

FUNGOS HIPÓGEOS (BASIDIOMYCOTA) NA MATA ATLÂNTICA DO NORDESTE DO BRASIL

MARCELO ALOISIO SULZBACHER

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE MICOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE FUNGOS

FUNGOS HIPÓGEOS (BASIDIOMYCOTA) NA MATA ATLÂNTICA DO NORDESTE DO BRASIL

MARCELO ALOISIO SULZBACHER

Tese apresentada ao Programa de Pós-Graduação em Biologia de Fungos do Departamento de Micologia do Centro de Ciências Biológicas da Universidade Federal de Pernambuco, como parte dos requisitos para a obtenção do título de Doutor em Biologia de Fungos.

Área de Concentração Micologia Básica Orientador Iuri Goulart Baseia (Universidade Federal do Rio Grande do Norte – UFRN)

Co-orientador Admir José Giachini (Universidade Federal de Santa Catarina – UFSC)

Catalogação na Fonte: Bibliotecário Bruno Márcio Gouveia, CRB-4/1788

Sulzbacher, Marcelo Aloisio

Fungos hipógeos (Basidiomycota) na Mata Atlântica do Nordeste do Brasil / Marcelo Aloisio Sulzbacher. – Recife: O Autor, 2016.

151 f.: il.

Orientadores: Iuri Goulart Baseia, Ademir José Giachini Tese (doutorado) – Universidade Federal de Pernambuco. Centro de Biociências. Programa de Pós-graduação em Biologia de Fungos, 2016. Inclui referências

1. Diversidade 2. Fungos gasteroides 3. Restinga I. Baseia, Iuri (orient.) II. Giachini, Admir José (coorient.) III. Título.

579.5 CDD (22.ed.) UFPE/CCB-2017159

FUNGOS HIPÓGEOS (BASIDIOMYCOTA) NA MATA ATLÂNTICA DO NORDESTE DO BRASIL

MARCELO ALOISIO SULZBACHER

Data da defesa: 18 de fevereiro de 2016.

COMISSÃO EXAMINADORA

MEMBROS TITULARES

Dr. Iuri Goulart Baseia

(Orientador) Universidade Federal do Rio Grande do Norte

Dra. Bianca Denise Barbosa da Silva
Universidade Federal do Rio Grande do Norte

Dr. Felipe WartchowUniversidade Federal da Paraíba

Dr. Gladstone Alves da Silva

Universidade Federal de Pernambuco

Dra. Kátia Cavalcanti PôrtoUniversidade Federal de Pernambuco

Agradecimentos

A Deus por iluminar meu caminho e pelas conquistas concedidas, tornando-me confiante a cada etapa superada.

À UFPE, Departamento de Micologia e a Pós Graduação em Biologia de Fungos, pela oportunidade de realização do curso em uma instituição gratuita e de qualidade.

Aos auxílios financeiros agradeço à: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de doutorado e bolsa de estágio sanduíche no exterior (PDSE 99999.004997/2014-00); ao Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), pelo projeto de cooperação Brasil e Eslovênia (490648/2010-0).

Ao professor Dr. Iuri Goulart Baseia, por ter acreditado no meu potencial, pelos conhecimentos transmitidos, por toda a infraestrutura do seu laboratório, e principalmente por ter incentivado e permitido a realização desta pesquisa, meu muito obrigado.

Ao meu co-orientador, Dr. Admir José Giachini, pelos conhecimentos transmitidos, pelas discussões sobre o tema da tese, e por disponibilizar a infraestrutura de seu laboratório. Especialmente, meu muito obrigado ao amigo Admir e sua esposa Viviane pela amizade e pelos momentos compartilhados, por me hospedar em sua casa, muito obrigado! Agradeço também a todos os alunos e pesquisadores do laboratório MIP (Departamento de Microbiologia, UFSC) com quem tive contato durante as minhas visitas em Florianópolis.

Ao Dr. Tine Grebenc (Slovenian Forestry Institute), que sempre me incentivou, obrigado pelos ensinamentos e por acreditar no meu potencial como pesquisador. Muito obrigado a Anita Mašek (University of Ljubljana), pelos ensinamentos sobre as técnicas de estudo de fungos ectomicorrízicos.

Ao Dr. Eduardo R. Nouhra (IMBIV, Córdoba), por aceitar eu fazer uma etapa do meu doutorado em seu laboratório, por compartilhar seus conhecimentos, por todos os maravilhosos momentos que tive durante os meses em que estive em Córdoba. Estendo meus agradecimentos a todos os colegas de laboratório e pesquisadores com quem tive a oportunidade de compartilhar bons momentos profissionais e pessoais. Especialmente ao amigo Nicolás Pastor pelos ensinamentos e ajuda com a biologia molecular. À Laura S. Domínguez pelos importantes ensinamentos compartilhados sobre fungos hipógeos.

À banca examinadora, Dra. Bianca Denise Barbosa da Silva (UFRN), Dr. Felipe Wartchow (UFPB), Dr. Gladstone Alves da Silva (UFPE), Dra. Kátia Cavalcanti Pôrto (UFPE), pela contribuição neste trabalho, críticas e sugestões fornecidas.

Aos mestres e amigos Dr. Rodrigo Jacques (UFSM), Dra. Zaida Antoniolli (UFSM), pela amizade e pelos momentos de atividade profissional.

Agradecimentos especiais aos pesquisadores que contribuíram com opiniões, emails, ensinamentos e literatura, Bruno Goto, Eduardo Nouhra, Felipe Wartchow, María Martín, Matthew Smith, Reinhard Agerer, Takamichi Orihara, Tine Grebenc, Vagner Cortez.

A minha querida família, Elemo, Benilde, Ricardo, Regina e Arthur, pelos tantos anos de torcida, dedicação e para que este sonho se tornasse realidade, tiveram que suportar a minha ausência em vários momentos.

A minha querida noiva Mônica Stangarlin e sua família, pais Airton e Flora, Márcio e Jaqueline, pelo convívio e por toda a ajuda e incentivo, muito obrigado por compreenderem vários momentos em que não pude estar com vocês.

Aos queridos amigos e colegas do laboratório de Biologia de Fungos da UFRN, Ana Rodrigues, Bianca Silva, Camila Nobre, Donis Alfredo, Judcleidson Bezerra, Julieth Sousa, Nathália Mendonça, Rhudson Cruz, Ruy Lima, Thiago Accioly, Tiara Cabral, muito obrigado por todos os momentos e ajuda durante esses anos.

À Julieth Sousa, pelos belos mapas elaborados, ao Rhudson Cruz, por toda a ajuda com as pranchas e pelas belas ilustrações realizadas. À Tiara Cabral, pelos ensinamentos e ajuda com as análises filogenéticas.

Aos amigos botânicos pelos ensinamentos sobre a flora da Mata Atlântica do Nordeste, Dr. Jomar Jardim (UFSB), Luciano Soares e Wallace São Mateus.

Ao querido amigo e colega de doutorado Phelipe Costa, por toda a ajuda prestada durante esses anos em que estive realizando disciplinas do doutorado, você sempre esteve pronto para me ajudar, por me receber também em sua casa, obrigado por toda a ajuda e apoio meu amigo. A Vanilla Mergulhão, pelo apoio sempre carinhosamente prestado.

A todas as pessoas que de uma forma ou de outra contribuíram para o desenvolvimento desta conquista.

RESUMO

Os basidiomicetos sequestroides hipógeos têm sido considerados importantes integrantes de diversos ecossistemas terrestres, notadamente os florestais. Estão constituídos por diversas linhagens distintas que apresentam como características comuns os basidiomas angiocárpicos e subterrâneos. A distribuição destes fungos ainda é pouco compreendida e as comunidades de fungos hipógeos ocorrentes nas regiões tropicais e subtropicais são praticamente desconhecidas. Para o Brasil, os registros de fungos hipógeos são escassos, estes, geralmente são associados à vegetação exótica. Com o objetivo de ampliar o conhecimento sobre estes fungos naturalmente encontrados nas florestas da região Nordeste do Brasil, um estudo foi desenvolvido a partir da análise de espécimes coletados entre 2011 a 2013, nos fragmentos florestais de Mata Atlântica nos Estados do Rio Grande do Norte e Paraíba. Além dos estudos in situ, compilaram-se também dados de literatura, com o principal objetivo de fornecer um atual estado de conhecimento destes fungos em todo o continente Sul Americano. Para os estudos in loco, foram realizadas 33 expedições científicas nas áreas de estudo e um total de 24 coleções amostradas. Todo o material coletado foi também separado para extração, amplificação e sequenciamento do DNA, utilizando-se os marcadores ITS, LSU, apt6, e TEF-1alpha. Dentre os principais resultados deste estudo destacam-se a proposta de estabelecimento de dois novos gêneros para a ciência, Restingomyces (Phallales) e Sulcatospora (Boletales) e além das espécies novas Sulcatospora flava, Restingomyces reticulatus e Hysterangium atlanticum. A associação ectomicorrízica entre Hysterangium atlanticum foi determinada para espécies de Coccoloba alnifolia e C. laevis (Polygonaceae). Os resultados demonstraram que as florestas de Mata Atlântica no Nordeste do Brasil apresentam uma comunidade nativa de fungos hipógeos ainda pouco explorada. Muitos espécimes coletados são inéditos para a ciência, o que torna a pesquisa de fungos hipógeos na Mata Atlântica extremamente importante.

Palavras-chave: Diversidade. Fungos Gasteroides. Neotrópicos. Restinga. Taxonomia.

ABSTRACT

Hypogeous sequestrated Basidiomycota have been considered important members of various terrestrial ecosystems, notably forestry. These fungi comprise diverse independent lineages that have as common characteristics belowground basidiomata and enclosed hymenial development. The geographical distribution of these fungi is poorly understood and the hypogeous fungal communities related to tropical and subtropical areas remain virtually unknown. To Brazil, there are few reports of hypogeous fungi, these are generally associated with exotic forests. With the aim to increase the knowledge of these fungi naturally occurring in association with the Northeastern Brazilian vegetation, a study was developed based on the analysis of specimens sampled between 2011 and 2013 in fragments of the Brazilian Atlantic forest in the states of Rio Grande do Norte and Paraíba. In addition to the in situ surveys, literature records were also compiled to obtain the current knowledge of this group of fungi in the entire South American continent. In total, 33 field trips were carried out and a total of 24 specimens sampled. All material was also sampled for molecular studies using the ITS, LSU, apt6, and TEF-1\alpha markers. Among the main results, the proposition of two new genera, Restingomyces (Phallales) and Sulcatospora (Boletales), and the new species Restingomyces reticulatus, Sulcatospora flava and Hysterangium atlanticum. The ectomycorrhizal status of Hysterangium atlanticum and species of Coccoloba alnifolia and C. laevis (Polygonaceae) was also determined. The results has shown that Atlantic forest in Northeastern Brazil have a native community of hypogeous fungi and remains undersampled. Many of the specimens collected are new to science, which makes the study of great importance in the Brazilian Atlantic forests.

Key words: Diversity. Gasteroid Fungi. Neotropics. Restinga. Taxonomy.

LISTA DE FIGURAS

Figura 1: Representantes de fungos hipógeos. A – Arcangeliella borziana; B – Detalho do látex no perídio de A. borziana; C – Chondrogaster pachysporus; D – Descomyce albus; E – Hymenogaster niveus; F – Hysterangium inflatum; G-H – Setchelliogaste tenuipes; I – Restingomyces gen. nov.; J – detalhe da raiz de Coccoloba sp., coletada próximo ao fungo hipógeo (Sulzbacher-412) apresentando uma camada de hifas sobre a superfície da raiz.
Figura 2: Diagrama esquemático demonstrando como ocorre o processo de dispersão por micofagia envolvendo fungos hipógeos
Figura 3: Mapa da América do Sul apresentando os locais onde fungos hipógeos foram amostrados.
Figura 4: Restingomyces reticulatus Sulzbacher, B.T. Goto & Baseia, sp. nov. Holótipo (UFRN-fungos 1890). A – Raízes escavadas apresentando basidiomas associados; B - Basidiomas in situ; C – Basidiomas globosos imersos em matriz solo-raiz; D – Detalho da gleba apresentando uma columela bem desenvolvida
Figura 5: Restingomyces reticulatus Sulzbacher, B.T. Goto & Baseia, sp. nov. Holótipo (UFRN-fungos 1890). Basidiósporos montados em KOH 5% + Azul Algodão94
Figura 6: Restingomyces reticulatus Sulzbacher, B.T. Goto & Baseia, sp. nov. Holótipo (UFRN-fungos 1890). A-B — Basidiósporos vistos em MEV; C-D — Camada da superfície do perídio apresentando cristais semelhantes a espinhos
Figura 7: Restingomyces reticulatus Sulzbacher, B.T. Goto & Baseia, sp. nov. A - Perídio apresentando camadas externa e interna; B – Detalhe do exoperídio apresentando hifas com cristais angulosos e também cristais semelhantes a espinhos projetados ao longo da parede; C – Basidiósporos; D – Basídios
Figura 8: Filograma baseado na análise de Máxima Parcimônia e Máxima Versossimilhança de genes <i>atp</i> 6 e nuc-LSU concatenados entre os isolados de <i>Restingomyces reticulatus</i> Sulzbacher, B.T. Goto & Baseia, sp. nov., e organismos obtidos a partir do banco de dados <i>GenBank</i> . <i>Hysterangium album</i> e <i>H. cistophilum</i> foram inseridos como <i>outgroup</i> . Valores de <i>bootstrap</i> são dados para análises de MP e ML (MP/ML) baseadas em 1.000 replicatas de <i>bootstrap</i>
Figura 9: <i>Sulcatospora flava</i> , sp. nov. Holótipo (UFRN-fungos 1756). A e B - Basidiomas <i>in situ</i> ; C – Trama himenoforal montada em KOH 3% + Vermelho Congo D – Camada do perídio (camada superior) e trama himenoforal montada em KOH 3% + Vermelho Congo; E – Cistídios himeniais montados em KOH 3% + Vermelho Congo; H – Basidiósporos montados em reagente de Melzer; G – Basidiósporos montados em KOH 3%

Figura 10: Sulcatospora flava, sp. nov. Holótipo (UFRN-fungos 1756). A – Cistídios himeniais; B – Basidíolos e basídios; C – Detalhe da superfície do perídio; D – Basidiósporos
Figura 11: <i>Sulcatospora flava</i> , sp. nov. Holótipo (UFRN-fungos 1756). A – D: Basidiospóros observados em microscopia eletrônica de varredura
Figura 12: Filograma baseado na análise de máxima verossimilhança do gene nuc-LSU do rDNA para os isolados <i>Sulcatospora</i> (Sulzbacher 393), e de organismos obtidos a partir do banco de dados <i>GenBank. Rossbeevera griseovelutina</i> e <i>R. eucyanea</i> foram inseridos como <i>outgroup</i> . 108
Figura 13: <i>Hysterangium atlanticum</i> , sp. nov. Holótipo (UFRN-fungos 2115, <i>Sulzbacher 412</i>). A e B – Basidiomas <i>in situ</i> ; C – Corte longitudinal do basidioma mostrando a gleba gelatinizada; D – Basidiósporos (em KOH 5% + Vermelho Congo); E – Estrutura da gleba; F – Camada do perídio; G e H – Basidiospóros observados em microscopia eletrônica de varredura.
Figura 14: <i>Hysterangium atlanticum</i> Sulzbacher, Grebenc, Baseia & Nouhra, sp. nov. Holótipo (UFRN-fungos 2115, <i>Sulzbacher 412</i>). A – Perídio apresentando camada externa e interna; B – Basidiósporos; C – Basídio e basidíolos
Figura 15: <i>Hysterangium atlanticum</i> sp. nov. (UFRN-fungo 1750 e UFRN-fungos 2115). A – Detalhe da superfície da rizomorfa; B – Detalhe dos septos inflados (ampullate inflations); C – Hifas do interior da rizomorfa com parede engrossada e de conteúdo escuro; D – Detalhe do manto; E – Cistídios do tipo "oleoacanthocystidia"; F – Detalhe das hifas emanadas (<i>emanating hyphae</i>) mostrando também as células arredondadas e cistídios
Figura 16: <i>Hysterangium atlanticum</i> Sulzbacher, Grebenc, Baseia & Nouhra, sp. nov. (UFRN-fungos 1750). A – Cistídios do tipo "oleoacanthocystidia" entre as hifas emanadas (<i>emanating hyphae</i>); B – Manto plectenquimatoso coberto por cristais 116
Figura 17: Filograma baseado na análise de máxima verossimilhança dos genes <i>atp6</i> e EF-1α do rDNA entre os isolados <i>Hysterangium atlanticum</i> UFRN-fungos 2112 e <i>H. atlanticum</i> UFRN-fungos 2115 e organismos obtidos a partir do banco de dados <i>GenBank. Phallus hadriani</i> e <i>Ramaria flavobrunnescens</i> foram inseridas como <i>outgroup.</i>

LISTA DE TABELAS

Tabela 1: Lista dos táxons de fungos hipógeos do Filo Basidiomycota, conforme diferentes estudos (CASTELLANO; TRAPPE; LUOMA, 2004; BINDER; HIBBETT, 2006; HOSAKA et al., 2006; KIRK et al., 2008; TEDERSOO; MAY; SMITH, 2010; LEBEL; ORIHARA; MAEKAWA 2012; TRAPPE et al., 2013; SMITH et al., 2015b). Gêneros com asterisco apresentam também espécies de habito epígeo ou sub-hipógeo.
Tabela 2: Espécies utilizadas nas análises com seus respectivos números de acessos das sequencias no <i>GenBank</i> e que foram usados para análise filogenética
Tabela 3: Espécies utilizadas nas análises filogenéticas com seus respectivos números de acessos das sequências no <i>GenBank</i> . 105
Tabela 4: Espécies utilizadas nas análises com seus respectivos números de acessos das sequências no GenBank, e que foram usados para análise filogenética
Tabela 5: Identificação molecular das raízes ectomicorrízicas de <i>Coccoloba</i> spp., utilizando sequencias ITS, segundo a base de dados do GenBank (http://ncbi.nlm.nih.gov/)

SUMÁRIO

1 INTRODUÇÃO
2 REVISÃO DA LITERATURA 16
2.1 Bioma Mata Atlântica
2.2 Fungos sequestroides hipógeos
2.3 Classificação de fungos hipógeos
2.4 Diversidade dos fungos hipógeos no Brasil
2.5 Identificação morfológica de fungos hipógeos
2.6 Uso de ferramentas moleculares para a identificação de fungos hipógeos 27
2.7 Interações ecológicas envolvendo os fungos hipógeos e seus simbiontes
2.8 Distribuição dos fungos hipógeos
2.9. Importância de certas estruturas de fungos hipógeos e de fungos ECM para a
sistemática, taxonomia e sinapomorfia
2.10. Fungos hipógeos: relações evolutivas e filogenéticas entre fungos epígeos e
hipógeos
3 MATERIAL E MÉTODOS
3.1 Áreas de coleta
3.2 Coleta, análise dos basidiomas e herborização
3.3 Coleta e análise das raízes ectomicorrízicas
3.4 Avaliação molecular
4 RESULTADOS E DISCUSSÃO 50
4.1 Lista dos fungos sequestroides hipógeos na América do Sul
4.2 Estudo II
4.3 Estudo III
4.4 Estudo IV
5 CONSIDERAÇÕES GERAIS 124
REFERÊNCIAS 128

1 INTRODUÇÃO

O equilíbrio dos ecossistemas naturais deve-se em grande parte às atividades realizadas pelos fungos, os quais atuam ativamente na ciclagem de diferentes nutrientes a partir da ação saprofítica resultante da decomposição de resíduos (principalmente de origem vegetal), na nutrição de outros organismos e na agregação do solo (DIGHTON; WHITE; OUDEMANS, 2005; LILLESKOW; BRUNS, 2005).

Além disso, existe um grupo de fungos que está intimamente associado a raízes de certas espécies vegetais, promovendo inúmeros benefícios aos envolvidos, formando uma associação mutualística denominada de micorriza (SMITH; READ, 2008; van der HEIJDEN et al., 2015). Desse modo, tem-se nos fungos organismos de grande importância ecológica e industrial, dada a sua vasta aplicabilidade econômica e funções desempenhadas nos ecossistemas naturais ou manejados.

Apesar da importância que os fungos representam, poucos são os estudos referentes à determinação de sua diversidade e aspectos relacionados à sua ecologia e distribuição (MUELLER; BILLS, 2004; MUELLER et al., 2007; TEDERSOO; MAY; SMITH, 2010). No Brasil, esses estudos são ainda mais escassos. Apesar disso, é consenso entre os pesquisadores da importância de se conhecer a diversidade dos fungos nos países tropicais e subtropicais, onde potencialmente existe um grande número das espécies ainda desconhecidas pela ciência (HAWKSWORTH, 2001; RINALDI; COMANDINI; KUYPER, 2008; TEDERSOO; MAY; SMITH, 2010; TEDERSOO; SMITH, 2013). Recentemente, conforme estimativas que envolvem técnicas moleculares, o número de espécies fúngicas no globo chegaria a 5,1 milhões de espécies (BLACKWELL, 2011), enquanto outras apontam um número estimado de até 10 milhões de espécies (TAYLOR et al., 2014). Se considerarmos que os trópicos são os locais com as menores intervenções científicas no que se refere à coleta, caracterização e identificação desses fungos há ainda uma enorme riqueza a ser desvendada e descrita.

Um elemento que talvez possa ter limitado o número efetivo de espécies fúngicas identificadas (não somente nos trópicos) é o fato de que nos inventários micológicos a identificação de fungos macroscópicos (macromicetes) limita-se, normalmente, ao levantamento de fungos cujas estruturas reprodutivas tenham hábito epígeo (p. ex. PEGLER, 1997; SOBESTIANSKY, 2005; GIBERTONI; SANTOS; CAVALCANTE, 2007; DRECHSLER-SANTOS et al., 2008; ROSA; CAPELARI,

2009; WARTCHOW; BUYCK; MAIA, 2012; CABRAL et al., 2012; PINHEIRO; WARTCHOW, 2013 no Brasil), considerando que estas são facilmente visualizadas na superfície do solo ou em outros substratos. Estão incluídos nesta categoria representantes de gêneros como *Amanita* Pers., *Cantharellus* Adans. ex Fr., *Geastrum* Pers., *Laccaria* Berk. & Broome, *Ramaria* Fr. ex Bonord., *Russula* Pers., entre outros. Outro grupo de fungos, denominados de hipógeos, uma vez que produzem basidiomas e ascomas abaixo da superfície do solo, são também importantes integrantes de muitos dos ecossistemas terrestres, notadamente os ecossistemas florestais. Estimativas apresentadas para o continente australiano mostram que em torno de 1.278 a 2.450 espécies de fungos hipógeos ocorram neste ambiente. Destas, cerca de 300, distribuídas em 73 gêneros, já foram citadas ou descritas (BOUGHER; LEBEL, 2001). É possível verificar que na Austrália o maior grupo de macrofungos é representado por fungos de hábito hipógeo, sendo o continente o centro da biodiversidade de certas famílias (BOUGHER; LEBEL, 2001).

Considerando que grande parte das espécies hipógeas descritas até o momento são obrigatoriamente ectotróficas (BRUNDRETT et al., 1996; CLARIDGE, 2002; CASTELLANO; TRAPPE; LUOMA, 2004; GE; SMITH, 2013), é provável que uma grande variedade de espécies fúngicas com esse hábito esteja associada às florestas ao redor do mundo. No Brasil, onde a diversidade de espécies vegetais que compõem os ecossistemas florestais é alta, é muito provável que existam muitas espécies fúngicas hipógeas compondo esses nichos ecológicos.

Para fungos sequestroides hipógeos, pode-se afirmar que a sua distribuição é pouco compreendida mundialmente, havendo maior número de estudos na Europa, na América do Norte e na Australásia (CLARIDGE, 2002; MORENO-ARROYO; GÓMEZ; PULIDO, 2005; TEDERSOO; MAY; SMITH, 2010), sendo escassas as informações em regiões tropicais e subtropicais (CASTELLANO; TRAPPE; LUOMA, 2004). Recentemente, novos gêneros com hábito hipógeo foram descritos para a Guiana (HENKEL; SMITH; AIME, 2010; SMITH et al., 2015b), e espécies novas também foram propostas para estas florestas (CASTELLANO et al., 2012), o que demonstra a existência de espécies ainda desconhecidas pela comunidade científica, especialmente nas regiões tropicais.

Os fungos hipógeos englobam grupos completamente distintos evolutivamente, e por isto apresentam uma taxonomia bastante complexa, baseada especialmente em caracteres macro e microscópicos (CASTELLANO; TRAPPE; LUOMA, 2004; MORENO-ARROYO; GÓMEZ; PULIDO, 2005; TRAPPE et al., 2009).

Os estudos realizados no Brasil, que são excassos e pontuais, apesar de informativos, foram feitos em florestas introduzidas, com espécies exóticas, enquanto pouco ou nada se conhece sobre a diversidade e distribuição daqueles fungos nos ecossistemas naturais (SULZBACHER et al., 2013a; SULZBACHER et al., 2013b). Dentre estes, podem ser citados aqueles desenvolvidos para os Estados de São Paulo (BASEIA; MILANEZ, 2002), Santa Catarina (GIACHINI et al., 2000; GIACHINI; SOUZA; OLIVEIRA, 2004; LUPATINI et al., 2008) e Rio Grande do Sul (RICK, 1961; CORTEZ et al., 2008; SULZBACHER et al., 2010; CORTEZ et al., 2011; SULZBACHER et al., 2015). Em uma compilação sobre os táxons de fungos gasteroides de ocorrência no Brasil, Trierveiler-Pereira e Baseia (2009) citam 232 espécies, das quais apenas 22 são de fungos hipógeos. Em um destes estudos realizados no sul do Brasil, focando abundancia e diversidade de fungos formadores de ectomicorrizas em plantações exóticas, observou-se que a comunidade de fungos hipógeos representava 25% (sete espécies) das espécies detectadas (GIACHINI; SOUZA; OLIVEIRA, 2004). Adicionalmente, estes fungos foram relativamente bem representados em estudos recentes nas florestas nativas e exóticas da América do Sul (NOUHRA et al., 2005; NOUHRA et al., 2008; NOUHRA et al., 2012b; HENKEL et al., 2012; SULZBACHER et al., 2013b).

Dentre esses ecossistemas, um com alto potencial de associação com os fungos hipógeos é a Mata Atlântica, sendo apontada como um dos maiores centros de biodiversidade do planeta, apresentando um elevado número de endemismo e riqueza de espécies (SCARANO, 2002; RIBEIRO et al., 2009). Faz-se, portanto, extremamente necessário para a melhor compreensão no estudo de fungos hipógeos, o estudo das espécies ocorrentes em regiões florestais nativas de Mata Atlântica, especialmente no Nordeste do Brasil, pois estas florestas podem apresentar uma grande diversidade de fungos hipógeos que permanece ainda desconhecida pela ciência.

No presente trabalho foi admitida a hipótese de que apesar da maioria dos estudos sobre fungos hipógeos no Brasil terem sido em áreas cultivadas com plantas exóticas, espera-se que áreas nativas de Mata Atlântica, no Nordeste do Brasil, também sejam reservatório de biodiversidade de Basidiomicetes hipógeos. Neste contexto, este trabalho teve por objetivos (1) estudar a riqueza de fungos hipógeos (Basidiomycota) em áreas de Mata Atlântica nos Estados do Rio Grande do Norte e Paraíba, com base

em características morfológicas e moleculares; (2) contribuir para o conhecimento da riqueza e distribuição dos fungos hipógeos (Basidiomycota) nos Neotrópicos; (3) descrever as espécies de fungos hipógeos (Basidiomycota) coletados; (4) registrar a distribuição geográfica espacial e correlacionar à presença e diversidade de Basidiomycota hipógeos com características fitogeográficas; e (5) avaliar as relações filogenéticas das espécies estudadas.

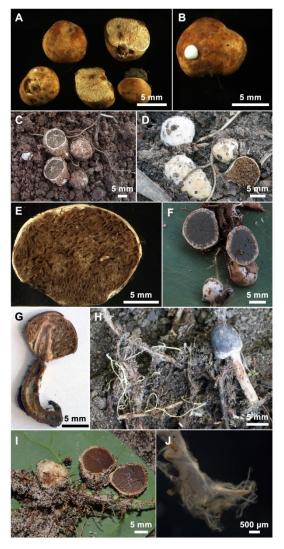
2 REVISÃO DA LITERATURA

2.1 Bioma Mata Atlântica

Segundo estimativas, a Mata Atlântica cobria originalmente entre 1.300.000 a 1.500.000 km², abrangendo mais de 3.300 km ao longo da costa leste do Brasil, chegando até a região nordeste da Argentina e leste do Paraguai (TABARELLI et al., 2005). Atualmente, este tipo de vegetação encontra-se reduzida a 163.774 km² ou 11,7%, onde podem ser observadas as florestas decíduas e semidecíduas, de araucárias, brejos nordestinos e as matas costeiras (RIBEIRO et al., 2009). Este tipo de vegetação é distribuído através das condições climáticas, das topografias e condições geológicas, apresentando regiões montanhosas, planícies, regiões costeiras, com diferentes níveis de precipitação ao longo da costa brasileira, como também são encontradas regiões com períodos prolongados de seca (METZGER, 2009).

Na região Nordeste a Mata Atlântica apresenta-se bastante fragmentada, o que vem ocorrendo desde os tempos da colonização (CÂMARA, 2005). Para os Estados do Rio Grande do Norte (RN) e Paraíba (PB) a Mata Atlântica é representada por uma formação denominada Floresta Estacional Semidecidual de Terras Baixas, onde estão incluídas as florestas de Tabuleiro e Restinga (CESTARO; SOARES, 2008). Estas apresentam elevados níveis de precipitações pluviométricas, assim como períodos prolongados de seca (CESTARO; SOARES, 2008; METZGER, 2009). Esta formação fitogeográfica é caracterizada por apresentar um solo arenoso com fertilidade geralmente baixa (THOMAS; BARBOSA, 2008). Na zona litorânea dos Estados do RN e PB esta floresta apresenta a formação de restinga, formada por depósitos arenosos de partículas quartzosas de origem marinha, representando comunidades vegetais características com diferentes populações biológicas (ARAUJO; LACERDA, 1987). Neste ecossistema a vegetação exerce um papel fundamental para a estabilização dos sedimentos e manutenção da drenagem natural do solo. As florestas de restinga formam um ecossistema com uma vegetação altamente especializada, capaz de desenvolver-se sob condições que seriam adversas para a grande maioria das espécies vegetais (MORAES et al., 1999). Esta característica pode propiciar a presença de fungos hipógeos, pois estudos demonstram a predominância destes fungos em solos pobres em nutrientes (CLARIDGE, 2002).

2.2 Fungos sequestroides hipógeos


Fungos sequestroides de hábito hipógeo são organismos macroscópicos caracterizados por produzir seus ascomas e basidiomas abaixo da superfície do solo (Figura 1), o que os diferencia dos fungos epígeos, que ocorrem acima do solo (CLARIDGE; CORK; TRAPPE, 2000a; CLARIDGE; BARRY; TRAPPE, 2000b; KIRK et al., 2008; MASER; CLARIDGE; TRAPPE, 2010). São encontrados mais profundamente no solo (até 20 cm), ou próximos à superfície, logo abaixo da camada liteira (MONTECCHI; SARASINI, 2000). Fungos que apresentam formas "sequestroides" são relacionados àqueles que possuem esporos que não se desprendem dos basídios, sendo que os basidiomas permanecem fechados até a maturidade (BOUGHER; LEBEL, 2001; TRAPPE et al., 2009). Dentre os gêneros que apresentam o hábito hipógeo sequestroide estão Alpova C.W. Dodge, Chondrogaster Maire, Descomyces Bougher & Castellano, Hysterangium Vittad., e Tuber P. Micheli ex F.H. Wigg. (MONTECCHI; SARASINI, 2000). Cabe salientar que alguns gêneros, como por exemplo Rhizopogon Fr. e Scleroderma Pers., apresentam hábito semi-hipógeo, ou seja, parte de sua estrutura reprodutiva encontra-se acima e parte abaixo da superfície do solo.

Os fungos hipógeos proporcionam os mesmos benefícios que os aparentados epígeos em ambientes florestais, podendo-se destacar a grande biomassa que determinados gêneros produzem (*Chondrogaster*, *Descomyces* e *Hysterangium*), o que faz destes fungos membros cruciais dos ciclos biogeoquímicos dos elementos nos solos (CAIRNEY; CHAMBERS, 1999; CLARIDGE, 2002; RILLIG; MUMMEY, 2006; SMITH; READ, 2008). Estudos demonstraram que a produção de ácido orgânico por espécies de *Hysterangium* pode aumentar a intemperização do solo (GRAUSTEIN; CROMACK; SOLLINS, 1977; GONZALEZ et al., 2009). Fatores como o clima (precipitação e temperatura), a topografia, o solo (pH, macro e micronutrientes, matéria orgânica e microbiota), os animais e plantas presentes, a heterogeneidade de habitats, o fogo, o manejo e as práticas silviculturais são alguns dos aspectos que influenciam a distribuição, a diversidade e a abundância dos fungos hipógeos nos ecossistemas naturais ou manejados (CLARIDGE; BARRY; TRAPPE, 2000b; BOUGHER; LEBEL, 2001).

Além das definições de fungos epígeos e hipógeos, cabe destacar outros termos e definições para certos grupos fúngicos, os quais geralmente são referidos juntamente ao

grupo dos fungos hipógeos. Neste contexto, salienta-se o termo trufa que se refere aos membros hipógeos do gênero *Tuber*, filo Ascomycota, cientificamente reconhecidas como as verdadeiras trufas; embora outros fungos hipógeos dos filos Ascomycota e Basidiomycota também sejam algumas vezes chamados de trufas (BRUNDRETT et al., 1996; TRAPPE et al., 2009). Todavia, recomenda-se que o termo trufa seja empregado para regiões onde naturalmente estes fungos associam-se, com espécies de carvalho (*Quercus* spp.) e avelã "filbert" (*Corylus* sp.), o que normalmente não é o caso do Brasil.

Figura 1: Representantes de fungos hipógeos. A – *Arcangeliella borziana*; B – Detalhe do látex no perídio de *A. borziana*; C – *Chondrogaster pachysporus*; D – *Descomyces albus*; E – *Hymenogaster niveus*; F – *Hysterangium inflatum*; G-H – *Setchelliogaster tenuipes*; I – *Restingomyces* gen. nov.; J – detalhe da raiz de *Coccoloba* sp., coletada próximo ao fungo hipógeo (*Sulzbacher-412*) apresentando uma camada de hifas sobre a superfície da raiz.

Fonte: Marcelo Sulzbacher e Tine Grebenc, 2016.

Da mesma forma, é importante ressaltar os fungos-semelhantes-a-trufas (*truffle-like-fungi*), os quais têm hábito hipógeo, em sua maioria, e pertencem ao filo Basidiomycota. Estes podem se associar a uma gama variável de simbiontes vegetais (CASTELLANO et al., 2003). Além disso, existem os fungos secotioides, em referência ao gênero *Secotium* Kunze (TRAPPE et al., 2009), os quais apresentam píleo completamente fechado, com seu interior composto por lamelas imperfeitas ou anastomosadas, normalmente produzindo um estipe verdadeiro (THIERS, 1984; FRANCIS; BOUGHER, 2004). Estes podem ser encontrados crescendo de forma epígea no ambiente.

Outro grupo que também forma estruturas macroscópicas hipógeas, frequentemente de forma globosa a subglobosa, com cerca de dois centímetros de diâmetro e com uma textura cotonosa, são os fungos tradicionalmente conhecidos como *Endogone* Link. Estes organismos estão atualmente agrupados junto ao subfilo Mucoromycotina, um grupo que até recentemente fazia parte dos zigomicetos (MORENO-ARROYO; GÓMEZ; PULIDO, 2005), mas que frente a classificação proposta por Hibbett et al. (2007), tem posicionamento dúbio na classificação evolutiva dos fungos, sendo incluído como *Incertae sedis*. Recentemente, com base em estudos moleculares, membros de Endogonales foram agrupados a Mortierellales, um grupo de microfungos, sem prévio registro de espécies esporocárpicas (SMITH et al., 2013a).

Estudos de filogenia molecular têm revelado uma base extensivamente polifilética (BRUNS et al., 1989; HIBBETT et al., 1997; PEINTNER et al., 2001; PETER et al., 2001; TEDERSOO; MAY; SMITH, 2010) destas formas fúngicas (agaricoides, gasteroides, secotiodes), antes reunidas em determinadas famílias com base em dados morfológicos (MILLER; MILLER, 1988; SINGER, 1986). No passado, os fungos hipógeos foram tradicionalmente colocados no grupo artificial da classe Gasteromycetes, devido aos seus basidiomas angiocárpicos e subterrâneos (PEINTNER et al., 2001). Em diversos estudos como os apresentados por Heim (1971), Singer e Smith, na forma de uma série de publicações intituladas "Studies on secotiaceous fungi" (SINGER; SMITH, 1958abc; SINGER; SMITH, 1959ab; SINGER; SMITH, 1960ab; SINGER; SMITH, 1964), bem como os estudos de Smith e Singer (1959), e também outros realizados por Singer (SINGER, 1951; SINGER, 1958ab; SINGER, 1962ab; SINGER, 1963; SINGER, 1969; SINGER, 1985), e os de Horak (1964abcde), Horak e Moser (1966ab), Smith (1973) e Horak (1980), as características comuns entre os fungos gasteroides e secotioides com os fungos agaricoides já eram apontadas e as

possíveis relações e caminhos evolutivos discutidos (PEINTNER et al., 2001). Atualmente, este grupo está inserido entre o subfilo Pezizomycotina e a classe Agaricomycetes (HIBBETT, 2006; HOSAKA et al., 2006; MATHENY et al., 2006; HIBBETT et al., 2007; HOSAKA; CASTELLANO; SPATAFORA, 2008; BONITO et al., 2013). Este caso exemplifica bem a importância do uso de técnicas moleculares como ferramenta na taxonomia dos fungos, sem, no entanto, abandonar as técnicas tradicionais de classificação.

O fato dos fungos hipógeos produzirem seus ascomas e basidiomas abaixo da superfície do solo poderia representar um grande impedimento para sua dispersão e colonização de novos locais. Para superar esta limitação, estes fungos produzem um aroma único, capaz de atrair pequenos animais micófagos (TRAPPE et al., 2009), especialmente artrópodes, gastrópodes, pequenos mamíferos, como por exemplo os roedores e as aves (CASTELLANO et al., 2004), que ao se alimentarem acabam por dispersar os esporos, estes últimos por meio de suas fezes (CASTELLANO et al., 1989; HOSAKA; CASTELLANO; SPATAFORA, 2008). Como o aroma é perceptível apenas por certos animais, utilizam-se suínos e cães para a busca das trufas nos solos, já que estes têm a habilidade de "farejar" determinadas espécies de fungos hipógeos (MORENO-ARROYO; GÓMEZ; PULIDO, 2005). Esta relação entre os fungos hipógeos e alguns grupos de animais é bastante comum e bem compreendida, inclusive muito abordada durante o estudo destes organismos nos países da América do Norte (TRAPPE et al., 2009; MASER; CLARIDGE; TRAPPE, 2010), (MONTECCHI; SARASINI, 2000; MORENO-ARROYO; GÓMEZ; PULIDO, 2005) e Austrália (CLARIDGE, 2002; JUMPPONEN et al., 2004; MASER; CLARIDGE; TRAPPE, 2010). O odor destes fungos não ocorre em ascomas e basidiomas imaturos, somente à medida que os esporos vão amadurecendo, os compostos atrativos são produzidos e o odor torna-se mais intenso, atraindo os agentes dispersores (TRAPPE; MASER, 1977).

2.3 Classificação de fungos hipógeos

Os fungos de hábito hipógeo podem pertencer a diferentes filos. Entre eles temos representantes de Ascomycota, Basidiomycota e, em menor número, representantes do filo Glomeromycota (SCHÜBLER; SCHWARZOTT; WALKER, 2001) e dos subfilos

Mucoromycotina (HIBBETT et al., 2007) e Mortierellomycotina (HOFFMANN; VOIGT; KIRK, 2011; SMITH et al., 2013a).

Estas formas fúngicas, que em geral são globosas ou subglobosas, e evolutivamente apresentam diversas linhagens distintas pertencentes a diferentes grupos fúngicos (GERDEMANN; TRAPPE, 1974; MONTECCHI; SARASINI, 2000; HIBBETT, 2007), apresentando uma origem polifilética e caracteres simplesiomórficos (PEINTNER et al., 2001; Peter et al., 2001; James et al., 2006), o que dificulta uma classificação geral para estas diversas linhagens evolutivas.

A identificação e classificação demandam de experiência do pesquisador, sendo necessários anos para a formação de taxonomistas bem qualificados. O desafio é maior quando estudamos os fungos hipógeos. A taxonomia neste grupo está baseada praticamente na morfologia da estrutura reprodutiva, sendo esta, dividida em estruturas macroscópicas e microscópicas. Uso de microscopia eletrônica de varredura e reagentes químicos auxiliam na identificação destes fungos. Técnicas envolvendo as análises moleculares vêm sendo utilizadas e desenvolvidas para a melhor compreensão dos fungos hipógeos e, novos sistemas de classificações estão sendo propostos (MONCALVO et al., 2002; MATHENY et al., 2006; HIBBETT et al., 2007). Porém, ainda carecemos de informações para obter resultados mais conclusivos, especialmente para nível de classificação inferior, como família e gênero. Neste contexto, as técnicas moleculares constituem uma importante ferramenta que se soma a outras utilizadas tradicionalmente, como as técnicas bioquímicas, morfológicas e ultraestruturais. Além de ajudar no agrupamento das espécies, a análise filogenética de sequências pode ter importante papel na reinterpretação de homologia em caracteres morfológicos. Alguns gêneros, por exemplo, não se enquadram em nenhuma família conhecida, sendo estes enquadrados no grupo dos indefinidos ou "uncertain status" (CASTELLANO; TRAPPE; LUOMA, 2004). Este relato demonstra a carência de estudos e a necessidade de mais estudos envolvendo os fungos hipógeos.

Fungos do filo Basidiomycota, grupo de estudos da tese, são caracterizados pela produção de esporos de origem sexuada, denominados basidiósporos, produzidos em hifas diferenciadas denominadas de basídios (ALEXOPOULOS; MIMS: BLACKWELL, 1996; KENDRICK, 2000). Um total de 96 gêneros pertencentes ao filo Basidiomycota possuem habito hipógeo, (Tabela 01), muitos apresentam exclusivamente este habito de crescimento. Dentre estes gêneros, muitos são apenas conhecidos a partir de sua publicação original (TEDERSOO; MAY; SMITH, 2010). Até onde se saiba, não há atualmente nenhum trabalho que trate extensivamente de todos os fungos hipógeos.

Recentemente, com o advento da biologia molecular e a realização de expedições micológicas para regiões pouco exploradas no passado, novos gêneros com este hábito vem sendo descobertos e propostos, especialmente para as regiões da Ásia e Australásia (ORIHARA et al., 2010; LEBEL; ORIHARA; MAEKAWA, 2012; TRAPPE et al., 2013; TEDERSOO; SMITH, 2013; WU et al., 2014).

Tabela 1: Lista dos táxons de fungos hipógeos do Filo Basidiomycota, conforme diferentes estudos (CASTELLANO; TRAPPE; LUOMA, 2004; BINDER; HIBBETT, 2006; HOSAKA et al., 2006; KIRK et al., 2008; TEDERSOO; MAY; SMITH, 2010; LEBEL; ORIHARA; MAEKAWA 2012; TRAPPE et al., 2013; SMITH et al., 2015b). Gêneros com asterisco apresentam também espécies de habito epígeo ou sub-hipógeo.

Ordem	Família	Gênero
AGARICALES	Amanitaceae	Amanita*
	Amanitaceae	Amarrendia (Amanita)
	Agaricaceae	Agaricus*
	Agaricaceae	Amogaster (Lepiota)
	Agaricaceae	Barcheria
	Agaricaceae	Smithiogaster
	Bolbitiaceae	Setchelliogaster
	cf. Bolbitiaceae	Timgrovea
	Cortinariaceae	Cortinarius*
	Cortinariaceae	Dermocybe
	Cortinariaceae	Descomyces
	Cortinariaceae	Gigasperma
	Cortinariaceae	Hymenogaster
	Cortinariaceae	Protoglossum
	Cortinariaceae	Quadrispora
	Cortinariaceae	Thaxterogaster*
	Entolomataceae	Entoloma*
	Entolomataceae	Rhodogaster
	Entolomataceae	Richoniella
	Hydnangiaceae	Durianella
	Hydnangiaceae	Hydnangium
	Hydnangiaceae	Podohydnangium
	Inocybaceae	Auritella*
	Physalacriaceae	Cribbea
	Physalacriaceae	Guyanagaster
	Stephanosporaceae	Mayamontana
	Stephanosporaceae	Stephanospora
	cf. Strophariaceae	Brauniella
	cf. Strophariaceae	Hysterogaster
BOLETALES	Boletaceae	Castellanea
	Boletaceae	Chamonixia
	Boletaceae	Costatisporus
	Boletaceae	Gastroboletus
	Boletaceae	Jimtrappea
	Boletaceae	Mackintoshia
	Boletaceae	Mycoamaranthus
	Boletaceae	Octaviania

	Boletaceae	Paxillogaster
	Boletaceae	Rhodactina
	Boletaceae	Rossbeevera
	Boletaceae	Royoungia
	Boletaceae	Singeromyces
	Boletaceae	Solioccasus
	Boletaceae	Wakefieldia
	Diplocystidiaceae	Diplocystis*
	Diplocystidiaceae	Tremellogaster*
	Gomphidiaceae	Gomphogaster
	Paxillaceae	Alpova
	Paxillaceae	Austrogaster
	Paxillaceae	Melanogaster
	Rhizopogonaceae	Rhizopogon
	Rhizopogonaceae	Rhopalogaster
	Sclerodermataceae	Corditubera
	Sclerodermataceae	Horakiella
	Sclerodermataceae	Scleroderma*
	Sedeculaceae	Sedecula
	Serpulaceae	Gymnopaxillus
	Suillaceae	Truncocolumella
GEASTRALES	Geastraceae	Pyrenogaster (Schenella)
	Geastraceae	Radiigera (Geastrum)
	Geastraceae	Sclerogaster
GOMPHALES	Gomphaceae	Brauniellula
	Gomphaceae	Destuntzia
	Gomphaceae	Gautieria
	Gomphaceae	Protogautieria
HYSTERANGIALES	Gallaceaceae	Austrogautieria
	Gallaceaceae	Gallacea
	Gallaceaceae	Hallingea
	Hysterangiaceae	Aroramyces
	cf. Hysterangiaceae	Clathrogaster
	Hysterangiaceae	Hysterangium
	Mesophelliaceae	Andebbia
	Mesophelliaceae	Castoreum
	Mesophelliaceae	Chondrogaster
	Mesophelliaceae	Gummiglobus
	Mesophelliaceae	Malajczukia
	Mesophelliaceae	Mesophellia
	Mesophelliaceae	Nothocastoreum
	Phallogastraceae	Phallogaster
PHALLALES	Claustulaceae	Claustula
	Claustulaceae	Gelopellis
	Claustulaceae	Kjeldsenia
	Claustulaceae	Phlebogaster
	Trappeaceae	Phallobata
	Trappeaceae	Trappea
DUGGIH ALEG	Gastrosporiaceae	Gastrosporium
RUSSULALES	Albatrellaceae	Leucogaster
	Albatrellaceae Albatrellaceae	Leucophleps Mycolevis
	Russulaceae	
	Russulaceae	Arcangeliella (Lactarius) Cystangium (Russula)
	Russulaceae	Gastrolactarius (Lactarius)
	Russulaceae	Gymnomyces (Russula)
	Russulaceae	Macowanites (Russula)
	Russulaceae	Martellia (Russula)
	Russulaceae	Zelleromyces (Lactarius)
		(Sacra, vas)

2.4 Diversidade dos fungos hipógeos no Brasil

Para o Brasil, o estudo dos fungos com o hábito hipógeo é muito fragmentado e relatos para ambientes nativos praticamente inexistem. Estes fungos foram englobados em estudos realizados no Sudeste do Brasil por Baseia e Milanez (2002), que citam as espécies *Rhizopogon luteolus* Fr. & Nordholm, *R. roseolus* (Corda) Th. Fr. e *R. rubescens* (Tul. & C. Tul.) Tul. & C. Tul., para as florestas de *Pinus* spp.

No Estado do Paraná, *Rhizopogon roseolus* é citada por de Meijer (2001) como *R. luteorubescens* A.H. Sm., e mais tarde por de Meijer (2006) como *R. roseolus sensu* Martín (1996) ou *R. luteorubescens*.

Para o Estado de Santa Catarina, em um amplo levantamento de fungos ectomicorrízicos em plantações de *Pinus* spp. e *Eucalyptus* spp., Giachini et al. (2000) relatam a ocorrência de três novas espécies de fungos hipógeos, sendo elas: *Chondrogaster angustisporus* Giachini, Castellano, Trappe & V.L. Oliveira, *Descomyces giachinii* Trappe, V.L. Oliveira, Castellano & Claridge e *Scleroderma bougheri* Trappe, Castellano & Giachini. No mesmo trabalho são citadas as espécies: *Descomyces albellus* (Massee & Rodway) Bougher & Castellano, *D. albus* (Klotzsch) Bougher and Castellano, *Hysterangium gardneri* E. Fisch., *Rhizopogon fuscorubens* A. H. Sm., *R. nigrescens* Coker & Couch, *R. roseolus*, *R. rubescens*, *R. vulgaris* (Vittad.) M. Lange), *R. zelleri* A.H. Sm. e *Setchelliogaster tenuipes* (Setch.) Pouzar. Ainda para Santa Catarina, Thaxter (1922) cita *Modicella reniformis* (Bres.) Gerd. & Trappe (como *Endogone reniformis* Bres.).

No Estado do Rio Grande do Sul, Zeller e Dodge (1929) citam *Gelopellis thaxteri* (Zeller & C.W. Dodge) Zeller (como *Hysterangium thaxteri* Zeller & C.W. Dodge) ocorrendo em bambu nativo. Rick (1961) relata as espécies *Hymenogaster vulgaris* Tul. & C. Tul., *Hysterangium australe* Speg., *Leucogaster braunii* Rick, *Octaviania carnea* (Wallr.) Corda., *O. radicans* Rick, *O. stillingerii* Lloyd e *Sclerogaster luteocarneus* (Bres.) Zeller & C.W. Dodge (como *O. luteocarnea* Bres). A espécie *Brauniella alba* (Rick) Rick ex Singer é citada por Singer em duas ocasiões (SINGER, 1953; SINGER, 1962a), em ambos os casos como *Braunia alba* Rick. *Sclerogaster luteocarneus* foi coletada por Rick e citada nos trabalhos de Dodge e Zeller (1936) e Singer (1962a) como *S.* cf. *luteocarneus*. Cortez et al., (2008) relatam a ocorrência de *Descomyces albellus* (Massee & Rodway) Bougher & Castellano e

Setchelliogaster tenuipes (Setch.) Pouzar nas matas de Eucalyptus spp., no Rio Grande do Sul. A espécie Chondrogaster pachysporus Maire foi citada por Sulzbacher et al., (2010) para matas de Eucalyptus spp. Cortez et al. (2011) relatam duas espécies: Hysterangium affine Massee & Rodway e H. inflatum Rodway, ambas ocorrendo em matas de Eucalyptus spp. A espécie Rhizopogon roseolus é citada para plantações de Pinus spp. (CORTEZ; BASEIA; SILVEIRA, 2011). Recentemente, Descomyces albus foi citada para o Rio Grande do Sul, junto a um estudo sobre micofagia naquele estado (SULZBACHER et al., 2015). O Rio Grande do Sul apresenta a maior representatividade em número de espécies coletadas no território brasileiro devido, em parte, a um maior esforço amostral de coleta em relação a outros estados brasileiros (FIDALGO, 1962, 1968; PUTZKE, 1994).

2.5 Identificação morfológica de fungos hipógeos

Macromorfologia

Para a identificação de fungos hipógeos deve-se levar em consideração características macro- e micromorfológicas. Devido ao habitat subterrâneo, os fungos hipógeos não apresentam himênio exposto nem a projeção dos esporos ao ambiente para sua disseminação, como ocorre com os fungos epígeos, necessitando, com isto, de uma adaptação dos elementos do himênio (MORENO-ARROYO; GÓMEZ; PULIDO, 2005). Nestes fungos o estipe é vestigial ou, em alguns casos, ausente. Assim, um grande número de espécies de fungos hipógeos ou semihipógeos apresenta formas dos basidiomas globosa ou subglobosa, com uma camada externa de proteção (que geralmente é resistente) denominada perídio, a qual engloba uma zona interna chamada gleba, onde os esporos são produzidos (MORENO-ARROYO; GÓMEZ; PULIDO, 2005).

O perídio geralmente encontra-se composto por duas camadas distintas, denominadas de exoperídio (mais externo) e endoperídio (mais interno). A gleba é a parte fértil (análoga ao himênio dos fungos agaricoides) e nesta estrutura são formados os basídios/ascos que sustentam/englobam os esporos. A sua cor e forma são características importantes para diferenciação de determinados gêneros como, por exemplo, *Hysterangium* (gleba gelatinizada e geralmente esverdeada) e *Descomyces* (gleba seca e apresenta lóculos). Outros têm lamelas anastomosadas, que caracterizam os fungos secotiodes, como verificado em *Setchelliogaster*. Fungos secotioides possuem

relação evolutiva com certos fungos epígeos e hipógeos dos filos Ascomycota e Basidiomycota, apresentando um estipe verdadeiro, porém, um himenóforo fechado, o que caracteriza uma forma intermediária secotioide (THIERS, 1984). O estipe sustenta o perídio e pode apresentar rizomorfas, subículo ou micélio basal, que possuem importância taxonômica e devem ser observados no momento da coleta.

Micromorfologia

Muitos fungos hipógeos apresentam características macroscópicas similares. Desta forma, há necessidade da realização de análises microscópicas, as quais podem revelar grandes diferenças entre os espécimes analisados. Características como o tamanho, a forma e a ornamentação dos esporos, a estrutura do perídio e da trama da gleba podem caracterizar facilmente determinados gêneros hipógeos (BRUNDRETT et al., 1996). Microscopicamente, os esporos estão entre as estruturas de maior importância para a taxonomia tradicional. Um estudo onde características dos esporos foram utilizadas para fins taxonômicos foi apresentado por Castellano et al. (1989). Nele, os autores apresentam de forma sucinta as principais características dos diferentes gêneros e grupos de fungos de hábito hipógeo para a América do Norte. Para estudos dos esporos devem ser observadas as dimensões, a forma, a cor, a parede (espessura e ornamentação), a presença de apêndices e certas reações químicas (BRUNDRETT et al., 1996). No filo Basidiomycota ocorrem basídios e também basidíolos (geralmente em basidiomas jovens). Estes devem ser observados, e suas dimensões, formas, quantia de esterigmas e também as cores anotadas. O subhimênio pode estar presente, e neste deve ser observado o tipo de hifa, a cor e o tamanho. A gleba é constituída por um conjunto de hifas que recebe o nome de trama himenoforal, estas hifas podem ser septadas ou ramificadas, com paredes finas ou espessas, dependendo da espécie, alguns gêneros podem apresentar estruturas estéreis entre os basídios (os cistídios) que apresentam importância taxonômica. O perídio pode constituir-se de forma celular, globosa e/ou hifal, e as hifas podem ser lisas, rugosas ou apresentar incrustações de oxalato de cálcio, como observa-se na espécie Hysterangium inflatum Rodway. É necessário observar atentamente a posição do perídio para diferenciação das espécies, tarefa que nem sempre é fácil, pois a visualização desta estrutura deve ser feita em indivíduos jovens e de preferência em material fresco.

Caracteres microquímicos

Para a montagem das lâminas utiliza-se a solução aquosa de hidróxido de potássio (KOH 3-5%) isoladamente ou em consórcio com corante vermelho Congo 2% ("Congo Red"), o qual é utilizado para evidenciar a parede das hifas. Outro corante, o Azul de Algodão, tinge de azul as paredes de hifas e dos basidiósporos, apresentando, assim, um contraste com o interior do esporo, reação esta chamada de cianofilia (KOTABLA; POUZAR, 1964; SINGER, 1972). Outro reagente, o Azul de Crezil (cresyl blue), é utilizado para corar a parede dos esporos. Neste tipo de reação os esporos são determinados como metacromáticos (GE; SMITH, 2013). O reagente de Melzer (SINGER, 1986) permite a observação de dois tipos distintos de tonalidades: reação amilóide (acinzentada, azulada ou violácea) ou reação dextrinoide (marromavermelhada) das paredes de basidiósporos, hifas e outras microestruturas estéreis. O corante de Melzer possui importância para certos grupos de fungos. Dentre estes destacam-se os fungos da família Agaricaceae (LEBEL; SYME, 2012; GE; SMITH, 2013) e Russulaceae (SINGER, 1986; MILLER et al., 2006).

2.6 Uso de ferramentas moleculares para a identificação de fungos hipógeos

Com a caracterização morfológica dos fungos hipógeos pode-se obter resultados satisfatórios no conhecimento da biodiversidade de espécies e até mesmo no conhecimento de espécies ainda não catalogadas. Entretanto, o uso de caracteres fenotípicos normalmente não permite a identificação exata da espécie e pode impossibilitar a distinção entre diferentes espécies e, no caso das culturas puras, entre diferentes isolados (GOMES et al., 2002). Para contornar esta dificuldade, uma importante ferramenta no estudo dos fungos hipógeos tem sido a biologia molecular (HOSAKA et al., 2006, 2008; MORRIS et al., 2009; DANKS; LEBEL; VERNES, 2010; TEDERSOO; MAY; SMITH, 2010; SMITH et al., 2011; NOUHRA et al., 2013). Técnicas moleculares, especialmente ferramentas baseadas no sequenciamento do espaço interno transcrito (*internal transcribed spacer* – ITS) do rDNA de fungos, tem auxiliado na caracterização das espécies, na avaliação da variabilidade e na construção de filogenias.

Embora outras regiões do genoma e outros marcadores moleculares possam ser utilizados em estudos micológicos, a região ITS vem recebendo atenção especial. Esta se caracteriza por duas regiões não codificantes que estão localizadas entre regiões altamente conservadas do rDNA, responsáveis pela codificação da subunidade menor e

da subunidade maior dos ribossomos. Além de ser possível a amplificação destas regiões com *primers* universais, sua escolha está ancorada na facilidade de amplificação, considerando que são regiões relativamente curtas do genoma possuindo entre 500 e 800 pares de bases; no fato de possuírem natureza multicópia e, assim, ser possível amplificar a região mesmo com amostras extremamente diluídas de material degradado; e por possuir grande variação entre diferentes espécies, permitindo a construção de *primers* espécie-específicos (BRIDGE; ARORA, 1998). Entretanto, outras regiões genômicas podem permitir análises a partir do concatenamento destas e, assim, admitir uma análise mais completa e robusta, oferecendo maior cobertura genômica, conforme observa-se no trabalho desenvolvido por Orihara et al. (2012), no estudo de relações filogenéticas do gênero *Octaviania* Vittad. utilizando as regiões da subunidade maior do rDNA, e regiões de DNA mitocondrial e do fator de elongamento (EF-1α ou tef1).

A região ITS merece destaque, especialmente considerando-se a ampla quantidade de depósitos de sequências existente em bancos de dados tais como o *GenBank*, o que facilita as análises comparativas. Se o interesse for por outras sequências do genoma, corre-se o risco de haver poucos ou nenhum depósito de sequências para algumas espécies fúngicas, e neste caso a identificação da espécie e o estabelecimento de relações filogenéticas ficam comprometidas. Além disso, há necessidade de padronização dos estudos com algumas regiões do genoma visando à criação de códigos de barra (*barcode*) de espécies fúngicas, o que vem recebendo atenção mundial dos biologistas moleculares.

2.7 Interações ecológicas envolvendo os fungos hipógeos e seus simbiontes

Dentre as interações ecológicas existentes entre fungos hipógeos, destacam-se o parasitismo, o saprofitismo e as associações ectomicorrízicas (MASER; CLARIDGE; TRAPPE, 2010). Em um estudo recente acerca dos fungos ectomicorrízicos (TEDERSOO; MAY; SMITH, 2010), os autores relacionam 56 gêneros pertencentes ao filo Basidiomycota, considerando-os sequestroides ou apresentando espécies com formas sequestroides. Muitos destes gêneros são simbiontes ectomicorrízicos, porém, gêneros saprofíticos ou parasitas também são citados.

Parasitismo

A capacidade de parasitismo foi referida por Henkel et al. (2010), que propôs a criação de um novo gênero, *Guyanagaster* T.W. Henkel, M.E. Smith & Aime (HENKEL; SMITH; AIME, 2010), para acomodar este gênero monoespecífico com capacidade parasítica. O gênero *Guyanagaster* está agrupado, conforme dados moleculares, na família Physalacriaceae, junto com outra forma sequestrada, *Cribbea* A.H. Sm. & D.A. Reid, que frequentemente é encontrada crescendo sobre restos de madeira, possuindo uma forma saprofítica de vida (TEDERSOO; MAY; SMITH, 2010).

Saprofitismo

De forma geral, os fungos hipógeos têm evoluído nas diferentes linhagens de fungos ectomicorrízicos dos filos Ascomycota e Basidiomycota (TEDERSOO; MAY; SMITH, 2010). Parafilia e polifilia consistem em um dos maiores problemas para atribuir o status trófico para espécies de fungos (TEDERSOO; MAY; SMITH, 2010).

Embora a maioria dos fungos hipógeos sejam simbiontes ectomicorrízicos (MOLINA; MASSICOTE; TRAPPE, 1992; CASTELLANO; TRAPPE; LUOMA, 2004) há também muitas espécies em diferentes gêneros que são saprofíticos (TEDERSOO; MAY; SMITH, 2010), como por exemplo, com os gêneros Phallobata G. Cunn., Sclerogaster R. Hesse, Trappea Castellano e Weraroa Singer (HOSAKA; CASTELLANO, 2008; TEDERSOO; MAY; SMITH, 2010; GE; SMITH, 2013) e sua maior importância, em termos ecológicos, é o papel que desempenham na ciclagem de nutrientes. Gêneros de fungos hipógeos saprofíticos são frequentemente monoespecíficos ou com poucas espécies, e sua ecologia permanece pouco compreendida (TEDERSOO; MAY; SMITH, 2010). Fungos saprofíticos são, de maneira geral, mais amplamente distribuídos do que os fungos ectomicorrízicos, pois não necessitam da presença do seu simbionte vegetal (HOSAKA; estes CASTELLANO, 2008). Recentemente, estudos envolvendo o gênero Amogaster Castellano, que foi molecularmente relacionado com o gênero saprofítico Lepiota (Pers.) Gray (GE; SMITH, 2013) e Cryptolepiota Kropp & Trappe, que também foi proposto para englobar espécies agaricoides (KROPP et al., 2012), são exemplos de fungos que realizam saprofitismo.

Estudos realizados com a família Agaricaceae Chevall., tem demonstrado, através de analises moleculares (VELLINGA, 2004; LEBEL; SYME, 2012) que gêneros sequestroides são derivados de fungos agaricoides epígeos. Um exemplo é o

gênero secotioide *Endoptychum* Czern., que sabe-se ter origens em diversos clados dentro de Agaricaceae (VELLINGA, 2004; GE; SMITH, 2013), sendo atualmente um gênero desconsiderado por Vellinga e de Kok (2002) e Kirk et al. (2008).

Outro exemplo de estudos que relacionam formas hipógeas com epígeas, é o gênero *Stephanospora* Pat., que foi recentemente relacionado ao gênero ressupinado *Lindtneria* Pilát (LEBEL; CASTELLANO; BEEVER, 2015), sem evidencias de simbioses ectomicorrízicas (TEDERSOO; MAY; SMITH, 2010; TEDERSOO; SMITH, 2013), provavelmente relacionando o gênero ao hábito saprofítico (LEBEL; CASTELLANO; BEEVER, 2015).

Associações ectomicorrízicas

A grande maioria dos gêneros de fungos hipógeos obtém seus nutrientes através de formações ectomicorrízicas (MOLINA; MASSICOTE; TRAPPE, 1992; BRUNDRETT et al., 1996; CASTELLANO; TRAPPE; LUOMA, 2004; TRAPPE; CLARIDGE, 2005; SMITH; READ, 2008; MASER; CLARIDGE; TRAPPE, 2010; GE; SMITH, 2013).

As ectomicorrizas (ECM) são encontradas em cerca de 6.000 espécies de plantas e 20.000 a 25.000 espécies de fungos (RINALDI; COMANDINI; KUYPER, 2008; TEDERSOO; MAY; SMITH, 2010), especialmente em essências florestais, as quais, por meio desta associação mutualística, podem aumentar sua absorção de água e de nutrientes, como fósforo, nitrogênio, potássio e micronutrientes (LEAKE et al., 2004; TEDERSOO; MAY; SMITH, 2010; van der HEIJDEN et al., 2015). Ademais, as ECM atuam na proteção da planta simbionte contra à ação de patógenos, participam em interações com outros organismos do solo, contribuem para a manutenção das cadeias tróficas e da diversidade da micro, meso e macrofauna do solo (SMITH; READ, 2008). Atuam também na formação e manutenção da estrutura do solo, trazendo reflexos no aumento da aeração e na redução da erosão do solo (RILLIG; MUMMEY, 2006). Em grande parte, os fungos ECM carecem de enzimas que possuem a capacidade de degradar celulose e lignina (HUTCHISON, 1990).

Nas associações ectomicorrízicas as células fúngicas não penetram a parede celular das raízes das plantas, diferentemente do que ocorre com as micorrizas arbusculares (MA), mas distribuem-se no espaço intercelular, formando uma malha na epiderme e córtex da raiz, denominada de rede de "Hartig" (SMITH; READ, 2008). Além disso, formam um revestimento externo na raiz, derivado desta rede, o qual recebe

o nome de manto. Os fungos simbiontes recebem substâncias oriundas da fotossíntese da planta, que são utilizados para sua nutrição, e estendem suas hifas da raiz para o solo, formando as rizomorfas, que funcionam como raízes auxiliares da planta, possibilitando a exploração de maior volume de solo, aumentando a absorção de nutrientes e água. Fungos ECM reproduzem-se sexuadamente, diferentemente do que ocorre com os fungos arbusculares, que apresentam reprodução exclusivamente assexuada (SMITH; READ, 2008). Em Basidiomycota, os corpos de frutificação produzidos pelos fungos ECM são em sua maioria basidiomas macroscópicos estipetados e de hábito epígeo, e certa quantia também apresenta hábito resupinado ou hipógeo (TEDERSOO; MAY; SMITH, 2010).

Em sua grande maioria os fungos ECM pertencem ao filo Basidiomycota, destacando-se gêneros como Amanita, Boletus L., Coltricia Gray, Cortinarius (Pers.) Gray, Hydnangium Wallr., Hymenogaster Vittad., Hysterangium Vittad., Inocybe (Fr.) Fr., Laccaria Berk. & Broome, Lactarius Pers., Pisolithus Alb. & Schwein., Ramaria Fr. ex Bonord., Rhizopogon Fr., Russula Pers., Scleroderma Pers., Suillus Gray, Thelephora Ehrh. ex Willd., entre outros (SMITH; READ, 2008; VELLINGA; WOLFE; PRINGLE, 2009). Estes gêneros epígeos e hipógeos podem estar presentes numa mesma floresta, sendo a razão de frutificação maior nos fungos epígeos do que em fungos hipógeos. No entanto, não há evidências que confirmam que uma forma de vida é melhor sucedida do que a outra (CASTELLANO; TRAPPE; LUOMA, 2004). Em países onde ocorrem florestas monodominantes, fungos epígeos e hipógeos ocorrem ao mesmo tempo formando verdadeiros complexos, como encontrado em Suillus-Gastrosuillus-Truncocolumella-Rhizopogon para as florestas de Pinus spp. (em especial na América do Norte), Descolea-Setchelliogaster-Descomyces, para as florestas de Eucalyptus spp. (na região da Austrália), Russula-Macowanites-Gymnomyces para as florestas temperadas da Europa, Lactarius-Arcangeliella-Zelleromyces e também Cortinarius-Thaxterogaster-Protoglossum. Os três últimos grupos são encontrados nos continentes Australiano e da América do Norte, porém, nenhuma das espécies ocorrem em ambos os continentes (CASTELLANO; TRAPPE; LUOMA, 2004), o que pode ser explicado pela especificidade de simbionte vegetal para este grupo.

Fungos ectomicorrízicos apresentam uma importante função no estabelecimento de plântulas e no crescimento das árvores em diferentes "habitats" (TEDERSOO; MAY; SMITH, 2010). A associação destes fungos às espécies florestais cultivadas,

como por exemplo, aos gêneros *Acacia*, *Eucalyptus* e *Pinus*, têm sido considerados como extremamente benéfica para a produção florestal. Adicionalmente, a associação e seus benefícios têm sido empregados na recuperação de áreas degradadas, propiciando melhorias consideráveis naqueles ecossistemas impactados (SILVA; ANTONIOLLI; ANDREAZZA, 2003; MOREIRA; SIQUEIRA, 2006).

Espécies dos gêneros Hysterangium, Rhizopogon e Scleroderma destacam-se como importantes recursos biotecnológicos no setor florestal e têm sido foco de estudos relativos à sua aplicabilidade na silvicultura, principalmente na melhoria da qualidade de produção de mudas e no estabelecimento de espécies florestais a campo (BRUNDRETT et al., 1996; CAIRNEY; CHAMBERS, 1999). Todavia, para produção de inoculantes florestais há que se considerar que os fungos ECM apresentam significativas diferenças em relação à especificidade do seu simbionte. Molina et al. (1992) e Oliveira et al. (1994) relataram que para alguns fungos esta especificidade pode ser manifestada entre gêneros e, em alguns casos, entre espécies vegetais. A observação deste fenômeno em nível de campo foi realizada por meio da detecção da presença de basidiomas em áreas vegetadas por determinadas comunidades de plantas. Verificou-se que determinados fungos, pertencentes aos gêneros Russula e Laccaria, (/russula-lactarius) por exemplo, apresentam um grande espectro de simbiontes vegetais, associando-se a várias famílias de plantas; enquanto gêneros como Rhizopogon e Suillus (/suillus-rhizopogon) associam-se a apenas uma ou poucas famílias, especialmente à família Pinaceae (MOLINA; MASSICOTE; TRAPPE, 1992). Determinados clados em ambos os gêneros Suillus e Rhizopogon são caracterizados por um íntimo padrão de simbiose envolvendo espécies do gênero *Pinus* (SMITH; READ, 2008). Na América do Sul, um exemplo de especiação envolve o gênero de planta *Alnus* (Fagales) e o gênero hipógeo a subhipógeo Alpova, que é exclusivamente encontrado crescendo próximo a este simbionte vegetal (NOUHRA et al., 2005).

Certas espécies de fungos ECM exibem o fenômeno de sucessão em função da idade das plantas. Estudos realizados em plantações de *Betula* spp., mostraram haver sucessão de fungos ECM à medida que as plantas se tornavam mais velhas (MASON et al., 1982; LAST et al., 1984). Fenômenos semelhantes também foram observados em plantios de *Pinus* spp. em Santa Catarina (GIACHINI et al., 2000). Dessa forma, propágulos fúngicos provindos de plantações mais velhas podem ter efeito nulo ou reduzido sobre plântulas em fase inicial de desenvolvimento.

Este aspecto de sucessão dos simbiontes fúngicos em função da idade das plantas tem papel fundamental nos programas de inoculação controlada. Oliveira et al. (1994) demonstraram que, para *Eucalyptus*, a inoculação de plantas no viveiro com fungos exógenos não persistiu, sendo que a maioria dos fungos foi substituída por fungos nativos assim que as plantas foram transplantadas para o campo. Outra observação foi que praticamente um único gênero, nesse caso *Scleroderma*, foi responsável por substituir pelo menos 90% das espécies fúngicas introduzidas. Este estudo, no entanto, não observou as condições de sucessão das espécies fúngicas em função da idade das plantas, quando da seleção dos fungos para inoculação no viveiro.

Recentemente esta interação foi abordada por van der Heijden et al. (2015), que apresentam uma moderna revisão sobre fungos ECM, relacionando temas como diversidade, ecologia e biologia molecular.

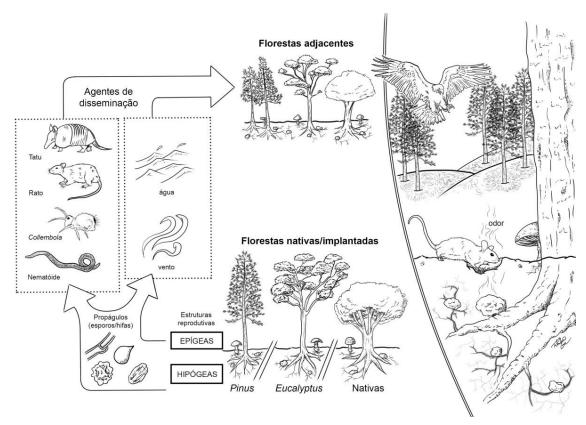
Outro importante tema que relaciona os fungos ectomicorrízicos hipógeos é que estes organismos acabam contribuindo para a invasão biológica de espécies arbóreas, comprovadamente mais do que os fungos arbusculares (RICHARDSON et al., 2000; DÍEZ, 2005). Grande parte das espécies florestais necessita dos seus simbiontes fungicos para que sobrevivam nos ambientes naturais (DÍEZ, 2005). Estudos comprovaram que a planta simbionte é praticamente impedida de estabelecer simbiose ectomicorrizica fora do seu habitat natural, sem o seu micobionte (NUÑEZ; HORTON; SIMBERLOFF, 2009). Isto foi comprovado utilizando-se *Pinus* e seu simbionte fungico, *Rhizopogon*. Porém, espécies de *Eucalyptus* podem se associar com diferentes fungos ectomicorrízicos em florestas tropicais, longe da Austrália, sua região de origem (TEDERSOO et al., 2007; JAIRUS et al., 2011). Na América do Sul, um estudo recente confirmou que fungos hipógeos (*Rhizopogon* e *Melanogaster*) contribuem para a invasão e dispersão de árvores exóticas (NUÑEZ et al., 2013).

Por muitos anos, associações envolvendo fungos ECM foram consideradas pouco frequentes e até raras nos trópicos (ALEXANDER, 1989; BÉREAU; GAZEL; GARBAYE, 1997), restritas apenas para as regiões temperadas do globo. Porém, estudos vêm demonstrando a presença de florestas ectotróficas em diferentes regiões tropicais (HENKEL; TERBORGH; VILGALYS, 2002; BECERRA; ZAK, 2011; BÂ et al., 2012; HENKEL et al., 2012; TEDERSOO; MAY; SMITH, 2010; SMITH et al., 2013b; SULZBACHER et al., 2013b). Com base em técnicas moleculares, especialmente da amplificação das regiões ITS (*Internal Transcribed Spacer*) e LSU (*Large Subunit*) do DNA ribossonal, 20 novas linhagens de fungos ECM foram

propostas em uma extensa revisão (TEDERSOO; SMITH, 2013). Parte destas linhagens são ocorrentes das regiões da América do Sul, especialmente regiões temperadas da Patagônia e florestas tropicais da Guiana. Além disto, os autores propõem que a habilidade de formar simbiose ECM evoluiu independentemente ao menos 80 vezes nos fungos (TEDERSOO; SMITH, 2013).

Na América do Sul pesquisas englobando ECM foram realizadas em diferentes países. Uma rica diversidade de ECM foi citada para as florestas temperadas da Patagônia da Argentina e Chile (GARRIDO, 1988; NOUHRA et al., 2012a; NOUHRA et al., 2013). Estudos morfo-anatômicos e de técnicas moleculares comprovaram a associação ECM em espécies arbóreas da Argentina (BECERRA et al., 2002; BECERRA et al., 2005). As florestas tropicais da Guiana também apresentam uma diversidade considerável de espécies ECM (HENKEL; TERBORGH; VILGALYS, 2002; HENKEL et al., 2012; SMITH et al., 2013b).

Pouco se sabe sobre a diversidade de fungos ECMs no Brasil. Estudos sobre este tema foram iniciados na região da Amazônia (SINGER; ARAÚJO, 1979; SINGER; ARAÚJO; IVORY, 1983; SINGER; AGUIAR, 1986). Após estes trabalhos, citações foram realizadas para matas exóticas, especialmente para florestas de *Pinus* e *Eucalyptus* (GIACHINI et al., 2000; BASEIA; MILANEZ, 2002; GIACHINI; SOUZA; OLIVEIRA, 2004; CORTEZ et al., 2008; SULZBACHER et al., 2010; CORTEZ et al., 2011) no Sul do Brasil. Sulzbacher et al., (2013a) apresentam uma ampla revisão sobre o estudo de fungos ECM no Sul do Brasil. Os autores reunem um total de 144 espécies, divididas em 49 gêneros, que apresentam potencialidade de formar associações ECM (SULZBACHER et al., 2013a). Recentemente, um estudo revelou a possibilidade de ocorrer uma mata ectotrófica na região de restinga da Mata Atlântica, no Nordeste do Brasil (SULZBACHER et al., 2013b). Os autores referem 30 espécimes coletados em floresta nativa pertencentes às famílias de Basidiomycota (Amanitaceae, Boletaceae, Hymenochaetaceae, Russulaceae e Sclerodermataceae).


2.8 Distribuição dos fungos hipógeos

A distribuição dos fungos hipógeos no Brasil e na América do Sul ainda é difícil de ser estudada, pois existem muitas lacunas, verdadeiros "vazios" de informações devido ao fato de que muitos biomas necessitam ainda ser explorados. A maioria dos fungos hipógeos formam associações ectomicorrízicas e são considerados dispersos por

animais micófagos (TRAPPE; CLARIDGE, 2005; TRAPPE et al., 2009), sendo a compreensão desta associação, entre animais e fungos hipógeos, outro grande desafio para a micologia em países megadiversos como o Brasil.

A dispersão dos esporos em fungos hipógeos ocorre geralmente no solo, comumente envolvendo animais, mas pode também ocorrer pela água, ou pelo vento (Figura 2). Desta forma, os propágulos (esporos, hifas, etc.) ingeridos por animais ficam depositados nas fezes e são, em seguida, transportados para novos fragmentos florestais.

Figura 2: Diagrama esquemático demonstrando como ocorre o processo de dispersão por micofagia envolvendo fungos hipógeos.

Fonte: Rhudson Cruz, 2016.

Ao longo dos tempos, os fungos hipógeos desenvolveram inúmeras formas de atrair seus animais micófagos, em grande parte, a atração aromática está envolvida (Figura 2), e assim, diferentes atrativos bioquímicos foram elaborados (PACIONI; BOLOGNAL; LAURENZI, 1991; MASER; CLARIDGE; TRAPPE, 2010). Os animais, por sua vez, tiveram que desenvolver diferentes maneiras para localizar e consumir o fungo, em alguns casos, exemplos de co-evolução foram observados (MASER;

CLARIDGE; TRAPPE, 2010), e uma total dependência deste processo registrada para certas espécies.

No Brasil, um estudo recente e inédito demonstrou o consumo de esporos e também parte do basidioma de *Descomyces albus* por espécies de *Balloniscus sellowii*, uma espécie de Isopoda, frequente na região Sul do país (SULZBACHER et al., 2015).

Fungos hipógeos, até onde se conhece, não são tóxicos, o que reflete a dependência por animais para a dispersão dos seus esporos (CASTELLANO; TRAPPE; LUOMA, 2004). Um exemplo, para esta associação entre animais e fungos foi encontrado na Nova Zelândia, onde se observou que as aves são importantes agentes de dispersão daqueles fungos (CASTELLANO; TRAPPE; LUOMA, 2004).

A dispersão dos esporos pelo vento é outra adaptação encontrada em certos fungos hipógeos (Figura 02), em especial, nas espécies de clima desértico, como ocorre no gênero *Terfezia* (Tul. & C. Tul.) Tul. & C. Tul., um fungo do filo Ascomycota (gênero não encontrado no Brasil). Espécies deste gênero formam seus ascomas apenas nos anos em que ocorre uma adequada precipitação pluviométrica (CASTELLANO; TRAPPE; LUOMA, 2004). Em períodos atípicos o micélio pode permanecer no solo por muitos anos sem produzir ascomas.

As comunidades de espécies ectomicorrízicas, incluindo também os fungos hipógeos, podem apresentar distribuição local ou ser mais dispersas. Fatores bióticos e abióticos vão determinar esta distribuição, como por exemplo, o tipo de simbionte vegetal, o clima, tipo de solo, níveis de pH do solo, macro e micronutrientes, tipo de matéria orgânica do solo, entre outros que vão delimitar a presença ou não de certos fungos hipógeos (BOUGHER; LEBEL, 2001; CLARIDGE, 2002). Estudos têm demonstrado que a ocorrência e relativa abundância de fungos hipógeos podem variar em relação à idade e o tipo de vegetação, como discutido anteriormente (CHU-CHOU; GRACE, 1982; CLARIDGE, 2002).

Vellinga et al. (2009), em estudo sobre os padrões globais de introduções ectomicorrízicas, considerando também exemplos de fungos hipógeos, referiram que algumas plantas foram movidas pelo mundo com seu sistema radicular intacto. Estas raízes podem ter abrigado os fungos ECM e o transporte destas plantas pode ter facilitado a sua introdução em novos ecossistemas. Pelo menos 200 espécies de fungos ECM dos filos Ascomycota e Basidiomycota foram movidas dos ambientes nativos para novos "habitats". A maioria destas introduções está associada com plantações de *Pinus*

e *Eucalyptus*, principalmente no hemisfério Sul (GIACHINI et al., 2000; NOUHRA et al., 2008; VELLINGA; WOLFE; PRINGLE, 2009).

Historicamente, o conhecimento das associações ectotróficas, ou seja, plantas que possuem associações com fungos ECM, é baseado em observações de campo, principalmente das estruturas reprodutivas, uma prática exposta a elevado grau de incerteza científica (RINALDI; COMANDINI; KUYPER, 2008). Frente a esta situação, nos últimos anos tem-se buscado utilizar técnicas de biologia molecular, bem como a identificação da presença de morfotipos ectomicorrízicos nas raízes das plantas, como ferramentas para o estudo da diversidade destes fungos. Recentemente, Tedersoo et al. (2010), elaboraram uma ampla revisão sobre a diversidade global, a distribuição e as linhas evolutivas das ectomicorrizas (incluindo diferentes grupos de fungos hipógeos) com base em estudos anatômicos e moleculares. Os autores destacaram a necessidade de se estudar com mais atenção os fungos ECM da América do Sul, para melhor compreender sua biogeografia. Relataram ainda que muitos dos estudos não utilizaram técnicas moleculares, o que dificulta o estabelecimento de relações filogenéticas e a confirmação exata das espécies estudadas. No que diz respeito a identificação de associações pela análise de morfotipos, Agerer (1987-2006) padronizou diretrizes para a caracterização morfo-anatômica, gerando informações úteis para esse ramo da ciência.

Especificamente para fungos hipógeos, pode-se afirmar que a sua distribuição é pouco compreendida mundialmente, como citado acima, havendo maior número de estudos nos países europeus e norte-americanos. As pesquisas nos trópicos e subtrópicos ainda são muito escassas, sendo até mesmo arriscado lançar alguma hipótese sobre a distribuição e abundância destes fungos nestes locais (MORENO-ARROYO; GÓMEZ; PULIDO, 2005; HOSAKA; CASTELLANO, 2008). Entretanto, em estudo sobre a distribuição de fungos ECM hipógeos da ordem *Hysterangiales*, Hosaka et al. (2008) realizaram uma análise minuciosa sobre as atuais compreensões da evolução das características ecológicas e morfológicas deste grupo e demostraram que muitos gêneros possuem distribuição global com origem Austral ou Australiana.

Na Guiana, recentemente, comprovou-se a ocorrência de fungos hipógeos, onde novas espécies foram publicadas (CASTELLANO et al., 2012) e novos gêneros propostos (HENKEL; SMITH; AIME, 2010; SMITH et al., 2015b). Espécimes indeterminados de fungos hipógeos foram referidos para florestas de restinga da Mata Atlântica no Nordeste do Brasil (SULZBACHER et al., 2013b). Considerando que as espécies hipógeas descritas até o momento são obrigatoriamente ectotróficas

(CLARIDGE, 2002), é provável que uma grande variedade de espécies fúngicas com esse hábito esteja associada às florestas ao redor do mundo. No Brasil, onde a diversidade de espécies vegetais que compõem os ecossistemas florestais é alta, é muito provável que existam muitas espécies fúngicas hipógeas compondo esses nichos ecológicos.

O endemismo é outro fato importante e que deve ser discutido em trabalhos de levantamento e distribuição de espécies em diferentes ecossistemas. Este tema ainda é pouco documentado para microrganismos, embora já tenha sido considerado para estimar a diversidade global em fungos (MUELLER; SCHMIDT, 2007). Para os fungos hipógeos, o endemismo é frequentemente relatado em estudos devido à especificidade de simbionte (CLARIDGE, 2002). Alguns fungos estão associados a espécies de plantas de forma específica, o que permite especular se, estando estreitamente relacionado com plantas endêmicas, o fungo também pode ser endêmico. Entre os fungos hipógeos, um exemplo é o do gênero *Mesophellia* Berk., endêmico à Austrália (CLARIDGE, 2002).

2.9. Importância de certas estruturas de fungos hipógeos e de fungos ECM para a sistemática, taxonomia e sinapomorfia

Determinadas estruturas fúngicas, como a camada do manto, a anatomia da rizomorfa, o subículo, cistídios, colorações e reações químicas (características bioquímicas), são importantes para caracterizar os fungos sequestroides hipógeos e também fungos ECM (AGERER, 1999; AGERER, 2006; AGERER; IOSIFIDOU, 2004), servindo como sinapomorfias em fungos e podendo-se inferir relações filogenéticas para determinados grupos (AGERER, 2006). Uma compilação de dados com base em características que envolvem a anatomia das estruturas de fungos ectomicorrízicos e suas relações evolutivas com demais fungos é apresentada por Agerer (2006). O autor engloba fungos hipógeos e algumas conclusões são feitas com base na morfologia dos corpos de frutificação, comparando-se os conceitos destas caracteristicas macro e microscópicas junto às da filogenia molecular.

A anatomia da rizomorfa, por exemplo, já foi utilizada para confirmar a posição sistemática de determinados gêneros sequestroides, como por exemplo, *Sclerogaster* Hesse, posicionado inicialmente em Russulales (MALENÇON, 1931; HEIM, 1971), posteriormente reagrupado na ordem Boletales (KIRK et al., 2001) e, recentemente, pelo uso de ferramentas moleculares, colocado na ordem Geastrales no clado

"gomphoid-phalloid" (HOSAKA et al., 2006; HOSAKA; CASTELLANO, 2008). Estudos envolvendo a anatomia da rizomorfa confirmaram o correto posicionamento do gênero *Sclerogaster* dentro da ordem Geastrales (CLÉMENÇON; HOSAKA; TAYLOR, 2007) como já tinha sido observado através de estudos de sequencias do DNA ribossomal.

Rizomorfas

Segundo Kirk et al. (2008), rizomorfa é uma aglomeração de hifas, um cordão micelial, que perdeu sua individualidade. O estudo da anatomia da rizomorfa pode contribuir para a compreensão das relações filogenéticas e sistemáticas dos Basidiomycetes, confirmando as classificações propostas por estudos utilizando-se sequências de DNA (AGERER; IOSIFIDOU, 2004; AGERER, 2006). Nos estudos apresentados por Agerer (1999, 2006), diferentes padrões anatômicos são distinguidos e utilizados para fins filogenéticos e sistemáticos. Características sinapomórficas da morfologia da rizomorfa incluem a presença ou ausência de hifas ampulaceas, acantohifas, acantocistídios e cristais agregados nas superfícies.

Cistídios

Cistídios são estruturas estéreis, apresentam uma forma variável, parede fina ou espessa, hialinas ou pigmentadas, frequentemente encontrados nas superfícies dos basidiomas (estipe, píleo e himênio) sendo classificados e nomeados conforme a sua localização (KIRK et al., 2008). Estas estruturas possuem importância taxonômica para diferentes grupos de macromycetes (SINGER, 1986). Diferentes tipos de cistídios também ocorrem nas rizomorfas e nas estruturas de fungos ECM. Estudos relacionando estas estruturas foram publicados por Agerer (1991; 2006) e servem de base para estudos morfoanatômicos. Entre os diferentes padrões de cistídios (*sensu* AGERER, 2006) estão "fibulocistídio" (com um grampo de conexão intercalar), "capitado" (com a extremidade intumescida ou globosa), "bottle-shaped" (com uma base inflada estreitando-se no topo), "bolbitióide" (com um ápice globoso e projeções laterais), "awl-shaped" (com ramificações di-tricotômicas), "clavate-shaped" (com a forma clavada), "russuloide" (com forma de garrafa e uma protuberância no ápice), e "oleoacantocistídio" (hifas preenchidas com um conteúdo amarelado resinoso, com projeções laterais curtas e também células arredondadas com o mesmo conteúdo).

"Emanating-hyphae"

Esta estrutura que ocorre ao longo da superfície do manto e em seguida projetando-se para o substrato, termo sem uma correta tradução para o português, pode apresentar características peculiares em determinadas espécies (AGERER, 2006), como padrões de cores, espessura da parede da hifa, tipo de ramificação, presença de grampo de conexão, e presença de cristais ou pigmentos na superfície da hifa.

Manto

Segundo Kirk et al. (2008) o manto é formado por um tecido fúngico compacto, que cobre a estrutura radicular e se conecta com a rede de "Hartig". Pode ser do tipo plectenquimatoso (com hifas arranjadas irregularmente sobre a raíz) e pseudoparenquimatoso (células curtas, arredondadas a angulares, lembrando um verdadeiro parênquima). Estes dois padrões de manto podem apresentar diferentes séries de morfologias, com formas mais simples, ou mais complexas. A superfície do manto pode apresentar estruturas como cistídios e hifas lacticíferas (AGERER, 2006).

Reações químicas

Reações das hifas com reagente de Melzer pode ser informativo para determinados grupos, por exemplo, Agaricaceae e Russulaceae, tornando as hifas amilóides, dextrinóides ou inamilóides (SINGER, 1986). O reagente de hidróxido de potássio (KOH) pode reagir com as hifas para diferentes tonalidades (AGERER, 2006).

Coloração

A cor é uma importante característica informativa para fungos ECM, que podem apresentar uma variedade grande de cores, frequentemente assemelhando-se à cor dos basidiomas (AGERER, 2006).

2.10. Fungos hipógeos: relações evolutivas e filogenéticas entre fungos epígeos e hipógeos

O fato dos fungos hipógeos ocorrerem abaixo da superfície do solo lhes proporciona algumas vantagens quando comparados com aqueles de hábito epígeo (THIERS, 1984; TRAPPE, 1988), em especial nos ambientes de temperaturas extremas, como ambientes áridos ou regiões temperadas. Estando abaixo da superfície do solo os

basidiomas ou ascomas ficam protegidos do calor e do ar seco (este pode causar a dessecação do fungo), ou da geada (ou neve) que os congelaria (TRAPPE, 1988). A permanência dos esporos no solo, em especial nas regiões de rizosfera da planta é outra importante vantagem dos fungos hipógeos em relação aos fungos epígeos (MILLER; TORRES; McCLEAN, 1994). *Tuber melanosporum* Vittad., frequente nas matas temperadas da Europa, produz um interessante fenômeno no solo, principalmente na região basal das plantas simbiontes, onde são produzidos determinados compostos herbicidas que reduzem a competição com plantas daninhas e a planta simbionte (MONTACCHINI; LOMAGNO, 1977), deixando o solo com aparência de queimado.

Este tópico envolvendo os fungos hipógeos e as condições ambientais são relatadas por Claridge (2002) que enfoca os estudos desenvolvidos no continente australiano. Neste ambiente, o autor relata que fungos epígeos produzem seus basidiomas com um longo estipe e um píleo que permanece abaixo do solo ou apenas emerge na superfície. Os esporos destes basidiomas não são dispersos pelo vento e acabam ficando acumulados numa densa massa logo abaixo do píleo (CLARIDGE, 2002). Este fato também foi comprovado no Brasil, durante a presente pesquisa nas matas de restinga arbórea das dunas de Natal no Estado do Rio Grande do Norte (SULZBACHER et al., 2013b; WARTCHOW; SULZBACHER; BASEIA, 2015). Foi possível observar basidiomas de Amanita psammolimbatula Wartchow & Sulzbacher crescendo com o estipe completamente inserido no solo arenoso (neossolo quartzarênico), ficando apenas a região superior do píleo emergente (WARTCHOW; SULZBACHER; BASEIA, 2015). Outra espécie, Amanita lippiae Wartchow & Tulloss (WARTCHOW; TULLOSS; CAVALCANTI, 2009), foi descrita para a região do semiárido brasileiro, sendo que basidiomas desta espécie permanecem praticamente totalmente na forma hipógea, apenas com a região do píleo exposta ao ambiente. Isto demonstra que ambientes extremos, como o bioma Caatinga ou regiões costeiras da Mata Atlântica apresentam fungos com basidiomas adaptados ao ambiente. Este tipo de adaptação encontrada no gênero Amanita pode ser um exemplo do que pode ter ocorrido com outros fungos, como por exemplo aqueles da ordem Hysterangiales, onde gêneros como Hysterangium podem ter se adaptado a viver no ambiente hipógeo, diferente dos seus parentais, fungos da ordem Phallales (Mutinus Fr., Phallus Junius ex L., Staheliomyces E. Fisch.) que apresentam um modo de vida epígeo. Porém, Hosaka et al. (2006), avaliaram o histórico de características ancestrais de Phallomycetidae

(Geastrales, Hysterangiales e Phallales) e concluiram que fungos hipógeos desta subclasse são ancestrais aos fungos epígeos.

Fungos macroscópicos com formas de vida epígea e hipógea também compartilham relações filogenéticas, e frequentemente estão relacionados à mesma linhagen evolutiva (PEINTNER et al., 2001; TEDERSOO; MAY; SMITH, 2010). Na ordem Boletales, por exemplo, ocorre à subordem Suillineae (BINDER; HIBBETT, 2006), que inclui gêneros agaricoides (Gomphidius Fr. e Chroogomphus (Singer) O.K. Mill.), boletoides (Suillus Gray) e hipógeos (Truncocolumella Zeller e Rhizopogon Fr.). Os gêneros hipógeos Alpova C.W. Dodge e Melanogaster Corda, que compartilham, entre outras características, a gleba gelatinizada (TRAPPE, 1975), formam dois clados independentes segundo os estudos moleculares de Binder e Hibbett (2006). Os gêneros Descomyces, Setchelliogaster e Timgrovea Bougher & Castellano derivaram de gêneros estipetados e estão molecularmente inseridos no "complexo descolea" (TEDERSOO; MAY; SMITH, 2010). Em Cortinariales os gêneros sequestroides Cortinomyces Bougher & Castellano e Hymenogaster Vittad., juntamente com o gênero secotioide Thaxterogaster Singer, comprovaram ser próximos molecularmente com o gênero agaricoide Cortinarius (Peintner et al., 2001). Em Russulales, os gêneros estipetados Lactarius e Russula são molecularmente relacionados com os gêneros sequestroides hipógeos Arcangeliella Cavara, Cystangium Singer & A.H. Sm., Elasmomyces Cavara, Gymnomyces Massee & Rodway, Macowanites Kalchbr., Martellia Mattir., e Zelleromyces Singer & A.H. Sm. (EBERHARDT; VERBEKEN, 2004; MILLER et al., 2001; MILLER et al. 2006; VERBEKEN et al., 2014), embora no passado estes gêneros russuloides tenham sido separados morfologicamente (SINGER; SMITH 1960b). Atualmente, estudos de filogenia molecular comprovam o agrupamento dos gêneros sequestroides citados acima aos gêneros Lactarius e Russula, indicando também múltiplas origens para a ocorrência de basidiomas com estipe e anel e também às formas sequestroides (MILLER et al., 2006). Recentemente novas combinações e novas espécies sequestroides foram descritas para o gênero Lactarius, tais como L. rubriviridis Desjardin, Saylor et Thiers (DESJARDIN, 2003), L. angiocarpus Verbeken & Eberhar, L. dolichocaulis (Pegler) Verbeken & Eberhardt (EBERHARDT; VERBEKEN, 2004), L. pomiolens Verbeken & Stubbe, L. saturnisporus Verbeken & Stubbe, L. shoreae Stubbe & Verbeken, L. echinellus Verbeken & Stubbe, L. echinus Stubbe & Verbeken, e L. falcatus Verbeken & Van de Putte (VERBEKEN et al., 2014). Os gêneros hipógeos Hydnangium Wallr. e Podohydnangium G.W. Beaton, Pegler & T.W.K. Young são

relacionados morfologicamente com o gênero agaricoide *Laccaria*, devido principalmente à ornamentação dos basidiospóros (BRUNDRET et al., 1996; CASTELLANO; TRAPPE; LUOMA, 2004), sendo atualmente inseridos no "complexo laccaria" (TEDERSOO; MAY; SMITH, 2010).

O gênero *Scleroderma* consiste principalmente em espécies epígeas com um perídio que se rompe apicalmente quando maduro para liberação dos esporos. Porém, algumas espécies deste gênero permanecem vivendo de forma hipógea e seu perídio nunca se abre (ZELLER, 1947; CASTELLANO; TRAPPE; LUOMA, 2004). Uma espécie hipógea, *S. bougheri* foi descrita para mata de *Eucalyptus* no Brasil (GIACHINI et al., 2000), e recentemente *S. patagonicum* Nouhra & Hernández-Caffot (NOUHRA et al., 2012b) também hipógea, para floresta de *Nothofagus* na Argentina.

Os gêneros *Richoniella* Costantin & L.M. Dufour, e *Rhodogaster* E. Horak, são relacionados ao gênero epígeo agaricoide *Entoloma sensu lato* (BRUNDRETT et al., 1996; TEDERSOO; MAY; SMITH, 2010). Recentemente a espécie *Richoniella asterospora* (Coker & Couch) Zeller & C.W. Dodge foi transferida, com base em estudos de filogenia molecular, para o gênero *Entoloma*, sendo atualmente considerada *Entoloma asterosporum* (Coker & Couch) T.J. Baroni & Matheny (BARONI; MATHENY, 2011).

Os gêneros *Amarrendia* Bougher & T. Lebel e *Torrendia* Bres. são relacionados com o gênero agaricoide *Amanita* (BOUGHER; LEBEL, 2002). Recentemente espécies de ambos os gêneros foram agrupadas junto ao gênero *Amanita* após estudos com sequências (ITS e LSU) ter comprovado suas relações filogenéticas (JUSTO et al., 2010).

Na ordem Geastrales, os gêneros hipógeos *Radiigera*, *Sclerogaster* e *Schenella* T. Macbr. (sin. *Pyrenogaster*) apresentam um hábito saprofítico, o mesmo hábito trófico encontrado nos demais gêneros da ordem (SUNHEDE, 1989; HOSAKA; CASTELLANO, 2008). Os três gêneros provaram ter uma posição filogenética basal entre Geastrales (HOSAKA et al. 2006; HOSAKA; CASTELLANO, 2008), sugerindo que fungos hipógeos podem ser evolutivamente ancestrais aos gêneros epígeos desta ordem, por exemplo, *Geastrum* Pers. e *Myriostoma* Desv. Esse contexto foi recentemente comprovado, com base em estudos moleculares (JEPPSON; NILSSON; LARSSON, 2013; ZAMORA et al., 2014), para o gênero *Radiigera*, que foi sinomimizado junto a *Geastrum* devido a similariedade molecular.

3 MATERIAL E MÉTODOS

3.1 Áreas de coleta

As coletas dos fungos hipógeos (basidiomas, esclerócios, raízes ectomicorrizadas) foram realizadas em ambientes naturais de áreas contidas em ecossistemas de Mata Atlântica dos Estados do Rio Grande do Norte e Paraíba, Nordeste do Brasil, no período de 2011 a 2013.

Rio Grande do Norte

A reserva Parque Estadual das Dunas do Natal: está localizada no município de Natal (05°59'04"S e 35° 12' 10"W), próxima a área urbana, possui 1.172 há (LISBOA, 2008). A vegetação é composta predominantemente por restinga, também denominada "vegetação do litoral" ou região "justamarítma", formações vegetais que cobrem as areias holocênicas desde o oceano (OLIVEIRA-FILHO, 1993; RIZZINI, 1997). Esta vegetação é caracterizada pela heterogeneidade vegetacional e também por apresentar áreas de transição entre floresta de Mata Atlântica e Caatinga (RIZZINI, 1997; CESTARO, 2002; CESTARO; SOARES, 2004). Outro tipo vegetacional, ocorrente no Parque, são as savanas (tabuleiro litorâneo), compreendidas como áreas geralmente planas, cobertas de uma vegetação particular (FREIRE, 1990; RIZZINI, 1997), principalmente com regiões florestais com árvores que podem atingir 20 metros, no extrato superior, ou ilhas de vegetação abertas, com áreas de areia branca expostas, similar a região do Cerrado (ANDRADE-LIMA, 1960; FREIRE, 1990). O solo é arenoso (Neossolo quartzarênico, EMBRAPA, 2013), e com baixa fertilidade (GOTO et al., 2012). O clima da região é caracterizado como tropical úmido de acordo com o sistema de classificação Köppen (tipo Am), com período chuvoso de início nos meses de março e abril, e estendendo-se até setembro, com pluviosidade máxima entre junho e julho (JACOMINE et al., 1971; PEEL; FINLAYSON; McMAHON, 2007). A precipitação média anual varia entre 800-1.500 mm, e a temperatura média anual é de 25 °C (FREIRE, 1990).

Reserva Particular do Patrimônio Natural (RPPN) Mata Estrela: está localizada no município de Baía Formosa (06°22'40"S e 35°01'22"W), é uma área composta

predominantemente por uma vegetação de restinga arbórea, com um predomínio de espécies de Myrtaceae (LOURENÇO; BARBOSA, 2012).

Paraíba

Reserva Biológica Guaribas: está localizada nos municípios de Mamanguape e Rio Tinto (06°44.545' S e 35° 08.533' W), possui uma área de 4.132 ha, e compreende principalmente vegetação de tabuleiros costeiros e Mata Atlântica (BARBOSA et al., 2011). A área apresenta uma elevada diversidade vegetacional, composta principalmente pelas famílias (Asteraceae, Cyperaceae, Fabaceae, Malvaceae, Melastomataceae, Myrtaceae, Poaceae, Polygonaceae e Rubiaceae (PEREIRA; BARBOSA, 2006; BARBOSA et al., 2011).

Reserva Ecológica Estadual Mata do Pau-Ferro: está localizada no município de Areia (06°58′12″ S e 35°42′15″ W), com altitude entre 400 e 600 m (BARBOSA et al., 2004). O local é caracterizado por umidade relativa de 85% e precipitação que atinge 1.400 mm anuais. A formação vegetal pode ser considerada uma "ilha" de Floresta Atlântica no meio do semiárido (BARBOSA et al., 2004; TABARELLI; SANTOS, 2004), o solo é do tipo Podzólico (JACOMINE et al., 1973).

3.2 Coleta, análise dos basidiomas e herborização

Para as coletas foram seguidas as metodologias propostas por Castellano et al. (2004) e Nouhra et al. (2008). Definiu-se um transecto de 500 m ao longo de trilhas já existentes nos ecossistemas propostos.

Nestes transectos, parcelas de 1 metro de raio a partir de exemplares arbóreos adultos de diferentes famílias botânicas foram demarcadas e com o auxílio de um rastelo realizaram-se raspagens na superfície da camada de serapilheira (CASTELLANO; TRAPPE; LUOMA, 2004; NOUHRA et al., 2008). Neste processo, não mais do que 20 cm de solo foram retirados e os eventuais basidiomas visualizados coletados.

Antes da coleta do material, os espécimes foram fotografados no local de coleta (*in situ*) e dados de importância taxonômica foram anotados, principalmente: data, local de coleta, dados de identificação das espécies arbóreas, tipo de solo, nome do coletor e características relativas aos basidiomas (profundidade em que foi encontrado no solo,

coloração, consistência, forma e medidas). A vegetação de entorno foi identificada até onde possível em campo, e exemplares de plantas foram devidamente coletados para, posteriormente, serem identificados por especialistas em sistemática vegetal da UFRN. Os fungos foram numerados, acondicionados em sacos de papel e conduzidos até o Laboratório de Biologia de Fungos, na Universidade Federal do Rio Grande do Norte, Natal, RN, para posterior identificação.

A identificação e a descrição das espécies foram baseadas na análise dos caracteres macroscópicos, microscópicos e pela presença e características de microestruturas férteis e estéreis. Para observação microscópica, realizaram-se cortes à mão livre do basidioma (perídio, gleba, etc.) com lâminas de aço. Além destas observações anatômicas, utilizaram-se corantes e testes microquímicos (uso dos reagentes Azul de Algodão e Melzer), estes, possuem valor significativo para a taxonomia (SINGER, 1986). Para determinação da coloração, utilizou-se a tabela de cores de Kornerup e Wanscher (1978).

Em seguida, o material foi desidratado em um aparelho desidratador marca *Stockli*, em temperatura aproximada de 35° C, durante 48 horas. Para depósito no herbário, as amostras foram acondicionadas em sacos plásticos com zíper e posteriormente em envelopes de papel com ficha catalográfica padronizada de acordo com o Herbário de Fungos – UFRN. Duplicatas foram depositadas no herbário URM (Herbário Pe. Camille Torrend, Departamento de Micologia/CCB/UFPE). As siglas de Herbários foram abreviadas por acrônimos segundo o *Index Herbariorum*, exceto UFRN-fungos.

3.3 Coleta e análise das raízes ectomicorrízicas

Raízes de plantas que estavam ocorrendo na base dos basidiomas hipógeos foram cuidadosamente coletadas seguindo-se os protocolos de Agerer (1991). A metodologia consiste basicamente na remoção das raízes do solo e o acondicionamento das mesmas em sacos plásticos (umedecidos) e numerados, para estudo em laboratório. Estas raízes foram cuidadosamente lavadas em água corrente, para a retirada de detritos orgânicos, e em seguida, analisadas com o auxílio de lupa (microscópio estereoscópico), com o intuito de encontrar morfotipos com estruturas ectomicorrízicas (hifas do manto, cistídios, rede de Hartig), e então, estudados conforme Agerer (1991) e Brundrett et al. (1996).

3.4 Avaliação molecular

Extração de DNA

A extração de DNA foi realizada com material herborizado, com aproximadamente 12 meses após a coleta, ou utilizando-se fragmentos frescos dos basidiomas, que foram acondicionados em tubos de eppendorf com sílica para desidratação e posterior extração e amplificação. Para a extração foram seguidas as recomendações propostas pelo protocolo de Cabral et al. (2012), que emprega o detergente CTAB, responsável por romper as membranas celulares e liberar o DNA. O protocolo consiste em pulverizar 0,15g do material (qualquer parte do corpo de frutificação) com auxílio de nitrogênio líquido. Ao pó obtido adiciona-se 0,75mL de tampão CTAB (CTAB, NaCl 5M, Tris-HCl 1M, EDTA 500mM, β-mercaptoetanol) previamente aquecido, sendo as amostras incubadas em banho-maria durante 30min à 65 °C. Os componentes do tampão e seu pH, entre outras funções, evitam a ação de DNAses, que degradariam o DNA livre. Em seguida, faz-se a precipitação do DNA, adicionando clorofórmio: álcool isoamílico (24:1) e centrifuga-se a 10000 r.p.m. por 10 min. Após essa fase, adiciona-se isopropanol 60% para separação do DNA, seguido de centrifugação a 11000 r.p.m. por 20 min., e lavagem final com etanol 70%. O etanol é então descartado, e a amostra submetida à secagem em fluxo laminar. O DNA é então ressuspendido, após secagem, em 50µl de água DNAse Free. Após a extração, o DNA total é quantificado em nano-espectrofotômetro Nanodrop (Nanodrop Technologies, Oxfordshire, UK) em comprimento de onda de 260 nm, e diluído à concentração de 25ng/µl para ser utilizado nas reações de PCR.

Amplificação

As reações de PCR foram feitas conforme as instruções dos fornecedores das enzimas (KAPA Biosystems), considerando as características específicas de temperatura de ligação para os *primers*. Foram utilizados os *primers* LROR-LR5 (VILGALYS, 1990) para amplificação de DNA ribossômico (28S); ATP6-1 e ATP6-2 (KRETZER; BRUNS, 1999) para amplificação da região do DNA mitocondrial que codifica a subunidade 6 da ATPase. Os parâmetros de ciclagem para 28S foram seguidos com base no ciclo inicial de desnaturação a 95°C por 2 min; 39 ciclos de 94°C por 1 min, 45°C por 30s e 72°C por 1 min; extensão final a 72°C por 5 min. Para atp6, o

ciclo inicial de desnaturação a 95°C por 2 min; 5 ciclos de 94 °C por 35s, 37°C por 55s e 72°C por 1 min, seguido por 30 ciclos de 94 °C por 35s, 45°C por 55s e 72°C por 1 min; extensão final a 72°C por 10 min. Cada reação foi realizada em um volume final de 20μl, contendo tampão (10x) de PCR, MgCl2, a 1,5mM, desoxirribonucleotídeos fosfatados (dNTP) a 1,4mM, *primers forward* e *reverse* a 12,5 pmol, solução de DNA a 25ng/μl, Taq DNA Polimerase a 5 U/μl (Invitrogen). Para visualização dos fragmentos amplificados, 3μl da amostra foram misturados à 1μl de tampão de corrida (glicerol e Bromofenol Blue) e depositados em gel de agarose a 1,5% corado com brometo de etídeo, visualizado sob luz ultravioleta. Para a purificação de produtos de PCR, foi utilizado o kit de colunas Wizard® SV Gel and PCR Clean-Up System, da Promega, seguindo as instruções fornecidas.

Sequenciamento e alinhamento das sequências

O sequenciamento dos fragmentos de PCR foi realizado com os mesmos *primers* da PCR, em reação clássica utilizando os *kits* de sequenciamento da *Applied Biosystems ABI PRISM® BigDye*TM *Terminator Cycle Sequencing Ready Reaction Kit* versão 3.1, no Centro de Estudos do Genoma Humano – USP. As sequências *forward* e *reverse* de cada amostra foram agrupadas para gerar uma única sequencia consenso (*contig*), conforme o programa *Geneious R6.1* (Biomatters Ltd.).

Para confirmar se as sequências obtidas correspondiam às regiões desejadas, estas foram submetidas à análise online de BLAST (ALTSCHUL et al., 1997), através do National Center for Biotechnology Information (NCBI). Sequencias relacionadas ao material de estudo e depositadas no banco internacional de nucleotídeos *GenBank* (ALTSCHUL et al., 1997), foram também baixadas e utilizadas nas análises. As sequencias foram então alinhadas utilizando-se o programa *Geneious R6.1* (Biomatters Ltd.) e manualmente editadas no BioEdit v.7.0.1 (HALL, 1999).

Analise filogenética

Para construção das árvores o software PAUP* (SWOFFORD, 1998) foi utilizado para métodos de máxima parcimônia, através da interface gráfica PaupUp (CALENDINI; MARTIN, 2005), enquanto que o programa MrBayes (HUELSENBECK; RONQUIST, 2001) foi utilizado para análise Bayesiana. Para o método de máxima parcimônia, as árvores foram calculadas com mecanismo de busca heurística com a árvore inicial obtida por *stepwise addition* com 1.000 *bootstraps*. Para

MrBayes, os dados foram particionados, e cada partição corresponde a um gene (nucLSU, *atp6*), com seu respectivo modelo de substituição escolhido pelo MrModelTest. Para visualização e edição dos dendrogramas utilizou-se os softwares *TreeView* (PAGE, 1996) e *FigTree* (http://tree.bio.ed.ac.uk/software/figtree/).

4 RESULTADOS E DISCUSSÃO

4.1 Lista dos fungos sequestroides hipógeos na América do Sul

Referências de fungos com o hábito hipógeo e também fungos relatados como subhipógeos para a América do Sul, com base em coleções provenientes de estruturas reprodutivas sexuadas de Ascomycota e Basidiomycota, foram incluídas na presente lista. O estudo revisa todas as contribuições científicas que incluem descrições de espécies ou citações de espécies do grupo mencionado acima. O nome da espécie é apresentado conforme a literatura atual. Informações adicionais incluem localização e tipo de hábitat, se são espécies nativas ou exóticas para a localidade e a natureza do substrato, quando este é informado na literatura. Gêneros e espécies são listados alfabéticamente e seguindo-se o padrão taxonômico conforme os bancos de dados "Mycobank" (http://www.mycobank.org/MycoTaxo.aspx) e também conforme "Index (http://www.indexfungorum.org/names/names.asp). Fungorum" Espécimes listados conforme três categorias: 1) espécie válida – conforme a literatura mais recente, segundo as bases de dados acima mencionados; 2) espécies duvidosas – espécies com classificação desatualizada ou citação confusa; e 3) espécies indeterminadas e não descritas – taxas que foram referenciados na literatura como indeterminados ou não formalmente descritos. O estudo representa os seguintes países: Argentina, Brasil, Chile, Colômbia, Equador, Guiana e Uruguai (Figura 3).

Honduras Caribbean Sea Nicaragua Maracaibo Caracas Costa Rica Panama North Atlantic Venezuela French Guiana Ocean Calio Colombia Suriname STATE OF CEARA STATE OF PARA STATE OF PARAIBA Brazil STATE OF ACRE STATE OF ALAGOAS STATE OF TOCANTINS STATE OF RONDONIA Lima STATE OF MATO GROSSO Nuestra Señora de La Paz STATE OF MINAS GERAIS Bolivia STATE OF MATO GROSSO DO SUL oBelo Horizonte Paraguay South Pacific Ocean Chile 0 00 Uruguay Argentina 0 0 South Atlantic Ocean Map data ©2015 Basarsoft, Google, INEGI, Inav/Geosistemas SRL, ORION-ME | 200 km L

Figura 3: Mapa da América do Sul apresentando os locais onde fungos hipógeos foram amostrados.

Fonte: Tine Grebenc, 2015.

Lista de espécies

Alpova austroalnicola L.S. Domínguez: ARGENTINA, Província de Salta, Santa Victoria, Los Toldos; hipógeo e subhipógeo no solo em floresta de *Alnus acuminata* Kunth (NOUHRA et al., 2005: 599).

<u>Comentários</u>: Esta espécie forma ectomicorriza com *Alnus* (NOUHRA et al., 2005; BECERRA et al., 2009).

Arcangeliella luteocarnea Lloyd: BRASIL, Rio Grande do Sul – Localidade desconhecida; hábitat desconhecido, em madeira caída (RICK, 1934: 109).

<u>Comentários</u>: *Arcangeliella luteocarnea* é um nome válido. Contudo, quando esta espécie foi publicada por Lloyd em 1922 a descrição carecia de informações sobre a reação da ornamentação dos basidiósporos ao reagente Melzer. A descrição também carece de informações sobre a produção de látex, que caracteriza espécies do gênero (James Trappe, comunicação pessoal). A espécie *A. luteocarnea* não foi incluída na monografia de Singer e Smith (1960b), que tratou das espécies conhecidas até esta data.

Austrogaster baeospermum Singer: ARGENTINA, Província de Rio Negro, Cerro Otto; hipógeo, ocorrendo no solo em florestas de *Nothofagus antarctica* (G. Forster) Oerst. (SINGER, 1969: 360).

Comentários: Espécie conhecida apenas para a região de Rio Negro, na Argentina.

Austrogaster marthae Singer: ARGENTINA, Província de Neuquén, Lago Nahuel Huapí, Brazo Blesto, caminho para Los Cántaros; Província de Rio Negro, Valle Frías; subhipógeo ocorrendo no solo em florestas de *Nothofagus dombeyi* (Mirb.) Oerst (SINGER, 1962a: 57; HORAK; MOSER, 1966a: 330; SINGER, 1969: 361; RAITHELHUBER, 1987: 78).

<u>Comentários</u>: Apenas conhecido para o Parque Nacional de Nahuel Huapi, na Argentina.

Austrogaster patagonica Singer et Wright: ARGENTINA, Bariloche; provável hipógeo ocorrendo no solo em floresta de *Nothofagus* (RAITHELHUBER, 1987: 78).

<u>Comentários</u>: Nativa da Patagônia. A espécie não está listada na base de dados do *MycoBank* (http://www.mycobank.org/MycoTaxo.aspx) e nem no *Index Fungorum* (http://www.indexfungorum.org).

Brauniella alba (Rick) Rick ex Singer: BRASIL, Rio Grande do Sul, Cacequí, São Leopoldo; subhipógeo em solo arenoso (SINGER, 1953: 102, como *Braunia alba* Rick; SINGER, 1962a: 66).

<u>Comentários</u>: *Brauniella* é referenciada como "uncertain status" na família Strophariaceae (CASTELLANO; TRAPPE; LUOMA, 2004). Este gênero ocorre apenas na América do Sul e seu status micorrízico permanence desconhecido (SULZBACHER et al., 2013a).

Castellanea pakaraimophila T.W. Henkel & M.E. Sm.: GUIANA, Montanhas de Pakaraima; hipógeo em solo orgânico de floresta de *Dicymbe jenmanii* e *Pakaraimaea dipterocarpacea* (SMITH et al., 2013b: 08, como Boletoide sequestrado sp. 2; SMITH et al., 2015b: 309).

<u>Comentários</u>: Castellanea pakaraimophila é uma espécie nativa das florestas tropicais da Guiana. Uma sequência relacionada à "boletoide sequestrado sp. 2, TH9514", foi detectado em raízes de *Dicymbe jenmanii* (SMITH et al., 2013b), demonstrando uma relação ectomicorrízica desta espécie.

Chondrogaster angustisporus Giachini, Castellano, Trappe & V.L. Oliveira: BRASIL, Santa Catarina, Correia Pinto, Três Barras. URUGUAI, Montevideo, Melilla, El Fortin; hipógeo no solo e camada liteira de floresta, em plantações de *Eucalyptus dunnii* Maid. (Giachini et al., 2000: 1168).

<u>Comentários</u>: Esta espécie estabelece ectomicorriza com eucalipto (LUPATINI et al., 2008). *Chondrogaster angustisporus* é citada para o Brasil, Uruguai e Austrália (GIACHINI et al., 2000). Na Europa a espécie foi citada para a Espanha (LAGO; CASTRO, 2004).

Chondrogaster pachysporus Maire: BRASIL, Rio Grande do Sul, Santa Maria; hipógeo ocorrendo na camada liteira, em platações de *Eucalyptus saligna* Sm. (SULZBACHER et al., 2010: 378).

Comentários: Chondrogaster pachysporus forma ectomicorriza com eucalipto (LAGO; CASTRO, 2004). Esta espécie também foi citada para regiões da França, Itália, Portugal e Espanha (VIDAL, 1994; MONTECCHI; SARASINI, 2000; LAGO; CASTRO, 2004; MORENO-ARROYO; GÓMEZ; PULIDO, 2005), Norte da África (MONTECCHI; SARASINI, 2000), América do Norte e Austrália (LAGO; CASTRO, 2004).

Cortinarius albocanus (E. Horak & M.M. Moser) Peintner & M.M. Moser: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi. CHILE, Província de Magallanes; hipógeo a subhipógeo no solo e camada liteira, em florestas de *Nothofagus antarctica* (G. Forster) Oerst., *N. betuloides* (Mirb.) Oerst., *N. dombeyi* (Mirb.) Oerst. e *N. pumilio* (Poepp. & Endl.) Krasser (HORAK; MOSER, 1966b: 234, como *Thaxterogaster albocanum*; HORAK, 1980: 27; GARRIDO, 1986: 435, como *Thaxterogaster albocanus*; RAITHELHUBER, 1987: 76, como *T. albocanum*; NOUHRA et al., 2012a: 47, como *Thaxterogaster albocanus*).

Comentários: Espécie nativa da região da Patagônia.

Cortinarius archeuretus (Halling) Peintner & M.M. Moser: CHILE, Punta Arenas; hipógeo entre húmus, em floresta de *Nothofagus* (HALLING, 1981: 861, como *Thaxterogaster archeuretus* Halling).

Comentários: Espécie nativa da Patagônia.

Cortinarius brachyspermus Peintner & M.M. Moser: ARGENTINA, Província de Rio Negro, Parque Nacional Nahuel Huapi, Los Cántaros; subhipógeo no solo em floresta de *Nothofagus dombeyi* (SINGER, 1960: 386, como *Thaxterogaster brevisporus* Singer; SINGER, 1969: 366, como *T. brevisporum*).

Comentários: Espécie nativa da Patagônia.

Cortinarius cabrinii (Raithelh.) Peintner & M.M. Moser: ARGENTINA, Bariloche; subhipógeo, no solo em floresta de *Nothofagus* (RAITHELHUBER, 1983: 20; RAITHELHUBER, 1987: 71, ambos como *Thaxterogaster cabrinii* Raithelh.).

Comentários: Espécie nativa da Patagônia.

Cortinarius carneoroseus (E. Horak) Peintner & M.M. Moser: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi. CHILE, Província

de Magellanes, Monte Alto, Puerto Natales; subhipógeo no solo, em solo arenoso, e camada liteira, em florestas de *Nothofagus dombeyi*, *N. betuloides* e *N. pumilio* (HORAK; MOSER, 1966b: 229, como *T. carneoroseum*; SINGER, 1969: 366, como *T. carneoroseum*; HORAK, 1980: 33, como *T. carneoroseus*; GARRIDO, 1986: 436, 438, ambos como *Thaxterogaster carneoroseus*; NOUHRA et al., 2012a: 47, como *Thaxterogaster carneoroseus*).

Comentários: Espécie nativa da Patagônia.

Cortinarius cretaceus (E. Horak) E. Horak: ARGENTINA, Valle del Glaciar Martial, Ushuaia; subhipógeo ocorrendo no solo em floresta de *Nothofagus pumilio* (HORAK; MOSER, 1966b: 236, como *Thaxterogaster cretaceum*; RAITHELHUBER, 1987: 76, como *T. cretaceum*).

Comentários: Espécie nativa da Patagônia.

Cortinarius daucodes Peintner & M.M. Moser: ARGENTINA, Província de Rio Negro, Paso de las Nubes, Valle Frías; subhipógeo em solo de vulcão, em floresta de Nothofagus antarctica e N. pumilio (HORAK; MOSER, 1966b: 233, como Thaxterogaster subulatum Horak; SINGER, 1969: 366, como T. subulatus; RAITHELHUBER, 1987: 76, como T. subulatum).

Comentários: Espécie nativa da Patagônia.

Cortinarius dibaphoides (E. Horak) Peintner & M.M. Moser: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi; hipógeo a subhipógeo no solo e camada liteira de florestas de *Nothofagus pumilio* (HORAK, 1980: 33, como *Thaxterogaster dibaphoides* E. Horak; NOUHRA et al., 2012a: 47, como *T. dibaphoides*).

Comentários: Espécie nativa da Patagônia.

Cortinarius dombeyi (Singer) Peintner & M.M. Moser: ARGENTINA, Província de Rio Negro, Parque Nacional Nahuel Huapi, Arroyo Blesto; subhipógeo no solo em florestas de *Nothofagus dombeyi* (SINGER, 1960: 385, como *Thaxterogaster dombeyi* Singer; SINGER, 1969: 363, como *T. dombeyi*).

Comentários: Espécie nativa da Patagônia.

Cortinarius fragilis var. cortinariopsis (Singer) Peintner & M.M. Moser: CHILE, Llanquihué, Salto de Petrohue; subhipógeo no solo em florestas de Nothofagus dombeyi (Singer, 1969: 364, como Thaxterogaster fragilis var. cortinariopsis Singer).

Comentários: Espécie nativa da Patagônia.

Cortinarius fuegianus Peintner & M.M. Moser: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi; Província de Tierra del Fuego, Lago Fagnano (Kamel), Rio Grande. CHILE, Província de Magellanes, Punta Arenas; hipógeo no solo e camada liteira, em florestas de Nothofagus antarctica, N. betuloides, N. pumilio e N. dombeyi (DODGE; ZELLER, 1934: 636, como Hymenogaster ruber Harkness; SINGER, 1951: 219, como T. magellanicum Singer; SINGER, 1958: 208, como T. magellanicum; SINGER, 1969: 366, como T. magellanicum; HORAK, 1980: 30, como T. magellanicus; HALLING, 1981: 865, como T. magellanicus; GARRIDO, 1986: 434, 436, ambos como T. magellanicus; RAITHELHUBER, 1987: 70, como T. magellanicum; NOUHRA et al., 2012a: 47, como T. magellanicus).

<u>Comentários</u>: Espécie nativa da Patagônia. O espécime citado por Dodge e Zeller (1934), como "Hypogeous No. 9 (Thaxter 9)", tem sido erroneamente citado como *Hymenogaster ruber* por Dodge e Zeller (HALLING, 1981; FOGEL; TRAPPE, 1985). Dados relacionados ao habitat e substratos estão faltando na descrição de Dodge e Zeller (1934).

Cortinarius glabriceps Peintner: ARGENTINA, Província de Neuquén, Puerto Manzano; subhipógeo no solo em florestas de Nothofagus pumilio (HORAK; MOSER, 1966b: 226, como Thaxterogaster lubricum Moser; SINGER, 1969: 362, como T. lubricum; RAITHELHUBER, 1987: 74, como T. lubricum).

Comentários: Espécie nativa da Patagônia.

Cortinarius glutinopallens (E. Horak) Peintner & M.M. Moser: ARGENTINA, Província Tierra del Fuego, Ushuaia, Valle del Glaciar Martial; subhipógeo no solo em floresta de Nothofagus pumilio (HORAK; MOSER, 1966b: 220, como Thaxterogaster glutinopallens Horak); SINGER, 1969: 363, como T. glutinopallens; HORAK, 1980: 26, como T. glutinopallens; RAITHELHUBER, 1987: 71, como T. glutinopallens). Comentários: Espécie nativa da Patagônia.

Cortinarius holojanthinus Peintner & M.M. Moser: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi; Província Tierra del Fuego, Lago Fagnano (Kamel). CHILE, Província Magellanes; hipógeo a subhipógeo, no solo e camada liteira, em florestas de Nothofagus antarctica, N. dombeyi e N. pumilio (SINGER, 1951: 216, como Thaxterogaster violaceum Singer; SINGER, 1958: 207, como T. violaceum); SINGER, 1969: 362, como T. violaceum; HORAK, 1980: 24, como T. violaceus; GARRIDO, 1986: 438, como T. violaceus; RAITHELHUBER, 1987: 72, como T. violaceum; NOUHRA et al., 2012a: 47, como T. violaceus).

Comentários: Espécie nativa da Patagônia.

Cortinarius holojanthinus var. citrisporus (M.M. Moser) Peintner & M.M. Moser: ARGENTINA, Província de Rio Negro, Valle Frias; subhipógeo no solo, em floresta de Nothofagus pumilio (HORAK; MOSER, 1966b: 223, como *Thaxterogaster violaceum* var. citrisporum Moser; RAITHELHUBER, 1987: 73, como *T. violaceum* var. citrisporum).

Comentários: Espécie nativa da Patagônia.

Cortinarius janthinocaulis Peintner & M.M. Moser: ARGENTINA, Província de Neuquén, Puerto Manzano, Parque Nacional Nahuel Huapi; hipógeo em solo vulcânico, em florestas de *Nothofagus pumilio* (HORAK; MOSER, 1966b: 230, como *Thaxterogaster violeipes* Moser; SINGER, 1969: 363, como *T. violeipes*; RAITHELHUBER, 1987: 75, como *T. violeipes*).

Comentários: Espécie nativa da Patagônia.

Cortinarius luteocarnosus (Raithelh.) Peintner & M.M. Moser: ARGENTINA, Província de Rio Negro, Barriloche; subhipógeo no solo (RAITHELHUBER, 1983: 21, como *Thaxterogaster luteocarnosum* Raithelh.).

Comentários: Espécie nativa da Patagônia.

Cortinarius mustella (M.M. Moser) Peintner & M.M. Moser: ARGENTINA, Província de Neuquén, Puerto Manzano; hipógeo a subhipógeo no solo, em florestas de Nothofagus pumilio (HORAK; MOSER, 1966b: 227, como *Thaxterogaster mustella*; MOSER; SINGER, 1969: 366, como *T. mustella*; RAITHELHUBER, 1987: 74, como *T. mustella*).

Comentários: Espécie nativa da Patagônia.

Cortinarius nothofagi (E. Horak) E. Horak: ARGENTINA, Província de Tierra del Fuego, Ushuaia, Lapataia. CHILE, Malleco, Cordillera de Nahuelbuta; subhipógeo no solo, em florestas de *Nothofagus antarctica* (HORAK; MOSER, 1966b: 238, como *Thaxterogaster nothofagi* Horak; SINGER, 1969: 363, como *T. nothofagi*; RAITHELHUBER, 1987: 78, como *T. nothofagi*).

Comentários: Espécie nativa da Patagônia.

Cortinarius ochraceoazureus (E. Horak) Peintner & M.M. Moser: ARGENTINA, Província de Tierra del Fuego, Ushuaia, Valle del Glaciar Martial; subhipógeo no solo, em florestas de *Nothofagus pumilio* (HORAK; MOSER, 1966b: 237, como *Thaxterogaster ochraceoazureum* Horak; RAITHELHUBER, 1987: 77, como *T. ochraceoazureum*).

Comentários: Espécie nativa da Patagônia.

Cortinarius olorinus (E. Horak) Peintner & M.M. Moser: ARGENTINA, Província de Neuquén, Puerto Manzano; subhipógeo no solo, em floresta de *Nothofagus dombeyi* (HORAK; MOSER, 1966b: 218, como *Thaxterogaster olorinum* Horak; RAITHELHUBER, 1987: 70, como *T. olorinum*).

Comentários: Espécie nativa da Patagônia.

Cortinarius sclerosperma Peintner & M.M. Moser: ARGENTINA, Província de Tierra del Fuego, Ushuaia, Valle del Glaciar Martial; subhipógeo no solo, em florestas de Nothofagus antarctica e N. pumilio (HORAK; MOSER, 1966b: 226, como Thaxterogaster verrucisporum Horak; SINGER, 1969: 366, como T. verrucisporum; RAITHELHUBER, 1987: 74, como T. verrucisporum).

Comentários: Espécie nativa da Patagônia.

Cortinarius sphaerocephalus (E. Horak & M.M. Moser) Peintner & M.M. Moser: ARGENTINA, Província de Rio Negro, Paso de las Nubes, Valle Frias; Província de Neuquén, Puerto Manzano, Lago Nahuel Huapi; subhipógeo no solo, em florestas de Nothofagus antarctica, N. dombeyi e N. pumilio (HORAK; MOSER, 1966b: 232, como Thaxterogaster sphaerocephalum Horak & Moser; SINGER, 1969: 363, como

Thaxterogaster sphaerocephalum; RAITHELHUBER, 1987: 75, como T. sphaerocephalum).

Comentários: Espécie nativa da Patagônia.

Cortinarius squamatus (Halling) Peintner & M.M. Moser: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi. CHILE, Punta Arenas; hipógeo na camada liteira do solo, em florestas de *Nothofagus dombeyi, N. pumilio* e *N. obliqua* (Mirb.) Oerst. (HALLING, 1981: 863, como *Thaxterogaster squamatus* Halling; NOUHRA et al., 2012a: 47, como *T. squamatus*).

<u>Comentários</u>: Com base em nossas observações, provavelmente não se trata de um representante de *Cortinarius*. Apresenta características morfológicas que são relacionadas ao gênero *Naucoria* (Eduardo Nouhra, comunicação pessoal). Espécie nativa da Patagônia.

Cortinarius subalbidus (A.H. Sm.) Peintner & M.M. Moser: CHILE, Punta Arenas; hipógeo a emergente, na camada liteira do solo, em florestas de *Nothofagus* (SINGER; SMITH, 1963: 24, como *Thaxterogaster subalbidum* A.H. Sm.; SINGER, 1969: 365, como *T. subalbidum*); HALLING, 1981: 859, como *T. subalbidus*).

Comentários: Espécie nativa da Patagônia que foi revisada por Halling (1981).

Cortinarius tylostomatoides (Singer) Peintner & M.M. Moser: ARGENTINA, Província de Neuquén, Parque Nacional Nahuel Huapi, acima de Puerto Manzano; Província de Rio Negro, Laguna Frías; hipógeo em madeira e solo, em florestas de Nothofagus antarctica, N. dombeyi e N. pumilio (SINGER, 1969: 365, como Thaxterogaster tylostomatoides Singer).

Comentários: Espécie nativa da Patagônia.

Cortinarius tympanicus (E. Horak) Peintner & M.M. Moser: ARGENTINA, Província de Tierra del Fuego, Ushuaia, Valle del Glaciar Martial; subhipógeo em solo arenoso, em florestas de *Nothofagus antarctica* e *N. pumilio* (HORAK; MOSER, 1966b: 224, como *Thaxterogaster tympanicum* Horak; SINGER, 1969: 363, como *T. tympanicum*; HORAK, 1980: 28, como *T. tympanicus*; RAITHELHUBER, 1987: 73, como *T. tympanicum*).

Comentários: Espécie nativa da Patagônia.

Costatisporus cyanescens T.W. Henkel & M.E. Sm.: GUIANA, Montanhas Pakaraima; hipógeo em solo orgânico de floresta, em floresta de *Dicymbe corymbosa* (SMITH et al., 2015b: 311).

Comentários: Espécie nativa da Guiana e apenas conhecida para a localidade tipo.

Cystangium depauperatum Singer & A.H. Sm.: ARGENTINA, Província de Rio Negro, Paso Perez Rosales, Lago Frias, Parque Nacional Nahuel Huapi. CHILE, Llanquihué, Lago Todos los Santos; 52 Km norte de Valdivia; hipógeo ou subhipógeo na camada liteira do solo, em florestas de *Nothofagus dombeyi* (SINGER; SMITH, 1960b: 69; SINGER, 1962a: 56; HORAK, 1964c: 209; TRIERVEILER-PEREIRA et al., 2015: 92).

Comentários: É uma espécie bem distribuida nas florestas de Nothofagus da Patagônia.

Cystangium domingueziae Nouhra & Trierv.-Per.: CHILE, saída norte de Valdivia; hipógeo na camada liteira do solo, em florestas de *Nothofagus obliqua* (TRIERVEILER-PEREIRA et al., 2015: 94).

Comentários: Espécie nativa da Patagônia e apenas conhecida para a localidade tipo.

Cystangium gamundiae Nouhra & Trierv.-Per.: CHILE, saída norte de Valdivia; 52 km norte de Valdivia; hipógeo na camada liteira do solo, em florestas de *Nothofagus obliqua* (TRIERVEILER-PEREIRA et al., 2015: 95).

Comentários: Espécie nativa da Patagônia e apenas conhecida para a localidade tipo.

Cystangium grandihyphatum Nouhra & Trierv.-Per.: CHILE, saída norte de Valdivia; hipógeo na camada liteira do solo, em florestas de *Nothofagus obliqua* (TRIERVEILER-PEREIRA et al., 2015: 96).

Comentários: Espécie nativa da Patagônia e apenas conhecida para a localidade tipo.

Cystangium longisterigmatum Nouhra & Trierv.-Per.: CHILE, Província de Osorno, Parque Nacional Puyehue; hipógeo na camada liteira do solo, em florestas de *Nothofagus dombeyi* (TRIERVEILER-PEREIRA et al., 2015: 97).

Comentários: Espécie nativa da Patagônia e apenas conhecida para a localidade tipo.

Cystangium nothofagi (E. Horak) Trappe, T. Lebel & Castellano: ARGENTINA, Província de Neuquén, Puerto Manzano, Lago Nahuel Huapi. CHILE, Província de Osorno, Vulcão Antillanca; hipógeo e subhipógeo na camada liteira do solo, em florestas de Nothofagus antarctica, N. betuloides (Mirb.) Oerst., N. dombeyi, N. pumilio (Poepp. et Endl.) Krasser, Saxegothaea conspicua Lindl., e Chusquea montana Phil. (HORAK, 1964c: 211, como Elasmomyces nothofagi Horak; GARRIDO, 1986: 435, 438, ambos como E. nothofagi; TRIERVEILER-PEREIRA et al., 2015: 99).

Comentários: Espécie amplamente distribuída em florestas de Nothofagus da Patagônia.

Cystangium thaxteri (Singer) Trappe, T. Lebel & Castellano: ARGENTINA, Província de Rio Negro, Laguna Frías e Paso de las Nubes; subhipógeo na camada liteira do solo, em florestas de *Nothofagus dombeyi* (SINGER, 1969: 357, como *Martellia thaxteri* Singer).

Comentários: Espécie nativa da Patagônia.

Descomyces albellus (Massee & Rodway) Bougher & Castellano: ARGENTINA, Província de Buenos Aires, Ramallo. BRASIL, Santa Catarina, Correia Pinto; Rio Grande do Sul, Santa Maria. CHILE, Punta Arenas. URUGUAI, Montevideo, Sayago; hipógeo no solo e camada liteira, em plantações de Eucalyptus dunnii e Eucalyptus sp. (DODGE; ZELLER, 1934: 669, como Hymenogaster albellus Massee et Rodway; HALLING, 1981: 856, como H. albellus; GIACHINI et al., 2000: 1168; WRIGHT; ALBERTÓ, 2006: 370, como H. albellus; CORTEZ et al., 2008: 514).

Comentários: Descomyces albellus era originariamente restrita a Australasia. Porém, atualmente, está amplamente distribuída em outras regiões onde plantações de Eucalyptus foram introduzidas (KIRK et al., 2008). No Hemisfério Sul e América do Norte (BOUGHER; CASTELLANO, 1993; LAGO; CASTRO, 2004), também amplamente distribuída em países da Europa (BOUGHER; CASTELLANO, 1993), Ásia e África do Sul (LAGO; CASTRO, 2004).

Descomyces albus (Berk.) Bougher & Castellano: BRASIL, Santa Catarina, Correia Pinto; Rio Grande do Sul, Caçapava do Sul, Santa Maria, Vila Nova do Sul; hipógeo no solo e camada liteira, em plantações de *Eucalyptus dunnii* e *E. saligna* (GIACHINI et al., 2000: 1168; SULZBACHER, 2010: 81; SULZBACHER et al., 2015: 622).

Comentários: Descomyces albus é referenciada para regiões cobertas por Eucalyptus e outras espécies de Myrtaceae (LAGO; CASTRO, 2004). A espécie foi registrada para Austrália, Itália, Alemanha, Nova Zelândia, África do Norte, Portugal, Espanha, Reino Unido e Estados Unidos da América (MONTECCHI; SARASINI, 2000, como Hymenogaster albus; LAGO; CASTRO, 2004; MORENO-ARROYO; GÓMEZ; PULIDO, 2005). Esta espécie forma ectomicorriza com Eucalyptus sp. (AGERER, 2006). Recentemente, novos estudos envolvendo D. albus demonstram que esta espécie é consumida por Balloniscus sellowii (SULZBACHER et al., 2015).

Descomyces fusisporus Trappe & Claridge: ARGENTINA, Província de Córdoba, Punilla, 3 Km Sul de Cuesta Blanca; hipógeo no solo e camada liteira, em plantações de *Eucalyptus cinerea* (NOUHRA et al., 2008: 753).

<u>Comentários</u>: *Descomyces fusisporus* é referenciada para Argentina e Australia (NOUHRA et al., 2008).

Descomyces giachinii Trappe, V.L. Oliveira, Castellano & Claridge: BRASIL, Santa Catarina, Correia Pinto; hipógeo no solo e camada liteira, em plantações de *Eucalyptus dunnii* (GIACHINI et al., 2000: 1168).

<u>Comentários</u>: *Descomyces giachinii* foi citada para Austrália, Brasil, Nova Zelândia e Estados Unidos da América (GIACHINI et al., 2000).

Descomyces varians Trappe & Claridge: ARGENTINA, Província de Córdoba, Calamuchita, Villa Alpina, 11 Km antes de La Cumbrecita; hipógeo no solo e em grossa camada liteira, em plantações de *Eucalyptus camaldulensis* Dehnh. (NOUHRA et al., 2008: 754).

<u>Comentários</u>: *Descomyces varians* foi referenciada para Argentina e Austrália (NOUHRA et al., 2008).

Elaphomyces compleximurus Castellano, T.W. Henkel et S.L. Mill.: GUIANA, Montanhas Pakaraima, Reserva Ecológica Mabura; hipógeo em solo de areia branca, em florestas de *Dicymbe corymbosa* Spruce ex Benth., ou em *D. altsonii* Sandw. (CASTELLANO et al., 2012: 1245; SMITH et al., 2013b: 08).

<u>Comentários</u>: A espécie *Elaphomyces compleximurus* foi encontrada apenas na região da Guiana. Castellano et al. (2012) referencia primeiramente o gênero *Elaphomyces* (*E*.

compleximurus e E. digitatus citado abaixo) associado com espécies floretais de Fabaceae.

Elaphomyces digitatus Castellano, T.W. Henkel et S.L. Mill.: GUIANA, Região 8 Potaro-Siparuni e Região 10 "Upper Demerara-Berbice"; hipógeo em solo vermelho laterítico, solo arenoso, solo aluvial, parcialmente envolvido em material húmico, em florestas monodominantes de *Dicymbe corymbosa*, e também e florestas mistas de *D. altsonii*, *D. corymbosa* e *Aldina insignis* (Benth.) Endl. (CASTELLANO et al., 2012: 1247; HENKEL et al., 2012: 2203; SMITH et al., 2013b: 08).

<u>Comentários</u>: *Elaphomyces digitatus* tem sido encontrada apenas na região da Guiana (CASTELLANO et al., 2012). Esta espécie forma ectomicorriza (SMITH et al., 2011).

Elaphomyces granulatus Fr.: CHILE, Los Molles; hipógeo, substrato desconhecido, em plantações de *Pinus radiata* D. Don (GARRIDO, 1986: 429, como *Elaphomyces cervinus* (L.) Schltdl.).

<u>Comentários</u>: Esta espécie forma ectomicorriza (AGERER, 2006), e é amplamente distribuída na América do Norte e Europa, crescendo embaixo de coníferas (MONTECCHI; SARASINI, 2000; MORENO-ARROYO; GÓMEZ; PULIDO, 2005; TRAPPE et al., 2009).

Elaphomyces muricatus Fr.: COLÔMBIA, Cundinamarca, Cerro de Las Mercedes, estrada Bogotá para La Mesa; hipógeo no solo, em plantações de *Quercus* sp. (GUZMÁN; VARELA, 1978: 317).

<u>Comentários</u>: *Elaphomyces muricatus* foi referenciada para Europa (GUZMÁN; VARELA, 1978; MONTECCHI; SARASINI, 2000) como um simbionte ectomicorrizico com *Quercus* sp.

Endoptychum arizonicum (Shear & Griffiths) Singer & A.H. Sm.: ARGENTINA, Província de Tucumán, Marcos Paz; subhipógeo (secotioide) no solo (SINGER, 1962a: 65).

Comentários: Esta espécie não forma associação micorrízica.

Entoloma chilense (E. Horak) Noordel. & Co-David: CHILE, Província de Osorno, Fucatrihue; subhipógeo no solo entre folhas caídas de *Chusquea* sp., próximo a árvores

de Lauraceae e Myrtaceae (HORAK, 1964a: 190, como *Rhodogaster chilensis* E. Horak); SINGER, 1969: 359, como *R. chilensis*).

<u>Comentários</u>: Esta espécie é nativa da Patagônia. Horak (1964a) descreveu *Rhodogaster chilensis* E. Horak, que foi recentemente renomeada como *Entoloma chilense*, baseada em estudos filogenéticos (CO-DAVID; LANGEVELD; NOORDELOOS, 2009). *Entoloma chilense* é uma espécie sequestroide, provavelmente relatada a linhagens de ECM recentemente definidas (TEDERSOO; MAY; SMITH, 2010).

Gastroboletus valdivianus Horak: CHILE, Valdivia, Cuesta Sta; Elvira; subhipógeo (secotióide) no solo, em florestas de *Nothofagus dombeyi* e *N. obliqua* (Mirb.) Oerst. (HORAK, 1977: 100; GARRIDO, 1986: 436).

<u>Comentários</u>: *Gastroboletus valdivianus* é uma espécie de Boletales secotioide somente conhecida para a região do Chile (HORAK, 1977; PALFNER, 2005). Esta espécie forma associação ECM com *Nothofagus dombeyi* e *N. obliqua* (HORAK, 1977).

Gastrosporium simplex Mattirolo: ARGENTINA, Província de Córdoba, estrada para Laguna de Pocho; hipógeo a emergente em solo arenoso, próximo a palmeira (*Trithrinax campestris* (Burmeist.) Drude & Griseb.) e gramíneas não identificadas (TOLEDO; CASTELLANO, 1997: 444).

<u>Comentários</u>: Gastrosporium simplex não é uma espécie ECM. Esta espécie foi referenciada crescendo em solos com alto nível de cálcio (MILLER; ASKEW, 1982). Gastrosporium simplex está distribuída principalmente nas regiões do Mediterrâne e Europa central, Ásia e América do Sul e do Norte (TOLEDO; CASTELLANO, 1997; MONTECCHI; SARASINI, 2000). Pesquisas recentes envolvendo estudos filogenéticos posicionam Gastrosporium em Phallales (TRIERVEILER-PEREIRA et al., 2014).

Gautieria chilensis Zeller & C.W. Dodge: CHILE, Punta Arenas; Monte Alto, Puerto Natales, Província de Magellanes; hipógeo a subhipógeo no solo e camada liteira, em florestas de *Nothofagus pumilio* (Poepp. et Endl.) Krasser (DODGE; ZELLER, 1934: 694; HORAK, 1964e: 308, como *G. fuegiana* Horak; SINGER, 1969: 359, como *G. fuegiana*; HORAK, 1980: 18, HALLING, 1981: 866; GARRIDO, 1986: 438).

<u>Comentários</u>: Espécie nativa da Patagônia. Halling (1981) apresenta uma discussão sobre o histórico da espécie. Após a análise do material tipo de *G. fuegiana* (PALFNER; HORAK, 2000), os autores concluíram que este táxon é um sinônimo *G. chilensis*. A

espécie forma simbiose ectomicorrizica com *Nothofagus pumilio* (PALFNER; HORAK, 2000), mas também coletada em florestas de *N. dombeyii* (Eduardo Nouhra, comunicação pessoal). *Gautieria chilensis* também foi referenciada para o México (TRAPPE; GUZMÁN, 1971; HORAK, 1980).

Gautieria inapire Palfner & E. Horak: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi; hipógeo a subhipógeo no solo e camada liteira, em florestas de *Nothofagus dombeyi* e *N. pumilio* (PALFNER; HORAK, 2000: 141; NOUHRA et al., 2012a: 47).

<u>Comentários</u>: Espécie nativa da Patagônia. *Gautieria inapire* forma simbiose ECM (PALFNER; HORAK, 2000).

Geastrum taylorii (Lloyd) Jeppson & E. Larss.: ARGENTINA, Província de Chubut, Estación Agroforestal INTA Trevelin; Campo Forestal INTA, Las Golondrinas; em plantações de *Pseudotsuga menziesii* (Mirb.) Franco. BRASIL, São Paulo, "Cerradão" de Itirapina, em estrada de São Paulo a São Carlos; hipógeo no solo, folhas caídas (SINGER; WRIGHT; HORAK, 1963: 600, como *Radiigera paulensis* Singer, J.E. Wright & E. Horak; BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2006: 59, como *Radiigera taylorii* (Lloyd) Zeller).

Comentários: Conforme indicado por Domínguez de Toledo e Castellano (1996), o holótipo desta espécie está perdido. O gênero não é micorrízico (TEDERSOO; MAY; SMITH, 2010). Uma coleção citada como *Radiigera* cf. *taylorii* foi referenciada para florestas de *Nothofagus dombeyi* (NOUHRA et al., 2012), e pode ser uma espécie distinta. Recentemente, o gênero sequestroide e hipógeo *Radiigera* foi sinonimizado junto a *Geastrum* (JEPPSON; NILSSON; LARSSON, 2013).

Gelopellis macrospora Zeller: CHILE, Concepción, Punta Arenas; hipógeo, no solo em florestas de *Nothofagus* (ZELLER, 1939: 21; HALLING, 1981: 854).

<u>Comentários</u>: Uma discussão sobre a espécie e também sobre dados de coleta do material depositado no herbário Farlow (FH) são encontrados em Halling (1981).

Gelopellis thaxteri (Zeller & C.W. Dodge) Zeller: ARGENTINA, Província de Buenos Aires. BRASIL, Rio Grande do Sul, Estância Grande, Porto Alegre; Pareci Novo; São Paulo, lha do Cardoso; subhipógeo, no solo próximo ao rio Caí (ZELLER; DODGE,

1929: 114, como *Hysterangium thaxteri*; HOMRICH, 1969: 06; BONONI; GUZMÁN; CAPELARI, 1984: 93; CASTELLANO, 1990: 216; CASTELLANO; MUCHOVEJ, 1996: 338).

Comentários: Espécie nativa da América do Sul.

Guyanagaster necrorhiza T.W. Henkel, Aime e M.E. Smith: GUIANA, Região 8 Potaro-Siparuni – Montanhas de Pakaraima; hipógeo a subhipógeo no solo e camada liteira, ligado às raízes, em florestas tropicais de *Dicymbe corymbosa* e *D. altsonii* (HENKEL; SMITH; AIME, 2010: 04).

<u>Comentários</u>: Espécie nativa da Guiana. Este gênero monoespecífico de fungo sequestroide está próximamente relacionado ao gênero agaricoide *Armillaria* (HENKEL; SMITH; AIME, 2010).

Gymnopaxillus crubensis Calvelo & Lorenzo: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi; subhipógeo no solo e camada liteira, em florestas de *Nothofagus dombeyi* e *N. pumilio* (CALVELO; LORENZO, 1989: 163; NOUHRA et al., 2012a: 47).

<u>Comentários</u>: Espécie nativa da Patagônia. *Gymnopaxillus crubensis* cresce de forma subhipógea e possui forte dependencia hídrica (CALVELO; LORENZO, 1989).

Gymnopaxillus morchellaeformis E. Horak: ARGENTINA, Província de Santa Cruz, Lago Roca. CHILE, Monte Alto, Los Robles, Província de Magellanes; hipógeo e subhipógeo no solo arenoso, em florestas de *Nothofagus pumilio* (HORAK; MOSER, 1966a: 335; SINGER, 1969: 361; HORAK, 1980: 36; GARRIDO, 1986: 438; CALVELO; LORENZO, 1989: 166).

Comentários: Espécie nativa da Patagônia.

Hallingea carneorosea (E. Horak) Castellano: ARGENTINA, Província de Tierra del Fuego, Usuahia, Valle del Glaciar Martial. CHILE, Província de Magellanes; hipógeo a subhipógeo no solo, em florestas de Nothofagus antarctica, N. betuloides, N. dombeyi e N. pumilio (HORAK, 1964b: 200, como Hysterangium carneoroseum Horak; HORAK, 1980: 16, como Hysterangium carneoroseum; RAITHELHUBER, 1987: 68, como H. carneoroseum; CASTELLANO, 1990: 196, como Truncocolumella carneorosea

(Horak) Castellano; CASTELLANO; MUCHOVEJ, 1996: 340, como *Hallingea carneoroseus* (Horak) Castellano).

<u>Comentários</u>: Esta espécie é somente conhecida para a região da Patagônia (CASTELLANO; MUCHOVEJ, 1996).

Hallingea purpurea (Zeller & C.W. Dodge) Castellano: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi. CHILE, Punta Arenas; Concepción; hipógeo no solo e camada liteira, em florestas de Nothofagus betuloides, N. dombeyi e N. pumilio (ZELLER; DODGE, 1929: 110, como Hysterangium purpureum Zeller & Dodge); HORAK, 1980: 14, como Hysterangium purpureum; Halling, 1981: 866, como Hysterangium purpureum); CASTELLANO, 1990: 212, como Truncocolumella purpurea (Zeller & Dodge) Castellano; CASTELLANO; MUCHOVEJ, (1996: 341, como Hallingea purpureus (Zeller & Dodge) Castellano; NOUHRA et al., 2012a: 47).

Comentários: Espécie nativa da Patagônia.

Hallingea violacea (E. Horak) Castellano: ARGENTINA, Província de Rio Negro, Lago Frias; hipógeo no solo e liteira, em florestas de Nothofagus dombeyi, N. betuloides, N. pumilio (HORAK, 1964b: 198, como Hysterangium violaceum Horak); RAITHELHUBER, 1987: 68, como Hysterangium violaceum; CASTELLANO, 1990: 216, como Truncocolumella violacea (Horak) Castellano; CASTELLANO; MUCHOVEJ, 1996: 343, como Hallingea violaceus (E. Horak) Castellano).

Comentários: Espécie nativa da Patagônia.

Hydnangium archeri (Berk.) Rodway: ARGENTINA, Província de Córdoba, Calamuchita, Villa Alpina; hipógeo no solo e grossa camada liteira, na superfície do solo mineral, em plantações de *Eucalyptus camaldulensis* (NOUHRA et al., 2008: 755). Comentários: Esta espécie é provavelmente introduzida na Argentina, e parece ser rara na florestas nativas de *Eucalyptus* na Austrália (NOUHRA et al., 2008).

Hydnangium carneum Wallr.: ARGENTINA, Província de Córdoba, Calamuchita, 11 km antes de La Cumbrecita; Estancia Alta Vista, Atos Pampa; Villa Alpina; Colón, Estancia Santo Domingo; Província de Buenos Aires, Navarro. URUGUAI, Montevideo, Miguelete; hipógeo no solo e grossa camada liteira, em plantações de

Eucalyptus camaldulensis e Pinus sp. (SPEGAZZINI, 1917: 171; DODGE; ZELLER, 1936: 582; HORAK, 1964b: 203; NOUHRA et al., 2008: 755).

Comentários: Hydnangium carneum é frequente na Austrália, América do Norte, África (Ilhas Canárias) e Europa (BEATON; PEGLER; YOUNG, 1984; LAGO; CASTRO, 2004; MONTECCHI; SARASINI, 2000; NOUHRA et al., 2008; DUCOUSSO et al., 2012). A espécie é amplamente distribuída em plantações de *Eucalyptus* (NOUHRA et al., 2008).

Hydnangium roseum (Harkn.) Singer & A.H. Sm.: ARGENTINA, Província de Buenos Aires, La Plata. BRASIL, Rio Grande do Sul. EQUADOR, Quito; hipógeo no solo em plantações de coníferas (ZELLER; DODGE, 1936: 630, como *Arcangeliella rosea* (Harkness) Zeller & Dodge; HORAK, 1964b: 203).

<u>Comentários</u>: Como sugerido por Singer e Smith (1960b), *Hydnangium roseum* não é facilmente distinguida de *H. carneum*. Esta espécie foi introduzida com plantações de eucaliptos na Argentina, Brasil e Equador. *Hydnangium roseum* é referenciada para América do Norte (Califórnia e Óregon) e no Hemisfério Sul (ZELLER; DODGE 1936, como *Arcangeliella rosea*).

Hydnangium soderstromii Lagerh.: CHILE, Concepción; Santiago, Florestas de El Tabo. EQUADOR, Quito; provavelmente hipógeo, no solo, em plantações de Eucalyptus globulus, Eucalyptus spp., Pinus radiata e Quercus robur (SINGER, 1962a: 55, como H. soederstroemii Lagerh.; LAZO, 1972: 787, como H. soderstroemii Lagerh.; GARRIDO, 1986: 429, como H. sonderstroemii).

Comentários: Espécie nativa da Austrália e introduzida no Chile e Equador.

Hydnangium thaxteri Zeller & C.W. Dodge: CHILE, Concepción; provavelmente hipógeo, no solo (ZELLER; DODGE, 1935: 372; DODGE; ZELLER, 1936: 589; SINGER, 1962a: 55).

<u>Comentários</u>: Esta espécie foi referenciada ocorrendo com *Rhizopogon occidentalis* Zeller & C.W. Dodge em solo, no Chile (DODGE; ZELLER, 1936). Espécie provavelmente introduzida na América do Sul.

Hymenogaster arenarius Tul. & C. Tul.: URUGUAI, Montevideo; hipógeo no solo arenoso em plantações de *Eucalyptus* e *Pinus* (SPEGAZZINI, 1917: 170; HORAK, 1964b: 203).

<u>Comentários</u>: Esta espécie é encontrada no Hemisfério Norte, associada com várias árvores de folha larga (PEGLER; SPOONER; YOUNG, 1993; STIELOW et al., 2011). Na América do Sul, esta espécie não tem sido registrada desde Spegazzini.

Hymenogaster australis (Speg.) Speg.: ARGENTINA, Província de Buenos Aires, Buenos Aires, Boca del Riachuelo. BRASIL, Rio Grande do Sul, São Leopoldo; hipógeo no solo em plantações de Salix sp., Eucalyptus (SPEGAZZINI, 1887: 124, como Hymenogaster australe; SPEGAZZINI, 1917: 171; RICK, 1934: 110, como Hysterangium australe Speg.; RICK, 1961: 457, como Hysterangium australe; HORAK, 1964b: 202; RAITHELHUBER, 1987: 69; CASTELLANO, 1990: 195; CASTELLANO; MUCHOVEJ, 1996: 338).

<u>Comentários</u>: *Hymenogaster australis* provavelmente é uma espécie introduzida na América do Sul. Castellano e Muchovej (1996) fazem uma abordagem sobre os caracteres morfológicos da espécie e os limites infragenéricos para *Hymenogaster*.

Hymenogaster griseus Vittad.: ARGENTINA, Província de Córdoba, Calamuchita, Atos Pampa; La Cumbrecita; Província de Buenos Aires, La Boca, Riachuelo. BRASIL, Rio Grande do Sul – localidade desconhecida; hipógeo no solo e camada liteira, em plantações de *Cedrus* spp. and *Pinus* sp. (DODGE; ZELLER, 1934: 651, 664 como *Hymenogaster vulgaris* Tul. & C. Tul.; RICK, 1934: 110, como *H. vulgaris*; RICK, 1961b: 456, como *H. vulgaris*; NOUHRA *et al.*, 2008: 757, como *Hymenogaster lycoperdineus* Vittad.).

Comentários: Hymenogaster lycoperdineus Vittad. e H. vulgaris Tul. & C. Tul., são sinonimizados em Hymenogaster griseus (STIELOW et al., 2011). Na Europa, H. griseus ocorre em florestas decíduas, em húmus, em solos calcários, associados à Fagus sp., Larix sp., Picea sp., Populus sp., Salix sp. and Tilia sp. (KREISEL, 2001; PEGLER; SPOONER; YOUNG, 1993; MONTECCHI; SARASINI, 2000). H. griseus é provavelmente uma espécie introduzida na América do Sul.

Hymenogaster pulcher Singer: ARGENTINA, Província de Neuquén, Lago Correntoso; hipógeo no solo em florestas de Nothofagus dombeyi (SINGER, 1969: 372).

Comentários: Hymenogaster pulcher foi coletada e descrita em vegetação nativa na região da Patagônia, em 1969. Porém, não foi mais recoletada desde então. A ocorrência desta espécie na América do Sul é duvidosa, principalmente devido ao gênero parecer não ser nativo deste continente. O gênero é reportado principalmente para florestas da Australasia, Europa e Hemisfério Norte (BEATON; PEGLER; YOUNG, 1985b; BOUGHER; CASTELLANO, 1993; MONTECCHI; SARASINI, 2000; STIELOW et al., 2011) ocorrendo associado a diferentes árvores decíduas e também coníferas. Adicionalmente, Hymenogaster possui uma grande variabilidade morfológica, e táxons com características morfológicas similares foram descritos e incorretamente identificados como Hymenogaster (STIELOW et al., 2011), com ou sem referencia aos conceitos genéricos originais determinados por Vittadini (BOUGHER; CASTELLANO, 1993). Com base em afinidades morfológicas, as espécies selecionadas do Hemisfério Sul têm sido segregadas em quatro novos gêneros (Cortinomyces, Descomyces, Quadrispora e Timgrovea) por Bougher e Castellano (1993).

Hymenogaster rehsteineri Bucholtz: ARGENTINA, Província de Córdoba, Calamuchita, Villa Alpina; La Cumbrecita; hipógeo no solo e camada liteira, em plantações de *Betula* sp., *Eucalyptus* sp., *Pinus* sp., *Quercus* sp. e *Tilia* sp. (NOUHRA et al., 2008: 757).

<u>Comentários</u>: Esta é uma espécie européia (MONTECCHI; SARASINI, 2000; KREISEL, 2001; STIELOW et al., 2011) comumente ocorrendo em florestas decíduas e também em coníferas, em solo calcáreo, raramente em solo arenoso (KREISEL, 2001).

Hymenogaster rubroniveus Raithelh.: ARGENTINA, Província de Rio Negro, Puerto Blest; hipógeo no solo, entre *Chusquea* sp. e *Nothofagus* sp. (RAITHELHUBER, 1983: 20).

<u>Comentários</u>: Esta espécie foi coletada em vegetação nativa na Patagônia. No entanto, sua válida ocorrência na América do Sul é incerta pelas razões comentadas para *H. pulcher*.

Hymenogaster subalpinus A.H. Sm.: ARGENTINA, Província de Chubut, Estación Agroforestal INTA Trevelin; hipógeo no solo argiloso, em plantações de *Pseudotsuga menziesii* (Mirb.) Franco (BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2006: 59; BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2007: 369).

<u>Comentários</u>: *Hymenogaster subalpinus* é uma espécie introduzida na Patagônia. É considerada espécie comum na região da América do Norte (TRAPPE et al., 2009; STIELOW et al., 2011), ocorrendo em florestas de *Pseudotsuga menziesii*.

Hysterangium affine Massee & Rodway: ARGENTINA, Província de Buenos Aires, Mar del Plata, Laguna de los Padres; Província de Neuquén – localidade desconhecida. BRASIL, Rio Grande do Sul, Santa Maria; hipógeo no solo e folhas caídas, em plantações de *Casuarina littoralis* Salisb., *E. diversicolor*, *E. calophylla*, *E. marginata*, *E. microcorys*, *E. saligna* e *Nothofagus dombeyi* (CASTELLANO, 1990: 28; CORTEZ et al., 2011: 221).

Comentários: A coleção de *Hysterangium affine* de Neuquén (Argentina), ocorrente em *N. dombeyi*, é provavelmente uma espécie relacionada à *H. crassipariete*, visto que *H. affine* ocorre apenas em Myrtaceae. No entando, ambas as espécies possuem características morfológicas similares, como previamente discutido por Castellano e Muchovej (1996). *Hysterangium affine* ocorre na região da Austrália (BEATON; PEGLER; YOUNG, 1985c), América do Norte (ZELLER; DODGE, 1929) e América do Sul (CORTEZ et al., 2011). É amplamente distribuida em plantações de *Eucalyptus* (CORTEZ et al., 2011).

Hysterangium cistophilum (Tul.) Zeller & C.W. Dodge: CHILE, Punta Arenas; hipógeo no solo sob uma camada de folhas, em plantações de *Arbutus*, *Eucalyptus*, *Pistacia* e *Quercus* (ZELLER; DODGE, 1929: 107).

<u>Comentários</u>: Na América do Sul, esta espécie foi apenas citada para o Chile. Novos registros não foram encontrados. *Hysterangium cistophilum* ocorre na Europa associada com *Abies*, *Cistus* e *Picea* (KREISEL, 2001).

Hysterangium clathroides Vittad.: CHILE, Magellanes, Punta Arenas. URUGUAI, Montevideo; hipógeo no solo arenoso, em plantações de carvalho e demais plantas decíduas. Frequentemente encontrado em *Eucalyptus* e *Pinus* (SPEGAZZINI, 1914: 167; ZELLER; DODGE, 1929: 93).

Comentários: Hysterangium clathroides tem uma ampla distribuição (ZELLER; DODGE, 1929). É comumente encontrada na Europa em florestas decíduas e arbustos do mediterrâneo, em associação com *Quercus*, *Cistus* e *Pinus* (MONTECCHI; SARASINI, 2000; KREISEL, 2001; MORENO-ARROYO; GÓMEZ; PULIDO, 2005). Provavelmente, uma espécie introduzida.

Hysterangium coriaceum R. Hesse: ARGENTINA, Província de Chubut, Estación Agroforestal INTA Trevelin; hipógeo no solo argiloso, em plantações de *Pseudotsuga menziesii* (Mirb.) Franco (BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2006: 59; BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2007: 369).

<u>Comentários</u>: É uma espécie do Hemisfério Norte, introduzida na Patagônia com mudas de *Pseudotsuga menziesii*. Na América do Norte é encontrada junto a diversas coníferas (HUNT; TRAPPE, 1987). *Hysterangium coriaceum* é também conhecida para a Europa ocorrendo em florestas de coníferas e plantas decíduas, em solos arenosos e calcários (PEGLER; SPOONER; YOUNG, 1993; MONTECCHI; SARASINI, 2000; KREISEL, 2001).

Hysterangium crassipariete Castellano & J.J. Muchovej: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi, Las Lajas; hipógeo no solo e camada liteira, em florestas de *Nothofagus dombeyi* e *Nothofagus pumilio* (CASTELLANO; MUCHOVEJ, 1996: 331; NOUHRA et al., 2012a: 47).

<u>Comentários</u>: *Hysterangium crassipariete* frutifica abundantemente em florestas de *N. dombeyii* no outono. Nativa da Patagônia.

Hysterangium fuscum Harkn.: EQUADOR, Localidade desconhecida; hipógeo no solo e camada liteira, em plantações de *Eucalyptus* spp. (LAGO; CASTRO, 2004).

<u>Comentários</u>: *Hysterangium fuscum* é ectomicorrízica com espécies de *Eucalyptus* (LAGO; CASTRO, 2004). Esta espécie está amplamente difundida junto a plantações de *Eucalyptus* (LAGO; CASTRO, 2004). Provavelmente é uma espécie introduzida na América do Sul.

Hysterangium gardneri E. Fisch.: ARGENTINA, Província de Córdoba, Calamuchita, 11 km antes de La Cumbrecita; Punilla, Establecimiento Ayke, 3 km sul de Cuesta Blanca. BRASIL, Santa Catarina, Correia Pinto, Três Barras; hipógeo no solo e camada

liteira, alguns basidiomas estavam emergentes, no solo exposto, em plantações de *Eucalyptus camaldulensis*, *E. cinerea* e *E. dunnii* (GIACHINI et al., 2000: 1168; NOUHRA et al., 2008: 756).

<u>Comentários</u>: *Hysterangium gardneri* tem uma ampla distribuição, encontrado principalmente em plantações de *Eucalyptus*. Esta é provavelmente uma espécie introduzida.

Hysterangium hallingii Castellano & Muchovej: ARGENTINA, Província de Tierra del Fuego, Parque Nacional de Tierra del Fuego (± 17 km leste de Ushuaia). CHILE, Província de Magallanes, Parque Nacional Torres del Paine; Província de Magallanes, Punta Arenas; hipógeo no solo em florestas de *Nothofagus betuloides* e *N. pumilio* (CASTELLANO; MUCHOVEJ, 1996: 333).

<u>Comentários</u>: *Hysterangium hallingii* é menos comum que *H. crassipariete*. Esta espécie é nativa da Patagônia.

Hysterangium incognitum Castellano & Muchovej: ARGENTINA, Província de Rio Negro; Laguna Frías, hipógeo no solo em florestas de *Nothofagus dombeyi* e *Saxegothaea* (CASTELLANO; MUCHOVEJ, 1996: 334).

Comentários: Hysterangium incognitum é nativa da Patagônia.

Hysterangium inflatum Rodway: BRASIL, Rio Grande do Sul, Santa Maria. EQUADOR, Quito; hipógeo no solo e folhas caídas, entre raízes, em plantações de Eucalyptus (ZELLER; DODGE, 1929: 93, como Hysterangium affine var. irregulare Massee; CASTELLANO, 1990: 117; CASTELLANO; BEEVER, 1994: 312; CASTELLANO; MUCHOVEJ, 1996: 335; CORTEZ et al., 2011: 221).

Comentários: Hysterangium inflatum é uma espécie introduzida na América do Sul. Amplamente distribuída em plantações de eucalipto (CORTEZ et al., 2011), referida para Austrália (BEATON; PEGLER; YOUNG, 1985c), Nova Zelândia (CASTELLANO; BEEVER, 1994), França e Equador (CASTELLANO; MUCHOVEJ, 1996), Espanha (LAGO; CASTRO, 2004), nos Estados Unidos (ZELLER; DODGE, 1929), e Sul da Europa (MONTECCHI; SARASINI, 2000).

Hysterangium neotunicatum Castellano & Beever: ARGENTINA, Províncias de Neuquén e Rio Negro; hipógeo no solo, provavelmente em plantações de *Eucalyptus* (CASTELLANO, 1990: 133; CASTELLANO; BEEVER, 1994: 314).

<u>Comentários</u>: *Hysterangium neotunicatum* foi introduzida da Austrália e da Nova Zelândia (CASTELLANO; BEEVER, 1994).

Hysterangium separabile Zeller: ARGENTINA, Província de Rio Negro, Laguna Frias; Província de Neuquén, Lago Correntoso, Puerto Manzano. CHILE, Punta Arenas; hipógeo no solo, em plantações de coníferas e plantas decíduas e arbustos (ZELLER, 1941: 203; SINGER, 1969: 373; HALLING, 1981: 857).

<u>Comentários</u>: Provavelmente referente a um material de *H. chlatroides* ou *H. cistophillum* não corretamente identificado. *Hysterangium separabile* parece estar restrito a *Quercus* spp. e possivelmente *Arbutus* spp., para a região oeste dos Estados Unidos.

Hysterangium spegazzinii Castellano & Muchovej: ARGENTINA, Província de Buenos Aires, Laguna de los Padres; Província de Neuquén, Puerto Manzano. URUGUAI, Montevideo; hipógeo no solo, em plantações de *Eucalyptus* sp. (CASTELLANO; MUCHOVEJ, 1996: 336).

<u>Comentários</u>: *Hysterangium spegazzinii* é provavelmente uma espécie introduzida e associada a árvores exóticas nas regiões de Buenos Aires e Montevideo.

Jimtrappea guyanensis T.W. Henkel, M.E. Smith & Aime: GUIANA, Montanhas Pakaraima; crescendo no solo orgânico da floresta, solo arenoso, em florestas de *Aldina insignis*, *Dicymbe altsonii*, *Pakaraimaea dipterocarpacea* (SMITH et al., 2013b: 08, como Boletoide sequestrado sp. 1; SMITH et al., 2015b: 304).

Comentários: Espécie nativa da Guiana.

Leucogaster braunii Rick: BRAZIL, Rio Grande do Sul, São Leopoldo; hipógeo no solo, em plantações de *Eucalyptus* (RICK, 1961: 455; TRAPPE, 1975: 306).

<u>Comentários</u>: Esta espécie só foi registrada no Brasil. Como mencionado por Trappe (1975), provavelmente não se trata de uma espécie relacionada ao gênero *Leucogaster*. Futuros estudos são necessários para confirmar a verdadeira identidade da espécie.

Melanogaster microsporus Velen.: URUGUAI, Localidade desconhecida; provavelmente de habito hipógeo, substrato desconhecido (HORAK, 1964b: 204).

<u>Comentários</u>: Não há registros sobre os dados relacionados ao hábitat e substrato. *Melanogaster microsporus* é provavelmente introduzida no país.

Octaviania pallida (Lloyd) Lloyd: EQUADOR, localidade desconhecida; em solo, junto a *Eucalyptus globulus* (LLOYD, 1921: 1031, como *Hydnangium pallidum* Lloyd).

<u>Comentários</u>: Esta é uma espécie introduzida. Não há novos registros desta espécie para a América do Sul. Provavelmente não é um verdadeiro exemplar de *Octaviania*, devido principalmente ao seu simbionte. É possivelmente uma espécie pertencente ao gênero *Hydnangium* ocorrente em floresta de eucalipto.

Octaviania radicans Rick: BRASIL, Rio Grande do Sul – localidade desconhecida; hábitat desconhecido, em madeira (RICK, 1961: 457).

<u>Comentários</u>: Provavelmente não é relacionado ao verdadeiro gênero *Octaviania*. O gênero *Octaviania* é amplamente distribuído nas zonas temperadas da Europa e da América do Norte, bem como Austrália e Nova Zelândia, ocorrendo em associação com espécies de coníferas e também lenhosas (TRAPPE et al., 2009).

Octaviania stillingerii Lloyd: BRASIL, Rio Grande do Sul – localidade desconhecida; hábitat desconhecido, no solo (RICK, 1961: 457).

Comentários: Provavelmente não é um representante de *Octaviania*, como foi discutido anteriormente (em *O. radicans*). A identificação destas duas espécies de *Octaviania* foi interpretada em um conceito amplo, com ou sem referência ao conceito genérico original de Vittadini (ORIHARA et al., 2012). Características morfológicas, associadas ao tipo de hábitat ou potencial simbionte ECM, são importantes características usadas para a identificação correta do gênero *Octaviania* (TRAPPE et al., 2009; ORIHARA et al., 2012).

Paurocotylis prima Rick: BRAZIL, Rio Grande do Sul, Parecy (atualmente Pareci Novo); hipógeo no solo, não se sabe se estava ocorrendo em floresta nativa (RICK, 1934: 109).

<u>Comentários</u>: O gênero *Paurocotylis* Berk., foi originalmente descrito para a Nova Zelândia por Berkeley. É pouco provável encontrar espécies relacionadas a este gênero

fora da região da Nova Zelândia (James Trappe, comunicação pessoal). O espécime do Brasil, provavelmente não é um verdadeiro *Paurocotylis*.

Rhizopogon couchii A.H. Sm.: ARGENTINA, Província de Córdoba, Calamuchita, Villa Alpina; hipógeo no solo, e camada liteira, em plantações de *Pinus elliottii* (NOUHRA et al., 2008: 757).

<u>Comentários</u>: *Rhizopogon couchii* ocorre na região Norte do México (CÁZARES et al., 1992) e Sudeste dos Estados Unidos (MILLER, 1986). Não é uma espécie nativa da América do Sul.

Rhizopogon ellenae A.H. Sm.: ARGENTINA, Patagônia Central; hipógeo no solo, em plantações de *Pinus ponderosa* Dougl. ex Laws. (BARROETAVEÑA; RAJCHENBERG; CÁZARES, 2005: 457).

<u>Comentários</u>: *Rhizopogon ellenae* é naturalmente distribuída nas regiões da Europa e América do Norte (MARTÍN, 1996), crescendo em pinus.

Rhizopogon fuscorubens A. H. Sm.: BRASIL, Santa Catarina, Correia Pinto, Rio Vermelho, Três Barras; hipógeo a subhipógeo no solo, em plantações de *P. elliottii* e *P. taeda* (GIACHINI et al., 2000: 1168).

<u>Comentários</u>: Esta espécie tem sido descrita para os Estados Unidos (MILLER, 1986) em florestas de coníferas, principalmente *Pinus (P. contorta* Douglas ex. Loudon e *Pinus rigida* Miller). Molina e Trappe (1994) mencionam outros prováveis simbiontes ectomicorrízicos: *Arbutus menziesii* Pursh, *Arctostaphylos uva-ursi* (L) Sprengel, *Pinus monticola* Douglas ex D. Don, *P. ponderosa* Douglas ex Lawson & C. Lawson e *P. serotina* Michaux. A espécie também foi citada para Espanha (MARTÍN, 1996). No Brasil, *R. fuscorubens* é uma espécie introduzida.

Rhizopogon honoratoi Speg.: CHILE, Tomé; hipógeo no solo e camada liteira, em plantações de *Pinus* (SPEGAZZINI, 1917: 168; GARRIDO, 1986: 431).

Comentários: Espécie introduzida na América do Sul.

Rhizopogon luteolus Fr. & Nordholm: BRASIL, São Paulo, Luís Antônio, Estação Ecológica de Jataí; Mogi Guaçu, Reserva Biológica de Mogi Guaçu; Itirapina, Estação Ecológica de Itirapina. CHILE, Concepción para Mulchén; hipógeo a subhipógeo em

solo arenoso e agregado com raízes, em plantações de *Pinus radiata* (BASEIA; MILANEZ, 2002: 56; GARRIDO, 1986: 431).

<u>Comentários</u>: Espécie cosmopolita, encontrada em solo arenoso com baixa fertilidade, próximo a Pinaceae (MARTÍN, 1996). Foi introduzida na América do Sul.

Rhizopogon nigrescens Coker & Couch: BRASIL, Santa Catarina, Rio Vermelho, Três Barras; hipógeo a subhipógeo em solo, em plantações de *P. elliottii* e *P. taeda* (GIACHINI et al., 2000: 1168).

<u>Comentários</u>: *Rhizopogon nigrescens* foi referenciada para solo arenoso em pinus no sudeste dos Estados Unidos (MILLER, 1986).

Rhizopogon roseolus (Corda) Th. Fr.: ARGENTINA, Província de Córdoba, Calamuchita, Villa Alpina, Estancia La Payana; Atos Pampa, Estancia Alta Vista; Punilla; Camino a las Altas cumbres, Estancia La Armonía; Estancia Ayke; Patagônia central; Província de Buenos Aires, Miramar. BRASIL, São Paulo, Luís Antônio, Estação Ecológica de Jataí; Mogi Guaçu, Reserva Biológica de Mogi Guaçu; Paraná, Colombo, Curitiba; Santa Catarina, Correia Pinto, Três Barras; Rio Grande do Sul, Itaara, Santa Maria. CHILE, Concepción para Mulchén; Santiago; hipógeo a subhipógeo em solo, em plantações de *Pinus elliottii*, *P. ponderosa* Dougl. ex Laws., *P. radiata* e *P. taeda* (ZELLER; DODGE, 1918: 18, como *Rhizopogon rubescens* (Tul. & Tul.) Tul. & C. Tul.; GARRIDO, 1986: 431; de MEIJER, 2001: 113; GIACHINI et al., 2000: 1168, como *Rhizopogon rubescens*; BASEIA; MILANEZ, 2002: 57; de MEIJER, 2006: 41; WRIGHT; ALBERTÓ, 2006: 372; NOUHRA et al., 2008: 757; CORTEZ; BASEIA; SILVEIRA, 2011: 45).

<u>Comentários</u>: *Rhizopogon roseolus* é uma espécie muito variável na coloração, comumente encontrada na Europa. Os basidiomas são freqüentemente subhipógeos, crescendo em solo arenoso ou calcário em associação com *Abies* spp., *Picea* spp., *Pinus* spp. e *Quercus* spp. (MARTÍN, 1996). No Hemisfério Sul, a espécie é amplamente encontrada, devido à introdução por mudas micorrizadas provenientes de programas de reflorestamento (VISNOVSKY et al., 2010).

Rhizopogon subolivascens A.H. Sm.: ARGENTINA, Patagonia; hipógeo em solo, em plantações de *Pinus ponderosa* (BARROETAVEÑA; RAJCHENBERG; CÁZARES, 2005: 457).

<u>Comentários</u>: *Rhizopogon subolivascens* é uma espécie registrada para os Estados Unidos (TRAPPE et al., 2009) e Europa (MARTÍN, 1996). A espécie européia foi coletada em florestas de *Pinus nigra* Arnold (MARTÍN, 1996).

Rhizopogon villosulus Zeller: ARGENTINA, Província de Chubut, Esquel, Barrio Bella Vista; Caminho para Lago Puelo; Campo Forestal INTA, Estación Agroforestal INTA Trevelin, Las Golondrinas; Província de Río Negro; Cuesta del Ternero; Los Repollos; hipógeo em solo, em plantações de *Pseudotsuga menziesii* (Mirb.) Franco (BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2006: 59).

Comentários: Espécie introduzida na Europa (KREISEL, 2001). Nos Estados Unidos é frequentemente encontrada em *Pseudotsuga menziesii* (Mirbel) Franco, *Abies magnifica* A. Murray, *Pinus ponderosa* e *Picea sitchensis* (Bongard) Carrière (MARTÍN, 1996). Na Europa, *R. villosulus* é associada com plantações de *Pseudotsuga menziesii*, *Quercus robur* L. e *Larix* sp. (MARTÍN, 1996).

Rhizopogon zelleri A.H. Sm.: BRASIL, Santa Catarina, Três Barras; hipógeo a subhipógeo em solo, em plantações de *Pinus taeda* (GIACHINI et al., 2000: 1168). Comentários: *Rhizopogon zelleri* é nativa da América do Norte; a espécie tipo foi coletada por Zeller, em 1966, em florestas de pinus (MARTÍN, 1996).

Scleroderma bougheri Trappe, Castellano & Giachini: BRASIL, Santa Catarina, Correia Pinto, Rio Vermelho, Três Barras; hipógeo em solo, em plantações de *Eucalyptus dunnii* (GIACHINI et al., 2000: 1169).

<u>Comentários</u>: Provavelmente se trata de uma espécie introduzida no Brasil.

Scleroderma patagonicum Nouhra & Hernández Caffot: ARGENTINA, Província de Neuquén, Parque Nacional Lanin; hipógeo em solo, entre matéria orgânica, em florestas mistas de *Nothofagus obliqua*, *N. dombeyi* e *N. alpina* (NOUHRA et al., 2012b: 490). Comentários: A espécie *Scleroderma patagonicum*, é nativa da América do Sul e produz pequenos e numerosos basidiomas.

Setchelliogaster brunneus (E. Horak) Singer: ARGENTINA, Província de Rio Negro, Lago Frias; CHILE, Magallanes, Punta Arenas; hipógeo a subhipógeo em solo, em florestas de Nothofagus dombeyi, N. pumilio e Fuchsia magellanica Lam. (HORAK,

1964d: 299, como *Hypogaea brunnea* Horak; SINGER, 1969: 361, como *Setchelliogaster brunneum*; HORAK, 1980: 22; GARRIDO, 1986: 436; RAITHELHUBER, 1987: 79, como *Hypogaea brunnea*).

Comentários: Espécie nativa da Patagônia.

Setchelliogaster fragilis (Zeller & C.W. Dodge) E. Horak: ARGENTINA, Província de Tierra del Fuego, Usuahia, Valle del Glaciar Martial, Lapataia, Lago Fagnano, Tierra Mayor; Província de Neuquén. CHILE, Magallanes, Punta Arenas; Malleco, Cordillera Nahuelbuta; subhipógeo a epígeo, em solo e matéria orgânica, em florestas de Nothofagus alpina (Poepp. Et Endl.) Oerst., N. antarctica (G. Forster) Oerst., N. dombeyi, N. obliqua (Mirb.) Oerst. e N. pumilio (DODGE; ZELLER, 1934: 646, como Hymenogaster fragilis Zeller & Dodge; SINGER, 1969: 363, como Thaxterogaster fragile; SINGER, 1971: 467, como Setchelliogaster tetrasporum Singer; HORAK, 1980: 19; HALLING, 1981: 857, como Thaxterogaster fragilis (Zeller & C.W. Dodge) A.H. Sm.; GARRIDO, 1986: 434).

Comentários: Espécie nativa da América do Sul.

Setchelliogaster tenuipes (Setch.) Pouzar: ARGENTINA, Província de Córdoba, Calamuchita; Província de Buenos Aires, Mar del Plata, Sierra de los Padres, Laguna de los Padres. BRASIL, Santa Catarina, Correia Pinto; Rio Grande do Sul, Guaíba, Santa Maria, Viamão. CHILE, El Tabo; Santiago. URUGUAI, Montevideo, Parque Rivera; hipógeo a subhipógeo em solo e camada liteira, em plantações de *Eucalyptus camaldulensis*, *E. dunnii*, *E. globulus*, *E. grandis*, *Quercus* spp. e *Pinus radiata* (SINGER, 1969: 361; LAZO, 1972: 787; GARRIDO, 1986: 431; GIACHINI et al., 2000: 1168; WRIGHT; ALBERTÓ, 2006: 376; NOUHRA et al., 2008: 756; CORTEZ et al., 2008: 514; SULZBACHER, 2010: 84).

Comentários: Setchelliogaster tenuipes é uma espécie introduzida na América do Sul, provavelmente originária da Austrália (LAGO; BOUGHER; CASTRO, 2001), associada com espécies de *Eucalyptus*, e atualmente distribuída com estas florestas nos diferentes continentes (MALENÇON; BERTAULT, 1970; GRGURINOVIC, 1997; MONTECCHI; SARASINI, 2000; LAGO; BOUGHER; CASTRO, 2001; LAGO; CASTRO, 2004).

Singeromyces ferrugineus M.M. Moser: ARGENTINA, Província de Neuquén, Puerto Manzano; hipógeo no solo, em florestas de *Nothofagus pumilio* (HORAK; MOSER, 1966a: 331; SINGER, 1969: 361).

<u>Comentários</u>: *Singeromyces ferrugineus* é um gênero monotípico, atualmente inserido na família Boletaceae (TEDERSOO; MAY; SMITH, 2010). Não tem sido estudada desde Singer (1969).

Stephanospora chilensis (E. Horak) J.M. Vidal: CHILE, Província de Osorno, Pucatrihue; hipógeo no solo, em florestas de *Aextoxicon*, *Gevuina*, *Lomatia* e outras Myrtaceae e Lauraceae (HORAK, 1964e: 311, como *Octavianina chilensis* Horak; SINGER, 1969: 360, como *O. chilensis*; VIDAL, 2004: 102).

Comentários: esta espécie é encontrada no Chile e Alemanha, ocorrendo abaixo de folhas caídas (VIDAL, 2004). A espécie chilena foi encontrada crescendo em floresta nativa (HORAK, 1964e). Estudos com base em características moleculares apontam que o gênero *Stephanospora* está relacionado com espécies de *Lindtneria* Pilát, um grupo de fungos ressupinados (LEBEL; CASTELLANO; BEEVER, 2015), e não apontam evidencias ectomicorrízicas (TEDERSOO; MAY; SMITH, 2010; TEDERSOO; SMITH, 2013), relacionando o gênero ao hábito saprofítico (LEBEL; CASTELLANO; BEEVER, 2015).

Stephensia varia Rodway: BRASIL, Santa Catarina, Correia Pinto; hipógeo no solo, em plantações de *Eucalyptus dunnii* (GIACHINI et al., 2000: 1168, como *Labyrinthomyces varius* (Rodway) Trappe).

Comentários: Espécie introduzida no Brasil.

Thaxterogaster gliocyclum E. Horak: CHILE, Província de Magellanes, Monte Alto, Puerto Natales; subhipógeo no solo arenoso, em florestas de *Nothofagus pumilio* (HORAK; MOSER, 1966b: 221; HORAK, 1980: 27, como *T. gliocyclus* Horak; RAITHELHUBER, 1987: 72).

<u>Comentários</u>: Espécie nativa da América do Sul. *Thaxterogaster gliocyclum* foi omitida na lista de espécies de *Thaxterogaster* preparada por Peintner et al. (2002), onde combinam uma série de espécies em *Cortinarius*.

Tuber australe Speg.: ARGENTINA, Província de Buenos Aires, Capital Federal, Recoleta and Boca del Riachuelo; hipógeo no solo arenoso, em plantações de *Salix* sp. (SPEGAZZINI, 1880: 149; SPEGAZZINI, 1887: 122; ROMERO; BLUMENFIELD, 2001: 173).

<u>Comentários</u>: Espécie provavelmente introduzida. Esta espécie foi citada como *T. maculatum* (TRAPPE; CÁZARES, 2000).

Tuber borchii Vittad.: ARGENTINA, Província de Chubut, Las Golondrinas; hipógeo no solo argiloso, coletado junto a *Pseudotsuga menziesii* (BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2006: 59; BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2007: 370).

<u>Comentários</u>: Espécie introduzida na América do Sul. É comum na Europa, cresce junto a *Larix* sp., *Fagus* sp., *Pinus silvestris*, *P. nigra* e *Salix* sp. (PEGLER; SPOONER; YOUNG, 1993; MONTECCHI; SARASINI, 2000; RIOUSSET et al., 2001).

Tuber californium Harkn.: ARGENTINA, Província de Chubut, Lago Puelo; hipógeo no solo argiloso, coletado em viveiro de *Pseudotsuga menziesii* (BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2006: 59; BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2007: 370).

Comentários: Espécie introduzida na América do Sul.

Tuber maculatum Vittad.: ARGENTINA, Província de Rio Negro, San Carlos de Bariloche; Província de Córdoba; Província de Buenos Aires, Rio de la Plata; hipógeo no solo, coletado junto a *Betula pendula* Roth e *Pinus contorta* var. *latifolia* Engelm (LORENZO; CALVELLO, 2000: 17; TRAPPE; CÁZARES, 2000: 108).

<u>Comentários</u>: Espécie introduzida na América do Sul. *Tuber maculatum* é frequente na Europa, crescendo associada com árvores coníferas e decíduas (PEGLER; SPOONER; YOUNG, 1993; MONTECCHI; SARASINI, 2000; RIOUSSET et al., 2001).

Tuber melanosporum Vittad.: CHILE, plantações de trufas; hipógeo no solo, em plantações de carvalhos originários do Mediterrâneo e *Nothofagus* spp. (PÉREZ et al., 2007).

<u>Comentários</u>: Esta espécie é introduzida da França. Na Europa, *T. melanosporum* é encontrada crescendo em florestas decíduas (MONTECCHI; SARASINI, 2000).

Tuber rufum Picco Fr.: ARGENTINA, Província de Rio Negro, General Roca; hipógeo no solo, em plantações de *Tilia* sp. e *Quercus* sp. (ROMERO; BLUMENFIELD, 2001: 173).

<u>Comentários</u>: Esta espécie é introduzida na região da Patagônia. Na Europa, costuma ser encontrada com frequência crescendo em associação com florestas de coníferas e também de plantas decíduas (PEGLER et al., 1993; RIOUSSET et al., 2001).

Tuber separans Gilkey: ARGENTINA, Província de Córdoba, Dpto Punilla, Copina, Estancia La Armonia; Icho Cruz, Estancia Ayke; hipógeo no solo e em camada liteira de pinus, em plantações de *Pinus elliottii* e *P. taeda* (CRESPO; DOMINGUEZ, 1994: 125).

Comentários: Esta espécie é introduzida na América do Sul.

Zelleromyces australiensis (Berk. & Broome) Pegler & T.W.K. Young: CHILE, Concepción; Santiago, Cerro Robles; hipógeo a subhipógeo em solo, solo arenoso, em plantações de *Quercus agrifolia*, *Nothofagus obliqua* (DODGE; ZELLER, 1936: 620, como *Arcangeliella alveolata* (Cooke & Massee) Zeller & Dodge; SINGER, 1969: 358, como *Martellia alveolata* (Cooke et Mass.) A. H. Smith; GARRIDO, 1986: 437, como *Martellia alveolata*).

Comentários: Zelleromyces australiensis é uma espécie válida, nativa da Austrália (LEBEL; CASTELLANO, 2002; TRAPPE et al., 2002). No entanto, os espécimes descritos para a América do Sul (DODGE; ZELLER, 1936, como Arcangeliella alveolata; SINGER, 1969, como Martellia alveolata; GARRIDO, 1986, como Martellia alveolata) requerem mais estudos taxonômicos. Os limites genéricos destes gêneros russuloides (e.g., Arcangeliella Cavara, Martellia Mattir. e Zelleromyces Singer & A.H. Sm., bem como, Cystangium Singer & A.H. Sm., Elasmomyces Cavara, Gymnomyces Massee & Rodway e Macowanites Kalchbr.) foram amplamente discutidos e interpretados por diferentes autores, utilizando apenas características morfológicas (ZELLER; DODGE, 1935; SINGER; SMITH, 1960b; PEGLER; YOUNG, 1979; LEBEL; TRAPPE, 2000; LEBEL; CASTELLANO, 2002). Porém, recentes estudos moleculares têm proporcionado uma perspectiva diferente na classificação destes espécimes, colocando-os em clados separados entre Lactarius e Russula (CALONGE; MARTIN, 2000; VERBEKEN et al., 2014). Porém, alguns autores, preferem manter os

limites genéricos em um sentido mais restrito (DESJARDIN, 2003; LEBEL; TONKIN, 2007; TRIERVEILER-PEREIRA et al., 2015).

Zelleromyces albellus (Singer & A.H. Sm.) Trappe, T. Lebel & Castellano: ARGENTINA, Província de Rio Negro, Paso de las Nubes, Lago Frias, Parque Nacional Nahuel Huapi; hipógeo a subhipógeo em solo e camada liteira, em florestas de Nothofagus antartica, N. dombeyi, e Chusquea cunningii (SINGER; SMITH, 1960b: 38; SINGER, 1962a: 56, como Martellia albella Sing. & Smith; HORAK, 1964c: 206, como Martellia albella; SINGER, 1969: 359, como Martellia albella; DESJARDIN, 2003: 151).

Comentários: Espécie nativa da Patagônia.

Zelleromyces pterosporus (E. Horak) Trappe, T. Lebel & Castellano: CHILE, Província de Osorno, Refugio Antillanca, Volcan Antillanca; subhipógeo em solo em florestas de *Nothofagus betuloides* (Mirb.) Oerst., *N. antartica* (G. Forster) Oerst., *N. pumilio*, e *Chusquea montana* (HORAK, 1964e: 310, como *Martellia pterospora* Horak; SINGER, 1969: 359, como *Martellia pterospora*; GARRIDO, 1986: 435, como *Martellia pterospora*; DESJARDIN, 2003: 151).

Comentários: Espécie nativa da Patagônia.

Espécies duvidosas citadas para a América do Sul

Cortinarius hygrophilus Peintner & M.M. Moser: ARGENTINA Província de Neuquén, Puerto Manzano; Província de Rio Negro, Laguna Frías e Paso de las Nubes; subhipógeo em solo, em florestas de Fitzroya cupresoides I.M. Johnst., Nothofagus dombeyi, e N. pumilio (SINGER, 1969: 361, como Thaxterogaster bibulum Singer). Comentários: Espécie nativa da Patagônia. Cortinarius hygrophilus não é considerada uma espécie válida segundo base de dados MycoBank (http://www.mycobank.org/MycoTaxo.aspx). Peintner et al. (2002) combinou a espécie Thaxterogaster bibulum em C. hygrophilus Peintner & M.M. Moser, mas não percebeu que o epíteto C. hygrophilus foi previamente proposto para uma espécie diferente por Bidaud et al. (1999).

Genea cf. *verrucosa* Vittad.: CHILE, Punta Arenas; hipógeo em solo, conforme Halling (1980), o espécime foi encontrado em florestas de *Nothofagus* (HALLING, 1980: 865, como "Hypogeous Fungus No. 11").

<u>Comentários</u>: Provavelmente não é uma verdadeira *G. verrucosa*. Mais provável se tratar de um espécime não descrito, uma vez que ocorre naturalmente em florestas nativas de *Nothofagus*. *Genea verrucosa* ocorre naturalmente em florestas temperadas do Hemisfério Norte (MONTECCHI; SARASINI, 2000; TRAPPE et al., 2009).

Hysterangium affine var. irregulare Massee: EQUADOR, Quito; hipógeo em solo, em plantações de Eucalyptus sp. (ZELLER; DODGE, 1929: 93).

<u>Comentários</u>: Desde o trabalho de Castellano (1990), esta variedade revelou estar entre os limites normais da espécie, e assim, é reduzida a um sinônimo.

Hysterangium eucalyptorum Lloyd: EQUADOR – localidade desconhecida; hipógeo em solo, em plantações de *Eucalyptus* sp. (LLOYD, 1922: 1119).

<u>Comentários</u>: *Hysterangium eucalyptorum* é atualmente considerado um sinônimo de *H. inflatum* (CASTELLANO; TRAPPE, 1990).

Hysterangium hessei Soehner (= H. clathroides Vitt. ss. Speg.): URUGUAI, Montevideo; hábitat e substrato desconhecido (HORAK, 1964b: 201).

<u>Comentários</u>: *Hysterangium hessei* provavelmente não é uma espécie válida, atualmente considerada um sinônimo de *H. clathroides* e *H. coriaceum*.

Octaviania carnea (Wallr.) Corda: ARGENTINA, Província de Buenos Aires, Parque de La Plata. BRASIL, Rio Grande do Sul – localidade desconhecida; hipógeo em camada liteira, em plantações de *Eucalyptus* e *Pinus* (SPEGAZZINI, 1887: 123; RICK, 1961: 457; HORAK, 1964b: 204).

Comentários: Octaviania carnea é uma sinonímia de Hydnangium carneum. Contudo, O. carnea descrita por Spegazzini para Argentina provavelmente pertence a Hydnangium roseum (Harkn.) Singer & A.H. Sm., como já descrito por Horak (1964b). O material relacionado ao Brasil não foi mais estudado desde Rick, e provavelmente não está relacionado a um verdadeiro espécime de Octaviania.

Geastrum cf. taylorii (Lloyd) Jeppson & E. Larss.: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi; hipógeo no solo, em camada liteira, em florestas de *Nothofagus dombeyi* (Nouhra et al., 2012a: 47, como *Radiigera* cf. taylorii).

<u>Comentários</u>: Estudos adicionais relacionados à biologia molecular são necessários para confirmar a identidade da espécie. É provavelmente uma espécie nova para a região da Patagônia.

Terfezia longii Gilkey: ARGENTINA, Província de Buenos Aires, Adolfo Alsina; hipógeo em raízes de *Discaria longispina* (ROMERO; BLUMENFIELD, 2001: 174, como *Tuber argentinum* var. *pampearum*).

<u>Comentários</u>: O material de Spegazzini foi determinado como *Terfezia longii* por Gilkey (ROMERO; BLUMENFIELD, 2001).

Tuber argentinum Speg. "nomen dubium": ARGENTINA, Província de Chaco; Resistencia; subhipógeo em solo, em floresta (SPEGAZZINI, 1887: 123; ROMERO; BLUMENFIELD, 2001:174).

<u>Comentários</u>: Holótipo provavelmente perdido, e a coleção "*LPS 1305*" não coincide com a diagnose original de Spegazzini.

Táxons indeterminados

Chondrogaster sp.: BRASIL, Rio Grande do Sul, Dilermando de Aguiar; hipógeo no solo, em camada liteira, em plantações de *Eucalyptus* sp. (SULZBACHER, 2010: 94). Comentários: Introduzida no Brasil.

Descomyces sp.: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Nahuel Huapi; hipógeo no solo, em camada liteira, em florestas de *Nothofagus dombeyi* e *N. obliqua* (NOUHRA et al., 2012a: 47).

<u>Comentários</u>: Esta espécie é nativa da Patagônia. Morfotipos ECM relacionados à *Descomyces* foram detectados em raízes de *Nothofagus dombeyi* e *N. obliqua* (NOUHRA et al., 2013). Elaphomyces squamatus (não publicado): GUIANA, Pakaraima Mountains. Mabura Ecological Reserve; hipógeo no solo, em florestas de *Dicymbe corymbosa* Spruce ex Benth. (HENKEL et al., 2012: 2206).

<u>Comentários</u>: Esta espécie é listada em Henkel et al. (2012), porém não formalmente publicada.

Elaphomyces sp.: GUIANA, Pakaraima Mountains; no solo, em florestas de *Pakaraimaea dipterocarpacea* (SMITH et al., 2013b: 08).

<u>Comentários</u>: Oriunda da Guiana. Uma sequencia nomeada como "*Elaphomyces* ECM1108" foi detectada em raízes de *Pakaraimaea dipterocarpacea* (SMITH et al., 2013b).

Genea spp.: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional Lanin, Parque Nacional Nahuel Huapi; hipógeo no solo e camada liteira, em florestas de *Nothofagus dombeyi* e *N. alpina* (NOUHRA et al., 2012a: 47).

<u>Comentários</u>: Oriunda da Patagônia. Duas sequencias relacionadas à *Genea* foram detectadas em raízes de *Nothofagus alpina* e *N. dombeyi* (NOUHRA et al., 2013).

Gymnohydnotrya sp.: ARGENTINA, Província de Rio Negro, Parque Nacional Nahuel Huapi, Cerro Otto; hipógeo no solo e camada liteira, em florestas de *Nothofagus dombeyi* e *N. pumilio* (NOUHRA et al., 2012a: 47; BONITO et al., 2013: 13).

Comentários: Nativa da Patagônia.

Hysterangium sp.: GUIANA, Pakaraima Mountains; hipógeo no solo, em florestas de Pakaraimaea dipterocarpácea (SMITH et al., 2013b: 09).

Comentários: Oriunda de florestas tropicais da Guiana.

Hysterangium sp.1: GUIANA, Pakaraima Mountains; hipógeo no solo, em florestas de Dicymbe corymbosa (Henkel et al., 2012: 2203).

Comentários: Oriunda de florestas tropicais da Guiana.

Hysterangium sp. 2: GUIANA, Pakaraima Mountains; hipógeo no solo, em florestas de Dicymbe corymbosa (Henkel et al., 2012: 2203).

Comentários: Oriunda de florestas tropicais da Guiana.

cf. Pezizales: CHILE, Punta Arenas; terrícola, conforme Halling (1981), estava ocorrendo em florestas de *Nothofagus* (Halling, 1981: 864, como "Hypogeous No. 8"). <u>Comentários</u>: Material indeterminado.

Radiigera spp.: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi; hipógeo no solo e camada liteira, em florestas de *Nothofagus dombeyi, N. pumilio* e *Pinus ponderosa* (BARROETAVEÑA; RAJCHENBERG; CÁZARES, 2005: 457; NOUHRA et al., 2012a: 47).

Comentários: Provavelmente não micorrízico.

Scleroderma sp.: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi; hipógeo no solo e camada liteira, em florestas de *Nothofagus dombeyi* (Nouhra et al., 2012a: 47).

Comentários: Material indeterminado.

Setchelliogaster sp.: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi; hipógeo no solo e camada liteira, em florestas de Nothofagus dombeyi (NOUHRA et al., 2012a: 47).

<u>Comentários</u>: Espécie indeterminada, nativa da América do Sul, provavelmente relacionada à espécie *S. brunneus*.

Thaxterogaster spp. 1–8: ARGENTINA, Províncias de Neuquén e Rio Negro, Parque Nacional de Nahuel Huapi; hipógeo no solo e camada liteira, em florestas de *Nothofagus alpina*, *N. dombeyi* e *Nothofagus pumilio* (NOUHRA et al., 2012a: 47).

<u>Comentários</u>: Nativo da Patagônia. Raízes ECM relacionadas à *Thaxterogaster* foram observadas associadas à *Nothofagus alpina* e *N. dombeyi* (NOUHRA et al., 2013).

Tuber sp.: ARGENTINA, Província de Chubut; hipógeo no solo em plantações de *Pinus ponderosa* Dougl. ex Laws. (BARROETAVEÑA; RAJCHENBERG; CÁZARES, 2005: 457; BARROETAVEÑA; CÁZARES; RAJCHENBERG, 2007: 370).

Comentários: Espécie introduzida na América do Sul.

Hipógeos indeterminados spp. 1–6: BRASIL, Rio Grande do Norte, Natal, Reserva Parque Estadual das Dunas do Natal; hipógeo no solo arenoso, em floresta nativa da Mata Atlântica (SULZBACHER et al., 2013b: 1111).

<u>Comentários</u>: Espécimes relacionados preliminarmente a Phallomycetidae (Basidiomycota).

Diversidade de fungos hipógeos na América do Sul

Esta compilação mostrou que 165 táxons de fungos hipógeos e subhipógeos são descritos ou citados na literatura, em florestas nativas ou exóticas da América do Sul. Argentina (99) é o país com o maior número de espécies citadas, seguido pelo Chile (27) e Brasil (18). Outros países, tais como a Guiana (14), Equador (3), Uruguai (3) e Colômbia (1) têm menos espécies registradas, e para a Bolívia, Paraguai, Peru e Venezuela não foram encontrados registros de fungos hipógeos (Figura 3). O hábito hipógeo e o pouco conhecimento do grupo, além do número e distribuição de micólogos, são provavelmente as principais razões para esta realidade.

Novos gêneros e espécies de fungos hipógeos foram recentemente relatados para as florestas tropicais da Guiana, na América do Sul (HENKEL; SMITH; AIME, 2010; CASTELLANO et al., 2012; SMITH et al., 2015b). Para muitas das regiões tropicais e subtropicais da América do Sul, a diversidade de fungos hipógeos permanece desconhecida. Com base no presente estudo, 60 espécies são consideradas como sendo introduzidas de outros continentes, e aproximadamente 92 espécies são consideradas nativas, especialmente de regiões temperadas da Argentina e Chile. Alguns espécimes são considerados desconhecidos (14) e faltam informações sobre a sua origem na literatura. Um importante número de espécies (17) foi referenciado apenas uma vez para a localidade tipo, sem novas coletas desde então. Na maioria dos casos, as descrições originais carecem de informações relativas à morfologia, substrato, o tipo micorrízico, etc. Alguns táxons hipógeos são encontrados exclusivamente na América do Sul, especialmente nas florestas de Nothofagus da Patagônia (TEDERSOO; MAY; SMITH, 2010). Para afirmar tal fato, várias novas espécies de fungos semelhantes a trufas estão sendo descritos para florestas temperadas do Sul da América do Sul (NOUHRA et al., 2012a). Mais recentemente, Trierveiler-Pereira et al. (2015) descreveram novas espécies de Cystangium da Patagônia, e muitos destes táxons são apenas conhecidos para a localidade tipo. A história biogeográfica e a diversidade de formações florestais e de ecossistemas ocorrentes na América do Sul sugerem que um número substancial de

espécies hipógeas ocorra nesta região, e que ainda permanecem como desconhecidas para a ciência. Os esforços em amostragem e também os avanços relacionados à sistemática do grupo, irão definitivamente auxiliar na melhor compreensão destes novos e desconhecidos táxons, principalmente relacionado à compreensão da diverdidade fungica e de distribuição no continente.

Relações simbióticas das espécies

Para a maioria das espécies (152), o estado nutricional foi estimado com base em observações de campo ou através de busca na literatura, considerando-se suas afinidades com linhagens de ECM (TEDERSOO; MAY; SMITH, 2010; TEDERSOO; SMITH, 2013). Poucas espécies são listadas como saprofíticas (9 espécies). A maioria (142 espécies) são citadas como biotróficas, estabelecendo relações ectomicorrízicas (ECM) com várias espécies arbóreas. A maioria dos fungos hipógeos obtém seus nutrientes por meio de associações ECM (MOLINA; MASSICOTE; TRAPPE, 1992; BRUNDRETT et al., 1996; CLARIDGE, 2002; CASTELLANO; TRAPPE; LUOMA, 2004; TRAPPE; CLARIDGE, 2005; SMITH; READ, 2008; MASER; CLARIDGE; TRAPPE, 2010; DANKS et al., 2013). Similarmente como ocorre com os demais membros de ECM, fungos hipógeos também são derivados de diversas linhagens a partir de ancestrais saprofíticos (TEDERSOO; MAY; SMITH, 2010; TEDERSOO; SMITH, 2013).

Os gêneros hipógeos mais comuns e frequentes na América do Sul são relacionados a várias linhagens ECM. Por exemplo, Cortinarius (/cortinarius, incluindo o gênero *Thaxterogaster*) é representado por 27 espécies, *Hysterangium* (/hysterangium) por 15 espécies, Rhizopogon (/suillus-rhizopogon) por 10 espécies e Cystangium (/russula-lactarius) por espécies. Determinadas espécies hipógeas 7 economicamente importantes, principalmente em aplicações biotecnológicas. Entre estas, algumas espécies possuem potenciais para programas de reflorestamento (BRUNDRETT et al., 1996; CASTELLANO, 1996; LU; MALAJCZUK; DELL, 1998; CAIRNEY; CHAMBERS, 1999; CLARIDGE, 2002), importância como espécies comestíveis (coleta direta da floresta ou produção comercial) e de truficultura (MORENO-ARROYO; GÓMEZ; PULIDO, 2005), recuperação de solos contaminados por atividades antropogênicas (ROLDÁN; ALBALADEJO, 1994; TRAPPE et al., 2009) são as mais importantes. Como ultimo exemplo de aplicação, estes fungos possuem a capacidade de facilitar a absorção de fósforo nos solos, este elemento está frequentemente indisponível para as plantas (CLARIDGE, 2002; SMITH; READ, 2008; BÂ et al., 2012).

Discussão

A América do Sul possui uma ampla variedade de biomas que são únicos e que vão desde regiões dos Andes nas regiões da Colômbia e Equador, até as florestas de terras baixas do litoral do Caribe, até o Sul e Leste, por toda a bacia amazônica, as florestas tropicais da Guiana, as terras áridas e florestas da Mata Atlântica no Brasil e florestas úmidas no Paraguai. Mais ao sul ocorrem os "altiplanos", "Yungas" e terras áridas do Peru, Bolívia, Chile e Argentina e em direção ao sul do continente, as regiões dos Pampas e da Patagônia. Em todas estas regiões e biomas, a diversidade das paisagens tem afetado profundamente a composição da vegetação, contribuindo desta forma, para uma alta diversidade de fungos. Na região da Patagônia, a floresta ectotrófica dominada por espécies de Nothofagus parece hospedar a maior diversidade de fungos hipógeos conhecidos na América do Sul (NOUHRA et al., 2012a). A região montanhosa das "Yungas", um tipo de floresta subtropical de altitude, localizada nas encostas orientais dos Andes tem sido pouco amostrada para fins micológicos. Mesmo assim, espécies inéditas para a ciência já foram registradas nas florestas de Alnus acuminata (NOUHRA et al., 2005; SMITH et al., 2013b). Simbiontes ECM tais como Alnus e Quercus ocorrem naturalmente ao longo da Cordilheira da América do Sul (NIXON, 2006; TEDERSOO et al., 2009). É muito provável que estas florestas hospedem diferentes espécies de fungos hipógeos ainda desconhecidos para a ciência. As florestas tropicais da região Norte da América do Sul, são caracterizadas pela presença de simbiontes ECM, como por exemplo: Caesalpiniaceae, Dipterocarpaceae e Polygonaceae (TEDERSOO; MAY; SMITH, 2010). Esta região demonstrou hospedar um alto numero de fungos ECM, incluindo espécies com o hábito hipógeo (HENKEL; SMITH; AIME, 2010; CASTELLANO et al., 2012; HENKEL et al., 2012, SMITH et al., 2015a; SMITH et al., 2015b). Mais recentemente, novos espécimes relacionados entre Boletales, Hysterangiales e Phallales tem sido referenciados para fragmentos de Mata Atlântica, no Nordeste do Brasil (SULZBACHER et al., 2013b).

Fungos hipógeos podem apresentar um elevado nível de endemismo (CASTELLANO et al., 2007). Estes padrões podem ser descritos para determinadas espécies ocorrentes na América do Sul. Muitas espécies são apenas conhecidas para a localidade tipo ou apenas foram descritos para habitats específicos deste continente. Em

uma revisão relacionada à diversidade global de fungos, Mueller et al. (2007) indicaram que 95 porcento de aproximadamente 30 espécies citadas para regiões temperadas da América do Sul são citadas como sendo endêmicas para a área, e estima-se que cerca de 300 espécies novas permanecem por ser descobertas e descritas (MUELLER et al., 2007). Mais estudos fazem-se necessário principalmente para determinar os padrões de distribuição como também, os níveis de endemismo para espécies desta região.

No que diz respeito à classificação, muitos táxons de fungos hipógeos referenciados para a América do Sul foram anteriormente relacionados a várias ordens de fungos epígeos, como formas derivadas, principalmente com base nas características morfológicas (por exemplo, Thaxterogaster para Cortinariales, Arcangeliella e Martellia para Russulales, etc.). Porém, com o advento da filogenia molecular, vários destes táxons foram combinados junto a gêneros epígeos relacionados, principalmente com base na similaridade molecular segundo a região ITS do rDNA, e pela natureza polifilética, junto a um contexto de espécimes epígeos previamente reconhecidos em uma mesma linhagem evolutiva (PEINTNER et al., 2001; MILLER et al., 2001; TEDERSOO; MAY; SMITH, 2010; TEDERSOO; SMITH, 2013). Um bom exemplo é o gênero secotioide *Thaxterogaster*, combinado junto a *Cortinarius* (PEINTNER et al., 2001). Os gêneros sequestroides Arcangeliella e Martellia originaram-se de gêneros lamelados Russula and Lactarius (CALONGE; MARTIN, 2000; MILLER et al., 2001). De outra forma, alguns autores, preferem manter os limites genéricos em um sentido mais restrito (DESJARDIN, 2003; LEBEL; TONKIN, 2007; TRIERVEILER-PEREIRA et al., 2015), que utilizam não apenas características filogenéticas, como também, características anatômicas e ecológicas (DESJARDIN, 2003; LEBEL; TONKIN, 2007; TRIERVEILER-PEREIRA et al., 2015). Estudos adicionais, incluindo diferentes marcadores de DNA, principais características morfológicas de diagnóses e aspectos ecológicos fazem-se necessários para fornecer uma melhor compreensão em relação às formas secotioides e hipógeos entre as referidas linhagens. Junto a isto, extensivos trabalhos de coleta, principalmente em áreas pouco exploradas pelos micólogos, irão auxiliar a desvendar a real diversidade destes fungos na América do Sul, aumentando o número de táxons conhecidos e a classificação dos organismos entre o reino.

4.2 Estudo II

Gênero novo *Restingomyces*Família Trappeaceae
Ordem Phallales

Restingomyces Sulzbacher, T. Grebenc & Baseia gen. nov.

Figuras 4-7

MycoBank 815514

Basidioma hipógeo, globoso a subgloboso, 5–17 mm \times 7–16 mm, com uma base distinta formada por rizomorfas, branco alaranjado, laranja acinzentado, branco amarelado, tornando-se branco próximo à base, tomentoso a glabro; gleba firme e cartilaginosa, marrom, células dos lóculos arredondados; columela percurrente, gelatinizada, marrom-amarelado a marrom-escuro; rizomorfas brancas, tomentosas e ramificadas; perídio composto por duas camadas, cristais também aderidos à superfície, com grampos de conexão; basidiósporos 7–10 \times 4–7 μ m (ornamentação excluída), elipsóides, com parede irregularmente reticulada (<3 μ m de diâmetro).

Etimologia: do Português "restinga", um tipo de floresta tropical e subtropical litorânea do Brasil; Latim *myces* = fungo.

Holótipo: Restingomyces reticulatus

Restingomyces reticulatus Sulzbacher, B.T. Goto & Baseia, sp. nov.

MycoBank 815515

Macrocaracterísticas: Basidioma 5–17 mm de diâmetro, 7–16 mm de altura, globoso a subgloboso, depresso a cônico quando maduro, com uma base distinta com rizomorfas. Perídio <1 mm diâmetro, branco alaranjado (5A2) tornando-se branco (1A1) próximo à base quando fresco, laranja acinzentado (5B3), branco amarelado (4A2), amarelo acinzentado (4B5), gradualmente tornando-se marrom claro (5D4) quando seco; finamente tomentoso a glabro, coberto por areia e partículas orgânicas. Gleba firme e cartilaginosa; células pequenas e arredondadas a prolongadas, somente observadas sob microscópio estereoscópico, unidos em grupo por uma camada translúcida originada por uma evidente, percurrente e gelatinizada columela dentroide e central, marrom escura (7F5) em estágios iniciais, marrom amarelado (5F6) a marrom escuro (6F5, 6F7) na maturidade. Rizomorfas brancas (1A1), finas, curtas e ramificadas,

facilmente desprendidas da base do basidioma, superfície tomentosa, formando uma base no basidioma.

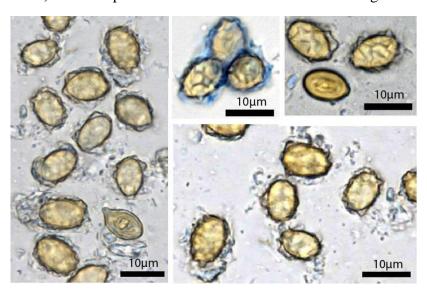

Microcaracterísticas: Basidiosporos 7–10 × 4–7 μm (ornamentação excluída), C = 10 μ m, **D** = 6.4 μ m, Q = 1.28–1.8 (–2), **Qm** = 1.5, n = 30; elipsóides, alguns com um ápice curto e mucronado; pedicelo persistente até a maturidade; em KOH 3% hialinos ou amarelo pálido quando jovens a marrom amarelado pálido na maturidade; parede lisa quando jovem, tornando-se irregularmente reticulada na maturidade e de diâmetro variado (<3 µm). Vistos em MEV a superfície dos basidiósporos é irregularmente reticulada. Basídios 14–21 × 4–7 µm, cilíndrico-clavados, porém colapsando-se logo após a maturidade, hialinos ou frequentemente com um pigmento intracelular amarelo pálido, bispóricos, parede fina a grossa (até 2 µm de diâmetro). Perídio não separado da gleba, 2-camadas: a) camada externa formada por hifas hialinas a amarelo pálido (0,5-4 μ m diâm.), de parede fina a engrossada (até 1,5 μ m de diâmetro.), com ou sem cristais semelhantes a espinhos curtos projetados ao longo da parede $(1-8 \times 0.5-2 \mu m)$, também se observam cristais frequentemente aderidos à superficie (1–3 µm de diâmetro), cristais semelhantes a espinhos e cristais dissolvendo-se em KOH 3%; septos com grampo de conexão; b) camada interna composta por hifas hialinas e também por numerosas hifas do tipo oleoacantohifas que apresentam um conteúdo intracelular amarelado; parede lisa, fina a engrossada (até 1 µm de diâmetro), não gelatinizada, compacta, entrelaçada a filamentosa (19–152 \times 3–20 μ m). Trama 30–120 μ m diâm., hifas não gelatinizadas, formadas por hifas paralelas a subparalelas, hialinas, lisas, de parede fina, 1-6 µm de diâmetro, grampos de conexão raros. Rizomorfas formadas por hifas hialinas, de parede fina, 2–10 µm de diâmetro, lisas ou incrustadas por numerosos cristais semelhantes a espinhos e cristais angulosos 1–5 µm de diâmetro, dissolvidos em KOH 3%. Numerosas hifas do tipo oleoacantohifas presentes, com conteúdo intracelular amarelado, 3-6 µm de diâmetro, parede da hifa lisa, fina a engrossada (até 1,5 µm de diâmetro), hifas não gelatinizadas.

Figura 4 *Restingomyces reticulatus* Sulzbacher, B.T. Goto & Baseia, sp. nov. Holótipo (UFRN-fungos 1890). A – Raízes escavadas apresentando basidiomas associados; B – Basidiomas *in situ*; C – Basidiomas globosos imersos em matriz solo-raiz; D – Detalhe da gleba apresentando uma columela bem desenvolvida.

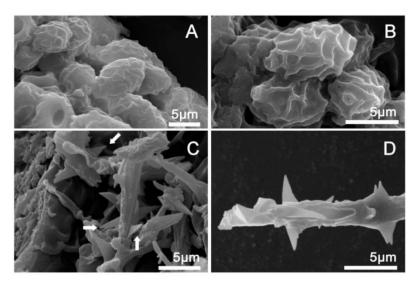

Fonte: Jomar Jartim, 2013.

Figura 5: *Restingomyces reticulatus* Sulzbacher, B.T. Goto & Baseia, sp. nov. Holótipo (UFRN-fungos 1890). Basidiósporos montados em KOH 5% + Azul Algodão.

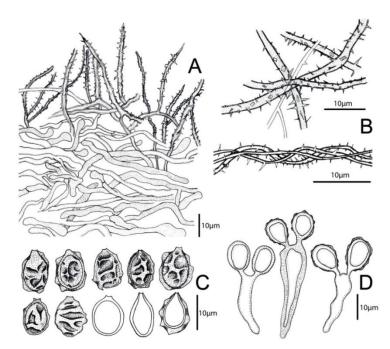

Fonte: Marcelo Sulzbacher, 2013.

Figura 6: Restingomyces reticulatus Sulzbacher, B.T. Goto & Baseia, sp. nov. Holótipo (UFRN-fungos 1890). A-B – Basidiósporos vistos em MEV; C-D – Camada da superfície do perídio apresentando cristais semelhantes a espinhos.

Fonte: Marcelo Sulzbacher, 2014.

Figura 7: Restingomyces reticulatus Sulzbacher, B.T. Goto & Baseia, sp. nov. A – Perídio apresentando camadas externa e interna; B – Detalhe do exoperídio apresentando hifas com cristais angulosos e também cristais semelhantes a espinhos projetados ao longo da parede; C – Basidiósporos; D – Basídios.

Fonte: Marcelo Sulzbacher e Judcleidson Bezerra, 2014.

Holótipo: BRASIL. Rio Grande do Norte. Natal, Trilha da Geologia, Parque Estadual Dunas do Natal, Maio 12 2011, *leg. Sulzbacher 335* (UFRN-fungos 1890).

Etimologia: O epíteto refere-se aos basidiosporos ornamentados.

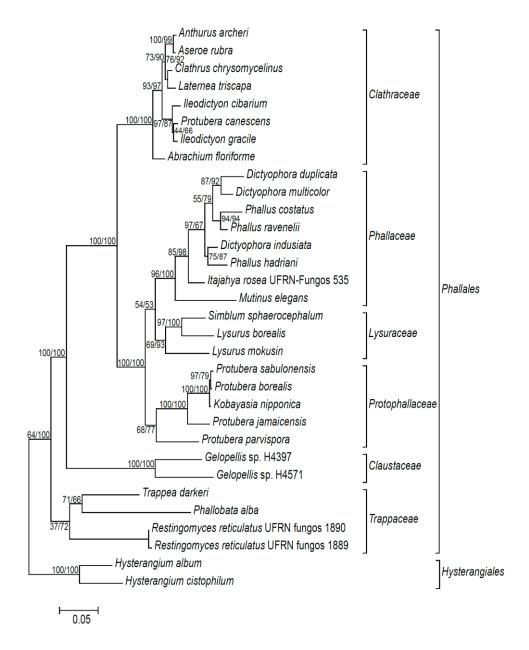
Espécimes examinados: BRASIL. Rio Grande do Norte. Natal, Trilha da Geologia, Parque Estadual Dunas do Natal, Maio 12 2011, leg. Sulzbacher 335 (UFRNfungos 1890, holotipus hic designatus!); ibid., Maio 13 2011, leg. Sulzbacher 334 (UFRN-fungos 1891, URM 88224); ibid., Maio 13 2011, leg. Sulzbacher 338 (UFRNfungos 1888); ibid., Jun 17 2011, leg. Bezerra 007 (UFRN-fungos 1889).

Habitat, hábito e distribuição conhecida. Basidiomas dispersos, solitários, ou em pequenos grupos, hipógeos (ca. 15 cm de profundidade do solo), ligados a raízes vivas, em solo arenoso com vegetação costeira, floresta tropical. Próximo ao local da coleta a vegetação era composta por Caesalpinia echinata Lam. (Fabaceae), Lafoensia pacari A.St.-Hil. (Lythraceae) – UFRN 16779, Eugenia luschnathiana (O.Berg) Klotzsch ex B.D.Jacks. (Myrtaceae). Conhecido apenas para a região Nordeste do Brasil.

Análises Moleculares

De acordo com os estudos filogenéticos obtidos baseados no conjunto de dados das análises do melhor Blast para 28S do rDNA, e para a região atp6, das sequências relacionadas aos espécimes UFRN-fungos 1889 e UFRN-fungos 1890 (Tabela 2), houve uma máxima similaridade de 91% e 87% com várias espécies de Hysterangiales (principalmente com Hysterangium), como também para Trappea darkeri. A análise confirmou que a presente espécie pertence à ordem Phallales (subclasse Phallomycetidae), agrupando-se com a família *Trappeaceae* (HOSAKA et al., 2006). A análise inclui 32 taxas e compreende uma matrix de 1.275 caracteres concatenados, dos quais 657 foram de atp6 e 618 de 28S rDNA. Análises de MP e ML resultaram em topologias similares, resolvendo Restingomyces reticulatus na família Trappeaceae, ordem Phallales. As espécies Phallobata alba G. Cunn. e Trappea darkeri (Zeller) Castellano ficaram como as mais próximas molecularmente segundo os valores de bootstrap (Figura 8). No entanto, os dois métodos de reconstrução filogenética geraram filogenias com pequenas diferenças. Nesta análise (Figura 8), R. reticulatus é resolvida como uma espécie irmã de *Phallobata alba* com um fraco valor de suporte, enquanto este clado é resolvido como um clado irmão de Trappea darkeri em Phallomycetidae, também com um fraco valor de suporte. Com base na combinação de características morfológicas que tornam a espécie única, e também pelo posicionamento filogenético, nós propomos Restingomyces reticulatus como gênero e espécie nova para a ciência.

Tabela 2: Espécies utilizadas nas análises com seus respectivos números de acessos das sequencias no *GenBank* e que foram usados para análise filogenética.


Espécie	Números de acessos no GenBank	
	nucLSU	atp6
Outgroup		
Hysterangium album	DQ218490	DQ218774
Hysterangium cistophilum	DQ218493	DQ218777
Espécies incluídas		
Restingomyces reticulatus UFRN-fungos 1890	LT009408	LT009411
Restingomyces reticulatus UFRN-fungos 1889	LT009409	LT009412
Abrachium floriforme	JF968440	JF968438
Itajahya rosea	JF968441	JF968439
Anthurus archeri	DQ218624	DQ218913
Aseroe rubra	DQ218625	DQ218914
Clathrus chrysomycelinus	DQ218626	DQ218915
Dictyophora duplicata	DQ218481	DQ218765
Dictyophora indusiata	DQ218627	DQ218917
Dictyophora multicolor	DQ218628	DQ218918
Gelopellis sp. (H4571)	DQ218631	DQ218920
Gelopellis sp. (H4397)	DQ218630	DQ218919
Ileodictyon cibarium	DQ218633	DQ218922
Ileodictyon gracile	DQ218634	DQ218923
Laternea triscapa	DQ218640	DQ218928
Kobayasia nipponica	DQ218638	DQ218926
Lysurus borealis	DQ218641	DQ218929
Lysurus mokusin	DQ218507	DQ218791
Mutinus elegans	AY574643	AY574785
Pseudocolus fusiformis	AF213128	
Phallobata alba	DQ218642	DQ218930
Phallus costatus	DQ218513	DQ218797
Phallus hadriani	DQ218514	DQ218798
Phallus ravenelii	DQ218515	DQ218799
Protubera borealis	DQ218516	DQ218800
Protubera jamaicensis	DQ218647	DQ218933
Protubera parvispora	DQ218648	DQ218934
Simblum sphaerocephalum	DQ218521	DQ218806
Protubera sabulonensis	DQ218649	DQ218935
Protubera canescens	DQ218645	DQ218932
Trappea darkeri	DQ218651	DQ218938

Discussão

Restingomyces reticulatus é a única espécie do gênero encontrada até o momento (monotípico). O seu hábito hipógeo e a ausência de cores intensas podem ter sido alguns dos motivos pelo qual este fungo não tenha sido encontrado até o momento. Após a remoção da camada liteira e do solo (10-15 cm de profundidade) próximo a um grupo de plantas das famílias Fabaceae e Myrtaceae, um agrupamento de basidiomas foi descoberto fixo as raízes. Após esta coleta (Sulzbacher 335), novos basidiomas foram coletados pelo grupo de pesquisa da Universidade Federal do Rio Grande do Norte, no

Parque Estadual das Dunas do Natal (Bezerra 007, Sulzbacher 334, Sulzbacher 338). Os mesmos estão inseridos no presente estudo. Os basidiomas têm tamanho reduzido, chegando ao máximo de 17 mm de diâmetro e 16 mm de altura. Taxonomicamente, as principais características desta espécie são: o seu hábito hipógeo, o tamanho dos basidiomas (5-17 mm diâm., 7-16 mm altura), o formato globoso a subgloboso, superfície do perídio branco amarelado a marrom em basidiomas maduros, e superfície é finamente tomentosa a glabra; a gleba é firme e cartilaginosa, as células dos lóculos são pequenas e arredondadas; a columela é gelatinizada e bem desenvolvida, estando localizada na região central de forma dendróide, de cor marrom; as rizomorfas são brancas, finas, curtas e ramificadas; os basidiomas não variaram de cor quando machucados; os basidiosporos são elipsóides, com um ápice curto e mucronado, hialinos a marrom em KOH, a parede é lisa a irregularmente reticulada em basidiósporos maduros; basídios são cilíndricos a cilíndrico-clavados, colapsando-se quando maduros, bispóricos; o perídio é formado por duas camadas, a camada externa com hifas que possuem cristais angulosos ou cristais semelhantes a espinhos ao longo de sua superfície, e a camada interna composta por hifas méleas (oleoacantohifas), lisas, não gelatinizadas; grampos de conexão não são frequentes.

Figura 8: Filograma baseado na análise de Máxima Parcimônia e Máxima Versossimilhança de genes *atp*6 e nuc-LSU concatenados entre os isolados de *Restingomyces reticulatus* Sulzbacher, B.T. Goto & Baseia, sp. nov., e organismos obtidos a partir do banco de dados *GenBank*. *Hysterangium album* e *H. cistophilum* foram inseridos como *outgroup*. Valores de *bootstrap* são dados para análises de MP e ML (MP/ML) baseadas em 1.000 replicatas de *bootstrap*.

Fonte: Tine Grebenc, 2014.

Características como a presença de cristais na superfície da peridiopelis e superfície das rizomorfas, e oleoacantohifas (hifas com um conteúdo amarelado) lisas e não gelatinizadas, são algumas das características que poderiam relacionar *Restingomyces* com fungos da ordem Hysterangiales Hosaka & Castellano (HOSAKA et al., 2006). Estes caracteres são vistos, por exemplo, no gênero *Hysterangium* (CASTELLANO; MUCHOVEJ, 1996; CORTEZ et al., 2011). Cristais, porém, também são encontrados em outros grupos de fungos (AGERER, 2006; HOSAKA et al., 2006). Fungos Hysterangiales são caracterizados por apresentar um habito hipógeo, perídio

com 1-4-camadas, gleba com a consistência cartilaginosa ou gelatinizada, com cores que variam de esverdeada a amarronzada, e presença de uma columela pouco ou bem desenvolvida (HOSAKA et al., 2006). Estas também são características encontradas em *Restingomyces*. No entanto, os esporos irregularmente reticulados, marrons em KOH, superfície do perídio apresentando hifas com cristais semelhantes a espinhos e as características moleculares, separam este novo gênero de Hysterangiales.

Austrogautieria (Hysterangiales) e Gautieria (Gomphales) possuem esporos longitudinalmente estriados, padrão de ornamentação este que não é encontrado nos esporos do presente gênero. Aroramyces, um gênero de Agaricales, macroscopicamente similar a Restingomyces, porém, apresenta esporos com uma parede espinhosa e um utrículo distinto (CASTELLANO et al., 2000).

As múltiplas análises obtidas para as regiões ATP6-1, ATP6-2, e LSU colocam Restingomyces junto à ordem Phallales, em Trappeaceae (KIRK et al., 2008), conforme observado na árvore filogenética apresentada na Figura 8. Trappeaceae e as demais famílias (Clathraceae, Phallaceae, Lysuraceae, Protophallaceae e Claustulaceae) formam clados molecularmente separados dentro de Phallales (HOSAKA et al., 2006). A família Trappeaceae engloba dois gêneros monoespecíficos de falsas trufas, Trappea darkeri (Zeller) Castellano and Phallobata alba G. Cunn. Ambos os gêneros foram agrupados molecularmente junto a Restingomyces. Morfologicamente, tanto Trappea quanto *Phallobata* também possuem gleba gelatinizada e uma columela verdadeira, como ocorre em Restingomyces. Phalobata e Trappea, porém geralmente apresentam esporos pequenos, de tamanho inferior a 5 µm de comprimento, baciliformes, lisos, hialinos e de parede fina, típicos de Phallales (CASTELLANO, 1990; CASTELLANO; BEEVER, 1994), diferindo dos esporos encontrados em Restingomyces, que apresentam tamanho de 7–10 μ m de comprimento, sendo elipsoides, irregularmente reticulados quando maduros, com parede fina a grossa, hialinos quando jovens a marrom amarelados quando maduros. Phalobata alba é uma espécie epígea, crescendo no solo ou em madeira podre, apenas referida para a Nova Zelândia (CASTELLANO; BEEVER, 1994). Trappea darkeri é uma espécie epígea ou hipógea, crescendo em solo, frequente para as montanhas do Hemisfério Norte (CASTELLANO, 1990). Ambos os gêneros (*Trappea* e *Phalobata*) não são referidos para a América do Sul.

A pesquisa demonstra, portanto, que o conhecimento envolvendo os fungos hipógeos no Brasil é incipiente, necessitando, urgentemente, de mais incursões amostrais que culminem com mais informações acerca da diversidade e distribuição

101

destes fungos nos nossos ecossistemas. Através deste estudo foi possível confirmar que

a Mata Atlântica é detentora de fungos hipógeos que naturalmente ocorrem nos seus

ecossistemas, e que há necessidade de mais informações a fim de fornecer dados sobre a

distribuição, ecologia e filogenia molecular das espécies ali ocorrentes.

4.3 Estudo III

Gênero novo Sulcatospora

Família Boletaceae

Ordem Boletales

Sulcatospora Sulzbacher, Orihara, Grebenc & Baseia, gen. nov.

Figuras 9 - 11

MycoBank 816322

Basidioma hipógeo a subhipógeo, sequestroide, subgloboso, com um curto

estipe central. Perídio liso e de cor amarelo, composto por uma camada (cútis) de hifas

irregulares e infladas, gelatinizadas e lisas. Base estéril presente e central. Gleba

loculada, branca a marrom amarelada na maturidade, formada por distintos lóculos que

se tornam verde escuro ou preto quando machucados nos basidiomas maduros, columela

ausente. Basidiósporos largo elipsoides, hialinos a levemente marrons na maturidade,

cobertos com uma série de finas estrias longitudinais, em algumas regiões estas estrias

se fusionam, dextrinóides. Cistídios lageniformes ou ventricosos, com um ápice

arredondado. Grampo de conexão ausente. Encontrado em floresta tropical, em solo de

areia branca.

Etimologia: Sulcatus (L. adj. A) = estriado, sulcado, e - spora (Latim =

esporos); em referencia ao padrão de estrias longitudinais da superfície dos

basidiósporos.

Holótipo: Sulcatospora flava

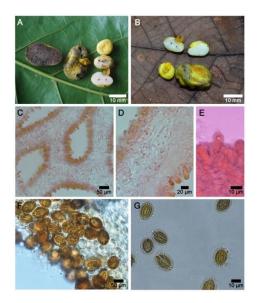
Sulcatospora flava Sulzbacher, Orihara, Grebenc, M.P. Martín & Baseia, sp. nov.

MycoBank 816323

Macrocaracterísticas: Basidioma hipógeo a subhipógeo, 11-24 mm diâmetro,

13–16 mm altura; subgloboso, subgloboso depresso a oblongo em basidiomas maduros; com um curto estipe central. Perídio <0.8 mm diâm., amarelo (2A6) quando jovem, a amarelo-claro (1A5), ficando marrom-amarelado (5D8, 5C8) na maturidade; liso e glabro, algumas vezes finamente fibriloso. Base estéril presente e central, curta, 6–8 × 3–4 mm, clavada e com uma base levemente bulbosa; amarela (3A8), marrom-amarelada (5C8) quando machucada; superfície lisa; parte interna é cheia, subgelatinosa e marrom-amarelada (5D8); ligada as rizomorfas que são curtas, finas (0,3–0,5 mm diâm.), lisas e de cor laranja (6B8). Gleba loculada, não gelatinizada a gelatinizada, com lóculos irregulares (0,5–1mm diâm.); branca (1A1) quando jovem, a finamente marrom-amarelada (5F4) na maturidade, tornando-se imediatamente verde-escuro a preto quando machucado nos basidiomas maduros, columela ausente.

Microcaracterísticas: Basidiósporos [30/1/1] 15–19 (–20) × 13–16 (–17) µm (ornamentação incluída), [C = 17.7 μ m, D = 14.7 μ m, Q = 1.10-1.40 (-1.50), Qm = 1.20], largo elipsoides, elipsoides à elongados, pedicelos do esterigma persistentes na maturidade (até 3 um comprimento); em KOH 3% são hialinos a marrom claro na maturidade, pseudoamilóides; parede ornamentada (< 2,5 µm diâm.); coberta com uma série de finas estrias longitudinais, em algumas regiões estas estrias se fusionam; sob MEV a superficie é definitivamente composta por estrias longitudinais de um polo a outro. Basídios 25-48 × 10-15 μm, clavados, 2 e 4- esporados (esterigma até 3 μm comprimento), hialinos. Basidíolos 31–46 × 7–12 µm, clavados com um ápice arredondado. Perídio 100–200 µm diâm., composto por uma cútis de hifas irregulares e imersas em uma camada gelatinizada, 2-6 µm diâm., com hifas de parede fina, lisas, não bem separadas da gleba. Trama himenoforal formada por hifas regulares a subregulares, hialinas, de parede lisa e fina, inamilóides, gelatinizadas na região central da trama, 3–6 μm diâm. Subhimênio ramoso, 46–72 μm comprimento, hifas 10–16 × 2– 5 μm diâm. Cistídios himeniais $38-78.5 \times 10-14$ μm, lageniformes ou ventricosos, com um ápice arredondado, parede fina e lisa, hialinos, inamilóides. Grampos de conexão ausentes.


Holótipo: BRASIL. Paraíba. Mamanguape, Reserva Biológica de Guaribas, 06°44.545′Sul, 35°08.535′Oeste, 14.VII.2012, leg. *Sulzbacher–393* (UFRN-fungos 1756).

Etimologia: Latim flavus; referindo-se a cor amarela do perídio.

Habitat, hábito e distribuição conhecida. Basidiomas solitários a dispersos e em pequenos grupos, hipógeos (logo abaixo da camada liteira), subhipógeos, camada liteira composta de folhas nativas e solo arenoso. Ocorrendo entre espécies florestais da Mata Atlântica como Coccoloba alnifolia Casar., C. laevis Casar., e espécies de Guapira Aubl. Espécies destes gêneros (Coccoloba e Guapira) têm sido confirmadas como simbiontes ectomicorrízicos nos Neotrópicos (TEDERSOO; MAY; SMITH, 2010). Conhecido apenas para a localidade tipo.

Material adicional examinado: BRASIL. Paraíba. Mamanguape, Reserva Biológica de Guaribas, 06°44.545′Sul, 35°08.535′Oeste, 27.VII.2012, leg. *Sulzbacher–466* (UFRN-fungos 2110).

Figura 9: *Sulcatospora flava*, sp. nov. Holótipo (UFRN-fungos 1756). A e B – Basidiomas *in situ*; C – Trama himenoforal montada em KOH 3% + Vermelho Congo; D – Camada do perídio (camada superior) e trama himenoforal montada em KOH 3% + Vermelho Congo; E – Cistídios himeniais montados em KOH 3% + Vermelho Congo; F – Basidiósporos montados em reagente de Melzer; G – Basidiósporos montados em KOH 3%.

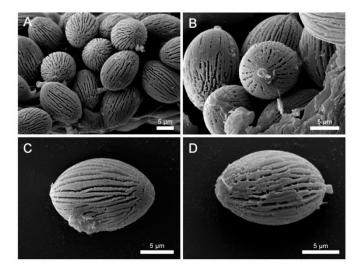

Fonte: Marcelo Sulzbacher, 2015.

Figura 10: *Sulcatospora flava*, sp. nov. Holótipo (UFRN-fungos 1756). A – Cistídios himeniais; B – Basidíolos e basídios; C – Detalhe da superfície do perídio; D – Basidiósporos.

Fonte: Marcelo Sulzbacher e Judcleidson Bezerra, 2014.

Figura 11: *Sulcatospora flava*, sp. nov. Holótipo (UFRN-fungos 1756). A – D: Basidiospóros observados em microscopia eletrônica de varredura.

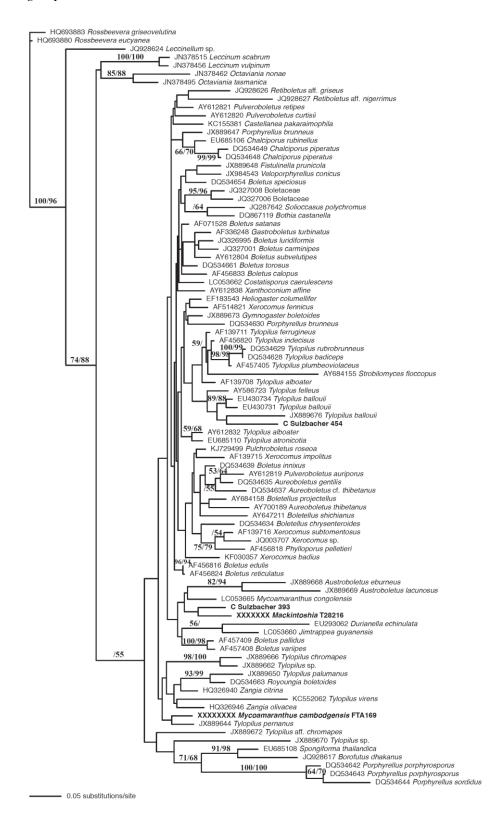
Fonte: Marcelo Sulzbacher, 2014.

Análises Moleculares

Uma matriz com 91 táxons (Tabela 3) contendo 961 nucleotídeos alinhados (556 são constantes, 91 não informativos para a parcimônia, e 314 informativos para a parcimônia foi gerada. A análise produziu 12 árvores parcimoniosas (dados não apresentados) com 2,070 passos de comprimento, índice de consistência (CI) de 0,2787, HI de 0,7213 e RI de 0,4622. Conforme o critério de informação (AIC), o modelo de substituição selecionado por PAUP 4.0b10 para a análise de máxima verossimilhança (ML) foi TrN + I + G; o modelo de reconstrução filogenética, usado na análise de ML produziu 36 melhores árvores (ou árvores verdadeiras), a melhor deste conjunto de resultados, é apresentada na Figura 12.

Tabela 3: Espécies utilizadas nas análises filogenéticas com seus respectivos números de acessos das sequências no *GenBank*.

Espécie	Números de acessos no <i>GenBank</i> nucLSU	
Outgroup	nuceso	
Rossbeevera griseovelutina	HQ693883	
Rossbeevera eucyanea	HQ693880	
Espécies incluídas	110033000	
Sulcatospora (Sulzbacher 393)	AA00000	
Tylopilus Sulzbacher 454	AA00000	
Mycoamaranthus		
cambodgensis	AA00000	
Aureoboletus cf. thibetanus	DQ534637	
Aureoboletus gentilis	DQ534635	
Aureoboletus thibetanus	AY700189	
Austroboletus eburneus	JX889668	
Austroboletus lacunosus	JX889669	
Boletaceae	JQ327008	
Boletaceae	JQ327006	
Boletellus chrysenteroides	DQ534634	
Boletellus projectellus	AY684158	
Boletellus shichianus	AY647211	
Boletus calopus	AF456833	
Boletus carminipes	JQ327001	
Boletus edulis	AF456816	
Boletus innixus	DQ534639	
Boletus luridiformis	JQ326995	
Boletus pallidus	AF457409	
Boletus reticulatus	AF456824	
Boletus satanas	AF071528	
Boletus speciosus	DQ534654	
Boletus subvelutipes	AY612804	
Boletus torosus	DQ534661	
Boletus variipes	AF457408	
Borofutus dhakanus	JQ928617	
Bothia castanella	DQ867119	
Castellanea pakaraimophila	KC155381	
Chalciporus piperatus	DQ534649	
Chalciporus piperatus	DQ534648	


	EUC0510C	
Chalciporus rubinellus	EU685106	
Costatisporus caerulescens	LC053662	
Durianella echinulata	EU293062	
Fistulinella prunicola	JX889648	
Gastroboletus turbinatus	AF336248	
Gymnogaster boletoides	JX889673	
Heliogaster columellifer	EF183543	
Jimtrappea guyanensis	LC053660	
Leccinellum sp.	JQ928624	
Leccinum scabrum	JN378515	
Leccinum vulpinum	JN378456	
Mackintoshia persica	KC905034	
Mycoamaranthus congolensis	LC053665	
Octaviania nonae	JN378462	
Octaviania tasmanica	JN378495	
Phylloporus pelletieri	AF456818	
Porphyrellus brunneus	JX889647	
Porphyrellus brunneus	DQ534630	
Porphyrellus porphyrosporus	DQ534642	
Porphyrellus porphyrosporus	DQ534643	
Porphyrellus sordidus	DQ534644	
Pulchroboletus roseoa	KJ729499	
Pulveroboletus auriporus	AY612819	
Pulveroboletus curtisii	AY612820	
Pulveroboletus retipes	AY612821	
Retiboletus aff. griseus	JQ928626	
Retiboletus aff. nigerrimus	JQ928627	
Royoungia boletoides	DQ534663	
Solioccasus polychromus	JQ287642	
Spongiforma thailandica	EU685108	
Strobilomyces floccopus	AY684155	
Tylopilus aff. chromapes	JX889672	
Tylopilus alboater	AF139708	
Tylopilus alboater	AY612832	
Tylopilus atronicotia	EU685110	
Tylopilus badiceps	DQ534628	
Tylopilus ballouii	EU430734	
Tylopilus ballouii	EU430731	
Tylopilus chromapes	JX889666	
Tylopilus felleus	AY586723	
Tylopilus ferrugineus	AF139711	
Tylopilus indecisus	AF456820	
Tylopilus palumanus	JX889650	
Tylopilus pernanus	JX889644	
Tylopilus plumbeoviolaceus	AF457405	
Tylopilus rubrobrunneus	DQ534629	
Tylopilus sp.	JX889662	
Tylopilus sp.	JX889670	
Tylopilus virens	KC552062	
Veloporphyrellus conicus	JX984543	
Xanthoconium affine	AY612838	
Xerocomus famicus	KF030357 AF514821	
Xerocomus fennicus Yerocomus impolitus	AF139715	
Xerocomus impolitus Xerocomus sp.	JQ003707	
Xerocomus sp. Xerocomus subtomentosus	AF139716	
Zangia citrina	HQ326940	
Zangia curina Zangia olivacea	HQ326946	
zmigiu onvuccu	110320770	

A sequência de *Sulcatospora* (Sulzbacher 393) forma um clado isolado com *Mackintoshia T28216*, embora esta relação não esteja bem suportada estatisticamente (MPbs e MLbs < 50%). Estas sequências formam um grupo irmão de um clado formado por duas sequências de *Austroboletus* spp., e também por uma sequência de *Mycoamaranthus congolensis*, sem alto valor de suporte (MPbs e MLbs < 50%). Estas sequências estão agrupadas junto com dois outros gêneros gasteroides (*Durianella echinulata* e *Jimtrappea guyanensis*), e duas espécies de boletales agaricoides (*Boletus pallidus* e *B. variipes*).

Discussão

Os resultados das análises de filogenia molecular e as características morfológicas descritas acima confirmam o posicionamento de Sulcatospora dentro de Boletales, na família Boletaceae (Figura 12). Posicionam também o mesmo como um gênero irmão de Mackintoshia (M. persica Pacioni & C. Sharp), um gênero Africano monoespecífico, porém sem um suporte dos valores de bootstrap. Ambos os gêneros compartilham algumas características morfológicas, como por exemplo: o hábito hipógeo, um perídio liso e de cores amareladas, a presença de cistídios, e a ausência completa de grampos de conexão. Porém, Sulcatospora é diferenciado de Mackintoshia principalmente devido a algumas características morfológicas importantes, sendo elas: a presença de uma base estéril bem desenvolvida, formando um curto estipe; cistídios lageniformes com um ápice arredondado, a morfologia dos basidiósporos (cobertos com uma série de finas estrias longitudinais em toda a superfície dos esporos, presença de um pedicelo do esterigma na maturidade), e o tamanho dos basidiósporos (15–19 × 13– 16 μm em *Sulcatospora*). O gênero *Mackintoshia* possui como características principais os basidiósporos completamente lisos e elípticos, de tamanho reduzido (8-12 × 5-7 μm). A morfologia dos basidiósporos e cistídios em Mackintoshia, bem como a total ausência de grampos de conexão lembram superficialmente o gênero agaricoide Galerina Earle, conforme sugerido por Pacioni e Sharp (2000). Em adição ao gênero Sulcatospora, vários outros gêneros de Boletaceae sequestroides, como: Rossbeevera, Chamonixia e Rhodactina, também apresentam basidiósporos com estrias longitudinais. Contudo, membros destes gêneros são todos diferenciados na forma e também no número de estrias.

Figura 12: Filograma baseado na análise de máxima verossimilhança do gene nuc-LSU do rDNA para os isolados *Sulcatospora* (Sulzbacher 393), e de organismos obtidos a partir do banco de dados *GenBank. Rossbeevera griseovelutina* e *R. eucyanea* foram inseridos como *outgroup*.

Fonte: Tine Grebenc, 2015.

O gênero *Rosbeevera* apresenta basidiósporos elipsoides a fusiformes, com 3-5 estrias (LEBEL; ORIHARA; MAEKAWA, 2012); *Chamonixia* possui basidiósporos subglobosos a largo elipsoides, com 6-10 estrias (LEBEL; ORIHARA; MAEKAWA, 2012); e o gênero *Rhodactina* possui basidiósporos que são largo elipsoides a subfusiformes, com uma série de 8-10 estrias (YANG et al., 2006). A cor dos basidiósporos também é um diferencial nestes gêneros; *Rossbeevera* e *Chamonixia* apresentam basidiósporos de tonalidades marrons (MONTECCHI; SARASINI, 2000; LEBEL; ORIHARA; MAEKAWA, 2012), enquanto os basidiósporos de *Rhodactina* são púrpura escuro (YANG et al., 2006).

Em relação aos basidiósporos, *Sulcatospora* possui uma combinação de características incomum aos demais fungos boletoides conhecidos. As estrias irregulares e longitudinais na superfície dos basidiósporos são finas e baixas, e podem ser tanto contínuas de um polo a outro do esporo, ou bifurcadas e divididas. Devido ao pequeno tamanho das estrias, ocorrem mais de 10 estrias individuais ao longo da superfície de cada basidiósporo. Em alguns casos, a estria pode ser fundida (Figura 11C).

O gênero *Gautieria* também possui basidiosporos com estrias longitudinais e frequentemente o basidioma carece de uma verdadeira camada de perídio (MONTECCHI; SARASINI, 2000), o que o diferencia do nosso material. Estudos moleculares incluem o gênero *Gautieria* em Ramariaceae, na ordem Gomphales (GIACHINI et al., 2010). O hábito hipógeo, a forma dos basidiomas (globoso, subgloboso), com uma base estéril sugerem uma possível afinidade com o gênero de falsa-trufa *Octaviania* (ORIHARA et al., 2012); porém, a forma dos basidiósporos (globosos a elipsoides, superfície coberta por uma ornamentação verrucosa com estruturas piramidais a cônicas), e os dados moleculares não concordam com tal posicionamento. Adicionalmente, na Figura 12, sequências de *Octaviania* estão longe do gênero novo proposto neste estudo.

A aparência de *Sulcatospora* quando fresco, apresentando uma tonalidade amarela no perídio e estipe, lembram os membros do grupo *Boletus chromapes* (isto é, *Zangia, Harrya* e *Australopilus*), particularmente o gênero sequestroide *Royoungia* (LI; FENG; YANG, 2011).

As análises filogenéticas, contudo, não suportam a monofilia de S. *flava* e os demais membros do grupo de *Boletus chromapes* (Figura 12). Além disto, *Royoungia* difere morfológicamente de *S. flava*, pois forma basidiósporos fusiformes e lisos. O

gênero sequestroide *Mycoamaranthus* também apresenta como característica, os basidiomas com cores amarelas, e também são relacionados à família Boletaceae (BINDER; HIBBETT, 2006), porém, a análise filogenética do presente estudo não demonstrou nenhuma forte relação entre a espécie tipo, *M. cambodgensis* e *S. flava*.

Outro gênero que compartilha características morfológicas com *Sulcatospora* é *Solioccasus*, recentemente proposto por Trappe et al. (2013). Porém, o gênero é facilmente distinguido de *Sulcatospora* por algumas características taxonômicas, como: rizomorfas conspícuas que ocorrem na superfície do perídio, também devido à presença de uma columela que é dendróide e cartilaginosa, basidiósporos que são completamente lisos, e os basidiomas que apresentam uma coloração variando de laranja a avermelhado.

Mais recentemente, na região da Guiana, Smith et al. (2015b), fizeram uma importante descoberta, os pesquisadores encontraram três novos gêneros monotípicos de fungos sequestroides hipógeos pertencentes a família Boletaceae, nomeados como Jimtrappea guyanensis T.W. Henkel, M.E. Smith & Aime, Castellanea pakaraimophila T.W. Henkel & M.E. Sm., e Costatisporus cyanescens T.W. Henkel & M.E. Sm. (SMITH et al., 2015b). Jimtrappea guyanensis é caracterizado pelo seu perídio de cor branca, sem mudança de coloração quando machucado, presença de uma curta columela, basidiósporos que são subfusiformes e lisos, de coloração marrom avermelhada, e pela presença de cistídios pseudoamilóides que são frequentes no himênio (SMITH et al., 2015b). O perídio de coloração branca, o tecido não mudando de coloração, os basidiósporos subfusiformes e lisos, e os cistídios que são frequentes de J. guyanensis, contrastam com o perídio amarelo e também com as características morfológicas únicas dos basidiósporos de S. flava. Além disto, as análises filogenéticas não sustentam monofilia entre J. guyanensis e S. flava. Castellanea pakaraimophila é macroscopicamente similar a S. flava, principalmente porque ambos possuem basidiomas subglobosos e um estipe curto; porém, S. flava difere de C. pakaraimophila basicamente pelas características microscópicas, os basidiósporos são largo elipsoides com uma série de finas estrias longitudinais ao longo de toda a superfície, o que contrasta com os esporos subfusiformes e lisos de C. pakaraimophila (SMITH et al., 2015b). Costatisporus cyanescens é caracterizado por apresentar um perídio de coloração amarelo acinzentado, também por exibir uma reação azul escura na superfície do perídio, e pelos basidiósporos que são subglobosos a oblongos, inamilóides, com estrias longitudinais na superfície (SMITH et al., 2015b). A ornamentação dos

111

basidiósporos que é composta por estrias longitudinais em C. cyanescens (SMITH et al.,

2015b) também é semelhante com S. flava, porém, a ornamentação dos basidiósporos

em Sulcatospora é formada por uma série de finas estrias longitudinais ao longo de toda

a superfície, e também pela forma dos basidiósporos (largo elipsoides). Adicionalmente,

não há uma relação filogenética muito próxima entre o presente gênero e Costatisporus

(Figura 12). Jimtrappea, Castellanea e Costatisporus foram todos coletados em

associação com simbiontes ectomicorrízicos nativos: Aldina, Dicymbe e Pakaraimaea

(SMITH et al., 2015b).

É importante observar que Pacioni e Sharp (2000), fazem referência a uma

possível relação simbiótica ectomicorrízica entre espécies Africanas de Fabaceae, e que

os basidiomas foram coletados em um solo formado por rochas graníticas. No presente

estudo, S. flava, ocorria em um solo arenoso, formado por areia branca exposta, em um

fragmento de Mata Atlântica, onde ocorriam espécies de Coccoloba (C. alnifolia e C.

laevis), bem como de *Guapira* sp.

4.4 Estudo IV

Espécie nova Hysterangium atlanticum

Família Hysterangiaceae

Ordem Hysterangiales

Hysterangium atlanticum Sulzbacher, Grebenc, Baseia & Nouhra, sp. nov.

Figuras 13 – 16

MycoBank MB 000000

Basidiomas até 25 mm de diâmetro, perídio composto por duas camadas

distintas, gleba marrom oliva, basidiósporos $11-15 \times 5-7 \mu m$ (ornamentação e pedicelo

do esterigma excluídos), elipsoides, lisos, de parede levemente engrossada (0,2–1,5 µm

de diâmetro), utrículo presente, fortemente enrugado visto em MEV, crescendo na base

de Coccoloba spp.

Etimologia: O epíteto refere-se à floresta de Mata Atlântica do Brasil.

Holótipo: Hysterangium atlanticum

Macrocaracterísticas: Basidiomas (4–7) 11–25 mm de diâmetro, (3–6) 8–19 mm altura, globoso a depresso, reniforme, rizomorfas basais presentes (Figura 13). Perídio <1 mm de diâmetro, branco (1A1) a branco amarelado (1A2), cinza amarelado (2B2), logo se tornando laranja acinzentado (6B3) a cinza avermelhado (7B2) ou vermelho pálido (9A3) quando machucado ou exposto ao ar, superfície tomentosa em basidiomas jovens quando observado em microscópio estereoscópico, lisa e glabra na maturidade, superfície coberta por rizomorfas, raízes ou restos vegetais. Gleba loculada, cartilaginosa, oliva (3F3, 3F8) a marrom oliva (4F4), com lóculos arredondados a irregulares (<1 mm diâm.), radialmente arranjados. Columela dendróide e irregular, 1–3 mm de diâmetro, 3–7 mm altura, gelatinizada, translucida, cinza amarelada (3D2), amarelo acinzentado (4C3), surgindo de uma base estéril. Rizomorfas 0,1–1,5 mm de diâmetro, brancas (1A1), brancas amareladas (1A2), a amarelo-acinzentadas (4B3), curtas e muito numerosas, principalmente na região basal do basidioma.

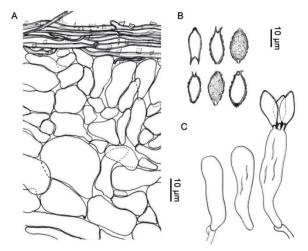

Microcaracterísticas: Basidiósporos [30/1/1] (10–) 11–15 × 5–7 µm (ornamentação e pedicelo do esterígma excluídos), $C = 13 \mu m$, $D = 6 \mu m$, Q = 1.8 - 2.6 $\mathbf{Qm} = 2,20$; ou 13–17 × 5–7 µm (pedicelo do esterigma incluídos), $\mathbf{C} = 15,2$ µm, $\mathbf{D} = 15,2$ 6,3 μ m, $\mathbf{Q} = (1,8-)$ 1,9-3,0, $\mathbf{Qm} = 2,4$, elipsoides, lisos, hialinos em KOH, parede levemente engrossada 0,2-1,5 (-2) µm de diâmetro, pedicelo do esterigma até 3 µm comprimento, utrículo presente, fortemente enrugado visto em MEV (Figura 13). Basídios 28–45 × 6–9 μm, cilíndricos a clavados, 1–4 esporados, hialinos. Basidíolos 21–38 × 3–9 μm, calvados, hialinos. Perídio facilmente separado da gleba, formado por duas camadas; camada externa (25–50 µm de largura) formada por hifas irregularmente prostradas, amareladas, 1–5 µm de diâmetro, parede levemente engrossada, encrustada com partículas de cristais, grampos de conexão frequentes; camada interna (230-307 um de largura) formada por uma camada de hifas pseudoparenquimatosas, hialinas, lisas e de parede grossa, sobglobosas ou angulares no formato, mais ou menos elongadas, 7–20 µm de diâmetro, com grampos de conexão. Trama do himênio 38–140 um de diâmetro, constituído por hifas hialinas, subparalelas a irregulares, geralmente são colapsadas, lisas e de parede fina, 1–8 μm de diâmetro. Rizomorfas 2–4 μm de diâmetro, constituídas por hifas hialinas, de parede fina, ramificadas, frequentemente encrustadas com numerosos cristais de forma angular, ou irregular, 2-4,5µm de diâmetro, dissolvendo após tratamento em KOH 5% (Figura 15), grampos de conexão frequentes, com septos inflados ou ampuláceos (ampullated) (4-8µm de diâm.). As hifas da região central da rizomorfa são lisas, de parede grossa (até 1,5 µm de diâmetro), com grampos de conexão, e possuem um conteúdo marrom no seu interior, 2–3,5μm de diâmetro.

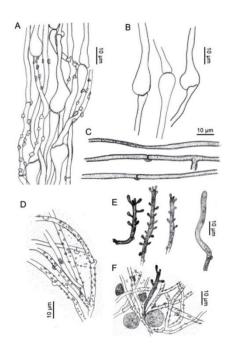
Figura 13: *Hysterangium atlanticum*, sp. nov. Holótipo (UFRN-fungos 2115, *Sulzbacher 412*). A e B – Basidiomas *in situ*; C – Corte longitudinal do basidioma mostrando a gleba gelatinizada; D – Basidiósporos (em KOH 5% + Vermelho Congo); E – Estrutura da gleba; F – Camada do perídio; G e H – Basidiospóros observados em microscopia eletrônica de varredura.

Fonte: Marcelo Sulzbacher, 2015.

Figura 14: *Hysterangium atlanticum* Sulzbacher, Grebenc, Baseia & Nouhra, sp. nov. Holótipo (UFRN-fungos 2115, *Sulzbacher 412*). A – Perídio apresentando camada externa e interna; B – Basidiósporos; C – Basídio e basidíolos.

Fonte: Marcelo Sulzbacher, 2015.

Holótipo: BRASIL. Paraíba. Mamanguape, Reserva Biológica de Guaribas, 06°44.545′ Sul/35°08.535′ Oeste, 27.VII.2012, leg. *Sulzbacher 412* (UFRN-fungos 2115, URM 88220 isótipo!).

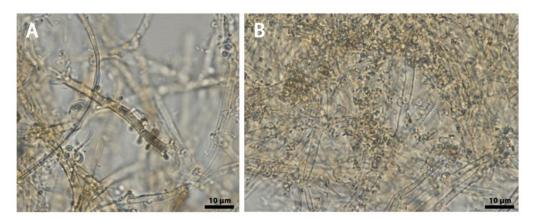

Espécimes examinados: BRASIL. Paraíba. Mamanguape, Reserva Biológica de Guaribas, 27.VII.2012, leg. Sulzbacher 412 (UFRN-fungos 2115 holótipo!, URM 88220 isótipo!) coord.: 06°44.545′ Sul, 35°08.535′ Oeste; ibid., trilha SEMA II, 27.VII.2012, leg. Sulzbacher 408 (UFRN-fungos 2112) coord.: 06°44.389′ Sul, 35°08.386′ Oeste; ibid., 14.VII.2012, leg. Sulzbacher 396 (UFRN-fungos 2207); ibid., 12.IX.2012, leg. Sulzbacher 438 (UFRN-fungos 2205); ibib., 30.VI.2013, leg. Sulzbacher 455 (UFRN-fungos 1750).

Habitat, hábito e distribuição: Hipógeo, abaixo da camada liteira, ou solo de floresta, ocorrendo em grande número (±25 basidiomas foram observados) ou em pequenos grupos, e/ou isolados no solo arenoso, ligados a raízes vivas; associado à *Coccoloba alnifolia* Casar. e também à *C. laevis* Casar.; conhecido apenas para a localidade tipo. Conhecido apenas para o estado da Paraíba.

Descrição da associação ectomicorrízica (ECM)

Morfologia do sistema micorrízico simples, monopodial-pinado a irregular pinado, extremidades (tips) de vários comprimentos (até 20 mm de comprimento), branco, as partes mais velhas são branco amarelado; a superfície é brilhante, aveludada Rizomorfas são abundantes e frequentes, principalmente nos sistemas micorrízicos mais velhos, brilhantes, de cores brancas a esbranquiçadas, quando são manipuladas, a coloração torna-se ocre, frequentemente ramificadas, conectadas ao manto ou não; margem tomentosa. Tipo de exploração (exploration type) longo distante, segundo Agerer (2001). Esclerócios ausentes. Morfologia do sistema micorrízico terminal curvado, não inflado, branco, brilhante; parte mais velha ocre a ocre amarelado. Manto não transparente, sem látex, nem exudados, sem carbonização, sistema de hifas emanadas (emanating hyphae) frequente e bem desenvolvido por toda a superfície. Emanating hyphae presente, abundante, cobrindo todo o sistema ectomicorrízico, de coloração branca. Rizomorfas frequentes, bem desenvolvidas, não diferenciadas, de parede fina, com grampos de conexão, muito semelhantes às rizomorfas dos basidiomas, não foram observados padrões de hifas diferenciados na região central da rizomorfa, sistema de hifas ramarioide (Figura 15), hifas ampuláceas (ampullated hyphae) frequentes (4-8µm de diâmetro), com anastomoses. Hifas emanadas (emanating hyphae) frequentemente observadas, parede lisa, coberta por numerosos cristais irregulares a angulosos, 1,5–5µm de diâmetro, hialinas, de parede lisa, não preenchidas com nenhum tipo de conteúdo, 3-7 µm de diâmetro, septadas, grampos de conexão frequentes. Cistídios do tipo oleoacantocistídios (oleoacanthocystidia) 'do tipo-Hysterangium', segundo Agerer (2006), frequentemente com ramificações laterais compostas por células curtas e arredondadas, estruturas preenchidas por um conteúdo resinoso amarelado a opaco, de parede grossa (Figuras 15 e 16). Camada externa do camada manto do tipo plectenquimatoso, interna do manto densamente plectenquimatoso. Características anatômicas do manto: plectenquimatoso, sem um padrão definido, hifas de 3-5 µm de diâmetro, septadas, de parede fina a levemente engrossadas (0,5-1 µm de diâmetro), sistema de hifas onde se originam as hifas emanadas (emanating hyphae) e hifas das rizomorfas, hialinas, onde são frequentemente observados cristais e grampos de conexão nos septos (Figura 16). Rede de Hartig presente.

Figura 15: *Hysterangium atlanticum* sp. nov. (UFRN-fungo 1750 e UFRN-fungos 2115). A – Detalhe da superfície da rizomorfa; B – Detalhe dos septos inflados (*ampullate inflations*); C – Hifas do interior da rizomorfa com parede engrossada e de conteúdo escuro; D – Detalhe do manto; E – Cistídios do tipo "oleoacanthocystidia"; F – Detalhe das hifas emanadas (*emanating hyphae*) mostrando também as células arredondadas e cistídios.



Fonte: Marcelo Sulzbacher, 2015.

Material estudado: BRASIL. Paraíba. Mamanguape, Reserva Biológica de Guaribas, trilha SEMA II, 30.VI.2013, leg. M.A. Sulzbacher (*Sulzbacher455*), coord.: 06°44.389' Sul, 035°08.386' Oeste.

Planta simbionte: Coccoloba laevis Casar.

Figura 16: *Hysterangium atlanticum* Sulzbacher, Grebenc, Baseia & Nouhra, sp. nov. (UFRNfungos 1750). A – Cistídios do tipo "oleoacanthocystidia" entre as hifas emanadas (*emanating hyphae*); B – Manto plectenquimatoso coberto por cristais.

Fonte: Marcelo Sulzbacher, 2015.

Análises Moleculares

Para a realização dos estudos moleculares, quatro marcadores moleculares (ITS, LSU, *apt6* e EF-1α) foram estudados. Destes, dois foram utilizados para reconstrução de caracteres filogenéticos e reconstrução das árvores (*apt6* e EF-1α). A região ITS foi muito heterogênea para o grupo Hysterangiales e a região LSU foi pouco representativa quando se comparou com o que havia nos bancos de dados de nucleotídeos para este grupo (Tabela 4).

Tabela 4: Espécies utilizadas nas análises com seus respectivos números de acessos das sequências no GenBank, e que foram usados para análise filogenética.

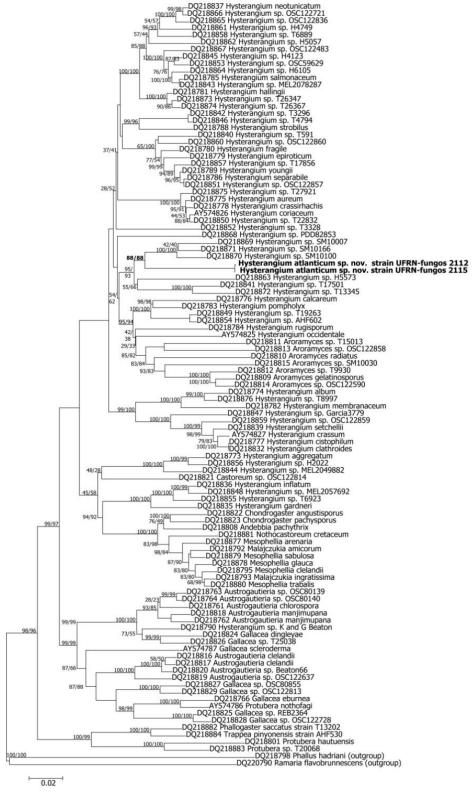
Espécie	Números de acessos no GenBank	
	atp6	EF-1α
Outgroup		•
Phallus hadriani 107658	DQ218798	DQ219222
Ramaria flavobrunnescens M7	DQ220790	DQ219223
Espécies incluídas		
Hysterangium atlanticum UFRN-fungos 2112	AA0000	AA0000
Hysterangium atlanticum UFRN-fungos 2115	AA0000	AA0000
Andebbia pachythrix 58809	DQ218808	DQ219117
Aroramyces gelatinosporus 4010	DQ218809	DQ219118
Aroramyces radiatus 99-062	DQ218810	DQ219119
Aroramyces sp. 122858	DQ218813	DQ219122
Aroramyces sp.122590	DQ218814	DQ219123
Aroramyces sp. 10030	DQ218815	DQ219124
Aroramyces sp.15013	DQ218811	DQ219120
Aroramyces sp. 9930	DQ218812	DQ219121
Austrogautieria chlorospora 46596	DQ218761	DQ219125
Austrogautieria clelandii 62178	DQ218816	DQ219126

Austrogautieria clelandii 80012	DQ218817	DQ219127
Austrogautieria manjimupana 55900	DQ218818	DQ219128
Austrogautieria manjimupana 59545	DQ218762	DQ219129
Austrogautieria sp. 122637	DQ218819	DQ219132
Austrogautieria sp. 80139	DQ218763	DQ219130
Austrogautieria sp. 66	DQ218820	DQ219133
Austrogautieria sp. 80140	DQ218764	DQ219131
Castoreum sp. 122814	DQ218821	DQ219134
Chondrogaster angustisporus 62041	DQ218822	DQ219135
Chondrogaster pachysporus 49298	DQ218823	DQ219136
Gallacea dingleyae 59606	DQ218824	DQ219137
Gallacea eburnea 59601	DQ218766	DQ219138
Gallacea scleroderma 59621	AY574787	DQ219139
Gallacea sp. 122813	DQ218829	DQ219144
Gallacea sp. 2364	DQ218825	DQ219140
Gallacea sp. 80855	DQ218827	DQ219142
Gallacea sp. 25038	DQ218826	DQ219141
Gallacea sp. 122728	DQ218828	DQ219143
Gallacea sp. 2364	DQ218825	DQ219140
Hysterangium aggregatum 4262	DQ218773	DQ219146
Hysterangium album 15139	DQ218774	DQ219147
Hysterangium aureum 56988	DQ218775	DQ219148
Hysterangium calcareum 97	DQ218776	DQ219149
Hysterangium cistophilum 1088	DQ218777	DQ219150
Hysterangium clathroides MPU	DQ218832	DQ219151
Hysterangium coriaceum 64939	AY574826	DQ219152
Hysterangium crassirhachis 58056	DQ218978	DQ219153
Hysterangium crassum 110447	AY574827	DQ219154
Hysterangium epiroticum 6116	DQ218779	DQ219155
Hysterangium fragile 3971	DQ218780	DQ219156
Hysterangium gardneri 6950	DQ218835	DQ219157
Hysterangium hallingii 5741	DQ218781	DQ219158
Hysterangium inflatum 4035	DQ218836	DQ219159
Hysterangium membranaceum 12836	DQ218782	DQ219160
Hysterangium neotunicatum 15545	DQ218837	DQ219161
Hysterangium occidentale 47048	AY574685	DQ219162
Hysterangium pompholyx 495	DQ218783	DQ219163
Hysterangium rugisporum 59662	DQ218784	DQ219164
Hysterangium salmonaceum 33	DQ218785	DQ219165
Hysterangium separabile 69030	DQ218786	DQ219166
Hysterangium setchellii 58071	DQ218839	DQ219167
Hysterangium strobilus 5285	DQ218788	DQ219168
Hysterangium youngii 59645	DQ218789	DQ219169
Hysterangium sp. 602	DQ218854	DQ219185
Hysterangium sp. K e G	DQ218790	DQ219174
Hysterangium sp. 3779	DQ218847	DQ219178
Hysterangium sp. 2022	DQ218856	DQ219187
Hysterangium sp. 4123	DQ218845	DQ219176
Hysterangium sp. 4749	DQ218861	DQ219192
Hysterangium sp. 5057	DQ218862	DQ219193
Hysterangium sp. 5573	DQ218863	DQ219194
Hysterangium sp. 6375 Hysterangium sp. 6105	DQ218864	DQ219195
Hysterangium sp. 122859	DQ218859	DQ219193 DQ219190
Hysterangium sp. 122860	DQ218860	DQ219190 DQ219191
Hysterangium sp. 122800 Hysterangium sp. 122836	DQ218865	DQ219191 DQ219196
Hysterangium sp. 122483	DQ218867	DQ219190 DQ219198
Hysterangium sp. 122463 Hysterangium sp. 82853		
	DQ218868	DQ219199
Hysterangium sp. 10007	DQ218869	DQ219200

W	
<i>Hysterangium</i> sp. 10100 DQ218870 DQ219201	
<i>Hysterangium</i> sp. 10166 DQ218871 DQ219202	
<i>Hysterangium</i> sp. 13345 DQ218872 DQ219203	
<i>Hysterangium</i> sp. 17501 DQ218841 DQ219171	
<i>Hysterangium</i> sp. 17856 DQ218857 DQ219188	
<i>Hysterangium</i> sp. 19263 DQ218849 DQ219180	
<i>Hysterangium</i> sp. 26367 DQ218874 DQ219205	
<i>Hysterangium</i> sp. 27921 DQ218875 DQ219206	
<i>Hysterangium</i> sp. 3296 DQ218842 DQ219172	
<i>Hysterangium</i> sp. 3328 DQ218852 DQ219183	
<i>Hysterangium</i> sp. 4794 DQ218846 DQ219177	
<i>Hysterangium</i> sp. 591 DQ218840 DQ219170	
<i>Hysterangium</i> sp. 6889 DQ219189	
<i>Hysterangium</i> sp. 6923 DQ218855 DQ219186	
<i>Hysterangium</i> sp. 8997 DQ218876 DQ219207	
<i>Hysterangium</i> sp. 122721 DQ218866 DQ219197	
<i>Hysterangium</i> sp. 59629 DQ218853 DQ219184	
<i>Hysterangium</i> sp. 2078287 DQ218843 DQ219173	
<i>Hysterangium</i> sp. 26347 DQ218873 DQ219204	
<i>Hysterangium</i> sp. 122857 DQ218851 DQ219182	
<i>Hysterangium</i> sp. 22832 DQ218850 DQ219181	
<i>Hysterangium</i> sp. 602 DQ218854 DQ219185	
<i>Hysterangium</i> sp. 2049882 DQ218844 DQ219175	
<i>Hysterangium</i> sp. 2057692 DQ218848 DQ219179	
Malajczukia amicosum 59295 DQ218792 DQ219208	
Malajczukia ingratissima 59296 DQ218793 DQ219209	
Mesophellia arenaria 59306 DQ218877 DQ219210	
Mesophellia clelandii 59292 DQ218795 DQ219211	
Mesophellia glauca 56986 DQ218878 DQ219212	
Mesophellia sabulosa 55918 DQ218879 DQ219213	
Mesophellia trabalis 59282 DQ218880 DQ219214	
Nothocastoreum cretaceum 79832 DQ218881 DQ219215	
Phallogaster saccatus 13202 DQ218882 DQ219217	
Protubera hautuensis 59673 DQ218801 DQ219218	
Protubera nothofagi 59699 AY574786 DQ219219	
Protubera sp. 20068 DQ218883 DQ219220	
Trappea pinyonensis 530 DQ218884 DQ219221	
Trappea darkeri DQ218651 DQ218938	

As sequências geradas neste trabalho e as publicadas por Hosaka *et al.* (2008) foram alinhadas e utilizadas para as análises filogenéticas, com os dois genes concatenados. Observou-se que os espécimes de *H. atlanticum* apresentaram-se agrupados em um clado com um alto valor de suporte estatístico para as análises de "Neighbor Joining" e os critérios de Máxima Verossimilhança (ML). Ambas as abordagens resultaram em filogenias similares, onde a espécie nova, *Hysterangium atlanticum*, formou um grupo monofilético, e bem suportado como um membro de *Hysterangium* (*Bootstrap* 88% em NJ e 88% em ML, Figura 14). A matriz escolhida para este estudo contém um total de 108 sequências (Tabela 4). *Hysterangium atlanticum* forma um clado terminal posicionado próximo a três sequências de exemplares indeterminados de *Hysterangium*, denominados SM10007 (DQ218869),

SM10166 (DQ218871), e SM10100 (DQ218870). Estas três sequências irmãs foram coletadas nas florestas tropicais da Guiana, na região da Amazônia (Hosaka *et al.*, 2008). O clado vizinho consiste em espécimes indeterminadas de *Hysterangium*, mais especificamente *Hysterangium* H5573 (DQ218863), *Hysterangium* T17501 (DQ218841), e *Hysterangium* T13345 (DQ218872), todos provenientes da Ásia (Hosaka *et al.*, 2008). Este clado está bem suportado como um grupo separado de *H. atlanticum* (*Bootstrap* 95% em NJ e 93% em ML, Figura 14).


Identificação molecular das raízes ectomicorrízicas

As raízes que estavam presentes na base dos basidiomas de *Hysterangium*, na Reserva Biológica de Guaribas (*Sulzbacher 408*, *Sulzbacher 412* e *Sulzbacher 455*), foram analisadas para estudos de biologia molecular. Ao todo, quatro isolados de DNA foram obtidos provenientes de morfotipos ectomicorrízicos de raízes de duas espécies de *Coccoloba (C. alnifolia* e *C. laevis)* (Tabela 5). Estas amostras foram confirmadas como pertencentes ao gênero *Hysterangium* sp., tendo como base às análises de sequências da região ITS do rDNA. Houve uma similaridade de 85–90% com o presente gênero.

Tabela 5: Identificação molecular das raízes ectomicorrízicas de *Coccoloba* spp., utilizando sequencias ITS, segundo a base de dados do GenBank (http://ncbi.nlm.nih.gov/).

Táxon	Planta simbionte	Nome relacionado conforme o GenBank	Exemplar mais próximo - GenBank	Identidade (%)
Hysterangium (ECM408-D-1)	Coccoloba alnifolia	Hysterangium sp.	JX559776	90%
Hysterangium (ECM455/3-4)	C. laevis	Hysterangium sp.	JX559776	90%
Hysterangium (ECM455/3-7)	C. laevis	Hysterangium sp.	JX559776	90%
Hysterangium (ECM412-D-1)	C. alnifolia	Hysterangium sp.	KP191954	85%

Figura 17: Filograma baseado na análise de máxima verossimilhança dos genes *atp6* e EF-1α do rDNA entre os isolados *Hysterangium atlanticum* UFRN-fungos 2112 e *H. atlanticum* UFRN-fungos 2115 e organismos obtidos a partir do banco de dados *GenBank. Phallus hadriani* e *Ramaria flavobrunnescens* foram inseridas como *outgroup*.

Fonte: Tine Grebenc, 2015.

Discussão

Hysterangium atlanticum é proposta como uma espécie nova de fungo hipógeo, recentemente coletado em fragmentos de floresta nativa de Mata Atlântica, em solo arenoso ou com húmus de floresta, e crescendo próximo de Coccoloba alnifolia e C. laevis.

Macroscopicamente, *H. atlanticum* lembra a espécie europeia *H. stoloniferum* Tulasne & C. Tulasne, principalmente devido ao tamanho dos basidiomas (10–20 mm de diâmetro), perídio liso, branco a avermelhado, e pela presença de numerosas rizomorfas ramificadas que conectam outros basidomas (MONTECCHI; SARASINI, 2000). Porém, *H. stoloniferum* possui basidiósporos maiores (19–26 × 6–7 μm), hialinos, e apresentam um curto pedicelo do esterigma, a camada do perídio é pseudoparenquimatosa, composta por células hialinas, com uma camada externa formada por hifas prostradas e de cor marrom, encontrado em regiões temperadas, em florestas de *Quercus* spp., conforme Montecchi e Sarasini (2000). A espécie *Hysterangium colossum* T.F. Elliott & Trappe foi recentemente descrita (ELLIOTT; TRAPPE; WEISE, 2015), também apresenta como característica de diagnose os basidiomas grandes (14–55 mm de diâmetro), porém, é facilmente diferenciado de *H. atlanticum* pelas demais características da espécie, como: o perídio que é invaginado e quando machucado muda de cor para marrom, basidiósporos menores (9–11 × 4–5 μm), e regiões do utrículo infladas e irregulares.

Com base em características morfológicas, *H. hallingii* Castellano & Muchovej e *H. spegazzinii* Castellano & Muchovej, ambas citadas para o sul da América do Sul (Argentina, Chile e Uruguai), também apresentam características semelhantes à *H. atlanticum*. Porém, *H. spegazzinii* apresenta basidiósporos com uma parede mais fina que 0,5 µm de diâmetro, e um perídio com duas camadas (uma característica também observada em *H. atlanticum*). Em contraste, *H. hallingi* apresenta parede do basidiósporo de ±1 µm de diâmetro e menores em tamanho (4,5–5,5 µm de diâmetro), ocorre também uma terceira camada do perídio (CASTELLANO; MUCHOVEJ, 1996). Os possíveis simbiontes ectomicorrízicos para *H. hallingi* são *Nothofagus betuloides* e *N. pumilio*, e para *H. spegazzinii* são *Eucalyptus* sp. ou *N. dombeyi* (CASTELLANO; MUCHOVEJ, 1996). Porém, *H. atlanticum* está sendo referenciada associada à base de espécies nativas de *Coccoloba*, em florestas de Mata Atlântica. Conforme mencionado por Castellano (1990), acredita-se que especificidade de simbionte, assim como

características biogeográficas, possa auxiliar na delimitação de espécies de *Hysterangium*.

Recentemente, duas espécies indeterminadas de *Hysterangium* foram encontradas em floresta dominada por *Dicymbe* spp. na região tropical da Guiana (HENKEL et al., 2012). Nesta mesma floresta, outros táxons apresentando o hábito hipógeo ou subhipógeo foram citados em associação com espécies arbóreas de Fabaceae (HOSAKA et al., 2008; HENKEL; SMITH; AIME, 2010; CASTELLANO et al., 2012). Adicionalmente, uma comunidade ainda pouco documentada de fungos ECM vem sendo desvendada, incluindo vários esporocarpos de fungos hipógeos, que ocorrem naturalmente nos fragmentos de floresta de Mata Atlântica na região nordeste do Brasil (SULZBACHER et al., 2013b), distante muitos quilômetros da região da Guiana.

As florestas naturais da região nordeste do Brasil não apresentam representantes do gênero Aldina (Benth.) Endl. e Dicymbe Spruce ex Benth. (FREIRE, 1990; OLIVEIRA-FILHO; CARVALHO, 1993; BARBOSA et al., 2011). Porém, estas florestas apresentam possíveis simbiontes ectomicorrízicos, principalmente, representados por espécies arbóreas e também lianas das famílias Fabaceae (Caesalpinioideae e Faboideae), Myrtaceae (Eugenia spp., Myrcia spp., Psidium spp.), Nyctaginaceae (Guapira spp.) e Polygonaceae (Coccoloba spp.), pois muitos destes gêneros são membros ECM já confirmados na literatura (SMITH; READ, 2008; TEDERSOO; MAY; SMITH, 2010), e também já encontrados na região da Amazônia (Equador, Guiana) e Venezuela (HENKEL et al., 2002; TEDERSOO et al., 2009; SMITH et al., 2011; SMITH et al., 2013b). Desta forma, é possível inferir que esta floresta de Mata Atlântica que ocorre ao longo da costa do Brasil apresente uma nova e extremamente importante comunidade de fungos ECM, previamente registrada pela presença de basidiomas possivelmente ECM (MENOLLI; CAPELARI; BASEIA, 2009; PINHEIRO; WARTCHOW, 2013; SÁ; BASEIA; WARTCHOW, SULZBACHER et al., 2013b; WARTCHOW; SULZBACHER; BASEIA, 2015) que também se desenvolveu na região norte da América do Sul (HENKEL, 2001; SIMMONS; HENKEL; BAS, 2001; HENKEL et al., 2011).

A capacidade de simbiose ectomicorrízica envolvendo membros de Hysterangiales não tem sido investigada para toda a ordem (HOSAKA et al., 2006). Contudo, a simbiose foi descrita para algumas espécies, como para *Hysterangium crassirhachis* Zeller & C. W. Dodge e *Hysterangium stoloniferum* Tul. & C. Tul. na Europa, baseado principalmente em estudos morfo-anatômicos (AGERER;

IOSIFIDOU, 2004; AGERER, 2006). Uma das principais estruturas observadas nas rizomorfas de *H. atlanticum* foram às hifas septadas ampuláceas (*ampullate inflations*). Este padrão de septos também foi observado em rizomorfas de *H. stoloniferum*, porém, são ausentes em *H. crassirhachis*. No estudo biogeográfico envolvendo a ordem Hysterangiales (HOSAKA et al., 2008), não foram encontradas informações sobre Polygonaceae, embora exista registros comprovando a simbiose ECM envolvendo esta família (WANG; QIU, 2006; SMITH; READ, 2008).

5 CONSIDERAÇÕES GERAIS

Estudos envolvendo os fungos hipógeos em ambientes florestais nativos praticamente inexistem no vasto território Brasileiro. A grande maioria das citações foi relacionada para florestas plantadas com espécies exóticas, vindas em grande parte, como inoculantes ectomicorrízicos para mudas florestais originárias das regiões da América do Norte, Austrália e Europa (SULZBACHER et al., 2013a).

Os fungos hipógeos têm sido considerados importantes integrantes de diversos ecossistemas terrestres, notadamente os florestais, desenvolvendo importantes funções, principalmente relacionadas às ciclagens de carbono e nitrogênio (SMITH; READ, 2008; MASER; CLARIDGE; TRAPPE, 2010); dinâmica da sucessão ecológica e funções do ecossistema (ALLEN et al., 1995; TRAPPE et al., 2009); fluxos de água no solo (ALLEN, 2009); agregação e estrutura do solo (RILLIG; MUMMEY, 2006; DANKS et al., 2013); cadeias alimentares envolvendo diferentes grupos de animais (TRAPPE et al., 2009; MASER; CLARIDGE; TRAPPE, 2010; DANKS et al., 2013, SULZBACHER et al., 2015).

A Mata Atlântica é uma floresta arbórea e litorânea e apresenta um elevado padrão de endemismo (RIBEIRO et al., 2009). Ocorre desde o Rio Grande do Sul até o Rio Grande do Norte, ao longo da costa do Brasil (VELOSO; RANGEL-FILHO; LIMA, 1991), tendo o oceano atlântico como principal fonte de umidade. Esta floresta apresenta uma variação de clima e altitude, o que reflete numa diversidade de tipos de solos e de formas de vegetações (RIZZINI, 1997; EMBRAPA, 2013). Apresentam formações com planícies, regiões montanhosas e ambientes costeiros com altos níveis de precipitação, e regiões de planaltos interioranos com prolongados períodos de seca (VELOSO; RANGEL-FILHO; LIMA, 1991; METZGER, 2009). Entretanto, esta extensa formação fitogeográfica apresenta, como característica para certas regiões (por exemplo: os ecossistemas de dunas, e as florestas de restinga), solos relativamente pobres quando se trata de macro e micronutrientes (THOMAS; BARBOSA, 2008). Estas características biológicas, climáticas e edáficas são propícias para a ocorrência de fungos hipógeos, pois estudos desenvolvidos principalmente na região da Austrália comprovam que os fungos hipógeos ocorrem predominantemente em solos pobres em nutrientes (CLARIDGE, 2002).

O fato dos fungos hipógeos produzirem seus basidiomas (ou ascomas) abaixo da superfície do solo dificulta a sua coleta. Dessa maneira, encontrar estes fungos no seu

habitat natural é algo raro e pouco referenciado na literatura micológica no Brasil. Isto não quer dizer que estes fungos não possam estar presentes nestes ambientes, porém as técnicas de coleta devem ser direcionadas para o estudo destes fungos.

Durante a execução deste trabalho, ao longo dos anos de 2011 até 2013, diferentes formas de fungos hipógeos foram encontradas nas distintas formações florestais da Mata Atlântica nos Estados do Rio Grande do Norte e Paraíba, Nordeste do Brasil. Estas florestas abrigam uma diversidade inédita destes fungos, que apresentam ampla variação de formas macro e micromorfológicas, muitas vezes não se assemelhando com espécies previamente conhecidas. Com isto, pode-se confirmar a hipótese levantada neste estudo, de que apesar da maioria dos estudos sobre fungos hipógeos no Brasil terem sido em áreas cultivadas com plantas exóticas, áreas nativas de Mata Atlântica do Brasil, também poderiam apresentar estes fungos.

Devido à escassez de estudos sobre esses organismos na América do Sul, elaborou-se uma ampla revisão sobre o atual estado de conhecimento dos fungos hipógeos para este continente, e o resultado foi o relato da ocorrência de 165 táxons de fungos hipógeos.

A tese gerou importantes resultados, dentre os principais, destacam-se a proposta de publicação de dois gêneros inéditos para a ciência, *Sulcatospora* (Boletaceae, Boletales) e *Restingomyces* (Trappeaceae, Phallales), além das espécies novas *Sulcatospora flava*, *Restingomyces reticulatus* e *Hysterangium atlanticum*.

A descoberta destes novos gêneros (*Restingomyces* e *Sulcatospora*) traz também novos questionamentos sobre a distribuição de fungos hipógeos nas florestas tropicais, especialmente na América do Sul. Gêneros novos também foram recentemente descritos para as florestas tropicais da Guiana, na região da Amazônia. Estes achados demonstram que estas regiões podem hospedar uma diversidade inédita de fungos, que permanece ainda desconhecida pela ciência.

O gênero *Sulcatospora*, por exemplo, possui como principal característica taxonômica o padrão morfológico dos basidiósporos (com finas estrias irregulares e longitudinais ao longo de toda a superficie dos basidiósporos). Este padrão não é encontrado nos demais fungos boletoides hipógeos conhecidos. Evolutivamente, este novo gênero está próximo de *Mackintoshia* (Boletaceae), um gênero monotípico originalmente conhecido para o continente Africano.

O gênero *Restingomyces* também merece ser discutido, pois conforme as análises filogenéticas, este fungo está agrupado formando um clado basal junto à ordem

Phallales, na família Trappeaceae. Restingomyces está evolutivamente próximo de dois outros gêneros em Trappeaceae (Phallobata e Trappea), porém, ambos não foram referenciados para a América do Sul, ocorrendo nas florestas da Australásia e da América do Norte. Estes gêneros apresentam como característica nutricional o habito saprofítico, podendo inferir-se que Restingomyces possa estar relacionado a este padrão trófico, e não como simbionte ectomicorrízico. Além disto, Restingomyces está filogeneticamente agrupado junto a Trappea darkeri (Zeller) Castellano, a espécie tipo de Trappea. Em um amplo estudo filogenético do grupo Phallomycetidae, Hosaka et al. (2006) demonstraram que o gênero Trappea é polifilético, e descende de diferentes ramos evolutivos entre as ordens Hysterangiales e Phallales, e que determinadas espécies descritas para este gênero podem atualmente pertencer a diferentes gêneros e até diferentes famílias. Embora tenham sido publicados estudos filogenéticos em Phallales recentemente (TRIERVEILER-PEREIRA et al., 2014), nenhum membro de Trappeaceae foi incluído. Restingomyces apresenta características evolutivas que sustentam a permanência da família Trappeaceae como membro de Phallales.

A espécie *Hysterangium atlanticum* foi identificada como nova para a ciência e sua associação ectomicorrízica foi comprovada para espécies de *Coccoloba alnifolia* e *C. laevis* (Polygonaceae). Ainda, esta espécie é caracterizada por apresentar um grande número de basidiomas. Estes podem estar sendo utilizados como alimento por alguns animais nativos, porém, esta relação não foi estudada até o presente momento. O autor observou a presença de restos do basidioma desta espécie na entrada de uma toca de um animal não identificado, na Reserva Biológica de Guaribas, Mamanguape, Paraíba.

Os fungos hipógeos encontrados durante este estudo foram relacionados a distintas ordens (por exemplo: Boletales, Hysterangiales, Phallales), sendo que cada ordem apresenta dificuldades taxonômicas, o que tornou a pesquisa mais complexa. Além disto, a escassez de estudos envolvendo estes fungos, a falta de material para comparação nos herbários, e a falta de especialistas nessa área no Brasil, tornou a pesquisa mais desafiadora.

Desta forma, conforme a pesquisa apresentada acima, pode-se verificar que o conhecimento envolvendo os fungos hipógeos do filo Basidiomycota no Brasil é incipiente, necessitando, assim, de mais incursões amostrais que culminem com mais informações acerca da diversidade e distribuição destes fungos nos nossos ecossistemas. Observou-se que a Mata Atlântica apresenta uma comunidade até então desconhecida

de fungos hipógeos nativos, havendo a necessidade da realização de mais estudos focando diversidade, ecologia e distribuição das espécies ocorrentes nestas matas.

REFERÊNCIAS

- AGERER, R. Colour atlas of Ectomycorrhizae. 1st-13th delivery. Einhorn Verlag, Schwäbisch Gmünd, 1987–2006.
- AGERER, R. Characterization of ectomycorrhiza. *In*: J.R. Norris, D.J. Read, A.K. & Varma (eds.), Techniques for the study of mycorrhiza. Methods in Microbiology 23, p. 25–73, 1991.
- AGERER, R. Never change a functionally successful principle: The evolution of Boletales s.l. (Hymenophycetes, Basidiomycota) as seen from below-ground features. **Sendtnera**, v. 6, p. 5–91, 1999.
- AGERER, R. Exploration types of mycorrhizae. A proposal to classify ectomycorrhizal mycelia systems according to their patterns of differentiation and putative ecological importance. **Mycorrhiza**, v. 11, n. 2, p. 107–114, 2001.
- AGERER, R. Fungal relationships and structural identity of their ectomycorrhizae. **Mycological Progress**, v. 5, n. 2, p. 67–107, 2006.
- AGERER, R.; IOSIFIDOU, P. **Rhizomorph structure of Hymenomycetes: a possibility to test DNA-based phylogenetic hypotheses**? *In*: Agerer, R., Piepenbring, M., Blanz, P. (eds.) Frontiers in Basidiomycote Mycology. I.H.W.-Verlag, Eching, p. 249–302, 2004.
- AGERER, R.; RAMBOLD, G. **DEEMY An Information System for Characterization and Determination of Ectomycorrhizae**. München, Germany. 2004. Disponível em: http://www.deemy.de. Acessado em: 20 out. 2015.
- ALEXANDER, I.J. **Mycorrhizas in tropical forests**. *In*: PROCTOR, J. (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific Publications, Oxford, p. 169–188, 1989.
- ALEXOPOULOS, C.J.; MIMS, C.W.; BLACKWELL, M. **Introductory Mycology**. 4th edition. New York, John Wiley & Sons, p. 869, 1996.
- ALLEN et al. **Patterns and regulation of mycorrhizal plant and fungal diversity**. *In*: Collins, H.P., Robertson, G.P., Klug, M.J. (eds.). The significance and regulation of soil biodiversity. Netherlands: Kluwer Academic Publishers, p. 47–62, 1995.
- ALLEN, M.F. Bidirectional water flows through the soil fungal plant mycorrhizal continuum. **New Phytologist**, v. 182, n. 2, p. 290–293, 2009.
- ALTSCHUL et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. **Nucleic Acids Research**, v. 25, n. 17, p. 3389–3402, 1997.
- ANDRADE-LIMA, D. **Present day forest refuges in Northeastern Brazil**. *In*: Prance, G.T. (ed.). Biological Diversification in the Tropics. Columbia University Press, New York, p. 245–254, 1982.

ARAUJO, D.S.D.; LACERDA, L.D. A natureza das restingas. **Ciência Hoje**, v. 6, n. 33, p. 42–48, 1987.

BARBOSA et al. **Diversidade florística na Mata do Pau-Ferro**, Areia, Paraíba. *In*: Porto, K.V., Cabral, J.J.P., Tabarelli, M. (eds). Brejos de Altitude: História Natural, Ecologia e Conservação. Ministério do Meio Ambiente, Brasília, p. 111–122, 2004.

BARBOSA et al. Checklist of the vascular plants of the Guaribas Biological Reserve, Paraíba, Brazil. **Revista Nordestina de Biologia**, v. 20, n. 2, p. 79–106, 2011.

BARONI, T.J.; MATHENY, P.B. A re-evaluation of gasteroid and cyphelloid species of Entolomataceae from Eastern North America. **Harvard Papers in Botany**, v. 16, n. 2, p. 293–310, 2011.

BARROETAVEÑA, C.; RAJCHENBERG, M.; CAZARES, E. Mycorrhizal fungi in *Pinus ponderosa* introduced in central Patagonia (Argentina). **Nova Hedwigia**, v. 80, n. 3, p. 453–464, 2005.

BARROETAVEÑA, C.; CÁZARES, E.; RAJCHENBERG, M. Mycorrhizal fungi of *Pseudotsuga menziesii*, an introduced tree species in central Patagonia (Argentina). **Nova Hedwigia** 83, n. 1, p. 53–66, 2006.

BARROETAVEÑA, C., CÁZARES, E., RAJCHENBERG, M. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina. **Mycorrhiza**, v. 17, n. 5, p. 355–373, 2007.

BASEIA, I.G.; MILANEZ, A.I. *Rhizopogon* (Gasteromycetes): hypogeous fungi in exotic forests from the State of São Paulo, Brazil. **Acta Botanica Brasilica**, v. 16, n. 1, p. 55–60, 2002.

BÂ et al. Ectomycorrhizal symbiosis of tropical African trees. **Mycorrhiza**, v. 22, n. 1, 1–29, 2012.

BEATON, G.; PEGLER, D.N.; YOUNG, T.W.K. Gasteroid Basidiomycota of Victoria State Australia I. Hydnangiaceae. **Kew Bulletin**, v. 39, n. 3, p. 499–508, 1984.

BEATON, G.; PEGLER, D.N.; YOUNG, T.W.K. Gasteroid Basidiomycota of Victoria State, Australia. V-VII. Boletales, Agaricales & Aphyllophorales. **Kew Bulletin**, v. 40, n. 3, p. 573–598, 1985a.

BEATON, G.; PEGLER, D.N.; YOUNG, T.W.K. Gasteroid Basidiomycota of Victoria State, Australia. III. Cortinariales. **Kew Bulletin** 40, n. 3, p. 167–204, 1985b.

BEATON, G.; PEGLER, D. N.; YOUNG, T.W.K. Gasteroid *Basidiomycota* of Victoria State, Australia: 4. *Hysterangium*. **Kew Bulletin** 40, n. 3, p. 435–444, 1985c.

BECERRA et al. Ectomycorrhizae between *Alnus acuminata* H. B. K. and *Naucoria escharoides* (Fr.: Fr.) Kummer from Argentina. **Mycorrhiza**, v. 12, n. 2, p. 61–66, 2002.

BECERRA et al. Ectomycorrhizas of *Cortinarius helodes* and *Gyrodon monticola* with *Alnus acuminata* from Argentina. **Mycorrhiza**, v. 15, n. 1, p. 7–15, 2005.

BECERRA et al. *Alnus acuminata* in dual symbiosis with *Frankia* and two different ectomycorrhizal fungi (*Alpova austroalnicola* and *A. diplophloeus*) growing in soilless growth medium. **Symbiosis**, v. 47, p. 85–92, 2009.

BECERRA, A.G.; ZAK, M.R. **The Ectomycorrhizal Symbiosis in South America: Morphology, Colonization, and Diversity**. *In*: Rai, M., Varma, A. (eds.) Diversity and Biotechnology of Ectomycorrhizae. Soil Biology 25, Springer-Verlag Berlin, p. 19–41, 2011.

BÉREAU, M.; GAZEL, M.; GARBAYE, J. Les symbioses mycorhiziennes des arbres de la forêt tropicale humide de Guyane française. **Canadian Journal of Botany**, v. 75, n. 5, p. 711–716, 1997.

BIDAUD, A.; MOËNNE-LOCCOZ, P.; REUMAUX, P. Atlas des Cortinaires, v. 9, p. 307–410, 1999.

BINDER, M.; BRESINSKY, A. Derivation of a polymorphic lineage of Gasteromycetes from boletoid ancestors. **Mycologia**, v. 94, n. 1, p. 85–98, 2002.

BINDER, M.; HIBBETT, D.S. Molecular systematics and biological diversification of *Boletales*. **Mycologia**, v. 98, n. 6, p. 971–981, 2006.

BLACKWELL, M. The fungi: 1,2,3.... 5.1 milion species? **American Journal of Botany**, v. 98, n. 3, p. 426–438, 2011.

BONITO et al. Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage. **PLoS ONE**, v. 8: 1–15, 2013.

BONONI, V.L.R.; GUZMÁN, G.; CAPELARI, M. Basidiomicetos do Parque Estadual da Ilha do Cardoso V: Gasteromicetos. **Rickia**, v. 11, p. 91–97, 1984.

BOUGHER, N.L.; CASTELLANO, M.A. Delimitation of *Hymenogaster sensu stricto* and four new segregated genera. **Mycologia**, v. 85, n. 2, p. 273–293, 1993.

BOUGHER, N.L.; LEBEL, T. Sequestrate (truffle-like) fungi of Australia and New Zealand. **Australian Systematic Botany**, v. 14, n. 3, p. 439–484, 2001.

BRUNDRETT et al. **Working with mycorrhizas in forestry and agriculture**. Canberra: ACIAR, 1996.

BRUNS et al. Accelerated evolution of a false-truffle from a mushroom ancestor. **Nature**, v. 339, p. 140–142, 1989.

- BRIDGE, P.D.; ARORA, D.K. **Interpretation of PCR methods for species definition**. *In*: Bridge, P.D., Arora, D.K., Reddy, C.A., Elander, R.P. (eds.) Applications of PCR in Mycology. CAB International, New York, p. 63–84, 1998.
- CABRAL et al. *Abrachium*, a new genus in the Clathraceae, and *Itajahya* reassessed. **Mycotaxon**, v. 119, n. 1, p. 419–429, 2012.
- CAIRNEY, J.W.G.; CHAMBERS, S.M. Ectomycorrhizal fungi: key genera in profile. Berlin, Springer, 1999.
- CALENDINI, F.; MARTIN, J.-F. PaupUP v1.0.3.1. A Free Graphical Frontend for Paup* DOS Software. 2005. Disponível em: http://www.agromontpellier.fr/sppe/recherche/jfm/paupup/main.htm. Acessado em: 12 jun. 2015.
- CALONGE, F.D.; MARTÍN, M.P. Morphological and molecular data on the taxonomy of *Gymnomyces*, *Martellia* and *Zelleromyces* (Elasmomycetaceae, Russulales). **Mycotaxon**, v. 76, n. 9–15, 2000.
- CALVELO, S.; LORENZO, L. A new species and first record of *Gymnopaxillus* (Hymenogastrales) from Argentina. **Mycotaxon**, v. 36: 163–168. 1989.
- CÂMARA, I.G. **Breve história da conservação da Mata Atlântica**. *In*: Garlindo-Leal, C., Câmara, I.G. (eds.) Mata Atlântica: biodiversidade, ameaças e perspectivas. São Paulo/Belo Horizonte: Fundação SOS Mata Atlântica/Conservação Internacional, p. 31–42, 2005.
- CASTELLANO, M.A. The Taxonomy of the Genus Hysterangium (Basidiomycotina, Hysterangiaceae) with Notes on its Ecology. Oregon State University Tese (doutorado) Oregon State University, Corvallis, Oregon, p. 216, 1990.
- CASTELLANO, M.A.; BEEVER, R.E. Truffle-like Basidiomycotina of Zew Zealand: *Gallacea, Hysterangium, Phallobata*, and *Protubera*. **New Zealand Journal of Botany**, v. 32, p. 305–328, 1994.
- CASTELLANO, M.A.; MUCHOVEJ, J.J. Truffle-like fungi from South America: *Hysterangium* sensu lato. **Mycotaxon**, v. 57, n. 1, p. 329–345, 1996.
- CASTELLANO et al. Key to spores of the genera of hypogeous fungi of north temperate forests with special reference to animal mycophagy. Eureka (USA), Mad River Press, 1989.
- CASTELLANO et al. Some new or interesting sequestrate Basidiomycota from African woodlands. **Kartsenia**, v. 40, p. 11–21, 2000.
- CASTELLANO et al. Handbook to additional fungal species of special concern in the Northwest. USDA, p. 105, 2003.

- CASTELLANO, M.A.; TRAPPE, J.M.; LUOMA, D.L. Sequestrate Fungi, p. 197-213, 2004. *In*: Mueller, G.M., Bills, G.F., Foster, M.S. (eds.) Biodiversity of fungi. Inventory and monitoring methods. Boston, Elsevier Academic Press, 2004.
- CASTELLANO, et al. Two new *Elaphomyces* species (Elaphomycetaceae, Eurotiales, Ascomycota) from Guyana. **Mycologia**, v. 104, n. 5, p. 1244–1249, 2012.
- CÁZARES et al. Hypogeous fungi from northern Mexico. **Mycologia**, v. 84, n. 3, p. 341–359, 1992.
- CESTARO, L.A. 2002. Fragmentos de florestas Atlânticas no Rio Grande do Norte: Relações estruturais, florísticas e fitogeográficas. Tese (doutorado), Departamento de Botânica, Universidade Federal de São Carlos, São Carlos.
- CESTARO, L.A.; SOARES, J.J. Variações florística e estrutural e relações fitogeográficas de um fragmento de floresta decidual no Rio Grande do Norte, Brasil. **Acta Botanica Brasilica**, v. 18, n. 2, p. 203–218, 2004.
- CESTARO, L.A.; SOARES, J.J. The Arboreal Layer of a Lowland Semediciduos (Tabuleiro) Forest Fragment in Rio Grande do Norte, Brasil, p. 417–438, 2008. *In*: Thomas, W. (ed.). The Atlantic Coastal Forest of Northeastern Brazil. New York, Memoirs of the New York Botanical Garden, p. 586, 2008.
- CHU-CHOU, M.; GRACE, L.J. Mycorrhizal fungi of *Eucalyptus* in the North Island of New Zealand. **Soil Biology and Biochemistry**, v. 14, p. 133–137, 1982.
- CLARIDGE, A.W. Ecological role of hypogeous ectomycorrhizal fungi in Australian forests and woodlands. **Plant and Soil**, v. 244, n. 1, p. 291–305, 2002.
- CLARIDGE, A.W.; CORK, S.J.; TRAPPE, J.M. Diversity and habitat relationships of hypogeous fungi. I. Study design, sampling techniques and general survey results. **Biodiversity and Conservation**, v. 9, p. 151–173, 2000a.
- CLARIDGE, A.W.; BARRY, S.C.; TRAPPE, J.M. Diversity and habitat relationships of hypogeous fungi. II. Factors influencing the occurrence and number of taxa. **Biodiversity and Conservation**, v. 9, p. 175–199, 2000b.
- CLÉMENÇON, H.; HOSAKA, K.; TAYLOR, A.F.S. Rhizomorph anatomy confirms the taxonomic position of *Sclerogaster* (*Phallomycetidae*, *Basidiomycota*). **Mycotaxon**, v. 100, p. 85–95, 2007.
- CO-DAVID, D.; LANGEVELD, D.; NOORDELOOS, M.E. Molecular phylogeny and spore evolution of Entolomataceae. **Persoonia**, v. 23, p. 147–176, 2009.
- CORTEZ et al. Two sequestrate cortinarioid fungi from Rio Grande do Sul State, Brazil. **Hoehnea**, v. 35, n. 4, p. 513–518, 2008.
- CORTEZ et al. New records of *Hysterangium* (Basidiomycota) in *Eucalyptus* plantations of south Brazil. **Rev. Bras. de Biociências**, v. 9, n. 2, p. 220–223, 2011.

CORTEZ, V.G, BASEIA, I.G., SILVEIRA, R.M.B. Gasteroid mycobiota of Rio Grande do Sul, Brazil: Boletales. **Journal of Yeast and Fungal Research**, v. 2, n. 4, p. 44–52, 2011.

CRESPO, E.; DOMÍNGUEZ, L. Sobre la presencia de *Tuber separans* (Tuberaceae-Ascomycotina) en Argentina. **Kurtziana**, v. 23, p. 125–129, 1994.

DANKS, M.; LEBEL, T.; VERNES, K. 'Cort short on a mountaintop' – Eight new species of sequestrate *Cortinarius* from sub-alpine Australia and affinities to sections within the genus. **Persoonia**, v. 24, p. 106–126, 2010.

DANKS et al. Truffle-like fungi sporocarps in a eucalypt-dominated landscape: patterns in diversity and community structure. **Fungal Diversity**, v. 58, p. 143–157, 2013.

de MEIJER, A.A.R. Mycological work in the Brazilian state of Paraná. **Nova Hedwigia**, v. 72, n. 1, p. 105–159, 2001.

de MEIJER, A.A.R. Preliminary list of the macromycetes from the Brazilian state of Paraná. **Boletim do Museu Botânico Municipal de Curitiba**, v. 68, p. 1–55, 2006.

DESJARDIN, D.E. A unique ballistosporic hypogeous sequestrate *Lactarius* from California. **Mycologia**, v. 95, p. 148–155, 2003.

DÍEZ, J. Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. **Biological Invasions**, v. 7, n. 1, p. 3–15, 2005.

DIGHTON, J.; WHITE, J.F.; OUDEMANS, P. **The Fungal Community: Its Organization and Role in the Ecosystem**. Taylor & Francis Ltd. UK, London, p. 960, 2005.

DODGE, C.W.; ZELLER, S.M. *Hymenogaster* and related genera. **Annals of the Missouri Botanical Garden**, v. 21, n. 4, p. 625–708, 1934.

DODGE, C.W.; ZELLER, S.M. *Hydnangium* and related genera reviewed. **Annals of the Missouri Botanical Garden**, v. 23, n. 4, p. 565–598, 1936.

DRECHSLER-SANTOS et al. Revision of the Herbarium URM I. Agaricomycetes from the semi-arid region of Brazil. **Mycotaxon**, v. 104, p. 9–18, 2008.

DUCOUSSO, et al. Diversity of Ectomycorrhizal fungi associated with *Eucalyptus* in Africa and Madagascar. **International Journal of Forestry Research**, v. 10, p. 1–10, 2012.

EBERHARDT, U.; VERBEKEN, A. Sequestrate *Lactarius* species from tropical Africa: *L. angiocarpus* sp. nov. and *L. dolichocaulis* comb. nov. **Mycological Research**, v. 108, n. 9, p. 1042–1052, 2004.

ELLIOTT, T.F.; TRAPPE, J.M.; WEISE, A. Australasian Sequestrate Fungi 19: *Hysterangium colossum* sp. nov. **IMA Fungus**, v. 6, n. 1, p. 115–117, 2015.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. **Sistema brasileiro de classificação de solos**. 3^{ed}. Brasília, p. 353, 2013.

FIDALGO, O. Rick, o Pai da Micologia Brasileira. Rickia, v. 1, p. 3–9, 1962.

FIDALGO, O. Introdução à história da micologia brasileira. **Rickia**, v. 3, p. 1–44, 1968.

FOGEL, R.D.; TRAPPE, J.M. *Destuntzia*, a new genus in the Hymenogastraceae (Basidiomycotina) **Mycologia**, v. 77, p. 732–742, 1985.

FRANCIS, A.A.; BOUGHER, N.L. Cortinarioid sequestrate (truffle-like) fungi of Western Australia. **Australasian Mycologist**, v. 23, n. 1, p. 1–26, 2004.

FREIRE, S.M.B. Levantamento Florístico do Parque Estadual das Dunas de Natal. **Acta Botanica Brasilica**, v. 4, n. 2, p. 41–59, 1990.

GARRIDO, N. Survey of ectomycorrhizal fungi associated with exotic forest trees in Chile. **Nova Hedwigia**, v. 43, n. 3, p. 423–442, 1986.

GARRIDO, N. Agaricales s.l. und ihre Mykorrhizen in den *Nothofagus*-wäldern Mittelchiles. **Bibliotheca Mycologica**, v. 120, p. 1–529, 1988.

GE, Z.-W.; SMITH, M.E. Phylogenetic analysis of rDNA sequences indicates that the sequestrate *Amogaster viridiglebus* is derived from within the agaricoid genus *Lepiota* (Agaricaceae). **Mycological Progress**, v. 12, n. 1, p. 151–155, 2013.

GERDEMANN, J.; TRAPPE, J.M. The Endogonaceae in the Pacific Northwest. **Mycological Memoirs**, v. 5, p. 1–76, 1974.

GIACHINI et al. Ectomycorrhizal fungi in *Eucalyptus* and *Pinus* plantations in southern Brazil. **Mycologia**, v. 92, n. 6, p. 1166–1177, 2000.

GIACHINI, A.J.; SOUZA, L.A.B.; OLIVEIRA, V.L. Species richness and seasonal abundance of ectomycorrhizal fungi in plantations of *Eucalyptus dunnii* and *Pinus taeda* in southern Brazil. **Mycorrhiza**, v. 14, p. 375–381, 2004.

GIBERTONI, T.B.; SANTOS, P.J.P.; CAVALCANTI, M.A.Q. Ecological aspects of Aphyllophorales in the Atlantic Rain Forest in Northeast Brazil. **Fungal Diversity**, v. 25, p. 49–67, 2007.

GONZALEZ et al. Acúmulo de ácido oxálico e cristais de cálcio em ectomicorrizas de eucalipto. II — Formação de cristais de oxalato de cálcio induzida por fungos ectomicorrízicos em raízes laterais finas. **Revista Brasileira de Ciência do Solo**, v. 33, n. 3, p. 555–562, 2009.

GOTO et al. *Glomus trufemii* (Glomeromycetes), a new sporocarpic species from Brazilian sand dunes. **Mycotaxon**, v. 120, p. 1–9, 2012.

GRAUSTEIN, W.C.; CROMACK, K.; SOLLINS, P. Calcium oxalate: Ocurrence in soils and effect on nutrient and geochemical cycles. **Science**, v. 198, n. 4323, p. 1252–1254, 1977.

GRGURINOVIC, C.A. Larger fungi of South Australia. The Botanic Gardens of Adelaide and State Herbarium and the Flora and Fauna of South Australia Handbooks Committee, Adelaide, Australia, p. 723, 1997.

HALL, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. **Nucleic Acids Symposium Series**, v. 41, p. 95–98, 1999.

HALLING, R.E. Thaxter's Thaxterogasters and other Chilean hypogeous fungi. **Mycologia**, v. 73, p. 853–868, 1981.

HAWKSWORTH, D.L. The magnitude of fungal diversity: the 1.5 million species estimate revisited. **Mycological Research**, v. 105, n. 12, p. 1422–1434, 2001.

van der HEIJDEN et al. Mycorrhizal ecology and evolution: the past, the present, and the future. **New Phytologist**, v. 205, n. 4, p. 1406–1423, 2015.

HEIM, R. **The interrelationships between the Agaricales and gasteromycetes**, p. 505–534, 1971. *In*: Petersen, RH. (ed.). Evolution in the higher basidiomycetes. University of Tennessee, Knoxville, Tennessee, USA, p. 616, 1971.

HENKEL, T.W. *Tylopilus pakaraimensis*, a new species of *Tylopilus* section *Potamogetones* from Guyana. **Mycotaxon**, v. 78, p. 105–114, 2001.

HENKEL, T.W.; TERBORGH, J.; VILGALYS, R.J. Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima Mountains of Guyana. **Mycological Research**, v. 106, p. 515–531, 2002.

HENKEL, T.W.; SMITH, M.E.; AIME, C.M. *Guyanagaster*, a new wood-decaying sequestrate fungal genus related to *Armillaria* Agaricales, Basidiomycota. **American Journal of Botany**, v. 97, n. 9, p. 1–11, 2010.

HENKEL et al. New species and distribution records of *Clavulina* (Cantharellales, Basidiomycota) from the Guiana Shield. **Mycologia**, v. 103, n. 4, p. 883–894, 2011.

HENKEL et al. Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in *Dicymbe monodominant* forests of the Guiana Shield. **Biodiversity and Conservation**, v. 21, n. 9, p. 2195–2220, 2012.

HIBBETT, D.S. A phylogenetic overview of the *Agaricomycotina*. **Mycologia** 98: 917–925. 2006.

HIBBETT, D.S. After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. **Mycological Research**, v. 111, n. 9, p. 1001–1018, 2007.

- HIBBETT et al. A higher-level phylogenetic classification of the Fungi. **Mycological Research**, v. 111, n. 5, p. 509–547, 2007.
- HOFFMANN, K.; VOIGT, K.; KIRK, P. *Mortierellomycotina* subphyl. nov., based on multi-gene genealogies. **Mycotaxon**, v. 115, n. 1, p. 353–363, 2011.
- HOMRICH, M.H. Etude de quelques Gastéromycètes du Rio Grande do Sul. **Revue de Mycologie**, v. 34, n. 1, p. 3–16, 1969.
- HORAK, E. Fungi austroamericani. III. *Rhodogaster* gen. nov. a new link from Chile towards the Rhodophyllaceae. **Sydowia**, v. 17, n. 1, p. 190–192, 1964a.
- HORAK, E. Fungi austoamericani. V. Beitrag zur Kenntnis der Gattungen *Hysterangium* Vitt., *Hymenogaster* Vitt., *Hydnangium* Wallr., und *Melanogaster* Cda. in Südamerika (Argentinien, Uruguay). **Sydowia**, v. 17, n. 1, p. 197–205, 1964b.
- HORAK, E. Fungi austoamericani. VI. Beitrag zur Kenntnis der Gattungen *Martellia* Matt., *Elasmomyces* Cav. und *Cystangium* Sing. & Smith in Südamerika. **Sydowia**, v. 17, n. 1, p. 206–213, 1964c.
- HORAK, E. Fungi austoamericani. VII. *Hypogaea* gen. nov. aus dem *Nothofagus*-Wald der patagonischen Anden. **Sydowia**, v. 17, n. 1, p. 297–301, 1964d.
- HORAK, E. Fungi austoamericani. IX. Beitrag zur Kenntnis der Gattungen *Gautieria* Vitt., *Martellia* Matt. und *Octavianina* Kuntze in Südamerika (Chile). **Sydowia**, v. 17, n. 1, p. 308–313, 1964e.
- HORAK, E. Contributions to the knowledge of the Agaricales (Fungi) of New Zealand. **New Zealand Journal of Botany**, v. 9, p. 463–493, 1971.
- HORAK, E. Fungi Basidiomycetes. Agaricales y Gasteromycetes secotioides. Flora Criptogámica de Tierra del Fuego 11. Buenos Aires, p. 528, 1980.
- HORAK, E. New and rare Boletes from Chile. **Boletín de la Sociedad Argentina de Botánica**, v. 18, p. 97–109, 1977.
- HORAK, E.; MOSER, M. Fungi austroamericani. VIII. Uber neue Gastroboletaceae aus Patagonien: *Singeromyces* Moser, *Paxillogaster* Horak und *Gymnopaxillus* Horak. **Nova Hedwigia**, v. 10, n. 1, p. 329–338, 1966a.
- HORAK, E.; MOSER, M. Fungi austroamericani. XII. Studien zur Gattung *Thaxterogaster* Singer. **Nova Hedwigia**, v. 10, n. 2, p. 211–241, 1966b.
- HOSAKA et al. Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. **Mycologia**, v. 98, n. 6, p. 949–959, 2006.
- HOSAKA, K.; CASTELLANO, M.A. Molecular Phylogenetics of Geastrales with special emphasis on the position of *Sclerogaster*. **Bulletin of the National Museum of Nature and Science**, v. 34, n. 4, p. 161–173, 2008.

HOSAKA, K.; CASTELLANO, M.A.; SPATAFORA, J.W. Biogeography of *Hysterangiales (Phallomycetidae, Basidiomycota)*. **Mycological Research**, v. 112, n. 4, p. 448–462, 2008.

HUELSENBECK, J.P.; RONQUIST, F. MrBayes: Bayesian inference of phylogenetic trees. **Bioinformatics**, v. 17, n. 8, p. 754–755, 2001.

HUNT, G.A.; TRAPPE, J.M. Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand. **Canadian Journal of Botany**, v. 65, n. 3, p. 438–445, 1987.

HUTCHISON, L.J. Studies on the systematics of ectomycorrhizal fungi in axenic culture. II. The enzymatic degradation of selected carbon and nitrogen compounds. **Canadian Journal of Botany**, v. 68, n. 7, p. 1522–1530, 1990.

JACOMINE et al. Levantamento exploratório-reconhecimento de solos do estado do Rio Grande do Norte. SUDENE. Divisão de pesquisa pedológica. Recife, p. 531, 1971.

JACOMINE et al. Levantamento exploratório-reconhecimento de solos do Estado de Pernambuco. Recife, Divisão de Pesquisa Pedológica, v. 1, n. 26, p. 1–175, 1973.

JAIRUS et al. Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations. **New Phytologist**, v. 192, n. 2, p. 179–187, 2011.

JAMES et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. **Nature**, v. 443, n. 7113, p. 818–822, 2006.

JEPPSON, M.; NILSSON, R.H.; LARSSON, E. European earthstars in *Geastraceae* (*Geastrales*, *Phallomycetidae*) – a systematic approach using morphology and molecular sequence data. **Systematics and Biodiversity**, v. 11, n. 4, p. 437–465, 2013.

JUMPPONEN et al. Ecological relationships among hypogeous fungi and trees: inferences from association analysis integrated with hatitat modeling. **Mycologia**, v. 96, p. 510–525, 2004.

JUSTO et al. Convergent evolution of sequestrate forms in *Amanita* under Mediterranean climate condidions. **Mycologia**, v. 102, n. 3, p. 675–688, 2010.

KENDRICK, B. **The Fifth Kingdom**. Newburyport, Focus Publishing, p. 373, 2000.

KIRK et al. **Ainsworth & Bisby's Dictionary of the Fungi**. 9th edition. Cambridge, United Kingdom: CAB International University Press, p. 669, 2001.

KIRK et al. **Dictionary of the Fungi**. 10th edition CABI International, Wallingford, UK, p. 771, 2008.

KORNERUP, A.; WANSCHER, J.E. **Methuen Handbook of Colour**, 3th, London Methuen, p. 243, 1978.

- KOTABLA, F.; POUZAR, Z. Preliminary results of the staining of spores and other structures of Homobasidiomycetes in cotton blue and its importance for taxonomy. **Feddes Report**, v. 69, n. 2, p. 131–142, 1964.
- KREISEL, K. Clave para la identificación de los macromicetos de Cuba. La Habana: Ser. A, Ciencias Biologicas 16, Universidad de la Habana, p. 101, 1971.
- KREISEL, H. Checklist of the gasteral and secotioid Basidiomycetes of Europe, Africa and the Middle East. **Österreichische Zeitschrift für Pilzkunde**, v. 10, n. 1, p. 213–313, 2001.
- KRETZER, A.M.; BRUNS, T.D. Use of *atp6* in fungal phylogenetics: An example from the Boletales. **Molecular Phylogenetics and Evolution**, v. 13, n. 3, p. 483–492, 1999.
- KROPP et al. *Cryptolepiota*, a new sequestrate genus in the Agaricaceae with evidence for adaptive radiation in western North America. **Mycologia**, v. 104, n. 1, p. 164–174, 2012.
- LAGO, M.; BOUGHER, N.L.; CASTRO, M.L. Morphological variability and Implication for definition of taxa in the *Descolea-Setchelliogaster-Descomyces* complex. **Mycotaxon**, v. 78, p. 37–57, 2001.
- LAGO, M.; CASTRO, M.L. Macrobasidiomicetos asociados a *Eucalyptus* en la Península Ibérica. **Fungi Non Delineati**, v. 27, p. 1–84, 2004.
- LAST, F.T., et al. Succession of fruitbodies of sheating mycorrhizal fungi associated with *Betula pendula*. **Forest Ecology and Management**, v. 9, n. 1, p. 229–234, 1984.
- LAZO, W. Fungi from Chile I. Some gasteromycetes and Agaricales. **Mycologia**, v. 64, n. 4, p. 786–798, 1972.
- LEAKE et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agrocosystem functioning. **Canadian Journal of Botany**, v. 82, n. 8, p. 1016-1045, 2004.
- LEBEL, T.; TRAPPE, J.M. Taxonomic studies in the sequestrate Russulales I. Generic type studies. **Mycologia**, v. 92, n. 6, p. 1188–1205, 2000.
- LEBEL, T.; CASTELLANO, M.A. Type studies of sequestrate Russulales II. Australian and New Zealand species related to *Russula*. **Mycologia**, v. 94, n. 2, p. 327–354, 2002.
- LEBEL, T.; TONKIN, J.E. Australasian species of *Macowanites* are sequestrate species of *Russula* (Russulaceae, Basidiomycota). **Australian Systematic Botany**, v. 20, n. 4, p. 355–381, 2007.
- LEBEL, T.; ORIHARA, T.; MAEKAWA, N. The sequestrate genus *Rossbeevera* T. Lebel & Orihara gen. nov. (Boletaceae) from Australasia and Japan: new species and new combinations. **Fungal Diversity**, v. 52, p. 49–71, 2012.

LEBEL, T.; SYME, A. Sequestrate species of *Agaricus* and *Macrolepiota* from Australia: new species and combinations and their position in a calibrated phylogeny. **Mycologia**, v. 104, n. 2, 496–520, 2012.

LEBEL, T.; CASTELLANO M.A.; BEEVER RE. Cryptic diversity in the sequestrate genus *Stephanospora* (Stephanosporaceae: Agaricales) in Australasia. **Fungal Biology**, v. 119, n. 4, p. 201–228, 2015.

LI, Y.C.; FENG, B.; YANG, Z.L. *Zangia*, a new genus of Boletaceae supported by molecular and morphological evidence. **Fungal Diversity**, v. 49, p. 125–143, 2011.

LILLESKOV, E.A.; BRUNS, T.D. Spore dispersal of a resupinate ectomycorrhizal fungus, *Tomentella sublilacina*, via soil food webs. **Mycologia**, v. 97, n. 4, p. 762–769, 2005.

LLOYD, C.G. Mycological Writings, v. 6, p. 1031–1031, 1921.

LLOYD, C.G. Mycological Notes, v. 66, p. 1119–1120, 1922.

LORENZO, L.; CALVELLO, S. El gênero *Tuber* (Tuberaceae, Ascomycotina) en la Patagonia Argentina. **Boletín de la Sociedad Argentina de Botánica**, v. 35, n. 1, p. 17–19, 2000.

LOURENÇO, A.R.L.; BARBOSA M.R.V. Myrtaceae em restingas no limite norte de distribuição da Mata Atlântica, Brasil. **Rodriguésia**, v. 63, n. 2, p. 373–393, 2012.

LU, X.; MALAJCZUK, N.; DELL, B. 1998. Mycorrhiza formation and growth of *Eucalyptus globulus* seedlings with spores of various ectomycorrhizal fungi. **Mycorrhiza**, v. 8, n. 2, p. 81–86.

LUPATINI et al. Mycorrhizal morphotyping and molecular characterization of *Chondrogaster angustisporus* Giachini, Castellano, Trappe & Oliveira, an ectomycorrhizal fungus from *Eucalyptus*. **Mycorrhiza**, v. 18, n. 8, p. 437–442, 2008.

MALENÇON, G. La série des Astérosporés. **Trav. cryptogam. dédiés à L. Mangin.**, v. 1, p. 337–396, 1931.

MALENÇON, G.; BERTAULT, R. Flore des champignons supérieurs du Maroc, Tome I. Faculté des Sciences de Rabat, Maroc, p. 601, 1970.

MARTÍN, M.P. The genus *Rhizopogon* in Europe. **Edic. Soc. Catalana Micología**, v. 5, n. 1, p. 1–171, 1996.

MASER, C.; CLARIDGE, A.W.; TRAPPE, J.M. **Trees, Truffles, and Beasts**. 3th edition, Rutgers Univ., Press, New Bruswick, p. 280, 2010.

MASON et al. Ecology of some fungi associated with an ageing stand of birches (*Betula pendula* and *B. pubescens*). **Forest Ecology and Management**, v. 4, n. 1, p. 19–39, 1982.

MATHENY, et al. Major clades of Agaricales: a multilocus phylogenetic overview. **Mycologia**, v. 98, n. 6, p. 982–995, 2006.

MENOLLI, N.; CAPELARI, M.; BASEIA, I.G. *Amanita viscidolutea*, a new species from Brazil with a key to Central and South American species of *Amanita* section *Amanita*. **Mycologia**, v. 101, n. 3, p. 391–396, 2009.

METZGER, J.P. 2009. Conservation issues in the Brazilian Atlantic forest. **Biological Conservation**, v. 142, n. 6, p. 1138–1140.

MILLER, JR.O.K.; ASKEW, W.B. The genus *Gastrosporium* in North America. **Canadian Journal of Botany**, v. 60, n. 4, p. 364–368, 1982.

MILLER, JR.,O.K.; MILLER, H.H. Gasteromycetes: morphology and developmental features. Mad River, Eureka, CA, p. 157, 1988.

MILLER, S.L. Hypogeous fungi from the Southeastern United States. I. The genus *Rhizopogon*. **Mycotaxon**, 27, p. 193–218, 1986.

MILLER, S.L.; TORRES, P.; MCCLEAN, T.M.. Persistence of basidiospores and sclerotia of ectomycorrhizal fungi and *Morchella* in soil. **Mycologia**, 86, n. 1, p. 89–95, 1994.

MILLER et al. A molecular phylogeny of the Russulales including agaricoid, gasteroid and pleurotoid taxa. **Mycologia**, v. 93, n. 2, p. 344–354, 2001.

MILLER et al. Perspectives in the new Russulales. **Mycologia**, v. 98, n. 6, p. 960–970, 2006.

MOLINA, R.; MASSICOTE, H.; TRAPPE, J.M. Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and pratical implications. p. 357–423, 1992. *In*: Allen, M.F. (ed.). Mycorrhizal functioning – anintegrative plant-fungal process. New York: Chapman and Hall, p. 528, 1992.

MOLINA, R.; TRAPPE, J.M. Biology of the Ectomycorrhizal genus *Rhizopogon*. I. Host associations, host-specificity and pure culture syntheses. **New Phytologist**, v. 126, n. 4, p. 653–675, 1994.

MONCALVO et al. One hundred and seventeen clades of euagarics. **Molecular Phylogenetics and Evolution**, v. 23, n. 3, p. 357–400, 2002.

MONTACCHINI, F.; LOMAGNO, R.C. Researches on *Tuber melanosporum* ecology II. Inhibitory action on wild erbaceous species. **Allionia**, v. 22, n. 1, p. 81–85, 1977.

MONTECCHI, A.; SARASINI, M. Funghi ipogei d'Europa. Fondazione Centro Studi Micologici dell Associazione Micologica Bresadola, Trento, Italy, p. 714, 2000.

MORAES, R.M.; DELITTI, W.B.C.; STRUFFALDI-DE-VUONO, Y. Litter fall and litter nureant content two Brazilian Tropical Forest. **Revista Brasileira de Botânica**, v. 50, n. 1, p. 163–173, 1999.

MOREIRA, F.M.S.; SIQUEIRA, J.O. Microbiologia e bioquímica do solo. Lavras: Editora UFLA, p. 729, 2006.

MORENO-ARROYO, B.; GÓMEZ, J.; PULIDO, E. **Tesoros de nuestros montes. Trufas de Andalucía**. Córdoba (Spain): Consejería de Medio Ambiente, Junta de Andalucía, p. 352, 2005.

MORRIS, et al. Influence of host species on ectomycorrhizal communities associated with two co-occurring oaks (*Quercus* spp.) in a tropical cloud forest. **FEMS Microbiology Ecology**, v. 69, n. 2, p. 274–287, 2009.

MUELLER, G.M.; BILLS, G.F. **Introduction**, p. 1–4, 2004. *In*: Mueller, G.M., Bills, G.F., Foster, M.S. (eds.) Biodiversity of fungi. Inventory and monitoring methods. Boston, Elsevier Academic Press, p. 762, 2004.

MUELLER, G.M.; SCHMIDT, J.P. Fungal biodiversity: what do we know? What can we predict? **Biodiversity and Conservation**, v. 16, n. 1, p. 1–5, 2007.

MUELLER et al. Global diversity and distribution of macrofungi. **Biodiversity and Conservation**, v. 16, n. 1, p. 37–48, 2007.

NIXON, K.C. Global and neotropical distribution and diversity of oak (genus *Quercus*) and oak forests, p. 3–13, 2006. *In*: Kappelle, M. (ed.) Ecology and Conservation of Neotropical Montane Oak Forest, Ecological Studies, Springer-Verlag Berlin Heidelberg, p. 151, 2006.

NOUHRA et al. Morphological, molecular and ecological aspects of the South American hypogeous fungus *Alpova austroalnicola* sp. nov. **Mycologia**, v. 97, n. 3, p. 598–604, 2005.

NOUHRA et al. Ocurrence of ectomycorrhizal, hypogeous fungi in plantations of exotic tree species in central Argentina. **Mycologia**, v. 100, n. 5, p. 752–759, 2008.

NOUHRA et al. Differential hypogeous sporocarp production from *Nothofagus dombeyi* and *N. pumilio* forests in southern Argentina. **Mycologia**, v. 104, n. 1, p. 45–52, 2012a.

NOUHRA et al. The species of *Scleroderma* from Argentina, including a new species from the *Nothofagus* forest. **Mycologia**, v. 104, n. 2, p. 488–495, 2012b.

NOUHRA et al. Ectomycorrhizal fungal communities associated to *Nothofagus* species in Northern Patagonia. **Mycorrhiza**, v. 23, n. 6, p. 487–496, 2013.

NUÑEZ, M.A.; HORTON, T.R.; SIMBERLOFF, D. Lack of belowground mutualisms hinders Pinaceae invasions. **Ecology**, v. 90, n. 9, p. 2352–2359, 2009.

NUÑEZ et al. Exotic Mammals Disperse Exotic Fungi That Promote Invasion by Exotic Trees. **PLoS One**, v. 8, n. 1, p. 1–6, 2013.

OLIVEIRA-FILHO, A.T. Gradient analysis of an area of coastal vegetation in the state of Paraíba, Northeastern Brazil. **Edinburgh Journal of Botany**, v. 50, n. 2, p. 217–236, 1993.

OLIVEIRA-FILHO, A.T; CARVALHO, D.A. Florística e fisionomia da vegetação no extremo norte do litoral da Paraíba. **Revista Brasileira de Botânica**, v. 16, n. 1, p. 115–130, 1993.

OLIVEIRA et al. Specificité de champignons ectomycorhiziens vis-à-vis d' *Eucalyptus viminalis* Labill et *E. dunnii* Maiden. **Agronomie**, v. 143, n. 1, p. 57–62, 1994.

ORIHARA et al. Taxonomic reconsideration of a sequestrate fungus, *Octaviania columellifera*, with the proposal of a new genus, *Heliogaster*, and its phylogenetic relationships in the Boletales. **Mycologia**, v. 102, n. 1, p. 108–121, 2010.

ORIHARA et al. Diversity and systematics of the sequestrate genus *Octaviania* in Japan: two new subgenera and eleven new species. **Persoonia**, v. 28, n. 2, p. 85–112. 2012.

PACIONI, G.; BOLOGNA, M.A.; LAURENZI, M. Insect attraction by *Tuber*: a chemical explanation. **Mycological Resarch**, v. 95, n. 12, p. 1359–1363, 1991.

PACIONI, G.; SHARP, C. 2000. *Mackintoshia*, a new sequestrate basidiomycete genus from Zimbabwe. **Mycotaxon**, v. 75, p. 225–228, 2000.

PAGE, R.D.M. Tree View: An application to display phylogenetic trees on personal computers. **Computer Application in the Biosciences**, v. 12, n. 4, p. 357–358, 1996.

PALFNER, G. *Tylopilus temucensis* sect. *Oxydabiles* (Fungi, Basidiomycota, Boletales), new species and first record of the genus from Southamerican *Nothofagus* forest. **Fungal Diversity**, v. 20, n. 3, p. 157–166, 2005.

PALFNER, G.; HORAK, E. *Gautieria inapire* sp. nov., a new hypogeous species from *Nothofagus* forest in southern Central Chile. **Sydowia**, v. 53, n. 1, p. 140–151, 2000.

PEEL, M.C.; FINLAYSON, B.L.; MCMAHON, T.A. Update world map of the Köppen-Geiger climate classification. **Hydrology and Earth System Sciences**, v. 11, n. 5, p. 1633–1644, 2007.

PEGLER, D.N. **The Agarics from São Paulo**. Royal Botanic Garden, Kew, London, p. 68, 1997.

PEGLER, D.N.; YOUNG, T.W.K. The gasteroid Russulales. **Transactions of the British Mycological Society** v. 72, n. 3, p. 353–388, 1979.

PEGLER, D.N.; SPOONER, B.M.; YOUNG, T.W.K. British truffles: a revision of british hypogeous fungi. Kew Publishing, London, p. 216, 1993.

PEINTNER et al. Multiple origins of sequestrate fungi related to *Cortinarius* (Cortinariaceae). **American Journal of Botany**, v. 88, n. 12, p. 2168–2179, 2001.

PEINTNER, U.; MOSER, M.; VILGALYS, R. *Thaxterogaster* is a taxonomic synonym of *Cortinarius*: new combinations and new names. **Mycotaxon**, v. 81, p. 177–184, 2002.

PEINTNER, U.; MONCALVO, J.M.; VILGALYS, R. Toward a better understanding of the infrageneric relationships in *Cortinarius* (Agaricales, Basidiomycota). **Mycologia**, v. 96, n. 5, p. 1042–1058, 2004.

PEREIRA, M.S.; BARBOSA, M.R.V. A família Rubiaceae na Reserva Biológica Guaribas, Paraíba, Brasil. Subfamília Rubioideae. **Acta Botanica Brasilica**, v. 20, n. 2, p. 455–470, 2006.

PÉREZ et al. Synthesis and establishment of *Tuber melanosporum* Vitt. ectomycorrhizae on two *Nothofagus* species in Chile. **Mycorrhiza**, v. 17, n. 7, p. 627–632, 2007.

PETER et al. Ectomycorrhizas and molecular phylogeny of the hypogeous russuloid fungus *Arcangeliella borziana*. **Mycological Research**, v. 105, n. 10, p. 1231–1238, 2001.

PINHEIRO, F.G.B.; WARTCHOW, F. *Cantharellus protectus* – a new species from Paraíba, Brazil. **Sydowia**, v. 65, n. 1, p. 27–31, 2013.

PUTZKE, J. Lista dos fungos Agaricales (*Hymenomycetes*, *Basidiomycotina*) referidos para o Brasil. **Caderno de Pesquisa, Série Botânica**, v. 6, n. 2, p. 1–189, 1994.

RAITHELHUBER, J. Über die nomenklatur einiger argentinischer blätterpilze. **Metrodiana**, v. 2, n. 1, p. 1–24, 1983.

RAITHELHUBER, J. Flora mycologica Argentina. Hongos I. Stuttgart, Germany, p. 405, 1987.

RIBEIRO et al. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. **Biological Conservation**, v. 142, n. 6, p. 1141–1153, 2009.

RICHARDSON et al. Plant invasions – the role of mutualisms. **Biological Reviews of the Cambridge Philosophical Society**, v. 75, n. 1, p. 65–93, 2000.

RICK, J. Himenogastrineas Riograndenses. **Egatea**, v. 19, p. 107–112, 1934.

RICK, J. Basidiomycetes eubasidii in Rio Grande do Sul. Brasilia. 6. **Iheringia**, **série Botânica**, v. 9, p. 451–480, 1961.

RILLIG, M.C.; MUMMEY, D.L. Tansley review: mycorrhizas and soil structure. **New Phytologist**, v. 171, n. 1, p. 41–53, 2006.

RINALDI, A.C.; COMADINI, O.; KUYPER, T.W. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. **Fungal Diversity**, v. 33, p. 1–45, 2008.

RIOUSSET et al. **Truffes d'Europe et de Chine**. Institut National de la Recherche Agronomique, Paris, France, p. 181, 2001.

RIZZINI, C.T. **Tratado de fitogeografia do Brasil – Aspectos ecológicos**. Hucitec, São Paulo, Brasil, p. 747, 1997.

ROLDÁN, A.; ALBALADEJO, J. Effect of mycorrhizal inoculation and soil restoration on the growth of *Pinus halepensis* seedlings in a semiarid soil. **Biol Fertil Soils**, v. 18, n. 1, p. 143–149, 1994.

ROMERO, A.I.; BLUMENFIELD, S. *Tuber rufum* from Rio Negro, Argentina, with notes on Spegazzini's Tuberales. **Mycologist**, v. 15, n. 4, p. 173–175, 2001.

ROSA, L.H.; CAPELARI, M. Agaricales fungi from Atlantic rain forest fragments in Minas Gerais, Brazil. **Brazilian Journal of Microbiology**, v. 40, n. 4, p. 846–851, 2009.

SÁ, M.C.A.; BASEIA, I.G.; WARTCHOW, F. *Lactifluus dunensis*, a new species from Rio Grande do Norte, Brazil. **Mycosphere**, v. 4, n. 2, p. 261–264, 2013.

SCARANO, F.R. Structure, Function and Floristic Relationshipisn of Plant Communities in Stressfund Habitats Marginal to the Brazilian Atlantic Rainforest. **Annals of Botany**, v. 90, n. 4 p. 517–524, 2002.

SCHÜBLER, A.; SCHWARZOTT, D.; WALKER, C. A new phylum, the Glomeromycota: phylogeny and evolution. **Mycological Research**, v. 105, n. 12, p. 1413–1421, 2001.

SILVA, R.F.; ANTONIOLLI, Z.I.; ANDREAZZA, R. Efeito da Inoculação com fungos ectomicorrizicos na produção de mudas de *Eucalyptus grandis* W. Hill. ex. Maiden, em solo arenoso. **Ciência Florestal**, v. 13, n. 2, p. 33–42, 2003.

SIMMONS, C.; HENKEL, T.W.; BAS, K. The genus *Amanita* in the Pakaraima Mountains of Guyana. **Persoonia**, v. 17, n. 4, p. 563–582, 2001.

SINGER, R. *Thaxterogaster* – a new link between Gasteromycetes and Agaricales. **Mycologia**, v. 43, n. 2, p. 215–228, 1951.

SINGER, R. Type Studies on Basidiomycetes VI. Lilloa, v. 26, p. 57–159, 1953.

SINGER, R. The meaning of the affinity of the Secotiaceae with the Agaricales. **Sydowia**, v. 12, p. 1–43, 1958a.

SINGER, R. New genera of fungi. IX. The probable ancestor of the Strophariaceae: *Weraroa* gen. nov. **Lloydia**, v. 21, n. 1, p. 45–47, 1958b.

SINGER, R. Three new species of Secotiaceae from Patagonia. **Persoonia**, v. 1, n. 1, p. 385–391, 1960.

SINGER, R. Fungi of northern Brazil. Universidade do Recife, **Instituto de Micologia**, v. 304, p. 1–26, 1961.

SINGER, R. Monographs of South American *Basidiomycetes*, especially those of the east slope of the Andes and Brazil V. – *Gasteromycetes* with agaricoid affinities (secotiaceous *Hymenogastrineae* and related forms). **Boletín de la Sociedad Argentina de Botánica**, v. 10, n. 1, p. 52–67, 1962a.

SINGER, R. New genera of fungi. XI. *Endolepiotula*. **Sydowia**, v. 16, n. 1, p. 260–262, 1962b.

SINGER, R. Notes on secotiaceous fungi: *Galeropsis* and *Brauniella*. **Koninklijke Nederlandse Akademie van Wetenschappen-Amsterdam**, v. 66, n. 1, p. 106–117, 1963.

SINGER, R. New genera of fungi – XII: *Hybogaster*. **Sydowia**, v. 17, n. 1, p. 12–16. 1964.

SINGER, R. Mycoflora Australis. **Beihefte zur Nova Hedwigia**, v. 29, n. 1, p. 1–405, 1969.

SINGER, R. A revision of the genus *Melanomphalia* as basis of the phylogeny of the Crepidotaceae, p. 441–480, 1971. *In*: Petersen, R. (ed.) Evolution in the higher Basidiomycetes. An international symposium. University of Tennessee Press. Knoxville, USA, p. 562, 1971.

SINGER, R. Cyanophilous spore walls in the Agaricales and Agaricoid Basidiomycetes. **Mycologia**, v. 64, n. 4, p. 822–829, 1972.

SINGER, R. Studies on Secotiaceous Fungi. I. A new species of *Cystangium*. **Mycologia Helvetica**, v. 1, n. 6, p. 417–425, 1985.

SINGER, R. **The Agaricales in Modern Taxonomy**. 4th ed., Koeltz Scientific Books, Stuttgart, Germany, p. 981, 1986.

SINGER, R.; SMITH, A.H. Studies on secotiaceous fungi. I. A monograph of the genus *Thaxterogaster*. **Brittonia**, v. 10, n. 1, p. 201–216, 1958a.

SINGER, R.; SMITH, A.H. Studies on secotiaceous fungi. II. *Endoptychum depressum*. **Brittonia**, v. 10, p. 216–221, 1958b.

SINGER, R.; SMITH, A.H. Studies on secotiaceous fungi. III. The genus *Weraroa*. **Bulletin of the Torrey Botanical Club**, v. 85, n. 5, p. 324–334, 1958c.

- SINGER, R.; SMITH, A.H. Studies on secotiaceous fungi. V. *Nivatogastrium* gen. nov. **Brittonia**, v. 11, n. 4, p. 224–228, 1959a.
- SINGER, R.; SMITH, A.H. Studies in secotiaceous fungi. VI. *Setchelliogaster* Pouzar. **Madroño**, v. 15, n. 3, p. 73–79, 1959b.
- SINGER, R.; SMITH, A.H. Studies on secotiaceous fungi. VII. *Secotium* and *Neosecotium*. **Madroño**, v. 15, n. 1, p. 152–158, 1960a.
- SINGER, R.; SMITH, A.H. Studies on secotiaceous fungi. IX. The Astrogastraceous series. **Memoirs of the Torrey Botanical Club**, v. 21, n. 3, p. 1–112, 1960b.
- SINGER, R.; WRIGHT, J. A new species of the genus *Weraroa* from South America. **Darwiniana**, v. 11, n. 2, p. 607–610, 1959.
- SINGER, R.; SMITH, A.H. A revision of the genus *Thaxterogaster* Singer. **Madroño**, v. 17, n. 1, p. 22–26, 1963.
- SINGER, R.; SMITH, A.H. Studies on secotiaceous fungi. X. Additional data on *Gastroboletus*. **Mycologia**, v. 56, n. 3, p. 310–313, 1964.
- SINGER, R.; ARAÚJO, I. Litter decomposition and ectomycorrhiza in Amazonian forests. 1. A comparison of litter decomposing and ectomycorrhizal basidiomycetes in latosol-terra-firme rain forest and white podzol campinarana. **Acta Amazonica**, v. 9, n. 1, p. 25–41, 1979.
- SINGER, R.; ARAUJO, I.; IVORY, M.H. Ectotrophically Mycorrhizal Fungi of the Neotropical Lowlands, Especially Central Amazonia. 77. ed. Lubrecht & Cramer Ltd, p. 352, 1983.
- SINGER, R.; AGUIAR, I.A. Litter decomposition and ectomycorrhizal Basidiomycetes in an Igapó forest. **Plant Systematics and Evolution**, v. 153, n. 1, p. 107–117, 1986.
- SINGER, R.; WRIGHT, J.E.; HORAK, E. Monographs of South American Basidiomycetes especially those of the east slope of the Andes. VI. "Mesophelliaceae" and "Cribbeaceae" of Argentina and Brazil. **Darwiniana**, v. 12, p. 598–611, 1963.
- SMITH, A.H. **Agaricales and related secotioid Gasteromycetes**, p. 421-450, 1973. *In*: Ainsworth, C.G., Sparrow, F.K., Sussman A.S. (eds.). The Fungi IVB. Academic Press. New York, p. 445, 1973.
- SMITH, A.H.; SINGER, R. Studies on secotiaceous fungi. IV. *Gastroboletus*, *Truncocolumella*, and *Chamonixia*. **Brittonia**, v. 11, n. 1, p. 205–223, 1959.
- SMITH et al. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (*Pseudotsuga menziesii*) in the Cascade Range of Oregon, U.S.A. **Canadian Journal of Botany**, v. 80, n. 5, p. 186–204, 2002.

SMITH, S.E.; READ, D.J. **Mycorrhizal symbiosis**. Academic press. London, p. 787, 2008.

SMITH et al. Ectomycorrhizal fungal diversity and community structure on three cooccurring leguminous canopy tree species in a Neotropical rainforest. **New Phytologist**, v. 192, n. 3, p. 699–712, 2011.

SMITH et al. Phylogenetic analysis of the genus *Modicella* reveals an independent evolutionary origin of sporcarp-forming fungi in the Mortierellales. **Fungal Genetics and Biology**, v. 61, n. 1, p. 61–68, 2013a.

SMITH et al. The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea. **Plos One**, v. 8, n. 1, p. 1–13, 2013b.

SMITH, M.E.; HENKEL, T.W.; ROLLINS, J.A. How many fungi make sclerotia? **Fungal Ecology**, v. 13, n. 1, p. 211–220, 2015a.

SMITH et al. New sequestrate fungi from Guyana: *Jimtrappea guyanensis* gen. et sp. nov., *Castellanea pakaraimophila* gen. et sp. nov., and *Costatisporus caerulescens* gen. et sp. nov. (Boletaceae, Boletales). **IMA Fungus**, v. 6, n. 2, p. 297–317, 2015b.

SOBESTIANSKY, G. Contribution to a macromycete survey of the States of Rio Grande do Sul and Santa Catarina in Brazil. **Brazilian Archives of Biology and Technology**, v. 48, n. 3, p. 437–457, 2005.

SPEGAZZINI, C. Fungi Argentini pug. 3. **Anales de la Sociedad Científica Argentina**, v. 10, p. 145–168, 1880.

SPEGAZZINI, C. Las trufas Argentinas. **Anales de la Sociedad Científica Argentina**, v. 24, p. 120–127, 1887.

SPEGAZZINI, C. Hymenogastraceas sudamericanas. **Revista Chilena de Historia Natural**, v. 21, p. 167–171, 1914.

SPEGAZZINI, C. Breves apuntes sobre Hymenogástreas sudamericanas. **Revista** Chilena de Historia Natural, v. 21, p. 167–171, 1917.

STIELOW et al. Species Delimitation in Taxonomically Difficult Fungi: The Case of *Hymenogaster*. **PLoS ONE**, v. 6, n. 1, p. 1–13, 2011.

SUNHEDE, S. Geastraceae (Basidiomycotina). Morphology, ecology, and systematics with special emphasis on the North European Species. Synopsis Fungorum I, Oslo, Norway, 1989.

SULZBACHER, M.A. Fungos Ectomicorrízicos do Sul do Brasil, com ênfase no hábito hipógeo. Dissertação Pós-graduação em Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria, p. 129, 2010.

SULZBACHER et al. *Chondrogaster pachysporus* in a *Eucalyptus* plantations of southern Brazil. **Mycotaxon**, v. 113, p. 377–384, 2010.

SULZBACHER et al. Ectomycorrhizal fungi from southern Brazil – a literature-based review, their origin and potential hosts. **Mycosphere**, v. 4, n. 1, p. 61–95, 2013a.

SULZBACHER et al. A survey of an ectotrophic sand dune forest in the northeast Brazil. **Mycosphere**, v. 4, n. 6, p. 1106–1116, 2013b.

SULZBACHER et al. Notes on mycophagy of *Descomyces albus* (Basidiomycota) in southern Brazil. **Mycosphere**, v. 6, n. 5, p. 620–629, 2015.

TABARELLI, M.; SANTOS, A.M.M. **Uma breve descrição sobre a história natural dos Brejos Nordestinos**, p. 17–24, 2004, *In*: Porto, K.V., Cabral, J.J.P. & Tabarelli, M. (eds.). Brejos de Altitude: História Natural, Ecologia e Conservação. Ministério do Meio Ambiente, Brasília, p. 319, 2004.

TABARELLI et al. Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. **Conservation Biology**, v. 19, n. 3, p. 695–700, 2005.

TAYLOR et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. **Ecological Monographs**, v. 84, n. 1, p. 3–20, 2014.

TEDERSOO et al. Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native *Vateriopsis seychellarum* (Dipterocarpaceae) and *Intsia bijuga* (Caesalpiniaceae) to the introduced *Eucalyptus robusta* (Myrtaceae), but not *Pinus caribea* (Pinaceae). **New Phytologist**, v. 175, n. 2, p. 321–333, 2007.

TEDERSOO, L.; MAY, T.W.; SMITH, M.E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. **Mycorrhiza**, v. 20, n. 4, p. 217–263, 2010.

TEDERSOO, L.; SMITH, M.E. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. **Fungal Biology Reviews**, v. 27, n. 3, p. 83–99, 2013.

THAXTER, R. A revision of Endogonaceae. **Proceedings of the American Academy of Art and Sciences**, v. 57, p. 291–351, 1922.

THIERS, H.D. The secotioid syndrome. **Mycologia**, v. 76, n. 1, p. 1–8, 1984.

THOMAS, W.W.; BARBOSA, M.R.V. **Natural Vegetation Types in the Atlantic Coastal Forest of Northeastern Brazil**, p. 06–20, 2008. *In*: Thomas, W. et al. (eds). The Atlantic Coastal Forest of Northeastern Brazil. New York: Memoirs of the New York Botanical Garden 100, p. 586, 2008.

TOLEDO, D.; CASTELLANO, M.A. A revision of the genera *Radiigera* and *Pyrenogaster*. **Mycologia**, v. 88, n. 5, p. 863–884, 1996.

TOLEDO, L.S.D.; CASTELLANO, M.A. First report of *Gastrosporium simplex* (Gasteromycetes) from South America. **Mycotaxon**, v. 64, p. 443–448, 1997.

TRAPPE, J.M. A revision of the genus *Alpova* with notes on *Rhizopogon* and the Melanogastraceae. **Beih**. **Nova Hedwigia**, v. 51, n. 1, p. 270–309, 1975.

TRAPPE, J.M. Lessons from Alpine fungi. Mycologia, v. 80, p. 1–10, 1988.

TRAPPE, J.M.; GUZMAN, G. Notes on some hypogeous fungi from Mexico. **Mycologia**, v. 63, n. 2, p. 317–332, 1971.

TRAPPE, J.M.; MASER, C. Ectomycorrhizal fungi: Interactions of mushrooms and truffles with beasts and trees, p. 65–179, 1977. *In*: Walters, T. (ed.), Mushrooms and Man, an Interdisciplinary Approach to Mycology. Linn-Benton Community College, Albany, Oregon, p. 311, 1977.

TRAPPE, J.M.; CÁZARES, E. *Tuber maculatum* around the world. **Bull. Famm. N.S.**, v. 18, n. 1, p. 107–112, 2000.

TRAPPE, J.M.; CLARIDGE, A.W. **Hypogeous fungi: evolution of reproductive and dispersal strategies through interactions with anmals and mycorrhizal plants**, p. 599–611, 2005. *In*: Dighton, J., White, J.F., Oudemans, P. (eds.). The fungal community. Its organization and role in the ecosystem. CRC, Boca Raton, p. 670, 2005.

TRAPPE et al. **Diversity ecology conservation of truffle of the Pacific Northwest**. USDA, Portland, Oregon, p. 194, 2009.

TRAPPE et al. Australasian sequestrate fungi 18: *Solioccasus polychromus* gen. & sp. nov., a richly colored, tropical to subtropical, hypogeous fungus. **Mycologia**, v. 105, n. 4, p. 888–895, 2013.

TRAPPE et al. Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA. **Diversity**, v. 4, n. 1, p. 196–223, 2012.

TRIERVEILER-PEREIRA, L.; BASEIA, I.G. A checklist of the Brazilian gasteroid fungi (*Basidiomycota*). **Mycotaxon**, v. 108, p. 441–444, 2009.

TRIERVEILER-PEREIRA, L.; SILVEIRA, R.M.B.; HOSAKA, K. Multigene phylogeny of the Phallales (Phallomycetidae, Agaricomycetes) focusing on some previously unrepresented genera. **Mycologia**, v. 106, n. 5, p. 904–911, 2014.

TRIERVEILER-PEREIRA et al. Sequestrate fungi from Patagonian *Nothofagus* forests: *Cystangium* (Russulaceae, Basidiomycota). **Mycologia**, v. 107, 1, p. 90–103, 2015.

VELLINGA, E.C. Genera in the family Agaricaceae: evidence from nrITS and nrLSU sequences. **Mycological Research**, v. 108, n. 4, p. 354–377, 2004.

VELLINGA, E.C.; de KOK, R.P.J. Proposal to conserve the name *Chlorophyllum* Massee against *Endoptychum* Czern. (Agaricaceae). **Taxon**, v. 51, p. 563–564, 2002.

VELLINGA, E.C.; WOLFE, B.E.; PRINGLE. A. Global patterns of ectomycorrhizal introductions. **New Phytologist**, v. 10, n. 1, p. 1–14, 2009.

VELOSO, H.P.; RANGEL-FILHO, A.L.R.; LIMA, J.C.A. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: IBGE, p. 124, 1991.

VERBEKEN et al. Tales of the unexpected: angiocarpous representatives of the Russulaceae in tropical South East Asia. **Persoonia**, v. 32, p. 13–24, 2014.

VIDAL, J.M. Algunos hongos hipogeos interesantes para la micoflora catalane. **Bull**. **Soc. Catalana Micol**., v. 16, p. 221–248, 1994.

VIDAL, J.M. The genus *Stephanospora* Pat., two new combinations. **Revista Catalana de Micologia**, v. 26, p. 97–111, 2004.

VILGALYS, R. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. **The Journal of Bacteriology**, v. 172, n. 8, p. 4238–4246, 1990.

VISNOVSKY et al. Traceability of marketable Japanese Shoro in New Zealand: Using multiplex PCR to exploit phylogeographic variation among taxa in the *Rhizopogon* subgenus *Roseoli*. **Applied and Environmental Microbiology**, v. 76, p. 294–302, 2010.

WANG, B.; QIU, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. **Mycorrhiza**, v. 16, n. 5, p. 299–363, 2006.

WARTCHOW, F.; TULLOSS, R.E.; CAVALCANTI, M.A.Q. *Amanita lippiae* – a new species from the semi-arid caatinga region of Brazil. **Mycologia**, v. 101, n. 6, p. 864–870, 2009.

WARTCHOW, F.; BUYCK, B.; MAIA, L.C. *Cantharellus aurantioconspicuus* (Cantharellales), a new species from Pernambuco, Brazil. **Nova Hedwigia**, v. 94, n. 1, p. 129–137, 2012.

WARTCHOW, F.; SULZBACHER, M.A.; BASEIA, I.G. *Amanita psammolimbata*, a new species from Northeastern Brazilian sand dunes. **Mycosphere**, v. 6, n. 3, p. 260–265, 2015.

WRIGHT, J.E.; ALBERTÓ, E. **Guía de los hongos de la region Pampeana. II. Hongos sin laminillas**. Buenos Aires. L.O.L.A., p. 279, 2006.

WU, et al. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. **Fungal Diversity**, v. 69, p. 93–115, 2014.

YANG et al. The sequestrate genus *Rhodactina* (Basidiomycota, Boletales) in northern Thailand. **Mycotaxon**, v. 96, p. 133–140, 2006.

ZAMORA et al. Systematics of the genus *Geastrum* (Fungi: Basidiomycota) revisited. **Taxon**, v. 63, n. 3, p. 477–497, 2014.

ZELLER, S.M. New and noteworthy Gasteromycetes. **Mycologia**, v. 31, n. 1, p. 1–32, 1939.

ZELLER, S.M. Further notes on fungi. Mycologia, v. 33, n. 2, p. 196–214, 1941.

ZELLER, S.M. More notes on Gastromycetes. **Mycologia**, v. 39, n. 3, p. 282–312, 1947.

ZELLER, S.M.; DODGE, C.W. *Rhizopogon* in North America. **Annals of the Missouri Botanical Garden**, v. 5, p. 1–36, 1918.

ZELLER, S.M.; DODGE, C.W. *Hysterangium* in North America. **Annals of the Missouri Botanical Garden**, v. 16, p. 83–128, 1929.

ZELLER, S.M.; DODGE, C.W. New species of Hydnangiaceae. **Annals of the Missouri Botanical Garden**, v. 22, p. 365–373, 1935.

ZELLER, S.M., DODGE, C.W. *Elasmomyces, Arcangeliella*, and *Macowanites*. **Annals of the Missouri Botanical Garden**, v. 23, p. 599–638, 1936.