. In the simplest deterministic
formulation we suppose that the number of individuals are kept constant. In the figure 5
we have the deterministic Petri net used to represent the the SI model. Mathematically,
we have

S + I
α−→ 2I, (2.1.1)
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Figure 5: The dynamics of a SI model expressed by a Petri net.

and from this, we have conditions to express our model by

dS

dt
= −αSI

dI

dt
= αSI

. (2.1.2)

Note that the sum of this two differential equations lead us that the population is constant,
as we wanted. It is intuitive that if we have a positive number M of total population, then
this system must satisfies

S + I = M, (2.1.3)

and the number of susceptible is decreasing as the infection is rising, respecting some rate
of infection α. In fact, we have

dS

dt
= −αS(M − S), (2.1.4)

a Bernoulli’s differential equation such that

dW

dt
− αMW + α = 0, (2.1.5)

where W = 1/S. Solving 2.1.5 and considering the initial condition (S(0), I(0)) = (S0, I0),
we conclude that

S(t) = M
[
1− 1

1 + (M/I0 − 1)e−αMt

]
(2.1.6)

and using 2.1,
I(t) = M

1 + (M/I0 − 1)e−αMt
, (2.1.7)

where I0 might be replaced by M − S0. Suppose now that we have M susceptible
population and I0 infected at t = 0, it.e,

S + I = M + I0 (2.1.8)
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such that (S(0), I(0)) = (M, I0). The equations 2.1.6 and 2.1.7 will be expressed by
S(t) = M(M + I0)

M + I0eα(M+I0)t

I(t) = I0(M + I0)
I0 +Me−α(M+I0)t

. (2.1.9)

The product of the equations in 2.1.9 give us a new expression to dI
dt

, given by

dI

dt
= αI0M(M + I0)2

(M + I0eα(M+I0)t)(I0 +Me−α(M+I0)t)

=αI0M(M + I0)2eα(M+I0)t

(M + I0eα(M+I0)t)2 . (2.1.10)

If we had taken τ = αt, this parameter should have done the α vanishes as we had
considered α = 1, and this way we have

dI

dτ
= I0M(M + I0)2e(M+I0)τ

(M + I0e(M+I0)τ )2 (2.1.11)

This equation will be called the epidemic curve. In particular, considering that the
epidemic started with one only infected (I0 = 1) this formula becomes

dI

dτ
= M(M + 1)2e(M+1)τ

(M + e(M+1)τ )2 . (2.1.12)

A simple analysis gives us that 2.1.12 has a maximum at τ0 = (log(M))/(M + 1). Either,
we have S(τ0) = I(τ0) = 1

2(M + 1), and clearly dI

dτ

∣∣∣
τ=τ0

= 1
4(M + 1)2. For example, taking

M = 20 we have a epidemic curve of the figure above. In general, it is clear that there
is no mathematical difficulty to obtain the analytic results for this model. In (BAILEY
et al., 1975), section 5.2 we have easily all the approach made to acquire the comparison
between stochastic and deterministic forms. Different from SI model, the approaches made
over SIR deterministic model was not sufficient to give all expected results. It is explicit
how difficult the modelling becomes by taking one other new variable on SI model. The
next sections shows the approach developed by Bailey on SIR deterministic and stochastic
models.

2.2 DETERMINISTIC SIR MODEL
This model is also well known from epidemiology (KERMACK; MCKENDRICK,

1927). In this system, we have three categories of individuals: those who are susceptible to
disease (S), those who are infected and can spread the disease to susceptible (I), and those
who have recovered from previous infection and can no longer spread or catch the disease
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Figure 6: Epidemic curve of the SI model with initial conditions S0 = 20 and I0 = 1.

(R). In this model, we still have a contagion of suceptible from an infected over some rate
of infection, just like in the SI model. The difference is on the possibility of an infected
becomes recovered of the infection, that we will assume occurring over same recovery rate
either. The idea is include one more variable to make this model consistent to its epidemic
reality. We still assuming that there are no changing on the total number of population, so
this is kept constant. The dynamics can be expressed visually by the following Petri net:

Figure 7: Petri Net model applied in the process of infection and recovery of some species
in Biology.

Suppose now that we have an infection and a recovery whose rates are α and β,
respectively. As we saw in preview section, this Petri net can be expressed in style of
chemical equations as follows:

S + I
α−→ 2I,

I
β−→ R.
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From that, we are able to express it’s dynamic by the rate equations bellow:

dS

dt
= −αSI

dI

dt
= αSI −βI

dR

dt
= βI .

(2.2.1)

We are supposing the total population is N , i.e.,

S + I +R = N. (2.2.2)

The new variable R tell us the number of cases of immune/recovered or isolated people. It
is clear that 2.2.1 satisfies this condition. Furthermore, this model is a generalization of
2.1.2. We can obtain the SI model just supposing that the number of recovered people
does not changes as the times goes by. It means that dR

dt
= 0 and we have all we had before.

Even this model seems simple at first, we don’t have tools to express an explicit solution
to 2.2.1. What we have until then is a way to see the system’s behavior just manipulating
the equations.

To make our analysis simpler, we will consider ρ = β
α
, the relative removal-rate.

At first, we are considering that our population has no one recovered yet, so the initial
condition is kind of

(S(t0), I(t0), R(t0)) = (S0, I0, 0). (2.2.3)

Dividing the third equation by the first,

dR

dS
:=

dR
dt
dS
dt

= − ρ
S
. (2.2.4)

Using 2.2.2 and considering the initial condition 2.2.3, then

S = S0e
−R
ρ , (2.2.5)

and we can use this on 2.2.2 to express the third equation of 2.2.1 depending only of R.
This will lead us

dR

dt
= β

(
N −R− S0e

−R
ρ

)
. (2.2.6)

Definitely, solve 2.2.6 is not an easy work. Actually, it may not be possible. An alternative
way is express this expression in a series expansion. It is enough to us express it until
second order. This way we have

dR

dt
= β

[
N − S0 +

(
S0

ρ
− 1

)
R− S0R

2

2ρ2

]
. (2.2.7)
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That is an example of a Riccati equation. To solve this is enough to take a particular
solution R̄ of 2.2.7 and solve the system

dR

dt
= −

[
S0

ρ
− 1 + S0R̄

ρ2

]
+ S0

2ρ2 . (2.2.8)

Other standard methods can be applied in 2.2.7 to give us a explicit solution. In (BAILEY
et al., 1975), this solution is expressed in the form

R(t) = ρ2

S0

[
S0

ρ
− 1 + γ tanh

(1
2βγt− φ

)]
, (2.2.9)

where γ and φ are constants given by

γ =
{(

S0

ρ
− 1

)2
+ 2S0I0

ρ2

}1/2
, (2.2.10)

and
φ = tanh−1

(1
γ

[
S0

ρ
− 1

])
. (2.2.11)

Substituting on 2.2.8 we have easily that

dR

dt
= βρ2γ2

2s0
sech2

(1
2βγt− φ

)
. (2.2.12)

This equation will be our epidemic curve for the SIR deterministic model.

If we plot a sample graphic of R(t) and dR
dt

we will see that, in general, they are
S-shaped and a bell-shaped, respectively. The number of infection cases reported has a
peak, and than, decreases until vanish. Taking a look at figure 8 we can see that the
behavior matches with the rate of recovery growing, once that the rising has a limit, due
to population growth being bounded, but, compared to the numerical solution, we see a
hard difference of the total number of recovered population after a long time. It means
that the approach made in (KERMACK; MCKENDRICK, 1927) by taking an polynomial
approximation is sufficient to just show the shape of the curve and model the behavior
during a short time from the start of the epidemic. The same can be said about the
approximate solution and numerical approximation of the epidemic curve dR/dt, as shown
in the figure 9. Returning to equation 2.2.9 and taking t −→∞ we can see that R(t) is
limited. In fact,

R∞ := lim
t→∞

R(t)

=ρ2

S0

[
S0

ρ
− 1 + γ

]
. (2.2.13)

This number give us the total size of epidemic, i.e., the total number of removals after a
long period of time. Considering that

(
S0
ρ
− 1

)2
>> 2S0I0

ρ2 , and supposing γ ' S0
ρ
− 1, than

R∞ '
2ρ2

S0

[
S0

ρ
− 1

]
= 2ρ

[
1− ρ

S0

]
(2.2.14)
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Figure 8: Comparison between the numeric solution and the approximation by Kermark
and McKendrick (KERMACK; MCKENDRICK, 1927) of the recovered popu-
lation R(t), when S0 = 20, I0 = 1, α = 1 and β = 2. In general are S-shaped
curves.

Notice that, if S0 < ρ, than R∞ is a negative number, so it does not make sense as epidemic
model. Suppose S0 > ρ. There is a positive number ε such that

S0 = ρ+ ε (2.2.15)

Using 2.2.15 in 2.2.14 than we conclude

R∞ ' 2ρ
[
1− ρ

ρ+ ε

]
= 2 ρε

ρ+ ε
= 2ε

1− ε/ρ. (2.2.16)

Cnsidering ε too small comparing to ρ, than

R∞ ' 2ε. (2.2.17)

When we say 2.2.15 happens for a small ε , than it is reasonable to expect that the initial
condition I0 does not have a significant changing. Let consider S∞0 the final susceptible
population after a long time (when t −→∞). We still have S + I +R = N .

In this case,

S∞0 + I0 + 2ε = N, (2.2.18)
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Figure 9: Comparison between the numeric solution and the approximation by Kermark
and McKendrick (KERMACK; MCKENDRICK, 1927) of the epidemic curve,
dR/dt, when S0 = 20, I0 = 1, α = 1 and β = 2. In general are bell-shaped
curves.

but, from the initial conditions,

S0 + I0 +R0 = (ρ+ ε) + I0 + 0 = N. (2.2.19)

From 2.2.18 and 2.2.19 , we conclude that

S∞0 = ρ− ε. (2.2.20)

It means that, over the condition 2.2.15, when the initial population of susceptible exceeds
ρ the final population is above the threshold, ρ. This phenomenon is the Kermack
and McKendrick’s Threshold Theorem. More precisely, defining the effective reproductive
number as

Re = S0/ρ (2.2.21)

and the basic reproduction number,

R0 = N/ρ, (2.2.22)
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we have that if Re ≤ 1, then the number of infectives decreases monotonically to zero
as t → ∞. If Re > 1, then the number of infectives increases until reach the maximum
and decreases to zero as t→∞. In other words, the infection reaches all the susceptible
population if R0 > 1, or, alternatively, if N > ρ. This important result can be easily proved.
For the all details, see (WEISS, 2013). Now, will be interesting assume that the rate of
infection is no more constant. This next approach was made by Kendall (KENDALL,
1956) and is more precise and elegant. In the case of α is a function of R, the equation
2.2.4 becomes

dR

dS
= − β

α(R)
1
S
. (2.2.23)

Performing the separations of variables and integrating, we have a similar equation

S = S0 exp
{(
− 1
β

∫ R

0
α(u)du

)}
, (2.2.24)

then, over the same conditions imposed before,

dR

dt
= β

N −R− S0 exp
{(
− 1
β

∫ R

0
α(u)du

)}. (2.2.25)

Using this equation it is possible to find an explicit expression for α(R). Substituting dR
dt

expressed in 2.2.7 in the expression 2.2.25 we have

exp
[
− 1
β

∫ R

0
α(u)du

]
= 1− R

ρ
+ R2

2ρ2 , (2.2.26)

i.e.,
1
β

∫ R

0
α(u)du = − log

[
1− R

ρ
+ R2

2ρ2

]
(2.2.27)

Derivating this expression with respect to R, we have

α(R) = β

[
1/ρ−R/ρ2

1−R/ρ+R2/2ρ2

]
. (2.2.28)

Multiplying the expression before by ρ, we have

α(R) = β

[
1−R/ρ

ρ−R +R2/2ρ

]
(2.2.29)

= α

[
1−R/ρ

ρ(1−R/ρ+R2/2ρ2)

]
(2.2.30)

= α

[
1−R/ρ

1−R/ρ+R2/2ρ2

]
(2.2.31)

= 2α
[

1−R/ρ
2− 2R/ρ+R2/2ρ2

]
(2.2.32)

= 2α
[

1−R/ρ(
1−R/ρ

)2
+ 1

]
. (2.2.33)
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Dividing this last expression by 1−R/ρ we finally have

α(R) = 2α(
1−R/ρ

)
+
(
1−R/ρ

)−1 . (2.2.34)

Notice that α(0) = α, the same constant originally in the system 2.1.2. Also, we have that
α(R) > 0 if 0 < R < ρ and α(R) < 0 if R > ρ. This second condition turns the model non
realistic, because α(R) needs to be a positive parameter. This approximation by Kermark
and McKendrick underestimates the infection rate of the system and the total size of
epidemic as well.

Now we will consider the points where dR
dt

= 0, i.e.,

N −R− S0e
−R
ρ = 0. (2.2.35)

Taking F (R) := dR
dt

restrict to the interval [0, N ], we have that F (0) = β
[
N − S0] = 0, if

N = S0 or F (0) > 0, if N < S0. The first case give us clearly a root to 2.2.35. Suppose that
the second condition is the only possible. Yet, F (N) = −S0e

−N
ρ < 0. The Intermediate

Value Theorem guarantees a positive root η+. Repeat the same analysis to the interval
(−∞, 0]. There is a negative root to 2.2.35, defined by η−. Note that dF

dR
changes the signal

just once, so F (R) has two only roots.

Integrating 2.2.1 we have a formal expression to the time t, given by

t = 1
β

∫ R

0

[
N − τ − S0e

− τ
ρ

]−1
dτ, (2.2.36)

for 0 ≤ R < η+.

From this expression and 2.2.6 we are able to find a formal solution to the epidemic
curve dR

dt
by some parametric method. The parameter t runs in the interval (0,∞) since

the integral 2.2.36 diverges when R is near to the root η+, and then, R∞ = η+. But,
unfortunately, the integral also diverges when S0 −→ N . It means that a infinite times
elapses before the epidemic starts.

We have another defy trying to change the initial point to some point which S0 = ρ.
This will be called the centre of the epidemic. Using the approach we made for dR

dt
, we

will recall the equation
dR

dt
= β(N −R− S). (2.2.37)
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Differentiating this equation with respect to t and using 2.1.2 we have that

d

dt

(
dR

dt

)
= β

(
− dR

dt
− dS

dt

)
= β

(
− βI + αSI

)
= β2I

(
α

β
S − 1

)
= β2I

(
S

ρ
− 1

)
. (2.2.38)

It is easy to see that the epidemic has a peak in the centre S0 = ρ. By the third equation
of 2.2.1, the number of infected has a maximum at the same time. Considering now that ρ
is the initial number of susceptible and that still there is no population recovered as initial
conditions, we have that

S0 + I0 +R0 = ρ+ I0 = N. (2.2.39)

From this, the new expression for dR
dt

is given by

dR

dt
= β

[
I0 −R + ρ(1− e−

R
ρ )
]
. (2.2.40)

The importance of this new equation is that we can find explicitly formal expression to t
by integrating without caring about its convergence and, this way, having a parametric
solution to the number of recovered population, R(t).

Indeed, integrating 2.2.40, we have

t = 1
β

∫ R

0

[
I0 − τ + ρ(1− e−

τ
ρ )
]−1

dτ, −ξ− < R < ξ+, (2.2.41)

where −ξ− and ξ+ are the only negative and positive roots of

I0 −R + ρ(1− e−
R
ρ ) = 0. (2.2.42)

The existence of those roots is guaranteed since we define again F (R) := dR
dt

and verify
that F (0) = I0 > 0 and dF

dR
goes to −1 as R −→∞, giving us the only positive root. Also,

we have that F (R) goes to −∞ as R −→ −∞, giving us the other negative root −ξ−.
Using this approach we have t a parameter for our equations such that the numerical value
of R(t) is the number of removals in the interval (0, t), for t > 0 and (t, 0) for t < 0. Thus,
the parametric solution is given by

t = 1
β

∫ R
0

[
I0 − τ + ρ(1− e−

τ
ρ )
]−1

dτ

dR

dt
= β

[
I0 −R + ρ(1− e−

R
ρ )
] (2.2.43)
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where −∞ < t < ∞, −ξ− < R < ξ+ and −ξ−,ξ+ are the roots of 2.2.42. Thus, from
2.2.43 we have R−∞ := limt→−∞R(t) = −ξ− and R∞ := limt→+∞R(t) = ξ+. This way we
are not thinking about an epidemic starting in at initial point, but treating it like an entity
running during all the time −∞ < 0 <∞. The numbers −ξ− and ξ+ are the number of
removals before and after the central point. Thus, ξ− + ξ+ is the total size of the epidemic
for this new approach. Notice that

lim
t→−∞

dR

dt
= F (−ξ−) = 0 (2.2.44)

and than
lim
t→−∞

I(t) = 1
β

dR

dt
= 0. (2.2.45)

It says that we do not have infected during a long time before the epidemic starts. Supposing
we still have t→ −∞, define as n the total number of susceptible population. We have
that

n = ρ+ I0 + ξ−. (2.2.46)

This quantity may also be called the total size of the population. We can conclude that,
if t → −∞, than (S, I, R) → (n, 0,−ξ−). Either, if t → ∞, we have the quantities
(S, I, R) → (n − ξ− − ξ+, 0, ξ+). Lets define i, the intensity of the epidemic, i.e, the
proportion of the total number of susceptible that contract the disease. It is given by

i = ξ− + ξ+

n
. (2.2.47)

Using this equation we can write

(S, I, R) = (n− ni, 0, ni− ξ−), (2.2.48)

when t→∞. Regarding 2.2.5 and keeping S0 = n as initial condition and 2.2.48 we have
that

S = ne−(R+ξ−)/ρ, (2.2.49)

i.e.,
n− ni = ne−ni/ρ. (2.2.50)

Simplifying this expression we conclude that

n

ρ
= − log(1− i)

i . (2.2.51)

We are able to show explicit formulations to some constants in terms of the initial condition,
when t = 0, i.e.,

(S0, I0, R0) = (ρ, I0, 0). (2.2.52)

Using again 2.2.5,
ρ = ne−ξ−/ρ, (2.2.53)
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i.e.,
log n

ρ
= ξ−

ρ
. (2.2.54)

This way we have
ξ− = ρ log n

ρ
. (2.2.55)

The equation 2.2.47 give us
ξ−

ξ− + ξ+
= ρ

ni log n
ρ

(2.2.56)

and we can express the quantity of infected at t = 0, given by

I0 = n− ρ− ρ log n
ρ
, (2.2.57)

and then
I0

n
= 1− ρ

n

[
1 + log(n/ρ)

]
. (2.2.58)

Finally we are able to know what happens to the ratio of population, n
ρ
, the percentage

of infection at the central epoch, I0

n
, and the percentage of removals before central epoch,

ξ−
ξ− + ξ+

, in terms of the intensity of the epidemic, i. Taking the intensity i as a variable,

whe can see by 2.2.51 that n
ρ
→ 1 as i→ 0, and then I0

n
→ 0 by 2.2.58. We have also that

ξ−
ξ− + ξ+ →

1
2 by 2.2.56. This way, the values of each function at i = 0 can be well defined.

The table 1 displays numerically this behavior for the intensity i varying form 0 to around
0.98.

Looking at the table 1 we are able to do our analysis without difficulty. For example,
if we take the total size of population n = 102 and ρ = 100 we have a population with ratio
n/ρ = 1.05 and then, an epidemic whose intensity is near to 0.1, i.e, 10% of population
has been affected by the disease, and the number of susceptible is reduced about 95.
When n/ρ is about 4, we have 50% of population reached by the disease at the central
epoch. This techniques adopted in (BAILEY et al., 1975) was the best way to obtain the
results of the deterministic model without trying to solve the differential equation or using
numeric methods to approximate solutions, that was not possible due to limitations of
computational tools until then. The following subsection gives continuity of the Bailey
approach (BAILEY et al., 1975) to the SIR stochastic model, whose have such interesting
methods as limitations, as in the deterministic model.

2.3 STOCHASTIC SIR MODEL
The previous section evidenced all the difficulty on the treatment about the

deterministic version of the SIR model. Even so, the rough approximation in the adopted
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Table 1: Epidemic behavior from the intensity (adapted from table 6.1 of (BAILEY et al.,
1975)).

Intensity
of the

epidemic
(i)

Ratio
of the population

to thershold(
n

ρ

)
Percentage of infected

population
at central epoch(

I0

n

)
Percentage of removals

occurring
before the central epoch(

ξ−
ξ−+ξ+

)
0.00 1.00000 0.0000 50.000
0.05 1.02587 0.0321 49.786
0.10 1.05361 0.1317 49.561
0.15 1.08346 0.3046 49.323
0.20 1.11572 0.5575 49.071
0.25 1.15073 0.8980 48.802
0.30 1.18892 1.3352 48.515
0.35 1.23081 1.8798 48.208
0.40 1.27706 2.5449 47.876
0.45 1.32853 3.3463 47.516
0.50 1.38629 4.3036 47.123
0.55 1.45183 5.4418 46.690
0.60 1.52715 6.7935 46.208
0.65 1.61511 8.4024 45.665
0.70 1.71996 10.329 45.043
0.75 1.84839 12.664 44.314
0.8 2.01180 15.547 43.433
0.85 2.23191 19.223 43.320
0.8 2.55843 24.196 40.797
0.95 3.15340 31.868 38.337
0.98 3.99186 40.272 35.385

methods became the approach less realistic than the expected. In order to obtain a better
approach of the dynamics, in this subsection we study the stochastic version of the SIR
model. Just like the deterministic model, we still have susceptible S and infected I whose
rate of infection and recovering at the time interval ∆t are αSI∆t and βI∆t, respectively.
As before, we are considering that the sum of all population is always a constant number.
In this modeling we are considering time intervals sufficiently small to make possible an
infection or a recovering at a time. We will define ω(a,b)→(c,d) the rate which the number of
susceptible and infected are changing from (a, b) to (c, d), respectively. The idea here is
consider use the Markov assumption to our approach, i.e., the transitions rate from one
state to the other in the interval (t, t+ ∆t) does not depend of the previous time t. Either,
we will define Pjk(t) as the probability of having j susceptible and k infected population
at the time t. Suppose that the total number of susceptible and infected at t = 0 are S0

and I0, respectively. Now, we are able to express the probability of having j susceptible
and k infected at the time t + ∆t. Considering that, at each time interval ∆t, we may
have one individual being infected and/or recovered, than we may have three possible
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cases: j + 1 susceptible and k − 1 infected at the time t, where one susceptible became
infected at the time interval (t, t+ ∆t); k + 1 infected at the time t, where one infected
become recovered at the interval (t, t + ∆t); no infected and no recovered in the whole
interval (t, t+ ∆t). In order to simplify the approach, we will keep the notation ρ = β/α

and treat the new time as τ = αt, and then ∆τ = α∆t. Thus, we have that

Mathematically,

Pjk(τ + ∆τ) = ω(j+1,k−1)→(j,k) · Pj+1,k−1(τ)

+ω(j,k+1)→(j,k) · Pj,k+1(τ)

+ω(j,k)→(j,k) · Pj,k(τ), (2.3.1)

where ω(j+1,k−1)→(j,k), ω(j,k+1)→(j,k) and ω(j,k)→(j,k) are described in the items 1., 2. and 3.,
respectively. Furthermore,

Pjk(τ + ∆τ) = (j + 1)(k − 1)∆τ · Pj+1,k−1(τ)

+ρ(k + 1)∆τ · Pj,k+1(τ)

+[1− jk∆τ − ρk∆τ ] · Pjk(τ), (2.3.2)

i.e.,

Pjk(τ + ∆τ)− Pjk(τ)
∆τ = (j + 1)(k − 1) · Pj+1,k−1(τ)

+ ρ(k + 1) · Pj,k+1(τ)

− k(j + ρ) · Pjk(τ). (2.3.3)

From this, taking τ → 0, we finally have the differential equation

dPjk
dτ

= (j + 1)(k − 1)Pj+1,k−1 − k(j + ρ)Pjk + ρ(k + 1)Pj,k+1 (2.3.4)

Considering the particular case j = M and k = N we have that the only way of having
(S, I) = (S0, I0) at the time τ + ∆τ is no one getting recovered or infected, i.e.,

PS0I0(τ + ∆τ) = [1− S0I0∆τ − ρI0∆τ ] · PS0I0(τ), (2.3.5)

thus, we have the differential equation

dPS0I0

dτ
= −I0(S0 + ρ)PS0I0 . (2.3.6)

The union of 2.3.4 and 2.3.6 give us

dPjk
dτ

= (j + 1)(k − 1)Pj+1,k−1 −k(j + ρ)Pjk + ρ(k + 1)Pj,k+1

dPS0I0

dτ
= −I0(S0 + ρ)PS0I0 ,

(2.3.7)
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where 0 ≤ j + k ≤ S0 + I0, 0 ≤ j ≤ S0, 0 ≤ k ≤ S0 + I0 and PS0I0(0) = 1, as initial
condition. Now, we will introduce the probability-generating function, given by

P (z, w, τ) =
∑
j,k

Pjk(τ)zjwk. (2.3.8)

This equation satisfies the differential equation

dP

dτ
= w(w − z) d

2P

dzdw
+ ρ(1− w)dP

dw
(2.3.9)

with initial conditions
P (z, w, 0) = zS0wI0 . (2.3.10)

Whe should work on 2.3.7 using the Laplace transform, given by

qjk(s) =
∫ ∞

0
e−sτPjk(τ)dτ, (2.3.11)

and acquire all the expected results about the explicit formula of Pjk and consequently the
probability-generating function and total size of epidemic as well. This approach was made
by Siskind (SISKIND, 1965), but all the algebra involved and explicit expression adopted
turns the approach exhaustive. An alternative approach was made by Gani ((GANI,
1965b),(GANI, 1965a),(GANI, 1967)) and Siskind (SISKIND, 1965), replacing 2.3.9 by

P (z, w, τ) =
S0∑
j=0

zjfj(w, τ), (2.3.12)

where

fj(w, τ) =
S0+I0−j∑
k=0

wkPjk(τ). (2.3.13)

Instead using 2.3.13, we should use the Laplace transform at each fj given by

Fj(w, λ) =
∫ ∞

0
e−λτfj(w, τ)dτ, Re(λ) > 0. (2.3.14)

Substituting this equations in 2.3.9 we have the system of differential equations
λFj = w2(j + 1)∂Fj+1

∂w
+ [(j + ρ)w − ρ]∂Fj

∂w
, 0 ≤ j ≤ S0 − 1

λFS0 = wI0 − [(S0 + ρ)w − ρ]∂FS0

∂w
.

(2.3.15)

If we write

F =


FS0

FS0−1
...
F0

 , (2.3.16)
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E =


1
0
...
0

 (2.3.17)

and

A =



(S0) + ρ)w − ρ 0 0 . . . 0 0
−S0w

2 (S0 − 1 + ρ)w − ρ 0 . . . 0 0
0 −(S0 − 1)w2 (S0 − 2 + ρ)w − ρ . . . 0 0
... . . . . . . . . .

... ...
0 0 −2w2 . . . (1 + ρ)w − ρ 0
0 0 0 . . . −w2 ρw − ρ


(2.3.18)

we have a matrix formulation of 2.3.15, given by

A
∂F

∂w
+ λF = wNE. (2.3.19)

This method was made in (GANI, 1967). Using Taylor’s Theorem we can write

F (w, λ) =
∞∑
r=0

F (r)(0, λ)w
r

r!

=
S0+I0∑
r=0

F (r)(0, λ)w
r

r! . (2.3.20)

In fact, this series terminates at r = S0 + I0, because the term wS0+I0 has the highest
degree, since quantities of Pjk’s are limited by the indexes j and k, i.e., 0 ≤ j + k ≤
S0 + I0, 0 ≤ j ≤ S0, 0 ≤ k ≤ S0 + I0. In other words, this equation are limited according
to the size of population. After some algebra we conclude that the solution of 2.3.19 can
be expressed in the form F (w, λ)∫ w

0 F (v, λ)dv

 =
I0+S0+1∑
i=0

wi

i!

{ i−1∏
j=0

Bj

}
G−

S0+I0+1∑
i=I0+1

wi

i!
S0!
ρ

{ i−1∏
j=I0+1

Bj

}
E, (2.3.21)

where

Bj ≡

 1
ρ
{jA(1)(0) + λI} j(j − 1)

2ρ A(2)(0)

I O

 , (2.3.22)

G ≡
 F(0, λ)

O

 , (2.3.23)

F(0, λ) =
{ S0+I0∏

j=0

}−1

S0+1

[
S0!
ρ

{ S0+I0∏
j=I0+1

Bj

}
E
]
, (2.3.24)
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I is an (S0 + 1) × (S0 + 1) unit matrix, O is the zero vector or matrix of appropriate
dimensions, E is a column vector of 2S0 + 2 elements of which the first is unity and the
rest zero. the suffix S0 + 1 indicates a truncated matrix involving the first S0 + 1 rows and
columns only. Conventionally, we will say that

k∏
j=h

Bj =

 I, h = k + 1
BkBk−1 . . .Bh, h ≤ k,

(2.3.25)

and the matrix multiplications being carried out in the order shown. Is is not difficult to
see that the matrix is triangular with non-zero eigenvalues for Re(λ) > 0. The algorithm
becomes quite efficient only if I0 and S0 are small. Gani (GANI, 1967) gives an example
for I0 = 1 and S0 = 1 . In order to obtain explicitly the expressions of each fj(w, τ) we
must apply the Laplace transforms, and then 2.3.13, 2.3.12, and 2.3.8. This way, we are
able to obtain the probability generating function and individual probabilities.

2.3.1 TOTAL SIZE OF EPIDEMIC

As seen, due to the difficult of treating the stochastic SIR system we have an
alternative way to obtain useful information about the epidemic in terms of ρ and the
initial patients over infection. Recalling the results of the previous section, we are able to
define the probability of total size of an epidemic, Pw, i.e., the probability of having w as
total number of infected after epidemic, without counting the initial number of infectives.
Following Bailey (BAILEY et al., 1975), we have explicitly

Pw = lim
t→∞

PS0−w,0(t),

0 ≤ w ≤ S0. (2.3.26)

Analyzing this definition, it is reasonable observe the number of susceptible population left
long time after the epidemic, (or making t→∞). In fact, this results clearly converges
due to the exponential terms with negative sings in Pjk. In this section, we will follow the
approach made by Gani (GANI, 1967) to expand the results about Pw. From the equations
2.3.14, 2.3.13, and 2.3.11, respectively, we have that

Fj(0, λ) =
∫ ∞

0
e−λτfj(0, τ)dτ

=
∫ ∞

0
e−λτPj0(0, τ)dτ

= qj0(λ). (2.3.27)

Hence, using 2.3.27 and Laplace transform propriety, we see that

Pw = lim
t→∞

PS0−w,0

= lim
λ→0

λqS0−w,0

= lim
λ→0

λFS0−w(0, λ), (2.3.28)
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(2.3.29)

for 0 ≤ w ≤ S0. Considering

P =


P0

P1
...

PS0

 , (2.3.30)

and the equations 2.3.28 and 2.3.16 we have

P = lim
λ→∞

F (0, λ)

= S0!
{ S0+I0∏

j=1
Bj(0)

}−1

S0+1

{ S0+I0∏
j=I0+1

Bj(0)
}
S0+1

E, (2.3.31)

such that

Bj =

 λ

ρ
I O

I O

 , (2.3.32)

An alternative way to obtain an expression of Pw was made by Bailey ( (BAILEY,
1953a),(BAILEY, 1953b)) and can be consulted according to interest of the reader in
(BAILEY et al., 1975), section 6.4, but this method followed by Gani makes the approach
easier for large values of total population. In (BAILEY et al., 1975), table 6.2 has some
calculated values of Pw as function of ρ and different sizes of population.

2.3.2 ESTIMATION OF PARAMETERS

After getting the probability of the epidemic process we have to concern about
the estimation of the parameter ρ. This is an important step on trying to predict the
epidemic behavior. For this, is necessary to use a very useful technique from statistics,
the Maximum-likelihood estimation. The idea here is to find a way of estimate ρ from the
number of households that keep touch to the disease. In general, we don’t know when
a susceptible individual becomes infected and even when becomes recovered. Thus, it is
reasonable trying to observe the number of infectives per households after a sufficient long
time to have no more infections. The risk is to take a too long time and overlap with a
new epidemic outbreak and get confused with to the first one. However, this approach can
be easily done by using the Pw’s found in the previous subsection. Suppose we have the
data of K households, each containing S0 susceptible besides the initial case introducing
the disease. Let hw be the number of households with w new cases after the first, for
0 ≤ w ≤ S0. Then, the Maximum-likelihood score of ρ is

Sc(ρ) =
S0∑
w=0

hwScw(ρ), (2.3.33)
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where
Scw(ρ) = 1

Pw

∂Pw
∂ρ

. (2.3.34)

The estimate ρ̂ is given by finding a positive root of Sc(ρ̂) = 0, while the standard error is
given by (Inf(ρ))−1/2, where the information Inf(ρ) is approximately

Inf(ρ) ≈ Sc(ρ−)− Sc(ρ+)
ρ+ − ρ−

, (2.3.35)

where ρ− and ρ+ are values sufficiently close to ρ with opposites signs. For instance, suppose
we have 93 households that was not reached by the infection, 45 cases of households with
one infected and 96 with two infected, tantalizing 234 households in question. By (BAILEY
et al., 1975), table 6.2, we can see that the expression of Sr(ρ) for S0 = 2 is given explicitly
by

Sc(ρ) = h0 + 2h1

ρ
+ 2 h2

2 ρ+ 1 −
2h1 + 2h2

ρ+ 1 − K

ρ+ 2 . (2.3.36)

Substituting the values given we find that Sc(ρ) = 93S0 + 45S1 + 96S2 and ρ = 1.30936
is the positive root. Furthermore, Sc(1.29) = 1.22303 and Sc(1.31) = −0.03950, thus
Inf = 63.12404 and finally we have the estimation

ρ̂ = 1.31± 0.13.

The table 2 shows the comparison between the real and estimated values of households.

Table 2: Sample of observed and expected numbers for an epidemic in households starting
with one infected and reaching at most two individuals, for ρ = 1.31.

Number
of

secundary cases
(w)

Number
of households

observed
(hw)

Probality
of

infection
(Pw)

Number
of households

expected
(KPw)

0 93 39.6% 92.6
1 45 19.4% 45.5
2 96 41.0% 95.9
Total (K) 234 100% 234.0

2.3.3 STOCHASTIC THRESHOLD THEOREM

As we saw in the subsection 2.2, the control of an epidemic can be estimated from
the its intensity and the ratio of infection and recovery. The Kermack and Mckendrick
Threshold Theorem was fundamental to predict the epidemic behavior from the initial
number of susceptible exposed to infection. We have similar results for stochastic models
due to the approach made by Whittle (WHITTLE, 1955) and can also be called the
Whittle’s Stochastic Threshold Theorem. In his approach, it is considered the treatment for
a large number of susceptible population (or total population, N). This way, we have that
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the population of infectives can be compared to a birth-and-death process whose rates
of birth-and-death are respectively αS0 and β. The results will be shown at the end of
this subsection. For this, consider the intensity of epidemic, i. Calling πi the chance of an
epidemic reach at most the proportion i of the S0 initial susceptible. Then, we have

πi(ρ) =
i·S0∑
w=0

Pw(ρ), (2.3.37)

where i = 1
S0
, 2
S0
, . . . , S0−1

S0
(BAILEY et al., 1975; REINERT, 1992) and all the Pw’s are

defined as in the section 2.3 and can be obtained by all the methods presented in (BAILEY
et al., 1975), section 6.2. Comparing the chance of a new infection in the interval ∆t given
by αSI∆t, as before, with te other two processes whose chance of infection is give by
αS0I∆t and αS0(1− i)I∆t, respectively, we can see that, since the epidemic cannot attain
a larger number than i · S0, the true process lies uniformly between the other two, i.e., the
probabilities of reach some number of infectives are an intermediate of this other two. This
way, the two new procedures can characterizes birth-and-death processes whose solutions
are known. The next step is consider a process for wich the chance of have a new infection
in ∆t is AI∆t, where A can assume the previous values, αS0 or αS0(1 − i). This way,
we are considering a birth-and-death process for the infective population whose constant
rates are A and β, respectively. Now, we must restrict to the case in that there are no
new births in a cumulative population size, i.e., the total number of infected individuals
reaches at most S0 + I0. Taking w = u − I0, when t → ∞, where u in the cumulative
population size, we have the total size of epidemic, as already defined. It is easily seen
that so far as epidemic sizes, given by a S0 ≤ u∞ ≤ S0 + I0 − 1, are concerned, the
probabilities for these states of the restricted process are exactly the same as those for
the corresponding states in the unrestricted process, for which u may take any value.
The balance of probability, to make up a total of unity, is then assigned to the state
u∞ = S0 + I0. We now can obtain the expected results by considering the approach for
the unrestricted process and than apply the results to the restriction of population. The
entire approach for this birth-and-death process was made by Kendall (KENDALL, 1948),
leading us the partial differential equation of the probability-generating function and its
initial conditions. The analytic solutions of this differential equation make possible the
expression of Pw in terms of β, I0 and w, given by

Pw(A) = I0(2w + I0 − 1)!
w!(w + I0)!

Awβw+I0

(A+ β)2w+I0
, (2.3.38)

for 0 ≤ w ≤ S0 − 1, and

PS0(A) = 1−
S0−1∑
w=0

Pw(A). (2.3.39)
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The details can be shown in (BAILEY et al., 1975), section 6.5. Finally, substituting the
respective values of A we have that the approach lead us to the inequality

i·S0∑
w=0

Pw(αS0) ≤ πi ≤
i·S0∑
w=0

Pw(αS0(1− i)). (2.3.40)

Using 2.3.38 and 2.3.39 we can conclude that the sum
∞∑
w=0

Pw(A) is convergent by the ratio
test. Furthermore,

∞∑
w=0

Pw(A) =
A+ β − |A− β|

2A

I0

= min{β/A, 1}I0 . (2.3.41)

For a sufficient large number of susceptible, we have πi close to 2.3.41. Applying the result
to 2.3.40 we have

min{ρ/S0, 1}I0 ≤ πi ≤ min{ρ/S0(1− i), 1}I0 , (2.3.42)

for S0 sufficiently large. From 2.3.42 we have three faces to be considered:

If ρ < S0(1 − i) then
(
ρ

s0

)I0

≤ πi ≤
(

ρ

S0(1− i)

)I0

; If S0(1 − i) ≤ ρ < S0, then(
ρ

S0

)
≤ πi ≤ 1; If S0 ≤ ρ, then πi = 1.

These conditions lead us the interpretation for the probability of the epidemic do
not exceed the intensity i is zero, if ρ ≥ S0 and 1− (ρ/S0)I0 , if ρ < S0, for small intensity i.
This results can also be obtained by using the approach of a random walk, as in (ALLEN,
2008) and lead us

Prob{Have an outbreak} ≈


0, if ρ ≥ S0

1−
(
ρ

S0

)I0

if ρ < S0
, (2.3.43)

for a sufficiently large S0 and small I0. Usually, we set I0 = 1 and make all the rest of
population as susceptible to estimate the epidemic due to the initial infected, called the
patient zero. All this approach has similar result compared to the Kermark and McKendrick
Threshold theorem, in the deterministic version. Unfortunately, the results, in general, are
reasonable since we have a very large population to guaranteeing the values of partial sums
closer to the convergence value of 2.3.40. The next sections will be dedicated to construct
a new method for SIR stochastic model that turns the approach simpler and more efficient,
where will be possible to obtain the same results of this section. Furthermore, we will be
able to employ quantum techniques constantly used to study reaction-diffusion systems
applied to a Fock-space and make possible the analytic expressions for the epidemic
model, besides having the grand result of estimation the mean time and stochastic basic
reproduction number (R0) of an epidemic in terms of the initial state and the constant
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rates, α and β, as will be shown in the next part of this work. For this, we will introduce
some notations and results of linear algebra necessary to understand the application of
the this quantum techniques.
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3 BASICS OF LINEAR ALGEBRA

This section recalls all some important results of linear algebra that will be useful
to implement the quantum operators adopted to build our stochastic approach in a Fock
space. In this section, we want to introduce Basics of Linear Algebra using Dirac notation,
most used by physicists, which will be useful in our approach for finding analytical solutions
to the SIR model. We are not concerned with the demonstrations of the results of this
section, once that all the algebra linear results can be easily found in any known linear
algebra book. For this approach, in special, we adopted (DIRAC, 1981). All we need to
recall in this section is the fundamental concepts of vector spaces, orthogonal basis, linear
transformations, eigenvalues and characteristic polynomial using the Dirac notation. A
linear vector space V is a collection of objects called vectors respecting some operations
of sum and scalar multiplication. We will denote this vectors by |1〉, |2〉, . . . , |V 〉, . . ., etc.
The symbolic representation |V 〉 is called ket V, and all |V 〉, |W 〉 ∈ V ,a,b, scalars, need
to satisfy:

• |V 〉+ |W 〉 ∈ V;
• a|V 〉 ∈ V;
• a(|V 〉+ |W 〉) = a|V 〉+ a|V 〉;
• a(b|V 〉) = ab|V 〉;
• |V 〉+ |W 〉 = |W 〉+ |V 〉;
• |V 〉+ (|W 〉+ |Z〉) = (|V 〉+ |W 〉) + |Z〉;
• For all vector |V 〉 ∈ V there exists an inverse under addition | − V 〉 such that
|V 〉+ | − V 〉 = |0〉.

From this properties we are able to understand that there is a unique null vector
|0〉 satisfying 0 · |V 〉 = |0〉, for all |V 〉 ∈ V. Furthermore, −|V 〉 = |−V 〉 and the uniqueness
of the inverse under addition.

We say that |W 〉 is a linear combination of the vectors |1〉, |2〉, . . . , |n〉, . . . if there
exists a1, a2, . . . , an, . . . scalars such that |W 〉 = ∑

i
ai|i〉. In general, the scalars ai are called

the field over which the vector space is defined.

The collection of vectors |1〉, |2〉, . . . , |n〉, . . . is said linearly independent if the only
linear combination resulting the null vector is the trivial combination, i.e., if ∑

i
ai|i〉 = |0〉,

than ai = 0 for all i.
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If there is a scalar aj 6= 0 such that ∑
i=1

ai|i〉 = |0〉 whe say that this collection is
linearly dependent.

A vector space has dimension n if we have at least n linearly independent vectors.
In fact, any vector |V 〉 in a n-dimensional space can be written as a linear combination
of n linearly independent vectors |1〉, |2〉, . . . , |n〉. This collection is called basis for this
n-dimensional vector space and every vector |V 〉 can be expressed uniquely in that basis,
i.e, there are unique scalars v1, v2, . . . , vn such that |V 〉 = ∑n

i=1 vi|i〉. In this work, we are
going to write symbolically a basis that will represent all possible configuration for a
possible epidemic involving n individuals.

For example, considering the set of n× n matrices with real entrances and take

|1〉 =


1 0 . . . 0
0 0 . . . 0
... ...
0 0 . . . 0

, |2〉 =


0 1 . . . 0
0 0 . . . 0
... ...
0 0 . . . 0

,. . ., |n
2〉 =


0 0 . . . 0
0 0 . . . 0
... ...
0 0 . . . 1

. Than we have

that |1〉, |2〉, . . . , |n2〉 is a basis to this space and every n × n matrix M = [aij] can be
expressed by M = a11|1〉+ a12|2〉+ . . .+ ann|n2〉.

3.0.1 THE INNER PRODUCT

Given a vector space defined over a field K, if we are able to define a function
〈·|·〉 : V× V→ K , satisfying:

• 〈V |W 〉 = 〈W |V 〉∗;
• 〈V |V 〉 ≥ 0 ,〈V |V 〉 = 0 if and only if V = 0;
• 〈V |(a|W 〉+ b|Z〉)〉 = a〈V |W 〉+ b〈V |W 〉,

than we say that V is a vector space with an inner product, i.e., a inner product
space. We may also call scalar product or dot product.

Notice that we did not give a meaning to the symbol ∗ yet, but to make sense in
the second item we need to say that 〈V |V 〉 is always a positive real number (or zero). All
this rules above defines the linearity in the first entrance. To make some similar in the
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second entrance we define that

〈aW + bZ|V 〉 = 〈V |aW + bZ〉∗ =(a〈V |W 〉+ b〈V |w〉)∗

=a∗〈V |W 〉∗ + b∗〈V |W 〉∗ = a∗〈W |V 〉+ b∗〈W |V 〉,
(3.0.1)

whatever ∗ means. For example, in the real case, we have the symmetry in each entrance,
so 〈V |W 〉 = 〈W |V 〉. In complex case we need a different condition to make sense the
second item. So, ∗ means the complex conjugate.

We say that two vectors are orthogonal if their inner product is zero. Also, we will
use the notation |V | =

√
〈V, V 〉 to define the norm of the vector. A set of basis vectors

whose norm is one and which are pairwise orthogonal will be called orthonormal basis.

Now we are able to define a explicit formula for the inner product between two
vector in terms of its components. Given |V 〉 = ∑

i
vi|i〉 and |W 〉 = ∑

i
wi|i〉 expressed in a

basis, we can use the axioms of inner product to have the following result:

〈V |W 〉 =
∑
i

∑
j

v∗iwj〈i|j〉. (3.0.2)

Now, it is enough to know the value of 〈i|j〉, the inner between each basis vector. Of course,
it depends of the basis vectors. In fact, it is easy to work over orthonormal basis and we
have a theorem ( Gram-Schmidt) which guarantees a linear orthonormal basis from any
vector basis. Suppose that we already have a orthonormal basis to the vector space. Thus,
we have

〈i|j〉 = δij =

 1 for i = j

0 for i 6= j
,

where δij is the Kronecker delta symbol. So, in a orthonormal basis we have

〈V |W 〉 =
∑
i

v∗iwi. (3.0.3)

From now on, we will assume that every vector basis is orthonormal. Suppose, as before,
|V 〉 = ∑

i
vi|i〉 and |W 〉 = ∑

i
wi|i〉 are two vectors expressed in a basis. We have a

representation of this vectors (in this basis) in a matrix form like column vectors:

|V 〉 →


v1

v2
...
vn

 , (3.0.4)
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|W 〉 →


w1

w2
...
wn

 . (3.0.5)

We also define

〈V | →
[
v∗1 v∗2 . . . v∗n

]
, (3.0.6)

and we will call the symbolic representation 〈V | by bra V. This way, the inner product
expressed in 3.0.3 can be written as

〈V |W 〉 =
[
v∗1 v∗2 . . . v∗n

]

w1

w2
...
wn

 . (3.0.7)

3.0.2 DIRAC NOTATION

We saw in the previous section a way to represent a vector V by ket V (|V 〉, a
column vector), in an orthonormal basis of a vector space. But, if we want a number
generated by an inner product of two vectors, |V 〉 and |W 〉 we need to have a way to
represent one of this vector as a row to make sense the matrix product between them and
respect all the axioms showed before. In particular, what can we say about 〈V |W 〉 and
〈W |V 〉? What is the relationship between them? To solve this problem we will consider
that every |V 〉 in this vector space V is associated to another vector 〈V | defined by the
transpose conjugate of the vector column 〈V |. Of course, 〈V | is a row vector and the
vector space generated by all of them will be called the dual space of V, which notation is
V∗. In this way, the definition of inner product is consistent.

Notice that, by this previous definition, both spaces have the same dimension and
we can establish a basis to V∗ given a basis of V. If |i〉 is a vector basis to V, a column
vector, we can just take 〈i| to give a vector basis for V∗. All this representation can be
expressed as follows:

|V 〉 ↔


v1

v2
...
vn

↔
[
v∗1 v∗2 . . . v∗n

]
↔ 〈V |, (3.0.8)
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where the symbol ↔ means within a basis. Taking |V 〉 expressed in an orthonormal basis
|i〉, we have again that |V 〉 = ∑

i
vi|i〉, so that vj = 〈j|V 〉 and then |V 〉 = ∑

i |i〉〈i|V 〉. This
way we have that 〈V | = ∑

i
〈i|v∗i and v∗i = 〈V |j〉, where |i〉 is a basis to the dual space.

Setting a a constant we have that

a|V 〉 →


av1

av2
...
avn

→
[
a∗v∗1 a∗v∗2 . . . a∗v∗n

]
→ 〈V |a∗. (3.0.9)

Using linearity we know that |aV 〉 = a|V 〉. We have a similar rule for bras:
〈aV | = 〈V |a∗. This way we have

a|V 〉 = b|W 〉+ c|Z〉 . . .⇔ 〈V |a∗ = 〈W |b∗ + 〈Z|c∗ . . . (3.0.10)

These two equations are said to be adjoints of each other, and we are able to
obtain both of them just taking the complex conjugate of the respective bra (ket).

We can extend this rules for a general vector |V 〉 = ∑
i=1

vi |i〉 . The adjoint of |V 〉 is

|V 〉 =
∑
i=1
〈i| v∗i . (3.0.11)

Recalling that vi = 〈i|V 〉 and vi∗ = 〈V |i〉, it follows that the adjoint of

|V 〉 =
∑
i=1
|i〉 〈i|V 〉 (3.0.12)

is
〈V | =

∑
i=1
〈V | i〉 〈i| . (3.0.13)

3.0.3 SUBSPACES

Given a vector space V, a subset of its elements that form a vector space among
themselves is called subspace. Here, we will assume that the reader is able to understand all
about basics of subspaces results and bring them to all results about the previous sections.

3.0.4 LINEAR OPERATORS

An operator Ω is a function defined over a vector space into itself that carries
information from a vector |V 〉 to another |V ′〉, represented symbolically by

Ω |V 〉 = |V ′〉 , (3.0.14)
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i.e., the operator Ω has transformed the ket |V 〉 into the ket |V ′〉 . Operators can act on
bras by

〈V ′|Ω = 〈V ′′| . (3.0.15)

An operator is said linear if, for every |Vi〉,|Vj〉 vectors and α,β scalars, the following rules
are respected:

• Ωα |Vi〉 = αΩ |Vi〉;
• Ω(α |Vi〉+ β |Vj〉) = αΩ |Vi〉+ βΩ |Vj〉;
• 〈Vi|αΩ = 〈Vi|Ωα;
• (〈Vi|α + 〈Vj| β)Ω = α 〈Vi|Ω + β 〈Vj|Ω. As known from linear operators, given a basis
|1〉 , |2〉 , . . . |n〉 for the vector space we have that, if

Ω |i〉 = |i′〉 , (3.0.16)

then for any vector |V 〉 = ∑
vi |i〉 we have

Ω |V 〉 =
∑
i

Ωvi |i〉 =
∑
i

viΩ |i〉 =
∑
i

vi |i′〉 . (3.0.17)

The product of two operators can be done as follows:

ΛΩ |V 〉 = Λ(Ω |V 〉) = Λ |ΩV 〉 , (3.0.18)

where |ΩV 〉 is the vector obtained by the action of Ω on V. In general, the order of action
of this operators is important. We define de commutator of this two operators by

[Ω,Λ] = ΩΛ− ΛΩ. (3.0.19)

In general, the commutator is not zero. The inverse of an operator Ω is denoted by Ω−1

and satisfies
ΩΩ−1 = Ω−1Ω = I . (3.0.20)

The inverse of a product of two operators satisfies

(ΩΛ)−1 = Ω−1Λ−1. (3.0.21)

From this, we have

(ΩΛ)(ΩΛ)−1 = (ΩΛ)(Λ−1Ω−1) = Ω(ΛΛ−1)Ω−1 = ΩΩ−1 = I . (3.0.22)

3.0.5 MATRIX ELEMENT OF LINEAR OPERATORS

From the tools given until now, we are able to express the matrix element of
a linear operator in therms of coefficients of a vector expressed in a basis. Taking the
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results of expressions 3.0.16 and 3.0.17 we have that, when |i′〉 is known, we mean that its
components in the original basis

〈j| i′〉 = 〈j|Ω |i〉 = Ωji, (3.0.23)

are known. All the n2 numbers, Ωji, are the matrix elements of Ω in this basis. If 3.0.14,
then the components of the transformed ket |V ′〉 are expressible in terms of the matrix
elements and the components of |V ′〉 are

vi
′ = 〈i|V ′〉 = 〈i|Ω |V 〉 =

∑
j

vj 〈i|Ω |j〉 =
∑
j

Ωijvj, (3.0.24)

or, in the matrix form
v′1

v′2
...
v′n

 =


〈1|Ω |1〉 . . . 〈1|Ω |n〉

... 〈i|Ω |j〉 ...

〈n|Ω |1〉 . . . 〈n|Ω |n〉




v1

v2
...
vn

 (3.0.25)

3.0.6 MATRICES AND PRODUCTS OF OPERATORS

Considering, again, the linear operators Ω and Λ, we can express the matrix element
of the product operator,

(ΩΛ)ij = 〈i|ΩΛ |j〉 = 〈i|ΩIΛ |j〉 =
∑
k

〈i|Ω |k〉 〈k|Λ |j〉 =
∑
k

ΩikΛkj. (3.0.26)

3.0.7 EIGENVALUES OF AN LINEAR OPERATOR

Let Ω be a linear operator over a vector space and a nonzero vector ket, |V 〉. We
say that the number ω is an eigenvalue of Ω when

Ω |V 〉 = ω |V 〉 . (3.0.27)

If this equation is satisfied we say that |V 〉 is an eigenket. This previous equation can be
rewritten as

(Ω− ωI ) |V 〉 = |0〉 . (3.0.28)

We know from results of linear algebra (DIRAC, 1981) that the condition to nonzero
eigenvectors is

det(Ω− ωI ) = 0. (3.0.29)

This equation gives us the eigenvalues ω. To find them, consider a basis 〈i|. We get that

〈i|Ω− ωI |V 〉 = 0, (3.0.30)

i.e., ∑
j

(Ωij − ωδij)vj = 0. (3.0.31)
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Setting the determinant to zero will give us an expression of the form
n∑

m=0
cmω

m = 0, (3.0.32)

where cm are scalars. This equation is called characteristic equation and

P n(ω) =
n∑

m=0
cmω

m, (3.0.33)

is called the characteristic polynomial.

All this results of linear algebra will be very useful to be applied on the construction
of quantum operators in a Fock space, witch will be treated in the next section.
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4 FOCK SPACE APPROACH TO EPI-
DEMIC MODELS

The Fock space approach has been used recently to represent the interaction of
particles by the law of mass-action, whose dynamics is represented from quantum operators.
More precisely, the Fock space inherits the structure of Hilbert spaces (YOUNG, 1988;
SANTOS; GADÊLHA; GAFFNEY, 2015) and is an algebraic construction used in quantum
mechanics to construct quantum states space of particles. The dynamics involved between
particle can be expressed in terms of creation and annihilation operators and identified
in a vector space using the Dirac notation, presented in the previous section. In general,
this representation can be done even for a infinite number of particles involved, although
symbolically we can only achieve a finite number. Other Fock space approaches were used
to obtain analytic results about stochastic epidemic models. In (SCHÜTZ; BRANDAUT;
TRIMPER, 2008) was possible to obtain the exact solutions for the density population,
compared to stochastic simulation algorithms for a large number of individuals. The work
in (MONDAINI, 2015) was possible to obtain numeric solutions for the improved SIR
model applied to Hepatitis C dynamics population from the moment generating function.
The idea is adopt the same techniques applied in the work of chemical reactions as a finite
and closed population respecting the dynamic imposed by an epidemic model. Suppose we
have a closed distinct population doted of k species N1, N2, · · · , Nk, totaling N individuals,
(i.e.,

k∑
j=1

Nj = N) respecting some kind of interaction τ between them that occurs at rates

r(τ). At each interaction, each species Nj begins with a certain number of individuals,
mj(τ), and after interaction, results in an updated number, nj(τ), of this species.

This dynamics can be described via

k∑
j=1

mj Nj(t)
r(τ)−−→

k∑
j=1

nj Nj(t) , (4.0.1)

where T is the set of interactions, , τ ∈ T .

Furthermore, the probability of finding the system in a given state

N(t) = (N1(t), . . . , Nk(t))

at time t is denoted by P(N, t). Considering τN′→N the transition rates in witch the system
jumps from the state N′ to N and a sufficiently small time interval (t+ ∆t) we have clearly
that

P(N, t+ ∆t) = [1−
∑
N′
τN→N′∆t]P(N, t) +

∑
N′
τN′→NP(N, t)∆t+O(∆t2), (4.0.2)
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or, equivalently,

P(N, t+ ∆t)− P(N, t)
∆t =

∑
N′

[τN′→NP(N′, t)− τN→N′P(N, t)] +O(∆t). (4.0.3)

Taking ∆t→ 0 we have

∂P(N, t)
∂t

=
∑
N′

[τN′→NP(N′, t)− τN→N′P(N, t)] , (4.0.4)

where the transition rates, τN′→N, between the configurations N′ and N are independent
of the time. To start exploiting Fock space tools, a given configuration state of the system
is represented in the Fock space by a direct product of the Hilbert space Sj for each species
Nj in the population. Symbolically we have Si = {1, . . . , N}, where N is the maximal
number of individuals and our Fock space is defined by F = SN1

⊗
. . .
⊗SNk . Hence with

sj ∈ Sj, a state with sj individuals from species Nj ∈ {N1, . . . , Nk} is an element of the
Fock space and can be represented in Dirac’s bra-ket notation via |n〉 = |s1 . . . sk〉 , and is
referred to as a pure Fock state, with the set of all pure Fock states providing a basis for
the Fock space. With the probability of being in a state N at time t, from the master
equation, P(N, t), rewritten in the new notation as P (n, t), the stochastic system at time
t can be fully characterized by |Ψ(t)〉, which is defined via the linear summation of pure
Fock states

|Ψ(t)〉 :=
∑
n

P (n; t) |n〉 .

We introduce the creation and annihilation operators for each species, which act
on the pure Fock states via

γ†j |n〉 = |s1 . . . (sj + 1) . . . sk〉

γj |n〉 = sj |s1 . . . (sj − 1) . . . sk〉 , (4.0.5)

with linearity determining how γ†j , and γj operate on a general element of the Fock space.
It is straightforward to confirm that the commutation rule [γj, γ†k] = δjk is satisfied, whence
the Master equation can be recast as a Schrödinger equation, with i~ = 1 ,

∂ |Ψ(t)〉
∂t

= −H(γ†1, γ1, . . . , γ
†
k, γk) |Ψ(t)〉 . (4.0.6)

The resulting solution is explicitly given in terms of the quasi-Hamiltonian H

|Ψ(t)〉 = exp
(
−H(γ†1, γ1, . . . , γ

†
k, γk)t

)
|Ψ(0)〉 . (4.0.7)

With γ†j , and γj respectively denoting the creation and annihilation operators for the species
Sj for the individual populations in (4.0.1), the contribution to the quasi-Hamiltonian, H,
from the forward population interaction can be written as (BAEZ; FONG, 2013)

H = −
∑
τ∈T

r(τ)
[
γ†
n(τ) − γ†m(τ)

]
γm(τ). (4.0.8)



Chapter 4. Fock Space approach to Epidemic Models 54

All this representation is made symbolically in a vector space, and the basis vectors are
identified with the possible states on the Fock space. This way, we use symbolic algebra
to calculate the matrices representing the general dynamics of the pseudo - Hamiltonian
and, using methods of symbolic and numeric linear algebra we can find solutions for the
stochastic problem.
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4.0.1 FOCK SPACE APPROACH TO SIR STOCHASTIC MODEL

In this subsection, we will restrict the Fock space approach to continue our study
of SIR model. It is useful recall the same expression of SIR stochastic model expressed in
2.3.7 which, using Fock space techniques, can be presented easily when written in terms of
quantum operators. We will show the explicit Hamiltonian for this epidemic model and
compare the symbolic and numerical solutions obtained using the Fock space approach
with Gillespie simulations. Furthermore, our approach can open the possibility of new
analytical results for the SIR model, like the mean time of an epidemic and a simpler
way to obtain the stochastic basic reproduction number, which corresponds to R0 in the
deterministic version of the SIR model. All the algebraic implementation was made in a
Maple code. Taking as reference the model in the previous subsection, the dynamics that
rules these three species are

S(t) + I(t) α−→ 2I(t) , (4.0.9)

I(t) β−→R(t) , (4.0.10)

with constant population
S(t) + I(t) +R(t) = N, (4.0.11)

as before. The quantum operators can be reformulated as

s† |n〉 = |(s+ 1) i r〉

s |n〉 = s |(s− 1) i r〉 , (4.0.12)

i† |n〉 = |s (i+ 1) r〉

i |n〉 = i |s (i− 1) r〉 , (4.0.13)

r† |n〉 = |s i (r + 1)〉

r |n〉 = r |s i (r − 1)〉 . (4.0.14)

The quasi-Hamiltonian, written in terms of creation and annihilation operators as in Eq.
[4.0.14], is given by

H = −α((i†)2 − s†i†)si− β(r† − i†)i. (4.0.15)

Furthermore, the ket |s i r〉 represents a state with s susceptible, i infected and r recovered
people. The Fock Space associated can be write as

F = S ⊗ I ⊗R. (4.0.16)

In general, a basis for 4.0.16 is constituted by all kets |sj ij rj〉 with sj ∈ S, ij ∈ I, and
rj ∈ R, respectively such that sj + ij + rj = N are fixed, representing the conservation of
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the total number of population. This way, the matrix element of 4.0.15 can be expressed
as

hjk = −ik
((
−δij ,ik (α sk + β) δsj ,sk + sk δsj ,sk−1α δij ,ik+1

)
δrj ,rk + β δsj ,skδij ,ik−1δrj ,rk+1

)
.

(4.0.17)
A general state of the system can be written as

|Ψ(t)〉 =
∑

sj ,ij ,rj

P (sj, ij, rj; t) |sj ij rj〉 , (4.0.18)

or, alternatively,
|Ψ(t)〉 =

∑
sj+ij+rj=N

P (sj, ij, rj; t) |sj ij rj〉 , (4.0.19)

where P (sj, ij, rj ; t) is the probability of the system be found in a state with sj susceptible,
ij infected and rj recovered at time t, respectively, while the sum runs over all (N+1)(N+2)

2

vectors in the Basis set. Eq. [4.0.19] corresponds to the solution of the Schrodinger’s
equation

|Ψ(t)〉 = exp(−Ht) |Ψ(0)〉 , (4.0.20)

where |Ψ(0)〉 is the initial condition of the system, corresponding to some vector of the
Basis set. The latter further provides a straightforward manner to evaluate all the moments
for the system via

< γl > =
∑

sj ,ij ,rj

γljP (sj, ij, rj; t)

=
∑

sj+ij+rj=N
γljP (sj, ij, rj; t), (4.0.21)

with l > 0, γ ∈ {S, I, R} and γj ∈ {sj, ij, rj}.

The characteristic polynomial of H is

p(λ) = λN+1
N∏
r=1

pr(λ), (4.0.22)

where
pr(λ) =

r−1∏
k=0

(λ− λrk), r = N, (N − 1), . . . , 3, (4.0.23)

p2(λ) = (λ− (α + β))(λ− 2β), p1(λ) = λ− β (4.0.24)

and
λrk = ark · α + brk · β, (4.0.25)

here, ark and brk are indexed sequences with r terms, each one, satisfying the recurrent
formulas

ark = 3ark−1 − 3ark−2 + ark−3,

ar0 = r − 1,

ar1 = 2(r − 2),

ar2 = 3(r − 3), (4.0.26)
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for r = N, (N − 1), . . . , 1 and 0 ≤ k ≤ r − 1, N ≥ 3, and

brk = brk−1 + 1,

br0 = 1, (4.0.27)

for r = N, (N − 1), . . . , 1 and 0 ≤ k ≤ r− 1 and N ≥ 1 . The equations 4.0.26 and 4.0.27
can be reformulated as

ark = −k2 + (r − 2)k + r − 1, (4.0.28)

and

brk = k + 1, (4.0.29)

both for r = N, (N − 1), . . . , 1 and 0 ≤ k ≤ r − 1, N ≥ 1. Here, r is an upper index, not
an exponent. In fact, the eigenspace whose eigenvalue is zero has dimension N + 1. This
is explained by the fact the vectors in basis set of the form |(N − j) 0 j〉 , 0 ≤ j ≤ N

generates this space. In order to evaluate exp(−Ht), we compute the Jordan normal
form of H, JH , a matrix whose order is (N+1)(N+2)

2 , and write H = Q.JH .Q
−1 to find

|Ψ(t)〉 = Q exp(−JHt)Q−1 |Ψ(0)〉. Choosing an appropriate basis (i.e, an ordinate basis
set whose the firsts N + 1 vectors has null eigenvalues) we are able to find a matrix Q so
that the solution can be simplified by

exp(−JHt) =

 I O

O e−Dt

 , (4.0.30)

where I is the identity matrix of order N + 1, e−Dt is the matrix exponential of −Dt, the
matrix of order N(N+1)

2 corresponding to the eigenspace whose eigenvalues are all the λrk
and O are null matrices of appropriated sizes. The expression of Jh in the diagonal form in
(4.0.30) is not guaranteed, once that the operatorH may not be diagonalizable. For example,
taking α = β = 1 the operator has 1 and 2 as nonzero eigenvalues, but {[−1 1 0 0 0 0], [1 −
2 1 0 0 0]} as eigenspace (a 2-dimentional space, instead of three). Otherwise, the expression
in 4.0.30 can be obtained by the Jordan’s algorithm. Another efficient alternative way to
obtain the analytic results is using Laplace transform, defined via

L[f(t)] :=
∫ ∞

0
f(t)e−ptdt, (4.0.31)

and thus we obtain
L[|Ψ(t)〉] = (p In −H)−1 |Ψ(0)〉 . (4.0.32)

Assuming a representation of the Fock-space, and thus the Hamiltonian H, in terms of
matrices, |Ψ(t)〉 can also be written in terms of the inverse Laplace transform

|Ψ(t)〉 = 1
2πi

∫ γ+i∞

γ−i∞
dp ept

adj(p In −H) |Ψ(0)〉
det(p In −H) , (4.0.33)
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where adj(M) denotes the adjugate of the matrix M and this integral can be evaluated
by a sum of residues indexed by the eigenvalues of H. Following the same steps of Bailey
(BAILEY et al., 1975), we can redefine the total size of an epidemic from the exacts
solutions. Considering the states whose the number of susceptible are zero, the Probability,
Pw, of an epidemic of total size w, not counting the initial quantity of infected, taking
the limit when t→∞ from each row of the vector in the equation 4.0.20 satisfying I = 0.
The probability Pw is given by the formula

Pw = lim
t→∞

P (S0 − w, 0, w; t)

= lim
t→∞
〈S0 − w 0w| e−Ht |Ψ(0)〉 ,

0 ≤ w ≤ S0, (4.0.34)

where S0 is the initial number of susceptible population. Note that Pw changes according
to the initial state chosen.

Furthermore, the results about analytic expression give us a way to estimate the
mean time of an epidemic, inherited from the approach of the first-passage time problem
(GILLESPIE; SEITARIDOU, 2012). Suppose η0 a state whose number of infectives are
zero. The probability of the system does not reach the state η0 at the time t is given by

P (η 6= η0, t) = 1−
∑
η=η0

〈η| e−Ht |Ψ(0)〉 . (4.0.35)

Let T be the duration time of the epidemic. The cumulative distribution for this time is
given by

F (t) = P (η = η0, t ≤ T ) =
∑
η=η0

〈η| e−Ht |Ψ(0)〉 , (4.0.36)

and thus, the probability distribution of the random variable T is

f(t) = ∂

∂t

∑
η=η0

〈η| e−Ht |Ψ(0)〉

= ∂

∂t

N∑
j=0
〈N − j 0 j| e−Ht |Ψ(0)〉 . (4.0.37)

All the moments of the epidemic time can be calculated by the formula

〈T l〉 =
∫ ∞

0
tlf(t)dt. (4.0.38)

Explicitly, we have

〈T l〉 =
∫ ∞

0
tl
∂

∂t

N∑
j=0
〈N − j 0 j| e−Ht |Ψ(0)〉 dt. (4.0.39)

We can also introduce the stochastic basic reproduction number, R0, from the results in
terms of the mean of susceptible population and its rates of infection and recovery. We
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define R0 by the mean of the number of infectious due to the first infectious case, called
the patient zero. Using the braket notation,

R0 = 〈# infectious cases due to patient zero〉 . (4.0.40)

To help our approach, consider z(t) the mean number of infectious cases due to patient
zero at time t. The supposed events that can happens in a small space of time ∆t are that
(A1) the patient zero does not infect any susceptible at the interval (t, t+∆t), (A2) we have
the infection of one susceptible only at this interval or (A3) more than one. Remember
that in our approach we are considering time intervals small enough that there at most
one infection in the interval. Considering Y as the number of infected by the patient zero
at the interval (t, t+ ∆t) we have that

z(t+ ∆t) =
3∑
j=1
〈Y ;Aj〉P (Aj)

= 〈Y ;A1〉P (A1) + 〈Y ;A2〉P (A2) + o(∆t). (4.0.41)

One should add the meaning of this terms is not that bra-ket notation. Analyzing 〈Y ;A1〉
we have by the definition

〈Y ;A1〉 = z(t). (4.0.42)

〈Y ;A2〉 is simplified by observing that we have one more infected so that

〈Y ;A2〉 = 〈# of infectives at time t, +1〉

= 〈# of infectives at time t〉+ 1

=z(t) + 1, (4.0.43)

where the second equality is possible due to the properties of random variables. The events
A1, A2 and A3 are independents, so we have that

P (A1) + P (A2) + P (A3) = P (A1 ∪ A2 ∪ A3) = 1. (4.0.44)

Thus, it is sufficient to know about one of this probabilities. The probability P (A2) can be
estimated by the law of total probabilities. More specifically, suppose we have j susceptible
at the time interval [t, t+ ∆t]. The possibility of A2 depends on the probability of having
j susceptible at time t, the probability of the patient zero not be removed at this time and
infects some of the j susceptible at the time interval. This last one, obviously, depends
directly of the rate of infection and number of susceptible and infected. Denoting P1(t)
the probability of not removing the patient zero at time t we have that

P (A2) =
∑
j

P (S = j; t) · P1(t) · α · j · 1 ·∆t

= αP1(t)∆t
(∑

j

jP (S = j; t)
)

= αP1(t)∆t 〈S(t)〉 . (4.0.45)
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The P1(t) is estimated as follows: On fact, the probability of not having the patient zero
removed at time interval [t, t+ ∆t] depends on the probability of not being removed at
time t and not removed at the interval (t, t+ ∆t). Explicitly,

P1(t+ ∆t) = P1(t)(1− β∆t), (4.0.46)

i.e.,

P1(t+ ∆t)− P1(t)
∆t = −βP1(t). (4.0.47)

Taking ∆t→ 0 we have

dP1

dt
= −βP1, (4.0.48)

whose solution for initial condition P1(0) = 1 is trivially

P1(t) = e−βt. (4.0.49)

Substituting on 4.0.45,

P (A2) = αe−βt 〈S(t)〉∆t, (4.0.50)

and thus,

P (A1) = 1− αe−βt 〈S(t)〉∆t. (4.0.51)

substituting 4.0.42, 4.0.43, 4.0.45 and 4.0.51 on 4.0.41 we have

z(t+ ∆t) = [1− αe−βt 〈S(t)〉∆t]z(t) + αe−βt 〈S(t)〉∆t [z(t) + 1]. (4.0.52)

Expanding and taking ∆t→ 0 we have

dz

dt
=− αe−βt 〈S(t)〉 z(t) + αe−βt 〈S(t)〉 [z(t) + 1]

=αe−βt 〈S(t)〉 . (4.0.53)

Considering that the only infected at time t = 0 is the patient zero, we have the initial
condition z(0) = 0 and, by integration,

z(t) = α
∫ t

0
e−βτ 〈S(τ)〉 dτ, (4.0.54)

thus, by the initial definition of R0 in 4.0.40 we finally have

R0 = α
∫ ∞

0
e−βτ 〈S(τ)〉 dτ. (4.0.55)

In general, the stochastic basic reproduction number will depend on the parameters α,β
and the total size of population, N , once that the mean number of susceptible has this
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dependence. The convergence of 4.0.55 is guaranteed because of all the dominant terms in
the equation of 〈S(t)〉 are exponential with negative signs. Clearly, the analytic expression
for R0 has a direct dependence with the deterministic basic reproduction number, ρ.

To see explicitly example, consider a situation when N = 2, where we have one
infected as initial condition. By 4.0.11, we have that all possible kets are

|1〉 = |0 0 2〉 , |2〉 = |0 1 1〉 , |3〉 = |0 2 0〉 ,

|4〉 = |1 0 1〉 , |5〉 = |1 1 0〉 , |6〉 = |2 0 0〉 .

Explaining the master equation by Bailey in 2.3.7 we have

dP00
dt

= ρP01
dP01
dt

= −ρP01 +2ρP02
dP02
dt

= −2ρP02 +P11
dP10
dt

= ρP11
dP11
dt

= −(1 + ρ)P11
dP20
dt

= 0

(4.0.56)

with initial condition P11(0) = 1. We can obtain the same expression by the Fock space
approach just taking the identifications α = 1, β = ρ, Pjk(t) = P (j, k,N − j − k; t) and
setting the information in vector form, as in 4.0.6.

The matrix element of the quasi-Hamiltonian is given by Hjk = 〈j|H |k〉, where H
is specified in Eq. [4.0.15], allowing its matrix representation to be written as

H =



0 −β 0 0 0 0

0 β −2 β 0 0 0

0 0 2 β 0 −α 0

0 0 0 0 −β 0

0 0 0 0 α + β 0

0 0 0 0 0 0



(4.0.57)

The general solution is |Ψ(t)〉 = exp(−Ht) |Ψ(0)〉, where |Ψ(0)〉 = |5〉, while the charac-
teristic polynomial of H is

p(λ) = λ3(λ− (α + β))(λ− 2β)(λ− β) (4.0.58)

Since β/α 6= 1, the matrix Q represents the changing basis to the basis of eigenvectors,
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that can be expressed in the form

Q =



0 0 1 1 −1 −2 β2

(α−β)(α+β)

0 0 0 −2 1 2 β
α−β

0 0 0 1 0 − α
α−β

0 1 0 0 0 − β
α+β

0 0 0 0 0 1

1 0 0 0 0 0



, (4.0.59)

where the firsts 3 vector basis are |1〉 , |4〉 and |6〉 , the vectors whose eingenvalues are zero.
The remaining eigenvectors can be found by known algebra techniques. This way, it is
possible to write H = Q.JH .Q

−1 to find |Ψ(t)〉 = Q exp(−JHt)Q−1 |Ψ(0)〉, since

exp(−JH) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 e−2β 0 0
0 0 0 0 e−β 0
0 0 0 0 0 e−(α+β)


, (4.0.60)

where JH is a 6 by 6 matrix whose diagonal is the eigenvalues of H. With the informa-
tion embedded in the above matrices, an analytical expression for |Ψ(t)〉 can be readily
determined

|Ψ(t)〉 = P (0, 0, 2; t) |1〉+ P (0, 1, 1; t) |2〉+ P (0, 2, 0; t) |3〉

+P (1, 0, 1; t) |4〉+ P (1, 1, 0; t) |5〉+ P (2, 0, 0; t) |6〉 ,

(4.0.61)

where P (0, 0, 2; t), P (1, 1, 0; t), P (0, 2, 0; t), P (1, 0, 1; t), P (1, 1, 0; t) and P (0, 0, 2; t) are
given by Eqs. [4.0.62]–[4.0.73], respectively.

P (0, 0, 2; t) = e−2β tα2 + e−2β tαβ − 2e−β tα2 + 2e−β tβ2

α2 − β2

−2e
−(α+β)tβ2 + α2 − αβ

α2 − β2

(4.0.62)

P (0, 1, 1; t) = 2 − e−2β tα + e−β tα− e−β tβ + e− (α+β)tβ

α− β
(4.0.63)
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P (0, 2, 0; t) =
α
(
−e− (α+β)t + e−2β t

)
α− β

(4.0.64)

P (1, 0, 1; t) =
β
(
1− e−(α+β)t

)
α + β

(4.0.65)

P (1, 1, 0; t) = e−(α+β)t (4.0.66)

P (2, 0, 0; t) = 0, (4.0.67)

for α 6= β and

P (0, 0, 2; t) = e−2β tβ t+ 3/2 e−2β t − 2 e−β t + 1/2 (4.0.68)

P (0, 1, 1; t) = −2 e−2β tβ t− 2 e−2β t + 2 e−β t (4.0.69)

P (0, 2, 0; t) = e−2β tβ t (4.0.70)

P (1, 0, 1; t) = −1/2 e−2β t + 1/2 (4.0.71)

P (1, 1, 0; t) = e−2β t (4.0.72)

P (2, 0, 0; t) = 0, (4.0.73)

for α = β. In particular, for this simple case of two total individuals, we have

< Sl > = P (1, 0, 1; t) + P (1, 1, 0; t) + 2lP (2, 0, 0; t),

< I l > = P (0, 1, 1; t) + 2lP (0, 2, 0; t) + P (1, 1, 0; t),

< Rl > = 2lP (0, 0, 2; t) + P (0, 1, 1; t) + P (1, 0, 1; t), (4.0.74)

for l > 0, l ∈ N. The Pw’s are given in terms of α and β by

P0 = β

α + β
, (4.0.75)

P1 = α

α + β
. (4.0.76)

The same analytic results obtained here can be compared to (BAILEY et al., 1975) (table
6.2, section 6.4) by taking α = 1 and β = ρ. This way, we can obtain the parameter
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estimation as well, using the likelihood function score in 2.3.33. The figure 10 shows
the probability distribution according to the different values of ρ and a fixed population
N = 35, whose just one is infected and is starting the epidemic. Due to computational
limitation, we were not able to obtain the analytic expression for the Pw for large sizes. All
the calculus was made numerically, taking an accuracy of 6 digits and taking a very large
time (t = 1011), that still a good approximation to the real values. By simple analysis,
we can observe that the probabilities of having an epidemic involving a large number of
infection increases the smaller ρ is. Large values of ρ revels lower probability of reaching a
large number of infectives.

Figure 10: Probability of the final total size of the epidemic for 34 susceptible starting
from one infected.
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Using 4.0.75 and 4.0.76 we can calculate the mean time of epidemic and the
stochastic R0 for 2 individuals, one infected as initial condition. It is given by

〈T 〉 = 1
2β (α2 − β2) lim

t→∞

[
2 α2β t

(eβ t)2 + 2 αβ2t

(eβ t)2 − 4 α
2β t

eβ t

+4 β2

eβ t − 2 β2

eα teβ t + 3α2 − αβ − 2 β2
]
,

(4.0.77)

or, explicitly,
〈T 〉 = 3α + 2β

2β(α + β) , (4.0.78)

both formulas valid since α 6= β. If α = β then

〈T 〉 = −1/4 1
β

lim
t→∞

[
− 4 β2t2

(eβ t)2 + 8 β teβ t − 6 β t

(eβ t)2 + 8
(
eβ t
)−1
− 3

(
eβ t
)−2
− 5

]
,

(4.0.79)

i.e.,

〈T 〉 = 5
4β . (4.0.80)

Table 3: Mean time of epidemic for different sizes of population, in fuction of α and β.
Here, is considered one infected as initial condition.

Number
of

Individuals
(N)

Mean time
of

epidemic
(〈T 〉)

1 1
β

2 3α+2β
2β (α+β)

3 11α3+26α2β+15αβ2+3β3

2β (2α3+5α2β+4αβ2+β3)

4 50α6+213β α5+361α4β2+282α3β3+111α2β4+23αβ5+2β6

2β (12α6+52β α5+91α4β2+82α3β3+40α2β4+10αβ5+β6)

5 3288α10+20948β α9+58424α8β2+93578α7β3+92475α6β4+58110α5β5+23659α4β6+6310α3β7+1085α2β8+110αβ9+5β10

5β (288α10+1848β α9+5204α8β2+8458α7β3+8777α6β4+6072α5β5+2835α4β6+882α3β7+175α2β8+20αβ9+β10)
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Using the equation 4.0.55 we have

R0 = α lim
τ→∞
−e−α τ−β τe−β τα + e−β τα + 2 β e−β τ − 2α− 2 β

(α + 2 β) (α + β) , (4.0.81)

or, explicitly

R0 = 2α
α + 2 β . (4.0.82)

The tables 3 and 4 shows the Mean time of the epidemic and R0, respectively, for
N ∈ {1, 2, 3, 4, 5}. Considering α = λβ it is possible to understand the dynamics of
infection from the patient zero and the duration of the epidemic for different sizes of
population, as shown in the figure 11.

Table 4: Stochastic basic reproduction number for different sizes of population, in fuction
of α and β.

Number
of

Individuals
(N)

Stochastic
basic reproduction

number
(R0)

1 0

2 2α
2β+α

3 α (5α2+20β α+12β2)
2α3+9β α2+13β2α+6β3

4 6α (34α5+232β α4+628β2α3+739β3α2+378β4α+72β5)
72α6+522α5β+1531α4β2+2325α3β3+1928α2β4+828αβ5+144β6

5 2α (1776α8+16244α7β+63580α6β2+139751α5β3+181371α4β4+138806α3β5+61076α2β6+14472αβ7+1440β8)
1152α9+10944α8β+45016α7β2+105204β3α6+153902α5β4+146111β5α4+90009α3β6+34696β7α2+7596αβ8+720β9
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Figure 11: Graphs of the stochastic basic reproduction number (R0) and the mean time of
epidemic in terms of λ (for fixed values of β), for different sizes of population.

Even being a powerful tool in terms of explaining all the algebraic results in
a simple way, our Maple code was not optimized do express analytic results to large
populations, once that the internal computational methods of calculating exp(−Ht) may
not be efficient. Furthermore, our hardware limitations did not allow us to compute numeric
results in a acceptable time processing. Perhaps, the actual method can be improved from
computational techniques that uses known results of sparse matrices (MOLER; LOAN,
1978). Even so, the actual numerical method via Fock space make possible to express
graph results to the approach. Some of this results was compared to useful stochastic
simulation algorithm (ERBAN; CHAPMAN; MAINI, 2007).

The figure 12 shows an example of the epidemic graph starting with one infected for
N = 35, α = 1.0 and β = 5.0. The graph was plotted using the same technique adopted by
the approach in the Fock-space, but was obtained numerically due to hardware limitations,
and then, the excessive time of expressing an analytic formula.

In this case, the rate β = 5.0 was enough to give a power of infection around 86%
of all population. It can be seen by analyzing the total number on recovered population at
the end of epidemic or looking at the remaining susceptible population, which is around
15% of the initial susceptible population. The centre of the epidemic occurs right after the
initial condition for the epidemic. Considering the time scale in weeks, this graph shows
that we have the biggest number of infected in a single day after starting the epidemic.

4.0.1.1 THE SIR STOCHASTIC SIMULATION

To compare the obtained results about the epidemic model we adopted the Gille-
spie’s first reaction method, described as follows:

• Set t = 0, S(0) = S0, I(0) = I0, R(0) = R0;
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Figure 12: A sample of the SIR dynamic population.

• Generate r1, r2 ∈ (0, 1) two random variables uniformly distributed;
• Calculate the propensities: α1 = αS(t)I(t), α2 = βI(t), α0 = α1 + α2;
• Take τ = 1/α0 log(1/r1);
• Update the time: t+ τ ;
• Update the population:

S(t+ τ) =

 S(t)− 1, if r2 ≥ α1/α0

S(t), if r2 < α1/α0
,

I(t+ τ) =

 I(t) + 1, if r2 ≥ α1/α0

I(t)− 1, if r2 < α1/α0
,

R(t+ τ) =

 R(t), if r2 ≥ α1/α0

R(t) + 1, if r2 < α1/α0
;

• Repeat steps 2− 6 until some stop command.
Alternative ways of building stochastic algorithms can be found in (ERBAN; CHAPMAN;
MAINI, 2007; TAHERKHANI; PARSAFAR; RAHIMITABAR, 2006). Notice that the
manual construction of this algorithm needs caution to avoid bugs and errors when the
number of infectives vanishes, once that we have a division by zero in the 4th step. A
efficient simulation software, Cain, is provided by Sean Mauch (MAUCH; STALZER, 2011)
and available in the link (MAUCH, ).
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Bellow, the figures 13,14 and 15 show a sample of 10 experiments for N = 35,
α = 1.0 and β = 5.0, for each population.

Figure 13: Stochastic simulation of susceptible population for N = 35, α = 1.0 and
β = 5.0.

Figure 14: Stochastic simulation of infective population for N = 35, α = 1.0 and β = 5.0.
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Figure 15: Stochastic simulation of recovered population for N = 35, α = 1.0 and β = 5.0.

Figure 16: Numeric solution via Fock space approach versus the mean of stochastic simu-
lations, for N = 35, S0 = 34, I0 = 1, α = 1.0 and β = 5.0.



Chapter 4. Fock Space approach to Epidemic Models 71

Bellow, in the figures 16 and 17 we have the comparison between the numeric
solutions using the Fock space approach and the mean of 500 experiments realized by
Cain software, using the direct method of Gillespie stochastic simulation algorithm, 80
frames and allowed 80 max steps in a single trajectory. Without loss of generality, we can
fix α = 1.0 for different values of β, so that ρ = β and thus is possible to see the difference
between the epidemic peak for various values of ρ.

Figure 17: Different epidemic curves in function of time.

It is clear by the figure 17 that the exacts solutions for infectives are good approach
to the mean of this realizations, no matter the values of ρ. The variation of this values
represents graphically a changing of the power and duration of epidemic. More precisely,
the number of infected and total time of epidemic are increasing as the values of ρ decays.
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5 DISCUSSION

We introduced quantum mechanical techniques to study an important stochastic
epidemic model which serves as gateway to other models in epidemiology that still can
benefit from several analytic treatments to make its understanding reasonable. Using an
approach equivalent to (SANTOS; GADÊLHA; GAFFNEY, 2015), we made possible a
deeper and easier understanding of the stochastic SIR model. Analyzing the problem via
Master equations was a way to re-obtain the results found by Kermarck and McKendrick
(KERMACK; MCKENDRICK, 1927), without the necessity of using several tools and
techniques adopted in (BAILEY et al., 1975), besides having the analytic expressions of
the stochastic model, one of the main objectives of this work. Yet, by using the Fock space
representation, the calculus of the total size of epidemic now can be obtained from the
analytic solution, just as in the definition in Eq.(10), by taking the limits of solutions
corresponding to the states whose infected are zero, in analogy with a first exit time
problem.

Furthermore, the Fock-space approach implemented on Maple software made
possible to express the analytic solution for a small number individuals, besides having an
explicit symbolic process to express a recursive formula for the eigenvalues, for N ≥ 3,
and a direct formula for all natural number N , which can be verified in the Appendix.

We also pointed out that the full general expression of the eigenvalues of the
Hamiltonian presented in this work can be used as a strategy to get the analytic solution
to the stochastic model using Laplace transform, presented in (SANTOS; GADÊLHA;
GAFFNEY, 2015) and can be an alternative to the Fock-space method, for computing
exp(−Ht).

One efficient strategy, given that we had control of the solution for small sizes of the
system, was to analyze the general form of the eigenvalues as a function of the size of the
system. We noticed a recurrence relation between the eigenvalues for a immediately smaller
population (N − 1) and the current population (N). In fact, the sequence if eigenvalues
found for a fixed population of size N contains all the terms of a population size N − 1
plus an extra number of eigenvalues. This results imply that the set of eigenvalues of
the Hamiltonian for a big sized population carries the mathematical information of the
eigenvalues from populations of smaller sizes recursively, as explained in section 4.0.1.

Although we analyzed a classical epidemic model, this alternative approach allow
us to compute analytically new results for the SIR model, in particular for the mean
time prediction for the duration of an epidemic. This result becomes a powerful tool,
since coupled to its biological parameters, and can be easily obtained from the matrix
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exponential exp(−Ht), as expressed in the equation 4.0.38, in contrast with the methods
usually adopted to study epidemic spread which was unable to give analytic information
about the mean time realized by stochastic simulations.

This method is successfully implemented for small system size. However, the
method has a computation limitation, since the complexity of the algorithm and the
time of computation blows up as the total number of population becomes large. This
limitation does not diminish the importance of the work, since in the beginning and in
the end of an outbreak we may have small number of individuals, a regime where our
approach holds. Yet, we also used numeric linear algebra techniques for a large systems.
The comparison between the numerical plot and the mean of stochastic realizations are
practically indistinguishable, as seen in the figure 17.

Even being limited the analytic expression to small populations, the method
still a interesting way to study the approaches some more complex epidemic models, as
arboviruses and veneral disease, as we will discuss in the next section.

5.1 FUTURE PLANS
As we said before, we have a interest in the approach of arboviruses epidemic

models, motivated by the actual situation of health public in Brazil. This work open
the prospect of using Fock Space representation for different stochastic epidemic models,
including models for arboviruses. Comparing to the stochastic SIR model, the dynamics
associated with this new model is more complex due to insertion of two new variables with
crucial information between human and vector population. Although the implementation
is similar to the SIR model, the logical treatment becomes complex even for a small
population of humans and vectors. Basically, the first attempt will still be working on
simple models with human and vectors using conservation of total population size. The
Human population is distributed in susceptible, infected and recovered, or removed, as
before, while the vector dynamics will be treated as susceptible and infected, once that the
most of disease vectors cannot be recovered. For a more realistic model we can consider
the removal of vectors as the number of death vector population. We point out that a
more realistic celular automata based dynamics of arboviruses was performed in (MELLO;
CASTILHO, 2014; MEDEIROS et al., 2011). The same analysis can be applied to humans,
even for the SIR model,this is not the focus here. Performing a simple analysis, we can
consider birth and death in the model kept at same rate so that we do not have change in
the population size over time. Considering the simplest model (without the birth-and-death
process) we have SH , IH and RH the human population and SV , IV the vectors satisfying

SH + IH +RH = N, (5.1.1)
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and

SV + IV = M, (5.1.2)

this way, respecting the conservation of total population. The interaction between popu-
lations are similar to the SIR model, but we do not have the contagion between human
species by direct touch anymore. Once a susceptible human it is needed to interact with
an infected vector to get the disease, so the relation is given by:

SH + IV → IH + IV . (5.1.3)

The same happens to vector population. In turn, infected humans interactions may
transmit the disease to a susceptible vector:

IH + SV → IH + IV (5.1.4)

We still have the possibility of infected humans become recovered as the time goes by:

IH → RH . (5.1.5)

From now, we can associate rates of recovering and infection, as before, to treat our
model in a stochastic approach. As a perspective, we hope to obtain the same qualitative
approach using Fock space techniques as the one used in SIR stochastic epidemic models,
willing to get the analytic solutions to this class of systems.
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APPENDIX A – MAPLE CODE FOR THE
SIR FOCK SPACE



> > 

> > 

> > 

> > 

(4)(4)

> > 

(3)(3)

(1)(1)

> > 

> > 

> > 

(2)(2)

(5)(5)

> > 

> > 

> > 

(6)(6)

> > 

#In this worksheet we will show the buinding of the SIR 
stochastic model in a Fock-Space

Setup(op = S,In,R);
* Partial match of  'op' against keyword 'quantumoperators'

* Partial match of  'In' against keyword 'spinorindices'
* Partial or misspelled keyword matches more than one possible keyword. Please select the 

correct one from below and try again.

interface(rtablesize=150);
10

version(Physics);
 User Interface: 1045715
         Kernel: 1045715
        Library: 1045715

1045715
# Notation S = "susceptible fock space" Sp = Creation Operator 
for the Susceptible, Sm = #Annihilation operator for the 
Susceptible
# Creating a set of creation operators and ajusting for the 
suitable phase
N:=1;
for i from 1 to N do
Sp[i]:= Creation(S,i,phaseconvention= proc(n) 1 end proc,notation
= explicit); 
# Same thing for the Annihilation operator
Sm[i]:=Annihilation(S,i,phaseconvention= proc(n) n end 
proc,notation = explicit);
end do;

# Notation In = "Infected fock space" Inp = Creation Operator for
the Infected, Inm = #Annihilation operator for Infected
# Creating a set of creation operators and ajusting for the 
suitable phase
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(9)(9)

> > 

(8)(8)

> > 

> > 

> > 

(7)(7)

> > 

> > 

(6)(6)

> > 

> > 

N:=1;
for i from 1 to N do
Inp[i]:= Creation(In,i,phaseconvention= proc(n) 1 end proc,
notation = explicit); 
# Same thing for the Annihilation operator
Inm[i]:=Annihilation(In,i,phaseconvention= proc(n) n end 
proc,notation = explicit);
end do;

# Notation R = "Recovered fock space" Rp = Creation Operator for 
the Recovered, Rm = #Annihilation operator for  the Recovered
# Creating a set of creation operators and ajusting for the 
suitable phase
N:=1;
for i from 1 to N do
Rp[i]:= Creation(R,i,phaseconvention= proc(n) 1 end proc,notation
= explicit); 
# Same thing for the Annihilation operator
Rm[i]:=Annihilation(R,i,phaseconvention= proc(n) n end 
proc,notation = explicit);
end do;

#Transictions:
# First transiction
# S + In -> 2In (k1)
# Seccond transition
# In -> R (k2)

#First Hamiltonian piece, coupled to the constant k1 and defined 
as a procedure depending of this constant:
H1:=proc(k1) -Expand(k1*(Inp[1]*Inp[1]*Sm[1]*Inm[1]-Sp[1]*Sm[1]*
Inp[1]*Inm[1])); end proc;

H1(k1);
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> > 

> > 

(14)(14)

(15)(15)

> > 

> > 

> > 

> > 

(10)(10)

(6)(6)

(12)(12)

> > 

(11)(11)

(13)(13)

#The same to the second Hamiltonian piece, dependending of k2, 
instead.
H2:=proc(k2) -Expand(k2*(Rp[1]*Inm[1]-Inp[1]*Inm[1])); end proc;

H2(k2);

#Conecting the pieces:
H:=proc(k1,k2) H1(k1)+H2(k2); end proc;

H(k1,k2);

#Here, we will express each Hamiltonian's matrix element.
(Bra(S,si).Bra(In,ii).Bra(R,ri)).(H(k1,k2)).(Ket(R,rj).Ket(In,ij)
.Ket(S,sj));

#Creating the Basis (Now as a function of S, In, R). Here, we 
suppose some conservations #laws to reduce the dimension of fock 
space. In fact we use that S + In + R = N.  
Baseset:=proc(N) global B; global ket; global bra;global Bdim;
i:=1;

for si from 0 to N 
    do 
       for ii from 0 to N
           do
              for ri from 0 to N
                  do 
                     if si+ii+ri = N then                        
   
                         B[i]:=(si,ii,ri); 

                         ket[i]:=Ket(S,si).Ket(In,ii).Ket(R,ri);

                         bra[i]:=Bra(R,ri).Bra(In,ii).Bra(S,si);
                         print(i,B[i] = ket[i]);
                         i:=i+1;
                         end if;
                     end do;
              end do;
        end do;
end proc;
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> > 

> > 

(16)(16)

> > 

> > 

(15)(15)

(10)(10)

(6)(6)

#Defining a new procedure to generate the matrix whose basis 
depends of S, In and  R.
Mat:=proc(N,k1,k2)

delta:=proc(a,b) piecewise(a=b,1,0); end proc;
#Creating the Basis (Now as a function of sm, im, rm).  
Baseset:=proc(N)
global B; global ket; global bra;global Bdim;
i:=1;

for si from 0 to N 
    do 
       for ii from 0 to N
           do
              for ri from 0 to N
                  do 
                      if si+ii+ri = N then                       
    
                         B[i]:=(si,ii,ri); 

                         ket[i]:=Ket(S,si).Ket(In,ii).Ket(R,ri);

                         bra[i]:=Bra(R,ri).Bra(In,ii).Bra(S,si);
                               i:=i+1;
                            end if;
                  end do;
              end do;
        end do;
Bdim:=i-1;
end proc;
Baseset(N):
   for i from 1 to Bdim do
       for j from 1 to Bdim do
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> > 

> > 

(16)(16)

> > 

(15)(15)

(10)(10)

(6)(6)

#Replacing the Hamiltonian's matrix element found from the 
equation (14).
       A[i,j]:= -B[j][2]*((-delta(B[i][2], B[j][2])*(k1*B[j][1]+
k2)*delta(B[i][1], B[j][1])+k1*delta(B[i][1], B[j][1]-1)*B[j][1]*
delta(B[i][2], B[j][2]+1))*delta(B[i][3], B[j][3])+k2*delta(B[i]
[1], B[j][1])*delta(B[i][2], B[j][2]-1)*delta(B[i][3], B[j][3]+1)
);
       end do;
   end do;
Mt:= Array(1..Bdim,1..Bdim,(i,j)-> A[i,j]);
end proc;
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> > 

> > 

> > 

> > 

> > 

(21)(21)

(19)(19)

(16)(16)

> > 

> > 

(17)(17)

(23)(23)

(18)(18)

> > 

(15)(15)

(22)(22)

> > 

> > 

(10)(10)

> > 

> > 

(6)(6)

(20)(20)

#Defining the solution to the Hamiltonian from the matrix 
exonential -  Mat (in the fock space).
ExpHt:= proc(N,k1,k2,t) 
MatrixExponential(-Mat(N,k1,k2)*t); end proc;

# Defining a way to give each element (depending of each row and 
column) of the matrix exponential,
#ExpHt.
Expi:=proc(R,C,N,k1,k2,t) 
evalf(ExpHt(N,k1,k2,t)[R][C]); 
end proc;

#Defining a way to give the column vector from the matrix 
exponential
Vexp:=proc(N,C,k1,k2,t) 
Mat(N,k1,k2):
<seq(ExpHt(N,k1,k2,t)[i,C],i=1..Bdim)>: end proc;

#Taking the vector of susceptible population condition definded 
by the Baseset
Vs:=proc(k,N) 
Mat(N,k1,k2):
<seq(B[i][1]**k,i=1..Bdim)>: end proc;

Vs(1,2)

#The same for Infectives:
Vin:= proc(k,N) 
Mat(N,k1,k2):
<seq(B[i][2]**k,i=1..Bdim)>: end proc;
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> > 

> > 

(27)(27)

> > 

> > 

> > 

(16)(16)

> > 

(30)(30)

(23)(23)

(15)(15)

(26)(26)

(25)(25)

(24)(24)

> > 

> > 

(28)(28)

(10)(10)

> > 

(6)(6)

> > 

> > 

> > 

(29)(29)

#The same for recovered:
Vr:= proc(k,N) 
Mat(N,k1,k2):
<seq(B[i][3]**k,i=1..Bdim)>: end proc;

Sk:=proc(k,N,C,k1,k2,t) DotProduct(Vs(k,N),Vexp(N,C,k1,k2,t)); 
end proc;

Ink:=proc(k,N,C,k1,k2,t) DotProduct(Vin(k,N),Vexp(N,C,k1,k2,t)); 
end proc;

Rk:=proc(k,N,C,k1,k2,t) DotProduct(Vr(k,N),Vexp(N,C,k1,k2,t)); 
end proc;

Sk(1,3,9,1,2,t);
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> > 

> > 

> > 

> > 

(31)(31)

(16)(16)

> > 

(30)(30)

(23)(23)

(15)(15)

> > 

> > 

(10)(10)

(32)(32)

(6)(6)

#Displaying the graph for susceptible (with the deviation):
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> > 

> > 

> > 

(33)(33)

(16)(16)

> > 

(30)(30)

(23)(23)

(15)(15)

> > 

(10)(10)

> > 

(6)(6)
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> > 

> > 

(16)(16)

> > 

(30)(30)

(23)(23)

(15)(15)

> > 

> > 

(34)(34)

(10)(10)

(6)(6)
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> > 

> > 

> > 

> > 

(16)(16)

> > 

(30)(30)

(23)(23)

(15)(15)

(10)(10)

(6)(6)

> > 

(35)(35)
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> > 

> > 

(16)(16)

> > 

(30)(30)

(23)(23)

(15)(15)

(36)(36)

(37)(37)

(10)(10)

(6)(6)

> > 

(38)(38)

> > 
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> > 

> > 

(16)(16)

> > 

(30)(30)

(23)(23)

(15)(15)

(10)(10)

(6)(6)

(39)(39)

> > 
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> > 

> > 

(16)(16)

> > 

(40)(40)

(30)(30)

(23)(23)

(15)(15)

(10)(10)

(6)(6)

(39)(39)

> > 
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> > 

> > 

(16)(16)

> > 

(40)(40)

(30)(30)

(23)(23)

(15)(15)

(41)(41)

(10)(10)

(6)(6)

(39)(39)

> > 
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> > 

> > 

(16)(16)

> > 

(40)(40)

(30)(30)

(23)(23)

(15)(15)

(41)(41)

(10)(10)

(6)(6)

(39)(39)

(42)(42)

> > 
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> > 

> > 

> > 

(16)(16)

> > 

(40)(40)

(30)(30)

(23)(23)

(15)(15)

(41)(41)

> > 

(10)(10)

(6)(6)

(39)(39)

(42)(42)

> > 
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APPENDIX B – MAPLE CODE FOR THE
MATRIX EIGENVALUES



> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
(3)(3)

(5)(5)

> > 

> > 

(4)(4)

> > 

> > 
> > 

> > 

> > 

(2)(2)

> > 

(1)(1)

> > 

> > 

> > 

Error, (in genfunc:-rgf_findrecur) second argument is not a list
of 6 terms

Error, (in genfunc:-rgf_findrecur) second argument is not a list
of 6 terms

Error, (in genfunc:-rgf_findrecur) second argument is not a list
of 6 terms
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> > 

> > 

> > 

> > 

(10)(10)

(7)(7)

> > 

> > 

(8)(8)

> > 

> > 

> > 

> > 

(6)(6)

(9)(9)

> > 

> > 

> > 

Error, (in genfunc:-rgf_findrecur) second argument is not a list
of 6 terms
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(12)(12)

> > 

> > 

> > 

> > 

> > 

> > 

(15)(15)

(10)(10)

> > 

(16)(16)

> > 

(13)(13)

> > 

(14)(14)

(17)(17)

(11)(11)
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(19)(19)

> > 

> > 

> > 

(10)(10)

(18)(18)

(17)(17)
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(19)(19)

> > 

(10)(10)

> > 

(20)(20)

> > 

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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(19)(19)

> > 

(10)(10)

(20)(20)

(17)(17)
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> > 
> > 

(19)(19)

> > 

(10)(10)

(20)(20)
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APPENDIX C – MAPLE CODE FOR THE
MEAN TIME OF EPIDEMIC



(2)(2)

> > 

(1)(1)

> > 

> > 

> > 

#In this worksheet we will use the buinding of the Fock space of 
the SIR stochastic model to introduce the Mean time of epidemic.

#Creating the Basis (Now as a function of S, In, R). Here, we 
suppose some conservations laws to reduce the dimension of fock 
space. In fact we use that S + In + R = N.  
Baseset:=proc(N) global B; global ket; global bra;global Bdim;
i:=1;

for si from 0 to N 
    do 
       for ii from 0 to N
           do
              for ri from 0 to N
                  do 
                     if si+ii+ri = N then                        
   
                         B[i]:=(si,ii,ri); 

                         ket[i]:=Ket(S,si).Ket(In,ii).Ket(R,ri);

                         bra[i]:=Bra(R,ri).Bra(In,ii).Bra(S,si);
                         print(i,B[i] = ket[i]);
                         i:=i+1;
                         end if;
                     end do;
              end do;
        end do;
end proc;
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(2)(2)

(3)(3)

> > 

> > #Defining a new procedure to generate the matrix whose basis 
depends of S, In and  R.
Mat:=proc(N,k1,k2)

delta:=proc(a,b) piecewise(a=b,1,0); end proc;
#Creating the Basis (Now as a function of sm, im, rm).  
Baseset:=proc(N)
global B; global ket; global bra;global Bdim;
i:=1;

for si from 0 to N 
    do 
       for ii from 0 to N
           do
              for ri from 0 to N
                  do 
                      if si+ii+ri = N then                       
    
                         B[i]:=(si,ii,ri); 

                         ket[i]:=Ket(S,si).Ket(In,ii).Ket(R,ri);

                         bra[i]:=Bra(R,ri).Bra(In,ii).Bra(S,si);
                               i:=i+1;
                            end if;
                  end do;
              end do;
        end do;
Bdim:=i-1;
end proc;
Baseset(N):
   for i from 1 to Bdim do
       for j from 1 to Bdim do
       A[i,j]:= -B[j][2]*((-delta(B[i][2], B[j][2])*(k1*B[j][1]+
k2)*delta(B[i][1], B[j][1])+k1*delta(B[i][1], B[j][1]-1)*B[j][1]*
delta(B[i][2], B[j][2]+1))*delta(B[i][3], B[j][3])+k2*delta(B[i]
[1], B[j][1])*delta(B[i][2], B[j][2]-1)*delta(B[i][3], B[j][3]+1)
);
       end do;
   end do;
Mt:= Array(1..Bdim,1..Bdim,(i,j)-> A[i,j]);
end proc;
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(2)(2)

> > 

> > 
> > 

(4)(4)

(5)(5)

> > 

(3)(3)

#Defining the solution to the Hamiltonian from the matrix 
exonential -  Mat (in the fock space).
ExpHt:= proc(N,k1,k2,t) 
MatrixExponential(-Mat(N,k1,k2)*t); end proc;

#defining the moments of the epidemic time
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(2)(2)

(8)(8)

(6)(6)

> > 

> > 

(7)(7)

(5)(5)

> > 

(3)(3)

> > 

> > 

(10)(10)

> > 

> > 

(9)(9)

1
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(2)(2)

(3)(3)

(5)(5)

> > 

(10)(10)

> > 
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APPENDIX D – MAPLE CODE FOR THE
BASIC REPRODUCTION NUMBER



> > 

> > 

> > 

(1)(1)

(2)(2)

> > 

#In this worksheet we will show the buinding of the SIR 
stochastic Ro from the Fock-Space approach

#Creating the Basis (Now as a function of S, In, R). Here, we 
suppose some conservations #laws to reduce the dimension of fock 
space. In fact we use that S + In + R = N.  
Baseset:=proc(N) global B; global ket; global bra;global Bdim;
i:=1;

for si from 0 to N 
    do 
       for ii from 0 to N
           do
              for ri from 0 to N
                  do 
                     if si+ii+ri = N then                        
   
                         B[i]:=(si,ii,ri); 

                         ket[i]:=Ket(S,si).Ket(In,ii).Ket(R,ri);

                         bra[i]:=Bra(R,ri).Bra(In,ii).Bra(S,si);
                         print(i,B[i] = ket[i]);
                         i:=i+1;
                         end if;
                     end do;
              end do;
        end do;
end proc;
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> > 

(3)(3)

(2)(2)

> > #Defining a new procedure to generate the matrix whose basis 
depends of S, In and  R.
Mat:=proc(N,k1,k2)

delta:=proc(a,b) piecewise(a=b,1,0); end proc;
#Creating the Basis (Now as a function of sm, im, rm).  
Baseset:=proc(N)
global B; global ket; global bra;global Bdim;
i:=1;

for si from 0 to N 
    do 
       for ii from 0 to N
           do
              for ri from 0 to N
                  do 
                      if si+ii+ri = N then                       
    
                         B[i]:=(si,ii,ri); 

                         ket[i]:=Ket(S,si).Ket(In,ii).Ket(R,ri);

                         bra[i]:=Bra(R,ri).Bra(In,ii).Bra(S,si);
                               i:=i+1;
                            end if;
                  end do;
              end do;
        end do;
Bdim:=i-1;
end proc;
Baseset(N):
   for i from 1 to Bdim do
       for j from 1 to Bdim do
#Replacing the Hamiltonian's matrix element found from the 
equation (14).
       A[i,j]:= -B[j][2]*((-delta(B[i][2], B[j][2])*(k1*B[j][1]+
k2)*delta(B[i][1], B[j][1])+k1*delta(B[i][1], B[j][1]-1)*B[j][1]*
delta(B[i][2], B[j][2]+1))*delta(B[i][3], B[j][3])+k2*delta(B[i]
[1], B[j][1])*delta(B[i][2], B[j][2]-1)*delta(B[i][3], B[j][3]+1)
);
       end do;
   end do;
Mt:= Array(1..Bdim,1..Bdim,(i,j)-> A[i,j]);
end proc;
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> > 

(3)(3)

> > 

(4)(4)

(5)(5)

(2)(2)

> > 

#Defining the solution to the Hamiltonian from the matrix 
exonential -  Mat (in the fock space).
ExpHt:= proc(N,k1,k2,t) 
MatrixExponential(-Mat(N,k1,k2)*t); end proc;

Expi:=proc(R,C,N,k1,k2,t) 
evalf(ExpHt(N,k1,k2,t)[R][C]); 
end proc;
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> > 

> > 

(3)(3)

(8)(8)

(6)(6)

(9)(9)

> > 

> > 

> > 

> > 

(7)(7)

(2)(2)

> > 

(10)(10)

> > 

#Defining a way to give the column vector from the matrix 
exponential
Vexp:=proc(N,C,k1,k2,t) 
Mat(N,k1,k2):
<seq(ExpHt(N,k1,k2,t)[i,C],i=1..Bdim)>: end proc;

#Taking the vector of susceptible population condition definded 
by the Baseset
Vs:=proc(k,N) 
Mat(N,k1,k2):
<seq(B[i][1]**k,i=1..Bdim)>: end proc;

Vs(1,2)

Sk:=proc(k,N,C,k1,k2,t) DotProduct(Vs(k,N),Vexp(N,C,k1,k2,t)); 
end proc;

#Defining the R0 from susceptible population and the parameters, 
alpha and beta
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(12)(12)

> > 

(15)(15)

(11)(11)

(3)(3)

(13)(13)

> > 

(14)(14)

(2)(2)

> > 

> > 

> > 

> > 

(10)(10)

> > 

0
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