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Abstract
In this thesis are presented various results regarding the transverse structure of light beams

in the paraxial propagation regime, with a special concern with singularities in the transverse

profile and in nonlinear optics applications. Theoretical and experimental tools were devel-

oped for the study of Optical Vortices (OV) and its most important characteristics, as the

Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theo-

retically described and experimentally demonstrated that it is possible to shape the intensity

profile of a beam containing OV by distributing TC over the plane transverse to the propaga-

tion direction [1]. The TC is associated with a phase singularity that implies in points of zero

intensity. By distributing the TC on the transverse plane, it is possible to shape the beam

dark region and also the OAM profile with the goal of optimizing the light beam for a given

application. However, a problem identified in [1] was that most of the current available tech-

niques to characterize OAM light implicitly assume that the beam has cylindrical symmetry,

thus being inadequate to characterize fields resulting from more general TC distributions.

These problems were approached in a second work [2], where it was shown that by measur-

ing the field transverse amplitude and phase profiles it is possible to measure the OAM and

the TC in TC distributions with arbitrary geometries. By combination of the results [1] and

[2] it is possible to optimize and characterize the TC distributions for given applications, as

for example by designing the transverse forces in an optical tweezer for microparticle ma-

nipulation. An important theoretical unfold during these works was the identification of an

analogous relation between the field transverse phase in a TC distribution with the Coulomb

potential in two-dimensional electrostatics. We then introduced in [3] the Topological Poten-

tial (TP) concept which allows the design of structured optical beams with complex spatial

profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe

a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3].

In another set of results, it is discussed the possibility of using concepts and the formalism

of quantum mechanics to solve light propagation problems in the classical approximation.

Among the results obtained, it should be remarked that the formalism obtained has a sim-

ple and direct relation with ABCD matrices and ray optics [4]. These results were used to

understand light propagation in systems containing nonlinear materials, as in SLIM [5] and

D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data

obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was

obtained a very good agreement between the measured optical nonlinearities and the results

established in literature for these materials.

Keywords: Singular optics. Light orbital angular momentum. Optical wavefront. Hologra-

phy. Nonlinear optics. Physical optics.



Resumo
Nesta tese são apresentados resultados relacionados com a estrutura transversal de feixes

de luz no regime paraxial de propagação, com uma atenção especial em singularidades no

perfil transversal e em aplicações para óptica não linear. Foram desenvolvidas ferramentas

teóricas e experimentais para o estudo de vórtices ópticos (Optical Vortices - OVs), e suas ca-

racterísticas mais importantes, como o momento angular orbital (Orbital Angular Momen-

tum - OAM) e a carga topológica (Topological Charge - TC). Inicialmente, foi teoricamente

descrito e experimentalmente demonstrado como é possível moldar o perfil de intensidade

de um feixe contendo OVs usando uma distribuição de TC sobre o plano transversal à dire-

ção de propagação [1]. A TC está associada a uma singularidade na fase, o que implica em

um zero de intensidade. Ao se distribuir a TC sobre o plano transversal, é possível moldar o

formato da região de intensidade nula e também o perfil de OAM no intuito de otimizar o

feixe para uma dada aplicação. No entanto, um problema identificado neste trabalho é que

a maior parte das técnicas de caracterização disponíveis para luz com OAM implicitamente

supunham que o feixe possui simetria cilíndrica, e portanto não eram adequadas para ca-

racterizar campos obtidos a partir de distribuições de TC com geometrias mais gerais. Tais

problemas foram abordados em um segundo trabalho [2], onde foi mostrado que por meio

de medições dos perfis transversais de amplitude e fase do campo elétrico é possível me-

dir o OAM e a TC em distribuições de TC com formas geométricas arbitrárias. A união dos

trabalhos [1] e [2] permite então que as distribuições de TC possam ser adequadamente oti-

mizadas e caracterizadas para aplicações específicas, como por exemplo ao moldar as forças

transversais numa pinça óptica para a manipulação de micropartículas. Um desdobramento

teórico importante obtido foi identificar uma relação análoga entre o perfil de fase em uma

distribuição de TC com o potencial de Coulomb em eletrostática bidimensional. Foi então

introduzido em [3] o conceito de potencial topológico (Topological Potential - TP) que possi-

bilita a construção de feixes ópticos estruturados com perfis espaciais complexos inspirados

em analogias com eletrostática bidimensional. O TP pode ser usado na descrição de uma

grande variedade de distribuições de TC, como nos feixes em [1, 2] ou nos exemplos mais

sofisticados em [3]. Posteriormente, é discutida a possibilidade de se utilizar conceitos e o

formalismo da mecânica quântica na solução de problemas de propagação da luz descrita

na aproximação clássica. Dentre os resultados obtidos, destaca-se que o formalismo possui

uma relação simples e direta com as matrizes ABCD e a óptica de raios [4]. Estes resultados

foram utilizados na compreensão da propagação da luz em sistemas contendo materiais não

lineares, como nas técnicas SLIM [5] e D4σ[6]. Nos trabalhos [5, 6] os resultados teóricos fo-

ram comparados com dados experimentais obtidos em amostras padrão, como dissulfeto

de carbono (CS2), acetona e sílica fundida. Foi obtida uma concordância muito boa entre os



valores medidos para as não linearidades ópticas nestes materiais e os valores estabelecidos

na literatura.

Palavras-chave: Óptica singular. Momento angular orbital da luz. Frente de onda da luz.

Holografia. Óptica não linear. Óptica física.
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1 Introduction

This thesis develops a special interest in phenomena related to light’s transverse degrees

of freedom. While it is a customary simplification to represent an optical beam as a plane

wave, or as a bundle of optical rays, these pictures neglect light transverse features. Even

though it is possible to adequately explain a wide range of physical processes using these

simplifications, both plane waves and optical rays are idealizations. In real world the light

beams always have a finite transverse extent, which adds important ingredients to the design

of optical systems and to light interactions and manipulation. As examples, we briefly men-

tion how these ideas apply to super-resolution microscopy [7], in the development of the

Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) [8] and in

applications of structured light.

1.1 Light transverse structure as a key element in optics

Super-resolution microscopy

Ernst Abbe found in 1873 that there is a minimum spot diameter d for a beam under

focusing, given by

d = λ

2n sinθ
, (1.1)

where λ is the wavelength of light, n the medium refractive index and θ the half-angle de-

termined by the lens at the focus position. The resolution limit ensures that it is not possi-

ble to localize light in a distance smaller than d . Conversely, Abbe’s limit also indicates that

the images of two objects separated by a distance smaller than d cannot be distinguished

in an optical microscope. Since microscopes typically use visible light, it can be estimated

that d ≈ 200 nm. Notice that an increase in the optical resolution by simply reducing λ is

often not feasible, since there are various physical difficulties. For instance, ultraviolet light

sources are more complex and typically have lower power. Besides that, various optical ma-

terials become opaque or highly absorbing in the ultraviolet.

Since there are various structures of physical, chemical and biological interest whose

characteristic sizes have tens of nanometers, it was believed for more than a century that

optical microscopes could not be used to resolve nanoscale structures. Alternatives to light

microscopy were developed to increase the image resolution along the 20th century, as for

example electron microscopy, but optical techniques remain as one of the most important

approaches in biology and medicine [9]. Only through optical techniques it is feasible to

introduce labels that track biological processes and structures in real-time using living sam-

ples.

Several ground-breaking experiments were necessary to surpass the diffraction limit,

what was ultimately achieved in the 1990’s. For instance, E. Schrödinger stated that [10]
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“...we never experiment with just one electron or atom or (small) molecule.

In thought-experiments we sometimes assume that we do; this invariably entails

ridiculous consequences... In the first place it is fair to state that we are not ex-

perimenting with single particles, any more than we can raise Ichthyosauria in

the zoo.”

and many scientists still believed in 1980’s that experimenting a single molecule in a con-

densed matter sample was an impossible task [11]. However, W. E. Moerner built a spec-

troscopic setup in which he could find a signature due to isolated single molecules in 1987

[12]. Later on, E. Betzig have developed the idea that by controlling the fluorescence emis-

sion, such that closely spaced molecules do not emit light simultaneously, it was possible to

localize the molecule position with an accuracy which is not diffraction limited [13]. There-

fore, by mapping the fluorescent marker positions it becomes possible to build an image

with a resolution greater than that allowed by light diffraction. Following these works, sev-

eral alternative techniques were adopted to achieve super-resolution through the control of

fluorescence emission [11, 14].

While Betzig and Moerner’s approach to achieve super-resolution depends on fluores-

cence emission with some molecular parameter to distinguish the emission from close mole-

cules, S. W. Hell developed an alternative [9]. Suppose that some molecules are excited with

a diffraction limited beam. The spot size of the excited molecules fluorescence will also be

diffraction limited. However, it is possible to deplete the molecules excitation by using a sec-

ond beam through stimulated emission, which is the underlying principle behind Stimu-

lated Emission Depletion (STED) microscopy. If the excitation and depletion beams have

distinct transverse spatial profiles, it is possible to manipulate the volume of excited molecules

through the fine control of molecular excitation and stimulated emission. For example, to

obtain a circular spot it is possible to deplete the molecular excitation using a beam con-

taining an optical vortex. The optical vortex ensures that the irradiance is zero at the center

of the beam, and grows along the radial direction. Therefore, if only the molecules near the

center of the vortex are left in the excited state, it is possible to reduce the effective spot size

of excited molecules to

dSTED = λ

2n sinθ
p

1+ I /IS
, (1.2)

where I is the depletion beam irradiance and IS is a saturation intensity [7]. Since the ratio

I /IS can be made arbitrarily large, the minimum spot diameter can be significantly reduced.

Therefore, the control of light transverse structure is a key element to surpass the diffraction

limit in STED microscopy.

As a final comment, E. Betzig, S. W. Hell and W. E. Moerner have been awarded the Nobel

prize in Chemistry in 2014 for the development of super-resolved fluorescence microscopy.
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Advanced LIGO

The Advanced LIGO detects gravitational waves by sensing the arm length differences in

a Michelson interferometer [8]. Each arm has a length of 4 km, and Fabry-Perot cavities are

used to enhance the interaction time between photons and gravitational waves. The appara-

tus is able to detect arm length variations with exquisite accuracy, detecting strains of 10−21,

or much less than the radius of an atomic nucleus. Only with such sensitivity it became pos-

sible to perform the first direct gravitational waves observation on September 14 of 2015. In

that event it was observed the merging of two black holes at a distance of 1.3 billion light

years [15].

Some technical characteristics of Advanced LIGO can be accessed in [8]. The laser passes

through various amplification and filtering stages before entering the interferometer, to en-

sure a high CW input power (125 W) and a single transverse mode operation (TEM00, or

a Gaussian beam profile). To reach maximum sensitivity in the detection of gravitational

waves, several improvements are necessary to remove various difficulties and noise sources.

For example, the residual gas in the vacuum chambers modify the optical path and seismic

waves change the arm length. Because of the recycling cavity design, the Fabry-Perot cavi-

ties in each Michelson interferometer arm operate with 750 kW of continuous wave optical

power. At such power levels, radiation pressure can misalign the interferometer arms and

several noise sources due to thermal and quantum effects1 become relevant. For instance,

the thermal noise due to the optical absorption is critical because it generates parametric

acousto-optic effects, producing high-order transverse optical modes. At the detection stage

there is another mode filter before the homodyne detection to ensure that only the TEM00

mode is monitored.

Therefore, it was crucial to consider the transverse structure of light in each design step

of Advanced LIGO to obtain the required sensitivity levels.

Applications of structured light and optical vortices

When studying ultrasound scattering, J. Nye and M. Berry have found that the scattered

waves contained dislocations, analogously to the defects found in imperfect crystals [16]. At

these dislocations, the field amplitude is zero, while the phase changes by a multiple of 2π

in a closed contour around it. The presence of dislocations are a general feature observed in

waves scattering, and a more complete historical perspective can be appreciated in [17].

In terms of optics, these singularities are evident in speckle due to lasers [18], or may

also appear in the polarization degree of freedom [19]. It is remarkable to notice that in the

description of light in optical cavities, the mathematical solutions containing phase and po-

larization singularities were already given in the classical “Laser Beams and Resonators” by

1 Fluctuations in the photon arrival rate (shot-noise) and in the radiation pressure due to photon number
fluctuations inside the Fabry-Perot cavities.
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H. Kogelnik and T. Li [20], and were well known at that time. However, the physical impor-

tance of these terms was not much appreciated in the optics community until L. Allen and

collaborators described that these wavefront singularities were related with the orbital an-

gular momentum of light [21]. Even though the angular momentum of light was measured

in 1936 by R. A. Beth [22], by detecting the rotation of a waveplate due to circularly polarized

light, it was previously thought that the practical source of angular momentum in light was

the polarization only. In the work by Allen and collaborators, it was described that an heli-

cal phase profile also provided light with angular momentum. The studies in singularities in

light fields have significantly increased since 1992, and also the number of applications en-

visioned to these light fields increased correspondingly [17, 23]. There are proposals for ap-

plications in classical and quantum communications [24–26] and to control the transverse

motion of particles in optical tweezers [27, 28].

In the optical spectroscopy community, also there was not much interest in helical wave

fronts before 1992. Since atoms and molecules are much smaller than light wavelengths up

to the ultraviolet, electric dipole transitions dominate the spectral response of most mate-

rials and substances [29]. Electric quadrupole and magnetic dipole transitions are usually

called forbidden transitions because their transition probabilities are much smaller than

those of nearby electric dipole transitions (allowed transitions). However, since helical wave-

fronts are easy to produce, it was possible to explore a new phenomenology. In our physics

department there are some relevant contributions in this area. For example, the helical wave-

front due to an Laguerre-Gauss mode was used to induce rotational motion in an atomic

cloud, and later was observed a spectral shift due to rotational Doppler effect [30]. In another

study, it was theoretically proposed that helical wavefronts enhance the transition probabil-

ity of forbidden transitions [31]. This enhancement was recently verified for magnetic dipole

transitions [32]. It is also worth mentioning that our physics department optics group already

produced experimental thesis in which the light angular momentum was used to manipu-

late an atomic cloud, or the cloud nonlinear optical properties was used to manipulate the

angular momentum of light [33–35].

Besides singularities, the transverse structure of light also gives important corrections to

physical phenomena, as in the propagation velocity of light [36] and in the phase-matching

condition in nonlinear optics [37].

1.2 This thesis contents

In this thesis, the transverse profile of light beams is studied, with a special emphasis in

phase singularities over the wavefront and Gaussian beams in nonlinear optical media for

paraxial optical beams. In Chapter 2 we present an advanced introduction to concepts re-

lated to light propagation in the linear and nonlinear regime. This chapter is optional for un-

derstanding most of the remaining parts of this manuscript, but it is strongly recommended
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for readers wanting to follow each detail of the remaining chapters. For instance, the paraxial

approximation is rigorously discussed starting from Maxwell equations in sec. 2.2, and as an

original result we obtained the expression for the paraxial propagating modes with a finite

energy starting from the underlying scaling symmetry. We also discuss in sec. 2.3 how light

propagates in nonlinear materials, and a variational approach is introduced to obtain the

critical power for self-focusing in third-order media. In sec. 2.4 there are some comments

about energy and momentum of a light beam.

To understand various experimental results presented in this thesis it is performed in

chapter 3 a discussion of some holography concepts. There is a short introduction to fun-

damental concepts in sec. 3.2 and a brief introduction to the operation principles of some

devices available for amplitude or phase modulation in sec. 3.3. Since the experiments re-

ported in this thesis were performed using a phase-only spatial light modulator, there is a

section explaining some details on the phase modulation using a phase modulator in sec.

3.4, and the discussion is later extended in sec. 3.5 to consider simultaneous amplitude and

phase modulation. Still in sec. 3.5 there is an original result, in which we perform the analyt-

ical inversion of the cardinal sine function using Padé approximants, which is necessary for

the simultaneous encoding of amplitude and phase information in a phase hologram.

In chapter 4, some fundamentals of Optical Vortices (OVs) are discussed. The OV has

some important characteristics as the Topological Charge (TC) and the Orbital Angular Mo-

mentum (OAM). Quite often it is implicitly assumed that the TC is equivalent to the OAM,

what is valid only for beams with azimuthal symmetry, as Laguerre-Gauss or Bessel. How-

ever, it is necessary to proceed carefully under more general conditions, and the OAM and

TC are defined for general beams in sec. 4.2. For instance, it is possible to produce TC distri-

butions with arbitrary geometries over the beam transverse plane, a result that we published

in [1] and discussed in sec. 4.3. A subsequent result [3] still in sec. 4.3 is the identification

of an analogy between TC distributions and two-dimensional (2D) electrostatics. By per-

forming a mathematical analysis on the possible superpositions of OV through the complex

plane, we obtained the Topological Potential (TP) in Eq. (4.23), which has a formal similar-

ity with the complex electrostatic potential in 2D a TC distribution with trivial morphology

parameters. There is also a study on properties of the TP, as the equivalents to Gauss’ and

Ampère’s laws in sec. 4.3.1. Since it may be asked when the TP is valid to describe a given TC

distribution, we performed in sec. 4.3.2 an analysis of the mathematical principles behind

the TP concept. Finally, some nontrivial examples of TC distributions are shown in sec. 4.3.3:

a radial TC distribution and TC multipoles.

While in chapter 4 there is a detailed theoretical discussion on TC distributions, in chap-

ter 5 these characteristics are verified experimentally for various examples. Since the goal

is to produce and characterize TC distributions over the beam transverse plane, we initially

discussed how to characterize the TC and OAM for arbitrary beams. In sec. 5.2 we performed

a short review on the triangular slit technique [38], a simple and effective approach to de-
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termine the TC in beams with cylindrical symmetry. Then, TC distributions along a line, a

corner and a triangle are studied in sec. 5.3, and their TC are determined using the triangular

slit, as we published in [1]. When the beam profile deviates too much from a circular profile,

the triangular slit becomes inadequate to characterize the beam TC. Then, we discussed in

sec. 5.4 a more general approach to characterize the TC and the OAM using a simultaneous

retrieval of the field amplitude and phase profile, as we reported in [2]. Later in sec. 5.5 the

TC distributions over a line, a corner and a triangle are analyzed again with the simultaneous

amplitude and phase characterization. We verified that while the measured TC corresponds

to the TC applied to the distribution in the phase mask, the beam OAM is smaller than the

TC due to a reduced azimuthal phase variation between separated TC. Later, the radial TC

distribution and TC multipoles are characterized in sec. 5.6.

Besides presenting results on optical vortices in linear systems, this thesis also contains

in chapter 6 a discussion on how to use techniques of Quantum Mechanics (QM) for the cal-

culation of light propagation in linear and nonlinear optical systems. Due to the wave nature

of QM particles and light in a classical approximation, both optics techniques can be applied

to QM and vice-versa. In sec. 6.2 we show how to represent the light slowly varying envelope

as a Schrödinger-like Eq., and in sec. 6.3 we show how to express the paraxial wave Eq. into an

operator Eq. Even though an operator representation for wavefront propagation problems is

not a recent idea [39], we only identified previous works using either the Schrödinger Picture

(SP) or the Heisenberg Picture (HP). The Interaction Picture (IP, or Dirac Picture) is the repre-

sentation mostly used to solve or approximate various difficult problems in QM [40,41], spe-

cially nonlinear problems. The IP was introduced for wavefront propagation problems in [4]

and the basic ideas are in sec. 6.3. We obtained in sec. 6.3.3 that the IP operators associated

with position and angle propagate according to the corresponding ABCD matrices (or ray

matrices) for simple paraxial optical systems. This is a remarkable result, since these opera-

tors correspond to a full wave solution of the paraxial propagation equation. Simple optical

systems are analyzed in sec. 6.4, and the corresponding ABCD matrices and transmittance

operators are obtained. A noteworthy result is that through the IP it becomes almost immedi-

ate to obtain the propagation of the effective beam width, curvature and divergence angle to

characterize beams’ propagation as introduced by Siegman [42, 43]. The IP operator formal-

ism is then applied to light propagation in nonlinear media in 6.4.3, where an identification

of the obtained results with QM scattering problems is performed. Given the simplicity to

express the propagation of the effective beam width using the IP, in sec. 6.5 are described ex-

perimental results regarding the beam width evolution inside a nonlinear material using the

Scattered Light Imaging Method (SLIM) [5] and also through the D4σ method [6]. While the

SLIM technique measures the beam transverse width along the nonlinear material, the D4σ

method verifies the beam width of a strong light beam after propagation through the nonlin-

ear sample. For both techniques the IP seems a good theoretical framework for calculations,

which is very important for the characterization of nonlinear optical materials.
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2 Light properties, propagation and
interactions

A deep understanding of some properties of light, such as momentum and its propagation,

constitute an important background for the results presented in the later chapters. Thus, in

this chapter some already known concepts and results are reviewed. For instance, we discuss

some aspects of Maxwell equations that must be considered to describe the light propaga-

tion, as the correct expressions for the paraxial approximation. Initially it is considered the

light propagation inside linear media, and this assumption will be relaxed later to consider

nonlinear optical materials. Finally, it is presented a discussion related to the energy, linear

momentum and angular momentum for light.

2.1 Maxwell equations and the wave equation

The description of electromagnetic phenomena is based on the Maxwell equations, and

therefore the short review presented in this section is of great utility to introduce the no-

tation used in the remaining of this thesis. After some considerations on the properties of

the materials of interest the wave equation which describes light propagation inside mate-

rial media is obtained.

Given the electric field E, displacement field D, magnetic induction B and magnetic field

H associated to a distribution of charge density ρ and current density J, they must satisfy the

following equations

∇·D = ρ, (2.1)

∇·B = 0, (2.2)

∇×E =−∂B

∂t
, (2.3)

∇×H = J+ ∂D

∂t
. (2.4)

The fields E and D, and B and H are related respectively by

D = ε0E+P, (2.5)

H = 1

µ0
B−M, (2.6)

where P is the material polarization, M its magnetization, ε0 and µ0 are the vacuum permit-

tivity and permeability, respectively.

The magnetic effects usually affect an atom only at low frequencies (typically smaller

than tens of GHz) as in magnetooptical effects [44]. Only in some specific systems the mag-
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netic response at visible frequencies might be easily observed as heavy atoms [29], triva-

lent rare-earth ions [45], or also in adequately designed nanoantennas [46]. In the optical

range of frequencies the magnetic response of materials is usually negligible [29, 47], what

is strongly related to the large ratio between electric dipole and magnetic dipole transition

cross-sections. Therefore, it is assumed that at the frequencies and materials of interest for

this work it is possible to consider that M = 0, or

B =µ0H. (2.7)

Contrarily to the magnetization, the polarization P is very important both in linear and

nonlinear optical regimes. If the fields are not sufficiently large to observe nonlinear effects,

and the material does not exhibit an intrinsic electric dipole moment, it is possible to obtain

in general that P and E are related through the linear susceptibility tensor χ(lin) through

(P)µ = ε0

(
χ(lin)

)
µν

(E)ν , (2.8)

where
(
χ(lin)

)
µν is the linear susceptibility tensor element µ,ν, and the Einstein summation

convention is assumed over the dummy index ν. If the material is isotropic, as a liquid or a

glass, one might replace
(
χ(lin)

)
µν =χ(lin)δµν, resulting in

P = ε0χ
(lin)E, (2.9)

for a linear material. The considerations for a nonlinear material will be given later in this

chapter.

We now have sufficient elements for obtaining the wave equation by taking the curl of

Faraday’s law, Eq. (2.3). Using (2.7) in a space free of charges and currents (ρ = 0, J = 0), the

wave equation for material media is,

∇2E−µ0ε0
∂2E

∂t 2
=µ0

∂2P

∂t 2
−∇

(∇·P

ε0

)
. (2.10)

The last term in (2.10) is usually very small and can be neglected. For instance, for a linear

and isotropic material, where (2.9) is valid, one can easily verify from Coulomb’s law, Eq.

(2.1), that ∇ · P = 0. Consequently, neglecting the last term in (2.10), for a linear isotropic

medium we have that

∇2E−µ0ε
∂2E

∂t 2
= 0, (2.11)

where ε= ε0
(
1+χ(lin)

)
is the material’s dielectric constant, and

(
µ0ε

)−1/2 is the light speed in

the medium. As a general remark, it should be noticed that a solution to the wave equation

(2.11) does not necessarily satisfy Maxwell equations. To obtain a consistent Maxwell wave

solution, it is helpful to use other approaches as potentials methods, as will be shown in the

next section, or even through the Riemann-Silberstein vector approach [48].
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2.2 Propagation of finite beams in free-space

In this section it is described the propagation of finite light beams, as the light emitted by a

laser source. In order to achieve such goal, Maxwell equations will be simplified by consider-

ing light beams with a large diameter in comparison to the wavelength, and then the general

propagator will be given. Green’s theorem guarantees that if a given spatially finite field is

known in all points along the border of a given volume V free of sources, the field is uniquely

determined in all points inside V (see Chapter 10 of [49]). In that way, V can be chosen to

be the half-sphere z > 0 with radius R whose support is the x, y plane. By taking R →∞, the

field at z > 0 can be uniquely determined given its configuration at the plane z = 0.

The electromagnetic fields must satisfy all Maxwell equations, and a very convenient way

to guarantee this aspect is by describing the fields using the scalar and vector potentials, φ

and A respectively. In free-space in a region without charges and currents, the scalar and

vector potentials satisfy

E =−∇φ− ∂A

∂t
, (2.12)

and

B =∇×A. (2.13)

Then, the following equations can be obtained from Maxwell equations and (2.12) and

(2.13),

∇2φ=− ∂

∂t
(∇·A) , (2.14)[

∇2 − 1

c2

∂2

∂t 2

]
A =~∇

[
∇·A+ 1

c2

∂φ

∂t

]
, (2.15)

where it was considered that in free-space the speed of light is
(
µ0ε

)−1/2 = c.

There are two gauges which are convenient to deal with radiation: Coulomb (∇·A = 0)

and Lorenz
(
∇·A+ 1

c2
∂φ
∂t = 0

)
gauges. The first one simplifies the discussion of interaction

between plane wave radiation and matter 1, while in the latter both φ and A must satisfy the

wave equation.

To obtain diffracting solutions in the paraxial regime the Coulomb gauge is not the most

convenient. By requiring that Coulomb’s law ∇·E = 0 must be satisfied, the polarization ε has

to be spatially dependent [50]. Therefore, we will adopt the Lorenz gauge, which leads to:

1 This happens because of two facts: if ∇ ·A = 0, one may assume that φ = 0 over all space. Also, the light-
matter interaction Hamiltonian has a term proportional to ∇·A.
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[
∇2 − 1

c2

∂2

∂t 2

]
φ= 0, (2.16)[

∇2 − 1

c2

∂2

∂t 2

]
A = 0, (2.17)

1

c2

∂φ

∂t
=−∇·A. (Lorenz Gauge) (2.18)

Since the derivative operations are linear, it is easy to verify that if A satisfies the wave

equation the gauge condition is sufficient to guarantee that φ satisfies (2.16). Therefore, to

describe the propagation of electromagnetic fields in a linear isotropic material it is suffi-

cient to solve (2.17) and obtain φ through the gauge condition (2.18). This procedure is im-

portant to guarantee a physically consistent paraxial approximation, avoiding the apparent

paradox noticed by Lax et Al. [50], where it is implicitly assumed that ∇ · E 6= 0 [37, 51]. A

mathematically precise formulation of the paraxial approximation allows the calculation of

higher-order corrections, as discussed in [50], but here only the lowest order correction will

be considered.

Therefore, we want to describe beams that have the following characteristics:

1. There is a well defined propagation direction (defined as the z axis).

2. Light polarization does not vary strongly with propagation2.

3. The beam dimensions in the direction transverse to z vary slowly with z.

Given the above properties, it is possible to visualize as the simplest case the propagation

of a monochromatic plane wave, where the conditions 2 and 3 are automatically satisfied.

Considering a polarization vector ε constant through all space and a complex amplitude A0,

the wave can be described by

A = εA0e i (kz−ωt ). (2.19)

If A0 is constant throughout space, it is easy to verify that Maxwell equations require that

ε · z = 0, or that ε is perpendicular to the propagation direction.

By relaxing the condition of constant A0, it is possible to describe beams with a transverse

structure. The polarization of the electric field of a finite, structured beam will vary during

propagation. However, it is not convenient to make this dependence explicitly in ε, since

(2.17) would become very complicated. Therefore, it is possible to observe an important ad-

vantage in using the vector potential in propagation problems: A is not the physical field and

might change its value through gauge transformations, what allows ε to remain fixed while

all of Maxwell equations are simultaneously satisfied. ε then becomes the beam polarization

2 This variation is usually very small and very often neglected in various references about light propagation.
However, this effect is essential to understand some effects, as the geometrical Hall effect of light [52, 53].
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strictly only in the limit of plane waves. By keeping ε fixed simplifies (2.17), which is now a

scalar equation

[
∇2 − 1

c2

∂2

∂t 2

]
A0e i (kz−ωt ) = 0. (2.20)

Supposing now that the amplitude A0 varies spatially (but is static), and keeping k =
ω/c3, and denoting the transverse Laplacian ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 , it is obtained

∇2
⊥A0 + ∂2 A0

∂z2
+2i k

∂A0

∂z
= 0. (2.21)

The calculation carried so far is exact, and at this moment it is convenient to introduce

the Slowly Varying Envelope Approximation (SVEA). Without loss of generality, the follow-

ing dimensionless coordinates
(
η,ξ,ζ

)
are introduced, where they are related to the original

coordinate system
(
x, y, z

)
through x = w0η, y = w0ξ, z = z0ζ. It is possible to rewrite (2.21)

as

∇2
⊥,a A0 +

(
w0

z0

)2 ∂2 A0

∂ζ2
+2i

kw 2
0

z0

∂A0

∂ζ
= 0,

where ∇2
⊥,a in the transverse Laplacian in the dimensionless coordinates. Notice that, if the

scale upon which the beam diffracts is much larger than the region where the beam is con-

centrated, i.e., z0 À w0, the term involving the second derivative of ζ is much smaller than

that involving only the first derivative. As an example, the previous statements can be veri-

fied by applying them to the Gaussian beam using the results that will be shown later, where

z0 = kw2
0

2 , and
(

w0
z0

)2 =
(

2
kw0

)2 ≈O
(
10−8

)
if λ= 500 nm and w0 ≈ 1 mm, while 2i

kw2
0

z0
= 4i .

Therefore, if the beam intensity profile (envelope) varies slowly with the propagation, it

is possible to state that the amplitude A0 satisfies to a good approximation that(
∇2
⊥+2i k

∂

∂z

)
A0 = 0. (2.22)

Observe that (2.22) is analogous to the Schrödinger’s equation for a free particle in 2 di-

mensions. This identification is interesting, because it may be used to obtain localized so-

lutions by using the known properties of quantum systems. For example, a quantum parti-

cle inside a potential well can exhibith localized solutions. In the context of classical optics

this is an interesting kind of solution, because optical waves produced by real-world sources

have transverse profiles with a finite width. To obtain localized solutions at a plane borrow-

ing ideas from known properties of Schrödinger’s equation, we introduce at the plane z = 0

the “potential” V
(
x, y

)
and the eigenvalue E , such that

2i k
∂A0

∂z

∣∣∣∣
z=0

=−[
V

(
x, y

)−E
]

A0. (2.23)

This association allows one to obtain a complete set of orthonormal solutions without

loss of generality. The “energy” E here is just a constant that must be adjusted in such a way
3 This is not strictly necessary, since k can be chosen as a propagation constant in a similar fashion to what

happens in waveguide theory. See for instance, [54].
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that the solution is finite. Notice that the ansatz (2.23) implies that propagation effects are

not being considered to calculate the localized solutions, since z = 0. Also, since V
(
x, y

)
was

introduced only to obtain transversely localized field profiles, the field propagates according

to (2.22), where V
(
x, y

)= 0.

Using the principle of linear superposition, it is possible to obtain other solutions that

satisfy the relation (2.23). The simplest case to consider is a quadratic potential, and here it

will be considered that the beam has a cylindrical symmetry. Along the radial coordinate ρ,

the “potential” V can be written as

V
(
ρ
)=V0ρ

2. (2.24)

The ansatz (2.23) using the potential Eq. (2.24), becomes an eigenvalue problem for E ,

[−∇2
⊥+V0ρ

2 −E
]

A0 = 0. (2.25)

Using separation of variables, the solution can be expressed as A0
(
ρ,φ

) = R
(
ρ
)
Φ

(
φ

)
. The

examination of the asymptotic limits at R
(
ρ→ 0

)
and R

(
ρ→∞)

, and the continuity of Φ
(
φ

)
under rotation, Φ

(
φ

) = Φ
(
φ+2πk

)
for integer k, indicates that the solution can be written

as

A0 = u
(
ρ
)
ρ|m|e−

p
V0
2 ρ2

e i mφ, (2.26)

where the function which connects the asymptotic behaviors, u
(
ρ
)
, must satisfy

ρ
d 2u

dρ2
+

(
2 |m|+1−2

√
V0ρ

2
) du

dρ
+

[
E −2(|m|+1)

√
V0

]
ρu = 0. (2.27)

Equation (2.27) assumes a canonical form after a change of coordinates. Using x = ρ2

and V0 = 1, Eq. (2.27) becomes the associated Laguerre equation,

x
d 2u

d x2
+ (|m|+1−x)

du

d x
+pu = 0, (2.28)

where p = 1
4 [E −2(|m|+1)], and whose solutions are the associated Laguerre polynomials,

L|m|
p

(
ρ2

)
. In order to represent this solution in more usual notation, it is necessary to intro-

duce the characteristic transverse length w0, which can be achieved through the transfor-

mation ρ2 → 2r 2

w2
0

. After normalization, the full solution becomes

LGp,m
(
r,φ, z = 0

)=C

√
p !(

p +|m|)!π

1

w0

(
2r 2

w 2
0

) |m|
2

L|m|
p

(
2r 2

w 2
0

)
e
− r 2

w2
0 e i mφ, (2.29)

where C is a constant that indicates the field amplitude. This is a general expression for the

Laguerre-Gauss modes of the electromagnetic field at z = 0, where p and m indicate the ra-

dial and azimuthal mode numbers, respectively. p is related to the number of times the field

crosses the zero along the radial direction, while m gives the orbital angular momentum
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per photon [21]. Various other beam profiles can be described by considering other coordi-

nate systems or by using different profiles for the potential V . For instance, Hermite-Gauss

modes can be obtained by using cartesian coordinates, while Bessel beams can be obtained

in cylindrical coordinates for V = 0. To obtain solutions with a finite energy it is sufficient to

have4

E > mi n (V ) , and (2.30)

E < l i mr→±∞V. (2.31)

Since now there is an expression for the initial beam profile, it becomes interesting to

calculate its propagation. Remember that the ansatz (2.23) served its purpose, and then we

consider V
(
x, y

) = 0 from now on. Observe that both the beam amplitude and derivative

with respect to z at z = 0 are known. Thus, the requirement that the field configuration at

a finite plane must be known, stated at the beginning of this section, is now fulfilled. How-

ever, since now the paraxial regime is considered, it is possible to simplify these calculations.

According to appendix C.1, the general solution to (2.22) may be written as

A0
(
x, y, z

)= e+ i
2k z∇2

⊥ A0
(
x, y,0

)
. (2.32)

The solution to (2.32) is very simple for a Gaussian beam (LG0,0, according to (2.29)),

and this case will be considered initially. In the one dimensional case, if A0 (x) = e−x2/w2
0 , its

Fourier transform is Ã0 (kx) ∝ e−k2
x w2

0 /4. Since A0 (x) = 1p
2π

´
dkx Ã0 (kx)e i kx x , it is possible to

state that

A0 (x, z) ∝
ˆ

dkxe
i

2k z(i kx )2
e−k2

x w2
0 /4e i kx x . (2.33)

Notice that in this case the propagation is equivalent to the transformation w 2
0 → w 2

0

(
1+ i 2

kw2
0

z
)
,

which naturally introduces the scale in which the beam diffracts, the Rayleigh length z0 =
kw2

0
2 . Then, the argument of the field exponent transforms as

x2

w 2
0

→ x2

w 2 (z)
− i k

x2

2R (z)
, (2.34)

where

z0 =
kw 2

0

2
, (2.35)

w (z) = w0

√
1+

(
z

z0

)2

, (2.36)

R (z) = z

[
1+

(z0

z

)2
]

, (2.37)

4 If E < mi n (V ), E −V < 0 and the concavity of A0 has always the same sign. Therefore, the solution is non
normalizable. Simultaneously, if l i mx,y→±∞V > E is verified, then A0 decays exponentially at large dis-
tances and the solution is localized.
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where w (z) is the beam waist as a function of z, while R (z) is the beam wavefront curvature

radius. Its worth mentioning that for a Gaussian beam in two dimensions the substitution of

x by y is immediate.

As a next step, it is possible to verify the behavior of the propagation of the Laguerre-

Gauss modes. However, it would seem that the description is somewhat tied to the ansatz

(2.23). Instead, a more formal approach based on the ideas of structural stability necessary

for discussing spiral light beams [55, 56] is now adopted. The argument below is based on

finding a translation symmetry, and to our knowledge, this description is one of the original

contributions of this thesis. A self-similar mode of a free propagating wave can be defined

as a beam which retain it’s shape under propagation, up to a rescaling due to diffraction5.

In other words, it is assumed that if the mode at z = 0 is described by A0 (r/w0), where w0

is a characteristic scale z = 0 (minimum beam waist), and the beam translation along z axis

can be described by an operator Ĝ (z). The translation operator, or Green function, Ĝ (z) will

have in general a complex characteristic eigenvalue W (z)e iψ(r/w(z),z), and its action over A0

can be summarized as

Ĝ (z) A0

(
r

w0

)
=W (z)e iψ(r/w(z),z) A0

(
r

w (z)

)
. (2.38)

Ĝ (z) must be an unitary operator to conserve the energy. This imposes that
ˆ

d 2r

∣∣∣∣A0

(
r

w0

)∣∣∣∣2

=
ˆ

d 2r

∣∣∣∣W (z)e iψ(r/w(z),z) A0

(
r

w (z)

)∣∣∣∣2

, (2.39)

where d 2r = d xd y .

Upon a rescaling of the integration variables to dimensionless variables R = r/w0,R′ =
r/w (z), it is easy to show that the unitary condition is satisfied if and only if

W (z) = w0

w (z)
. (2.40)

Ĝ (z) determines the general behavior of the mode propagation, but w (z) andψ (r/w (z) , z)

still have to be determined. To obtain their functional dependency, we observe that they

must satisfy the following boundary conditions: w (0) = w0 and ψ (r/w0,0) = 0. It can be no-

ticed that A0 (r/w (z)) is the general expression for the mode, and it can be written in terms

of the solution at z = 0 as

A0

(
r

w (z)

)
= w (z)

w0
e−iψ(r/w(z),z)Ĝ (z) A0

(
r

w0

)
. (2.41)

The arguments above are general and have not yet referred directly to the equations of

light propagation. In order to A0 represent a light mode in the paraxial approximation, it

must satisfy (2.22). Also, since the propagation is given by (2.32), it is useful to first deter-

mine the general solution to the SVEA equation, and then apply this solution to the scaling
5 A mode is an eigenfunction of the system evolution operator. Therefore, the evolution becomes a symmetry

of the system. In terms of optics, this concept implies that knowing the mode profile at a given plane, it’s
profile will be known at different planes.
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symmetry that is of interest. Such general solution will be found by using Green’s functions,

which is reviewed in appendix C.1.

An arbitrary initial configuration of the fields at z = 0 can be represented in terms of Dirac

delta functions as

A (x,0) =
ˆ

d 2uδ (x−u) A (u,0) . (2.42)

By knowing how the field emitted by a point source in the plane z = 0 behaves under

propagation, any arbitrary solution can be calculated. This is the fundamental concept that

underlies the utility in using the Green’s function (or propagator) of a given differential equa-

tion. By applying (2.32) to (2.42), and using that δ (x−u) = (2π)−2
´∞
−∞ d 2pe i p·(x−u), we obtain

A (r, z) =
ˆ

d 2u

ˆ
d 2p

(2π)2 exp

{
− i

2k
zp2 + i p · (x−u)

}
A (u,0) , (2.43)

= k

2πi z

ˆ
d 2u exp

{
i k

2z
(r−u)2

}
A (u,0) . (2.44)

The kernel of the integral in (2.44) is also known as Fresnel propagator, and relates arbi-

trary vector potential profiles between the planes separated by a distance z in the paraxial

approximation. Using the general solution (2.44) in (2.41) one can obtain the propagation

of modes, since A0

(
r

w(z)

)
must satisfy the dynamical equations of the system, and now only

w (z) and ψ (r/w (z) , z) must be determined. It is convenient to define the scale-invariant

transverse coordinates,

R = r

w (z)
, (2.45)

in terms of which (2.41) can be rewritten as as

A0 (R) = w (z)

w0
e−iψ(R,z) z0

πi z

ˆ
d 2U exp

{
i z0

z

[(
R

w (z)

w0
−U

)2]}
A0 (U,0) (2.46)

=
ˆ

d 2UK (R, z;U,0) A0 (U,0) (2.47)

where U = u/w0, K (R, z;U,0) = w(z)
w0

e−iψ(R,z) z0
πi z exp

{
i z0

z

[(
R w(z)

w0
−U

)2
]}

, and the Rayleigh

length z0 = kw 2
0/2 is identified as before. This is a self consistent equation for the scale in-

variant solutions which must also satisfy (2.22), however with no explicit dependence on z.

Thus, by applying (2.22) to (2.46), it is possible to verify after some algebra that[
4i z0∂z +

(w0

w

)2
∂2

R

]
A0 (R) =

ˆ
d 2U (C + i D)

w0

w (z)
K (R, z;U,0) A0 (U,0) , (2.48)

C = w

w0
4z0∂zψ−8

z2
0

z

(
R

w

w0
−U

)
·R

w

w 2
0

∂z w − w0

w

(
∂R,iψ

)2 + 4z0

z

(
R

w

w0
−U

)
i
· (∂R,iψ

)
, (2.49)

D =
(
4z0

∂z w

w0
− w0

w
∂2

Rψ

)
, (2.50)

where the argument of the functions is implicitly assumed for clarity, and the shorter nota-

tion for operators, ∂
∂z = ∂z ,∇⊥ = ∂R , is used.
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The term D in (2.48) does not depend on U, and can exit the integral. Assuming that at

least one of the modes can be described by a purely real function, it is then necessary to

assume that6 D = 0, implying that

4z0
∂z w

w0
− w0

w
∂2

Rψ= 0, (2.51)

ψ (R, z) = z0

w 2
0

w (z)∂z w (z)R2 + f (z) . (2.52)

It is possible to use (2.52) to simplify C as

C = w0

w

[
4z2

0

w 4
0

w 3∂2
z wR2 +4z0

(
w

w0

)2

∂z f

]
,

leading to the following equation for the field profile{
4i z0∂z +

(w0

w

)2
[
∂2

R − 4z2
0

w 4
0

w 3∂2
z wR2 −4z0

(
w

w0

)2

∂z f

]}
A0 (R) = 0. (2.53)

It should be now evident that ∂z A0 (R) = 0 only if[
∂2

R − 4z2
0

w 4
0

w 3∂2
z wR2 −4z0

(
w

w0

)2

∂z f

]
A0 (R) = 0, (2.54)

and additionally, the Eq. (2.54) should not depend on z by hypothesis, implying the condi-

tions

w 3 (z)
d 2

d z2
w (z) = a = constant, (2.55)

w 2 (z)
d

d z
f (z) = b = constant. (2.56)

Using standard integration techniques, it is possible to solve for w (z) and f (z). Since

here we want to describe a finite beam, it is required that a 6= 0, due to the properties pre-

viously discussed of the solutions in a Schrödinger-like equation as (2.54). It can be verified

that the solution for w (z) is given by (2.36), while the term f (z) contains the Guoy phase-

shift term,

f (z) = f0 + f1 arctan

(
z

z0

)
, (2.57)

where f0 and f1 are constants. These two terms have a distinct meaning. f0 represents an

overall phase offset. Meanwhile, f1 arctan(z/z0) has a deeper meaning. Notice that (2.57) was

obtained assuming that w (z) is given by (2.36) in (2.56). If Eq. (2.56) is examined with other

dependences in w (z), then it is possible to verify a few aspects of the dynamical term. Since

b = constant, f (z) is constant along z in the limit where w 2 (z) → ∞, and does not have a

dynamical phase term. A typical example are plane waves, which have an infinite transverse

width [w 2 (z) →∞].

6 Notice that ∂z A0 (R) = 0 implies that the left hand side of (2.48) is real if the profile A0 (R) is real. If the right
hand side of (2.48) has a non-zero imaginary part, the equality is inconsistent for this beam profile.
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The dynamical term in f (z) is characteristic of finite beams. This can be easily under-

stood by decomposing the transverse field in terms of plane waves. Any physically realizable

transverse finite field can be represented in terms of a Fourier expansion. While w (z) is re-

lated with the beam width in real space, its inverse, 1
w(z) , is related to the beam width in the

Fourier space. The propagator (2.32) implies that each plane wave component will acquire a

different phase upon z propagation. The average phase across the transverse profile due to

diffraction is f (z), and is related with the beam width in Fourier space, or the beam momen-

tum uncertainty [57]. An important remark is that Eq. (2.56), as obtained from our scaling

argument, agrees with the full expression by Feng and Winfull [57].

Using the solutions for w (z) and f (z), Eq. (2.54) can be simplified again, resulting in[
1

4
∂2

R −R2 − f1

]
A0 (R) = 0, (2.58)

which is an equation analogous to the one described by the ansatz (2.23). Therefore, the

Laguerre-Gauss beams satisfy the conditions of self-similarity described in this section, and

it is possible to use (2.38) to compute the propagation of these modes, resulting in

LGp,m
(
r,φ, z

)=C

√
p !(

p +|m|)!π

1

w (z)

(
2r 2

w 2 (z)

) |m|
2

L|m|
p

(
2r 2

w 2 (z)

)
e
− r 2

w2(z)
+ i kr 2

2R(z)+i mφ+i f (z)
. (2.59)

The Laguerre-Gauss beams are modes of light propagation in the paraxial regime, and the

previous discussion reveals important concepts about these beam profiles. Notice that the

self-similar solutions satisfy (2.58), which is analogous to Schrödinger’s Equation for a 2D

quantum harmonic oscillator (QHO). Both Hermite-Gauss (HG) and Laguerre-Gauss (LG)

solutions satisfy an equation analogous to (2.58) in the QHO. The term 1
2∂

2
R−2R2 is analogous

to the QHO Hamiltonian, and it is easy to verify that Laguerre-Gauss and Hermite-Gauss

solutions are eigenmodes of this Hamiltonian, whose eigenvalue is 2 f1.

For the current work, the Laguerre-Gauss solution also has another very special prop-

erty. As will be later discussed, the Orbital Angular Momentum (OAM) density along z for

a paraxial light beam, Eq. (2.115), is proportional to the operator ∂
∂φ , as seen in Eq. (2.115).

Therefore, besides the Hamiltonian operator, LGp,m is an OAM eigenmode whose eigenvalue

is m. This is extremely important for applications, because it implies that the initial beam has

a well defined OAM value. The Laguerre-Gauss beams are also special in paraxial optics also

because they can be easily produced from Gaussian-shaped laser beams.

2.3 Propagation of light in nonlinear media

In this section, some properties of light propagation in nonlinear media will be discussed,

with a special focus on nonlinear refraction and absorption of light beams. These are im-

portant characteristics, since they are present in all materials. The nonlinear refraction and

absorption occurrence in nature can be contrasted, for example, with second-order non-

linearities, which require non centrosymmetric materials or structures. It is remarked here
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that, since nonlinear effects are usually very small, the paraxial corrections to the electric

and magnetic field considered in sec. 2.2 in terms of the vector potential will be neglected.

The wave equation (2.10) can be rewritten in terms of the field E as

[
∇2 − 1

c2

∂2

∂t 2

]
E = 1

c2

∂2

∂t 2

(
P

ε0

)
. (2.60)

The distinct components of E and P at different frequencies can be represented as

E = 1

2

∑
ω

Eωe iωt + c.c., (2.61)

P = 1

2

∑
ω

Pωe iωt + c.c., (2.62)

where c.c. denotes the complex conjugate of the preceding expressions.

Separating the terms in Eq. 2.60 by their time dependence, and considering the linear

independence between the coefficients of e iωt for different ω, Eq. (2.60) implies that Eω and

Pω are related through

[
∇2 + ω2

c2

]
Eω =−ω2

c2

Pω

ε0
. (2.63)

If all frequency components of light have the same polarization εω, and propagates along

the z direction, it is possible to decompose E (r, t ) as

Eω (r) = εωEω (r)e−i kz , (2.64)

E (r, t ) = 1

2

∑
ω

εωEω (r)e i (ωt−kz) + c.c., (2.65)

where Eω (r) represents the slowly varying envelope at frequency ω. Denoting by χω the total

susceptibility (linear + non linear) associated to the field with frequency ω, one has for the

polarization

Pω = ε0χωEω. (2.66)

P (r, t ) = 1

2
ε0

∑
ω

εωχωEω (r)e i (ωt−kz) + c.c. (2.67)

Then, Eq. (2.63) can be rewritten as[
∇2 + ω2

c2

]
Eωe−i kz =−ω2

c2
χωEωe−i kz . (2.68)

In SVEA the z derivatives can be simplified as

∂2

∂z2

[
Eωe−i kz

]
= e−i kz

[
−k2Eω− i 2k

∂Eω

∂z
+ ∂2Eω

∂z2

]
(2.69)

≈ e−i kz
[
−k2Eω− i 2k

∂Eω

∂z

]
(2.70)
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Using the transverse Laplacian ∇2
⊥, it is possible to find that[

∇2
⊥−2i k

∂

∂z
−k2 +k2

0,ω

(
1+χω

)]
Eω = 0, (2.71)

where k0,ω = ω
c is the wave number of light in free-space.

In the linear case, and when χω is real, it is possible to consider that −k2+ ω2

c2

(
1+χ(l i n)

)=
0, or

k = ω

c

√
1+χ(l i n)

ω = ω

c
η0, (2.72)

where η0 is the real part of the linear refractive index. In the general case there is absorption

and χ(l i n)
ω is complex. Thus, considering that the complex refractive index is given by

n = η0 − iκ, (2.73)

it is true that

n2 = η2
0 −κ2 −2iη0κ= 1+χ(l i n)

ω . (2.74)

For transparent materials, the intensity loss occurs over distances much longer than a

wavelength. This allows a simplification of the expression for n2. The beam intensity of plane

waves propagating inside an absorptive material decays exponentially according to

I ∝ ∣∣exp
[−i k0

(
η0 − iκ

)
z
]∣∣2 = exp[−2k0κz] . (2.75)

From Beer’s law, I = I0e−αz , and the absorption coefficient is defined as

α= 2k0κ. (2.76)

Since the absorption in materials with some transparency occurs over distances much

longer than a wavelength inside the medium λ, it is possible to state that typically αλ¿ 1,

or (2k0κ)
(

2π
k0η0

)
¿ 1, and

κ¿ η0

4π
. (2.77)

Therefore, it is possible to consider only the first order term in κ. n2 = η2
0 −κ2 −2iη0κ ≈

η2
0 − iη0

k0
α. Recovering the nonlinear terms as a nonlinear susceptibility χ(N L), (2.71) can be

written as [
∇2
⊥−2i k

∂

∂z
− i kα+k2

0χ
(N L)
ω

]
Eω = 0. (2.78)

2.3.1 Materials with a nonlinear refractive index

Let us specialize for a moment in describing experimental conditions in which there is no

generation of new frequencies. Under such assumption, it is possible to ignore the subscripts

ω and consider only [
∇2
⊥−2i k

∂

∂z
− i kα+k2

0χ
(N L)

]
E = 0. (2.79)
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In the general case χ(N L) should be written in terms of a tensorial expansion involving

the field components [37]. However, the discussion is simplified for isotropic media, where

the nonlinear susceptibility can be described as χ(N L) = χ(N L)
(|E|2). Also, since the real and

imaginary parts of χ(N L) can be associated with the refractive index and absorption, as in Eq.

(2.72), it is also said that such materials display nonlinear refractive index and absorption

that vary with the light intensity I ,

n (I ) = η0 +η2I +η4I 2 + . . . , (2.80)

α (I ) =α0 +α2I +α4I 2 + . . . . (2.81)

The quantities n (I ) ,α (I ) are usually used instead of χ(N L) because they have physical

significance in isotropic materials. As a simple example, lets consider a Gaussian beam im-

pinging a medium of thickness L described by η0,η2 6= 0,α0,α2 = 0, and η j ,α j = 0 if j > 2.

Since the optical path is approximately k0L
(
η0 +η2I

)
, parallel light rays at different trans-

verse positions propagate distinct effective lengths. This is equivalent to the passage of light

through a linear lens, which is an optical medium with a varying thickness. Depending on

the sign of η2, the beam will focus
(
η2 > 0

)
or defocus

(
η2 < 0

)
due to the nonlinearity. The

choice of expressing η,α in terms of I instead of |E|2 becomes reasonable by remembering

Eqs. (2.73) and (2.75). Notice that the intensity decay is directly related to α and I , and a

relation as α (I ) is natural. On the other hand, n and α are the real and imaginary parts of

the same complex refractive index, and in principle could be expressed in terms of the same

quantities.

The distinction between I and |E|2 requires that the proper conversions are performed.

Defining the intensity as the Poynting vector along the z axis, it is possible to use Eq. (2.114),

which by neglecting the small paraxial terms can be written as

I (r ) = 1

2
cε0η0 |E (r )|2 . (2.82)

Another very important quantity is the power P , which is simply related to I ,

P =
ˆ

d²r I (r ) = 1

2
cε0η0

ˆ
d²r |E (r )|2 . (2.83)

Relation between the nonlinear susceptibility and the complex refractive index

Since (2.79) describes the propagation of E , all nonlinear terms must be expressed in terms

of E . Also, it is very important to be able to convert between χ(N L) and n (I ) ,α (I ).

A typical nonlinear susceptibility term of odd order, χ(N L) = ·· ·+χ(2 j+1) |E|2 j + . . . , can be

rewritten in terms of E with the help of the binomial expansion theorem. Selecting only the

terms oscillating with frequency ω, it can be seen that the following substitution must be

performed [58]

χ(2 j+1) |E|2 j+1 → 1

22 j+1

(
2 j +1

)
!

j !
(

j +1
)
!
χ(2 j+1)E ∗ j E ( j+1), (2.84)
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since terms proportional to E have a time dependence as 1
2 e iωt while E ∗ varies with 1

2 e−iωt .

Eq. (2.84) indicates the only term in the binomial expansion with the overall e iωt depen-

dence. Therefore in the propagation equation,

χ(N L) = ·· ·+ 1

22 j

(
2 j +1

)
!

j !
(

j +1
)
!
χ(2 j+1) |E |2 j + . . . . (2.85)

To relate χ(N L) and n (I ) ,α (I ), we notice that, from the definition of the complex refrac-

tive index

n2 = 1+χ, (2.86)

the following decomposition is possible

n2 (I ) =
[
η0 +η (I )− i

α (I )

2k0

]2

, (2.87)

= 1+χ(l i n) +χ(N L) (I ) . (2.88)

The previous definition in Eq. (2.72) stated that η2
0 = 1+Re

{
χ(l i n)

}
. So, expanding the

nonlinear terms squared in Eq. (2.87) in terms of |E |2, and considering only the first order

terms due to the smallness of the nonlinearities, it is obtained that

η2
0 = 1+Re

{
χ(l i n)

}
, (2.89)

α0 =−k0

η0
Im

{
χ(l i n)

}
, (2.90)

η2 j = 1

2η0
(
2cε0η0

) j

(
2 j +1

)
!

j !
(

j +1
)
!
Re

{
χ(2 j+1)

}
, (2.91)

α2 j =− k0

η0
(
2cε0η0

) j

(
2 j +1

)
!

j !
(

j +1
)
!
Im

{
χ(2 j+1)

}
. (2.92)

By having the explicit relations between η2 j ,α2 j and χ(2 j+1), it becomes possible to con-

vert between them when necessary.

As a final remark, we notice that there is another representation for the complex nonlin-

ear refractive index, using |E |2 instead of I ,

n
(|E |2)= η0 +η2

|E |2
2

+η4

( |E |2
2

)2

+ . . . , (2.93)

α
(|E |2)=α0 +α2

|E |2
2

+α4

( |E |2
2

)2

+ . . . , (2.94)

and as can be easily verified, this representation is related to the previous through

η2 j =
η2 j(

cε0η0
) j

, (2.95)

α2 j =
α2 j(

cε0η0
) j

. (2.96)
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An example: critical self-focusing in a cubic medium

Suppose that a Gaussian beam impinges a medium which contains as the only relevant non-

linear term η2 > 0. Since the nonlinearity η2 > 0 tends to focalize the light beam, while η2 < 0

enhances light diffraction, there is a characteristic regime of η2 > 0 in which the diffrac-

tion can be compensated by the nonlinear term, here denominated by critical self-focusing

regime. The contents of this subsection are strongly related to the initial part of the Chapter

17 of [44].

For simplicity, the absorption is neglected in this discussion. Then,χ(N L)
(|E|2)=Re

{
χ(3)

} |E|2,

or in terms of the SVEA field,

χ(N L) (|E |2)= 3

4
Re

{
χ(3)} |E |2 , (2.97a)

= 2η0η2
|E |2

2
, (2.97b)

which by substitution in Eq. (2.79), becomes[
∇2
⊥−2i k

∂

∂z
+k2 η2

η0
|E |2

]
E = 0. (2.98)

The Gaussian envelope at the minimum beam waist can be described as

E =U exp

(
− r 2

w 2
0

)
, (2.99)

where w0 is the minimum beam waist, r is the radial coordinate and U the field amplitude.

A way to understand the self-focusing or defocusing starts by a parabolic approximation of

the nonlinear field term near the maximum field amplitude,

|E |2 ≈
(

1− 2r 2

w 2
0

)
U 2. (2.100)

The parabolic approximation, Eq. (2.100), applied to the SVEA for a cubic medium, Eq.

(2.98), indicates that the beam propagation inside the NL material can be approximated by

the behavior of a graded-index medium [51, 59, 60]. To understand the self-focusing or self-

defocusing in a cubic medium, we consider for simplicity the light propagation in the ge-

ometrical optics regime. Considering η2 > 0, then the beam tends to self-focus upon prop-

agation, because the beam ray matrix elements are given in terms of sin
(
g z

)
and cos

(
g z

)
,

where g = 2k0η2U 2/η0w 2
0 . See for example Refs. [51, 59, 60] or Eq. (6.107). By the other hand,

if η2 < 0 and the previously oscillatory terms become sinh
(
g z

)
and cosh

(
g z

)
, and the beam

defocus.

To obtain a more quantitative description, we consider (2.98) and that the beam im-

pinges the nonlinear material at z = 0. The diffraction compensation by the nonlinearity

can be expressed as the condition ∂E
∂z ≈ 0, or the field does not vary much upon propagation,[
∇2
⊥+k2 η2

η0
|E |2

]
E ≈ 0. (2.101)
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(a)

Figure 1 – (a) An example of the evolution of the beam waist w for a Gaussian beam prop-
agating inside a material with a positive cubic nonlinearity. Carbon Dissulfide
(CS2), whose material parameters are η0 = 1.63, η2 = 3.2 · 10−14 cm2·GW−1 was
considered in this example, and the beam has λ = 500 nm and w0 = 50 µm. As
can be easily verified, PC = 7.6 KW for this set of parameters. The beam power P
was varied from 0.1PC (red) until PC (purple), and the dashed line represents the
behavior associated when the nonlinear effects are negligible.

Since the field is a function of r , it is possible express Eq. (2.101) as a series of r powers.

Performing the r series expansion to zero order, it is obtained the condition(
1− P

PChar

)
= 0, (2.102)

PChar =
cε0λ

2

4πη2
= λ2

4πη0η2
, (2.103)

where PChar is a characteristic power of the self-focusing and P = 1
4 cε0η0U 2πw 2

0 is the beam

power. If P ¿ PChar, diffraction dominates, and the beam will increase its size upon propa-

gation. However, if P ÀPChar, it can be verified that the beam will be focused without limits

(in this approximation). Thus, the beam will reduce its size until another physical mecha-

nisms not considered in this analysis becomes important. For example, the increase in the

light intensity can be such that the material becomes ionized.

Notice that in the previous paragraph, it was not claimed that PChar is the critical power

for self-focusing. Since it is related to the minimization of only one coefficient series ex-

pansion in r of Eq. (2.101), it is an approximate solution to the true critical power. A better
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estimate can be made using a variational argument over (2.101). For instance, it is possible

to use a least-squares argument to verify which optical power better satisfies the condition

expressed by Eq. (2.101) across the entire transverse profile. At the critical condition for self-

focusing, (2.101) is approximately zero, or
∣∣∣∇2

⊥E +k2 η2
η0

|E |2 E
∣∣∣2

is a minimum. Thus, if we

define

S =
ˆ ∞

0

∣∣∣∣∇2
⊥E +k2 η2

η0
|E |2 E

∣∣∣∣2

2πr dr, (2.104)

the critical power for self-focusing is precisely PC such that

dS

dP

∣∣∣∣
P=PC

= 0. (2.105)

Using that for this Gaussian beam ∇2
⊥E = 4

w2
0

[
r 2

w2
0
−1

]
E , and k2 η2

η0
|E |2 = 4

w2
0

P
PChar

e−2r 2/w2
0 ,

and also performing the substitution a = r 2/w 2
0 , the condition (2.105) can be restated as

PC =PChar

´∞
0 d a (1−a)e−4a´∞

0 d ae−6a
. (2.106)

The remaining integrals are elementary and the critical power for self-focusing is PC =
15
8 PChar ≈ 2PChar, or

PC ≈ cε0λ
2

2πη2
= λ2

2πη0η2
, (2.107)

which agrees with the critical power for self-focusing calculated in [61] in an aberrationless

approximation of the Gaussian beam propagation.

As an illustration, it is shown in Fig. 1 the behavior of the beam width of a light beam for

powers P such that 0 < P . PC , where it is considered that the nonlinear material starts at the

beam waist. The beam width at each z plane is calculated through the transverse irradiance

moment7,

w = 2

√√√√´ 2πr dr r 2 |E |2´
2πr dr |E |2 . (2.108)

Since for a Gaussian beam in free-space, w 2 = w 2
0 + θ2

0 z2, where θ0 is the beam diver-

gence angle, the data in Fig. 1 is more conveniently expressed in terms of the normalized and

shifted term w 2/w 2
0 −1. For a Gaussian beam propagating in a linear medium, the expressed

quantity has a parabolic dependence on z. Notice that at the critical power, for P ≈ PC , the

beam width remains relatively constant in the calculated z range.

2.4 Energy, linear momentum and angular momentum in

paraxial beams

In this session we consider, as before, an uniformly polarized optical beam propagating

nearly parallel to the z direction on paraxial regime, described by the following (complex)
7 The transverse irradiance moments will be discussed in more details later in Secs. 6.4.1 and 6.4.3
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vector potential

A = εA0e i (kz−ωt ). (2.109)

Using the Lorenz gauge condition, Eq. (2.18), to obtain an electric field consistent in

paraxial approximation8 with the Coulomb law in free-space, ∇·E = 0, the following expres-

sions for E and B are obtained

E = iω

[
εA0 + i

k
(ε ·∇A0) z

]
e i (kz−ωt ), (2.110)

B = i k

[(
z A0 − i

k
∇A0

)
×ε

]
e i (kz−ωt ). (2.111)

The above corrections to the usual paraxial equations are important in describing optical

vortices. The derivatives over the envelope are necessary to obtain solutions consistent with

all Maxwell equations, and must be used to correctly describe the angular momentum of a

light beam. Also, notice that as would be expected from the transversality of electromagnetic

fields, the fields of a wave must have a non-zero component on z direction under focusing

and also under defocusing.

Two fundamental properties of any physical system are its energy and linear momen-

tum. For a monochromatic field in free space, the time averaged Poynting vector gives the

momentum density and is defined by

S = 1

2µ0
Re

{
E×B∗}

, (2.112)

where the overline indicates a time average.

If we define the energy current density as

j = i
[

A0∇A∗
0 − A∗

0∇A0
]

, (2.113)

it may be shown that

S = ωk

2µ0

[
|A0|2 z+ 1

2k
j+ σ

2k
∇× (|A0|2 z

)]
, (2.114)

where σ= i
(
εxε

∗
y −ε∗xεy

)
=±1,0 for, respectively, circularly and linearly polarized beams.

The first term in (2.114) asserts that in this regime, the photon momentum k ≈ kz is al-

most aligned with the z axis, as would be expected, since this was one of the initial assump-

tions for the paraxial approximation. The energy current density, which arises on the sec-

ond term, can be interpreted as another connection with the probability current density in

Schrödinger’s wave equation. A slight difference that must be noticed is that here the gra-

dients involve the z axis as well, and not only the transverse coordinates. However, working

only on the transverse plane, it is possible to visualize that A0 carries linear momentum. Also,

since an electron in a plane can have a non-zero orbital angular momentum perpendicular

to the plane, the same is possible for light. Finally, it may be seen that the light polarization

σ also contributes to the momentum flow.

8 In other words, we retain only the first corrections in 1/k, where the wavenumber k is a large number.
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In this work, there is a special concern with the Orbital Angular Momentum (OAM) of

light. One must always remember that in classical mechanics, the angular momentum is a

quantity defined with respect to a reference point [62]. If this reference is given by r = 0, we

may say that the average OAM density along z is given by

Lz = 1

c2
z·

(
r×S

)
. (2.115)

Although there may be OAM perpendicular to the propagation direction (see for example

[63, 64]), its description is outside the scope of this work.

As expected, the first term in (2.114) automatically disappears from Lz . By expressing the

gradients in cylindrical coordinates, it may be seen that

z·(r×~∇)= ∂

∂φ
, (2.116)

and the description of beams with azimuthal phase dependence A0 ∝ e i mφ become simple,

z·(r× j
)= 2m |A0|2 . (2.117)

Lastly, it may be shown that neglecting a 2D surface term9,

z ·{r× [
σ∇× (|A0|2 z

)]}= 2σ |A0|2 . (2.118)

Summing all contributions, the angular momentum along the z axis is

Lz = ε0ω

2
|A0|2 (m +σ) . (2.119)

It therefore becomes evident the separation between orbital and polarization angular

momenta for paraxial beams. The OAM is m, due to its association with the spatial field de-

pendence, and σ is the polarization contribution to angular momentum. Similarly to what

happens in quantum mechanics, the orbital contribution comes from the wave function

(here the envelope A0) while the spin angular momentum comes from a spinor (here the po-

larization). Under strong focusing, the separation between orbital and polarization angular

momenta it is not meaningful, since only the total angular momentum is conserved during

propagation [65]. For example, in optical tweezers it is necessary to have a strong field con-

finement to manipulate dielectric particles with the gradient forces. Therefore, in an optical

tweezer it is important to consider all contributions to the light angular momentum.

As will be later shown in Eq. (2.124), ε0ω
2

2 |A0|2 gives the energy density in a zero order

approximation. So if a photon has energy ~ω, Eq. (2.119) says that on a LG beam with N À 1

photons each carries the following angular momentum on average

Lz

U
= N~ (m +σ)

N~ω
. (2.120)

9 This surface term arises from a 2D integral over beam boundaries. Assuming a finitely extended beam, this
may be safely considered as zero. However, if there is interest in local effects, it is necessary to be more
careful in performing this transformation.
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The energy density at a point may be expressed as

U =UE +UB = ε0

4
|E|2 + 1

4µ0
|B|2 . (2.121)

So, using the expressions (2.110) and (2.111) for the fields, we have

UE = ε0

4
|E|2 = ε0ω

2

4

[
|A0|2 + 1

k2
|ε ·∇A0|2

]
, (2.122)

UB = 1

4µ0
|B|2 = k2

4µ0

[
|A0|2 + 1

k2

(
|∇A0|2 −

∣∣ε∗ ·∇A0
∣∣2

)]
, (2.123)

U = ε0ω
2

2
|A0|2 + ε0ω

2

4k2

[|∇A0|2 +
(
ε∗×ε

) · (∇A∗
0 ×∇A0

)]
. (2.124)

As pointed out in the recent literature, although there may be regions where the field

amplitude is zero, the electric or magnetic energy density may be non null due to the field

gradients [31]. The non-zero energy density means that there are photons available to inter-

act with matter. This is interesting specially for optical vortices, which have zero electric field

at the vortex core. As an example, it has been suggested that LG photons may favor electric

dipole forbidden transitions in atomic/molecular systems [31], what was recently verified

for magnetic dipole transitions [32].
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3 Basic concepts in digital holography
with phase modulators

3.1 Introduction

In the real world the physical phenomena involving light always have some dependence on

the beam wavefront. Therefore, it is convenient to have good flexibility and control of the

beam wavefront, that can be achieved by using digital holography techniques. In this ap-

proach, it is possible to use a computer to adjust the beam local amplitude, phase and polar-

ization using spatial light modulators (SLMs)[60, 66]. Wavefront modulation is at the core of

several important applications, as in security labels, adaptative optics systems for advanced

telescopes [67] and microscopes [68], and also for measuring the position and orientation of

single molecules [69]. Another important application of spatial light modulators is in display

technology, as for example in the projection displays in movie theaters or in LCD displays.

Since wavefront modulation techniques are of fundamental importance for this thesis,

this chapter begins with the introduction of some concepts behind holography, then some

techniques for spatial light modulation are mentioned. Since in our laboratory we have ac-

cess to liquid crystal phase-only SLMs, it is later described how does one may modulate a

transverse phase profile, and also how to simultaneously modulate an amplitude and phase

profile.

3.2 Brief introduction to holography

The fundamental concept behind holography arises from the initial argument contained in

sec. 2.2: if a field configuration is given at an infinite plane (z = 0), the field is also automat-

ically determined at z > 0. Therefore, if one manages to build a system which can precisely

shape the amplitude and phase of the field at a plane, it should be possible to reproduce any

field configuration throughout the space. Interestingly enough, such amplitude and phase

profile can be obtained from a simple interference pattern between a plane wave and the

beam of interest. These concepts were introduced by Dennis Gabor [70,71], by which he was

awarded the 1971 Nobel prize in Physics. Here only a short discussion on the topic will be

performed, mainly focusing on the aspects relevant for the remaining of this manuscript. As

references for the reader, an introduction to holography can be seen in [60], while a deeper

discussion can be found in [66].

Mathematically the concept can be described as follows. Initially it is necessary to record

the field profile over some plane, and later the fields must be reconstructed. Suppose that

there is a complex field As to be reproduced. Since it is necessary to obtain both the ampli-
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tude and the phase profiles, As must interfere with some reference field Ar , coherent with

As . For simplicity we assume perfect coherence between fields Ar and As , and that As prop-

agates along the ẑ direction (As ≈ As,0e i k0z). Then at some plane z = 0 the interference be-

tween Ar and As gives the intensity profile

I = |As |2 +|Ar |2 + Ase iθA∗
r + A∗

s e−iθAr , (3.1)

where θ represents the relative phase between Ar and As .

Suppose that it is possible to produce a grating whose transmission T is spatially mod-

ulated according to the profile determined by I . It is evident that the mask transmission is

limited to the range 0 ≤ T ≤ 1, what can be accomplished for example by

T = γ
(
|As |2 +|Ar |2 + As A∗

r e iθ+ A∗
s Ar e−iθ

)
, (3.2)

where γ ≤ 1/max
(∣∣Ar + Ase iθ

∣∣2
)
. For off-axis holography, these masks can be recorded as

described in Fig. 2(a). If a reconstruction beam characterized by a complex amplitude profile

Ap illuminates the mask whose transmission is T , the beam amplitude after the mask is

exactly given by

A′
p = γ

(
|As |2 +|Ar |2 + As A∗

r e iθ+ A∗
s Ar e−iθ

)
Ap . (3.3)

Observe that if the reference wave, Ar = A0e i k ·r , and the impinging illumination beam,

Ap = d A0e i k ·r , are collinear plane waves, then A0 and d are real quantities. It is easy to verify

that

A′
p = γd A0

[(|As |2 +|A0|2
)

e i k ·r + A∗
s A0e i 2k ·r e−iθ+ As A0e iθ

]
. (3.4)

Several important features can be seen in Eq. (3.4). There are various terms modulating

the beam profile after the transmission mask. However, since A0,γ,d are constants, the last

term is directly proportional to the original complex field As . It should be remarked that,

as was done at the beginning of this section, the correct amplitude and phase profile deter-

mined at a plane also uniquely determines the beam evolution. Thus, as long as one develops

a method to correctly isolate the last term from Eq. (3.4), it is possible to reconstruct the field

complex amplitude As . The beam conjugate to As is also produced, and there is a simple

amplitude modulation given by
(|As |2 +|A0|2

)
in the direction of the reference beam.

To perform a good modulation of the beam complex amplitude profile, it is of funda-

mental importance to separate the terms in Eq. (3.4), and some approaches are discussed

below. Even though our discussion will be limited to transmission gratings, the ideas are also

applicable to phase masks.

3.2.1 In-line holography

Before the invention of the laser, it was relatively difficult to obtain light sources with long

coherence times. The coherence of light sources was a major limitation for holography, and

as such the initial research was mainly limited to proofs-of-concept like experiments [72].
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(a) Off-axis Hologram
recording process

Ar

As

z=0

Ap

As
z=0

A*
s

A'p

(b) Off-axis Hologram
reconstruction

Figure 2 – Off-axis hologram optical recording (a) and reconstruction (b). (a) For the holo-
gram recording, a photosensitive material is placed at the plane z = 0, where two
fields Ar and As interfere. The continuous exposition to radiation imprints the in-
terference profile (green line) in the film, which is later developed. (b) When Ap

illuminates the developed hologram (black line), the fields As and A∗
s are simulta-

neously produced.

One important limitation due to the short coherence time is that it is difficult to produce in-

terference patterns between light beams forming large relative angles, and thus the initial ex-

periments were limited to holograms produced by a nearly collinear Ar and As (k · r ≈ k0z).

In the case of in-line holography, it is very difficult to separate the individual terms con-

tained in Eq. (3.4), and thus this approach usually is not very good in providing accurate

phase and amplitude modulation.

3.2.2 Off-axis holography

Contrarily to the case of in-line holography, in off-axis holography the wavevector k forms

an angle with the direction z , such that each term in Eq. (3.4) propagates along a distinct

direction. It is thus possible to separate each term through a spatial filter. Only with the ad-

vent of lasers in 1960 that light sources with long coherence times became widely available.

Lasers allowed off-axis hologram recording and retrieval, and gave a substantial momentum

to holographic techniques.

For simplicity, suppose that k = x̂k0 sinφ+ ẑk0 cosφ ≈ x̂k0φ+ ẑk0, where φ is the small

angle between the reference beam propagation axis and ẑ. The field after the transmission

mask becomes

A′
p = γs A0e i k0z

[(|As |2 +|A0|2
)

e i k0φx + A∗
s A0e i 2k0φxe−iθ+ As A0e iθ

]
. (3.5)

It is possible to use a lens to spatially separate the above terms using the Fourier trans-
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form property of the lens of focal distance f . In the Fourier plane, the field becomes

Ã′
p ∝

[(|As |2 +|A0|2
)
δ

(
f φ−x

)+ A∗
s A0e−iθδ

(
2 f φ−x

)+ As A0e iθδ (x)
]

, (3.6)

where it is approximated that the spatial structure of |As |2 varies very slowly in the transverse

plane. Thus, each term will appear at a distinct transverse position along the x̂ axis (at x = f φ,

x = 2 f φ and x = 0). If an aperture is placed at the Fourier plane, it becomes possible to select

and isolate each term in (3.5) separately. A more detailed description of this spatial filtering

process will be given later in sec. 6.4.2.

3.3 Spatial light modulators

A fundamental step in performing holography consists in obtaining the optical elements

which have the adequate transmission properties. Some possibilities includes an optical

record of the electric field transverse amplitude or amplitude and phase profiles in photo-

graphic film, or using a device that can store information about the optical field [66]. While

optically addressed holography is fundamental for many important applications, as in secu-

rity labels, for research purposes it is often more convenient to produce holographic masks

by digital methods and then apply the modulation pattern at a SLM. Below there is a small

discussion relative to some of the currently available digital SLM technology. In practical

terms the digital SLM’s can modulate the field amplitude or its phase. It should be stated

that although a given SLM physically modulate only one quantity (amplitude or phase), it is

possible to encode both amplitude and phase information using the same device with the

appropriate procedures.

Amplitude masks are the most simple method for beam modulation. This procedure is

precisely the example considered in Sec. 3.2, where the transmission mask has the intensity

profile associated with the interference between the reference field and the modulated field.

Such a mask can be produced, for example, by printing the adequate profile on a transparent

film. While the transmittance may vary smoothly in such masks, it is also possible to obtain

designed field profiles given a binary amplitude grating, where the transmittance at each

pixel is either 0 or 1.

The phase modulators usually vary the optical path in a controllable manner. The trans-

mittance of a phase mask is complex, T = e iχ, indicating that the energy is conserved in the

ideal case. In practice however there might be several loss mechanisms, but phase modula-

tors usually do have a higher efficiency than amplitude modulators. This is very important

in some applications, as in super-resolution microscopy [69], or in correcting the wavefront

aberrations introduced by the atmosphere in images formed by telescopes [67].
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Figure 3 – Schematics of some spatial light modulators. (a) Mirror-based amplitude modu-
lation. When the mirror is in the “on” state, the light is reflected along a direction
of interest, while if it is in “off state”, the light is rejected. (b) By displacing the
mirror by a distance L along the propagation direction, a monochromatic beam
acquires a phase e i 2kL , where k is the wavenumber. (c) Representation of a reflec-
tive nematic liquid crystal (NLC) SLM. The NLCs can change the optical path of
light parallel to its longer axis. Thus, the incident light polarized according to the
red double arrow will gain a phase depending on the orientation of the NLC.

3.3.1 Mirrors arrays

Maybe the most intuitive system which is able to modulate the wavefront are mirror arrays.

They can be used to modulate the beam amplitude or its phase. One important feature of

using mirrors is that the modulation can be very efficient and also operates over a broadband

of wavelengths.

A simple method to modify the field amplitude using a mirror consists in tilting the mir-

ror to a specific angle. According to the schematic in Fig. 3 (a), if the mirror is in the “on”

state, there will be light reflected along a given direction. For the “off” state, the light is de-

flected along a non-detectable direction. By having an array of sufficiently small mirrors it is

possible to locally modulate the beam amplitude with high spatial resolution. An important

characteristic of micro-mirror arrays is that the information can be encoded very quickly,

much faster than in liquid crystal devices [73]. Therefore, while the previous description of

the modulation process is binary, no light or full light, it is possible to control the average

amplitude by controlling the time spent on “on” and “off” states using a pulse-width mod-

ulated control signal. Since this is a dynamic modulation, some precautions must be taken

when using this kind of modulation directly for scientific applications [73]. For simultane-

ous amplitude and phase encoding it is preferable to use the binary grating. However, the

modulation switching can be averaged in applications involving slow detectors such as the

human eye. For that reason digital micro-mirror devices are applied in projection screens for

consumer products and also in movie theaters.

In another configuration a mirror can modify the beam phase by being displaced along
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the light propagation direction. Thus, if a mirror contains sections that can increase or de-

crease the optical path in fine steps it is possible to apply a transverse phase to the optical

field, as represented in Fig. 3 (b). Therefore, by sectioning a telescope mirror and controlling

each element independently, it becomes possible to compensate for atmospheric induced

aberrations [67]. A disadvantage of this approach is that with current technology the min-

imum size of the mirror is various hundreds of microns. Practical laboratory-scale devices

have a small transverse resolution, with less than 100x100 mirror elements. Therefore, while

these devices are ideal for compensating aberrations due to large scale features, they are not

the very adequate for high-resolution wavefront transverse modulation.

3.3.2 Liquid crystal display

Liquid crystal displays are widely used in consumer products and also for scientific applica-

tions. Physically, the crystals are aligned in a way to modify the optical polarization in pro-

portion to an applied voltage. Even though there is an important class of modulators based

on ferroelectric liquid crystals, the modulation by uniaxial nematic liquid crystals (NLC) is

found in a larger set of devices and will be the only case discussed in this work. NLC’s can

be used either to rotate the polarization, that becomes an amplitude modulator if polarizers

are used, or the optical path by adjusting the refractive index for a given polarization com-

ponent.

The schematic in Fig. 3 (c) correspond to the structure of the SLM used in the experi-

ments for this thesis. The NLC are rod-like crystals that have the tendency to be parallel to

each other. By performing an adequate polishing process in the alignment layer, it is pos-

sible to guarantee the NLC orientation across the device when the voltage applied between

electrodes is zero. When the maximum voltage Vmax is applied, the NLC are designed to be

oriented along the electric field lines. According to Fig. 3 (c), the transparent electrode is held

at a voltage of 0 V, while 0 ≤ Vi ≤ Vmax is used to change the local NLC orientation. In Fig.

3 (c), V3 = 0 V, V1 = Vmax and V2, V4 represent intermediate applied voltages. In general the

NLC are birefringent, such that the refractive index of light propagating parallel to the NLC

axis will be different from that of light whose polarization is along the NLC axis. Therefore,

by orienting the NLC axis relative to the light incident polarization it is possible to change

the optical phase. The maximum phase shift at the design wavelength is typically larger than

2π, such that it is possible to imprint an arbitrary phase profile over the transverse plane.

While in principle it is possible to use transparent electrodes to control Vi in a transmis-

sive SLM, for higher spatial resolution the electrodes are usually made on a silicon substrate.

This forces the SLM to have a reflective layer above the electrodes, as is represented in the

schematic.

NLC devices that behave as explained above behave as phase modulators with a strong

polarization dependence. Thus, if the incident light is polarized at 45o to the modulation axis
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Figure 4 – (a) In line hologram for the production of an OV characterized by m = 1. (b) Off-
axis hologram for an OV with m = 1. Notice the characteristic forked pattern.

the SLM behaves as a position dependent waveplate. By adding a polarizer after the SLM it

is possible to use it as an amplitude modulator.

In terms of applications, NLC are broadly used for transmission amplitude modulation in

LCD screens. Appropriate alignment layers can twist the NLC axis by 90o or 270o between in-

cidence and output planes. If the NLC are placed between crossed polarizers, it is possible to

modulate the beam transmitted amplitude with a high efficiency at each pixel. There is also

a growing number of scientific applications for NLC SLM, ranging from super-resolution mi-

croscopy [69], classical and quantum optical communications [24, 26], fundamental studies

of the orbital angular momentum of light [23], and also in a recent demonstration that finite

light beams propagate with a speed smaller than the speed of light [36].

3.4 Phase modulation in phase-only SLMs

Even though it seems simple to modulate the beam phase using a phase-only SLM, there

are some nontrivial aspects worth remarking. As an example case, it will be mentioned the

modulation of an optical vortex (OV) whose phase is χ= mφ, where φ is the azimuthal angle.

In a first approach, one would like to directly reproduce the target transverse phase in

the SLM display. A simple way to obtain numerically the phase profile of the OV is by using

complex numbers. Technically this is very simple to implement and very efficient, because

there are many tools for handling complex numbers in numeric calculation softwares.

Considering x and y are the coordinates along the SLM display, it is known that
(
x + i y

)m =
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|r |m e i mφ. By retrieving the argument of the associated complex profile,

χi (r ) = arg
[(

x + i y
)m]= mφ, (3.7)

which is represented in Fig. 4 (a).

If in-line holography is used, there must be some care, because in the real world the

modulation is not perfect. Representing the field before and after modulation as E (inc) and

E (mod), respectively, a possible representation to the non-ideal modulation is given by

E (mod) (r ) = 1

N

(
ae iξ+e iχi (r )

)
E (inc) (r ) , (3.8)

where the parameter a indicates the fraction of non modulated light, assumed to be small

(a ∼ 0), and ξ indicates a possible relative phase. To ensure the conservation of energy, the

normalization factor N =
√

1+a2 +2a cos
[
ξ−χi (r )

]
was introduced. To first order in a, it is

found that

E (mod) (r ) ≈
(
e iχi (r ) − a

2
e i[2χi (r )−ξ]+ a

2
e iξ

)
E (inc) (r ) , (3.9)

which indicates that the beam contains a phase term with the correct modulation, and ex-

tra terms which contains a wrong phase profile whose amplitude is determined by the pa-

rameter a. Although the toy-model from (3.8) is very simple, it indicates that an in-line ap-

proach is very susceptible to deviations from the desired behavior. This should pose no prob-

lems for phase profiles determined from automated procedures, as those obtained using the

Gerchberg-Saxton algorithms [74] or those used to explore coherent atomic/molecular pro-

cesses [75]. However, since we are interested in correctly modulating the beam transverse

profile according to a desired prescription, it is easier to use an off-axis approach.

To go from in-line to off-axis, we just add a linear phase term, also known as carrier, to

the desired phase pattern,

χo (r ) = mφ+Λx, (3.10)

where for simplicity it is assumed that the carrier is along the x axis. The transverse phase

associated with χo (r ) is represented in Fig. 4 (b). Assuming the same perturbation as before,

in the off-axis case the modulated field becomes

E (mod) (r ) ≈
(
e i mφ+iΛx −ae2i mφ+2iΛx−iξ+ a

2
e iξ

)
E (inc) (r ) , (3.11)

and now it is possible to select only the modulated field using a spatial filter, according to

the same argument as in sec. 3.2.2.

3.5 Simultaneous amplitude and phase modulation in phase-

only SLMs

Since usual SLM’s modulate either amplitude or phase, an approach that allows the simul-

taneous modulation of both quantities would be very useful, because it enables a full struc-
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turing of the transverse optical field. Then, it will be discussed below an approach to modu-

late the transverse amplitude and phase of an optical beam by properly adjusting the trans-

verse phase of the mask. The ideas explained below were introduced by [76], and more re-

cently were nicely implemented with current technologies by [77,78]. While the mathemati-

cal problem is well understood from these previous works, there still remains a practical dif-

ficulty to evaluate some inverse functions, as the inverse of the cardinal sine [77,78] or Bessel

functions [77]. The numerical evaluation of these inverse functions can be very demanding,

and an original contribution of this thesis is performing an analytical approximation to the

inverse of the cardinal sine using Padé approximants, accurate to almost 12 bits of amplitude

encoding.

Suppose a phase mask characterized by the transmittance

T (r ) = e i M(r )Φ(r ), (3.12)

where Φ (r ) is a transverse phase, such that 0 ≤ Φ (r ) ≤ 2π, and M (r ) is a factor related to

the phase modulation amplitude defined in the interval 0 ≤ M (r ) ≤ 1. Under off-axis holog-

raphy it should be expected that M (r ) can be related to the beam amplitude and Φ (r ) to

its phase. For simplicity, suppose that the phase profile is that of a blazed diffraction grat-

ing, Φ (r ) = Mod(kx,2π), where Mod(x,d) represents the remainder of x when divided by

d (modulo operation). If the amplitude is M (r ) = 1, it should be expected that a beam par-

allel to the optical axis to be fully deflected to the first diffracted order. On the other hand,

no energy is expected in the first diffracted order of the grating if M (r ) = 0. Therefore, intu-

itively it is expected that by correctly modulating the depth of the grating, M (r ), it becomes

possible to modulate the amplitude of the electric field [76]. However, this amplitude mod-

ulation factor also modifies the transverse phase nonlinearly, and it is extremely relevant to

describe the diffracted orders correctly. As a final remark, the prescription in (3.12) for am-

plitude modulation is not unique [77], but shows good modulation properties [78].

Since the phase term in the transmission mask is defined within [0,2π), then it is possible

to perform a Fourier expansion of T (r ) in terms of Φ (r ),

T (r ) =
∞∑

n=−∞
Tn (r )e i nΦ(r ), (3.13)

Tn (r ) = 1

2π

ˆ 2π

0
e i M(r )Φ(r )e−i nΦ(r )dΦ (r ) , (3.14)

where the expansion is valid for all values of the transverse coordinates. As a curiosity, this

mathematical procedure is equivalent to that used for the decomposition of fractional opti-

cal vortices in terms of a basis of well defined angular momentum states [79,80]. The integral

in (3.14) is elementary, and can be written as

Tn (r ) = e iπ[M(r )−n] sinπ [M (r )−n]

π [M (r )−n]
. (3.15)

If the phase profile contains the blazed grating pattern, most of the beam energy will be

diffracted to the first diffraction order, where the beam complex transverse profile is B1 (r ) =
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T1 (r )e iΦ(r ), or

B1 (r ) = sinc{π [M (r )−1]}e i {Φ(r )+π[M(r )−1]}, (3.16)

where it is identified the cardinal sine, sinc(x) = sin x/x. Suppose that there is interest in

modulating an impinging plane wave such that the output field is

A (r ) =A (r )e iχ(r ), (3.17)

for some amplitude and phase profiles A (r ) and χ (r ), respectively. By equating A (r ) =
B1 (r ), it is possible to obtain the transmission grating parameters, M (r ) and Φ (r ), with the

target modulated field. Thus, to produce the field (3.17), one promptly identifies thatA (r ) = sinc{π [M (r )−1]} ,

χ (r ) =Φ (r )+π [M (r )−1] ,
(3.18)

and, since the mask is designed using M (r ) and Φ (r ), the above relations must be inverted,

resulting in M (r ) = 1+ 1
πsinc−1A (r ) ,

Φ (r ) =χ (r )− sinc−1A (r ) .
(3.19)

The result presented in Eq. (3.19) is very important because it describes the relation be-

tween the phase-mask transmission parameters with the amplitude and phase of the field of

interest. Therefore, it significantly simplifies the experimental setup and optimizes the us-

age of the SLM. However, there is an implementation problem with this technique, which is

related to the difficulty in numerically calculating the sinc−1A (r ) term. If a direct approach

is considered, or even a lookup table is used, the procedure can be very time-consuming

for a 2D phase mask containing millions of pixels. In what follows, we suggest here a more

efficient approach to calculate the inverse based on standard functions. A good accuracy is

obtained and the expressions can be quickly evaluated in current computers.

Analytical approximation to the sinc−1A problem

Given the function sinc(x) = sin x/x and its inverse, sinc−1A , for the current purposes it is

necessary to restrict the domain of x to the range −π ≤ x ≤ π, since 0 < A < 1. x is further

restricted to the interval −π ≤ x ≤ 0 if we require that 0 ≤ M ≤ 1 in (3.19). In Fig. 5 (a) the

sinc−1A is represented, as given by numerical inversion.

There are various routes to approximate sinc−1A . A major requirement in such approx-

imations is that they must correctly describe the field amplitude near A ∼ 0, what is very

relevant for example in fields containing optical vortices, and also near A ∼ 1, where most

of the beam energy is contained. Distortions of the modulation near A ∼ 1 must be very

important in applications involving the encoding of information in the transverse modes,

since the experimentally obtained modes will contain contributions not associated with the
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Figure 5 – (a) The inverse of the cardinal sine (continuous) and several approximating func-
tions near the edges of the interval of interest. The dashed line represents an
expansion of the solution near A = 1, while the dash-dotted line and dotted
line represents the first and second order Taylor expansions of the solution near
A = 0, respectively. (b) The proposed approximations are accurate for all val-
ues of A , and the distance between the approximation and the exact values,∣∣∣sinc−1 (A )− sinc−1

[n/n] (A )
∣∣∣, is very small. The maximum distance is smaller than

2−6.1, 2−10.6 and 2−11.7 for the [1/1], [2/2]B and [2/2]I Padé approximants, respec-
tively plotted with dash-dot, dashed and solid lines. The B and I subscripts indi-
cate different approaches to obtain the Padé coefficients, according to the para-
graph after Eq. (3.28).

desired mode structure. Another constraint is that the approximation must be easily calcu-

lable, since a difficult approach does not bring any advantage.

The simplest approximation consists in perform a Taylor expansion of the sinc(x) around

x = −π, where sinc−1A = 0, and inverting the associated series. To second order in A , it is

obtained

sinc−1A ≈π
(−1+A −A 2) . (3.20)

In Fig. 5 (a) it can be seen that over the full range of interest, retaining the expansion

only over the first order series expansion has a smaller distance to sinc−1A than the second

order approximation. It is noted that by using more terms in the series expansion it should

be possible to improve the accuracy of the approximation, but this increases significantly the

computational time.
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Another possible approximation consists in inverting sinc(x) near x = 0. Notice that

sinc(x) ≈ 1− x2

3! + x4

5! , and by inverting the series with the previous assumptions, it is obtained

sinc−1A ≈−p6
p

1−A

[
1+ 3

20
(1−A )

]
. (3.21)

The approximation in (3.21) is also represented in Fig. 5 (a). As can be observed, there

is a good agreement between the approximation and the true function for A ≈ 1, while for

smaller values of A the disagreement becomes considerable. An important aspect of the ex-

pansion in (3.21) is that the sinc−1A function does not have an exact Taylor series expansion

around A ≈ 1, because all the derivatives of sinc−1A are singular at A = 1. However, by fac-

toring
p

1−A of the expansion, it is possible to have a well defined series expansion in terms

of powers of (1−A ).

After gaining some knowledge on the asymptotic behavior of sinc−1A near the extrema

at A = 0 and 1, it is possible to smoothly match these approximations across the range of in-

terest by using Padé approximants, which are shortly reviewed for convenience in appendix

??. The [n/m] approximation to the sinc−1A is defined as

sinc−1
[n/m] (A ) =

p
1−A

∑n
i=0 ai A

i

1+∑m
j=1 b j A j

, (3.22)

where the singular behavior near A = 1 shall be correctly described by the multiplicative fac-

tor of
p

1−A . It is advantageous to use Padé approximants in this problem because it nat-

urally extrapolates the results of a simple series expansion, by adding extra terms for larger

values of the argument A . In order to have a solution that matches the exact function, the

coefficients ai and b j are chosen such that the series expansion of sinc−1
[n/m] (A ) is equivalent

to that of sinc−1 (A ) at one or more values of A . Although various sets of n,m can be used, it

is often true that the Padé approximants become more accurate when n = m, and thus only

this case will be considered here. For sinc−1
[1/1] (A ) and based in the expansions (3.20) and

(3.21), the following conditions were used

sinc−1
[1/1] (A )

∣∣
A=0

=−π, (3.23)

d

dA
sinc−1

[1/1] (A )

∣∣∣∣
A=0

=π, (3.24)

sinc−1
[1/1] (A )

∣∣
A=1

=−p6. (3.25)

The condition (3.23) implies that a0 = −π. The conditions (3.24) and (3.25) can be used

to solve for a1 and b1, and the values described in Table 1 are obtained. The distance be-

tween the approximant sinc−1
[1/1] (A ) and sinc−1 (A ) very small, as can be seen in Fig. 5 (b).

The maximum distance is 1.5%, indicating a resolution of 6.1 bits in amplitude modulation,

which is much closer to the exact function than in the implementation applied in [78], where

the maximum deviation can reach 16%. The above resolution in amplitude modulation is not

completely satisfactory, since various of the current SLM’s have a phase resolution of 8 bits.

Thus, the previous analysis was extended to [2/2] approximants.
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Approximant a1 a2 b1 b2

sinc−1
[1/1] π

3/2−π/
p

6
1−π/

p
6

0 −1+π/2
p

6
1−π/

p
6

0

sinc−1
[2/2]B

-8.15161 -1.74204 3.09474 1.22688

sinc−1
[2/2]I

-7.20646 -1.29906 2.79389 0.961026

Table 1 – Coefficients of the Padé approximants used in approximating sinc−1 (A ).

Two sets of coefficients were obtained for the [2/2] approximant, [2/2]B and [2/2]I . The

conditions expressed in Eqs. (3.23)-(3.25) were used for both sets, in addition to

d

dA
sinc−1

[2/2] (A )

∣∣∣∣
A=1

= 3
p

6

20
. (3.26)

The distinction between [2/2]B and [2/2]I approximants consists in the last constraint,

d 2

dA 2
sinc−1

[2/2]B
(A )

∣∣∣∣
A=0

=−2π, (3.27)

sinc−1
[2/2]I

(A )
∣∣∣
A= 3

p
3

4π

=−2π

3
. (3.28)

For [2/2]B the final constraint is related to the curvature of the function near the bound-

ary, in a similar fashion to what was performed for the [1/1] case. The constraint in [2/2]I

is based on the observation from Fig. 5 (b) that the maximum distance between the [1/1]

approximant and sinc(A ) occurs near A ≈ 0.41, where sinc
(−2π

3

) = 3
p

3
4π is exactly known.

From Fig. 5 (b) it is clear that while both approaches significantly improve the modulation

relative to the [1/1] approximant, it can be seen that [2/2]I gives results better than [2/2]B by

a factor of 2 over the range of physical values for A . Notice that the maximum distance for

[2/2]I implies in a resolution of nearly 12 bits in the modulation of amplitude.

For usage in 8 bits SLM’s, the accuracy of the approximation proposed here should be

sufficient to ensure a nearly ideal phase encoding. The modulation problems then should

be related to issues not related to numerical innacuracy. Performing the calculations using

python’s numpy package [81], and evaluating the calculation time within the IPython frame-

work [82], it was verified that the time for calculating the approximants here described can

be smaller than 10 ms for an image with 1024x1024 pixels in an ordinary laptop. The 10 ms

timescale directly indicates the possibility to update the hologram near or above to the max-

imum refresh rate of typical liquid crystal SLM’s (60 - 120 Hz). As a final comment, an equiv-

alent analysis of approximants can also be performed for other transfer functions relevant

for amplitude modulation, as Bessel functions [77].

A numerical experiment

As an example of the previous discussion, it will be discussed below an analysis for the si-

multaneous amplitude and phase encoding of a Laguerre-Gauss mode at its minimum beam

waist.
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Figure 6 – Comparison between the ideal amplitude and phase profiles of the LG0,1 mode
at the minimum beam waist (upper row) with the spatial filtered beam plane
wave modulated by a simultaneous amplitude and phase modulation phase mask
(lower row). The insets in the amplitude profiles represent the cross-sections along
the beam center. The carrier was removed for a better comparison. The modulated
beam intensity profile follows closely that expected for the LG0,1 mode. Mean-
while, the modulated phase profile has some small distortions near the central
region with respect to the target phase profile, and it is not well defined at low
intensities.

The transverse profile of the LG0,1 mode is mathematically described by Eq. (2.59), and

the associated amplitude and phase profiles can be seen in Fig. 6. It is assumed here that a

plane wave is normally incident to mask whose phase profile may be modulated. If the LG0,1

amplitude and phase profiles (with a carrier) are substituted in (3.19), it is obtained a mask

phase profile, M (r )Φ (r ), as represented in Fig. 7. Due to the carrier, it is necessary to per-

form a filtering in the Fourier plane of the optical system. The intensity profile in the Fourier

plane can also be seen in Fig. 7. Notice that the grating profile produces several diffraction

orders which spatially redistribute the energy of the incident plane wave. By filtering only the

first diffracted order (surrounded by the white circle), the modulated beam profiles shown in

Fig. 6 is obtained. Even though this discussion is merely based on numerical manipulations,

a conceptually similar procedure is performed in the experiment.
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Figure 7 – Phase profile which simultaneously encodes amplitude and phase information of
a LG0,1 mode and the associated 2D power spectrum of the Fourier transform (log
scale). The white circle represents the aperture used for spatial filtering.
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4 Optical vortices and their properties

4.1 Introduction

In the recent literature there is a growing number of studies involving the fundamentals and

applications of Optical Vortices (OVs) and light beams carrying Orbital Angular Momentum

(OAM) [23]. These studies gained momentum after the seminal work by Allen and collabora-

tors [21], which explains that several important light fields have OAM. An OV is a topological

feature of the beam, characterized by a region in which the phase profile has an integer num-

ber of jumps, q , between −π and π along a closed contour encircling a phase singularity. The

number q is also known as the topological charge (TC). Although in the optics literature it

seems sometimes that OV are unique features that appear only in some specific contexts, as

for example in Laguerre-Gauss modes or Bessel Beams, they are ubiquitous. For example,

if one superimposes three non-colinear plane waves, several pairs of OV can appear [17],

as represented in Fig. 8. Therefore, since it is possible to produce OV under such simplistic

circumstances, it should be expected that they arise in various contexts. Indeed, OV appear

naturally for example in speckle patterns [83–86].

In several applications there are some characteristics of OV that become more important

than others. For example, in optical communications both in classical [24] and quantum

regimes [26], the orthogonality among modes enables the multiplexing and demultiplexing

of information, enhancing the data transmission rate of these systems. In applications as

Figure 8 – Interference between three non-collinear plane waves. Notice that there are sev-
eral points where the amplitude is 0. In a sufficiently small closed contour around
such points the phase profile jumps between −π and π. The phase singularity at
these points requires a vanishing amplitude. To conserve the total angular mo-
mentum, the OV are produced in pairs with opposed charges.
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optical tweezers, the OAM profile enables the control of the particle motion along the plane

transverse to the beam propagation [23, 87]. The stability of the singular region and the am-

plitude growth ratio are very important in optical trapping applications [88]. In plasmonics

it is possible to have a selective excitation of surface plasmon modes[89, 90]. Therefore, it

is extremely important to understand how the OV properties can be optimized for a given

application, and also the mechanisms which destabilize the light characteristics from its op-

timum values.

Most of the works in current literature in OV uses cylindrically shaped beams, and there

are many degrees of freedom almost unexplored until recently. A result developed in this

thesis is that beams with non-zero OAM can have any shape, and at the same time be con-

structed in a single spatial light modulator (SLM) [1]. Previous works which generated shaped

OAM beams resorted on two SLM’s [91] or Lissajous patterns [92]. The development of theo-

retical and technical tools described below enables simpler experimental setups and higher

conversion efficiencies from input light to OAM beam. Also, the concepts developed can en-

able novel applications in diverse areas as optical traps and tweezers, pre-compensation of

geometric aberrations, topological quantum computing and plasmonics.

In this chapter there is an initial discussion on the TC and OAM in a paraxial light beam.

Then, the next sections contains the following original contributions of this thesis: (1) it will

be shown that the association of q with a charge can be made clearer and more intuitive by

developing an analogy between the topological charge and two-dimensional (2D) electro-

statics; (2) since the TC distributions have important distinctions relatively to electrostatics,

some formal mathematical results are briefly commented on the validity of the results pre-

sented; (3) Then, some TC distributions are considered, as the TC distributions along lines

and the 2D radial TC distribution; (4) Finally, the concept of optical vortex multipoles is in-

troduced and a relation between beam’s phase pitch and shape is obtained.

4.2 TC and OAM in a light beam

In cylindrical coordinates r = r
(
ρ,φ, z

)
a paraxial monochromatic field may be represented

at a plane z through

A (r, t ) = ε̂

(
2µ0

ωk
P0

) 1
2

A (r)exp i
[
χ (r)+kz −ωt

]
, (4.1)

where P0 is the optical power, µ0 is the vacuum permeability, ω and k are the light angu-

lar frequency and wave number, respectively. The remaining terms are the beam transverse

phase profileχ (r) and A (r) is the vector potential amplitude envelope, normalized such that´
ρdρdφ |A (r)|2 = 1. It is considered a linearly polarized field, such that the Poynting vector,

Eq. (2.114), does not have the spin contribution.
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The total TC, QT , contained inside a contour C of radius c, at the plane z = z0, i.e. on the

plane ρ,φ perpendicular to the propagation direction, may be written as [79, 93]

QT = 1

2π

˛
C

dx ·~∇⊥χ (r) , (4.2)

where dx is the infinitesimal displacement along C . The TC informs how many times the

beam phase pass through the interval [0,2π] following the curve C . If the contour C does

cross a singularity, QT is an integer even when χ (r) has discontinuities [79]. A single TC is

positioned at any point r in the plane z0 such that Re {A (r, t )} = Im {A (r, t )} = 0 and the inte-

gral in Eq. (4.2) is nonzero when C is a circle of infinitesimal radius encircling r. For example,

supposing that the field of interest has a finite region containing singularities, C may be cho-

sen as a circle of radius ρ = c enclosing such region.

From the definition in Eq. (4.2), QT is independent of the shape of C . It is possible to

consider, for example, that C is a circle of radius c, what simplifies Eq. (4.2) to

QT = 1

2π

ˆ 2π

0
w

(
ρ = c,φ, z0

)
dφ, (4.3)

where w (r) is the local OAM (`-OAM) [94],

w (r) = ∂χ

∂φ
(r) . (4.4)

The chosen contour has some advantages, as the ability to observe a spatial profile rel-

ative to the TC distribution through w (r), and it is directly related to the beam `-OAM. The

evaluation of w (r) is important because it associates a designed OV phase structure to the ex-

perimentally obtained profile, both qualitatively (spatial profile) and quantitatively (through

Eq. 4.3). w (r) characterizes the OV morphology[95, 96], and will be used here to associate a

spatial profile to the beam topological properties. It should be remarked that the `-OAM can

assume any value in principle. In the general case, the connection between the `-OAM and

the TC is through Eq. (4.3). The TC is the average value of the `-OAM through the contour C .

Therefore if w (r) >QT at some portion of the curve C , there must be another portion in which

w (r) <QT .

Another quantity of general interest in OV is the classical OAM density of light, Lz , along

the propagation direction ẑ. Using (2.115), it can be shown that Lz = ε0ω
2 ℜ

{
A (r, t )

(
−i ∂

∂φ

)
A∗ (r, t )

}
,

and by direct substitution of Eq. (4.1), we obtain

Lz = P0

ωc

[
A ∗ (r)

∂χ

∂φ
A (r)

]
. (4.5)

Since P0 = N~ω, where N is the number of photons carrying energy ~ω impinging on the

plane ρφ per second, the `-OAM value per photon at a given position is ~w = ~∂χ/∂φ [94].

Considering that the product A ∗ (r)A (r) is related to the electromagnetic energy density at
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a given point1, the semi-classical average OAM per photon may be determined from Eq. (4.5)

as

~〈l〉 = ~
ˆ

ρdρdφA ∗ (r)
∂χ

∂φ
A (r) . (4.6)

A comparison between Eqs. (4.3) and (4.6) shows QT 6= 〈l〉 in general. We therefore re-

mark that usually there is no direct relation between OAM and total TC [98]. Even for beams

with azimuthal symmetry, it is possible to obtain exotic configurations in which these quan-

tities are distinct. For example, by embedding a Laguerre-Gauss beam characterized by a TC

minner > 0 inside the core of another Laguerre-Gauss beam characterized by a TC mouter >
minner > 0, it can be observed that the superposition of these beams leads to QT = mouter,

while 〈l〉 < mouter. Also, although the intensity profile of a beam is related to its TC distribu-

tion [1, 79, 92], it does not carry information about the topological or OAM properties of a

beam [99]. Therefore in a general OV, by measuring QT one does not necessarily have informa-

tion about 〈l〉 and vice-versa. However, both quantities are related to the `-OAM which can be

obtained from χ (r).

4.3 Optical vortices at z = 0

Remembering that an optical beam is defined everywhere in space if the complex electric

field is completely known in a infinite plane on paraxial regime, the current analysis starts by

considering an homogeneously polarized electric field containing a vortex at the plane z = 0.

Given the vector potential A (r, z) = ε̂A (r, z)e i (kz−ωt ), representing a light field propagating

along ẑ direction, it must satisfy Eq. (2.22),(
∇2
⊥+2i k

∂

∂z

)
A (r, z) = 0, (4.7)

where r represents a vector along the plane transverse to z and ∇⊥ indicates the gradient

operator over the transverse plane.

The goal in this section is to study generic OV configurations in a plane, defined at a

plane z = 0. We begin the analysis by considering the asymptotic behavior of A (r, z) near

the region r = 0. The vector potential envelope, A (r,0), can be factored in two terms. f (r)

has a fast variation near r = 0, while A0 (r) changes slowly, such that

A (r,0) = f (r) A0 (r) , (4.8)

and only the transverse derivatives over f (r) are significant near r = 0. Then, we obtain that

f (r) is an harmonic function over the transverse coordinates,

∇2
⊥ f (r) = 0. (4.9)

1 Notice that in quantum mechanics the spatial localization of the photon is a problematic concept [48, 97],
and therefore the relation of this product with the probability to find the photon at a given transverse posi-
tion should be avoided.
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Solving for f (r) near r = 0 in cylindrical coordinates, there are two orthogonal solutions

well behaved at the origin: r q e i qφ and r q e−i qφ, where ±q is the TC of the associated OV, r

is the radial coordinate and φ is the azimuthal angle. An important point to notice is that

q must be integer valued to guarantee the single-valuedness of f (r). In order to represent

arbitrary OV configurations, it is necessary to combine both contributions from the OV with

positive and negative TC. This is a problem similar to representing a generic state of a spin 1/2

system, or the Jones representation of light polarization [95,100]. Given the two morpholog-

ical parameters α and β, such that 0 ≤α≤π and 0 ≤β≤ 2π, the most general representation

of an OV in the vicinity of r = 0 is

f0
(
r,φ

)= cos
α

2
e i β

2

(
r q e i qφ

)
+ sin

α

2
e−i β

2

(
r q e−i qφ

)
, (4.10)

where it can be observed that α indicates the relative amplitude of the positive and negative

OV, and β is an OV orientation angle.

While Eq. (4.10) represents an OV at r = 0, it cannot express a distribution of TC over the

transverse plane. In order to describe generic OV configurations, Eq. (4.10) must be gener-

alized for TC distributions. While in this paragraph we perform an intuitive picture based

in physical ideas, these concepts will be mathematically stated rigorously in terms of entire

functions later in Sec. 4.3.2. Notice that the solution with positive TC can be represented as

the complex variable uq = (
x + i y

)q = r q e i qφ, which allows the generalization of the initial

solutions by performing translations along the x y plane. Since uq represents an OV whose

TC is q at the position r = 0, (u −δ)q represents the same OV but at a distinct location. For ex-

ample, if δ= a+i b the OV is centered at x = a and y = b. Another possible extension consists

in distributing the TC over the transverse plane. Notice that limδ1,δ2→0 (u −δ1)q1 (u −δ2)q2 =
uq if q1 + q2 = q . In this case, δi represents the displacement of a TC fraction qi relative to

r = 0. A similar generalization can be carried for the solution r q e−i qφ if it is identified that

(u∗)q = r q e−i qφ, where ∗ represents the complex conjugation.

Thus, considering various operations in which the TC is divided and displaced results in

a generalization of Eq. (4.10),

f (u) =
N∏

i=1

[
cos

αi

2
e i

βi
2 (u −δi )qi + sin

αi

2
e−i

βi
2

(
u∗−δ∗i

)qi

]
, (4.11)

where it is assumed that
∑N

i=1 qi = QN , where QN and qi must be integers to ensure the

single-valuedness of f (u). It is also important to remark that the current discussion assumes

that qi > 0. When u = δ j +ε for a very small ε,

f
(
δ j +ε

)≈ (
cos

α j

2
e i

β j
2 εq j + sin

α j

2
e−i

β j
2 ε∗q j

) N∏
i=1,i 6= j

[
cos

αi

2
e i

βi
2

(
δ j −δi

)qi + sin
αi

2
e−i

βi
2

(
δ∗j −δ∗i

)qi
]

.

(4.12)

such that f
(
δ j +ε

)
has an OV at δ j whose TC modulus is q j , and the associated morpholog-

ical parameters are α j and β j .
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In what follows a full consideration of Eq. (4.11) is very difficult, thus it is assumed for

simplicity that αi = 0 for all i . After a coordinate rescaling, v = w0u and some algebraic ma-

nipulations,

f+ (v) = (w0)−
∑N

i=1 qi exp

{
N∑

i=1

[
qi log(v − vi )+ i

βi

2

]}
, (4.13)

where f+ (v) indicates that this is a distribution of positive TC, vi = δi /w0 and log is the

natural logarithm. For negative TC, f− (v) = f ∗+ (v) can be taken. Since the term
∑N

i=1 i βi
2 here

represents only an overall transverse phase, it is ignored below. It is possible to perform a

continuum generalization by rewriting qi → ρ+ (vi )d a′, where ρ+ (vi ) represents a positive

density of TC at the position vi , and d a′ is the normalized area element at vi , such that

N∑
i=1

qi →
ˆ

D
d a′ρ+

(
v ′)=Q+, (4.14)

N∑
i=1

qi log(v − vi ) →
ˆ

D
d a′ρ+

(
v ′) log

(
v − v ′)=V+ (v) , (4.15)

where D is the integration domain. Notice that the real part of V+ (v) is formally identical

to the complex electric potential in 2D electrostatics [101, 102], and the expression for only

negative TC can be obtained through the complex conjugate of (4.15). This analogy seems

interesting for designing OV for specific applications, because it is possible to use concepts

and results from a well established field. It is worth noticing that the factorization of solutions

that leads to Eq. (4.15) can be stated more precisely in terms of the Weierstrass product, as

will be done later. An arbitrary OV can be represented by the product between an envelope

with a Gaussian decay and an entire analytical function of a single complex variable f (u)

[55, 56, 103]. In terms of the Weierstrass product, it is possible to represent f (u) as a product

of its zeros, f (u) = ∏N
i=1 (u −ui )qi , where ui and qi are, respectively the position of the zero

and its associated TC.

To have a more general representation for OV it is necessary to describe fields contain-

ing positive and negative TC. A direct exponentiation of (4.11), as was used to obtain (4.15)

is very difficult. Another aspect worth noticing is that the continuum generalization only

makes sense for an expression linear in qi . However, it is possible to use the identity

aε = eε log a =
∞∑

k=0

(
ε log a

)k

k !
, (4.16)

for small values of the exponent ε to cast the multiplicative factors in (4.11) for a simpler

handling. Assuming qi
∣∣log(v − vi )

∣∣¿ 1, it is possible to approximate to first order in qi that

cos
αi

2
e i

βi
2 (v − vi )qi + sin

αi

2
e−i

βi
2

(
v∗− v∗

i

)qi

≈ cos
αi

2
e i

βi
2

[
1+qi log(v − vi )

]+ sin
αi

2
e−i

βi
2

[
1+qi log

(
v∗− v∗

i

)]
(4.17)

=
(
cos

αi

2
e i

βi
2 + sin

αi

2
e−i

βi
2

)1+qi
cos αi

2 e i
βi
2 log(v − vi )+ sin αi

2 e−i
βi
2 log

(
v∗− v∗

i

)
cos αi

2 e i
βi
2 + sin αi

2 e−i
βi
2

 .

(4.18)
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The overall multiplicative factor in (4.18) can usually be included in the field normaliza-

tion constant when β 6= π, since then
(
cos αi

2 e i
βi
2 + sin αi

2 e−i
βi
2

)
6= 0. The logarithms can be

simplified. For instance, using that log z = log |z|+ i arg z, and log z∗ = log |z|− i arg z,

cos αi
2 e i

βi
2 log(v − vi )+ sin αi

2 e−i
βi
2 log

(
v∗− v∗

i

)
cos αi

2 e i
βi
2 + sin αi

2 e−i
βi
2

= log |v − vi |+ i Di arg(v − vi ) , (4.19)

Di =
cos αi

2 e i
βi
2 − sin αi

2 e−i
βi
2

cos αi
2 e i

βi
2 + sin αi

2 e−i
βi
2

= cosα+ i sinαsinβ

1+ sinαcosβ
, (4.20)

The simplified expression in (4.19) already embodies a very important information. The

morphological parameters are strongly coupled with the phase structure of the beam through

the parameter Di , while the amplitude profile dependence on αi and βi is less pronounced.

Di contains the morphology information, and is such that for βi = 0, −1 ≤ Di ≤ 1 and it

varies almost linearly with αi , indicating that it contains the information about the contri-

bution due to the positive and the negative TC at a point. According to the parametrization

in (4.20), it can be noticed that the real and imaginary parts of Di are defined in the intervals

−∞<ℜ {Di } <∞ and −∞< ℑ {Di } <∞, respectively, indicating that Di can assume values

over a large portion of the complex plane.

If the result (4.19) is substituted in (4.18), and the approximation 1+ x ≈ exp(x) is per-

formed, it is obtained that

cos
αi

2
e i

βi
2 (v − vi )qi + sin

αi

2
e−i

βi
2

(
v∗− v∗

i

)qi ≈(
cos

αi

2
e i

βi
2 + sin

αi

2
e−i

βi
2

)
exp

[
qi log |v − vi |+ i qi Di arg(v − vi )

]
, (4.21)

where it can be observed that (4.21) is exact for αi = 0,π. When αi → π/2 and βi → π,

Eq. (4.21) correctly approximates the superposition of oppositely charged OV with small

values of qi . The divergence of Di is compensated by the factor multiplying the exponen-

tial. Another interesting aspect of (4.19) is that its continuum generalization can be visual-

ized intuitively by a direct comparison with (4.13). Starting from (4.11), including the over-

all multiplication factor in the field normalization constant and using (4.21), one arrives at

f (v) ≈ (w0)−
∑N

i=1 qi exp
{∑N

i=1 qi
[
log |v − vi |+ i Di arg(v − vi )

]}
, whose continuum limit is

f (v) = w−Q
0 eV (v), (4.22)

V (v) =
ˆ

D
d a′ρ

(
v ′)[log

∣∣v − v ′∣∣+ i D
(
v ′)arg

(
v − v ′)] , (4.23)

D
(
v ′)= cos

α(v ′)
2 e i

β(v ′)
2 − sin

α(v ′)
2 e−i

β(v ′)
2

cos α(v ′)
2 e i β(v ′)

2 + sin α(v ′)
2 e−i β(v ′)

2

, (4.24)

Q =
ˆ

D
d a′ρ

(
v ′) . (4.25)
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Notice that if D
(
v ′) is real, the real part of V (v) still is equivalent to the expression for

a 2D distribution of positive electric charges in electrostatics [101, 102]. Therefore, V (v) is

called here the Topological Potential (TP) due to a distribution of TC over the transverse

plane, and is the major original contribution within this chapter. A distinctive characteristic

is that while in electrostatics the most relevant part of the expression is the real part, in the

context of OV the imaginary part of the potential contains the most relevant information.

Another aspect is that ρ
(
v ′) > 0, since according to the previous definitions qi > 0. This is

important to ensure that the amplitude profile is not singular near the charge distribution. A

crucial characteristic of the TP is the morphology modulation parameter, D
(
v ′), which en-

codes the local morphology structure. Relative to the case where there is only a distribution

of positively charged TC, Eq. (4.15), the general case described by (4.23) can be obtained by

multiplying the imaginary part of the integrand in (4.15) by D
(
v ′). As a remark to our in-

terpretation of Eq. (4.23), the reader should notice that in a very brief comment, M. V. Berry

stated in [16] that the vortex phase could be understood as a potential, and the TP introduced

in this work extends this concept by adding the spatial structure.

In the next subsection there is a discussion on the formal mathematical grounds that

should give some insights on the meaning of the discussed TC distributions and the scope

of the proposed approach. Although not strictly necessary for operating over the following

results, the next section is useful to understand some of the constraints for using the TP

formalism.

4.3.1 Some electrostatics concepts applied to the topological potential

Since it was shown an equivalence between the TP and 2D electrostatics, it is useful to re-

member some of the established tools for 2D electrostatics that might be useful for problems

involving the design of OV.

Circular harmonics and Dirac delta distribution in 2D

An harmonic function f is a solution to the Laplace equation ∇2 f = 0, a condition also sat-

isfied by an OV, as explained before in Eq. (4.10). Since circular harmonics form a complete

set of orthogonal functions in 2D, they can be used to represent square integrable functions

as

f
(
r,φ

)= (
A0φ+B0

)(
C0 logr +D0

)
+
ˆ ∞

ε

dm
[

A (m)cos
(
mφ

)+B (m)sin
(
mφ

)][
C (m)r m +D (m)r−m]

. (4.26)

Free-space solutions are well defined at every azimuthal angle and must satisfy f
(
r,φ

)=



Chapter 4. Optical vortices and their properties 71

f
(
r,φ+2π

)
. This selects A0 = 0 and only integer values of m,

f ′ (r,φ
)= (

C0 logr +D0
)+ ∞∑

m=1

[
Am cos

(
mφ

)+Bm sin
(
mφ

)][
Cmr m +Dmr−m]

, or (4.27)

= (
C0 logr +D0

)+ ∑
m 6=0

[
Cmr m +Dmr−m]

e i mφ. (4.28)

With the above expressions it is possible to represent generic solutions to the Laplace

equation in free-space and also square integrable functions. It is also of great interest is

the Dirac delta distribution which, via the identity δ
(
φ−φ′) = 1

2π

∑
m exp

(
i mφ

)
, can be ex-

pressed as

δ
(
r− r′

)= 1

r ′δ
(
r − r ′)δ(

φ−φ′)= 1

2π

∞∑
m=−∞

[
δ

(
r − r ′)
r ′

]
exp

(
i mφ

)
. (4.29)

Green’s functions

The formalism of Green’s functions is a mathematical tool used to express the solution in

terms of a sum (or integral) of the contributions due to individual sources. The interest here

is to describe the Green function G
(
r,r′

)
over 2D in circular coordinates that describes the

potential amplitude and phase profiles due to an arbitrary distribution of TC. r represents the

coordinate where the potential is being evaluated, while r′ represents the source position.

Also, since the physical effects must depend only on the distance, G
(
r,r′

)
must be symmetric

under the interchange of r ↔ r′. For a point source,

∇′2G
(
r,r′

)= 2πδ
(
r− r′

)
, (4.30)

where the prime denotes that the Laplacian acts only over the primed coordinates. The 2π

factor is a normalization constant. Assuming the following expansion for G
(
r,r′

)
,

G
(
r,r′

)= g0
(
r,r′

)+ 1

2π

∑
m 6=0

gm
(
r,r′

)
e i m(φ−φ′), (4.31)

it is obtained for m 6= 0 that

1

r ′
∂

∂r ′

(
r ′∂gm

∂r ′

)
− m2

r ′2 gm = 2πδ
(
r − r ′) . (4.32)

The Dirac delta gives just a derivative discontinuity at r = r ′, while anywhere else gm =
Amr ′m +Bmr ′−m . The coefficients Am and Bm are different for r > r ′ and r < r ′. But consid-

ering that gm is well behaved at r ′ = 0 and r ′ =∞, and the interchange symmetry of r ↔ r′,

gm =− π

2m

(
r<
r>

)m

, (4.33)

where r> (r<) refers to the larger (smaller) between r and r ′.
To determine g0

(
r,r′

)
it is possible to calculate the derivative discontinuity of the loga-

rithmic term at r = r′, and with the interchange symmetry,

g0
(
r,r′

)= log(r>) . (4.34)
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Collecting the above results,

G
(
r,r′

)= log(r>)−
∑

m 6=0

1

2m

(
r<
r>

)m

e i m(φ−φ′). (4.35)

= log(r>)−
∞∑

m=1

1

m

(
r<
r>

)m

cos
[
m

(
φ−φ′)] . (4.36)

The Green function presented here is purely real, and adequate for calculations in elec-

trostatics. It can be shown that G
(
r,r′

) = log
∣∣r− r′

∣∣. However, for the purposes of this work,

there is interest in a similar expansion of the complex logarithm. Considering u = r e iφ and

u′ = r ′e iφ′
, while representing by r>,φ>

(
r<,φ<

)
the quantities associated with the respective

coordinates of u,u′ with larger (smaller) radial coordinate, it can be shown that

log
(
u −u′)= logr>+ iφ>−

∞∑
m=1

1

m

(
r<
r>

)m

e i m(φ<−φ>). (4.37)

An identification of the real and imaginary parts on both sides of log
(
u −u′)= log

∣∣u −u′∣∣+
iθ

(
u −u′) provides

log
∣∣u −u′∣∣= log(r>)−

∞∑
m=1

1

m

(
r<
r>

)m

cos
[
m

(
φ<−φ>

)]
, (4.38)

θ
(
u −u′)=φ>−

∞∑
m=1

1

m

(
r<
r>

)m

sin
[
m

(
φ<−φ>

)]
. (4.39)

The expression of the Green function in terms of circular harmonics facilitates the later dis-

cussion of TC multipoles. It is interesting to note the following general relations

r>
∂ log

∣∣u −u′∣∣
∂r>

= ∂θ
(
u −u′)
∂φ>

, (4.40)

∂ log
∣∣u −u′∣∣
∂φ>

=−r>
∂θ

(
u −u′)
∂r>

. (4.41)

These derivatives are the Cauchy-Riemann conditions in polar coordinates and can be

removed from the integral in specific cases. Within the context of OV they mean that phase

and amplitude profiles are intimately coupled near the OV core.

For completeness, the discussion on Green’s functions finishes here with the calculation

of the imaginary part of ∇2 log
(
u −u′). Remembering the Cauchy-Riemann conditions in

Cartesian coordinates, given an analytic function g (u) = w (u)+ i t (u), where w and t are

real functions of the complex variable u = x + i y ,

∂w

∂x
= ∂t

∂y
, (4.42)

∂t

∂x
=−∂w

∂y
. (4.43)

With Cauchy-Riemann conditions, it can be verified that ∇2θ
(
u −u′)= ∂

∂x

(
−∂ log|u−u′|

∂y

)
+

∂
∂y

(
∂ log|u−u′|

∂x

)
=

(
∂
∂y

∂
∂x − ∂

∂x
∂
∂y

)
log

∣∣u −u′∣∣ = 0, for u 6= u′. At the point u = u′ there may be a
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Dirac delta singularity, which can be verified after the integration the Laplacian over a trans-

verse area A whose boundary curve is ∂A. Using Green’s theorem,
ˆ

A
d xd y∇2 log

(
u −u′)= ˆ

∂A
dl n̂ ·~∇ log

(
u −u′) , (4.44)

where dl is the line element along ∂A, and n̂ is the exterior normal. Since ~∇ log
(
u −u′) =

d
du log

(
u −u′)~∇u =~∇u/

(
u −u′), and considering that A is a small circle of radius b around

u′, it is useful to perform the transformation u = u′+r e iφ. Then, n̂ = r̂ , dl = bdφ,~∇ log
(
u −u′)=(

r̂ + i φ̂
)

/r , and the integration limits are φ= 0 and φ= 2π,

ˆ
∂A

dl n̂ ·~∇ log
(
u −u′)= ˆ 2π

0
bdφ r̂ ·

(
r̂

b
+ i

φ̂

b

)
. (4.45)

= 2π, (4.46)

indicating that only the real part has a Dirac delta singularity. Since the imaginary part of

∇2 log
(
u −u′) is zero when u 6= u′ and does not have a Dirac-delta like contribution at u = u′,

∇2 log
(
u −u′)= 2πδ

(
u −u′) . (4.47)

Gauss’ and Ampère’s laws

One of the most useful results within 2D electrostatics is Gauss’ law, which relates the electric

field at a closed contour to the enclosed charge. If the symmetry of the problem is appropri-

ate, Gauss’ law simplifies the calculation of the electric potential and electric field over the

whole space. Within the context of the TP, it is also possible to obtain a relation similar to the

one found in electrostatics.

Applying the identity (4.47) to the TP, Eq. (4.23), a relation analogous to the differential

Gauss’ law can be obtained

∇2
vV (v) =

ˆ
D

d a′ρ
(
v ′)2πδ

(
v − v ′) ,

= 2πρ (v) , (4.48)

where the Laplacian ∇2
v is considered in terms of the normalized coordinates v . Since ρ (v) >

0 is the local density of the TC distribution, the Laplacian of the TP can be used to have a

local information of the existence of OV at a given position. Notice that since (4.48) is real,

the morphological parameters vanished and thus there is no information about parameters

as the TC. Eq. (4.48) may also be expressed in integral form as
ˆ

D
d aρ (v) = 1

2π

ˆ
D

d a∇2
vV (v) , or (4.49)

= 1

2π

ˆ
∂D

d s n̂ ·~∇vV (v) . (4.50)
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While Gauss’ law is related to the outward flux crossing a given boundary ∂D , there is

also the complimentary relation due to Ampère’s law, which is associated with the flux along

the boundary. For the radially symmetric flux~∇ log
(
r e iφ

)= (
r̂ + i φ̂

)
/r , Gauss’ law selects the

radial term while Ampère’s law selects the azimuthal term. More generally, the flux of V (v)

along the boundary is given by ˆ
∂D

d s t̂ · ~∇vV (v) , (4.51)

where t̂ is the unit vector tangent to the boundary curve ∂D . Near the core of an OV, Eq.

(4.51) can be easily calculated along a circular contour of radius b. Given t̂ = φ̂, d s = bdφ,

and assuming that ~∇vV (v) is continuous along the integration interval,

ˆ
∂D

d s t̂ · ~∇vV (v) =
ˆ 2π

0
bdφφ̂ ·

ˆ
D

d a′ρ
(
v ′)[r̂ + i D

(
v ′) φ̂]

/b,

= 2πi

ˆ
D

d a′ρ
(
v ′)D

(
v ′) . (4.52)

The reader should notice that, while (4.52) is adequate for regions containing trivial mor-

phological parameters, D
(
v ′)=±1,0 within D , and discrete distributions of TC, whereρ (v) =∑N

j=1 q jδ
(
v − v j

)
, Eq. (4.52) is not general because it does not accounts for singularities and

discontinuities in ~∇vV (v). From Eq. (4.2), it can be seen that the left hand side of Eq. (4.51)

determines the total TC enclosed by ∂D , and must be an integer valued quantity. Meanwhile´
D d a′ρ

(
v ′)D

(
v ′) may assume any complex value, according to the previous definitions of

ρ (v) and D (v). The beam phase profile is given by ℑ [V (v)], and it is considered a point

p over a closed curve C . It is assumed that C does not pass through any singularity. Since

the phase is defined up to multiples of 2π, the phase at p after following the closed curve C ,

Φ
(
p,C

)
, can be characterized as Φ

(
p,C

)=Φ0+2πm, where m = 0,±1,±2, . . . and 0 ≤Φ0 < 2π

[93, 104]. Eq. (4.51) results in 2πm along C , and m is the total TC enclosed by C . Therefore,

if D (v) assumes only trivial values within D , and ρ (v) is a discrete distribution, the discrete

spacing of (4.51) can be ensured, while that is not true for arbitrary ρ (v) and D (v) profiles.

Assuming the validity of (4.52), it can be reorganized in a relation similar to Ampère’s law

in integral form, ˆ
D

d a′ρ
(
v ′)D

(
v ′)= 1

2πi

ˆ
∂D

d s t̂ · ~∇vV (v) , (4.53)

where
´

D d a′ρ
(
v ′)D

(
v ′) can be understood as the total TC enclosed within D . Eq. (4.53) is

analogous to (4.2).

4.3.2 Vortex profile factorization and the topological potential

In this section there is a short discussion on some of the fundamentals behind the math-

ematical operations necessary to obtain the TP. It is worth to mention that representing a

function in terms of a product, which is the underlying mechanism behind the TP, is of ex-

treme importance for mathematics both in complex analysis [105] and for multiplicative cal-
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culus [106]. While the factorization in complex analysis is crucial for several important the-

orems, as the fundamental theorem of algebra and the Weierstrass factorization theorem,

the multiplicative calculus can be applied in obtaining properties of Schrödinger’s equation

solutions [107] or in imaging problems [108, 109].

Consider in general the phase due to a single OV with arbitrary morphological parame-

ters and position,

cos
αi

2
e i

βi
2 (v − vi )qi + sin

αi

2
e−i

βi
2

(
v∗− v∗

i

)qi . (4.54)

Since v and v∗ are linearly independent, (4.54) is a problem involving two degrees of free-

dom in the general case. The case αi = 0 will be considered first for simplicity. Then, some

examples on the applicability of the TP to represent entire functions will be performed. Even

though only a few examples are performed here, its worth to mention that there are special-

ized mathematical works devoted to the discussion of entire functions and the distributions

of their zeros [110]. Later there is a small comment on the possibility of representing generic

configurations as (4.54).

Factorization of functions involving a single complex variable v

For a single complex variable v the fundamental theorem of algebra guarantees that it is

always possible to factor an arbitrary polynomial p1D (v) in terms of its zeros as

p1D (v) =
M∑

r=0
cr v r , (4.55)

=C
M∏

i=1

(
v −pi

)
, (4.56)

where p1D
(
pi

)= 0 and C is an overall multiplicative constant. The theorem can be intuitively

understood if it is considered that the set
{
C , pi

}
contains M+1 terms, while (4.55) has M+1

coefficients. It is then plausible that pi can be expressed uniquely in terms of cr . The fun-

damental theorem of algebra is important for the current discussion because it guarantees

the existence of an exact factorization as (4.13) for arbitrary TC distributions containing only

OV characterized by αi = 0 or αi =π. Therefore, it should be expected that (4.23) adequately

represent the arbitrary distributions under the constraint that there are no superpositions of

oppositely charged OV at any position across the transverse plane.

Notice that the TP as given in (4.15) is based in a continuum generalization of a product

of zeros. If it is considered that both
∏M

i=1 pi and
∏M

i=1 v will usually diverge when M →∞,

Eq. (4.56) should be expected to diverge as it stands. However, the Weierstrass factorization

theorem [105] ensures that by using adequate convergence factors it is possible to represent

an entire function as a product of its zeros. Since entire functions are those that can be rep-

resented by power series over the whole complex plane, they form a very important class

of functions, including polynomials, exponentials, and trigonometric functions. Below there
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are some examples of entire functions that can be expressed through the TP. It should be

reminded that since the TP did not consider an infinite number of zeros, some divergences

may appear. Another aspect is that to represent OV it was requested that ρ (v) ≥ 0, what in-

dicates that the associated field profile f (v) does not have singularities in the amplitude

profile. In terms of representing generic functions, notice that it is useful to include ρ (v) < 0,

which allows the description of meromorphic and rational functions on the complex plane.

Exponential function

Since f (v) =C expV (v), an exponential function is one of the simplest nontrivial examples

of the TP ability to represent entire functions. A typical exponential solution is V (v) =αv+β,

where α and β are constants. Within electrostatics, it is known that the electric potential

due to an infinite plane of charges varies linearly with the distance to the plane, and due

to the symmetry this result can be easily obtained from Gauss’ law. A similar route can be

performed in the present case, where the infinite plane is replaced by an infinite line.

Suppose that the TC is distributed along a straight line parametrized by b (v), with a den-

sity ρ (v) =σδ [v −b (v)] and the morphological parameter D (v) = 1 over the whole complex

plane. The Gauss’ law integration region D is rectangular and centered on b (v), with sides

whose lengths are c and d along the axes parallel and perpendicular to the TC line, respec-

tively. Then, Eq. (4.50) becomes

σc = 1

2π

ˆ
∂D

d s n̂ ·~∇vV (v) . (4.57)

The integral along ∂D can be split among the line segments. Due to the source symmetry,
~∇vV (v) must be constant over the sides of length c. Moreover, the integration along the sides

of length d have the same ~∇vV (v) and opposite signs, due to the direction of n̂. It is then

possible to state that

σc = 1

2π
c
(
n̂ ·~∇vV1 − n̂ ·~∇vV2

)
, (4.58)

where~∇vVi represent the constant vectors associated with~∇vV (v) at each side of the TC line,

and n̂ is a vector normal to the TC line. Again, due to symmetry, ~∇vV2 = −~∇vV1, indicating

that

n̂ ·~∇vV1 =πσ. (4.59)

Following the argument, since the operator n̂ ·~∇v is equivalent to a derivative along the

direction of the unit length vector n̂ = e−iξ
(
cosγx̂ − i sinγŷ

)
, it is possible to integrate V to

V
(
vx , vy

)=πσe iξ (
vx cosγ+ i vy sinγ

)
, (4.60)

where vx = x/w0 and vy = y/w0, and it is assumed that the potential is zero at v = 0. An

interesting specific case occurs for γ=π/4, where the potential is proportional to v ,

V (v) = πσe iξ

p
2

v. (4.61)
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Cosine function

Another remarkable example is using the TP to represent a function which has an infinite

number of zeros in terms of the position of the zeros. For simplicity the cosine function will

be chosen, since the zeros are equally spaced throughout the complex plane.

To obtain simpler expressions the TP will be used to describe f (v) = cosπx, which is

zero whenever x = m +1/2 for integer m. Since the cosine zeros are all of multiplicity one,

the density becomes

ρ
(
v ′)= M−1∑

m=−M
δ

(
v ′−m −1/2

)
, (4.62)

if only the 2M zeros closest to x = 0 are included. All the zeros of cosπx will be included at

the end. Using Eq. (4.22),

fN N (v) =C
M−1∏

m=−M
(v −m −1/2) , (4.63)

where C is an overall multiplicative constant, and w0 = 1 for a simpler expression. The sub-

script N N indicates that (4.63) is not adequately normalized in the limit M →∞.

Due to the infinite TC distribution, it becomes necessary to introduce the convergence

factors to the TP. The procedure described below is a TP-based argument to the Weierstrass

factorization applied to the cosine function. Remember that it was previously stated that Eq.

(4.56) diverges in general due to the product of the positions of the zeros,
∏M

m=1 pm → ∞
when M → ∞. One way to remove this divergence is by rescaling C → C

∏M−1
m=−M

(−pm
)−1,

where the minus sign is inserted for convenience. The next problem is that even after the

normalization rescaling, the product g (v) = C
∏M

m=1

(
1− v

pm

)
does not necessarily converge

over the whole complex plane for all values of v . Weierstrass proved that it is possible to en-

sure the convergence by multiplying
(
1− v

pm

)
by adequate exponentials as exp

(∑Mm
k=1

(v/pk )k

k

)
,

where Mm is an integer related to the function to be represented. Specifically for the cosine

function, Mm = 1, what simplifies significantly the final expression.

After the introduction of the convergence factors,

f (v) =C
M−1∏

m=−M

(
1− 2v

2m +1

)
e

2v
2m+1 , (4.64)

=C
M∏

m=1

(
1− 2v

2m −1

)
e

2v
2m−1

M∏
m=1

(
1+ 2v

2m −1

)
e− 2v

2m−1 , (4.65)

=C
∞∏

m=1

[
1−

(
2v

2m −1

)2]
=C cosπv, (4.66)

where some algebraic manipulations were performed from (4.64) to (4.66), and the limit

M →∞ was taken in the final expression. The infinite product representation for the cosine

function can be seen for example at the expression 1.431.3 in [111].

The tools presented above give an intuition on the possibilities of the functions that may

be represented through (4.23). This is important verification, since it indicates that (4.23) can

describe a broad class of OV profiles.



Chapter 4. Optical vortices and their properties 78

Factorization of functions involving v and v∗

In 2D there is no equivalent to the fundamental theorem of algebra. Thus, it is not possible

in general to factorize an arbitrary 2D polynomial p2D (v, v∗) as

p2D
(
v, v∗)= M1∑

r=0

M2∑
s=0

cr,s v r v∗s , (4.67)

6=C
M1∏
i=1

(
v −pi

) M2∏
j=1

(
v∗−q∗

j

)
, (4.68)

which can also be easily understood. While the set of coefficients cr,s has (M1 + 1)× (M2 +
1) distinct terms, the set

{
C , pi , q∗

j

}
in (4.68) has only M1 + M2 + 1 terms. Hence it is very

reasonable to assume that
{

C , pi , q∗
j

}
does not have enough degrees of freedom to represent

the arbitrary 2D complex polynomial in (4.67). This discussion is extremely important for

the applicability of the TP in general cases, because the procedure leading to (4.23) is based

on a factorization of (4.11). The study of the factorization of functions of several complex

variables is an advanced topic well beyond the scope of this manuscript, but can be found in

the mathematical literature as the second (or multiplicative) Cousin problem [112].

Since in this work we are interested in OV, there is an important simplification that can be

performed. It is assumed that the OV singularities are isolated in the transverse plane, such

that Eq. (4.11) correctly expresses the OV transverse profile at z = 0. It is possible to write

(v −δi )qi = |v −δi |qi exp
[
i qi arg(v −δi )

]
, and

(
v∗−δ∗i

)qi = |v −δi |qi exp
[−i qi arg(v −δi )

]
,

implying that each product term in (4.11) can be separated as

cos
αi

2
e i

βi
2 (v −δi )qi + sin

αi

2
e−i

βi
2

(
v∗−δ∗i

)qi = |v −δi |qi g
[
arg(v −δi )

]
, (4.69)

g (x) = cos
αi

2
e i

βi
2 +i qi x + sin

αi

2
e−i

βi
2 −i qi x , (4.70)

where g (x) is an entire function of x. Since the TP can be used to represent entire functions,

and each product term in (4.11) can be separated as a product of entire functions, the TP can

represent a broad class of field profiles, even though it might be difficult to represent a given

specific function in terms of a TC distribution. Since both terms can be represented in terms

of the TP, it is also possible to rewrite (4.69) as

cos
αi

2
e i

βi
2 (v −δi )qi + sin

αi

2
e−i

βi
2

(
v∗−δ∗i

)qi = exp
{

qi log |v −δi |+V
[

e i arg(v−δi )
]}

, (4.71)

where V
[
e i arg(v−δi )

]
is the TP associated with an arbitrary TC distribution evaluated over

the unit circle, |v | = 1, and qi log |v −δi | can be understood as a TP characterized by ρ (v) =
qiδ (v −δi ) and D (v) = 0. As will be shown later, the TP represented as V

[
e i arg(v−δi )

]
is very

important to characterize nontrivial OV morphologies.

4.3.3 Topological charge distributions

I present in this subsection the results for the amplitude and phase profiles associated with

TC distributions. At each result it is necessary to remember that in the general case ρ (v)
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do not necessarily represent the TC density and D (v) morphology parameters according to

(4.24).

To define ρ (v) and D (v) it is assumed a continuous distribution of TC containing a large

number of OV. Since the TC distributions discussed below have a small number of OV, the

meaning of ρ (v) and D (v) has to be reinterpreted. For example in the radial distribution of

TC, where ρ (v) = ρ0 |v |n and D (v) = 1, it will be shown below that even though it is assumed

a smooth density, the TC are localized at well defined positions. This characteristic is not

exclusive to the TP formalism only, but it does also occur within electrostatics under equiva-

lent conditions. Fixing a radially smooth charge density profile is an inaccurate assumption

if the total electric charge is a few multiples of e, where e is the elementary charge allowed at

a point, precisely because the electric charge quantization becomes relevant in determining

the potential profile.

In the general case, the distribution ρ (v) represents a local amplitude modulation, while

D (v) represents a phase modulation with non-zero vorticity due to the modulation ρ (v).

Radial distribution of TC

Perhaps the simplest case involving a 2D distribution of TC is a radial distribution of TC along

a circle of radius |v | ≤ b. Considering ρ
(
v ′) = ρ0 |v |n , where ρ0 is constant, over the circle of

radius b and the total TC distributed is QT . It is assumed that D (v) = 1 is constant over the

transverse plane. The case D =−1 is obtained by complex conjugation of the TP obtained.

The initial step is to fix the value of ρ0 to ensure that the total TC is QT . Using (4.24) and

that Q = |QT |,

|QT | =
ˆ
|v |≤b

d a′ρ0
∣∣v ′∣∣n , (4.72)

= 2πρ0

ˆ b

0

∣∣v ′∣∣1+n d
∣∣v ′∣∣ , (4.73)

= 2πρ0
bn+2

n +2
, (4.74)

ρ0 = (n +2)
|QT |

2πbn+2
, (4.75)

where it is assumed that n >−2.

The next step is the calculation of the TP over the transverse plane. Considering first the

case where |v | ≤ b, Eq. (4.23) can be separated as

V (v) =
ˆ
|v ′|<|v |

d a′ρ0
∣∣v ′∣∣n log

(
v − v ′)+ˆ

|v |<|v ′|<b
d a′ρ0

∣∣v ′∣∣n log
(
v − v ′) . (4.76)

Using (4.37), it can be verified that
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ˆ
|v ′|<|v |

d a′ρ0
∣∣v ′∣∣n log

(
v − v ′)= |QT |

( |v |
b

)n+2 (
log |v |+ iφ

)
, (4.77)

ˆ
|v |<|v ′|<b

d a′ρ0
∣∣v ′∣∣n log

(
v − v ′)= |QT |

{
logb −

( |v |
b

)n+2

log |v |+
[

1−
( |v |

b

)n+2](
− 1

n +2
+ iπ

)}
.

(4.78)

Therefore, the total TP for |v | < b becomes

V (v) = |QT |
{

logb − 1

n +2

[
1−

( |v |
b

)n+2]}
+ iQT

[(
φ−π

)( |v |
b

)n+2

+π

]
, (4.79)

if the solution is extended to include the case D (v) =−1. The TP for |v | > b can be obtained

from (4.77),

V (v) = |QT | log |v |+ iQTφ. (4.80)

Now, some characteristics of the radial distribution can be remarked. Notice that V (v) is

smooth over the whole complex plane, even at |v | = b. For large values of n, the amplitude

profile only varies significantly near |v | = b. Assuming that −π ≤ φ < π, it can be seen that

at φ= 0 the field phase varies smoothly between πQT and 0, while there are discontinuities

at the opposite side. Identifying the phase discontinuity as an odd multiple of π, such that

(2k +1)π for integer k,

V
(|v |k ,φ=π

)−V
(|v |k ,φ=−π)= (2k +1)π, (4.81)

2πQT

( |v |k
b

)n+2

= (2k +1)π, (4.82)

|v |k
b

=
(

k + 1/2

QT

)1/(n+2)

. (4.83)

Since limn→∞ x1/n = 1, the TC are displaced to the borders of the TC distribution. Also

notice that for an integer QT , 0 ≤ k ≤ QT −1 to ensure that 0 ≤ |v |k
b ≤ 1, what indicates that

there are QT singularities within the circle of radius b. These results were experimentally

verified, as shown in Sec. 5.6.

Multipoles

A natural question arises from the established knowledge on electrostatics. The distribution

of TC, as described before, consists of a spatial distribution of monopoles. However, it is also

possible to argue about the existence of TC multipoles and how to describe these wavefront

features. While within electrostatics there exists only localized multipoles, where the poten-

tial decays with distance, the TP can also describe an spatially extended multipole moment.

Both possibilities are described below.

The simpler case is the localized multipole. Considering a finite distribution of TC over

the plane, and an observation point v always outside the distribution, one may assume r ′ < r
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within the integration domain D and substitute r< = ∣∣v ′∣∣ and r> = |v | in Eq. (4.37). In this

case, one can write Eq. (4.23) as

ℜ [V (v)] = A0 (1) logr −
∞∑

m=1

1

m |v |m
[

Am (1)cos
(
mφ

)+Bm (1)sin
(
mφ

)]
, (4.84)

ℑ [V (v)] = A0
[
D

(
v ′)]φ−

∞∑
m=1

1

m |v |m
[−Am

[
D

(
v ′)]sin

(
mφ

)+Bm
[
D

(
v ′)]cos

(
mφ

)]
,

(4.85)

Am
[

f
(
v ′)]= ˆ

D
d a′ρ

(
v ′) f

(
v ′)∣∣v ′∣∣m cos

(
mφ′) , (4.86)

Bm
[

f
(
v ′)]= ˆ

D
d a′ρ

(
v ′) f

(
v ′)∣∣v ′∣∣m sin

(
mφ′) , (4.87)

where Am
[

f
(
v ′)] and Bm

[
f
(
v ′)] are functionals determined by ρ

(
v ′) and D

(
v ′) and φ =

arg v , φ′ = arg v ′. Then, up to a possible sign, the coefficients Am [±1] and Bm [±1] can be

related to localized multipole moments in electrostatics, and are here called localized mul-

tipole moments. Thus, the localized multipoles determine the TP asymptotic behavior at

large |v | for a given TC distribution. Except for the monopole terms, A0 (1) and A0
[
D

(
v ′)],

all coefficients vanish when |v |→∞.

While the localized multipoles do describe a broad class of OV, they do not cover a very

important case. For example, the dipole term in (4.84) and (4.85) can be interpreted as the

limit of two charges with opposite sign at an infinitesimal distance. However, it is also pos-

sible to place two TC at the same point while obtaining a nontrivial field transverse profile.

For simplicity, consider α=π/2 and β= 0 in (4.10), which results after some rearrangements

in

log f0
(|v | ,φ)= log

p
2+q log |v |+ log

∣∣cos qφ
∣∣+ iπΘ

(
cos qφ

)
, (4.88)

where Θ (x) is the Heaviside step function, such that Θ (x > 0) = 1 and Θ (x < 0) = 0. The

superposition in (4.88) has a nontrivial phase structure when |v | → ∞ given by the term

Θ
(
cos qφ

)
, and that cannot be described from the localized multipole moments, as was ex-

plained in the OV factorization which leaded to Eq. (4.69).

From Eq. (4.69), the nontrivial phase structure should be obtained in general from an

infinitely extended TC distribution characterized by given ρ (v) and D (v) profiles, and eval-

uated at |v | = 1. In such case, the TP can be written as

V (|v | = 1) =
ˆ
|v ′|<1

d a′ρ
(
v ′)[log

∣∣v − v ′∣∣+ i D
(
v ′)arg

(
v − v ′)]

+
ˆ
|v ′|>1

d a′ρ
(
v ′)[log

∣∣v − v ′∣∣+ i D
(
v ′)arg

(
v − v ′)] . (4.89)

A procedure similar to the one carried for the localized multipole moments can be per-

formed for each integral in (4.89). Using (4.38) and (4.39), it can be obtained after an exercise
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of algebra that

V (|v | = 1) = iφA<
0

[
D

(
v ′)]− ∞∑

m=1

1

m

(
Cm cosmφ− i Sm sinmφ

)+
ˆ
|v ′|>1

d a′ρ
(
v ′) log

∣∣v ′∣∣+ i

ˆ
|v ′|>1

d a′ρ
(
v ′)D

(
v ′)φ′,

(4.90)

Cm = A>
m (1)+ i B>

m

[
D

(
v ′)]+ A<

m (1)− i B<
m

[
D

(
v ′)] , (4.91)

Sm = A>
m

[
D

(
v ′)]+ i B>

m (1)−{
A<

m

[
D

(
v ′)]− i B<

m (1)
}

, (4.92)

A<
m

[
f
(
v ′)]= ˆ

|v ′|<1
d a′ρ

(
v ′) f

(
v ′)∣∣v ′∣∣m cos

(
mφ′) , (4.93)

B<
m

[
f
(
v ′)]= ˆ

|v ′|<1
d a′ρ

(
v ′) f

(
v ′)∣∣v ′∣∣m sin

(
mφ′) , (4.94)

A>
m

[
f
(
v ′)]= ˆ

|v ′|>1
d a′ρ

(
v ′) f

(
v ′)

|v ′|m cos
(
mφ′) , (4.95)

B>
m

[
f
(
v ′)]= ˆ

|v ′|>1
d a′ρ

(
v ′) f

(
v ′)

|v ′|m sin
(
mφ′) . (4.96)

Notice that the several terms in (4.90) can be easily understood. The term iφA<
0

[
D

(
v ′)]

considers the possible existence of a TC within
∣∣v ′∣∣ < 1. The terms

´
|v ′|>1 d a′ρ

(
v ′) log

∣∣v ′∣∣
and i

´
|v ′|>1 d a′ρ

(
v ′)D

(
v ′)φ′ represent constant amplitude and phase modulations, respec-

tively, and can be incorporated at the overall field normalization constant. The nontrivial

terms left are associated with the specific ρ (v) and D (v) profiles through the complex con-

stants Cm and Sm . Assuming that A≶
m and B≶

m are finite, Cm and Sm are also finite. This has

an important implication for a generic and localized TC distribution. Since the extended

multipole is also due to point sources, they can be part of a localized TC distribution, and

must be included in the general expansion. The contributions due to localized and extended

multipoles is additive, implying that a generic localized TC distribution can be represented

through

ℜ [V (v)] = A0 (1) log |v |−
∞∑

m=1

1

m

{[
Am (1)

|v |m +ℜ (Cm)

]
cos

(
mφ

)+[
Bm (1)

|v |m +ℑ (Sm)

]
sin

(
mφ

)}
,

(4.97)

ℑ [V (v)] = A0
[
D

(
v ′)]φ−

∞∑
m=1

1

m

{[
− Am

[
D

(
v ′)]

|v |m −ℜ (Sm)

]
sin

(
mφ

)+[
Bm

[
D

(
v ′)]

|v |m +ℑ (Cm)

]
cos

(
mφ

)}
.

(4.98)

Thus, the coefficients of cos
(
mφ

)
and sin

(
mφ

)
decay with distance from the TC distri-

bution, but tends to a value determined by Cm and Sm as |v |→∞.

As a final step, it is considered the modulation of the OV dark core profile due to a TC

distribution localized near |v | = 0. If the intensity profile is given by the TP within a Gaussian

envelope, I (v) ∝ exp
{−|v |2 /b2 +2ℜ [V (v)]

}
, it is possible to verify that the maximum along

the radial direction is given by

d

d |v | I (v) ∝ e−|v |2/b2+2ℜ[V (v)]
{
−2 |v |

b2
+2

dℜ [V (v)]

d |v |
}
= 0. (4.99)
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Remember that if D (v) = 1 across the whole space, V (v) satisfies the Cauchy-Riemann

conditions, implying that the maximum intensity condition becomes

−|v |
b2

+ 1

|v |
dℑ [V (v)]

dφ
= 0, or (4.100)

|v |2 = b2 d

dφ
ℑ [V (v)] . (4.101)

Since the case D (v) = −1 can be accounted for through a proper change of sign in the

Cauchy-Riemann conditions, (4.101) is slightly generalized by

|v |2 = b2
∣∣∣∣ d

dφ
ℑ [V (v)]

∣∣∣∣ . (4.102)

Thus, if ℑ [V (v)] does not depend on |v | it becomes very simple to obtain the OV core

profile as

|v |core = b

√∣∣∣∣ d

dφ
ℑ [V (v)]

∣∣∣∣. (4.103)
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5 Production of topological charge dis-
tributions and their characterization

5.1 Introduction

In chapters 2 and 3 some fundamentals of light propagation and modulation were intro-

duced, respectively. Then, some characteristics of optical vortices (OV) were introduced and

generalized in chapter 4. There are now enough elements to perform and analyze experi-

ments. Within this chapter, the theoretical results obtained in chapter 4 are experimentally

verified through various Topological Charge (TC) distributions. The results herein presented

demonstrate how the Topological Potential (TP) can be used to shape the profile of beams

containing OV, what is important in several applications. For example, it becomes possible

to adjust the transverse forces in optical tweezers or in an optical trap.

Since the discussion in chapter 4 is of a more mathematical nature, experimental tools

must be introduced to verify the properties of TC distributions. For instance, it is necessary

to introduce methods to verify the beam TC and also the Orbital Angular Momentum (OAM).

Also, it is highly desirable to have both the field transverse amplitude and phase profiles for a

more complete wavefront characterization, even though the retrieval of the phase transverse

profile is not a trivial problem [113–116]. The most simple techniques to characterize the TC

in an OV beam consists in analyzing the diffraction pattern due to a designed screen [38,117].

For example, the triangular slit technique [38] is very easy to implement and effective, being

used to characterize the TC configurations in our work [1] and is briefly discussed below.

However, since designed screen techniques require the matching between the slit profile

with the incident light, by changing the OV profile these techniques tend to measure only

part of the total TC. For example, in [1] it is verified that the triangular slit technique is usu-

ally inadequate for non-cylindrical beams. Another usual procedure to measure the TC con-

sists of counting the number of spirals when interfering an OV with a reference wave [118].

This allows in principle an analysis of the total TC of an OV beam, but without any informa-

tion about its spatial distribution. A more complete method to characterize TC requires the

simultaneous measurement of the beam amplitude and phase, as in [115, 119]. Even though

phase retrieval increase the complexity of the experimental system, this approach allows a

deeper analysis of the beam properties. To measure the classical OAM of a beam, one may

perform a modal decomposition [120] or a simultaneous retrieval of the beam phase and

amplitude. In our work [2] it was used a Michelson interferometer to characterize the field

amplitude and phase profiles, and the beam OAM and TC could be determined using the

formulas in chapter 4.

In this chapter, the production and characterization of TC distributions is discussed. The
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characterization through the triangular slit is presented, then there is an initial analysis of

TC distributions over simple geometries (a line, a corner and a triangle). These initial results

were reported in [1]. Since a more complete characterization of the TC distributions requires

the knowledge of the field amplitude and phase transverse profiles, we introduced an ap-

proach to obtain the TC and OAM to characterize the previous TC distributions. This second

part is based on the results in Ref. [2]. Finally, the distributions discussed in sec. 4.3.3, the

2d radial distribution and the TC multipoles are presented. This part of the chapter is not

published yet.

5.2 Triangular slit technique

The diffraction of light through the triangular slit [38] is one of the simplest approaches to

characterize the TC of a light beam. When an OV is diffracted by a single slit, the diffracted

pattern has a spatial shift proportional to the impinging beam TC [121], and the Fraunhofer

diffraction profile of light impinging over a polygon shaped slit produces a pattern that en-

codes information about the TC [122]. While it is possible in principle to determine the TC

using regular polygons with an arbitrary number of sides n, the TC evaluation becomes more

difficult if n is too large. If an OV beam with azimuthal symmetry, as a Laguerre-Gauss beam,

impinges over a nearly circular slit (large n), the diffracted field pattern has a similar intensity

structure for a non-null TC [123]. Thus, the pattern due to a slit with n = 3 both the simplest

geometry and is able to retrieve the TC information more easily [124]. Another nontrivial and

important characteristic of the triangular slit is that it is able to retrieve the sign of the TC,

or if the wavefront helix turns clockwise or counter-clockwise. The orientation of the pattern

diffracted by the slit indicates the charge sign [38]. In Fig. 9 (a) it can be seen a schematic of

the experimental setup for TC measurement through the triangular slit technique, while in

(b) there is an example of the expected triangular lattice profile. Fig. 9 (c) contains an experi-

mental result for a beam whose TC is 1. Our triangular slit was built according to the proposal

in [125].

5.3 TC distributions with simple geometries

As a first experimental test of the ideas discussed in chapter 4, some tests were performed

for TC distributions over simple geometries in an attempt to shape the spatial profile of the

dark region. Since the modulation of both field amplitude and phase profile is extremely

important in various applications of OAM light, a controllable modulation is highly desired

for optimizing a given application. The phase singularities due to the TC require that the field

amplitude vanish where the TC is distributed. Therefore, it seems possible to design the field

amplitude and phase profiles using TC distributions. The results within this subsection were

published in [1]. It was considered TC distributions over a finite line, a corner (L-shape), and
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Figure 9 – (a) Typical experimental setup for TC characterization using the triangular slit
technique. A collimated incident beam whose TC is m diffracts due to a triangle-
shaped slit. The slit Fourier plane is accessible by placing a camera (CAM) at a
distance f from a lens whose focal distance is f . It can be seen that if the inci-
dent beam has a TC m, at the Fourier plane there will appear a triangular lattice
whose number of bright-spots correspond to m +1. In the example shown in (b),
the diffraction of an OV with m = 1 gives a triangular lattice containing 2 bright
spots at the side. (c) Experimental example of the light intensity profiles at Fourier
plane without and with the triangular slit for a beam where m = 1.

a triangle. The phase profiles associated with these TC distributions were obtained by using

Eq. 4.11 with αi = βi = 0 and are shown in Fig. 10. For the discrete TC distributions, qi = 1

was chosen, while in the continuous case qi → 0 at each point of the designed geometry.

Notice that discrete or continuous TCs distributions present only a subtle difference in the

central region of the phase masks shown in Fig. 10(a) and Fig. 10(b).

In order to produce the TC distributions in Fig. 10, it was used the experimental setup

described in Fig. 14 with arm 2 mirror at the off position. Only the TC distribution phase

profile was modulated in this experiment. Figure 11 shows the spatial light intensity profile

obtained using either discrete or continuous distributions of TCs on a line of length L parallel

to the horizontal axis. Fig. 11(a) and 11(b) shows numerical results for discrete and contin-

uous TCs distributions, respectively, while Figs. 11(c) and 11(d) exhibit the corresponding

experimental results. The region of maximum intensity is distorted when L is increased up

to a length such that ring-like structures start to appear (L = 4 mm, see video 1). For the dis-

crete TCs distribution, this is a result of the spatial separation of 5 qi = 1 vortices, as can be

seen for larger values of L. Figs. 11(e) and 11(f) show the diffraction profile using the trian-

gular slit to determine the total TC. The six brilliant spots in each side of the triangle at Fig.

11(Media 1) when L = 0 mm and its orientation indicates that Q =+5 (the triangular slit was

aligned such that one of the sides is perpendicular to the line of charges). This side corre-

sponds to the bottom edge of the triangle on Figs. 11(e), 11(f) and 11(Media 1). As would be

expected from the patterns in Fig. 10 (a)-10(b), the respective beam profiles in Figs. 11(a,c)

and 11(b,d) are essentially equal. One remarkable aspect of the obtained profiles is that the

dark region which contains the TCs distribution is rotated in respect to the horizontal axis.

This rotation is due to the Guoy phase shift, as discussed in refs. [126–128]. By increasing
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(a) (b)

(c) (d)

Figure 10 – Examples of obtained phase patterns (without the blazed grating pattern). Ar-
rangement of TCs on a line: (a) discrete (qi = 1) and (b) continuous (qi → 0)
distributions for Q = 10. There is only a subtle difference between the phase
masks at the central region. (c) Corner shaped (Q = 20) and (d) triangular shaped
(Q = 21) TCs arrangements.

L we observed that the diffraction pattern deforms and most of triangle peaks are blurred.

However, the number of peaks on the triangle’s edge remains equal to 6, with some peaks

fading away on for L = 7 mm. This can be understood as a limitation of the measurement

technique to highly deformed beams. Since the measurement is carried only at a finite re-

gion, for sufficiently large values of L the slit cannot diffract the whole beam. Therefore, it

will measure only part of the beam’s TC.

The experimental results are in good agreement with the reasoning that leads to Eq. 4.15.

Using Ampère’s law, Eq. 4.53, it can also be shown that the total TC for the above distributions

is [1]

Q = 1

2π

ˆ
∂D

d s t̂ · ~∇vℑ [V (v)] ≈
N∑

i=1
qi . (5.1)

Thus, the current set of experiments support the assumption that one can deform the

beam intensity profile by distributing the TCs over sufficiently small distances while having

a designed total TC, as given by the sum of the distributed qi .

In order to demonstrate the validity of TC distributions to produce more complex geo-

metrical structures, we constructed L-shaped (corner) and triangular OAM beams. Fig. 12

shows the profile obtained considering (a) discrete and (b) continuous distribution of TCs.

The value of Q = 10 was chosen to minimize the amount of light at the TCs distribution, and

at the same time preserving the L-shape. When a smaller value of Q is selected, the vortices
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(a) (b)

(c) (d)

(e) (f)

Figure 11 – Beam’s profiles for a linear distribution of TCs with L = 3 mm. The total topo-
logical charge is Q = 5. Numerical results: (a) discrete and (b) continuous charge
distribution. Experimental results: (c) and (d) correspond to discrete and contin-
uous TCs distributions, respectively. (e) and (f) show the measurements of the
total TC using a triangular slit. For experimental results at various L values, see
(Media 1).

(a) (b)

Figure 12 – Experimental beam profile for L-shaped (corner) TCs distributions with Q = 10.
Discrete (a) and continuous (b) TCs distributions.

of a discrete TCs distribution are well separated, and the destructive interference between

them is less effective. On the other hand, if a very large value of Q is used, according to the

argument leading to Eq. (4.11), the intense region radius can become so large that the profile

tends to a deformed circle.

To analyze the case of TCs distributed along the sides of a triangle we must consider the
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existence of two regions: i - inside the triangle there are no charges and thus the winding

number of any curve is zero; ii - for curves encircling the triangle, the winding number is

Q. We show in Fig. 13 the experimental results where we apodized the central region without

charge. Fig. 13(a) shows the beam triangular profile and Fig. 13(b) confirms the charge Q = 3.

Fig. 13(Media 2) shows that the pattern expands for increasing Q and becomes more rounded

for larger TC values.

(a) (b)

Figure 13 – Intensity profile (a) and charge measurement (b) of a triangular charges arrange-
ment with Q = 3. For more Q values, see (Media 2).

The examples discussed illustrate that TC distributions can be used to shape OAM beams

with a large variety of geometries. The simple geometries presented are building blocks for

more complex arrangements. An immediate application of the concepts developed above

is to pre-compensate on the SLM aberrations affecting vortex beams during propagation,

as in [129]. Ref. [88] shows that laser traps formed by LG beams have higher Bose-Einstein

condensation temperatures due to modification of trapping potential by changing Q val-

ues. With the method proposed here, novel trapping potentials can be designed such as to

increase transition temperatures and/or shaping the condensate. In optical tweezers, this

method is a simpler alternative to shape non-circular routes for suspended particles [130].

In plasmonics this shaping may allow selective excitation of plasmonic modes, such as [89].

While the above results seem promising, the characterization of the TC distributions us-

ing only the triangular slit does not answer various important questions for the applications.

For example, in an optical tweezer it is important to know the OAM profile, since it is re-

lated to the force that light can produce upon a particle. Thus, in the next section it is shown

how to characterize the amplitude and phase profiles of these TC distributions, and later this

approach is applied to the TC distributions discussed within this section.

5.4 Measurements of the beam amplitude and phase using

a Michelson interferometer

The simultaneous characterization of the beam amplitude and phase transverse profiles is

very important for a detailed characterization of generic wavefronts, as is of interest for this

work. The approach below was introduced by us in Ref. [2]. Using the experimental setup
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shown in Fig. 14(a) it is possible to produce various OV configurations and characterize their

amplitude and phase profiles using a single spatial light phase modulator (SLM). The OV

are generated in the SLM by applying a hologram χSLM which contains the OV phase profile

χOV superimposed with a blazed grating χOV. The blazed grating directs the OV of interest to

the SLM first diffracted order, as explained in sec. 3.4. The spatial filter selects only the field

with the correct phase modulation, and blocks unwanted light from the SLM. If the Arm-2

mirror is off the beam line, only the intensity profile IOV (r) of the produced OV will reach the

CCD camera. In this case, the amplitude profile is given by A (r) = p
IOV (r). The CCD was

positioned at the SLM image plane, which we defined as z = 0 cm.

Laser
805 nm

SLM

f=25 cm

f=100 cm f=30 cm

Iris

CCD

Arm 1

A
rm

 2
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n
A
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 2
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0

(a)

Intensity
measurement

Interference
measurements

Arm 2
off

Arm 2
on

Retrieved 
phase profile

0 1
Intensity (a.u.) Phase

0

2π

(b)

Figure 14 – (a) Experimental setup schematic. The output of a fiber coupled laser diode emit-
ting at 805 nm is collimated with a lens with long focal distance ( f = 25 cm), pro-
ducing a nearly plane wave. The collimated light goes to a Michelson interferom-
eter (MI) in which the arm 1 contains a SLM (Hamamatsu - LCOS X10468-02). The
MI arm 2 provides the plane wave reference when the mirror is on the beam line,
or allows intensity measurements when the mirror is off the beam line. The refer-
ence (red line) and modulated (blue line) beams have a small relative angle and
are spatially filtered and then imaged on a CCD camera (Thorlabs - DCC1240M)
positioned at the SLM image plane (z = 0 cm). (b) Fluxogram of the experimental
procedure to determine the beam amplitude and phase profiles, as described in
the text.

To measure the phase profile, χ (r), we followed an approach similar to that described in

[115, 119]. We add to χSLM a spatial DC phase offset φOffset ∈ [0,2π] and place the MI Arm-2

mirror on the beam line. The intensity pattern at the CCD plane for a perfectly coherent light

consists of

ICCD
(
φOffset

)= IOV + IRef −2
√

IOVIRef cos
(
χRel +φOffset

)
, (5.2)

where IRef is the intensity profile of the reference beam, and χRel is the relative phase be-

tween the reference beam and the OV. The position r is implicitly considered in each term

for improved clarity.

Since φOffset can be adjusted a priori on the phase mask, one may retrieve the spatial

phase profile by virtue of Fourier orthogonality. Multiplying the measured intensity profile

ICCD
(
φOffset

)
by exp

(−iφOffset
)
, and numerically integrating over φOffset one has

1

2π

ˆ 2π

0
dφOffsetICCD

(
φOffset

)
e−iφOffset =−

√
IOVIRefe

iχRel , (5.3)
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and the argument of the resulting complex number is χRel (r)+π. The above approach allows

the retrieval of χRel at each CCD pixel, and it is a simple and effective way to retrieve spatial

phase profiles. To obtain a better signal/noise ratio, we used 10 values of φOffset [119]. Two

relevant characteristics of this method are worth noticing. When the reference wave is an

ideal plane wave propagating parallel to the modulated beam, χRel (r) = χOV (r)+ constant,

and since IOV → 0 near a TC,
p

IOV is amplified by a factor of
p

IRef. Therefore, although this

experimental phase-retrieval method requires more data and acquisition time than those

based on the Fourier transform method [113, 115], it shows an improved sensitivity, the out-

put is automatically determined in complex notation and it does not require filtering in the

momentum space.

Usually the reference beam is not an ideal plane wave propagating parallel to the mod-

ulated beam. However, this poses no problem to the approach described above. Since any

optical phase retrieval method will always measure a relative phase, it is possible to design

a reference wave at the SLM. For an OV labeled by the superscript n, one has in general that

χn
Rel (r) =χn

OV (r)+χ0
Rel (r). If a flat phase profile is applied to the SLM (no OV), this returns the

overall phase χ0
Rel (r). By subtracting χ0

Rel (r) from χn
Rel (r) it is possible to obtain only the OV

phase profile.

After measuring the spatial profiles of amplitude and phase, the `-OAM, Eq. (4.4), OAM,

Eq. 4.6, and TC, Eq. 4.3, may be calculated. To compute the azimuthal derivative in the `-

OAM, and to avoid the unphysical discontinuities when the phase χ goes from 0 to 2π, it is

here introduced the identity

w (r) = ∂χ

∂φ
=Re

{
e−iχ

[
−i

(
x

∂

∂y
− y

∂

∂x

)]
e iχ

}
, (5.4)

where the derivatives were calculated via a Fourier spectral method with a smoothing Gaus-

sian filter [131]. Notice that the derivatives in Eq. (5.4) act over the well behaved function

exp
(
iχ

)
, which is insensitive to the modulus 2π phase jumps that may be present in the

originally retrieved phase profile χ. This fact must be remarked because the unphysical dis-

continuities are significant when ∂χ/∂φ is calculated directly.

To ensure the numerical stability when evaluating QT from the phase profile via Eq.

(4.3), it is necessary to weaken the condition ρ = c. This can be achieved by generalizing

w
(
ρ = c,φ, z0

)= ´∞0 ρdρp
(
ρ
)

w
(
ρ,φ, z0

)
, where p

(
ρ
)

is a radial probability distribution strongly

concentrated near ρ = c. For simplicity we assume that for a sufficiently small thickness ε,

p
(
ρ
)= 0, if

∣∣ρ− c
∣∣> ε, and p

(
ρ
)= (

2ερ
)−1, if

∣∣ρ− c
∣∣≤ ε. This approach allows the line integral

in Eq. (4.3) to be approximated by a surface integral over the plane z = z0

QT = 1

2π

ˆ
ρdρdφp

(
ρ
)

w
(
ρ,φ, z0

)
. (5.5)

To gain insight on the meaning of the quantities discussed above, it is shown in Fig. 15

how the quantities discussed above behave in an experimental measurement of a beam ob-

tained containing a point TC whose charge is 5 in the SLM. Notice that the amplitude profile
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Figure 15 – Application of the concepts developed in sec. 3 to a beam where χOV = 5φ. Ex-
perimentally measured amplitude (a) and phase (b) beam profiles. OAM density
profile (c), from which it was determined that 〈l〉 = 4.9. Experimental (d) and the-
oretically expected (e) `-OAM profiles for this beam. For this beam it was mea-
sured QT = 5.0.

is very uniform in Fig. 15 (a) and the measured phase profile in Fig. 15 (b) is consistent to

what is expected for a point TC. The semi-classical OAM density is given by the integrand of

Eq. (4.6) and can be obtained by multiplying the result of Eq. (5.4) with the measured inten-

sity profile. The normalized experimental OAM density, Lz , is flat in Fig. 15 (c), up to experi-

mental error. Another quantity of interest is the average semi-classical OAM per photon 〈l〉,
which is obtained by performing the integral in Eq. (4.6). For the beam in Fig. 15, it was mea-

sured that 〈l〉 = 4.9. Figs. 15 (d)-(e) show the experimental and theoretically expected `-OAM

profiles, respectively, for this beam. It can be noticed that there is a good agreement between

both in the color scale. The experimental determination of the TC, QT , was performed us-

ing Eq. (5.5) with c = 0.85rmax, ε= 0.1rmax, where rmaxis the external radius of the amplitude

profile. As a result, it was measured that the produced beam has QT = 5.0.

5.5 OAM and TC characterization of TC distributions

In this section we experimentally characterized the `-OAM and the OAM density in the TC

distributions described in sec. 5.3 and in Ref. [1]. Some typical amplitude and phase profiles

of these TC distributions at z = 0 cm are shown in Fig. 16. The results for each TC distribution

are discussed in the subsections below. From the experimental amplitude and phase profiles,

〈l〉 was calculated by applying Eq. (4.6), while for QT it was used Eq. (5.5) with c = 0.85rmax,

ε= 0.1rmax, where rmaxis the external radius of the amplitude profile.

5.5.1 Linear distributions of TC

Since the linear distribution of TC forms is the prototype for more complex geometries, it is

discussed first. Although the linear distribution of TC discussed here is designed on the SLM,

its worth noticing that they can appear naturally from point TC perturbed by the optical sys-

tem [132]. The OV core of a TC line of infinitesimal length has a circular shape. By increasing

the TC line length and keeping the total TC fixed, the core becomes elongated until a point

in which the multiple OV cores of unit charge become discernible. For a fixed TC of 10 these
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Figure 16 – Typical experimental profiles of amplitude and phase, and the corresponding
`-OAM and OAM density for the TC distributions. The data represent TC dis-
tributed over a line (a), a corner (b) and a triangle (c). The values of 〈l〉 and QT

were calculated, respectively, by applying Eqs. (4.6) and (5.5) to the experimental
data.
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Figure 17 – Experimental data for TC lines with different line lengths and a fixed total applied
TC= 10 at z = 0 cm. The line length increases from (a) to (c), and the respective
OV are in the regimes of high TC density, elongated OV core and small TC density.

three regimes can be visualized in Figs. 17(a)-(c) as, high TC density, elongated OV core and

small TC density, respectively. An important remark is that the measured value of QT ob-

tained from Eq. (5.5) agrees with the applied value for all the geometries shown in Fig. 17

and also in all the other cases discussed below. Another observation is that the `-OAM mag-

nitude, |w (r)|, is reduced near the center of the TC line. This can be understood by noticing

that between adjacent equally-charged OV the azimuthal phase variation is smaller than if

both OV were at the same point. Far from the TC distribution the phase profile must depend

only on the value of QT and therefore the `-OAM, w (r), should have similar magnitudes in

all regimes [1]. This can be observed in Figs. 17(a)-(c). The OAM densities follows the beam

intensity profile but are reduced near the OV core. The reduced OAM density, Lz , follows the

`-OAM, w (r), reduction, and as a result we observed that 〈l〉 ≤QT .

Also, it was investigated how the linear distributions of TC propagate, and a typical exam-

ple is shown in Fig. 18. Notice that the OV core rotates and expands under propagation, but

remains line-shaped. The rotation is due to the Guoy phase shift [56, 126], and can be seen

as a signature of the structural stability of the OV profiles under propagation [56]. Another

important point is that both QT and 〈l〉 are conserved under propagation. This is impor-

tant because establishes that the characterization approach discussed in this work does not
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Figure 18 – Measurements corresponding to a TC line at distinct z planes. z =
0 cm,5 cm,10 cm respectively in (a-c). Notice that both QT and 〈l〉 are con-
served under propagation.
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Figure 19 – (a) Profiles of amplitude, phase, OAM density and `-OAM for a corner-shaped
TC distribution with a fixed geometry and varying total applied TC. (b) Relation
between the measured QT and 〈l〉 in terms of the applied TC at the SLM. All mea-
surements were taken at z = 0 cm.
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Figure 20 – (a) Profiles of amplitude, phase, OAM density and `-OAM for a triangle-shaped
TC distribution with a fixed geometry and varying total applied TC. (b) Relation
between the measured QT and 〈l〉 in terms of the applied TC at the SLM. All mea-
surements were taken at z = 0 cm.

depend on the CCD position.

5.5.2 Corner- and triangle-shaped distributions of TC

After discussing the behavior of a TC line, the next step in complexity are two TC lines. The

data for a corner-shaped distribution of TC is shown in Fig. 19. By fixing the geometry of the

TC distribution, the OV core also can be characterized by the three regimes discussed for TC

lines as illustrated in Fig. 19(a). A high TC density was observed when QT ≥ 12, since the OV
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core profile becomes more rounded and tends to a circular shape. At smaller TC densities,

QT ≤ 8, it can be observed that multiple OV cores are distinguishable. When QT = 10, the OV

core is corner-shaped. From the `-OAM profiles, it can be seen that the `-OAM is very small

inside the triangle determined by the corner extremities. This fact can also be inferred from

the relative uniformity of the phase profiles, and implies that the OAM density core profile

is more rounded than the OV core at the amplitude profile. This conclusion is important

for optical tweezers applications, in which someone wants to transport a dielectric particle

along a specified route. On the other hand, it can be seen in Fig. 19(b) that the measured

values of QT corresponds to the applied TC values and for these beams the reduction in 〈l〉
with respect to a point TC is small.

The experimental results for a triangle-shaped TC distribution are shown in Fig. 20. In

Fig. 20(a) it can be seen that the OV core profiles are triangle-shaped and the intensity profile

regimes are high TC density at QT ≥ 12, elongated OV core at QT = 9 and small TC density at

QT ≤ 6. The `-OAM and the OAM density profiles follows the TC distribution geometry, and

therefore are suitable for applications in optical tweezers. Also it can be seen that, similarly to

the corner-shaped TC distribution, QT corresponds to the applied value of TC and for these

beams the reduction in 〈l〉 with respect to a point TC is smaller than in the Corner-shaped

distribution.

5.6 TC Multipoles and 2D radial distribution

As a prototype for more complex TC distributions, TC multipoles and the 2D radial distri-

bution were produced and characterized using the setup presented in sec. 5.4. Unless oth-

erwise stated, the data was collected at the SLM image plane (z = 0). To our knowledge, the

following interpretation of the phase profiles below was never reported in the literature.

5.6.1 TC Multipoles

As was discussed in subsec. 4.3.3, the TP associated with a finite TC distribution can be

separated in contributions that vanish at very large distances and asymptotically nontriv-

ial terms. For simplicity only the asymptotic behavior is studied here, and it is assumed a

distribution such that

χOV =ℑ [V (v)] =αsin
[

j
(
φ+β

)]
/ j , (5.6)

where α is constant and j 6= 0. To avoid an azimuthal discontinuity in the phase profile j

must be an integer. A fractional j leads to a line of phase discontinuity similar to those of

[79,119]. β is an orientation offset while α determines beam core local radius via Eq. (4.103),

such that

|v |core
(
φ

)= b
√∣∣αcos

[
j
(
φ+β

)]∣∣. (5.7)
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Figure 21 – Multipoles of TC at z = 0. The rows correspond to the data for a dipole (a, b, c),
quadrupole (d, e, f) and an hexapole (g, h, i). In columns we display the beam
amplitude profiles (a,d,g), the experimental `-OAM (b, e, h) and theoretical `-
OAM obtained from Eq. (5.6) (c, f, i). The solid lines in (a, d, g) corresponds to the
expected OV core profile from Eq. (5.7), and their colors (red, blue) represent the
enclosed TC sign (+, -).

We show in Figs. 21 (a, d, g) the experimental intensity profiles for TC multipoles of order

j =1, 2 and 3 by applying the phase profile of Eq. (5.6) to the SLM. The solid lines repre-

sent the expected core profile as given by Eq. (5.7). Blue and red lines surround, respectively,

regions of negative and positive `-OAM. The solid lines have only the radius scale as an ad-

justable parameter, and since α= 40 for all j , the same scale was used for all curves. Figs. 21

(b, e, h) show the `-OAM profiles, and Figs. 21 (c, f, i) exhibits the expected `-OAM accord-

ing to Eq. (5.6). A good agreement is found between the theoretically expected results and

the experimental findings. A disagreement exists only at the darkest regions near the profile

center, where we were not able to properly measure the phase. A technical aspect which is

worth noticing is that the intensity profile of multipoles is very sensitive to the spatial filter

iris transverse position, and misalignments makes the lobes profile nonsymmetrical.

An important property of TC multipoles is that their `-OAM is stable under propagation,

as can be seen by varying the position of the CCD along the z axis. Experimental amplitude

and `-OAM at different values of z are shown in Fig. 22 for j = 4. It may be observed in the

amplitude profiles, Figs. 22 (a-d), that pairs of amplitude lobes with opposed `-OAM signs

annihilate under propagation. The resulting bright spots are located at zero `-OAM regions.

Creation and annihilation of oppositely charged OV pairs under propagation are well estab-

lished in literature [16, 126, 133, 134], but to our knowledge the previous descriptions were

always associated with, respectively, creation and destruction of TC. In the case described
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LC

Figure 22 – Propagation of a vortex octupole
(

j = 4
)

in free-space. In the top row (a-d) it is
displayed the amplitude profile at increasing propagation distance from the SLM
image plane (z = 0 cm), while in the bottom row (e-h) is shown the experimental
`-OAM. Notice that the `-OAM remains stable under propagation.

here, the beam’s phase topological structure is preserved under propagation, as can be seen

from the `-OAM in Fig. 22 (e-h). For negative z, the amplitude lobes rotate in the opposite

direction to that shown in Figs. 22 (a-d).

5.6.2 2D radial TC distribution

Since only the phase is being modulated in the experiments presented, only the imaginary

part of the TP (4.79) is considered here,

χOV =
QT

[( r
a

)n+2 (
φ−π

)+π
]

, r < a,

QTφ , r ≥ a,
(5.8)

It should be remarked that Eq. (5.8) is a generalization which smoothly connects the

phase profiles of a usual OV (n =−2) to helico-conical beams, or optical twisters [135,136] in

which n = −1. Optical twisters are interesting because they carry angular momentum and

also have a higher photon density than the usual Laguerre-Gauss or Bessel beams [136].

Therefore they are of interest for manipulating particles [136] and may also be of interest

for nonlinear optics with OAM carrying beams [137]. To our knowledge, other values of n

were never previously reported in the literature.

We experimentally produced beams with the phase profile given by Eq. (5.8), with QT = 5,

fixed a and varying n, and the results are shown in Fig. 23. In the phase profiles, Fig. 23(a-d),

it can be seen that larger n increase the phase twisting at r < a and reallocates the TC towards

the border along φ= π, as predicted in Eq. 4.83. Notice that even though the TC density has

azimuthal symmetry, the positions of the singularities over the phase profile, Eq. (5.8), break

this symmetry due to the phase jump at the branch line at φ = ±π, similar to the case of

fractional OV [79, 119]. The TC displacement can be seen also in the zeros of the amplitude

profiles, as shown in Fig. 23(e-h). The `-OAM profiles, Fig. 23(i-l), shows that larger n values

decrease the LC near the center of the circle. In Fig. 23(m-p) we show the mean `-OAM as



Chapter 5. Production of topological charge distributions and their characterization 98

LC

Radius (a.u.) Radius (a.u.) Radius (a.u.)

n=-1.5 n=-1.0 n=15n=-2.0

LC

Radius (a.u.)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 23 – Data for 2D radial distribution, Eq. (5.8), with QT = 5, fixed a and varying n
(columns) at z = 0 cm. a is graphically represented by green dashed lines. The
determined `-OAM (black dots) at (m-p) corresponds to the azimuthally aver-
aged LC at a given radial distance from the center of the circle as a function of the
radial distance. The red solid lines in (m-p) correspond to the values expected
from the applied phase mask, neglecting the discreteness of the TC.

a function of the radial distance to the center of the circle. The values obtained (black dots)

agree with the theoretically expected from the phase profile (solid red) via Eq. (5.8). The `-

OAM reduction in the center can be understood by considering that larger n push ρ to the

boundaries of the circle a.

5.7 Summary

In this chapter some consequences of the Topological Potential (TP) concept were investi-

gated experimentally. In one of our results it was shown that by using TC distributions it is

possible to have light beams with designed dark regions, and the total Topological Charge

(TC) can be controlled through the distribution. Another important aspect discussed in this

work is that the Orbital Angular Momentum (OAM) and TC are distinct physical quantities.

While a clear distinction between OAM and TC can be seen in TC distributions, such distinc-

tion is not very clear in the more commonly used OAM light beams, as Bessel or Laguerre-

Gauss beams. This distinction is not very clear within the literature, which is mainly con-

cerned with beams with point TC, and there is much confusion between topological and

physical arguments when explaining the observed phenomena.

Several TC distributions were considered in this chapter. First it was introduced the TC
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distribution along a line, a corner and a triangle, as we reported in [1]. It was verified that the

TC distributions can be used to shape the dark region of an OAM beam, since the TC phase

singularity ensures that the field amplitude is zero. This is specially important because the

intensity modulation was achieved by using only the phase profile of the TC distribution.

This is very important because it allows to design the intensity profile of OAM beams using

only phase masks. Since the intensity profile is extremely important in various applications,

as in optical tweezers and traps, these TC distributions may be useful in optical manipulation

systems [138].

The fields produced were initially characterized using the triangular slit technique [121],

and later it was used a more complete characterization of the wavefront proposed by us in

[2]. The simultaneous retrieval of phase and amplitude information was very important for

determining the beam OAM profile, and also in observing the singularities’ positions. The

proposed characterization approach is very general, and can be applied to various beams.

An important advantage is that it does not require a matching between the field and a spe-

cific geometrical feature, as in [38,117,118], thus being more adapted for generic TC distribu-

tions. For the line- and triangle-shaped TC distributions it was observed that both amplitude

and OAM density profiles followed the designed geometry. Meanwhile, it was found that the

`-OAM and OAM profiles for the corner-shaped distribution is a rounded version of the as-

sociated TC distribution profile. As an application, it is remarked that the matching of an

OV to a surface plasmon may require a non-cylindrical OAM beam [139]. Therefore, our ap-

proach can be applied to characterize the OAM beams produced by plasmonic structures.

Finally, since the procedure in sec. 5.4 is general, it can be applied also to beams as Bessel or

Laguerre-Gauss.

Other consequences of the TP were also explored. The TC multipole is related to the

asymptotic phase profile due to nontrivial superpositions of OV, while the 2D radial TC dis-

tribution is a simple prototype. We believe that the bridge between 2D electrostatics and

OV provided by the TP is important for optical tweezers [27], laser traps [88] or atom guides

[140]. However, while the present work can be directly used to describe the field at the fo-

cus, further development is necessary to understand the effects of propagation and address

issues as the field profile stability [56].

Another important point is that both the TC multipole and the 2D radial distribution

might be useful in some applications. For instance, the intensity profile instability of TC

multipoles may be used to determine the position of an extended object image plane, and in

aligning spatial filters. Another possibility is that, since multipoles form a complete (Fourier)

basis of orthogonal modes on the azimuthal phase, it is possible that they describe the mor-

phology in noncanonical OV [133,141] and they may also be suited for applications in quan-

tum communications [26]. In telecommunications, they are an alternative to Laguerre-Gauss

beams for data multiplexing [142] that can be more stable to turbulence [142, 143], since the

topological properties of the phase profile are distributed over the beam profile.
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6 Transverse effects in linear and non-
linear light propagation

6.1 Introduction

In I. Newton’s times there was a debate related to the fundamental structure of light. C.

Huygens defended that light was a wave, but Newton believed that since light travels along

straight lines, then it should be composed of small particles [144]. Newton’s scientific pres-

tige ultimately persuaded the mainstream understanding for a reasonable time. Later, the

work of A. Fresnel and T. Young among others, have refuted the theory of corpuscular light

through experiments involving light diffraction and interference phenomena1. However, since

light indeed travels nearly along straight lines, it was important to understand how the corpus-

cular-like straight trajectories arise in Fresnel’s theory. One approach is to use Fermat’s prin-

ciple, to verify that wavefronts propagate along minimum-length paths.

The knowledge acquired in the centuries old debate in the optics community later had

a great importance in the development of Quantum Mechanics (QM). The dual behavior of

quantum particles challenged the QM pioneers, which understood mechanical waves and

mechanical point particles as distinct physical entities [145]. The connection between Fer-

mat’s principle and optical waves was essential to find the wavelength associated to a physi-

cal particle by L. de Broglie. As stated in his Ph.D. thesis [146],

Fermat’s Principle applied to a phase wave is equivalent to Maupertuis’ Principle

applied to a particle in motion; the possible trajectories of the particle are identical

to the rays of the phase wave. We believe that the idea of an equivalence between

the two great principles of Geometric Optics and Dynamics might be a precise

guide for effecting the synthesis of waves and quanta.

Therefore, various of the principles behind QM were developed based on the previous optics

knowledge.

In the last century there was a fast advancement in the theoretical tools to describe quan-

tum phenomena, as wave and matrix mechanics and Dirac notation [40]. Meanwhile, even

though classical optics and QM share various important common properties, the mathe-

matical language currently used to describe optical systems often uses theoretical tools and

concepts which are not amenable to a direct application of the most recent problem-solving

1 More specifically, Fresnel’s work predicted that light diffraction around a circular obstacle would produce a
bright spot at the center of the dark region. Young’s slit experiment showed interference profiles at a distant
target. Both phenomena can be explained in the wave interpretation of light, but are not natural in the
particle description of light.
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developments from QM. Thus, the application of modern QM analytical tools to optics prob-

lems may improve the current understanding of some optical systems and can also provide

solutions to currently open problems. The effort in applying tools commonly used in QM to

classical wavefront propagation in optics already gave several results [147–155], but its use

is reasonably limited within the optics community. There are several reasons why operator

techniques are applied only within a niche. One that can be easily quoted is that they are of-

ten applied only to simple optical systems, as free-space propagation, parabolic lenses and

GRIN media. Thus, the appeal for introducing a whole new formalism is severely reduced if

it cannot expand the class of solvable problems or those with accurate approximations.

In this context, we remind here that the representation of QM problems in terms of oper-

ators is not unique. For instance, two common approaches are the Heisenberg Picture (HP)

and the Interaction Picture (IP) [40]. To our knowledge, the previous works on optical wave-

front propagation through operators are based on the HP only. Since the IP is widely used in

QM and quantum field theory [40,41] for interacting and complex systems, its application in

wavefront propagation can be relevant for example in describing light beams through com-

plex optical systems, nonlinear optical materials, and in scattering media. Optical resonators

and light propagation through free-form optical elements can also benefit if represented in

the IP, since as will be later shown, the operators obtained are a natural extension of the

ABCD matrices. The IP is currently used in optics in the temporal domain to express light-

matter interactions [37, 51], or to describe the temporal evolution of light pulses [156, 157].

The major contribution of this chapter is introducing the IP in the spatial domain for wave-

front propagation of paraxial light in the classical approximation. An important point at the

core of the results is that by using the IP it is possible to obtain the transmittance function of

arbitrary linear and nonlinear optical elements fully within the operator formalism. Thus, we

believe that the IP provides an interesting framework for an analytical description of wave-

front propagation in optical systems, complimentary to the existing techniques.

In the IP, the system’s evolution can be split in linear (solvable) and nonlinear (NL, non-

solvable) terms. The IP becomes very powerful for perturbative solutions, because the NL

terms can be expressed in terms of the known linear terms, improving the approximation

accuracy. This approach allows to describe how realistic, finite-sized beams behave under

propagation through general optical systems. It is herein described how the IP can be applied

to calculate the propagation of paraxial light beams under the action of a spatially varying

refractive index for some simple transverse refractive index profiles and also for NL optical

samples. In sec. 6.2 the paraxial wave equation is obtained in Dirac notation, and the most

important hypothesis are introduced. In sec. 6.3 it is described how to represent and formally

solve the paraxial equation, Eq. (6.6), for the three pictures previously described (SP, HP and

IP). The IP is introduced in subsec. 6.3.3, and several important properties are introduced.

In sec. 6.4 there are some simple applications of the IP to light propagation in simple lin-

ear paraxial optical systems as lenses, wedges and diffraction gratings. An important subsec.
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is 6.4.3, where it is described how NL optical effects modify the beam effective width, cur-

vature radius and divergence angle. Still in subsec. 6.4.3, it is showed how to calculate the

curves from Z-scan technique [158] using the IP. Later in sec. 6.5 the IP calculations are ex-

perimentally verified for some NL optical problems. We used the IP to obtain the beam width

propagation inside a thick NL sample through the Scattered Light Imaging Method (SLIM)

[5], and to analytically describe the experimental curves with the D4σ technique [6].

6.2 Paraxial wave optics

In this section, the general notation and some definitions will be introduced. For simplic-

ity, it is considered an homogeneously polarized, monochromatic electric field propagat-

ing along the ε3 direction, that can be written as E = sψ (r, z)e i (kz−ωt ), where k = ω/c is the

wavenumber, z is the coordinate along the propagation direction, t is the time, r = x1ε1+x2ε2

represents the transverse coordinates, s is the polarization , and it is assumed that the extra

polarization terms discussed in sec. 2.2 have a negligible effect. From Maxwell equations, the

wave equation for this field is given by
[
∇2 − n2(r,z)

c2
∂2

∂t 2

]
E = 0, where n (r, z) = η (r, z)+ iκ (r, z)

is the complex refractive index of the medium. For a description in terms of permittivity and

permeability, one should use n2/c2 ≡µε. To avoid the creation of counter-propagating waves

[159], it is assumed a slow variation of n (r, z) along z. Besides that, if the variation of ψ (r, z)

is also slow along the propagation direction, it can be approximated that d 2

d z2ψ∼ 0 [51]. The

field envelope then satisfies{
∇2
⊥+2i k

∂

∂z
+ [

n2 (r, z)k2
0 −k2]}ψ (r, z) = 0, (6.1)

where ∇2
⊥ means a Laplacian that acts only over the transverse coordinates, and k0 =ω/c is

the wavenumber in free space.

Equation (6.1) has the same mathematical structure as a 2D Schrödinger equation in

Schrödinger Picture (SP) [40], where time is replaced by z. In Eq. 6.1 a quantity analogous to

the potential is within square brackets and is not necessarily Hermitean, because the mate-

rial can exhibit losses or gain depending on the imaginary part of n2 (r, z). It should also be

noticed that the value of k2 can be chosen in a convenient way, depending on the specific

spatial profile of n (r, z). For example, if the material is uniform such that n (r, z) = n0, the

natural choice becomes k = n0k0, which is the usual expression for the wavenumber inside

an homogeneous material.

To simplify the term inside square brackets in Eq. (6.1), it is considered a simplifying

assumption that the material is sufficiently transparent such that the absorption becomes

significant only after the light propagates over many wavelenghts [51]. Then, in terms of the

absorption coefficient α, n2 ≈ η2 − iηα/k0, where the spatial dependencies were omitted

for simplicity. Also, it is considered that both η (r, z) and α (r, z) can be represented by an

average (or effective) value and their spatial dependence are given by η = n0 (z)+n′ (r, z),
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where n′ (r, z) ¿ n0, and α (r, z) =α0 +α′ (r, z), where α′ (r) ¿α0. Under this representation,

the natural choice for k is

k = n0 (z)k0, (6.2)

and this will be assumed through the following discussion. Also, since both n′ (r, z) andα0 are

assumed to be small, the term n′ (r, z)α0/n0 was neglected. Then,
[
n2 (r, z)k2

0 −k2
]= i kα0 −

2kV (r, z), where it is defined the potential V (r, z) that contains the spatial dependence of

η (r, z) and α (r, z) due to the optical elements traversed by the light beam,

V (r, z) =−k0n′ (r, z)− i
α′ (r, z)

2
. (6.3)

The reason for calling V (r, z) a potential comes from the analogy of the paraxial equa-

tions with Schrödinger’s wave equation, and will be more explicitly stated in subsec. (6.3.1).

The field ψ (r, z) can also be represented in Dirac notation as

ψ (r, z) ≡ 〈
r|ψ, z

〉
, (6.4)

ψ∗ (r, z) ≡ 〈
ψ, z|r〉 . (6.5)〈

r|ψ, z
〉

can be understood as the projection over the transverse coordinates r of the field

ψ when the position along the propagation direction is z [149, 153]. Dirac notation is both

powerful and flexible, and well suited to the operator language used throughout this work.

In terms of V (r, z) and in Dirac notation, Eq. (6.1) can be rewritten as

i
∂

∂z

〈
r|ψ, z

〉= [
− 1

2k
∇2
⊥− i

α0

2
+V (r, z)

]〈
r|ψ, z

〉
. (6.6)

Spatial dispersion was not introduced in the previous considerations for simplicity, but it

can be added by generalizing V (r, z) →V
(
r,∇⊥, z, ∂

∂z

)
. Also, in this work it will be considered

only the transmission properties of the media.

6.3 Three pictures for paraxial optics

To obtain the solutions of Eq. (6.6), it is possible to use at least the three different pictures

discussed below. In order to not confuse the different representations, a subscript S, H , I is

placed to identify quantities in SP, HP and IP, respectively. What follows in this section can be

considered as a translation of the well-known QM results [40] to the optics language. A very

important remark is that all calculations below are purely classical, and only the language

of QM is used. For example, our implementation of dissipation involves a non-Hermitian

Hamiltonian and certainly does not apply to most quantum systems. The validity of descrip-

tion performed below should be strictly considered only in the classical optics regime.

Since SP, HP and IP are different representations for the same physical problem, the phys-

ical answer shall not depend on the representation. However, each picture has its own ad-

vantages and disadvantages. For example, the SP becomes very simple only when there is
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a known set of eigenmodes of Eq. (6.6), which is usually a mathematically complex prob-

lem. However, the SP has simple solutions when there is no optical element, V (r, z) = 0, or

when diffraction effects are not relevant, 1
2k∇2

⊥ ≈ 0. In HP it is simple to describe how beam

quantities evolve under propagation, as the centroid or the beam width, and there is a direct

connection with geometrical optics. On the other hand, it is difficult in HP to describe sys-

tems including generic profiles of V (r, z), specially when the system has absorption. In that

context, the IP is a very interesting representation for optical problems, because it is a mixed

representation between SP and HP. Thus, the IP can be used to obtain the best characteristics

of SP and HP to analytically solve complex propagation problems.

6.3.1 Schrödinger picture (SP)

The most usual approach to solve Eq. (6.6) consists in assuming that field
〈

r|ψ, z; a
〉

S is de-

fined at a plane z = a and changes with z, while the operators (terms within brackets) are

fixed. It is then necessary to solve the associated differential equation for the given initial

condition, which is difficult for arbitrary V (r, z). This is a very complex mathematical prob-

lem in the general case but that has been discussed thoroughly in optics literature, since it is

a traditional approach to solve Gaussian beam propagation [51, 59, 60].

Before explicitly stating the problem in HP or IP, the first step necessary is to describe Eq.

(6.6) in terms of operators (here identified by carets). Given x̂S an operator representing the

transverse coordinates, while p̂S represents the spatial frequencies in the transverse plane,

x̂S = x̂1,Sε1 + x̂2,Sε2, (6.7)

p̂S = p̂1,Sε1 + p̂2,Sε2, (6.8)

where ε1 and ε2 represent the unit vectors along the directions transverse to z.

x̂S and p̂S are such that the commutator (see Eq. (C.38)) between their components sat-

isfy [
x̂ j ,S , p̂k,S

]= iδ j ,k , (6.9)[
x̂ j ,S , x̂k,S

]= 0 = [
p̂ j ,S , p̂k,S

]
, (6.10)

where δ j ,k is the Kronecker delta.

The position eigenkets |r〉S return its eigenvalue under the action of x̂S and form a com-

plete orthonormal basis,

x̂S |r〉S = r |r〉S , (6.11)〈
r|r′〉S = δ(2) (r− r′

)
, (6.12)ˆ

d 2r [|r〉〈r|]S = 1̂ (6.13)

where δ(2)
(
r− r′

)
is a Dirac delta for the two transverse coordinates and d 2r is the area ele-

ment over the transverse plane.
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The commutation relations can be applied to evaluate the representation of p̂S in terms

of coordinates, such that (see, for example, Appendix C.3)

〈r|S p̂S ≡−i∇⊥ 〈r|S . (6.14)

Thus, from Eqs. (6.11) and (6.14), Eq. (6.6) can be rewritten in terms of operators by sub-

stituting r → x̂S and ∇⊥ → i p̂S ,

i
∂

∂z

∣∣ψ, z; a
〉

S = ĤS
∣∣ψ, z; a

〉
S , (6.15)

ĤS = L̂S + V̂S (x̂S , z) . (6.16)

L̂S = 1

2k
p̂2

S − i
α0

2
. (6.17)

The quantity ĤS can be understood as the optical system evolution operator, if we rec-

ognize the mathematical equivalence between Eq. (6.15) and Schrödinger’s equation. Notice

that ĤS 6= Ĥ †
S and the current description consider only forward propagation of light waves.

Since z always increases, the inclusion of absorptive terms do not lead to divergences upon

propagation. Thus, some care must be exerted to consider reflected waves. When the ab-

sorptive terms are absent, ĤS becomes a Hamiltonian. The evolution operator in Eq. (6.16)

includes absorption terms, and is a generalization of the case described in [39]. A short dis-

cussion of the results in [39] is performed in subsec. 6.3.2.

Equation (6.15) can be formally integrated as

∣∣ψ, z; a
〉

S = ∣∣ψ, a; a
〉

S +
ˆ z

a

d z ′

i
ĤS

∣∣ψ, z ′; a
〉

S , (6.18)

The solution in SP is not easy to calculate for arbitrary V̂S , since ĤS = ĤS
(
x̂S , p̂S , z

)
, and[

ĤS
(
x̂S , p̂S , z

)
, ĤS

(
x̂S , p̂S , z ′)] 6= 0 in general. The detailed mathematical procedure to arrive

at the solution to Eq. (6.18) are detailed in Appendix C.4, resulting in∣∣ψ, z; a
〉

S = ĜS (z, a)
∣∣ψ, a; a

〉
S , (6.19)

ĜS (z, a) = Ẑ

{
exp

[
−i

ˆ z

a
d z ′ĤS

(
x̂S , p̂S , z ′)]}

. (6.20)

Equations (6.19)-(6.20) exhibit several important quantities. First there is the propagator

ĜS (z, a), which indicates how does the initial state
∣∣ψ, a; a

〉
S is modified after propagation

through an optical system described by ĤS . Due to optical absorption, ĤS 6= Ĥ †
S , implying

that ĜS (z, a)Ĝ†
S (z, a) 6= 1̂. Therefore, the transverse profile does not remain normalized upon

propagation, and S
〈
ψ, z; a|ψ, z; a

〉
S 6=constant. Unfortunately, to exhibit Eq. (6.20) in such

short notation, it becomes necessary to introduce the concept of the z-ordering operator Ẑ ,

which is necessary because ĤS does not commute at different z planes. There are, however,

three limits in which Eq. (6.20) can be stated in simple terms. The first occurs when it is

possible to obtain the set of eigenmodes of ĤS . For a general V̂S the eigenmodes are very

difficult to obtain, and this approach is not considered in this work.
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If light does propagate inside an homogeneous material, where V̂
(
r̂S , z ′) = 0, ĤS = L̂S ,

the integrand in Eq. (6.20) commutes with itself, and becomes

Ĝ (0)
S (z, a) = exp

[−i (z −a) L̂S
]

. (6.21)

Equation (6.21) is very important in evaluating the beam propagation, since it is an op-

erator representation of the Fresnel diffraction integral, as previously stated in Eq. (2.32).

Another limit which simplifies Eq. (6.20) is when there is a very thin sample, such that the

diffraction effects on the beam are negligible. The diffraction is mathematically represented

by the term p̂2
S/2k in L̂S , and it is approximated that p̂2

S/2k ≈ 0. Neglecting dispersion, ĤS

does not depend on p̂S anymore, and the effect of the optical element can be represented by

a transfer matrix operator T̂z,a defined by Ĝ (no diff.)
S (z, a) = T̂ (0)

z,a ,

T̂ (0)
z,a = exp

{
−i

ˆ z

a
d z ′

[
−i

α0

2
+ V̂S

(
x̂S , z ′)]} . (6.22)

Both Eqs. (6.21) and (6.22) are simple to evaluate because they do not display Ẑ and also

because they are well defined in the ket basis
∣∣p〉

and |r〉, respectively. As a remark, it should

be noticed that the validity limits of Eq. (6.22) is not exactly clear in the SP formulation of

the problem. This is to be contrasted with the solution in IP, in which the evaluation of the

no diffraction approximation is easily formulated. The application of an Eq. very similar to

(6.22) to important optical elements will be done below in the context of IP.

As a concluding remark for this subsection, it is worth mentioning that the mean value

of a generic operator ÔS
(
x̂S , p̂S , z

)
with respect to the field is defined as

〈
ÔS

〉= S
〈
ψ, z; a

∣∣ÔS
(
x̂S , p̂S , z

)∣∣ψ, z; a
〉

S

S
〈
ψ, z; a|ψ, z; a

〉
S

. (6.23)

6.3.2 Heisenberg picture (HP)

Another approach to solve the operator Eq. (6.15) consists in representing the operators as

changing with z while the field
∣∣ψ, z; a

〉
H is fixed,

∣∣ψ, z; a
〉

H = ∣∣ψ, a; a
〉

H = ∣∣ψ, a; a
〉

S . In this

way, one can obtain the general properties of a given optical system, while the field initial

conditions can be applied at a final stage. This is also a very common approach to describe

light propagation, usually by means of the Fresnel diffraction integral [51, 59, 60, 144]. The

choice made in this work consists in representing the problem in terms of operators, as in

[147–155].

Since in HP the state is assumed to be static, while the operators are dynamic, the bras

and kets in SP and HP are related through∣∣ψ, z; a
〉

S = ĜH (z, a)
∣∣ψ, z; a

〉
H , (6.24)〈

ψ, z; a
∣∣
S = 〈

ψ, z; a
∣∣

H Ĝ†
H (z, a) , (6.25)
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where the propagation operator ĜH (z, a) contains all of the propagation dynamics due to

the optical system. The consistency between Eqs. (6.19) and (6.24) requires that ĜH (z, a) =
ĜS (z, a). However, since Eq. (6.19) has no simple solution, the assignment of an explicit for-

mula for ĜH (z, a) will be performed only in connection with the IP.

Using Eqs. (6.24) and (6.25) in (6.23), it is possible to obtain the representation of a generic

operator in HP,

ÔH = Ĝ†
H (z, a)ÔSĜH (z, a) . (6.26)

Notice that the representation of ÔH as in Eq. (6.26) implicitly assumes that the normal-

ization factor in Eq. (6.23) remains constant,
(

S
〈
ψ, z; a|ψ, z; a

〉
S

)−1 = (
S
〈
ψ, a; a|ψ, a; a

〉
S

)−1,

indicating that Ĝ†
H (z, a)ĜH (z, a) = 1̂. However, as was previously stated, the normalization

S
〈
ψ, z; a|ψ, z; a

〉
S is a function of z due to absorption or the presence of apertures. Substitu-

tion of Eq. (6.24) in (6.15) indicates that

i
∂ĜH (z, a)

∂z
= ĤSĜH (z, a) , (6.27)

Since in HP the operators evolve, while the state is fixed with z, it is important to know

how does ÔH depends on z. Using Eqs. (6.26) and (6.27), it can be obtained that (see details

in Appendix C.5)

i
dÔH

d z
= ÔH ĤH ′ − Ĥ †

H ′ÔH + i

[
∂ÔS

∂z

]
H

, (6.28)

ĤH ′ = Ĝ−1
H (z, a) ĤSĜH (z, a) . (6.29)

As mentioned before for the SP, it is very difficult to compute Eqs. (6.28) and (6.29) in the

general case. However, there is a very important class of solutions that can be evaluated ex-

actly, and also connect wave optics and geometrical optics through the Ehrenfest’s theorem,

as described below.

Ehrenfest’s Theorem

The concepts discussed in this subsection are deeply related to the discussion in Ref. [39].

Although it is possible to obtain a rigorous proof of the operator representation for systems

in HP with loss or gain in systems containing up to quadratic terms in x̂H [151], in this

work such task will be performed in IP. Thus, assuming an absorption-less optical system,

Ĝ−1
H (z, a) = Ĝ†

H (z, a), and in this limit

ĤH ′ = ĤH = Ĥ †
H . (6.30)

Also, given the identity (C.40), ĤH can be obtained from ĤS by substituting x̂S → x̂H and

p̂S → p̂H . Then, it can be observed that the transverse position and momentum operators,

x̂H and p̂H , must evolve as described by Eq. (6.28). Using Eqs. (C.42) and (C.43),
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d x̂H

d z
= p̂H

k
, (6.31)

d p̂H

d z
=−∇x̂H V̂H (x̂H , z) , (6.32)

where ∇x̂H V̂H represents the gradient of V̂H is taken with respect to x̂H . This set of equations

can be understood in the simple case of free-space propagation, where V̂H = 0̂. Eq. (6.32) has

as solution p̂H (z) = p̂H (0), while Eq. (6.31) implies that x̂H (z) = x̂H (0)+ zp̂H (0)/k. The op-

erator p̂H (0)/k is associated to the beam lateral spreading, and behaves like the beam angle

to the propagation axis z in paraxial regime. Care must be taken to not take such analogy

too far, because p̂H (0)/k represents the beam angle only in some limiting cases, as when the

beam is a tilted plane wave.

Equations (6.31) and (6.32) resemble the canonical equations of Hamilton for a conserva-

tive mechanical system [39, 62]. However, while Eqs. (6.31) and (6.32) are a relation between

functions of operators, the canonical equations of Hamilton involves functions of coordi-

nates and momenta. To transform the operators in Eqs. (6.31) and (6.32) into functions it is

necessary to consider the mean values over some ket
∣∣ψ〉

, resulting in

d 〈x̂H 〉
d z

=
〈

p̂H
〉

k
, (6.33)

d

d z

〈
p̂H

〉
k

=−
〈

1

k
∇x̂H V̂H (x̂H , z)

〉
. (6.34)

This is an optical version of the famous Ehrenfest’s theorem [40], as previously discussed

in [39]. However, Eqs. (6.33) and (6.34) will satisfy paraxial geometrical optics exactly only if

[39] 〈∇x̂H V̂H (x̂H , z)
〉=∇〈x̂H 〉V̂H (〈x̂H 〉 , z) , (6.35)

or, in other words, if V̂H is fully described in terms of coordinates instead of operators, Eq.

(6.35) can be satisfied. It can be showed that, irrespective to the initial ket
∣∣ψ〉

, the center

of gravity of a light beam, 〈x̂H 〉, will move as an optical ray in any square law medium [39],

where

V̂H (x̂H , z) = k0

2
nx x̂2

H + k0

2
ny ŷ2

H . (6.36)

Although the square law medium is very important, since it can be used as the first ap-

proximation to spherical lenses and mirrors, there is a need for describing more general op-

tical systems. For example, optical systems containing free-form optical surfaces. Also, since

the ray optics approach is usually more intuitive for designing optical systems, an approach

that allows a direct connection between wave and ray optics should be very fruitful in the

development of general optical systems.
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6.3.3 Interaction (or Dirac) picture (IP)

From the previous subsecs. 6.3.1 and 6.3.2, it should be now clear that it is difficult to obtain

solutions of Eq. (6.6) for a generic V (r, z) in SP, while in HP it is not very easy to introduce

absorption effects. Just for remembering the basics of SP and HP, in SP the field evolves with z

while the operators are held fixed, and in HP the operators evolve while the field is kept fixed.

More specifically to SP, it was described that there are two important limiting cases in which

the solution can be more easily obtained: when V (r, z) = 0, in Eq. (6.21), and when diffraction

is not relevant, Eq. (6.22). The idea behind IP is to evolve both states and operators, in such

a way that each part solves a simpler problem. Such decomposition is not unique, and for

specific problems the approach below is not the optimal. To our knowledge, the IP is being

introduced for wavefront propagation by our group.

Since it is of interest to include the effects of diffraction, it is assumed that the operators

evolve according to L̂S , while if V̂S is present, it will only affect the IP field. Mathematically, it

is considered that the free-propagator is factored of the IP field, as∣∣ψ, z; a
〉

S = Ĝ (0)
z,a

∣∣ψ, z; a
〉

I , (6.37)〈
ψ, z; a

∣∣
S = 〈

ψ, z; a
∣∣

I Ĝ (0)†
z,a , (6.38)

Ĝ (0)
z−a = exp

[−i (z −a) L̂S
]

, (6.39)

where the notation Ĝ (0)
z−a for the free-propagator was made more compact due to its ubiqui-

tous appearance in the remaining of this chapter. Given L̂S as in Eq. (6.17), some important

properties can be readily verified,

Ĝ (0)†
z−aĜ (0)

z−a = exp[− (z −a)α0] , (6.40)

Ĝ (0)−1
z−a Ĝ (0)

z−a = 1̂, (6.41)

Ĝ (0)−1
z−a = exp[(z −a)α0]Ĝ (0)†

z−a , (6.42)

Ĝ (0)
a−a = 1̂. (6.43)

Equations (6.40) to (6.42) can be summarized as that for a system including linear ab-

sorption, the Hermitian conjugate of the propagator, Ĝ (0)†
z−a , is not the inverse operator Ĝ (0)−1

z−a .

Also, if there is no propagation, Eq. (6.43) states that Ĝ (0)
a−a does nothing to the initial state.

This is very important because it relates the initial IP and SP fields.

If the definition (6.37) is substituted into (6.15), we obtain

i
∂

∂z

∣∣ψ, z; a
〉

I = V̂I (x̂I , z)
∣∣ψ, z; a

〉
I , (6.44)

V̂I (x̂I , z) = Ĝ (0)−1
z,a V̂S (x̂S , z)Ĝ (0)

z,a . (6.45)

So, as first remarks regarding IP, it can be noticed that the field
∣∣ψ, z; a

〉
I propagates due

to V̂I (x̂I , z) only. Also, the IP representation of generic operators can be explicitly made in

terms of Ĝ (0)−1
z−a instead of Ĝ (0)†

z−a , and thus the formalism is more appropriate for absorptive
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systems in comparison to HP. Since Eq. 6.45 is a similarity transformation, it can be seen

from Appendix C.2 that V̂I (x̂I , z) can be obtained from V̂S (x̂S , z) by replacing x̂S → x̂I . Thus,

the IP operators have a simple representation.

Notice that using Eqs. (6.37) and (6.38) in Eq. (6.17), and the identity (6.42), it is true that〈
ÔI

〉= 〈
ÔS

〉
such that

〈
ÔI

〉= I
〈
ψ, z; a

∣∣ÔI
(
x̂I , p̂I , z

)∣∣ψ, z; a
〉

I

I
〈
ψ, z; a|ψ, z; a

〉
I

, (6.46)

ÔI
(
x̂I , p̂I , z

)= Ĝ (0)−1
z,a ÔS

(
x̂S , p̂S , z

)
Ĝ (0)

z,a . (6.47)

To obtain the general solution of the IP field, it is formally equivalent to the procedure

adopted for going from Eq. (6.15) to Eq. (6.19), and the result is∣∣ψ, z; a
〉

I = T̂z,a
∣∣ψ, a; a

〉
I , (6.48)

T̂z,a = Ẑ

{
exp

[
−i

ˆ z

a
d z ′V̂I

(
x̂I , z ′)]}

. (6.49)

Thus, given the unitarity at zero propagation, Eq. (6.43), the initial condition is
∣∣ψ, a; a

〉
I =∣∣ψ, a; a

〉
S . It is remarked that the transmission operator in Eq. (6.49), T̂z,a , still requires the

use of the z ordering operator, Ẑ . Although the z dependence is omitted, x̂I = x̂I (z) depends

on both x̂I (a) and p̂I (a), such that
[
x̂I (z) , x̂I

(
z ′)] 6= 0 if z 6= z ′. x̂I plays a very important role

in IP and its propagation will be discussed more carefully below. For now, it is only stated

without proof that in the limit of very thin samples, T̂z,a reduces to T̂ (0)
z,a , Eq. (6.22).

By having an explicit representation of
∣∣ψ, z; a

〉
I , Eq. (6.48), it becomes possible to evalu-

ate the evolution of a generic operator ÔI with z in a similar way to the HP discussion. Since

there is interest in including absorption effects, the normalization contribution will not be

neglected, as occurred for HP. The detailed calculation is similar to that for HP and is per-

formed in Appendix C.6, resulting in

i
d

d z
ÔI =

[
ÔI , ĤI

]− i (α̂I −〈α̂I 〉)ÔI + i

[
∂

∂z

(
ÔS

)]
I

. (6.50)

Equation (6.47) is a very important result obtained in this work, since it involves only

terms represented in IP. This must be contrasted with Eq. (6.28), which depends on ĤH ′ , an

operator in HP only in the limit of a system without absorption. Thus, the IP is specially in-

teresting for describing optics in non-conservative systems, and can be used to extend the

operator formalism to this regime. An interesting point regarding Eq. (6.47) is the explicit

appearance of the absorption α̂I in the evolution equation for the operator ÔI , and the de-

pendence on the current field through 〈α̂I 〉. In the limit of α̂I =constant, it can be seen that

α̂I −〈α̂I 〉 = 0 and Eq. (6.47) is equivalent to the evolution of HP operators in a conservative

system. Under more general absorption profiles, the term α̂I −〈α̂I 〉 will significantly modify

the evolution of ÔI .
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Since ĤI is the operator that determines the propagation of all operators, it is important

to verify its behavior. Any operator Â satisfies
[

Â, Â
]= Â Â− Â Â = 0, and (6.50) becomes

d

d z
ĤI =− (α̂I −〈α̂I 〉) ĤI , or (6.51)

ĤI (z) = Ẑ

{
exp

[
−
ˆ z

a
d z ′ (α̂I −〈α̂I 〉)

]}
ĤI (a) . (6.52)

If α̂I does not vary along the transverse direction, then ĤI is a constant throughout prop-

agation. By the other hand, in the limit where α̂I −〈α̂I 〉 does have a spatial structure homo-

geneous along the propagation direction, ĤI (a) is magnified where α̂I < 〈α̂I 〉 and reduced

where α̂I > 〈α̂I 〉. This can be intuitively understood as the field profile being described by

the regions which suffered less absorption during propagation.

Operators x̂I and p̂I

The operator evolution equation, (6.47), is applicable to any operator, and ultimately these

can be decomposed in terms of x̂I and p̂I /k. Therefore, the position and momentum oper-

ators are very important, and some of their properties are discussed in this subsection. By

direct substitution, and using Eqs. (C.42) and (C.43),

d

d z
x̂I =∇p̂I ĤI − (α̂I −〈α̂I 〉) x̂I , (6.53)

d

d z

p̂I

k
=−1

k
∇x̂I ĤI − (α̂I −〈α̂I 〉) p̂I

k
, (6.54)

Equations (6.53) and (6.54) resemble Hamilton’s canonical equations of motion for a

point particle, but in terms of operators. Inside absorptive media, the propagation of x̂I and

p̂I /k has the same interpretation as in Eq. 6.52, where the propagation reduces the influence

of operators from regions with a strong absorption. Notice also that the reasoning that led to

HP Ehrenfest’s theorem in sec. 6.3.2 can also be applied for x̂I and p̂I /k, and it should be pos-

sible in some cases to observe a ray-like behavior of these operators. This is very important

from a practical viewpoint, since there are many tools to describe and design the geometri-

cal propagation of light rays. An important example are the ABCD matrices, which allow the

description of various optical systems. Thus, developing a generalization of the concepts be-

hind the ABCD matrix in terms of the IP description is important, and is performed in what

follows.

The operator x̂I behaves as the ray position along the transverse axis, while p̂I /k is as-

sociated to the beam angle with respect to the propagation axis z. Therefore, both from the

classical reasoning associated with these operators and from the mathematical structure of

Eqs. (6.53) and (6.54), it is natural to reorganize the evolution of x̂I and p̂I /k as

η̂I =
(

x̂I

p̂I /k

)
, (6.55)

d

d z
η̂I =−i

[
η̂I , ĤI

]− (α̂I −〈α̂I 〉) η̂I . (6.56)



Chapter 6. Transverse effects in linear and nonlinear light propagation 112

In the general case, the commutator
[
η̂I , ĤI

]
cannot be simply decomposed in terms of

η̂I . However, there are many important cases in which
[
η̂I , ĤI

] =Mη̂I , where M is a matrix

with constant coefficients. For example, if the largest power of both x̂I and p̂I /k in ĤI is not

superior to two, it is easy to verify that the gradient terms in Eqs. (6.53) and (6.54) will result

in terms at most linear in the components of η̂I . Under such kind of systems, the calculation

of η̂I (z) involves a linear first order differential equation, that can be simplified in terms of

the ABCD matrices as will be exemplified below in sec. 6.4. For general ĤI , however, it is

necessary to solve Eq. (6.56) directly.

A full paraxial optical system is usually composed of elements with a finite thickness,

traversed sequentially by light along the z direction. Therefore, if the solution to Eq. (6.56) is

splitted to describe each optical element separately, it becomes simpler to describe complex

optical systems. Assuming that the i -th optical element along the optical path is between

z = ai and z = ai+1, the solution to Eq. (6.56) for ai < z < ai+1 can be stated as η̂I ,i (z) =
T̂i (z) η̂I (ai ), where T̂i (z) represents the solution to the initial condition η̂I (ai ). If the initial

condition for the beam is given at a0, the full solution can be stated as

η̂I ,i (z) = T̂i (z)T̂i−1 (ai ) . . .T̂1 (a1) η̂I (a0) . (6.57)

Since usual free-space optical systems contains many elements that are adequately de-

scribed by ABCD matrices, as lenses and propagation in an homogeneous material, Eq. (6.57)

can be used to simplify at least some products of T̂i . The exception occurs when ĤI contains

x̂I and p̂I /k with exponents higher than 2 for a given optical element2, because the operators

propagate nonlinearly at that region. However, the expansion in (6.57) can be valid before

and after such optical element, what simplifies most of the light propagation problem.

6.4 Applications for the IP formalism

In this section, it will be shown how to apply the concepts developed above in various ap-

plications. There is an initial consideration of free-propagation and simple optical elements,

as wedges and lenses. For simplicity only stigmatic optical elements are considered in this

work, and they are described by 2x2 matrices. In order to describe astigmatic elements, it

is simple to extend the following results by considering separately each transverse spatial

direction in x̂I and p̂I /k. η̂I can be extended to a 4-vector and the matrices to dimension

4x4. As a composite system, it is developed the analysis of spatial filter, which is useful for

holographic techniques. Later, there are some applications to nonlinear optics.

2 As an example, these effects can arise due to spherical aberration and spatial dispersion for x̂I and p̂I /k,
respectively.



Chapter 6. Transverse effects in linear and nonlinear light propagation 113

6.4.1 Light propagation in homogeneous materials, Siegman’s formu-

las and Fresnel propagator

The simpler and most basic application to be considered is the light propagation inside an

homogeneous material, where ĤI = L̂ I . In this case it is noticed that −i
[
η̂I , ĤI

] =Mfreeη̂I ,

where

Mfree =
(

0 1

0 0

)
. (6.58)

Equation (6.56) in terms of Mfree becomes

d

d z
η̂I =Mfreeη̂I . (6.59)

The solution to (6.59) can be obtained by solving explicitly the set of differential equa-

tions, but here it is chosen a full matrix method. Given Eq. (6.59) and considering that the

initial conditions are given at z = a, it is reasonable to guess the ansatz

η̂I (z) = exp

(ˆ z

a
d z ′Mfree

)
η̂I (a) . (6.60)

Since
´ z

a d z ′Mfree = (z −a)Mfree and (Mfree)2 = 0, the series expansion of the exponential

in (6.60) becomes I+ (z −a)Mfree, where I is the identity matrix. Then, it is easy to verify that

both the initial condition is satisfied, η̂I (z = a) = η̂I (a), and also that Eq. (6.59) is satisfied

by expanding the exponential in powers of
´ z

a d z ′Mfree. Thus, (6.60) is the solution to (6.59),

which can be re-expressed as

η̂I (z) =Tfreeη̂I (a) , (6.61)

Tfree =
(

1 z −a

0 1

)
. (6.62)

Tfree is precisely the ABCD matrix associated with the propagation of a light ray from a

to z inside an homogeneous material. However, it should be remarked that the current de-

scription is fully within the paraxial wave optics domain. As an interesting implication, it is

noticed that the important formulas obtained by Siegman to characterize beam propagation

[42, 43] arise naturally in IP. In these works, Siegman showed an approach for the definition

of effective beam width, curvature radius and divergence angle for arbitrary wavefronts, be-

sides of the introduction of the beam propagation factor M 2 (or “beam quality” factor3).

From (6.61), it might be verified that

x̂I (z) = x̂I (a)+ (z −a) p̂I (a)/k. (6.63)

p̂I (z)/k = p̂I (a)/k. (6.64)

3 The M 2 factor is obtained from beam propagation considerations, but its usage as an indicator of beam
quality is controversial for various profiles, as a top-hat beams [160]. Following the discussion in [160], M 2

is herein referred as a propagation factor.
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If the beam is centered on the z axis, 〈x̂I (a)〉 = 0. Also, for simplicity, it is assumed that〈
p̂I (a)

〉= 0, or the beam centroid 〈x̂I (z)〉 = 0 propagates parallel to the z axis. Since the beam

width squared can be defined in terms of the irradiance transverse variance in position space

[42], one can also express in our operator language as Ŵ 2 (z) = 2x̂2
I (z), where

x̂2
I (z) = x̂2

I (a)− (z −a) Â (a)+ (z −a)2 p̂2
I (a)/k2, (6.65)

Â (a) =−1

k

[
x̂I (a) · p̂I (a)+ p̂I (a) · x̂I (a)

]
. (6.66)

Averaged over an arbitrary initial field,〈
Ŵ 2 (z)

〉= 〈
2x̂2

I (a)
〉−2(z −a)

〈
Â (a)

〉+ (z −a)2 〈
2p̂2

I (a)
〉

/k2, (6.67)

and some interesting remarks can be already performed. The average
〈

2p̂2
I (a)

〉
is the beam

width in the spacial frequency domain, and as such is a positive quantity, implying that (6.67)

grows approximately as z2 for |z| À a. This implies that, as previously shown by Siegman

[42, 43], for any arbitrary beam it is possible to define a plane z = zmin such that the beam

waist is a minimum. Also, it is possible to show that
〈

Â (zmin)
〉 = 0, what indicates that Â (z)

is related to an effective radius of curvature [43].

The averages in (6.67) are very simple to evaluate explicitly for a Gaussian beam. This case

is also interesting because there are well known analytic solutions. At z = a, the operators are

equivalent in the three pictures discussed in sec. 6.3. Thus, it can be stated that〈
r |ψ, a; a

〉= N exp
[
i kr 2/2q (a)

]
, (6.68)

where q (z) = z−i z0 is the complex curvature of the beam, z0 = kw 2
0/2 is the Rayleigh length,

w0 is the beam waist, and N is a normalization factor. After some manipulations of the

Gaussian integrals, its possible to obtain that
〈

2x̂2
I (a)

〉= w 2 (a),
〈

Â (a)
〉=−w 2 (a)/R (a) and〈

2p̂2
I (a)/k2

〉= 4/k2w 2
0 = θ2

0, where w (z) = w0

√
1+ z2/z2

0 is the beam width, R (z) = z
(
1+ z2

0/z2
)

is the curvature radius and θ0 = 2/kw0 is the Gaussian beam divergence angle. The substi-

tution of these averages in (6.67) shows that the IP description indeed returns correctly the

known result for a Gaussian beam,
〈

Ŵ 2 (z)
〉= w 2 (z).

While the solution (6.61) is very useful to evaluate mean values over a given initial beam

profile, as shown by Siegman’s formulas, in many times it is important to evaluate the electric

field profile at a plane z 6= a. Thus, considering (6.37) and (6.39),

S
〈

r |ψ, z; a
〉

S =
ˆ

d 2r ′
S〈r |G (0)

z−a

∣∣r ′〉
S S

〈
r ′|ψ, z; a

〉
I . (6.69)

Since V̂I = 0 for a beam propagating in an homogeneous medium, (6.48) implies that
∣∣ψ, z; a

〉
I =∣∣ψ, a; a

〉
I =

∣∣ψ, a; a
〉

S . Therefore, the only part that needs to be calculated is the matrix ele-

ment S〈r |G (0)
z−a

∣∣r ′〉
S . Using that

´
d p

∣∣p 〉〈p
∣∣= 1̂ and (C.48),

S〈r |G (0)
z−a

∣∣r ′〉
S = n0

iλ (z −a)
e

i k(r−r ′)2

2(z−a) −α0
2 (z−a). (6.70)
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It can be seen that (6.70) is, apart from the absorptive term, the well known Fresnel prop-

agator. This implies that beam field at a plane z > a is given by the well known Fresnel diffrac-

tion integral,

S
〈

r |ψ, z; a
〉

S = n0e−α0
2 (z−a)

iλ (z −a)

ˆ
d 2r ′e

i k(r−r ′)2

2(z−a) S
〈

r ′|ψ, a; a
〉

S . (6.71)

The Fresnel propagator can also be obtained directly from (6.63). Notice that the eigen-

fields of the operator p̂I (z)/k, Eq. (6.64), are simply tilted plane waves. It should be then

interesting to investigate the eigenfields of x̂I (z). Defining ψ such that

x̂I (z)
∣∣ψ, z; a

〉= u
∣∣ψ, z; a

〉
. (6.72)

For simplicity, the calculations will initially be performed in one transverse dimension.

Representing the operators in the plane z = a.
ˆ

d x |x 〉〈x| x̂I (z)
∣∣ψ, z

〉= u

ˆ
d x |x 〉〈x| ∣∣ψ, z

〉
, (6.73)[

x + i
(z −a)

k

d

d x

]
ψ (x) = uψ (x) , (6.74)

ψ (x) = 1

N
e

i k(x−u)2

2(z−a) , (6.75)

where ψ (x) = 〈
x|ψ, z

〉
and N is a normalization constant.

The generalization to two transverse dimensions is simply

ψu (r ) = 1

N
e

i k(r−u)2

2(z−a) . (6.76)

It remains necessary to find the normalization constant, which can be found through the

orthonormality condition
ˆ

d 2rψ∗
u′ (r)ψu (r) = δ

(
u−u′) , (6.77)

from where it is obtained

|N | =
∣∣∣∣λ (z −a)

i n0

∣∣∣∣ . (6.78)

Thus, the solution

ψu (r ) = i n0

λ (z −a)
e

i k(r−u)2

2(z−a) (6.79)

is a normalized eigenfield of the position operator in IP. The eigenfield analysis as sketched

above is also useful to obtain properties of propagating modes, as Laguerre- and Hermite-

Gauss modes [152] and modes of a cavity with parabolic mirrors [161], because they are

eigenfields of operators similar to x̂I (z).
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Dielectric slab

A slab is the simplest possible optical element. In a notation consistent with that of sec. 6.4.2,

the slab can be described by s1 (r, z) = aε3 and s2 (r, z) = bε3, such that the refractive index

profile along the propagation direction can be written as

nslab (z) = n0 + (n1 −n0)Θ (z −a)Θ (b − z) , (6.80)

for a system composed of slab whose thickness is b−a and has a refractive index n1, embed-

ded in a medium whose refractive index is n0.

As can be seen by applying (6.80) to (6.56), it is easy to verify that −i
[
η̂I , ĤI

] =Mfreeη̂I .

Therefore, the light propagation inside the slab is equivalent to that in free-space. By the

other hand, recalling the definition of k, Eq. (6.2), it can be seen that k (z) = k0n′
slab (z) has dis-

continuities at z = a and z = b that modify p̂I . For example, at z = a one has that d
d z

(
p̂I /k

)= 0

implies in Snell’s law, p̂I
(
a+)

/k
(
a+) = p̂I (a−)/k (a−). Since p̂I (a−)/k (a−) must be multi-

plied by n0/n1 to obtain p̂I
(
a+)

/k
(
a+)

, this dielectric interface is summarized by

Tinterface,z=a =
(

1 0

0 n0/n1

)
. (6.81)

The propagation inside the slab is described by (6.62), while the interface at z = b can be

represented as (6.81) with n0 and n1 interchanged. Multiplying the associated matrices, it is

obtained that the input-output T matrix for a dielectric slab is

Tslab =
(

1 (b −a)n0/n1

0 1

)
. (6.82)

Thus, light propagates in the slab as in free-space, Eq. (6.62), but travels a different optical

path, (b −a)n0/n1.

6.4.2 Thin optical elements

In subsec. 6.4.1 some important results of light propagation in homogeneous materials were

obtained. In terms of increasing the system complexity, the next step consists in obtaining

the effect of optical elements with a transverse profile modulation over the beam propa-

gation. When possible, both the associated ABCD matrix and the associated transmittance

operator will be obtained.

It is assumed that the element is contained between a ≤ z ≤ b and reflection effects are

neglected for simplicity. Another important point is that it is approximated for thin elements

that they do not change the transverse position operator, d
d z (x̂I ) = 0. For simplicity, it is con-

sidered that a volume V has two arbitrarily shaped surfaces, described by the vectors s1 (r, z)

and s2 (r, z). It is defined that s1 represents the first surface and s2 the last surface at every

x, y , or ε3 · s1 (r, z) < ε3 · s2 (r, z). Therefore, in terms of the unit step function Θ, given a fixed
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transverse position x, y , a point r is inside V if Θ (z −ε3 · [s1 (r, z)])Θ (ε3 · [s2 (r, z)]− z) = 1. If

the refractive index at V is n1, while outside it is n0, it becomes easy to verify that over the

whole region a ≤ z ≤ b,

n (r, z) = n0 + (n1 −n0)Θ (z −ε3 · [s1 (r, z)])Θ (ε3 · [s2 (r, z)]− z) . (6.83)

For this refractive index, k = k0n0, while n′ (r, z) = (n1 −n0)Θ (z −ε3 · [s1 (r, z)])Θ (ε3 · [s2 (r, z)]− z) .

The above ideas can be extended to geometries containing holes, or even multiple materials,

by taking into account the extra surfaces, while the relation for the absorption is analogous.

Given the profiles for n′ and α′, the total effect of the optical element over the beam can

be considered from the evolution equation for p̂I /k. Since d
d z (x̂I ) = 0, the integral in z and

∇x̂I can be interchanged, what allows us to write p̂I (b)/k = p̂I (a)/k−k−1∇x̂I (a)
´ b

a d z ′V̂I
[
x̂I (a) , z ′].

In many cases, another expression can give more insight in the behavior of an element. Con-

sidering that according to (C.43), −∇x̂I f (x̂I ) = [
p̂I ,−i f (x̂I )

]
, and using the Baker-Hausdorff

lemma, Eq. (C.39), it is possible to state that for thin elements,

p̂I (b)

k
= T̂ −1

b,a

p̂I (a)

k
T̂b,a , (6.84)

x̂I (b) = x̂I (a) , (6.85)

T̂b,a = exp

(
−i

ˆ b

a
d z ′V̂I

[
x̂I (a) , z ′]) , (6.86)

since
[
Ĝ ,

[
Ĝ , p̂I (a)

]]= 0 for Ĝ = ´ b
a d z ′V̂I

[
x̂I (a) , z ′].

According to (6.84), the optical element modifies p̂I (a)/k according to a similarity trans-

formation defined by its transmittance T̂b,a [ Eqs. (6.84) and (6.86)]. This is the operator ver-

sion of the widely used expression where the effects of thin optical refractive elements are

considered through the associated phase transformations only [60, 66].

Dielectric wedge

We consider that the wedge starts at z = a and has a refractive index n1, and that its sur-

faces are described by the vectors s1 (r, z) = aε3 and s2 (r, z) = aε3 + x (sinαε3 +cosαε1) ≈
aε3 + x (αε3 +ε1). The angle α has to be small to maintain the paraxial approximation [60].

Immediately after the wedge, it is assumed that the refractive index is n0. Using Eq. (6.83) for

z > a, the refractive index at the vicinity of the wedge is described by

nwedge (r, z) = n0 + (n1 −n0)Θ [αx − (z −a)] . (6.87)

In this case it can be seen that

T̂wedge = e i k0(n1−n0)αx̂1,I , (6.88)

implying that
p̂I (b)

k
= p̂I (a)

k
+ n1 −n0

n0
αε1, (6.89)
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or the beam propagation angle with respect to the z axis changes by a factor of n1−n0
n0

α along

the direction ε1. A more explicit way to verify this is by calculating the evolution of the posi-

tion operator after the wedge. It is easy to verify that if before the wedge the beam is centered

on the axis, such that 〈ε1 · x̂I (z < a)〉 = 0, after the wedge the centroid position increases lin-

early as 〈ε1 · x̂I (z > b)〉 = (z −b) n1−n0
n0

α.

Diffraction grating

Another important thin element is the diffraction grating, which consists essentially of a pe-

riodic modulation of optical path along a specified direction. Consider that ŝ1 (r, z) = aε3,

while ŝ2 (r, z) = {d + A [1+cos(Λx)]}ε3. d is the mean position of the refractive index modu-

lation, while A is the modulation amplitude and Λ is the period along the ε1 direction. From

the condition that ε3 · ŝ1 (r, z) < ε3 · ŝ2 (r, z), it is required that a < d − A. Thus, the refractive

index profile becomes

ngrating (r, z) = n0 + (n1 −n0)Θ {d + A [1+cos(Λx)]− z} , (6.90)

and thus, T̂grating = exp
[
i k0 (n1 −n0) A cos

(
Λx̂1,I

)]
. Using the identity [111] exp

(
i z cosφ

) =∑∞
j=−∞ i j J j (z)e i jφ, where J j (z) is the Bessel function, it is possible to express

T̂grating =
∞∑

j=−∞
i j J j [k0 (n1 −n0) A]e i jΛx̂1,I . (6.91)

A comparison between (6.91) and (6.88) indicates that each term j in the sum will pro-

duce a new beam propagating at an angle jΛ/k relative to the original beam axis. The isola-

tion of the diffraction order j = j ′ gives

p̂I (b)

k
= p̂I (a)

k
+ j ′Λ

k
ε1, (6.92)

if the field overall amplitude modulation factor, J j ′ [k0 (n1 −n0) A], and phase modulation

factor, i j ′ , are factored.

Spherical dielectric interface and thin lens

Both usual lenses and spherical mirrors have spherical surfaces. Therefore, since the shape

of the surface will be the most important factor in determining the complex transmittance,

the general concepts of both cases can be considered together using spherical dielectric in-

terfaces (SDI). Without loss of generality, it is considered that the SDI is represented by a

sphere of radius R and refractive index n1 placed at the origin of the coordinate system,

which is cut at the plane z = a. The resulting spherical cap has surfaces described by the vec-

tors ŝ1 (r, z) = aε3 and ŝ2 (r, z) = R
(
xε1 + yε2 + zε3

)
/
√

x2 + y2 + z2. Outside the sphere, there

is a material whose refractive index is n0. For simplicity it is assumed that a < R < b. The

refractive index encompassing the region 0 < a ≤ z ≤ b can then be described by

nSDI (r, z) = n0 + (n1 −n0)Θ
[√

R2 − r2 − z
]

, (6.93)
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and

T̂SDI = exp
[

i k0 (n1 −n0)
√

R2 − x̂2
I (a)

]
. (6.94)

For simplicity, it can be considered that the beam pass through the SDI only near the axis.

This allows the use of the parabolic approximation,
√

R2 − x̂2
I (a) ≈ R − x̂2

I (a)/2R. Neglecting

the transversely constant term, we obtain

T̂SDI ≈ exp

[
−i

k0 (n1 −n0)

2R
x̂2

I (a)

]
. (6.95)

Given (6.95), it can be obtained

p̂I (b)

k
= p̂I (a)

k
− n1 −n0

Rn0
x̂I (a) . (6.96)

Since p̂I (b) is linear in both p̂I (a) and x̂I (a), the SDI can be represented through the

ABCD matrix

TSDI =
(

1 0

−n1−n0
Rn0

1

)
. (6.97)

Remind that TSDI can also be written in terms of the focal distance f = Rn0/(n1 −n0).

Also, if the medium at z ≥ b has a refractive index n1, the matrix TinterfaceTSDI must be used.

As an application of TSDI, it will be considered the focusing of a collimated, generic, light

beam by a lens at z = 0. Before the lens, the collimation implies that the beam effective cur-

vature is infinite, or
〈

Â (0)
〉 = 0 [43]. If the initial beam waist and divergence are denoted by

w 2
0 = 〈

2x̂2
I (0)

〉
and θ2

0 =
〈

2p̂2
I (0)/k2

〉
, respectively, then〈

Ŵ 2 (z < 0)
〉= w 2

0 +θ2
0 z2. (6.98)

The position operator at a distance z after the lens is given by
(

1 0
)
·TfreeTSDIη̂I (0), or

x̂I (z) =
(
1− z

f

)
x̂I (0)+zp̂I (0)/k. Thus, if the beam waist is calculated as previously performed

for the Siegman formulas, the result is〈
Ŵ 2 (z > 0)

〉= (
1− z

f

)2

w 2
0 +θ2

0 z2. (6.99)

Now, the beam waist has a minimum at

zmin = f

1+
(
θ0 f
w0

)2 , (6.100)

where the beam waist is √〈
Ŵ 2 (zmin)

〉= θ0 f√
1+

(
θ0 f
w0

)2
. (6.101)

Notice that the formalism here developed allowed us to obtain the wave optics focusing

properties of a generic light beam passing through a parabolic lens. Eq. (6.100) has the wave

optics correction to the minimum beam waist position predicted by geometrical optics. Also,

according to (6.101), the transverse extent of the light beam never becomes zero for a real

beam, since θ0 > 0 for a finite-sized beam. The geometrical optics results can be retrieved in

the limit θ0 → 0, when the light beam is an infinitely extended plane wave.
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Quadratic index media

If the refractive index has a quadratic transverse profile, it is known that there is an exact

ABCD matrix solution [51, 60]. It is thus assumed that

nQIM (r, z) = n0

(
1− g 2

2
r2

)
. (6.102)

Considering that n′ = −n0g 2r2, it is possible to follow the same argument used to solve

the free-space propagation problem in subsec. 6.4.1. Notice that d
d z η̂I =MQIMη̂I , where

MQIM =
(

0 1

−g 2 0

)
, (6.103)

and then the formal solution becomes

η̂I (z) = exp

(ˆ z

a
d z ′MQIM

)
η̂I (a) . (6.104)

Then, η̂I (z) can be obtained by exponentiation of the matrix
´ z

a d z ′MQIM = (z −a)MQIM.

How to calculate the exponential of a matrix can be found in various references, as for exam-

ple in [40]. Here just a short comment is performed below.

Consider a diagonalizable 2x2 matrix A, whose eigenvalues are λ1,λ2, and the matrix P

that diagonalizes A such that

P−1AP=
(
λ1 0

0 λ2

)
, (6.105)

and P−1P= I. Since expA=∑∞
n=0 (n!)−1An , by performing a procedure similar that which led

to Eq. (C.40) it can be obtained that

expA=P

(
eλ1 0

0 eλ2

)
P−1, (6.106)

which is simply a product of three 2x2 matrices for systems with azimuthal symmetry. The

difficulty lies in finding the eigenvalues and P.

Then, (z −a)MQIM can be obtained after several mathematical steps, resulting in η̂I (z) =
TQIMη̂I (a), where the associated ray matrix is

TQIM =
(

cos g (z −a) 1
g sin g (z −a)

−g sin g (z −a) cos g (z −a)

)
. (6.107)

An interesting aspect of quadratic index media is that the profile of Gaussian beams re-

main stable under propagation [51, 60]. Also, they can be used as a first approximation to

the nonlinear response of optical media, as performed in Eq. (2.100). While our discussion

contains only refractive effects, it is also possible to include loss or gain both in SP [162] and

in an operator formalism [151, 163].
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6.4.3 Light propagation inside an isotropic nonlinear medium

As a final example of the application of IP in calculation of wave optics problems, it will be

considered in this subsection the propagation of light inside an isotropic nonlinear (NL) op-

tical medium. This problem contains two important ingredients that are present in many

optical systems, which are the NL response and geometrical aberrations. For example, the

third-order Kerr nonlinearity is a very important process because, due to its symmetry, it

is present is all ordinary materials [37]. From a technological point of view such NL pro-

cesses are also interesting, because they are used in saturable absorbers for achieving passive

mode-locking in ultrafast lasers [51, 60].

It is considered that the nonlinear terms can be described as

V̂I =−k0n′ [I (x̂I , z)]− i
α′ [I (x̂I , z)]

2
, (6.108)

where I (x̂I , z) is the field irradiance profile at the plane z, and n′ and α′ are the NL refractive

index and absorption, respectively.

A very important quantity in these experiments is the beam power, that might change

due to α′. Since the power P (z) is proportional to S
〈
ψ, z; a|ψ, z; a

〉
S , it is possible to use the

bra and ket definitions in the IP, Eqs. (6.37) and (6.38), and the general solution to the field in

IP, Eq. (6.48), to represent

P (z) = ce−α0(z−a)
I

〈
ψ, a|T̂ †

z,aT̂z,a |ψ, a
〉

I , (6.109)

where c is an overall constant. Denoting P0 = c S
〈
ψ, a|ψ, a

〉
S as the initial beam power, c =

P0/ S
〈
ψ, a|ψ, a

〉
S , and

P (z)

Plin (z)
=

〈
ψ, a|B̂z,a |ψ, a

〉〈
ψ, a|ψ, a

〉 , (6.110)

B̂z,a = T̂ †
z,aT̂z,a , (6.111)

where Plin (z) = P0e−α0(z−a), and for simplicity the initial state is represented as
∣∣ψ, a; a

〉
S =∣∣ψ, a; a

〉
I =

∣∣ψ, a
〉

. In the thin sample limit, T̂z,a can be represented by (6.86) and the power

can be expressed more intuitively in terms of the NL absorption as

P (z)

Plin (z)
=

〈
ψ, a|e−´ z

a d z ′α′[I(x̂I ,z ′)]|ψ, a
〉

〈
ψ, a|ψ, a

〉 . (6.112)

It is thus very intuitive to understand that the optical power varies only due to the ab-

sorption terms. There is an effective absorbance profile defined by
´ z

a d z ′α′ [I
(
x̂I , z ′)] that

removes energy from the beam. The average of this NL absorbance over the initial beam

profile indicates the total power loss. It should be stressed that Eq. (6.110) is an exact result,

while (6.112) is valid in the thin sample limit.
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While NL absorption effects can be easily detected by measurements of the beam power

transmitted by a NL sample, accounting for NL refraction in general is slightly more diffi-

cult. A prototypical quantity that depends on the refractive terms is the divergence angle,

θ2
N L (z) =

〈
2p̂2

I (z)

k2

〉
. For example, a NL sample changes the beam divergence in the Z-scan

technique [158], which modulates the light transmitted by a small aperture in the far field.

Obtaining an evaluable expression for the operator p̂2
I (z) is difficult in general. However, for

thin samples it is possible to use both (6.84) and (6.112) to simplify calculations.

Notice that until now the beam was considered to have azimuthal symmetry, such that

each direction of x̂I propagated similarly. Inside NL refractive media this is usually not true

for astigmatic beams, because along each direction the beam will focus at a distinct z plane,

and NL refraction is very sensitive to the irradiance profile. Therefore, squared operators

as the beam width will be evaluated through tensorial products over the transverse com-

ponents. Instead of computing
〈

x̂2
I (z)

〉
, it is preferred to use terms as

〈
x̂m,I (z) x̂n,I (z)

〉
. Be-

sides the tensorial generalization, another aspect becomes relevant for the following dis-

cussion. Since the operator ĤI is complex, an arbitrary real-valued operator ÔI will usu-

ally become complex after propagation. For example, the imaginary part of the beam width〈
x̂m,I (z) x̂n,I (z)

〉
does not have any specific meaning. Therefore, it is enforced that only the

real part of such averages is considered.

Consider the beam Transverse Irradiance Moments (TIM), defined as [164]

µν,σ (z) = 〈[
x̂1,I (z)−〈

x̂1,I (z)
〉]ν [

x̂2,I (z)−〈
x̂2,I (z)

〉]σ〉
, (6.113)

such that ν and σ are integers. The experimental determination of TIM requires that the field

transverse profile is imaged on a camera, for example, which is a relatively straightforward

procedure. Knowing the physical dimensions of the camera sensor, µν,σ (z) can be obtained.

The TIM propagation is simple in linear optics, and several properties have already been

established [42,43,160,165]. Thus, we are interested in understanding how a thin NL sample

modifies the TIM propagation.

For simplicity we assume that the beam centroid satisfies
〈

x̂m,I (z)
〉= 0 for m = 1,2 at all

z, and only the second order TIM will be considered

mm,n (z) = 〈
x̂m,I (z) x̂n,I (z)

〉
, (6.114)

where ν+σ = 2 in Eq. (6.113). If a thin NL optical sample is introduced at the beam line at

the plane z = a it is possible to use the IP results to evaluate the change in TIM due to the NL

response at a detector positioned at z = d .

Even though Eqs. (6.113) and (6.114) are being discussed in a classical context, they have

similarities with the problem of entangled continuous variables in quantum information

and we now open a small parenthesis on this subject. Since x̂m,I (z) contains both canon-

ical conjugate operators x̂m,I (a) and p̂m,I (a)/k, the averages in (6.113) and (6.114) con-

tain terms as
〈

x̂m,I (a) x̂n,I (a)
〉

,
〈

x̂m,I (a) p̂n,I (a)
〉

,
〈

p̂n,I (a) x̂m,I (a)
〉

and
〈

p̂m,I (a) p̂n,I (a)
〉

.
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Each of the previous averages can be measured to determine
〈
∆û2

〉
and

〈
∆p̂2

〉
, where û =

x̂1,I (a)+ x̂2,I (a) and v̂ = p̂1,I (a)− p̂2,I (a). û and v̂ are a pair of Einstein-Podolsky-Rosen type

operators [166], and can be used to quantify the inseparability of bipartite continuous vari-

able states through the Duan-Simon criteria [166, 167]. This is an important remark because

inseparable (entangled) states can be used to increase the sensitivity of experimental mea-

surements [168–170]. Therefore, even though we are not taking advantage of this relation, it

may be possible to increase the sensitivity of the classical measurements specified below by

developing analogies with quantum metrology.

Using (6.63) we obtain that after a thin NL sample whose thickness is b −a,

x̂m,I (z) = x̂m,I (a)+ (z −b)
p̂m,I (a)

k
. (6.115)

Then, the second order TIM becomes

m(N L)
m,n (z) = 〈

x̂m,I (a) x̂n,I (a)
〉− (z −b)

〈
Â+

m,n (a)
〉+ (z −b)2

〈
p̂m,I (a)

k

p̂n,I (a)

k

〉
, (6.116)

Â±
m,n (a) =− x̂m,I (a) p̂n,I (a)± p̂m,I (a) x̂n,I (a)

k
, (6.117)

where the superscript N L indicates that the TIM has NL contributions in general. Notice

that the NL contributions to Eq. (6.116) are implicit, because in IP the field evolves with V̂I ,

Eq. (6.108), through Eq. (6.48). To make the implicit dependence more clear, it is useful to

express the averages in terms of the field before the sample,
∣∣ψa

〉
, as

m(N L)
m,n (d) =

〈
ψa

∣∣∣x̂m x̂ne−Â(N L)
∣∣∣ψa

〉
〈
ψa

∣∣∣e−Â(N L)
∣∣∣ψa

〉 − (d −b)

〈
ψa

∣∣∣∣e− Â(N L)

2 −i Φ̂(N L)
Â+

m,ne− Â(N L)

2 +i Φ̂(N L)
∣∣∣∣ψa

〉
〈
ψa

∣∣∣e−Â(N L)
∣∣∣ψa

〉 +

(d −b)2

〈
ψa

∣∣∣∣e− Â(N L)

2 −i Φ̂(N L) p̂m
k

p̂n
k e− Â(N L)

2 +i Φ̂(N L)
∣∣∣∣ψa

〉
〈
ψa

∣∣∣e−Â(N L)
∣∣∣ψa

〉 ,

(6.118)

Â(N L) =
ˆ b

a
d z ′α′ [I

(
x̂, z ′)] , (6.119)

Φ̂(N L) = k0

ˆ b

a
d z ′n′ [I

(
x̂, z ′)] , (6.120)

and all transverse operators are evaluated at z = a and the TIM are considered at the detector

plane, z = d . The nonlinearly modified second order TIM, Eq. (6.118), can be expressed as

a ratio to the corresponding linear values, m(l i n)
m,n (d), where Â(N L) = Φ̂(N L) = 0̂, and also Eq.

(6.112). After an exercise of operator algebra,
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m(N L)
m,n (d)

m(l i n)
m,n (d)

=Plin (b)

P (b)

1+
〈
ψa

∣∣P̂ x̂m x̂n
∣∣ψa

〉
m(l i n)

m,n (d)
〈
ψa |ψa

〉 − (d −b)

m(l i n)
m,n (d)

〈
ψa

∣∣∣∆̂A
+
m,n

∣∣∣ψa

〉
〈
ψa |ψa

〉

+ (d −b)2

m(l i n)
m,n (d)

〈
ψa

∣∣∣∣ ˆ∆p2
m,n

k2

∣∣∣∣ψa

〉
〈
ψa |ψa

〉
 ,

(6.121)

∆̂A
+
m,n = i

k

[
x̂m

∂

∂x̂n

(
− Â(N L)

2
+ i Φ̂(N L)

)
+ x̂n

∂

∂x̂m

(
Â(N L)

2
+ i Φ̂(N L)

)]
e−Â(N L) − P̂ x̂m p̂m + p̂m x̂mP̂

k
,

(6.122)

ˆ∆p2
m,n

k2
= p̂m

k
P̂

p̂n

k
+(

− i

k

)2 (
−1

4

∂Â(N L)

∂x̂m

∂Â(N L)

∂x̂n
+ i

2

∂Â(N L)

∂x̂m

∂Φ̂(N L)

∂x̂n
− i

2

∂Â(N L)

∂x̂n

∂Φ̂(N L)

∂x̂m
− ∂Φ̂(N L)

∂x̂m

∂Φ̂(N L)

∂x̂n

)
e−Â(N L)+

e−Â(N L)
( −i

2kx̂m

∂Â(N L)

∂x̂m
+ 1

kx̂m

∂Φ̂(N L)

∂x̂m

)
x̂m p̂n

k
+ p̂m x̂n

k

(
i

2kx̂n

∂Â(N L)

∂x̂n
+ 1

kx̂n

∂Φ̂(N L)

∂x̂n

)
e−Â(N L)

,

(6.123)

P̂ = e−Â(N L) −1, (6.124)

where the operators ∆̂A
+
m,n and ˆ∆p2

m,n represent the NL-induced variation of the beam’s

effective curvature and divergence angle. The operator P̂ is an absorptive correction to the

linear field averages, and is such that P̂ = 0̂ if Â(N L) = 0̂.

Equation (6.121) was obtained by considering the full tensorial response of the second

order TIM, and assuming that m(l i n)
m,n (d) 6= 0. However, experiments often use beams whose

profiles do not rotate around the propagation axis, where without loss of generality m(l i n)
m,n (d) =

0 if m 6= n [164] if ε1 and ε2 are the beam principal axes, and only the diagonal terms are rel-

evant in the problem. This simplifies considerably the previous expressions,

∆̂A
+
m,m =−2x̂m

k

∂Φ̂(N L)

∂x̂m
e−Â(N L) − P̂ x̂m p̂m + p̂m x̂mP̂

k
, (6.125)

ˆ∆p2
m,m

k2
= p̂m

k
P̂

p̂m

k
−(

− i

k

)2
[(

1

2

∂Â(N L)

∂x̂m

)2

+
(
∂Φ̂(N L)

∂x̂m

)2]
e−Â(N L)+

e−Â(N L)
( −i

2kx̂m

∂Â(N L)

∂x̂m
+ 1

kx̂m

∂Φ̂(N L)

∂x̂m

)
x̂m p̂m

k
+ p̂m x̂m

k

(
i

2kx̂m

∂Â(N L)

∂x̂m
+ 1

kx̂m

∂Φ̂(N L)

∂x̂m

)
e−Â(N L)

.

(6.126)

In experimental terms, NL effects often occur near the focus, while the TIM are more

easily evaluated for the expanded beam. For sufficiently large d ,

m(l i n)
m,m (d) ≈ (d −b)2

〈
ψa

∣∣∣(p̂m/k
)2

∣∣∣ψa

〉
〈
ψa |ψa

〉 , (6.127)
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and Eq. (6.121) can be approximated as

m(N L)
m,m (F F )

m(l i n)
m,m (F F )

= Plin (b)

P (b)

1+
〈
ψa

∣∣∣ ˆ∆p2
m,m

∣∣∣ψa

〉
〈
ψa

∣∣∣(p̂m
)2

∣∣∣ψa

〉
 , (6.128)

where F F indicates that the detector is in the far field. The result expressed in (6.128) is re-

markable, specially because it does not depend on the detector position. There is a simple

general relation between linear and NL TIM along the beam principal directions in the far-

field of the thin NL sample, for a material that exhibits an arbitrary absorptive and refractive

response. Thus, the far-field beam width encode lots of information about the processes

occurring at nonlinear materials, and m(N L)
m,m (F F ) should be an interesting quantity to en-

code information about NL properties for spectroscopic applications. This is the fundamen-

tal principle behind the D4σ technique [171], and was also verified through experiments in

sec. 6.5. An important comment regarding (6.128) is that the IP formalism as described in

this chapter does not account for the temporal dependence of light, what is very important

in ultrafast phenomena. The modification to be introduced for a slow-detector in the far-

field consists simply in performing the temporal average of the transverse averages, or

ãm(N L)
m,m (F F )ãm(l i n)
m,m (F F )

=
âPlin (d)�P (d)

1+
´

d t
〈
ψa (t )

∣∣∣ ˆ∆p2
m,m (t )

∣∣∣ψa (t )
〉

´
d t

〈
ψa (t )

∣∣∣(p̂m
)2

∣∣∣ψa (t )
〉

 , (6.129)

where the tilde represents the time averaging. Eq. (6.129) is an original result that will be

applied while discussing our measurements using the D4σ method in section 6.5.

Z-scan with a Gaussian beam in third-order Kerr media

The beam profile of most lasers can be well approximated by a Gaussian profile, such that

the irradiance inside the sample follows

I (r, z) = I0

(
w0

w (z)

)2

e
− 2r2

w2(z) , (6.130)

where w (z) = w0

√
1+ z2/z2

R is the beam waist at a position z when the Rayleigh length is zR .

The field at a longitudinal position z can be represented by〈
r |ψ, z

〉= N exp
[
i kr 2/2q (z)

]
, (6.131)

and it is assumed that for the sample nonlinearity is n′ [I (x̂I , z)] = n2I (x̂I , z) for a third-order

Kerr nonlinearity.

One of the most used procedures to characterize NL optical materials is applying the Z-

scan technique [158], in which a thin sample of length l varies its position along the light

beam propagation axis. To retrieve information about the NL refraction modulation, a thin

aperture is positioned at the optical axis at a large distance d from the sample. The refrac-

tive NL modifies the beam divergence, and thus the light transmitted through the aperture.
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However, the on-axis field cannot be obtained directly through the TIM, and it is necessary

to calculate the field propagation from the sample to the aperture. After the thin sample, the

on-axis field amplitude might be represented by
〈

0|ψ,d
〉= ´ d 2r ′ 〈0|Ĝ (0)

d−a

∣∣r ′〉〈
r ′ ∣∣T̂b,a

∣∣ψ, a
〉

.

For a distant aperture, it is possible to verify from (6.70) that 〈0|G (0)
d−a

∣∣r ′〉≈ (iλd)−1, or

〈
0|ψ,d

〉
S ∝
ˆ

d 2r ′ 〈r ′ ∣∣T̂b,a
∣∣ψ, a

〉
. (6.132)

In the current example, T̂b,a = exp
[

i k0
´ b

a d z ′n2I
(
x̂I , z ′)], and it is possible to obtain that

〈
r ′ ∣∣T̂z,a

∣∣ψ, a
〉∝ ∞∑

m=0

[
i∆ΦN L

(
w0

w(z)

)2
]m

m!
e
−

[
2m

w2(z)
− i k

2q(z)

]
r ′2

. (6.133)

The integral in d 2r ′ in (6.132) now becomes simple. The power transmitted through the

small aperture can be normalized by the transmittance when the sample is not present, or

Tz-scan (z) = ∣∣〈0|ψ,d
〉

S

∣∣2 /
∣∣〈0|ψ,d

〉
S

∣∣2
n2=0, where

Tz-scan = 1+
4∆ΦN L

z
z0(

1+ z2

z2
0

)(
9+ z2

z2
0

) . (6.134)

An important aspect of using the IP to obtain Eq. (6.134) is that the propagation problem

did not require the definition of special propagation parameters, as used in [158]. The on-

axis field can be calculated directly using the initial field profile, Eq. (6.131), and the sample

NL response.

D4σ curves with a Gaussian beams in third-order Kerr media

Another application is to determine the theoretical curves associated the NL response of a

sample using the D4σ technique [171]. Similarly to the Z-scan, in the D4σ method one also

has a sample scanning along the optical axis near the light beam focus. However, while the

Z-scan determines the NL refractive response by looking at the light transmitted by a small

aperture, the D4σ determines the beam width using the TIM. It should be remarked that the

general result (6.129) was previously unknown, and to understand the beam width variations

in the D4σ experiment the authors needed a calibration of the signal with computer calcu-

lations. The D4σ technique does have several important benefits regarding Z-scan, as being

immune to the beam pointing instability and being easier to correctly consider the effects

due to non-symmetric Gaussian beams. The theoretical results reported below are part of

our work presented in ref. [6].

It will be considered an elliptical beam described by

〈
r |ψ, z

〉= 1

N

(
w0,1

w1 (z)

w0,2

w2 (z)

)1/2

exp

[
−i

k0

2M 2
1

x2
1

q1
− i

k0

2M 2
2

x2
2

q2
− t 2

τ2
p
+ iφ (z, t )

]
, (6.135)
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where τp represents the pulse duration, 1/qi = 1/Ri (z) − i 2M 2
i /k0w 2

i (z) is the inverse of

the beam complex curvature for a multimode beam [164], and φ (z, t ) includes all phase

terms without transverse dependence. For such beams, the case M 2
i = 1 correspond to a

pure Gaussian mode. When M 2
i > 1, there is a superposition of different Hermite-Gauss

modes, which leads to a beam divergence M 2 times higher than for a single mode Gaus-

sian beam. The effective beam width and curvature are described by wi (z) = w0,i

√
1+ z2

i

and Ri (z) = zR,i zi
(
1+1/z2

i

)
respectively, where zi =

(
z − zc,i

)
/zR,i . Notice that the current

description may include effects of astigmatism through zc,i , that are very important for vari-

ous high power sources as titanium sapphire lasers. In order to have a consistent description

of the beam evolution with the field represented by Eq. (6.135) it is necessary to resize the an-

gles, what can be achieved by scaling the transverse derivatives and momentum operators

in (6.126) and following equations as ∂
∂xi

→ M 2
i

∂
∂xi

. The usual expressions for a single mode

Gaussian field are recovered in the limit M 2
i = 1.

Using (6.129) with (6.135),

m(N L)
1,1 (d)

m(l i n)
1,1 (d)

= 1− Φ(N L)
0 /

p
2(

1+ z̄2
2

)1/2

z̄1(
1+ z̄2

1

)3/2
+ 4

9

(
Φ(N L)

0

)2
/
p

3(
1+ z̄2

2

) 1(
1+ z̄2

1

)2 , (6.136)

where Φ(N L)
0 = k0n2I0l is the on-axis phase-shift for a thin sample of length l , where l ¿

zR,i , and the factors of
p

2 and
p

3 are associated with the temporal averages of the NL re-

sponse for slow detectors. The curve for m(N L)
2,2 (d)/m(l i n)

2,2 (d) is obtained by interchanging

the subindices 1 and 2 in Eq. (6.136). If the beam has a circular profile, it is possible to extract

the NL phase variation by analyzing the peak-to-peak value for Φ(N L)
0 ¿ 1. It is easy to verify

that the peak and valley are located at z̄ =±1/
p

3, and the peak-to-peak value is

∆m = 0.459Φ(N L)
0 , (6.137)

a correspondence equivalent to the one found numerically in [171]. Even for elliptical beams

Eq. (6.137) is useful, as is shown in sec. (6.5).

Characterization of optical nonlinearities through the SLIM technique

The Scattered Light Imaging Method (SLIM) [172] is a technique to evaluate the light beam

width near the focus by using samples that scatter the incident radiation in the direction

of an imaging system [see Fig. 29(b)]. The SLIM is very practical in the determination of

the beam propagation parameter, M 2, and has as an important characteristic the ability to

fully characterize the beam propagation inside the sample using a single laser shot [172].

The single-shot capability is specially important for unstable laser sources which can exhibit

large power fluctuations (as is common in Q-switch lasers) or beam pointing instability, and

is also an useful characteristic for NL optics [5]. Since the interest in this section is in NL

optics applications, it is possible to demonstrate how to use the IP formalism to describe the
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NL behavior of light propagating along a thick scattering material. The theoretical results

depicted below are our contribution to Ref. [5].

Experimentally it is somewhat difficult to precisely determine the beam width along the

sample, because the scattered light intensity can vary strongly between the focal region and

the diffraction region, what may lead to intensity saturation of the beam profile near the

focus due to lack of sufficient dynamic range of the camera sensor. The saturated profile

cannot be trusted for a correct determination of the beam width, since the field profile is

unknown at that region. Therefore, the approach used was to consider the beam width near

the diffraction region, where the NL effects initiate to become less relevant. At this region,

the beam width varies almost linearly [see Fig. 29(d)] along the propagation axis z.

For this problem only the beam irradiance profile will be needed, and the Gaussian beam

profile in Eq. (6.130) is used. At the experimental setup it is considered that a light beam has

its waist positioned at the border of the NL sample. Since the beam widths are proportional

to the square root of the respective TIM, it is possible to consider that the ratio of the beam

width near the focus to the corresponding linear value is√√√√m(N L)
1,1 (z)

m(l i n)
1,1 (z)

≈ 1− z

fe f f
, (6.138)

1

fe f f
=

〈
ψa

∣∣∣2x̂1
k

∂Φ̂(N L)

∂x̂1

∣∣∣ψa

〉
〈
ψa

∣∣(x̂1)2
∣∣ψa

〉 = 4πn2I0

gλM 2
J , (6.139)

J =
ˆ z/zR

0

(
1+u2)−2

du ≈ π

4
. (6.140)

The parameter g is “introduced by hand” at the end of the calculation, and is associated

with a geometrical correction factor. The IP calculates in the current approximations gIP =
8, while a numerical calculation [173] indicates that gNumerical = 6.4 agrees better with the

observed experimental values [5, 173]. The J ≈ π
4 approximation is correct within 2% for z ≥

3zR . As a final remark, it should be noticed that Eq. (6.138) corresponds to Eq. (3) in Ref. [5],

but using the notation of this chapter.

6.5 Experimental results

While most of this chapter discussed theoretical aspects of light propagation and the IP, it

is reported below some experimental results associated with the previous discussion. The

results regarding the D4σ method refer to Ref. [6], while the SLIM technique was reported in

[5].

D4σ curves with Gaussian beams in third-order Kerr media

The TIM of the incident laser (amplified titanium sapphire, central wavelength λ= 800 nm,

pulse duration 85±5 fs) were characterized by scanning the beam profile near the focal re-
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Figure 24 – Propagation of the beam width along the principal axes. The determined exper-
imental parameters are w0,1 = (28.1±0.1) µm, zR,1 = (1.699±0.001) mm, w0,2 =
(30.1±0.1) µm, zR,2 = (2.108±0.001) mm. The distance between the minima is
zC ,1 − zC ,2 = (0.752±0.001) mm. The beam propagation factors are M 2

1 = 1.82±
0.01 and M 2

2 = 1.69±0.01.

Laser C
C

D

z

d

λ
/2

Po
la

r.

R.D.

f
Figure 25 – Experimental setup. The camera is at a fixed distance d À zR,i , for i = 1,2, while

the sample is scanned in the focal region of a lens with focal distance f = 15 cm.
z and d are referred to the beam waist along direction 1. A set of a λ/2 waveplate
and a polarizer is used to adjust the incident power, while a reference detector
(R.D.) connected to an oscilloscope monitors power fluctuations.

gion with an imaging system. For all experimental results reported in this work a standard

8 bits CMOS camera was used, and the second order TIM was calculated from the acquired

images. In Fig. 24 it is shown the beam widths variation along the two transverse principal

directions. Notice that the astigmatism due to the beam ellipticity implies in a non-negligible

separation of the focus along x1 and x2 directions, and also that the M 2
i factors differ signifi-

cantly from 1.

After the beam characterization, the NL modification of the beam width due to samples

of carbon dissulfide (CS2, l = 2.0 mm) and fused quartz (SiO2, l = 3.3 mm) was determined

using the experimental setup described in Fig. 25. Typical TIM curves versus the sample po-

sition are shown in Figs. 26 and 27. It is important to notice in Figs. 26 (a) and 27 (a) that the
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NL response influences differently the width along the principal directions. Since the exper-

imental beam is elliptical, a symmetrized TIM, m(N L)
s ymm (d)/m(l i n) (d) = (

m1,1 +m2,2
)

/2, was

used. To determine the NL phase shift using the peak-to-peak width variation, Eq. (6.136)

was used with our beam parameters to obtain ∆ms ymm = 0.424Φ(N L)
0 . The solid lines rep-

resent the fits to the experimental data using (6.136). It can be observed that the measured

TIM are well adjusted by the model, while the symmetrized versions of the data can be well

represented by the curve associated with a circular beam profile. A remarkable feature is that

with our experimental implementation it is possible to observe small width variations (<1%)

with a relatively small noise, as can be seen in Fig. 26. Notice that the signal-to-noise ratio

may improve even more by using a cooled camera sensor with higher bit depth. Also, even

though the sample widths used are larger than the Rayleigh lengths, the TIM curves were not

significantly distorted with respect to the thin sample approximation.

Figure 26 – Transverse irradiance moments obtained for SiO2 at I0 = 11.6 GW · cm−2. Solid
lines represent the fit by Eq. (6.136).

Figure 28 presents the dependence, as a function of intensity, of the NL phase shift de-

termined, simultaneously, by the fits to the experimental data for the beam width along

the principal axes using Eq. (6.136) and by the symmetrized peak-to-peak waist variation.

According to Fig. 28, ∆ms ymm/0.424 and ΦN L
0 obtained from the fitted curves have a good

agreement. The solid lines represent a linear fit to ΦN L
0 = k0n2I0l , where n2 is the only free

parameter for each dataset. The linear behavior indicates that higher-order NL effects (such

as due to fifth- and seventh-order) are not present in our results. In addition, notice that, sim-

ilarly to the regular Z-scan technique, a simple peak-to-peak width analysis using ∆ms ymm

determines the the sample NL phase. For slightly elliptical beams, Eq. (6.137) provides a rea-

sonable approximation to the peak-to-peak behavior, while the exact value can be obtained

after the characterization of the beam width under propagation.
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Figure 27 – Transverse irradiance moments obtained for CS2 at I0 = 9.0 GW·cm−2. Solid lines
represent the fit by Eq. (6.136).

Figure 28 – NL phase variation in CS2 and SiO2 determined from the irradiance moments.
The values determined for the NL refractive index are n2 (CS2) = (2.8±0.3) ·
10−15 cm2/W , n2 (SiO2) = (1.9±0.4) ·10−16 cm2/W .

In summary, this work reports how to describe the effect of refractive and absorptive

optical nonlinearities in the beam width, as determined by the second order irradiance mo-

ments. The theoretical results are supported by experiments performed in reference materi-

als (CS2 and SiO2), where the NL refractive index was measured. The phase distortion reso-

lution is λ/700 in our implementation, indicating that this is a sensitive technique [171,174].

Our n2 measurements are in good agreement with the absolute measurements reported in

[175,176], where n2 (CS2) = (3.0±1.0)·10−15 cm2/W , and n2 (SiO2) = (2.1±0.5)·10−16 cm2/W .



Chapter 6. Transverse effects in linear and nonlinear light propagation 132

Figure 29 – SLIM operating principles. (a) a laser system with power adjustable through a set
of λ/2 and a polarizer is focused at a scattering sample. (b) The scattered light is
imaged in a CCD through a set of cylindrical lenses, such that the magnifications
are 1/3 and 3 along and perpendicular to the beam propagation axis, respectively.
(c) A typical profile of the scattered light, and (d) the beam radius determined
through the TIM.

Even though a good signal-to-noise ratio was achieved in this implementation, the use of a

cooled camera sensor with higher bit depth may increase even further the sensitivity of the

technique, allowing NL spectroscopy of samples with weak NL response.

Characterization of optical nonlinearities through the SLIM technique

The SLIM experiments described below were performed by Kelly C. Jorge, Hans A. Garcia

and Albert S. Reyna in Ref. [5]. As was previously mentioned, in SLIM the beam transverse

width is determined along the beam propagation direction through a linear scattering of

light inside the sample. A schematic of the experimental setup is depicted in Fig. 29(a-b).

A Q-Switched mode-locked Nd:YAG laser (10 Hz, 80 ps, 532 nm) was used to verify the NL

refractive index n2 of a solution containing mainly ethanol and acetone. Silica nanoparticles

were added at a small concentration (filling factor f < 4.05 ·10−4) just to provide a sufficient

level of light scattering. A typical transverse profile of the scattered light can be seen in Fig.

29(c), where the waist was positioned at the center of the camera for visualization purposes.

Notice that in Fig. 29(d) the beam radius increases almost linearly after a certain distance

from the beam waist. Through determination of the slope associated with light propagation

inside a NL sample, it is possible to know n2 through fe f f in Eq. (6.138).

Since the NL refractive index is much smaller in ethanol than in acetone, nEthanol
2 ¿

nAcetone
2 , it is possible to adjust the effective index of the sample, ne f f

2 , by controlling the
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Figure 30 – A comparison between SLIM (squares) and Z-scan (circles) techniques with the

predicted values of ne f f
2 (solid) as a function of the volumetric fraction of ace-

tone. Notice that the error bars associated with the SLIM measurements are sig-
nificantly smaller than in Z-scan, indicating a higher signal to noise ratio. For
Vacetone < 35% it was not possible to determine the sample NL response using
Z-scan.

volumetric fraction of each constituent. Its worth mentioning that the NL contribution due

to the scatterers is negligible because of the smallness of nSilica
2 and also the small filling fac-

tor f . The experimental results are shown in Fig. 30. The predicted value for ne f f
2 (solid line

in Fig. 30) was calculated through the average

ne f f
2 = nEthanol

2 VEthanol +nAcetone
2 VAcetone +nSilica

2 VSilica

VEthanol +VAcetone +VSilica
, (6.141)

where the values for nEthanol
2 ,nAcetone

2 ,nSilica
2 were obtained in the literature [37].

From the results in Fig. 30 it can be seen that the SLIM technique is very sensitive and ac-

curate, being able to determine very small NL refractive effects. Besides that, it is remarkable

that the SLIM can operate at the single-shot level. Another important characteristic of SLIM

is its adequacy for scattering samples, which is often a limiting factor in other techniques [5].

6.6 Summary

In this chapter it was discussed how to use the Interaction Picture (IP), an ordinary analytical

tool used in Quantum Mechanics (QM), to solve propagation problems in linear and nonlin-

ear (NL) optics. While the calculations here were mainly based in very simple systems, it

was possible to verify important connections provided by the IP. For example, it was showed

that for simple optical elements the propagation of the IP transverse position and momen-

tum (or angle) operators can be described through the familiar formalism of ABCD matrices

from geometrical optics. This is important because the propagation in the geometrical op-

tics regime is much simpler than in a wave optics approach, and the IP corresponds to a full
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paraxial wave solution for the propagation problem. As a remarkable result in the context

of linear optics, the general Siegman’s formulas to characterize the beam width were simply

obtained from the square of the IP position operator.

In QM, the IP is specially adequate for interacting systems, and it was showed here that in

optics the IP can be a valuable analytical tool for NL problems. For instance, it was possible

to describe the light behavior in Z-scan [158], D4σ [6, 171] and SLIM [5] experiments. This

indicates the importance of this approach for NL optical problems in general, specially with

respect to NL refractive media. Some experimental efforts were already performed to verify

the IP predictions, as in [5, 6], but there are several indicatives that the insights provided by

the IP can be exploited in other NL spectroscopy applications.

It should be stressed that the formalism discussed in this chapter describes light in the

classical approximation. The tools of QM were used here to solve the paraxial wave optics

propagation problem. Important improvements for the future are the full solution of the

Maxwell equations using this formalism, a careful discussion of the action of operators near

boundaries between two materials, the description of extended absorptive media and the

effect of apertures, the inclusion of operators in the temporal domain [156], and the descrip-

tion of optical coherence effects.

Finally, we remark that the operator formalism can be used directly to find analogies with

QM. It was previously stated that the TIM, Eq. (6.114), are directly related with the Duan-

Simon criteria for continuous variable entanglement [166,167]. Therefore, another set of im-

portant perspectives for this work consists in developing analogies between classical optics

and QM. For example, it should be fruitful to perform studies on geometrical and holonomic

phases, the adiabatic theorem, weak measurements and quantum metrology.
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7 Summary and perspectives

This thesis contains two main sets of results. First, as described in chapters 4 and 5, it is pos-

sible to adjust the dark intensity profile of a light beam containing optical vortices (OV) by

distributing Topological Charges (TCs) over the beam transverse profile. Several geometries

were obtained, as a dark line, corner and a triangle, as reported in [1]. However, to adequately

characterize the TC distributions a more general approach was developed in [2] through the

experimental measurement of the field amplitude and phase profiles. It was determined for

the TC distributions along a line, a corner and a triangle that for all distributions the TC is

equal to the value designed in the phase mask, while the beam OAM is slightly reduced due

to the reduced azimuthal phase variation between spatially separated TCs with the same TC

signal. Further work indicated that such TC distributions can be described by a relationship

analogous to the two-dimensional (2D) electrostatic potential, which was called the Topo-

logical Potential (TP) [3]. Several mathematical properties of the TP were studied, and it was

also verified the existence of TC multipoles and a 2D radial TC distribution. It was shown that

through the TP it is possible to express a large variety of fields containing complex composi-

tions of OV. The use of the TP allows the design of OAM beams for various purposes, and in

principle can be of interest for many applications where singular wavefronts are applied. For

example, the TP can be important in the design of optical tweezers [27], laser traps [88] or

atom guides [140]. The TC multipoles form a complete basis (Fourier), and may be applied

for data transfer using classical light [142] or also in the quantum regime [26]. However, an

important step that still needs to be addressed is the propagation of the TP solutions, since

the discussion within sec. 4.3 is restricted to the plane z = 0. For example, it may be possible

to find a set of constraints that the TC distribution must satisfy to ensure that the field profile

remains simply related between different z planes. It is also highly desirable to have expres-

sions that indicate how to optimize the TP solutions for each application, as the transverse

forces in an optical tweezer.

Second, the set of results presented in chapter 6 are related to properties of light prop-

agation in the paraxial regime using a formalism based on quantum mechanics-like opera-

tors. The introduction of the Interaction Picture for wavefront propagation [4] indicates that

this approach can be applied for a large variety of optical systems. It was obtained that for

simple paraxial optical systems the position and momentum operators propagate accord-

ing to ABCD matrices in sec. 6.4. Also, the IP was used to describe the beam width inside

a sample with a nonlinear refractive index in [5] and also to understand the propagation of

the beam width after a nonlinear sample in [6]. Since light propagation in nonlinear materi-

als introduces intrinsic aberrations, the IP should also be adequate for example to describe

light propagation through optical elements containing spherical aberrations or astigmatism.

From a fundamental aspect, it should be remarked that since the IP is a full wave optics solu-
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tion but intrinsically related to geometrical optics methods, the IP can be useful in problems

where geometrical optics solutions are simple but the wave solution is difficult, as in the

problem of caustics [177]. There are several improvements to be added to the results pre-

sented in chapter 6. For instance, it would be very useful to include operators in the tempo-

ral domain [156] and spatial and temporal dispersion, to calculate the propagation of opti-

cal pulses in nonlinear materials. Other important improvements would be the inclusion of

polarization effects, and the solution to the full wave equation without the paraxial approxi-

mation. The inclusion of polarization seems to be possible by introduction of a spinorial no-

tation, while a full wave solution seems harder because of the second order derivative along

z among other issues. The spatial coherence was not considered, but it should be possible to

include its effects through a density matrix representation for the field and the operators.
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APPENDIX C – Useful mathematical
methods

Throughout this thesis there are various mathematical techniques which are not usually

taught in standard physics courses. Due to the importance of such techniques in under-

standing some of the results discussed, a short review of these topics is given in this ap-

pendix. Also, if the reader feels the need for further deepening his understanding of a given

topic, there is always some reference which contains more rigorous, detailed and deep dis-

cussions.

C.1 Some properties of Green’s functions

One of the most important tools in solving differential equations are the Green’s functions. To

introduce the important concepts associated with them, it will be considered as an example

the simple case of a classical harmonic oscillator. The position, x, as a function of time, t ,

when the oscillator has a damping constant γ and natural frequency ω2
0 and is under an

external force F (t ) is given by (
d 2

d t 2
+2γ

d

d t
+ω2

0

)
x (t ) = F (t ) . (C.1)

The solutions to Eq. (C.1) can be split in two parts. Notice that if F (t ) = 0, there must

be nontrivial solutions to the problem, which we denote by x0 (t ). These are the so called

homogeneous solutions, and are such that(
d 2

d t 2
+2γ

d

d t
+ω2

0

)
x0 (t ) = 0. (C.2)

To keep the solution general, there must be some part which depends intrinsically of

F (t ), the inhomogeneous solution, denoted by xF (t ), such that(
d 2

d t 2
+2γ

d

d t
+ω2

0

)
xF (t ) = F (t ) , (C.3)

xF (t ) = 0, if F = 0. (C.4)

An arbitrary solution to Eq. (C.1) shall include both contributions, since their origins are

distinct. Notice that these solutions can be added without interfering with each other. There-

fore, in general, one has that

x (t ) = x0 (t )+xF (t ) . (C.5)

The most important characteristic of Green’s functions is that they allow to obtain a so-

lution which is applicable to any F (t ). Even if the solution becomes just a formal expression,
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without exact solution, it can make the problem amenable to perturbative approximations.

This is specially important for nonlinear problems, because F (t ) may contain powers of x,

and usually there is no analytic solution in such cases. In this appendix, it will be shown how

to obtain solutions for the classical harmonic oscillator using Green’s functions. Later, it will

be discussed how the concept of Green’s functions can be generalized for arbitrary partial

differential equations. The discussion contained in this appendix is inspired in the Chapter

7 of “Mathematics of Classical and Quantum Physics, Byron and Fuller”.

C.1.1 Solution to the classical harmonic oscillator using Green’s func-

tions

It is simpler to solve Eq. (C.1) using Fourier transforms. Assuming that F (t ) is turned on after

t →−∞ and off before t →∞, it will have a well behaved Fourier transform. Then, we may

represent

F̃ (ω) = 1p
2π

ˆ ∞

−∞
d tF (t )e iωt , (C.6)

and Fourier transforming Eq. (C.1), we have that

1p
2π

ˆ ∞

−∞
d t

(
d 2

d t 2
+2γ

d

d t
+ω2

0

)
x (t )e iωt = F̃ (ω) . (C.7)

Observe that integrating by parts,
´∞
−∞ d t ẍe iωt = ẋe iωt |∞t=−∞−´∞−∞ d t (iω) ẋe iωt = ẋe iωt |∞t=−∞+

(iω) ẋe iωt |∞t=−∞+´∞−∞ d t (iω)2 xe iωt , while
´∞
−∞ d t ẋe iωt = ẋe iωt |∞t=−∞−´∞−∞ d t (iω) xe iωt . As-

suming that at t →±∞ both x and ẋ tend to zero due to the damping term,γ, the “surface”

terms can be neglected and the Fourier transforms pair of x can be written as

x (t ) = 1p
2π

ˆ ∞

−∞
dωx̃ (ω)e−iωt , (C.8)

x̃ (ω) = 1p
2π

ˆ ∞

−∞
d t x (t )e iωt , (C.9)

while the derivatives can be calculated by substituting d
d t →−iω. Using this prescription, Eq.

(C.7) becomes [−ω2 −2iωγ+ω2
0

]
x̃ (ω) = F̃ (ω) . (C.10)

The term inside the square brackets is never zero for real values of the frequency ω, and

since it is not singular, it can be affirmed that

x̃ (ω) = F̃ (ω)[−ω2 −2iωγ+ω2
0

] . (C.11)

Equation (C.11) evidently consists of the term xF as discussed at the beginning of this

appendix. There is also the homogeneous solution, x0, which does not present any interest
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for the current discussion. Therefore, the general solution to the harmonic oscillator can be

stated as

x (t ) = x0 (t )+ 1p
2π

ˆ ∞

−∞
dω

F̃ (ω)[−ω2 −2iωγ+ω2
0

]e−iωt . (C.12)

The above expression is a formal solution to the problem, but it is written in terms of the

frequency spectrum of the external force. Since both the force and particle position are de-

termined in time, it would be more clarifying if it was possible to express the particle position

as a function of F (t ). In such representation, it becomes possible to relate a features in x (t )

with those from F (t ). Using Eq. (C.6) in Eq. (C.12), and integrating in ω, x (t ) is rewritten as

x (t ) = x0 (t )+
ˆ ∞

−∞
d t ′G

(
t , t ′

)
F

(
t ′

)
, (C.13)

G
(
t , t ′

)= ˆ ∞

−∞

dω

2π

e−iω(t−t ′)[−ω2 −2iωγ+ω2
0

] . (C.14)

G
(
t , t ′

)
is the Green’s function for the classical harmonic oscillator, and it contains all of

the system response to the input force F (t ). The expression for G
(
t , t ′

)
can be obtained via a

contour integration [Byron and Fuller], and since the calculation details are not relevant for

the present discussion, only the result is shown below

G
(
t , t ′

)= θ
(
t − t ′

)
e−γ(t−t ′)

sin
[√

ω2
0 −γ2

(
t − t ′

)]
√
ω2

0 −γ2
.

For this work, the most important property of this G
(
t , t ′

)
is that it satisfies the harmonic

oscillator equations of motion in the following form,(
d 2

d t 2
+2γ

d

d t
+ω2

0

)
G

(
t , t ′

)= δ
(
t − t ′

)
, (C.15)

which can be easily verified by using Eq. (C.14) and remembering the Fourier representa-

tion of Dirac delta, δ
(
t − t ′

)= ´∞−∞ dωexp
[−iω

(
t − t ′

)]
/2π. The relation between the Green’s

function and the Dirac δ is an extremely useful property, that allow these differential equa-

tions to be solved in general under very general conditions. In the following subsection, this

argument will be discussed in greater detail.

C.1.2 Green’s functions for partial differential equations in n-dimensions

Suppose that L is an operator which contains derivatives, up to the second order, over many

variables x1, x2, . . . , xN , where xn can represent spatial coordinates or time. Then,

L = a0 +a1,1
∂

∂x1
+a1,2

∂2

∂x2
1

+a2,1
∂

∂x2
+ . . . , (C.16)

where the coefficients an,m are labeled by the indexes m and n which correspond m-th

derivative of the variable xn . Considering that a system being acted upon an external source
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F (x) is described by ψ (x), where x is a short-hand notation for all xn variables, it is wanted

to find the solution to the problem

Lψ (x) = F (x) . (C.17)

Neglecting the boundary conditions, the homogeneous solution to Eq. (C.17) is simple to

obtain in terms of harmonic functions. The inhomogeneous terms require some extra effort,

which is dramatically simplified in terms of the Dirac δ function. The original problem in Eq.

(C.17) is very complicated, because it depends on the specifics of F (x) to find the solution to

the differential equation. However, notice the following identity

F (x) =
ˆ ∞

−∞
d x ′δ

(
x −x ′)F

(
x ′) , (C.18)

where it is considered that the integral and the δ is extended over all variables in the system.

The dependence on the system variables is entirely contained inside δ
(
x −x ′). Physically, if

someone knows how to describe the system response to a localized source, the solution to

the problem for an specific F (x) can be given by representing F (x) as a sum of such localized

sources. Since the system response to a δ
(
x −x ′) source should be independent of F (x), one

could expect from Eqs. (C.17) and (C.18) that

ψ (x) =
ˆ ∞

−∞
d x ′G

(
x, x ′)F

(
x ′) , (C.19)

what implies that the system response to the impulse is fully contained in the term G
(
x, x ′).

Through a direct substitution, it can be verified that Eq. (C.19) is the solution to Eq. (C.17),

given that the Green’s function G
(
x, x ′) satisfies

LG
(
x, x ′)= δ

(
x −x ′) . (C.20)

Since Eq. (C.20) is a differential equation, G
(
x, x ′) must also satisfy the system’s bound-

ary conditions. This is an involved subject, since any homogeneous solution of L, such that

Lψ0 (x) = 0 can be added to G
(
x, x ′), and the problem is usually overdetermined. For a more

detailed discussion, see [Jackson] Chapter 1. Only simple boundary conditions will be used

here, and such refinements will not be considered. To solve Eq. (C.20), it is noticed that the δ

function can be represented as the following Fourier transform

δ
(
x −x ′)= ˆ ∞

−∞

d N k

(2π)N
e−i k(x−x ′), (C.21)

where it was denoted that kx =∑N
n=1 kn xn and d N k = dk1dk2 . . .dkN .

Taking the Fourier transform of Eq. (C.20) and performing manipulations similar to those

done in Eq. (C.7), it is possible to neglect the surface terms and obtain

L̃G̃ (k)/(2π)N /2 = 1, (C.22)

L̃ = a0 +a1,1 (−i k1)+a1,2 (−i k1)2 +a2,1 (−i k2)+ . . . . (C.23)
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Assuming that L̃ is not singular for real values of kn , it is possible to represent

G̃ (k) = 1

(2π)N /2

1

a0 +a1,1 (−i k1)+a1,2 (−i k1)2 +a2,1 (−i k2)+ . . .
, (C.24)

and therefore,

G
(
x, x ′)= ˆ ∞

−∞

d N k

(2π)N

e−i k(x−x ′)

a0 +a1,1 (−i k1)+a1,2 (−i k1)2 +a2,1 (−i k2)+ . . .
. (C.25)

Up to satisfying the problem’s boundary conditions, Eq. (C.25) can be used to solve a

large variety of differential equations using the Green’s functions approach. In what follows,

some cases of interest will be discussed.

C.1.3 Green’s function for the SVEA equation

As is discussed in Sec. 2.2, light beams in the regime of wave optics whose transverse exten-

sion is much larger than the wavelength can be described by(
∇2
⊥+2i k0

∂

∂z

)
A = 0. (C.26)

In this case, L = ∇2
⊥ + 2i k0

∂
∂z . Using Eq. (C.25), and representing r = (

x, y, z
)

and k =(
kx ,ky ,kz

)
, the Green function for this problem is

GSVEA
(
r,r′

)= ˆ ∞

−∞

d 3k

(2π)3

e−i k(r−r′)

2k0kz −k2
x −k2

y + iε
. (C.27)

where it was added an infinitesimal displacement iε in the complex plane. The idea behind

this term the displacement is that it operates in a similar way to the dissipative term in the

harmonic oscillator, and will avoid the pole at kz =
(
k2

x +k2
y

)
/2k0. The dkz integral can be

easily performed using the residue theorem. When z > z ′, the integration contour must be

closed in the lower complex plane, and

ˆ ∞

−∞
dkz

e−i kz(z−z ′)

2k0kz −k2
x −k2

y + iε
= 2πi exp

[−i
(
z − z ′)

2k0

(
k2

x +k2
y

)
− iε

2k0

(
z − z ′)] , (C.28)

while for z < z ′, the contour must be closed in the upper complex plane, which does not

contain any pole and ˆ ∞

−∞
dkz

e−i kz(z−z ′)

2k0kz −k2
x −k2

y + iε
= 0. (C.29)

Therefore, in the limit ε→ 0,

GSVEA
(
r,r′

)= iθ
(
z − z ′)ˆ ∞

−∞

dkxdky

(2π)2 exp

[−i
(
z − z ′)

2k0

(
k2

x +k2
y

)
− i kx

(
x −x ′)− i ky

(
y − y ′)] .

(C.30)

In the context of the current work, GSVEA
(
x, x ′) is written in two equivalent represen-

tations. One representation consists in performing the integrals along kx and ky , such that
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GSVEA
(
r,r′

)
is an explicit function of the coordinates. Observing that the integrands are Gaus-

sians, and using the identity
ˆ

dke−ak2+bk =
√

π

a
e−b2/4a , (C.31)

it is easily verified that

GSVEA
(
r,r′

)= θ
(
z − z ′) k0

2π (z − z ′)
exp

[
−i

k0

2(z − z ′)
(
r⊥− r′⊥

)2
]

, (C.32)

where r⊥ = (
x, y,0

)
.

The representation of GSVEA
(
x, x ′) which shows a greater interest for the current work

consists in identifying the previously expressed property of Fourier transforms, that (−i kn)

and ∂/∂xn can be used interchangeably, as long as the function under analysis and its deriva-

tives decays sufficiently fast far from the sample. We assume that the physical field of interest

are square integrable, and therefore such assumption is valid. Considering in Eq. (C.30) that(
k2

x +k2
y

)
= −∇2

⊥, where ∇2
⊥ acts only over x, y , this operator can be removed from the inte-

gral, resulting in

GSVEA
(
r,r′

)= iθ
(
z − z ′)exp

[
i
(
z − z ′)
2k0

∇2
⊥

]
δ

(
r⊥− r′⊥

)
. (C.33)

Equation (C.33) is very interesting because, contrarily to Eq. (C.32), the dependencies in

the propagation and in the transverse coordinates were factorized in a product. Therefore,

transversal effects and propagation can be independently considered. Although this might

seem to be a minor difference, if this fact is adequately used, it can simplify the calculations

of many complex systems in optics. It becomes possible to completely specify the behavior

of a given optical system for any input light beam, since the propagation and the optical

elements can be considered.

The usage envisioned for Eq. (C.33) is to obtain, given an initial field configuration at a

plane z = a, A0 (r⊥, a), the solution in a plane z = b, A (r⊥,b). This in principle requires the

correct matching of the propagator to this boundary condition. It will be shown here that

this is indeed the case for Eq. (C.33). Notice that

lim
z→z ′+

GSVEA
(
r,r′

)= iδ
(
r⊥− r′⊥

)
, (C.34)

and therefore the solution at the plane z ′ = a can be represented as

A0 (r⊥, a) =−i lim
z→a+

ˆ
d x ′d y ′GSVEA

(
r,r′

)
A0

(
r′⊥, a

)
. (C.35)

It then becomes reasonable to hypothesize that the solution at z = b is given by

A0 (r⊥,b) =−i

ˆ
d x ′d y ′GSVEA

(
r,r′

)
A0

(
r′⊥, a

)
, (C.36)

= θ (b −a)exp

[
i (b −a)

2k0
∇2
⊥

]
A0 (r⊥, a) . (C.37)
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C.2 Some useful operator identities

In this appendix, some operator identities used throughout the manuscript are summarized,

for the reader’s convenience.

Commutator

Given two operators Â and B̂ , their commutator is defined as [40]

[
Â, B̂

]= ÂB̂ − B̂ Â. (C.38)

Baker-Hausdorff lemma

Given two operators Ĝ and Â, and λ number, the Baker-Hausdorff lemma [40] can be stated

as

e iĜλ Âe−iĜλ = Â+ iλ
[
Ĝ , Â

]+ i 2λ2

2!

[
Ĝ ,

[
Ĝ , Â

]]+ . . .

+ i nλn

n!

[
Ĝ ,

[
Ĝ ,

[
Ĝ , . . .

[
Ĝ , Â

]]]]+ . . . . (C.39)

Similarity transformation over functions of operators

Suppose that a function can be written as f = f
(
x̂ , p̂

)
. If there is an invertible operator Ŝ, such

that Ŝ−1Ŝ = 1̂, one might want to calculate Ŝ−1 f
(
x̂ , p̂

)
Ŝ. For example, this operator might be

needed to change between distinct representations. If f
(
x̂ , p̂

)
can be expressed as a Taylor

series of the operators x̂ and p̂ , by inserting Ŝ−1Ŝ between the products of x̂ and p̂ it can be

showed that

Ŝ−1 f
(
x̂ , p̂

)
Ŝ = f

(
Ŝ−1x̂ Ŝ, Ŝ−1p̂ Ŝ

)
. (C.40)

Commutator of an operator Â with a function of a non-commuting operator B̂

Consider two operators Â and B̂ such that
[

Â, B̂
]= 1. If f = f

(
B̂

)
can be expanded in a Taylor

series, it can be showed that [
Â, f

(
B̂

)]= d f
(
B̂

)
dB̂

, (C.41)

where it should be understood that the derivative is taken with respect to the argument B̂ . In

particular for 1D, for functions f
(
p̂x

)
and g (x̂) it can be obtained that [40]

[
x̂, f

(
p̂x

)]= i
d f

(
p̂x

)
d p̂x

, (C.42)

[
p̂x , g (x̂)

]=−i
d g (x̂)

d x̂
. (C.43)
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C.3 p̂ operator in x̂ basis

To obtain the p̂ operator in x̂ basis, it is considered initially the 1D case. In this appendix,

only the SP is used, but the sub-indices are omitted for clarity in the notation. The matrix

element of the commutator (6.9) is 〈x|[x̂ p̂x − p̂x x̂
]∣∣x ′〉= i

〈
x|x ′〉, or

〈x| p̂x
∣∣x ′〉= i

(x −x ′)
〈

x|x ′〉 , (C.44)

where the last line is verified for all x 6= x ′, to avoid a division by zero. Assuming x ′ = x + ε,

the action of p̂x over a state ket can be computed using the completeness relation, 1 =´
d x ′ ∣∣x ′ 〉〈x ′∣∣, as

〈
x|p̂x |ψ

〉 = ´x ′ 6=x d x ′ 〈x|p̂x |x ′〉〈
x ′|ψ〉 = ´ε6=0 dε−i

ε
〈x|x +ε〉〈x +ε|ψ〉

. Since〈
x +ε|ψ〉=ψ (x +ε), one may write

〈
x|p̂x |ψ

〉≈ ˆ
ε6=0

dε
−i

ε
〈x|x +ε〉

[
ψ (x)+ε

dψ (x)

d x

]
. (C.45)

The first term in the integrand is odd with respect to the integration variable, since ε is

odd, while the Dirac delta is even, and thus integrates to zero. Terms of higher order in ε are

null because they the integration interval is small due to 〈x|x +ε〉 ≈ δ (ε). By the other hand,

the second term in the square bracket is well behaved. Using that 〈x|x +ε〉 = δ (ε), and, since

the removal of a single point does not change the area enclosed by the curve, it is true that´
ε6=0 dεδ (ε) = 1, implying that

〈
x|p̂x |ψ

〉= (
−i

d

d x

)〈
x|ψ〉

. (C.46)

The generalization to 2D is straightforward and follows closely the description above,

resulting in 〈
r|p̂|ψ〉=−i∇⊥

〈
r|ψ〉

. (C.47)

Another important relation between x̂ and p̂ is the calculation of the basis overlap
〈

r|p〉
.

Using in (C.47) ψ= p, where p̂
∣∣p〉= p

∣∣p〉
, it becomes possible to verify that〈

r|p〉= 1

2π
exp

(
i p · r

)
, (C.48)

where the factor of (2π)−1 ensures the normalization.

C.4 Field solution in SP

In this appendix it is performed the detailed calculation of
∣∣ψ, z; a

〉
S in SP. Starting from Eq.

(6.18) ∣∣ψ, z; a
〉

S = ∣∣ψ, a; a
〉

S +
ˆ z

a

d z ′

i
ĤS

(
x̂S , p̂S , z ′)∣∣ψ, z ′; a

〉
S , (C.49)

and considering ĤS =λĤS , and the following series expansion of the state,∣∣ψ, z; a
〉

S = ∣∣ψ, z; a
〉(0)

S +λ
∣∣ψ, z; a

〉(1)
S +λ2

∣∣ψ, z; a
〉(2)

S + . . . . (C.50)
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By equating to zero the coefficients of the distinct powers of λ,

∣∣ψ, z; a
〉(0)

S = ∣∣ψ, a; a
〉

S +
ˆ z

a

d z ′

i
ĤS

∣∣ψ, z ′; a
〉(0)

S , (C.51)

∣∣ψ, z; a
〉(n)

S =
ˆ z

a

d z ′

i
ĤS

(
x̂S , p̂S , z ′)∣∣ψ, z ′; a

〉(n−1)
S . (C.52)

Equations (C.51) and (C.52) are Volterra equations of the first kind, and thus have unique,

well defined solutions. The lowest order terms are∣∣ψ, z; a
〉(0)

S = ∣∣ψ, a; a
〉

S , (C.53)∣∣ψ, z; a
〉(1)

S =
ˆ z

a

d z ′

i
ĤS

(
x̂S , p̂S , z ′)∣∣ψ, a; a

〉
S , (C.54)

∣∣ψ, z; a
〉(2)

S =
ˆ z

a

d z ′

i
ĤS

(
x̂S , p̂S , z ′)ˆ z ′

a

d z"

i
ĤS

(
x̂S , p̂S , z"

)∣∣ψ, a; a
〉

S . (C.55)

The above expressions can be simplified in terms of the z ordering operator Ẑ , which

puts the higher values of z inside the integrands to the left. This is equivalent to the time or-

dering operator from quantum field theory [41], but considered for the z coordinate, instead

of time. The above expressions can be simplified as∣∣ψ, z; a
〉(0)

S = Ẑ {1}
∣∣ψ, a; a

〉
S ,∣∣ψ, z; a

〉(1)
S = Ẑ

{
1

1!

ˆ z

a

d z ′

i
ĤS

(
x̂S , p̂S , z ′)}∣∣ψ, a; a

〉
S ,

∣∣ψ, z; a
〉(2)

S = Ẑ

{
1

2!

[ˆ z

a

d z ′

i
ĤS

(
x̂S , p̂S , z ′)]2

}∣∣ψ, a; a
〉

S ,

...∣∣ψ, z; a
〉(m)

S = Ẑ

{
1

m!

[ˆ z

a

d z ′

i
ĤS

(
x̂S , p̂S , z ′)]m}∣∣ψ, a; a

〉
S .

The solution then becomes,∣∣ψ, z; a
〉

S = Ĝz,a
∣∣ψ, a; a

〉
S , (C.56)

Ĝz,a = Ẑ

{
exp

[
−i

ˆ z

a
d z ′ĤS

(
x̂S , p̂S , z ′)]}

. (C.57)

C.5 Evolution of operators in HP

Starting from Eqs. (6.26) and (6.27), and omitting the z dependence for clarity,

ÔH = Ĝ†
H ÔSĜH , (C.58)

i
dĜH

d z
= ĤSĜH , (C.59)
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one has that i dÔH
d z = i

dĜ†
H

d z ÔSĜH + Ĝ†
H ÔSi dĜH

d z + Ĝ†
H i ∂ÔS

∂z ĜH . Using that −i
dĜ†

H
d z = Ĝ†

H Ĥ †
S , de-

noting by
[
∂ÔS
∂z

]
H
= Ĝ†

H
∂ÔS
∂z ĜH the HP representation of the z derivative of ÔS , and inserting

Ĝ†(−1)
H Ĝ†

H = 1̂ in the first term, and ĜHĜ−1
H = 1̂ in the second,

i
dÔH

d z
=−Ĝ†

H Ĥ †
SĜ†(−1)

H ÔH +ÔHĜ−1
H ĤSĜH + i

[
∂ÔS

∂z

]
H

. (C.60)

Equation (C.60) suggests the definition of

ĤH ′ = Ĝ−1
H ĤSĜH . (C.61)

Notice that defining ĤH by Eq. (C.58), ĤH ′ 6= ĤH . For problems that does not include

absorption, Ĝ−1
H = Ĝ†

H and ĤH ′ = ĤH = Ĥ †
H . In terms of ĤH ′ , Eq. (C.60) becomes

i
dÔH

d z
= ÔH ĤH ′ − Ĥ †

H ′ÔH + i

[
∂ÔS

∂z

]
H

, (C.62)

while if the system does not include absorption, the more well known limit [40] is obtained

i
dÔH

d z
= [

ÔH , ĤH
]+ i

[
∂ÔS

∂z

]
H

. (C.63)

As a final comment, it is worth mentioning that if ÔH is Hermitean, ÔH = Ô†
H , one has

that Eq. (C.62) implies that ÔH remains Hermitian under propagation.

C.6 Evolution of operators in IP

For the evolution of operators in IP, we notice that the mean value of an operator ÔI is written

in terms of the initial condition as

〈
ÔI

〉=
〈
ψa

∣∣∣T̂ †
z,aÔI T̂z,a

∣∣∣ψa

〉
〈
ψa

∣∣∣T̂ †
z,aT̂z,a

∣∣∣ψa

〉 , (C.64)

ÔI = Ĝ (0)−1
z,a ÔSĜ (0)

z,a , (C.65)

where the arguments of the operators were suppressed for clarity.

Using Eq. (6.48) in (6.44) one obtains that

i
∂

∂z
T̂z,a = V̂I (x̂I , z) T̂z,a . (C.66)

Now it becomes possible to evaluate i d
d z

〈
ÔI

〉
. Including the derivative of the denomi-

nator of Eq. (C.64) in the evolution equation for ÔI , one obtains that i d
d z

〈
ÔI

〉 =
〈

i d
d z ÔI

〉
or

i
d

d z
ÔI = T̂ †−1

z,a i
d

d z

(
T̂ †

z,aÔI T̂z,a

)
T̂ −1

z,a − iγ (z)ÔI , (C.67)

γ (z) =
〈
ψa

∣∣∣ d
d z

(
T̂ †

z,aT̂z,a

)∣∣∣ψa

〉
〈
ψa

∣∣∣T̂ †
z,aT̂z,a

∣∣∣ψa

〉 . (C.68)
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Equation (C.67) contains two terms: T̂ †−1
z,a i d

d z

(
T̂ †

z,aÔI T̂z,a

)
T̂ −1

z,a is equivalent to the terms

to the right of Eq. (C.60), while the factor γ (z) represents the change of the field normaliza-

tion over ÔI due to the absorption. Evaluating separately, it is obtained that

T̂ †−1
z,a i

d

d z

(
T̂ †

z,aÔI T̂z,a

)
T̂ −1

z,a = ÔI ĤI − Ĥ †
I ÔI + iα0ÔI +

[
i
∂

∂z

(
ÔS

)]
I

, (C.69)

γ (z) =
〈
ψa

∣∣∣T̂ †
z,a

(−α̂′
I

)
T̂z,a

∣∣∣ψa

〉
〈
ψa

∣∣∣T̂ †
z,aT̂z,a

∣∣∣ψa

〉 , (C.70)

where α̂′
I is the spatially dependent absorption profile, which is contained in V̂I .

Notice that, according to the definition (6.46), γ (z) =−〈
α̂′

I

〉
. Thus, using Eqs. (C.69) and

(C.70) in Eq. (C.67),

i
d

d z
ÔI = ÔI ĤI − Ĥ †

I ÔI + i 〈α̂I 〉ÔI +
[

i
∂

∂z

(
ÔS

)]
I

, (C.71)

where now 〈α̂I 〉 is the average of the total absorption operator, α̂I = α0 + α̂′
I . Notice that,

contrarily to what happened for the HP, ĤI is the Hamiltonian in the IP for any V̂I , including

absorption or not. In HP, it was defined in Eq. (C.61) an operator ĤH ′ which was the HP

Hamiltonian only when the system did not include absorption. Since Ĥ †
I = ĤI + i α̂I , Eq.

(C.71) can be rewritten as Eq. 6.50.

C.7 Some useful relations for Gaussian beams

Gaussian-shaped beams are ubiquitous in optics, and also it is very simple to evaluate many

of their characteristics. Assuming that we have a beam as

〈
r |φ〉= Ne−ar 2

, (C.72)

where a is complex, it is possible to verify that in the
∣∣p

〉
basis,

〈
p|φ〉= N

2a
e− p2

4a . (C.73)

If we want to evaluate the beam width in position or in transverse momentum, we may

use for example that

´
d 2r r 2

∣∣〈r |ψ〉∣∣2

´
d 2r

∣∣〈r |ψ〉∣∣2 =− d

dc
log

[ˆ
d 2r e−cr 2

]∣∣∣∣
c=a

, (C.74)

´
d 2pp2

∣∣〈p|ψ〉∣∣2

´
d 2p

∣∣〈p|ψ〉∣∣2 =− d

dc
log

[ˆ
d 2pe−cp2

]∣∣∣∣
c= 1

4a

, (C.75)
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