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Resumo

O controle da interação radiação-matéria, em nosso caso de fótons com emissores

quânticos individuais, como os defeitos de nitrogênio-vacância (NV) em nanodiamantes, é

crucial no processo da fabricação de nano-dispositivos. Isto é conseguido aproveitando-se

os últimos avanços em nano-óptica para aumentar a interação com emissores únicos, para

os quais ferramentas adequadas para o controle preciso da interação foi desenvolvido.

Nesta dissertação, descreveremos o uso de um microscópio confocal invertido e mani-

pulação coerente dos estados de spin de um defeito individual NV num nanodiamante.

Os defeitos NV em nanodiamantes apresentam propriedades ópticas que dependem do

estado de spin dos seus elétrons opticamente ativos, o que os tornam interessantes para

aplicações em nanomagnetometria, processamento de informação quântica e nanobioter-

mometria. Em particular, defeitos NV negativamente carregados (NV−) exibem emissão

de fótons únicos e longos tempos de coerência, mesmo à temperatura ambiente. Além

disso, têm um estado fundamental paramagnético e o sistema pode ser opticamente pola-

rizado e lido, usando-se uma técnica experimental conhecida como Ressonância Magnética

Detectada Opticamente (ODMR). Nesta técnica, a intensidade de fluorescência emitida

pelo nanodiamante depende da configuração de spin do estado eletrônico fundamental,

a partir do qual a transição eletrônica é excitada. Para estudar esses defeitos NV, nan-

odiamantes foram depositados ao longo de uma antena, fotolitograficamente estruturada

sobre um coverslip, usando spin coating e colocados sobre o microscópio. O microscópio

permite a detecção da fluorescência do defeito e sua excitação é feita por um laser CW

emitindo em 532 nm. A fluorescência emitida pelo nanodiamante ocorre em torno dos 650

nm com uma linha zero fônon em 637 nm. A fluo-rescência coletada é enviada a dois foto-

diodos de avalanche, que estão em configuração interferométrica do tipo Hanbury-Brown

and Twiss (HBT). Nela, podemos garantir se a emissão coletada provém de um emissor

individual, analisando a função de correlação de segunda ordem g(2)(τ): se g(2)(τ) < 0, 5

comprovamos a emissão de fótons únicos por um único defeito NV− no nanodiamante.

Trabalhamos então com um único defeito NV− como emissor. Irradiando um campo de



microondas sobre o nanodiamante, nos permite determinar a frequência de ressonância

com a transição de spin no estado fundamental, evidenciado por uma diminuição da flu-

orescência emitida pelo nanodiamante. Usamos o fato de que a frequência de ressonância

da transição do spin depende do campo magnético local para observar o efeito Zeeman

gerado pelo campo magnético de um ı́mã (Nd-Fe-B). Finalmente, realizamos manipulação

coerente através de uma adequada sequência de pulsos de microondas e laser, observando

oscilações de Rabi. Assim, pudemos medir o tempo de coerência inhomogêneo (T ∗2 ) dado

pelo amortecimento das oscilações de Rabi.

Palavras Chave: Microscopia óptica confocal. Nanodiamantes. Fluorescência. Resso-

nância magnética. Dinâmica coerente.



Abstract

The control of the radiation-matter interaction, in our case of photons with quan-

tum single emitters, as the nitrogen-vacancy (NV) defect in nanodiamonds, is crucial in

the process of nano-devices fabrication. This is achieved taking advantage of the latest

advances of the nano-optics to increase the interaction with single emitters for which

ade-quate tools for precise interaction control has been developed. In this dissertation,

we use a home-made inverted optical confocal microscope and coherent manipulation of

spin states to study single NV defect in nanodiamonds. The NV defect in nanodiamonds

presents optical properties that depend on the spin state of its optically active electrons,

which makes them interesting for applications in nanomagnetometry, quantum informa-

tion processing and nanobiothermometry. In particular, the negatively charged NV defect

(NV−) exhibits single photon emission and long coherence times even at room tempera-

ture. Furthermore, it has a paramagnetic ground state and can be optically polarized and

read out, in an experimental technique known as Optically Detected Magnetic Resonance

(ODMR). In this technique, the intensity of the fluorescence emitted by a nanodiamond

depends on the spin configuration of the electronic ground state, from which an electronic

transition is excited. In order to study these defects, nanodiamonds were deposited on a

photolitographically structured antenna on a coverslip by spin coating and placed on the

microscope. The microscope allows to both, the detection of the fluorescence and its exci-

tation, by a CW laser emitting at 532 nm. The fluorescence emitted by the nanodiamond

is centered around 650 nm with a zero phonon line at 637 nm. The collected fluores-

cence is sent to two avalanche photodiodes (APDs), that are in a configuration known as

Hanbury-Brown and Twiss (HBT) interferometer. In it, we can verify whether the col-

lected emission comes from an individual emitter, analyzing the second order correlation

function g(2)(τ): if g(2)(τ) < 0.5 we have an emission from single photons generated by a

single NV− defect in diamond. Working whit single emitter we could radiate a microwave

field over the nanodiamond, which allows us to determine the resonance frequency for

spin transitions in the ground state. At resonance one observes a drop in the fluorescence



emitted by the nanodiamond. We explore the fact that the resonance frequency of the

spin transition depends on the local magnetic field to measure the Zeeman effect gener-

ated by the magnetic field of a permanent magnet (NdFeB). Finally, we realized coherent

manipulation via an appropriate sequence of pulses of microwave and laser, observing

Rabi oscillations. Thus, we can measure the inhomogeneous coherence time (T ∗2 ) given

by the damping of Rabi oscillations.

Keywords: Confocal optical microscopy. Nanodiamond. Fluorescence. Magnetic reso-

nance. Coherent dynamics.
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Chapter 1

Introduction

Optically Detected Magnetic Resonance (ODMR) has been explored since the early

1970’s when Breiland, Harris and Pines first demonstrated optical detection of electron

precession and electron spin echoes by monitoring the phosphorecence of molecular excited

triplet states [1]. ODMR has since then been used to study the polarization of nuclear

spins in semiconductors and also for direct detection of local magnetic fields [2]. This

technique also provides ultrasensitive means to detect and image a small number of elec-

tron and nuclear spins, down to the single spin level with nanoscale resolution [3]. Since

a few years, this technique has being used in many applications and interesting physics

has been revealed through the ODMR of nitrogen-vacancy (NV) defects in diamonds [4].

The study and characterization of defects have been of great importance for solid state

physics and for development of technological devices because these defects frequently

determine most of the mechanical, electrical and optical properties of solids [5, 6]. There

is a class of defects that are optically active, called color centers [6]. The defects in

diamonds are among many studied optically active defects [7], in particular the nitrogen-

vacancy defects (NV). Two different forms of these defects have been identified to date,

namely the neutral state NV0 and the negatively charged state NV−, and they have very

different optical and spin resonance properties [8]. The advantages of these defects is that

one is able to maintain their optical and quantum properties even working at ambient

conditions. Probably, the NV defects are the best known solid state single photon source
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operating at room temperature [9]. The electronic configuration of a NV− defect leads to

a spin system with S = 1 that can be optically detected as an individual quantum system

and prepared in a defined quantum state by optical pumping.

Between the two types of defects (NV0 and NV−), the NV− in nanodiamond is an impor-

tant physical system that allows the development of many technologies including metro-

logy [10], nanomagnetometry [11], nanothermometry [12] and quantum information pro-

cessing [13].

Since diamond is a inert material, the crystalline matrix forms a shell around the defect

that protects it, making that it has a weak coupling with the environment. This defect

exhibits an efficient and perfectly photostable red photoluminiscence (PL), which enables

easy optical detection of individual NV defects by confocal microscopy at room tempe-

rature. The extreme control in the production of pure diamond with nitrogen impurities

permits that the NV− spin states have exceptionally long coherence times in the order of

70 µs [14], which is very important for quantum information protocols. Moreover, NV−

can be optically addressed, and due to their spin dependent fluorescence, the electronic

spin of a NV− defect can be both initialized and read out with a simple optical setup. A

full quantum coherence control can also be realized trough the application of microwave

pulses on the optically initialized state with ODMR.

In this work, we present a study about the optical properties of single NV− defects embed-

ded in nanodiamonds using the ODMR technique. In chapter 2, we discuss the subject

of photon statistics to classify the different types of light emitted and to introduce the

concept of the second-order correlation function [g2(τ)] looking into the works of Hanbury-

Brown and Twiss (HBT) [15, 16]. These are important concepts that will be essential in

characterizing the detection of single photon emitters. Still in this chapter, we make a

short review about coherent dynamics in a two level system where we introduce concepts

such as Bloch vector and π pulses. Then, we describe the main properties of the NV de-

fects and in particular the photophysics of the NV− defect in diamond. Finally, we briefly

describe the technique of optical confocal microscopy used, to study the nanodiamonds

defects in our experiments.



20

In chapter 3, we describe our experimental apparatus and the way we get our samples:

from the coverslip cleaning process passing through the description and use of the spin

coating technique, until the way the microwave antennas used to perform the ODMR are

fabricated. Then we show the detection of a single NV− defect in a nanodiamond by means

of HBT interferometry which is the first step to realize spin state manipulation using

ODMR. Also the power broadening and the Zeeman splitting are shown. Furthermore

the first measures of magnetometry and inhomogeneous dephasing time (T ∗2 ) via Rabi

oscillations are realized.

Finally, in chapter 4 we present the conclusions and perspectives of our work.
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Chapter 2

Theory and methods

In this chapter we develop theoretical aspects to set bases that will allow us to explain the

results of this work. We begin by studying the quanta of the electromagnetic radiation,

photons. We will study properties of the light from statistical and quantum (photon) pers-

pectives. Light-matter interaction is another subject that we will review here, describing

transient dynamics phenomena, particularly in a two level system for which we introduce

the concept of optical Bloch equations. The experiments in this dissertation consist in

investigating nanodiamonds with a single NV− defect, thus we will also present concepts

such as their structure and the photophysics of their emission. Finally, we will discuss

about confocal microscopy that is a crucial method used for investigating single defects

in nanodiamonds and that we apply in this work.

2.1 Photons

In this section, we study some basic concepts to understand the behavior of light. Our

work uses coherent light as excitation source (a laser), so the description of the light

properties done in this section is particularly to coherent light. First, we study different

kinds of light and their characteristics classifying it according to the second-order correla-

tion function g2(τ), which allows to label light as bunched, coherent or antibunched. We

emphasize here that the antibunching phenomenon is a signature of the quantum nature

of light [17].
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2.1.1 Coherent light and photon-counting statistics

One of the important things that we want to realize in our experiments is to determine

if a particular nanodiamond contains a single defect, which is a source of single photons.

In order to do that, to a given nanodiamond we need to count the number of photons

emitted by it and that strike the detector in a specific time interval τ . We consider that

the detected beam is perfectly coherent, monochromatic with an angular frequency ω and

constant intensity I. According to the basic principles of classical electromagnetism, light

is an electromagnetic wave. If the light is coherent with angular frequency ω, phase φ

and amplitude E0 the beam emitted by a laser can be represented by an electromagnetic

field written as [18]

E(x, t) = E0 sin (kx− ωt+ φ) (2.1)

where E(x, t) is the electric field of the light and k = ω/c is the wavenumber in free space.

In agreement with the quantum picture of light, the photon flux Φ is defined as the average

number of photons passing through a cross-section of the beam in a unit time [19]. The

photon flux is calculated dividing the power by the energy of the individual photons:

Φ =
IA

~ω
=
P
~ω

photons s−1 (2.2)

where A is the beam’s cross section and P its power. The intensity I is proportional to the

modulus square of the electromagnetic field amplitude and is constant only if E0 and φ

are independent of time. There will therefore be no intensity fluctuations and the average

photon flux defined by the Equation 2.2 will be constant in the time. The quantum

efficiency of the detector η gives us the ratio between the number of photocounts to the

number of incident photons. To know the number of photons detected by the detector in

a time τ we use the following expression

N(τ) = ηΦτ =
ηPτ
~ω

(2.3)
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where the average count rate R is given by

R =
N

τ
= ηΦ =

ηP
~ω

(2.4)

The maximum count rate given by a detector is basically dependent on the detector

deadtime, which is the time that is taken for the photon counting system to recover

after one detection event. A beam of light with a given photon flux will present photon

number fluctuations in a given time interval due to the discrete nature of the light, this

being described by the photon statistics.

Coherent light follows the Poissonian photon statistics, that expresses the probability

distribution of photon numbers as [19,21]

P (n) =
nn

n!
exp(−n) (2.5)

where n is the average number of events that are detected. In Figure 2.1 we show re-

presentative distributions for n = 0.1, 1.0, 5.0 and 10.0, where one observes a broader

distribution as n increases. The fluctuations of the statistical distribution around its mean

value are quantified in terms of the variance. The variance is equal to the square of the

standard deviation ∆n and is defined by

V ar(n) = (∆n)2 =
∞∑
n=1

(n− n)2P (n) (2.6)

In the Poisson statistics, the variance is equal to the mean value n [19]:

(∆n)2 = n (2.7)

So the standard deviation is given by

∆n =
√
n (2.8)
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Figure 2.1: Behavior of the Poisson distribution for a light beam with constant intensity.
The mean photon number n takes values 0.1 (a), 1.0 (b), 5.0 (c) and 10.0 (d).

The last equation shows that the relative size of the fluctuations ∆n/n decreases as n

gets larger. For example if n = 1.0, we have ∆n = 1.0 so that ∆n/n = 1.0. On the other

hand, if n = 100.0, we have ∆n = 10.0, and ∆n/n = 0.1. Poissonian statistics is applied

to random processes. We can say that although the average photon number has a fixed

value, it fluctuates due to the discrete nature of the photons, when taking into account

short time intervals. These fluctuations can give us useful information to identify different

types of light, as will be seen at the end of this section.

Now we will consider the formalism of photon number representation taking into account

the quantum theory of light based in the quantum harmonic oscillator formalism, which

Hamiltonian is given by

Ĥ = ~ω
(
â†â+

1

2

)
(2.9)
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where â† is the creation operator, for which:

â† |n〉 = (n+ 1)1/2 |n+ 1〉 . (2.10)

Similarly, to the annihilation operator â we have

â |n〉 = n1/2 |n− 1〉 (2.11)

Furthermore, let |n〉 be an energy eigenstate of the Hamiltonian Ĥ with eigenvalues given

by En in

Ĥ |n〉 = En |n〉 =

(
n+

1

2

)
~ω |n〉 (2.12)

To describe coherent states we use the Dirac notation. In this framework, a coherent state

|n〉 is defined by [19,22]:

|α〉 = exp(−|α|2/2)
∞∑
n=0

αn

(n!)1/2
|n〉 (2.13)

where α is a dimensionless complex number and |n〉 is known as number (or Fock) state.

Despite not being eigenstates of the Hamiltonian of the harmonic oscillator neither present

orthogonality properties, the coherent states |α〉 are eigenstates of the annihilation opera-

tor â with eingenvalue α:

â |α〉 = exp(−|α|2/2)
∞∑
n=0

αn

(n!)1/2
â |n〉

= exp(−|α|2/2)
∞∑
n=1

αn

(n!)1/2
n1/2 |n− 1〉

= α exp(−|α|2/2)
∞∑
n=1

αn−1

(n− 1!)1/2
|n− 1〉

= α exp(−|α|2/2)
∞∑
n=0

αn

(n!)1/2
n1/2 |n〉

= α |α〉 (2.14)
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The variance of the photon number is given by:

(∆n)2 = 〈α| (n̂− n)2 |α〉

= 〈α| n̂2 |α〉 − 2n 〈α| n̂ |α〉+ n2〈α|α〉

= 〈α| n̂2 |α〉 − n2 (2.15)

where n̂ is the number operator defined as n̂ = â†â. Since consider 〈α| n̂ |α〉 = n, using

the commutation relation
[
â, â†

]
= 1, Equation 2.15 can be written as

(∆n)2 = 〈α| â†â†â |α〉 − n2

= 〈α| â†(ââ† − â†â+ â†â)â |α〉)− n2

= 〈α| â†(
[
â, â†

]
+ â†â)â |α〉 − n2

= 〈α| â†(1 + â†â)â |α〉 − n2

= 〈α| â†â |α〉+ 〈α| â†â†ââ |α〉 − n2

= 〈α|α∗α |α〉+ 〈α|α∗α∗αα |α〉 |α〉 − n2

= (n+ n2)− n2

= n (2.16)

This is the same result found in the Equation 2.7 for the Poissonian photon statistics. We

can evaluate 〈n |α〉:

〈n |α〉 = e−|α|
2/2

∞∑
m=0

αm

(m!)1/2
〈n |m〉

= e−|α|
2/2

∞∑
m=0

αm

(m!)1/2
δnm

= e−|α|
2/2 αn

(n!)1/2
(2.17)

then

P (n) = |〈n |α〉|2 = e−|α|
2 |α2|n

(n!)1/2
(2.18)
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Using the equations 2.14 and the fact that n̂ = â†â, we can obtain the expression for the

Poisson distribution as

P (n) =
nn

n!
exp(−n). (2.19)

That is exactly Equation 2.5, which gives the expression for the Poisson distribution. By

considering of a perfectly coherent field of constant intensity, we can identify different

types of light according to the standard deviation of their photon-number distribution.

Thus, there are three possibilities:

• Sub− Poissonian statistics : ∆n <
√
n

• Poissonian statistics : ∆n =
√
n

• Super − Poissonian statistics : ∆n >
√
n

In the next subsection we introduce the concept of correlation function that allows us

classify the light from another point of view.

2.1.2 Second-order correlation function

Since the invention of the laser, techniques have been created for studying the nonclassical

behavior of the light. In particular the resonance fluorescence for a single atom gave us the

opportunity of observing photon antibunching and sub-Poissonian photon statistics [22].

Photon antibunching is characteristic of a light field with photons more regularly spaced

in time than in a coherent light field.

If we want further information about the statistics of the light field, we need to measure

the second-order correlation function which is given by [19,21]

g(2)(τ) =
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉
〈E∗(t)E(t)〉〈E∗(t+ τ)E(t+ τ)〉

=
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

(2.20)

where E is the electromagnetic field and I is the intensity of the light beam. In Equation

2.20 we consider measurements of intensity pairs which are detected with a delay time τ .
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If we consider a source with a constant intensity such that 〈I(t)〉 = 〈I(t+ τ)〉 and assume

spatially coherent light the Equation 2.20 can be written as:

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

(2.21)

the correlation function depends only on the relative times of the two intensities being

measured, and from this point of view we obtain a symmetry relation that permits realizing

calculations only for positive τ values [21]. That expression can be written as:

g(2)(−τ) = g(2)(τ). (2.22)

This is why in this dissertation we will show experimental results only for τ > 0 (see, e.g.

Figure 3.6b). One question that appears at this point is how to measure g(2)(τ), and this

is the subject of the next subsection.

2.1.3 Hanbury-Brown and Twiss experiment

The measurement of the correlation of two optical intensities can be expressed in terms of

the second-order correlation function using a Hanbury-Brown and Twiss (HBT) apparatus

[15,16]. A beam incident on a 50:50 beam splitter is divided in two beams, and each beam

strikes on a detector that generates a pulse signal going into an electronic counter that

records the time elapsed between the first pulse (called START) in D1 and the second

pulse (called STOP) in D2. The corresponding experimental scheme is shown in the

Figure 2.2.

Since the number of detected photons (counts) is proportional to the intensity, we can

rewrite Equation 2.21 as a function of the counts registered by the detector at time t, as

g(2)(τ) =
〈n(t)n(t+ τ)〉
〈n(t)〉〈n(t+ τ)〉

(2.23)

Here we can express g(2)(τ) making use of the creation and annihilation operators. Fur-

thermore, we are going to consider that the first photon was detected at time t = 0:
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Figure 2.2: Experimental scheme of the Hanbury-Brown and Twiss setup used for realizing
the intensity correlation measurements.

g(2)(τ) =
〈â†(0)â†(τ)â(τ)â(0)〉
〈â†(0)â(0)〉〈â†(τ)â(τ)〉

(2.24)

It is helpful to understand the behavior of this correlation function when τ = 0 because

it permits to distinguish between different light statistics. So,

g(2)(0) =
〈â†â†ââ〉
〈â†â〉〈â†â〉

=
〈â†â†ââ〉
〈â†â〉2

(2.25)

Using n̂ = â†â and the commutation relation
[
â, â†

]
= 1, the second-order correlation

function can be expressed in terms of the photon numbers for τ = 0

g(2)(0) =
〈â†(ââ† − 1)â〉
〈â†â〉2

=
〈n̂n̂〉 − 〈n̂〉
〈n̂〉2

= 1− 1

n
(2.26)

The last equation gives us an easy way to find out whether the detected light is the result

of a coherent source or a single photon emitter. This type of distinction is crucial in the

present work because we are looking for single photon emitters. Equation 2.26 depends
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only on one variable, n, which is the number of photons emitted. Therefore, measuring

g(2)(0) we can know if we are detecting single photons. For example, coherent states

reproduce classic electromagnetic wave in the limit of large number of photons. Thus,

when n → ∞ we get g(2)(0) = 1 for coherent light. If we measure g(2)(0) = 0, it means

that we have an ideal single emitter. Theoretically, in the especial case that g(2)(0) = 0,

n can be considered both as number of photons and/or number of emitters. However, to

obtain g(2)(0) = 0 experimentally is not possible due to the electronic noise generated in

the APDs and the efficiency limited by their dead time. In this sense it is enough for us

to obtain 0 < g(2)(0) < 0.5 (g(2)(0) = 0.5 when n = 2) because with that we strictly verify

the detection of single emitter [19, 21–23].

2.1.4 Bunching and antibunching

Another way to classify the types of light is looking at the value of g(2)(0), as shown

below:

• Bunched light : g(2)(0) > 1

• Coherent light : g(2)(0) = 1

• Antibunched light : g(2)(0) < 1

Obtaining g(2)(0) = 1 implies that the probability of getting a stop pulse in D2 for each

measurement of correlation will always be the same for all values of τ . g(2)(0) > 1 is

characteristic for thermal light. It consists of bunches of photons, meaning that if we

detect one photon in t = 0 there is a high probability of detecting another photon in

a short time after. When we measure g(2)(0) < 1 we categorize them as non-classical

light, for this type of light, photons come out from the source with more regular time

gaps between them than from coherent sources. This means that two events seldom occur

simultaneously and the probability of detecting a photon after detecting another one is

very small for small values of τ .

So far, we have covered some properties concerning light, regarding fundamentally co-

herent light and detection of single photons that is the basis for the development of our
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experiments. We also learned some important characteristics of the different types of light.

With the interpretation of the second-order correlation function we can know whether we

are detecting light from a single-photon emitter, what is fundamental in the development

of this work.

The sources in which we are interested in studying here must be single photon emitters.

We consider now quantum systems with optical transitions, whose fundamental level is

defined by their spin states, that can be modelled as a two level system, for which we will

study their dynamics.

2.2 Coherent dynamics in a two level system

In this section, the time evolution of a two level system will be studied in the formalism

of the density matrix operator. Here the effect of the environment will be considered

phenomenologically, by introducing a relaxation parameter. We also give a geometrical

interpretation of the density operator through the Bloch vector and introduce the concept

of π pulses that are able to invert the system populations. In a two level system the

evolution of the density operator is described by the optical Bloch equations. Their steady

state solution allows the interpretation of the power broadening phenomenon. Finally, we

will study the coherent oscillations of the populations between two levels known as Rabi

oscillations [24]. In our system there are two spin levels of the electronic ground state of

NV− defects in nanodiamonds.

2.2.1 Density operator

To study the light-matter coupling and provide a description at time of a quantum system

state, we introduce here the density operator (ρ̂) formalism. ρ̂(t) is defined as [22,25]

ρ̂(t) = |ϕ(t)〉 〈ϕ(t)| (2.27)
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Figure 2.3: Schematics of a two level system.

and the matrix elements of ρ̂(t) are:

ρmn(t) = 〈ϕm| ρ̂(t) |ϕn〉 = c∗m(t)cn(t) (2.28)

where c∗m(t), cn(t) are complex numbers that fulfill the condition |cm|2 + |cn|2 = 1. In our

experiments, we work with nanoparticles which have a spin state that can be modelled as

a two level system, so we can define the state of a system |ϕ〉 as a linear combination of

states |g〉 and |e〉. Thus, |ϕ〉 = cg |g〉 + ce |e〉, with |g〉 and |e〉 as the ground and excited

states respectively, as shown in Figure 2.3.

The matrix elements ρmn of the density matrix ρ̂ = |ϕ〉 〈ϕ| (time dependence implicit)

are:

ρgg = 〈g| ρ̂(t) |g〉 = cgc
∗
g

ρee = 〈e| ρ̂(t) |e〉 = cec
∗
e

ρge = 〈g| ρ̂(t) |e〉 = cgc
∗
e = ρ∗eg

(2.29)

The matrix representation of the density operator is

ρ̂ =

ρgg ρge

ρeg ρee

 . (2.30)
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The diagonal elements ρmm are known as terms of population while the off-diagonal

elements ρmn are called terms of coherence. The temporal evolution of ρ̂ is described

by [25]

i~
dρ̂

dt
= [Ĥ, ρ̂]. (2.31)

This equation involves the commutator between the system Hamiltonian and the density

operator and is known as the von Neumann equation.

In order to understand the dynamics of a two level system in a simple way, a geometrical

point of view is used. In the next section we will introduce and study the Bloch vector

U(t) and its time evolution when a radiation pulse is applied to the system.

2.2.2 Bloch vector and π pulses

Now we introduce a geometrical representation which allows us to understand in a

simple way the time evolution of a two-level system. In this picture, the geometrical

interpretation of coherent superposition states is called the Bloch representation. The

vector that describes the state is called Bloch vector, and the sphere that it defines is

called Bloch sphere [19].

We define U(t) in a rotating system with the frequency ω of an applied field E(t) nearly in

resonance with the transition of interest. In this rotating reference frame, the components

of the Bloch vector are u, υ, w such that [26]

u2 + υ2 + w2 = 1 (2.32)

where

u(t) = u0 (2.33)

υ(t) = w0 sin θ(t) + υ0 cos θ(t) (2.34)

w(t) = −υ0 sin θ(t) + w0 cos θ(t) (2.35)
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Figure 2.4: Bloch vector U(t) and the Bloch sphere. The θ angle is defined in the Equation
2.39 and has direct meaning only for atoms exactly in resonance with the field. θ(t) is in
the υ − w plane.

w(t) is a population difference in a two level system, which is called the inversion. v(t) is

the absorptive component of the dipole moment, while u(t) is the dispersive component.

u0, υ0 and w0 are the components of U(0) and are defined as

u0 = ρeg + ρge (2.36)

υ0 = −i(ρeg − ρge) (2.37)

w0 = ρgg − ρee (2.38)

Here we will assume that the vector realizes a rotation about the u axis (Figure 2.4). θ(t)

is defined by the relation [26]

θ(t) =

∫ t2

t1

dE(t)

~
dt (2.39)

where d is magnitude of the dipole matrix element and E(t) is the projection of the applied

field along of the dipole moment (or E(t) is the applied field and d is the projection of

the dipole moment along it). In the case in which the applied field has the steady value

E0 between t1 and t2, the solution of the integral given in Equation 2.39 is:
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Figure 2.5: Square pulse of a coherent field which area is π .

θ(t) =
dE0

~
(t2 − t1) = Ω(0)(t2 − t1) (2.40)

where Ω(0) = dE0/~ is called the Rabi frequency on resonance. It indicates the rate

at which transitions are coherently induced by the electromagnetic filed in a two level

system. Considering the system initially in the ground state (w0 = −1 and υ0 = 0), after

a time ∆t = t2 − t1 such that Ω∆t = π, Equation 2.35 shows w = +1. That means the

population of the system is promoted to the excited state. Another way to see this fact

is considering a coherent field in a square wave form such that the area A(t) enclosed by

this pulse is equal to π (Figure 2.5). This is called a π pulse. Then we can write

A(t) = θ(t) =

∫ t2

t1

dE(t)

~
dt (2.41)

Thus, resonant pulses with an area that is multiple of π, for instance, π, 2π, 3π, can

invert the populations 1, 2, 3, times. Another type of pulses that exist and that indirectly

are used in our experiments, (however it will be crucial in future experiments, which

are commented in the perspectives) are called π/2 pulses. These pulses create a coherent

superposition between the spin states on the υ−w plane. The development of this section

is very useful to understand the evolution of the transitions in a two level system that are

explained in the next sections.
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2.2.3 Optical Bloch equations

The optical Bloch equations describe the time evolution of the atomic populations and

the coherences within the formalism of the density operator [21,25]. That means they are

the equations of motion for the density matrix elements. This is useful to understand the

behavior of transient phenomena in a two level system (Figure 2.3).

The total Hamiltonian ĤT that describes the system is composed by the unperturbed

Hamiltonian Ĥ0, the interaction Hamiltonian ĤI and the relaxation Hamiltonian ĤR, so

the ĤT can be written as

ĤT = Ĥ0 + ĤI + ĤR (2.42)

The unperturbed Hamiltonian is defined in absence of external fields and relaxation pro-

cesses, and can be written as

Ĥ0 =

Eg 0

0 Ee

 (2.43)

Now, considering the presence of an electric field Ê(t) = Ê0cosωt, the interaction Hamil-

tonian is ĤI = −µ̂ · Ê(t), in the dipole approximation:

ĤI = −µ̂ · Ê0cosωt (2.44)

Due to the parity the dipole operator 〈g| µ̂ |g〉 = 〈e| µ̂ |e〉 = 0, only the dipole matrix

elements d = 〈g| µ̂ |e〉 = 〈e| µ̂ |g〉 are nonvanishing. Thus, the interaction Hamiltonian

operator can be written as

ĤI =

 0 −hΩcosωt

−hΩcosωt 0



=

 0 −hΩ
2

(eiωt + e−iωt)

−hΩ
2

(eiωt + e−iωt) 0

 (2.45)

where
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Ω =
dE0

~
(2.46)

is again the Rabi frequency on resonance.

The last term of the Hamiltonian ĤR is responsible for relaxation processes. We write

it introducing phenomenological decay constants Γ and γ, respectively the decay rates of

the population and coherence terms. In this way, we can write (see Equation 2.31) [25]

[ĤR, ρ̂] = i~

 Γρee −γρge
−γρeg −Γρee

 (2.47)

Γ = 1/Te is the excited state decay rate where Te is its lifetime and γ = 1/Tc is the

coherence decay rate due to for instance interaction with the local environment. Generally,

in the literature Te is called longitudinal relaxation time and is labeled as T1, while Tc is

known as transverse relaxation time or T2 time. Additionally, also exists a term related

to dephasing effects and is labeled as T ∗2 , which is the time scale on which states of the

two level system accumulate a random phase relative to one another. Is known that

T1 � T2 � T ∗2 [26].

Inserting these terms in Equation 2.31, which gives us the temporal evolution of the

system, we can find an equation system that allows us to know the behavior of the

complete dynamics of a two level system when interacting with a radiation field. This

equation system is known as the optical Bloch equations, and can be written as

i~ d
dt
ρgg = iΩ

2
(ρeg − ρge)(eiωt + e−iωt) + i~Γρee

i~ d
dt
ρge = iΩ

2
(ρee − ρgg)(eiωt + e−iωt) + ρge(E1 − E2)− i~γρge

i~ d
dt
ρeg = iΩ

2
(ρgg − ρee)(eiωt + e−iωt) + ρge(E2 − E1)− i~γρeg

i~ d
dt
ρee = iΩ

2
(ρge − ρeg)(eiωt + e−iωt)− i~Γρee

(2.48)

We can define a frequency in function of the energy difference ωij = (Ei −Ej)/~ and the

detuning ∆ = ωeg−ω. Furthermore, in order to solve this system of equations we can use

the Rotating Wave Approximation (RWA), that consists in transforming the Hamiltonian
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into the rotating frame, which rotates at the frequency of the ω. To do that, we introduce

the following substitutions:

ρge = ρ′gee
iωt

ρeg = ρ′ege
−iωt

(2.49)

The RWA allows to neglect effects that are associated with oscillations at twice the optical

frequency [26]. With this simplification, the equation system in 2.48 turns to

d
dt
ρgg = iΩ

2
(ρ′eg − ρ′ge) + Γρee

d
dt
ρ′ge = iΩ

2
(ρee − ρgg) + (γ + i∆)ρ′ge

d
dt
ρ′eg = iΩ

2
(ρgg − ρee) + (γ − i∆)ρ′eg

d
dt
ρee = iΩ

2
(ρ′ge − ρ′eg)− Γρee

(2.50)

These equations are used to describe the dynamics of a spin state due to the influence of

a magnetic field in analogy with the influence of an optical field on a two level system.

We can give a solution to this equation system 2.50 in the steady state if we set them

equal to zero. The result for ρee is

ρee =
γΩ2

2(Γ∆2 + γ2Γ + γΩ2)
. (2.51)

We can consider that there is no environment contact but only spontaneous decay, so we

can write 2γ = Γ [21] to obtain a reduced expression of the Equation 2.51

ρee =
Ω2

4∆2 + Γ2 + 2Ω2
(2.52)

In the last equation, the presence of Ω2 in the denominator causes a broadening in the

linewidth of the transition |g〉 → |e〉. This phenomenon is known as power broadening.

Figure 2.6 shows this effect and we can observe that the population asymptotically ap-

proaches the value 0.5 that is when the system is saturated. So, when we talk about

power broadening we do not take into account only the linewidth due to the spontaneous

emission (also known as natural linewidth), but also that now we have saturation effects

that give us a more general expression for the linewidth as [21]
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Figure 2.6: Illustration of the power broadening effect. The curves from bottom to top
are obtained with Γ = 1 MHz and Ω = 1, 2, 4, 6, 8 and 10 MHz respectively.

2

(
γ2 +

1

2
Ω2

)1/2

. (2.53)

This equation will be useful when analyzing the results in subsection 3.4.2 where the

power broadening of the ODMR spectrum is shown.

2.2.4 Rabi oscillations

We can find solutions for the optical Bloch equations in some special cases using a trial

function not taking into account the effects of the damping (that means Γ = γ = 0) as [21]

ρij = ρ
(0)
ij e

λt (2.54)

Furthermore, writing the initial conditions as

ρ22(0) = 0

ρ12(0) = 0
(2.55)
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Figure 2.7: Rabi oscillations for different detunings with a fixed frequency Ω = 1 in
absence of damping. We can observe that the oscillations maintain a constant amplitude
all the time for each value of ∆. ∆ = 0 (Red), ∆ = Ω/2 (Green), ∆ = Ω (Blue) and
∆ = 2Ω (Violet).

we can obtain a simplified equation for the dynamics of the excited state

ρee(t) =
Ω2

Ω′2
sin2

(
Ω′

2
t

)
(2.56)

In the above equation, Ω′ =
√

Ω2 + ∆2 is the generalized Rabi frequency. Examples

of this dynamics are shown in the Figure 2.7 for different values of ∆. The degree of

excitation oscillates between 0 and Ω2/Ω′2 obtaining the maximum population inversion

when a pulse with area of π, 2π, 3π, and so on is applied [26]. The oscillatory behavior

between the ground and excited states have a frequency Ω′. For values ∆ > 0 we obtain

higher frequency values with smaller amplitudes then in the resonant case.

In a real physical situation the system presents damping, i.e., losses due to energy radiated

by oscillation of dipoles in interaction with the radiation field or any kind of dephasing

process that makes the dipoles to be completly out of phase in relation to each other such

that the polarization density may be zero. When we include the damping effects (this



2.2 Coherent dynamics in a two level system 41

0 1 2 3 4 50 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

r ee

W t / p
Figure 2.8: Rabi oscillations in presence of damping (∆ = 0). The figure shows oscillations
for different values of γ observing damping when γ → Ω: γ = 0 (Red), γ = Ω/4 (Green),
γ = Ω/2 (Blue), γ = Ω (Violet).

means Γ, γ 6= 0), it is impossible to analytically resolve the equations system 2.50 in a

general way, so we assume solution in the resonant case, ∆ = 0, with the same initial

conditions given in 2.55 to obtain [21]

ρee(t) =
Ω2/2

2γ2 + Ω2

[
1−

(
cosλt+

3γ

2λ
sinλt

)
e−

3γt
2

]
(2.57)

where

λ =

(
Ω2 − 1

4
γ2

)1/2

(2.58)

The exponential term is the responsible for modulating the oscillation amplitude. The

curve for γ = 0 reproduces the same oscillations given by Equation 2.56. Examples of

such dynamics are shown in the Figure 2.8 with increasing γ. We can observe that the

oscillations are rapidly damped until we stop to see them when γ → Ω. The effect of the

relaxation is thus a modulation of the oscillations amplitude in the population dynamics.
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2.3 Single nitrogen-vacancy defect in diamond

The nitrogen-vacancy center is a promising candidate to be used in different applications

because it exhibits long coherent times and high photostability at room temperature [27].

In the following, we discuss their basic optical and spin properties and the photophysics

involved in transitions among the defects’ energy levels.

2.3.1 Structure and properties of single NV defects in nanodi-

amonds

There exist more than one hundred luminescent defects in diamond that are widely

studied [4]. Due to their stability and their interesting optical properties, they are often

artificially embedded in nanocrystals that can be used as single photon sources or as

fluorescent biomarkers because they are protected by the diamond structure, presenting

high stability and low cytotoxicity [28]. In this work, we are interested in the nitrogen-

vacancy (NV) defect [29].

The NV defect in diamond presents a trigonal symetry C3v [4, 30], that consists of a

substitutional nitrogen atom and a vacancy in an adjacent site of the diamond lattice, as

shown in the Figure 2.9. That means that two lattice sites that should be occupied by

carbon atoms were altered. One carbon atom is replaced by a nitrogen atom and other

site lattice is replaced by an empty space (the vacancy). This structure can be formed

with a process of irradiation with thermal neutrons followed by annealing in a nitrogen

rich atmosphere [31, 32].

The nitrogen atom belongs to the V group of the periodic table, therefore it has five

valence electrons: three are shared with the three nearest carbon atoms and two are

located in the dangling bonds in the direction of the vacant site. The NV defects can

appear in two types, the first is known as a neutral NV0 defect that has five electrons:

three of the carbon and two of the nitrogen. Thus, around the vacant site, there are five

electronic bonds which are: two due to the nitrogen atom and three due to carbon atoms.

In this structure, one of the electrons is unpaired and the interaction among these five
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Figure 2.9: Diamond crystallographic structure with the scheme of a NV defect consisting
of a substitutional nitrogen atom next to a missing carbon atom (a vacancy) [27].

electrons results in a total spin S = 1/2. Therefore the ground state of this configuration

is a singlet. Other configuration of the NV is presented when an additional electron

from the lattice, probably from another substitutional nitrogen atom, is captured by the

defect [32]. There will then be six electrons occupying the dangling bonds of the vacancy

complex [33]. This configuration is known as negatively charged NV− defect. Each one of

the three carbon atoms has four symmetrical bonds, one pointing at the vacant site and

the others pointing at the other carbon atoms in the lattice. Similarly, the nitrogen atom

has one bond pointing at the vacant site and the other pointing at the carbon atoms.

For the negatively charged NV− defect, electron spin resonance indicates that the defect

has a paramagnetic electronic state with total spin angular moment S = 1 which has a

spin triplet (3A) ground state and excited (3E) triplet state (Figure 2.10a). Spin-spin

interaction splits the (3A) ground state by D = 2.87 GHz into a state spin projection

ms = 0 and a degenerated doublet with ms = ±1 [11], which is known as zero field

splitting. Correspondingly, the exited state is split by D′ = 1.43 GHz. The crystal field

splitting quantizes the spin states along the N-V symmetry axis, so that in the presence
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Figure 2.10: (a) NV− electronic levels, showing the dynamics of the system in the process
of optical excitation (thick upward arrow) and emission of fluorescence (curly arrows).
Also represented are non-radiative decay processes (thin arrows) (b) Fluorescence spec-
trum of a single NV− center with a characteristic zero phonon line (ZPL) at 637 nm,
taken at room temperature under the excitation of a CW laser emitting at 532 nm.

of an external magnetic field, the ms = ±1 sublevels will have an energy splitting that is

proportional to the projection of the field along of the N-V axis, that is, the degeneracy of

the states with spin projection ms = ±1 can be lifted by means of the Zeeman effect [34].

The spin Hamiltonian of the nitrogen-vacancy defect can be written as the sum of zero

field spliting and Zeeman terms as [35]

HS = D{S2
z − (1/3)[S(S + 1)]}+ gµBB̄ · S̄ (2.59)

where µB is the Bohr magneton and g is the electron g-factor (g ≈ 2.0). B̄ is the external

magnetic field.

Pure diamond has an energy gap of 5.5 eV. The NV− center, which is an intragap defect,

shows strong optical transitions between the ground and the excited states, which present

a separation in energy of 1.95 eV., allowing the detection of individual NV− defects at

room temperature using optical confocal microscopy. The electronic structure (see Figure

2.10a) and its photophysics (see next section) allow it to be optically polarized (initialized)
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and coherently manipulated and read out by a technique known as Optically Detected

Magnetic Resonance (ODMR) [36].

2.3.2 Photophysics of the NV− defect in nanodiamonds

To explain the photophysics of a single NV− defect, we will define the triplet ground

state with ms = 0 and ms = ±1 sublevels, and a triplet excited state with m∗s = 0

and ms = ±1 as well as a metastable singlet state with ms = 0, as shown in Figure

2.10a. In our experiment we drive a transition towards the excited state by means of a

linearly polarized CW laser emitting at 532 nm. These transitions are subjected to spin

angular momentum conserving selection rules and to lead transitions between the triplet

states with a characteristic fluorescence with a zero-phonon line (ZPL) at 637 nm and

a broad phonon-sideband extended up to 800 nm at room temperature (Figure 2.10b).

The transition ms = 0 → m∗s = 0 results in a predominantly radiative decay while for

transitions that occurs between the ms = ±1 sublevel to the exited m∗s = ±1 sublevels,

the system has a higher probability to decay via intersystem crossing to the metastable

singlet state and then to the ms = 0 of the triplet ground state with a non-radiative

decay path. This process permits to drive the NV− defect into ms = 0 ground state [32].

When this occurs it is said that the system was spin polarized by optical pumping. This

characteristic is important for quantum information protocols [37]. Due to the fact that

the decay from the m∗s = ±1 state, by mean of the intersystem crossing, towards the

metastable state is more probable, the fluorescence intensity drops in approximately a

30%. Following this path the system doesn’t emit fluorescence compared with the decay

from m∗s = 0. The radiative lifetime of the excited state is approximately 20 ns [28].

Using a microwave field the paramagnetic ground state can be coherently manipulated

between the ms = 0 and ms = ±1 Zeeman sublevels. This permits to have control of the

transitions, obtaining population inversion between those two levels. To know the spin

state, we should detect the fluorescence and observe its intensity that gives us information

about it. In this sense we are interested in knowing what is the microwave frequency that
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induces a transition between the sublevels of the ground state lowering the fluorescence

that we detect. This is the essence of the ODMR technique.

So far, we studied the theoretical part that will be useful to understand the physics which

explains the different phenomena that were observed during the experiment. In the next

section we introduce the Scanning Confocal Optical Microscopy technique which is an

important tool that allows us to obtain images with high resolution. Despite being a

technique developed to study biological systems, it becomes very important for us by the

reasons explained below.

2.4 Scanning Optical Confocal Microscopy

Optical microscopy is widely used in many branches of science, particularly in studying

biological systems [38]. Most samples investigated with optical microscopy have reflective

surfaces that present imperfections such that the light interacts with them in different

depths and the images seen by the observer present blurring, producing a degradation in

the contrast and the resolution. To overcome these problems, confocal microscopy was

developed by Marvin Minsky and applied to image neural networks of brain tissue [39].

The principle of this technique is based on eliminating the light reflected or fluorescence

originated in perifocal regions using a pinhole in the detection path. As shown in Figure

2.11a, the emitted signal by the particle/fluofore located in the illuminated spot comes

back via the same optical path, passes through a dichroic mirror and focusses onto a

detector after passing through a pinhole, which is the essential difference of the confocal

technique in relation to the usual microscopy. As a result, with a confocal microscope we

can obtain better sharpness and contrast in the image and higher transversal and axial

resolutions.

The resolution of an optical system is given by its Point Spread Function (PSF), which

is basically the diffraction pattern that arises when a point object is imaged through the

optical system (lenses, apertures, etc.) [40]. The PSF (P) of a circular aperture in the

paraxial approximation has the form of an Airy disc [18]
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Figure 2.11: (a) Simplified scheme of a confocal microscope. Light coming out of the laser
source hits over the surface of the dichroic mirror and is reflected towards the sample.
The fluorescence emitted is allowed to pass through the dichroic mirror to the detector.
(b) Schematics of an objective lens. L is the diameter, n the refractive index and f the
focal distance.

P =
[2J1(αr)

αr

]2

(2.60)

where α = 2πN.A./λ and J1(αr) is the Bessel function of the first kind. λ is the wavelength

of the light and N.A. = n sin θ is the numerical aperture of the objective, where n is the

refractive index of the medium and θ is the half angle of the maximum cone of light

converging or diverging from an illuminated spot, as Figure 2.11b shows. The first zero

of the function J1(αr) is located at αr = 3.823 or r = 0.61λ/N.A. The width between

the half-power points of the main lobe of P is known as the full width half-maximum

(FWHM) and is given by [40]

FWHM =
0.51λ

nsinθ
=

0.51λ

N.A.
. (2.61)
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This formula for the width of the image of a point object is also called “the single point

resolution” of the standard optical microscope and it means that the image of a point

object will be better resolved if the FWHM is as narrow as possible. According to this

equation the resolution of an optical microscope is determined by the numerical aperture.

So, the resolution can be improved by using immersion objectives with high refractive

index which increases the N.A. and consequently reduces the FWHM.

In the confocal microscope, the pinhole significantly reduces the background that is typical

of a conventional fluorescence microscope, because the focal point of the objective lens

forms an image where the pinhole is, those two points are known as “conjugate points”

(or alternatively, the plane of the sample and the pinhole are conjugate planes). The

pinhole is conjugate to the focal point of objective lens, hence the name “confocal”. This

is clearly seen in the simplified scheme of the confocal microscope shown in the Figure

2.11a.

In the standard microscope the PSF is mainly determined by the microscope objective

but in the case of confocal microscopy we have to add a new PSF that appear due to a

new aperture (PINHOLE) resulting in an effective PSF given by the square of the PSF

for a standard microscope or P2 [40]

Pc = P2 =

{
2
[J1(αr)

αr

]2
}2

(2.62)

Figure 2.12 shows the intensity profile for both conventional microscope and confocal

microscope. Notice that the curve corresponding to the confocal microscope is narrower,

fact that evidences its higher resolution.

The single point resolution for the confocal microscope is defined as the half-power width

of the main lobe of the P2,

FWHMc =
0.37λ

nsinθ
=

0.37λ

N.A.
(2.63)

So, the definition of single-point to a confocal microscope is 28% better than the resolution

of the standard optical microscope. In practice, when investigating single scatterers or
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Figure 2.12: Intensity profile of the PSF to a conventional microscope (blue curve) and a
confocal microscope (red curve).

emitters much smaller that the wavelength, the FWHM of the intensity profile of the

illuminated point object is used as criterion for the estimation of the resolution of our

optical system.

To define the minimal distance in which two illuminated points can be resolved we make

use of the Rayleigh criterion, which states that two closely spaced illuminated points

are distinguishable from each other when the first minimum of the diffraction pattern

of one source point coincides with the maximum of the pattern of other. For light with

wavelength λ, this minimum distance d is given by the Rayleigh criterion for the confocal

microscopy [40] (see Figure 2.13).

d =
0.56λ

N.A
(2.64)

With this result, we conclude the theoretical part of this dissertation and now we will

pass to the next section where we will use this theory to explain the results obtained in

our experiments.
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Figure 2.13: The first image shows distant sources, well-resolved. The second, two close
image just resolved and the last shows an unresolved image [20].



51

Chapter 3

Experiments and results

In this chapter, we will present the measurements that were done with our setup to

optically characterize and manipulate the spin states of NV−. We begin by describing our

setup. Then we discuss the method for preparing of the nanodiamond samples including

the calibration method of our optical system. In the last two sections we will show

the results of the detection of single particles; and the spin states manipulation via the

ODMR technique in the absence and presence of an external magnetic field. Finally, Rabi

oscillations experiments allow us to obtain information about the relaxation time (T ∗2 ) of

the spin state. To start, we will describe the details of the apparatus that allowed us to

do our research.

3.1 Experimental setup

The experimental setup (scheme shown in Figure 3.1) was built to implement the prin-

ciples of confocal microscopy technique, mentioned in section 2.1, that allows us obtain

images with high spatial resolution. This is important because we are interested in investi-

gating the light coming from a nanodiamond with a single NV defect. On the optical table

we use a linearly polarized solid-state CW laser source (Shanghai Laser & Optics Century,

GL532T3-200) emitting at 532 nm. The output beam passes through an acousto-optic

modulator (AOM) (Isomet, model 1205C-2), which works as a switch to generate fast

optical pulses. This AOM is excited by pulses generated via a pulse pattern generator
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Figure 3.1: Diagram of the optical setup. The CW laser (λ = 532 nm) is focused through
an acousto-optic modulator (AOM). Then both the half waveplate λ/2 and the polarizer
(P) are used to control the power of the laser delivered to the microscope. Light is reflected
by a dichroic mirror (DM) to a high N.A. objective (Obj) which focuses light onto a single
nanoparticle and collects part of its fluorescence. The fluorescence can be to sent to a
high sensitive CCD camera by flipping a mirror (FM1) to obtain an image. It can also
be sent by another flip mirror (FM2) to a spectrometer to get a fluorescence spectrum or
even sent to a HBT interferometer to obtain a correlation function making use of Time
Correlated Single Photon Counting (TCSPC).
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Figure 3.2: (a) Scheme of the antenna used in the experiment (the dimensions are not
to scale). The antenna was designed using lithography to pattern a photoresist on a
coverslip. (b) Antenna holder with the antenna in the center. This is used to facilitate
the placement of the antenna over the piezo stage. Two SMA connectors are welded on
the holder for in-and out coupling the microwave field used to perform Optically Detected
Magnetic Resonance (ODMR).

card (SpinCore Technology, Pulse Blaster ESR-PRO 500). Light that passes through the

AOM hits on the surface of a dichroic mirror (which reflects green light and transmits

red light). The reflected light with the maximum power of 300 µW is driven towards

an objective lens of high numerical aperture (Olympus, UPlanSapo 100X/1.4 oil), that

makes part of an inverted optical confocal microscope. This resulted in an intensity of ∼

470 kW/cm2 at the objective focus (see section 3.2.2). Light is focused on the surface of a

coverslip on which a microwave antenna was deposited by lithographic methods [42]. The

coverslip with the antenna (Figure 3.2) is placed on a holder made from Rogers board and

then on a 2D piezoelectric actuator (Piezosystem Jena 88510) fed by homemade low-noise

(1 : 105) high power amplifiers, that moves the holder in the xy plane allowing us to do

scans over a determined region of the antenna. The fluorescence light that is collected

in reverse through the same objective is sent back toward the dichroic mirror that filters

part of the excitation light and allows the fluorescence to pass. We use a 593 nm Long

Pass (LP) filter (Semrock, FF01-593/LP) to further eliminate residual light from the ex-
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citation beam. Following the principles of the confocal microscopy we use two lenses and

a pinhole; lens L3 (100 mm) of Figure 3.1 serves to focus the fluorescence light towards a

pinhole (PH) with an aperture of 25 µm. The PH is used as a spatial filter that blocks

light coming from perifocal regions allowing us to obtain higher resolution images. In the

output the light diverges, so we use the lens L4 (100 mm) to collimate the beam and do

not lose the signal that is going to form the images. These optical images are produced by

fluorescence being emitted from the scanned region where the particles were deposited by

spin coating and can be seen using a single-photon sensitive CCD camera (Hamamatsu

ORCA-ER-1394, C4742-80-12AG). Additionally, a spectrometer (Princeton Instruments,

SP2500i) with a single-photon sensitive CCD camera (Andor Technology, DU401A-BV)

are used to make fluorescence spectra (Figure 2.10b) of the nanodiamond defects, at room

temperature.

In the experiment it is very important to know whether the particle being observed is a

single emitter. For that, we built an optical system known as HBT interferometer. That

interferometer gives us the possibility of measuring the second-order correlation function

of the emitted fluorescence which allows us to indicate whether one deals with a single

emitter. In a simple description, the HBT interferometer (see Figure 3.1) consists of a

50:50 beamsplitter which sends light to two avalanche photodiodes (APD), that are the

detectors situated at two outports of the beamsplitter. When a photon impinges over

the APD1, it not only triggers an electron avalanche but also emits infrared (IR) light,

in a phenomenon known as cross-talk [43]. The emitted IR photons can influence the

single-photon detection events creating a fake signal in other neighboring APD (APD2),

thereby creating additional spurious photon correlation events. To avoid that, we placed

a 775 Short Pass (SP) (Semrock, FF01-775/SP) in front of the APD1.
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3.2 Samples and preparation

In this section we discuss on the characteristics of the nanodiamonds sample and of the

cleaning method that we use to remove the organic residues from the antenna where will

deposit the nanodiamonds.

3.2.1 Nanoparticles and microwave antenna

The nanodiamond particles (Microdiamant AG, quantum particles QP25) that we use in

our experiments have an average a size of 25 nm containing zero, one or two NV− defects.

An antenna (Figure 3.2a) was designed using photolithography to pattern a photoresist on

a coverslip. Then one sputtered 5 nm of chromium, 180 nm of gold and 5 nm of chromium

again. Nanodiamonds and the antenna were provided by the Nano Optics Group of the

Humboldt university of Berlin, Germany.

Nanodiamonds are deposited on the surface of the antenna and it is very important that

it is clean. So, we adopted a cleaning method with piranha solution. This is a mixture

of concentrated sulfuric acid (70%) with hydrogen peroxide (30%) in a ratio of 4:1. This

solution must be prepared in a glass beaker because the reaction produced is highly

exothermic, so we must be very careful when placing the antennas inside the beaker.

The antennas have to be placed immediately after making the solution to profit from

the reaction. Fifteen minutes are enough for remove the organic impurities. Then the

antennas must be rinsed during approximately 3 minutes, three times in three different

beakers with deionized water to ensure a good cleaning and finally dried with a nitrogen

jet.

The process of deposition of nanoparticles on the antennas is done in our lab by means

of the spin coating technique, which uses a centrifugal force to produce a homogeneous

distribution of nanodiamonds on the surface of the antenna. The nanodiamonds come in a

suspension of ignored concentration. 10 µl of this suspension are taken with a micropipette

after a sonication process, which consist in placing our sample inside a ultrasonic bath

during 15 minutes approximately. After that a puddle of the sample with nanodiamond
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Figure 3.3: (a) Scanning electron microscope (SEM) image of the calibration grating. (b)
Dimensions of the grating [41].

particles is dropped in the center of the antenna and is spread over its surface using a

spin coater (Chemat Technology inc., KW-4A). We set up the first spining cycle to ramp

for 6 seconds until 1500 rpm and the second spinning cycle at 2800 rpm for 15 seconds.

After that, the sample should be ready to be used. Since cleaning process of the antenna

is very important, every step explained above must be done carefully. Otherwise organic

material could land on the antenna surface, which can be critical and lead to a blinking

phenomenon that makes impossible the photostability and detection of the fluorescence

signal coming from the region where the single nanodiamond is placed.

3.2.2 Optical confocal microscope calibration

Before beginning the experiment with diamond samples we have to characterize our optical

system and to measure its spatial resolution. In order to do that, first we calibrate

the optical system using a calibration grating (NT-MDT company, Test grating TGX1)

which has a period of 3000 nm. The Figure 3.3a shows a SEM image of the grating

and Figure3.3b its dimensions. With this grating we will find the relation of equivalence

between pixels and nanometers in our CCD camera. Figure 3.4a shows an image of the

grating after being illuminated with laser light. The brilliant/dark points are consequence

of the constructive/destructive interference given by the optical path difference between
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Figure 3.4: (a) Image of a test grating used to calibrate the optical system. (b) Intensity
profile obtained when making a cross section of (a).

the upper and lower surfaces. Making a cross section we obtained an intensity graphic

3.4b. The peak to peak distance is 74 pixels that should be equal to the period of the

grating. Thus

3000 nm

74 pixels
≈ 41

nm

pixel
(3.1)

So far, we made the calibration of our system. Now, taking into account this result we can

to do a measure of the PSF of the system to know the resolution of the system. To do that

use dye doped beads with 20 nm in diameter because they are particles easier to detect

since they emit stronger fluorescence than the nanodiamonds with a central wavelength

at 610 nm. The method used for the preparation of this calibration sample is the same

that we describe above but in this case the deposition was on simple coverslips. Figure

3.5a shows a fluorescence image of an individual bead where the yellow line is traced to

obtain a cross section. This gives us a fluorescence profile which FWHM, according to

section 2.4, is the PSF of the optical system. In this case the FWHM ≈ 7 pixels. Using

the relation 3.1, we find that FWHM ≈ 287 nm. This means that each particle with size

less than 287 nm will be seen by the system as having a size of 287 nm. Theoretically,
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Figure 3.5: (a) Image of a particle of 20 nm used to measure the PSF of our system. (b)
Intensity profile where the FWHM gives us the PSF.

using the Equation 2.64 we obtain d = 244 nm. The differences between the two measures

could be because the pinhole that we are using is not adequate and leaves to passes light

from the perifocal regions.

With this characterization of our optical system, we are able to move on and in next

section we will detect single defect particles.

3.3 Detection of single NV− defects in nanodiamonds

One way of determining if the observed particle has embedded NV− defects is via flu-

orescence spectroscopy. The typical fluorescence spectrum of nanodiamonds with NV−

defects is known and can be obtained using a spectrometer coupled to a sensitive CCD

camera. Figure 2.10b shows a characteristic spectrum that was measured in our lab at

room temperature. In spite of giving us information if the illuminated diamond contains

NV− defects it is not possible to know a priori if the nanodiamond has only one defect

embedded in it. If we want to know this we should measure the second-order correlation

function of the light emitted by the single nanodiamond.
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Figure 3.6: (a) Scanning fluorescence image over an antenna region showing that na-
nodiamonds are being detected. (b) Second-order correlation function of the nanoparticles
fluorescence. Here we get g(2) < 0.5, which guarantees that we have a single photon
emitter.

In order to find a single nanodiamond we realize a scan over a micrometric region (typical:

10 µm × 10 µm) using a xy-piezo scanner. The confocal image (Figure 3.6a) is a product

of the light coming from the illuminated region in the antenna. In a typical image it

is easy to observe bright points which may correspond to NV− defects. We investigate

them one by one and measured the second-order correlation function g(2)(τ) to observe

if it is antibunched, corresponding to a single emitter. The fluorescence coming from the

illuminated region is focused on two APDs connected each one to two home made photon

counters. These counters show us in a display the number of photons (typically 4 × 104

counts/s in the linear regime of the excitation) detected by the APDs in a given time

window (in our case 100 ms) and furthermore re-transmit this signal to a time correlated

single photon counting (TCSPC) module (PicoQuant, Time Harp 200).

The sequence in the detection process is as follows: when a photon is detected by the

APD1 the time counter of the TCSPC module starts counting the time until a photon is

detected by a APD2. All this is considered as an event. The difference in time between
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the first and second detected photons (photons detected by APD1 an APD2, respectively)

is the information sent via electrical signals to the TCSPC module. The number of events

detected versus the delay time τ when each event is detected are represented in histogram

that is proportional to the g(2)(τ) function. If the histogram presents a dip such that

g(2)(0) < 1 we are seeing a characteristic quantum behavior of light (Figure 3.6b). In the

last chapter Equation 2.26 is used to characterize individual emitters. If g(2)(0) < 0.5,

we have detected a nanodiamond with a single defect. The fact that the dip doesn’t go

to zero is due to the noise of the system generated by detection of non fluorescence light

that arrives to the APDs and also by their dark counts.

From now on, all results shown in this dissertation are obtained with particles containing

single NV− defects.

3.4 Spin state manipulation of single NV− defect in

nanodiamonds

NV defects in diamond, in particular NV− defects, present a known spin system that

can be polarized via optical excitation as well as coherently manipulated by a microwave

and optically read out. In this section, we discuss on a technique known as Optically

Detected Magnetic Resonance (ODMR), an important tool that gives us the possibility

of manipulating the electronic spin states in single NV− defects and study their dynamics

in the presence and absence of an external magnetic field. By means of the application of

microwave pulse sequences one is able, for example, to observe Rabi oscillations.

3.4.1 Optically Detected Magnetic Resonance

After verifying that the nanodiamond with NV− defect is a source of single photons (so

one deals with a single defect) we can implement a protocol to coherently manipulate

its spin states using microwave fields from by a microwave generator (Aim & Thurlby

Thandar Instruments TGR6000) and a pulse generator card (SpinCore Technology, Pulse

Blaster ESR-PRO 500) in combination with a LabView card. The Pulse Blaster is a
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Figure 3.7: Simplified diagram showing the electronic architecture used to realize the
ODMR experiment. We use a LabView card to control the system. Via an interface we
can control the pulse generating plate (ESR-PRO 500) and the microwave generator. Fur-
thermore, the LabView interface does the readout of the fluorescence from the diamonds
from APD1 and APD2.

versatile, high-performance pulse/pattern TTL signal generator that operates at speeds

of up to 500 MHz and generates pulses ranging from 2 ns to 8.59 s per instruction at

intervals ranging from 10 ns to 9 s per instruction. Figure 3.7 is a diagram that shows

the part of the experimental setup used to generate pulse sequences.

The pulse blaster card has four channels that are controlled by a LabView routine. The

first channel sends TTL pulses towards the AOM that works as a switch to control the

on/off state of the CW laser. Channels two and three are connected to LabView and

allow the readout of the APDs 1 and 2 respectively. Channel four is used to control the

microwave system. A RF switch (Mini-Ciruits ZASW-2-50DR+) controls the on/off state

of the microwave signal that will be amplified (Mini-circuits ZHL-16W-43-S+) by 45 dB

and then sent towards the antenna containing the nanodiamonds.

The system described above allows the manipulation of the NV− spin states, inducing

transitions between Zeeman levels of the electronic ground state, leading to population
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inversion which dynamics is explained by the optical Bloch equations described in the

last chapter. Here we drive both optical and microwave transitions in a sequential way.

As mentioned in section 2.3, due to the structure of the electronic states it is possible to

optically initialize the system, manipulate and read out the NV− spin state. The system

initialization in diamonds with NV− defects consists in leaving the system in its lower

energy state ms = 0 (Figure 2.10a) via optical pumping [44]. The optical transition

is spin-preserving, but also occurs that the electron in the m∗s = ±1 state has higher

probability to non-radiatively decay to a metastable singlet state [45] with a lifetime of

250 ns [28] aproximately. After it relaxes to the ms = 0 ground state. With this selective

process we are polarizing the system into ms = 0. The part of the manipulation occurs

when we drive spin flips towards the degenerated ms = ±1 using a microwave field. Thus,

we can find the transition frequency between the ms = 0 and ms = ±1 by sweeping the

microwave frequency while the readout is done by monitoring the fluorescence coming

out of the nanopaticle. In the following we use this technique to observe the fluorescence

behavior for different values of microwave power and its behavior when the diamond is in

presence of an external magnetic field.

3.4.2 NV− spin state transitions

In the absence of external magnetic fields, the above described procedure can be realized

if we make the following sequence of pulses (Figure 3.8a). First, we initialize the spin states

with a excitation beam laser in ON state all the time while the APD1 (Reference-REF)

is collecting, during 200 µs, the fluorescence coming from the sample that will be used

to do the normalization of the signal (for example, to eliminate fluctuations of excitation

laser power). Then, a microwave pulse with a frequency 2.800 GHz and lasting 200 µs

is turned on with a fixed frequency while the APD2 (Signal-SIG) realizes the collection

of the fluorescence at the same time. That pulse sequence is repeated once again after

increasing the microwave frequency by typically 750 kHz. When the microwave frequency

approached 2.870 GHz we note a drop in the detected fluorescence with a contrast of

14%, as shown in the Figure 3.8b. This measure is in agreement with results found in
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Figure 3.8: (a) Scheme of the pulse sequence used in ODMR. (b) ODMR signal in zero
external magnetic field. The dip is centered at the typical frequency of 2870 MHz.

other works [28,46] that were realized at room temperature. In [28] a contrast of 30% was

obtained while in [46] only 10% contrast was measured. These different results depend

on the coupling between the electric field and the moment dipole and branching ratios

between the ms = 0 and ms = ±1 into and out of the singlet system [47].

In the next experiment we take into account the effects of the microwave power. It was

possible to observe the power broadening phenomenon [46] by means of the ODMR spec-

trum: we can find the linewidth of the spin-flip transition by measuring the FHWM of the

ODMR. In chapter 2, we do refer to two mechanisms able to cause linewidth broadening:

i) Radiation broadening due to the spontaneous emission that appears after the interac-

tion with a light field and produces a natural linewidth of 2γ. ii) An electric/magnetic

field interacting with the system also produces a linewidth broadening mechanism given

in Equation 2.53.

In Figure 3.9a we show ODMR spectra for different microwave powers. The ODMR

spectrum with low contrast corresponds to a low microwave power. In Figure 3.9b we
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Figure 3.9: (a) ODMR spectrum experimenting power broadening due to changes in
microwave power from the purple curve until red curve with 50, 79, 200 and 316 µW,
respectively. (b) Linewidth for different microwave powers. The point close to zero power
is the narrowest linewidth, measured by the FWHM, found in our experiments.

made a fit by using of Equation 2.53 and introducing the Rabi frequency in terms of

microwave power (see Equation 3.5). Thus we rewrite Equation 2.53 as

2(γ2 +
1

2
(α
√
P )2)1/2 (3.2)

When we do the fit, we leave α and γ as free parameters. The values obtained for each

one are: γ = 9.2 MHz in agreement with the literature [28] and α = 0.7
√
J.s
−1

that

is the coupling parameter between µ̄ and Ē, point which will be discussed later. When

trying to make further measurements with microwave powers smaller than 8 µW the noise

effects become more notorious and is difficult to measure a magnetic resonance curve. We

extrapolated the experimental data of the Figure 3.9b to find a possible natural linewidth.

That extrapolation give us as result approximately 18.4 MHz while in the literature is

typically 10 MHz. This difference could be due the influences of the CW lase as is discuss

on pages 52-53.
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Effect of an external magnetic field

In presence of an external magnetic field we can lift the degeneracy of the ms = ±1 levels

by means of the Zeeman effect as shown in Figure 3.10a. The splitting ∆ω between the

levels ms = −1 and ms = +1 is directly proportional to the magnetic field as the relation

∆ω = 2γ′Bz where γ′ = 2π × 28 GHz/T is the electron gyromagnetic ratio and Bz is the

magnetic field along the quantization axis, defined along the line passing by the nitrogen

atom and the vacancy in the nanodiamond lattice [28].

The ODMR spectrum in this case will be different, appearing two dips due to the two

different resonance frequencies: the first one between ms = 0 and ms = −1 and the

second one between ms = 0 and ms = +1. Figure 3.10b shows the experimental setup

built to observe the Zeeman effect. One sees the antenna illuminated from below by the

excitation laser; above it, a permanent magnet (NdFeB) was attached to a micrometric

positioner that allows the movement of the magnet in three directions. In this experiment,

we transversely positioned the magnet right above the nanodiamond under observation

and we only move the magnet in the direction perpendicular to the antenna’s plane.

The ODMR spectrum obtained after bringing the magnet in the neighborhood of the

nanodiamond is shown in the Figure 3.10c. The ODMR spectrum is now affected by

the magnetic field and shows two dips at two different frequencies due to the splitting

caused by Zeeman effect. This fact can be used to realize coherent manipulation of the

spinstate in a independent way between the ms = 0 and ms = −1 and ms = 0 and

ms = +1 sublevels, depending on the microwave frequency that we choose to drive the

transitions [48]. We can notice the direct dependence that exists between the Zeeman

split and the intensity of the magnetic field as is evidenced in a frequency shift (∆f) due

to variations in the intensity of the external magnetic field (see Figure 3.10d). Thus, when

the magnet is away from the nanodiamond, we say that we have a low magnetic field,

obtaining a small splitting, but as the magnet is approached to the nanoparticle we have

a high magnetic field and the splitting increases. That splitting carries information about

the magnetic field parallel to the NV− axis. Devices that measure magnetic fields with

NV− defects use the above described effect because this reflects the direct relation with
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Figure 3.10: (a) Levels’ scheme of the ground state showing the split of the ms = ±1
sublevels in the presence of an external magnetic field. (b) Experimental setup built with
a micrometric positioner and a small rectangular magnet. We can manually control the
magnet position in three directions. (c) ODMR spectrum when an external magnetic field
is applied. Here we note that the split is greater when we have a stronger magnetic field.
“Low” or “High” magnetic field means that we are bringing the magnet away or close to
the antenna. (d) Measurement of Zeeman field Bz versus a shift (∆f) in frequency due to
the presence of the external magnetic field generated by a permanent magnet.
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the magnetic field projection along the direction of the NV− defect quantization axis [49].

So, the ODMR technique can be used to probe magnetic fields because the shift in the

resonance frequency is proportional to external magnetic field [50, 51]. Furthermore, due

of its small size in the nanometric scale, nanodiamonds can ensure proximity of the NV−

defect to the sample. Maintaining a short distance we can be able to realize nanoscale

magnetic image by scanning the NV− defect with respect to the sample and monitoring

its fluorescence [52].

3.4.3 Rabi oscillations in the ground sate

The possibility of polarizing the spin of the NV− defect and inducing transitions via

microwave frequency between the ms = 0 and ms = ±1 electronic ground state allows

us realize coherent manipulation between the spin states of the electron. The simplest

experiment is to observe Rabi oscillations. That kind of oscillations are known as Rabi

oscillations and they are obtained following a known protocol based in the Ramsey method

[25].

The implementation of a pulse sequence (Figure 3.11) is done between the ms = 0 and

ms = ±1 sublevels of the ground sate. We work with a fixed frequency which was

found in the ODMR experiment to be 2.870 GHz. The microwave pulse sequence in this

Rabi oscillations, like for the ODMR experiments, was carried out with the Pulse Blaster

card. With this pulse sequence we can find that the characteristic oscillatory behavior

is product of the coherent drive of the transitions in the spin two-level system in the

electronic ground state. When the area of the microwave pulses is equal to a multiple of

π we invert completely the population of the spin states in the electronic ground state.

This type of pulse is known as π pulse and accordingly to equations 2.39 and 2.40 is

dependent on the microwave power and on the duration of the microwave pulse [26]. In

the experiment, we keep the microwave power constant (316 µW ) and vary the time

duration of the microwave pulses from 0 to 1500 ns. Then, we obtain the population

oscillations between the spin states that shows oscillations of the fluorescence emitted by

single NV− defect. The protocol in this sequence is the following: First, the system is
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Figure 3.11: Pulse sequence implemented to do coherent manipulation of transitions
between the spin states ms = 0 and ms = ±1 in the electronic ground state.

optically polarized via optical pumping for 2 µs such that the spin of the system state is

the ms = 0 state. The APD 1 (“reference” used to normalize the spectrum) is ON during

the last microsecond. Then, while the laser is blocked, spin flip transitions are generated

by the microwaves (frequency set in 2.870 GHz) between the ms = 0 and ms = ±1 states.

To end the sequence, the laser is turn on again at the same time that the APD 2 is

detecting fluorescence. This sequence is done several times incrementing the length of

the microwave pulse in steps of 10 ns. Figure 3.12a shows the Rabi oscillations for one

nanodiamond with a single NV− defect. We can do a theroretical fit using the following

Equation [54]

ρee(t) = s ·
{

1− c · Ω2/2

2γ∗2 + Ω2

[
1−

(
cosλ∗t+

3γ∗

2λ∗
sinλ∗t

)
e−

3γ∗t
2

]}
(3.3)

where λ∗ = (Ω2 − γ∗2/4)1/2 and γ∗ = 1/T ∗2 . In the experiment, s is the maximum value

obtained by the fluorescence (at time t = 0) and c is the contrast between the states.

With this scheme, knowing the Rabi frequency we can obtain the decoherence time T ∗2 .

To do that, we extract the damping term of the Equation 3.4 and use it to make the

fitting. It is the expression to fit the dampened (Ddamp) curve
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Figure 3.12: (a) Experimental Rabi oscillations (red points) and theoretical fit (blue
curve). The microwave power used was of 316 µW. (b) Experimental data (red points)
extracted from the Rabi oscillations data. The curve is very well fitted to the experimental
points in according to the Equation 3.4. We obtain T ∗2 ≈ 1µs.

Ddamp = s · c · Ω2/2

2γ∗2Ω2
e−

3γ∗t
2 (3.4)

Figure 3.12a clearly shows a damping in the oscillations due to the exponential term given

in the Equation 3.3. So, we can fit an exponential decay curve with the maximum values

obtained by the oscillation. Furthermore, we also take advantage of the symmetry of

the oscillations for getting more experimental points to the experimental decay fit. For

that we draw a symmetrical horizontal line that serves for reflecting, like a mirror, the

minimum values and for increasing the number of points that allows a better fit. We can

see that the Figure 3.12b is fitted according to an exponential curve given by the Equation

3.4. This method gives information about γ∗ which inverse is the known as dephasing time

(T ∗2 ) [26]. The value of γ∗ is approximately 1 MHz leading to T ∗2 ≈ 1µs. These results

were obtained with the same nanodiamond for which the ODMR power broadening data

were measured (Figure 3.10). This is in contrast to the result of 18.4 MHz obtained in the

power broadening experiment. But we have to consider that there we had the green laser

on during the whole experiment, so that any coherent created between the spin levels of
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Figure 3.13: Experimental Rabi oscillations (red points) taken at different microwave
powers and their corresponding fits (blue curve). The power decreases from (a) to (d).
Thus, (a) has Ω = 25 MHz, (b) Ω = 20 MHz, (c) Ω = 13 MHz and (d) Ω = 10 MHz each
one with microwave powers of 200 µW, 126 µW, 50 µW and 32 µW respectively.

the electronic ground state by the microwave field will be immediately destroyed by the

CW laser at 532 nm. Thus, the measurements of the power broadening experiment using

a different pulse sequence in order to get rid of these effects.

Figure 3.13 shows the behavior of the Rabi oscillations with the microwave power. We can

see that as the microwave power decreases, the time to drive the transitions increases, as

expected from the expression Ω = π/τ for the Rabi frequency. Increasing the power, the

populations exchange of the ground state sublevels is faster. The frequency of the Rabi

oscillations is proportional to the square root of the microwave power [55]. In Figure
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Figure 3.14: Experimental data (red points) of the Rabi frequency taken at different
microwave powers. The behavior corresponds to a square root fit (blue curve).

3.14 we make a graph of the measured Rabi frequency for different microwave powers

confirming this dependence. The mathematical expression can be written as

Ω = α
√
P (3.5)

where α is the angular coefficient of the straight line in a Ω ×
√
P graph that gives us

information about the coupling of the ~µ with ~E. This coefficient is specified for each

nanodiamond. The last experiment was done in one single nanodiamond and the angular

coefficient found was of α = 1.7
√
J · s−1

. We know that

Ω =
|µ̄||Ē|
~

cos θ (3.6)

and

P ∝ |Ē|2. (3.7)

Then, we can define b as a proportionality constant, so we have

P = b2|Ē|2 =⇒ |Ē| =
√
P

b
(3.8)
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replacing the last equation in 3.6, we obtain

Ω =
|µ̄|cosθ
b~

√
P (3.9)

Now, comparing with 3.5 find that

α~ =
|µ̄|cosθ

b
(3.10)

with the last expression just knowing the b parameter we would obtain information about

the projection of the dipolar momentum on the magnetic field vector. That is, we can

find out the angle between µ̄ and Ē. Unfortunately, we haven’t had time to carry out

these measurements and making the correspondent analysis any further.
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Chapter 4

Conclusions and perspectives

In this work, we have learned new techniques which were implemented in our laboratory

with the finality to study intrinsic properties of individual particles of nanoscopic size,

in particular nanodiamonds. Following the principles of confocal microscopy, the optical

microscopy system was calibrated. The relation camera pixels/nanometers was of 41

nm/pixel. The measured point spread function of the optical system is of approximately

287 nm which is comparable to the resolution d = 232 nm given by the Rayleigh criterion.

We can thus say that in our microscope any particle smaller than this value will be seen

by the optical system as having a size of 287 nm.

The single NV− defect in nanodiamond showed to be a photostable single photon source

that can be detected via second-order correlation function. The value found for g2(0)

was of 0.2 which proves single photon emission since 0 < g2(0) < 0.5. Thus, we can say

that the particle investigated is a nanodiamond with a single defect and that it is a single

photon emitter source.

Using Optically Detected Magnetic Resonance we measured a resonance frequency for the

paramagnetic triplet ground state of 2.870 GHz which is in agreement with what is found

in the literature. The same kind of measurements was realized for different microwave

powers in order to find a possible natural linewidth. The value found, after extrapolating

the experimental data, was approximately 18.4 MHz while in the literature this is found

to be typically in the range of 10 MHz [28,56].
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Another property shown by the single NV− defects is their sensitivity to an external

magnetic field without losing its photoluminiscence properties at room temperature. We

find changes in the the Zeeman field felt by the nanodiamond corresponding to a few

Gauss which is in agreement with data in literature [56].

Finally, we drove radio frequency transitions between the ms = 0 and ms = ±1 states to

generate Rabi oscillations in experiments aiming to measure the coherence time due to

inhomogeneities of the local environment. We have find T ∗2 ≈ 1 µs, corresponding to a

linewidth of ≈ 1 MHz. This is in contrast to the result of 18.4 MHz obtained in the power

broadening experiment. However, we remark that during these experiments the excitation

laser is on all the time. The electronic transitions to the excited state promoted by the

laser destroys the coherence induced between the spin states of the electronic ground

state, leading to a broader spin flip resonance linewidth.

In the near future we intend to realize a coherent control of a single spin using the spin-echo

technique in order to measure local magnetic fields, where in this time a minimal resolved

field is in the order of the nanoteslas [50]. The spin-echo technique consists in a pulse

sequence where first a π/2 pulse in t=0 creates a spin state of maximum coherence. Then,

due to local magnetic inhomogeneities, the net moment precesses during a time τ and the

signal decays. A π pulse refocuses the dephasing induced by static and slowly varying

magnetic fields; the final state is therefore reached regardless of the actual magnetic field

value, as long as the phase shifts induced in both halves of the free evolution time are the

same. Thus, the spin echo is insensitive to static fields and fluctuations on a time scale

longer than the sequence length (see Figure 4.1). The echo amplitude decays on a time

scale referred as coherence time T2. Since T ∗2 describes decoherence induced by noise over

the full frequency range and T2 only for higher frequency noise, one has T2 > T ∗2 . With

this technique, we can obtain coherence T2 time of several microseconds and in this way

increase the sensitivity to measure magnetic field [56].

Also, we intend to implement a nanomagnetometer to monitor and eventually stabilize a

current that passes by a microwire. To do that we will use a microwave bias-tee which
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Free evolution Free evolution𝜋/2 𝜋/2𝜋

Figure 4.1: A π/2 pulse is first applied to the spin system making the dipole rotates down
into the X’Y’ plane. The dipole begins to dephase in a free evolution. Then a π pulse
is applied. This pulse rotates the dipole by π about the X’ axis. The π pulse causes a
rephasing of the dipole to produce a signal called an echo. Finally, a π/2 pulse returns to
the dipole to its initial state.

allows us send current and microwave through the same antenna. Thus, we will have

a current that generates a magnetic field when passing through of the microwire, which

will be detected by our nanodiamond under the influence of the microwave field sent via

the bias-tee. The magnetic field generated for a current passing through the microwire is

known to be

B =
µ0I

2πr
(4.1)

then,

I =
2πr

µ0

B. (4.2)

The magnetic field and the distance of the nanodiamond to the wire’s center can be

measured, the rest of the equation is constant, so measure the current is supposed not to

be a problem.
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