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ABSTRACT 

In recent years, a family of probability distributions based on Nonextensive Statistical 

Mechanics, known as q-distributions, has experienced a surge in terms of applications to 

several fields of science and engineering. In this work the �-Exponential distribution will be 

studied in detail. One of the features of this distribution is the capability of modeling data that 

have a power law behavior, since it has a heavy-tailed probability density function (PDF) for 

particular values of its parameters. This feature allows us to consider this distribution as a 

candidate to model data sets with extremely large values (e.g. cycles to failure). Once the 

analytical expressions for the maximum likelihood estimates (MLE) of �-Exponential are 

very difficult to be obtained, in this work, we will obtain the MLE for the parameters of the �-

Exponential using two different optimization methods: particle swarm optimization (PSO) 

and Nelder-Mead (NM), which are also coupled with parametric and non-parametric 

bootstrap methods in order to obtain confidence intervals for these parameters; asymptotic 

intervals are also derived. Besides, we will make inference about a useful performance metric 

in system reliability, the called index � = �(� < �), where the stress � and strength � are 

independent q-Exponential random variables with different parameters. In fact, when dealing 

with practical problems of stress-strength reliability, one can work with fatigue life data and 

make use of the well-known relation between stress and cycles until failure. For some 

materials, this kind of data can involve extremely large values and the capability of the  q-

Exponential distribution to model data with extremely large values makes this distribution a 

good candidate to adjust stress-strength models. In terms of system reliability, the index � is 

considered a topic of great interest, so we will develop the maximum likelihood estimator 

(MLE) for the index � and show that this estimator is obtained by a function that depends on 

the parameters of the distributions for � and �. The behavior of the MLE for the index � is 

assessed by means of simulated experiments. Moreover, confidence intervals are developed 

based on parametric and non-parametric bootstrap. As an example of application, we consider 

two experimental data sets taken from literature: the first is related to the analysis of high 

cycle fatigue properties of ductile cast iron for wind turbine components, and the second one 

evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel. 

 

Keyword: Q-Exponential . Stress-Strength Reliability . Maximum Likelihood Estimators . 

Nelder-Mead . Particle Swarm Optimization. 



 

 
 

RESUMO 

Nos últimos anos, tem sido notado em diversas áreas da ciência e engenharia, um aumento 

significativo na aplicabilidade da família q de distribuições de probabilidade que se baseia em 

Mecânica Estatística Não Extensiva. Uma das características da distribuição q-Exponencial é 

a capacidade de modelar dados que apresentam comportamento de lei de potência, uma vez 

que tal distribuição possui uma função densidade de probabilidade (FDP) que apresenta cauda 

pesada para determinados valores de parâmetros. Esta característica permite-nos considerar tal 

distribuição como candidata para modelar conjuntos de dados que apresentam valores 

extremamente grandes (Ex.: ciclos até a falha). Uma vez que expressões analíticas para os 

estimadores de máxima verossimilhança dos parâmetros não são facilmente encontradas, 

neste trabalho, iremos obter as estimativas de máxima verossimilhança dos parâmetros através 

de dois métodos de otimização: particle swarm optimization (PSO) e Nelder-Mead (NM), que 

além das estimativas pontuais, irão nos fornecer juntamente com abordagens bootstrap, 

intervalos de confiança para os parâmetros da distribuição; intervalos assintóticos também 

serão derivados. Além disso, faremos inferência sobre um importante índice de 

confiabilidade, o chamado Índice � = �(� < �), onde Y (estresse) e X (força) são variáveis 

aleatórias independentes. De fato, quando tratamos de problemas práticos de força-estresse, 

podemos trabalhar com dados de fadiga e fazer uso da bem conhecida relação entre estresse e 

ciclos até a falha. Para alguns materiais, esse tipo de variável pode apresentar dados com 

valores muito grandes e a capacidade da q-Exponencial em modelar esse tipo de dado torna 

essa uma distribuição a ser considerada para ajustar modelos de força-estresse. Em termos de 

confiabilidade de sistemas, o índice R é considerado um tópico de bastante interesse, assim 

iremos desenvolver os estimadores de máxima verossimilhança para esse índice e mostrar que 

esse estimador é obtido através de uma função que depende dos parâmetros da distribuição de 

X e Y. O comportamento do estimador é investigado através de experimentos simulados. 

Intervalos de confiança são desenvolvidos através de bootstrap paramétrico e não-

paramétrico. Duas aplicações envolvendo dados de ciclos até a falha e retiradas da literatura 

são consideradas: a primeira para ferro fundido e a segunda para aço de alta resistência.  

 

Palavras-Chave: Q-Exponencial . Confiabilidade Força-Estresse . Estimador de Máxima 

Verossimilhaça . Nelder-Mead . Particle Swarm Optimization 
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1 INTRODUCTION 

 

1.1 Motivation 

 

Complex systems are those whose elements that constitute them present strong 

interactions with each other [1], [2]. The search for new probabilistic models to describe this 

kind of systems has substantially increased over the last years[3]–[5]. In complex systems, the 

entropy is not an extensive quantity, i.e., there is a dependency relationship between different 

components of the system [6], and it can be argued that in such cases the statistical mechanics 

of Boltzmann-Gibbs [7] is not appropriate. Then, Nonextensive Statistical Mechanics arises 

as a generalization of the statistical mechanics of Boltzmann-Gibbs[6] in order to overcome 

this limitation. 

A family of probability distributions based on Non-extensive Statistical Mechanics, 

known as q-distributions, has experienced a surge in terms of applications to several fields of 

science and engineering. Since the Nonextensive Statistical Mechanics assumes 

interdependencies among the components of a system, these q-distributions have the ability of 

modeling complex systems. Picoli et al. [3] described the basic properties of three 

distributions of this kind: q-Exponential, q-Gaussian and q-Weibull. In another work, Picoli et 

al. [4] presented a comparative study, where q-Exponential, q-Weibull, and Weibull 

distributions were used to investigate frequency distributions of basketball baskets, cyclone 

victims, brand-name drugs by retail sales and highway length. Complex systems such as 

cyclones [8], gravitational systems [9], stock market [10], [11] , journal citations [12] , 

complex DNA structural organization [13], reliability analysis [5], cosmic rays [14], 

earthquakes [15], financial markets [16], internet [17], mechanical stress [18], among others 

have been satisfactorily described by �-distributions.  

Another field of application of �-distributions is mechanical stress. For instance, it has 

been experimentally demonstrated that when a rock sample is subjected to mechanical stress, 

an electrical signal is emitted[19], [20]. This electrical signal is related to the evolution of 

cracks’ network within the stressed sample and is called Pressure Stimulated Current (PSC). 

In [18], PSC emissions in marble and amphibolite samples are considered to follow a �-

Exponential distribution. 
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The �-Exponential distribution is obtained by maximizing the non-extensive entropy 

under appropriate constraints[21]. This distribution has two parameters (� and �), differently 

from the Exponential distribution that is one parametric. This feature gives more flexibility to 

q-Exponential distribution with regard to its decay for the Probability Density Function (PDF) 

curve. Indeed, for a fixed parameter �, a slower or faster decay of the PDF is observed 

depending on the value of �. Moreover, �-Exponential does not have the limitation of a 

constant hazard rate, thus allowing the modeling of either system improvement (1 < � < 2) 

or degradation (� < 1). 

In the context of reliability, it is expected that for a given sample with large values (e.g., 

realizations of rare events), both q-Exponential and Weibull distributions can fit the data well. 

In situations like these, the parameter q of the q-Exponential would lie within the interval (1, 

2) and the shape parameter of the Weibull distribution would be in (0, 1) [4], [22]. 

Moreover, a prominent point of the �-Exponential distribution is its ability to model 

data that presents a power law behavior [4]. Thus, we expect a superior performance of �-

Exponential over for example the Exponential and Weibull distribution in the characterization 

of data sets with extremely large values, since, as pointed out by Laherrère and Sornette[22], a 

stretched exponential PDF (Example: Weibull distribution) has a tail that is heavier than that 

of the Exponential PDF but lighter than that of a power law PDF (Example: q-Exponential 

distribution), the following figure shows this behavior: 

 

Figure 1.1 Behavior of the tails of the distributions q-Exponential, Weibull and Exponential. 
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Thus, more than an alternative to the Weibull Distribution, the q-Exponential 

distribution can be considered the main distribution to be considered in some situations that 

we have extremely large values, for example we can mention data of cycles until failure of a 

very resistant material like high-strengthed steel. This characteristic is due to the ability to 

model data that are present in the tail of the distribution, i.e., extremely large values. Then, the 

use of the q-Exponential with power law characteristic (1 < � < 2), in order to model fatigue 

of material is an important topic to be investigated as we will propose in this work. 

In fact, several studies have investigated the presence of power laws in the behavior of 

data observed in fatigue analysis of materials. For instance, in[23] the acoustic emissions of 

microfractures before the breakup of the sample are evaluated, where the authors used 

samples made of composite inhomogeneous materials such as plaster, wood, or fiberglass. 

The experimental results were similar for all materials, and the authors conclude that statistics 

from acoustic energy measurements strongly suggest that the fracture can be viewed as a 

critical phenomenon and energy events are distributed in magnitude as a power law. 

Moreover, according to Basquin’s law, the lifetime of a system increases as a power law 

with the reduction of the applied load amplitude [24]. Therefore, the alternating stress in 

terms of number of cycles to failure is expressed in a power law form [25] known as the 

Wöhler curve (SN curve). It has also been suggested that the underlying fracture dynamics in 

some systems might display self-organized criticality [26], implying that long-range 

interactions between fracture events lead to a scale-free cascade of ‘avalanches’ [27]. For 

instance, in [27], the authors present a scalar model of microfracturing that generates power 

law behavior in properties related to acoustic emission, and a scale-free hierarchy of 

avalanches characteristic of self-organized criticality [2]. 

In terms of system reliability, a topic of considerable interest is the inference about the 

index � = �(� < �), where � is the strength of a component that is subjected to stress �; 

when � is greater than �, the system fails. Thus, � can be considered as a measure of system 

reliability. Stress-strength models are used in many applications of physics and engineering 

such as strength failure and system collapse [28]. 

Most of the works that aim at estimating � assume that � and � are independent and 

follow the same type of probability distributions. For instance, � and � have been considered 

as Normal [29]–[32], Exponential [33], [34] and Weibull [35]–[37] random variables. 

Moreover, the Generalized Pareto and Generalized Rayleigh distributions are also discussed 
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to model � and � in [38], [39], respectively. Kundu and Gupta [40] and Raqab et al. [41] also 

consider the Generalized Exponential distributions. Al-Zahrani and Al-Harbi [42] adopt the 

Lomax distribution under General Progressive Censoring, and Panahi and Asadi [43] assume 

that � and � follow Lomax distributions with a common scale, but different shape parameters.  

In this sense, this work seeks to contribute with the insertion of a new probabilistic 

model to describe models of Stress-Strength. The fact of the q-Exponential distribution 

present good results for modeling data with large order of magnitude, allow us to propose 

such distribution to deal with stress-strength models when we are working with fatigue life 

data (number of cycles until failure). Note that in stress-strength problems we can use life 

cycle data as model input data, since there is a one-to-one relationship between stress level 

and number of cycle to failure that is represented by the SN curve [25], [44]. Thus from the 

SN curve we can observe that, stress level and number of cycles to failure can be 

interchangeably used in problems of this kind. The Figure 1.2 represents an example of SN-

Curve: 

 

 

Figure 1.2. Example of SN-curve. 

 

It is worth mentioning that, in order to obtain analytical expressions for estimators of �-

exponential parameters, it is necessary solving a complicated set of equations. In this way, 

Shalizi [45] and Bercher and Vignat [46] have shown that a reparameterization for that set of 

equations is required. However, this approach allows obtaining analytical expressions for the 

MLE only when 1 < q < 2 and, however, the q-Exponential distribution is also defined for q < 
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1. Such a parameter range corresponds to hazard rate behavior with relevant applications, 

namely the reliability modeling of degrading systems. In this way, with the exception of the 

case 1 < q < 2 [45], analytical expressions for the maximum likelihood estimators of q-

Exponential are very difficult to be obtained due to the intricate derivatives of the log-

likelihood function. 

Thus, in this work the MLE for the parameters of a q-Exponential distribution are 

numerically derived through two different optimization algorithms: Nelder-Mead [47] and 

Particle Swarm Optimization (PSO) [48]. The results obtained from these two approaches will 

be compared by means of bias and MSE (Mean Squared Error). 

 

1.2 Objectives 

 

1.2.1 General Objective 
 

The main objective of this work is to develop a new Stress-Strength Model based in the 

q-Exponential distribution to work with fatigue life data that present extremely large values. 

1.2.2 Specific Objectives 
 
 

 Apply PSO and Nelder-Mead optimization methods to maximizing the log-

likelihood function of the q-exponential distribution in order to find the 

maximum likelihood estimates of the model parameters. 

 Evaluate, by numerical experiments, the performance of the PSO and Nelder-

Mead optimization methods in the estimation of the q-Exponential parameters. 

 Develop the estimator of the Index R=P(Y<X) based on the q-Exponential 

distribution considering the particularity of the support of the q-Exponential 

PDF. 

 Apply PSO and Nelder-Mead optimization methods in order to find the 

maximum likelihood estimates of the index R=P(Y<X). 

 Evaluate the performance of the PSO and Nelder-Mead optimization methods in 

the estimation of the index R=P(Y<X). 
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 Evaluate the quality of the confidence intervals obtained for the q-Exponential 

parameters and for the index R, by bootstrap methods (parametric and non-

Parametric), through simulated experiments. 

 Compare, through hypothesis tests, the effectiveness of the results obtained for 

the point and interval estimates of the q-Exponential parameters and of the index 

R. Besides, compare the results obtained for the confidence intervals when we 

use parametric and non-parametric bootstrap approaches. 

 Apply the proposed model of stress-strength reliability based in the q-

Exponential distribution in a real example and comparing the results with the 

results obtained when we consider other probability distributions (Weibull and 

Exponential). 

 

1.3 Structure of the Work 

 

This work presents six chapters, including this introduction. The chapter 2 treats of the 

theoretical background where first we develop the q-Exponential distribution discussing 

important features and particularities of this distribution.  Still in the chapter 2, we will 

address the approaches for point and interval estimation of parameters and also the 

optimization methods used in this work. The hypothesis tests used in order to make 

comparisons with the results of the point and confidence intervals also will be discussed in 

this chapter. Chapter 3 addresses the estimation of the q-exponential parameters, developing 

numerical experiments for the maximum likelihood estimators and confidence intervals. The 

chapter 4 presents the q-exponential distribution in the approach of calculating the index 

� =  � (� < �). In this chapter we will develop the estimator of the index R respecting 

important features of the q-Exponential PDF. Numerical experiments will be presented in the 

chapter 4 in order to evaluate the quality of the point estimator and confidence intervals 

calculated via PSO and Nelder-Mead. In chapter 5 we will present two case studies of the new 

proposed stress-strength model. Also in this chapter, we will calculate the index R based in 

the Weibull distribution, in order to compare the result with the result obtained with the new 

proposed stress-strength model. Finally, Chapter 6 provides some concluding remarks.  
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2 THEORETICAL BACKGROUND 

 

2.1 The �-Exponential distribution  
 

The q-Exponential PDF is given by the following expression: 

 

��(�) =
(2 − �)

�
���� �− �

�

�
�� ;    � < 2   ��� � > 0 

, 

 

 

Where � is the parameter that determines the density shape and is known as entropic index, � 

is the scale parameter and ����(�) is the �-Exponential function defined as: 

 

����(�) = �
[1 + (1 − �)�]

�
��� , if  [1 + (1 − �)�] ≥ 0

0,                                       otherwise,

 

, 

 

  

 

Where �  and   � ∈  ℝ . 

 
Note that the �-Exponential PDF becomes an Exponential PDF when � → 1. Thus, the 

�-Exponential distribution is a generalization of the Exponential one. The parameters � and q 

determine how quickly the PDF decays. Note also that the q parameter dictates how the 

distribution deviates from exponentiality, and this deviation is also defined by the decay of 

the distribution. When compared to the decay of the Exponential distribution with the same 

parameter �, the �-Exponential presents a slower decay for 1 < � < 2 (Power Law 

characteristic) and a faster decay for � < 1; for a fixed parameter �, we will have a similar 

behavior of the exponential distribution (� →  1), i.e., insofar as the value of the parameter � 

increases it is observed a slower decay of the PDF. 

By using the definition of the q-Exponential function, it is possible to rewrite the 

density of q-Exponential: 
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��(�) =
(2 − �) �1 −

(1 − �)�
� �

�
���

�
,   � < 2   and � > 0 

. 

 

 

 

Furthermore, the support � is changed depending on the value of the entropic index as 

follows: 

 

� ∈

⎩
⎪
⎨

⎪
⎧

[0;  ∞),   � ≥ 1

�0;
1

1
�

(1 − �)
� ,    � < 1

 

. 

 

(2.1) 

 

 

Figure 2.1 and Figure 2.2 presents the q-Exponential PDF for some possible values of � 

and �, illustrating the behavior that was previously commented. 

 

 

Figure 2.1. q-Exponential PDF for a fixed � and some possible values of � 
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Figure 2.2. q-Exponential PDF for a fixed q and some possible values of η 

 

The Cumulative Distribution Function (CDF) of the q-Exponential is defined by the 

following expression: 

 

��(�) =

⎩
⎨

⎧1 − ����� �− �
�. (2 − �)

�
��, � ≥ 0

0, otherwise

 

, 

 

 

where �� =
�

���
. By inverting ��(�), we obtain a q-Exponential random number generator: 

 

� =
� �1 − (� )

���
����

1 − �
 

(2.2) 
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Where �  is a uniform random variable defined in [0,1]. 

 

An important characteristic of the q-Exponential distribution, especially in the reliability 

context, is that the �-Exponential hazard rate is not necessarily constant as occurs for the 

Exponential distribution. In fact, we will show that for a �-Exponential distribution, we can 

model two additional behaviors for the hazard rate. To prove this, let us first define the hazard 

rate ℎ�(�) =
��(�)

��(�)
.  

Then, we can write: 

 

ℎ�(�) =  

(2 − �) �1 −
(1 − �)�

� �

�
���

�

�1 −
(1 − �)�

� �

���
���

=
(2 − �)

�
�1 −

(1 − �)�

�
�

���
���

 

 

 

Thus, the �-Exponential distribution is able to represent two different types of hazard 

rate behaviors depending on the values the parameter � assumes. For 1 < � < 2, ℎ�(�) is a 

decreasing monotonic function (Figure 2.3 (a)), while for � < 1, ℎ�(�) increases 

monotonically (Figure 2.3 (b)). 
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Figure 2.3. (a) �-Exponential ℎ�(�) with � = 1, and � = 1.8; (b) �-Exponential ℎ�(�) with � = 1, and � = 0.7. 

 

Nadarajah and Kotz [49] point out that many of the q-distributions that have emerged 

recently were known by other names and they particularly discuss two families of 

distributions: Burr-type XII and Burr-type III, which have many q-distributions as special 

cases. However, it is worth noting that the q-Exponential is a generalization of the Burr XII 

and not the opposite, as stated by Nadarajah and Kotz [50], since the q-Exponential is valid 

even for � < 1, which does not happen with the Burr XII. 

 

2.2 Estimation of Parameters 
 

In this section, we will briefly describe the methods that will be used in this work in 

order to obtain point and interval estimates of parameters of interest. First we will describe the 

Maximum Likelihood Estimation method and next we will deal with the approach of 

bootstrapped and asymptotic confidence intervals.  

 

2.2.1 Maximum Likelihood Estimation 
 

The maximum likelihood method is one of the most used in order to obtain estimates of 

the parameters of a probabilistic model. The principle is to estimate the parameter (or 

parameters, if we have a multi-parametric model) which best characterizes a sample that was 

obtained from a population governed by a certain probabilistic model. Thus, the method seeks 
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to determine the distribution, among all those defined by the possible values of their 

parameters, with greater chance of having generated the sample analyzed. 

 

2.2.1.1 Uniparametric Case 
 

Firstly we present the concept of likelihood function: 

Consider a random sample of the random variable X, with size n: X1,X2,…,Xn. We 

represent the probability density function (PDF) of the random variable X, as f(x| θ), with θ ∈ 

ϴ , where  ϴ is the parametric space. Thus, the likelihood function of θ, for the considered 

sample, can be write as [51]: 

 

�(�; �) = ∏ �(��|�
�� � θ) 

 

The Maximum Likelihood Estimator of θ will be the value that maximizes the 

likelihood function.  We will denote this value as �� ∈ ϴ. 

Normally is simpler to obtain maximum likelihood estimates maximizing the natural 

logarithm of the likelihood function. Of course the value of  �� that maximizes the likelihood 

function is equal to value that maximizes the logarithm of the likelihood function. In this way, 

we define the log-likelihood function as: 

 

�(�,�) = ��� [�(�,�)] 

 

Thus, in the uniparametric case, we get the maximum likelihood estimate calculating the 

root of the derivative of the log-likelihood function, i.e.: 

 

� �(�,�)

��
= 0 

(2.3) 

 

It is important to report that in some situations, the root of the derivative of the log-

likelihood function can be obtained analytically, however, in some situations the solution of 

the Equation (2.3) will only be obtained by numerical procedures. 
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2.2.1.2 Multiparametric Case 
 

In situations that we intend to estimate parameters of a multiparametric model, i.e. θ=( 

θ0, θ1, …, θr) by maximum likelihood approach we can following the same ideas presented for 

the uniparametric models with some adaptations. The estimates for the parameters can be 

obtained by solving the following equations [51]: 

 

� �(��,��,… ,��,�)

� ��
= 0 , for i = 1,…, r. 

 

2.2.1.3 Likelihood for independent samples 
 

In some situations, we have two or more independent samples that have one or more 

parameter of interest. Thus, we can represent a unique likelihood function for these variables, 

as [51]: 

 

�(��� ,��� ,… ,��� ; ��� ,��� ,… ,��� ; �,�) = �(��� ,��� ,… ,��� ; �)�(��� ,��� ,… ,��� ; �) 

 

Note that, this result is valid due the independence of the samples. 

 

Thus, using the properties of the logarithmic function, we can write the log-likelihood 

for two independent samples, as: 

 

�(��� ,��� ,… ,��� ; ��� ,��� ,… ,��� ; �,�) = �(��� ,��� ,… ,��� ; �) + �(��� ,��� ,… ,��� ; �) 

 

 

2.2.2 Bootstrap Confidence Intervals 
 
 

In this section, we present the algorithms used  in order to build Parametric and Non-

Parametric Bootstrap confidence Intervals for the Parameters of a model [52], [53]. 
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2.2.2.1 Bootstrap-p 
 

The algorithm for constructing confidence intervals by using the bootstrap-p approach 

has the following steps: 

 Step 1: From an initial sample for the variable X ={x1,x2,…,xn}  , estimate the 

parameters �, by maximizing the log-likelihood function; 

 Step 2: Use the estimate obtained in the previous step and the random number 

generator of variable X to generate new samples for X, i.e.: {��
∗, ��

∗ ,. . ., ��
∗}. Based on 

this new sample, compute the bootstrap sample estimate of �, say �∗, maximizing the 

log-likelihood function of the variable X; 

 Step 3: Repeat step 2, � times; 

 Step 4: Using the � values of �∗ obtained in step 3 and by adopting a γ significance 

level, find the percentiles �� �⁄
∗  and ���(� �)⁄

∗ . Thus, it is possible to determine an 

approximate confidence interval, with confidence interval equal to 100*(1- �)%, for 

the parameter �, as: 

 

                      

�. �. = [�� �⁄
∗ ,���(� �)⁄

∗ ] 

. 

(2.4) 

 

2.2.2.2 Non-Parametric bootstrap  

 

The algorithm for constructing confidence intervals by using the non-parametric 

bootstrap approach is as follows: 

 Step 1: From an initial sample for the variable X ={x1, x2,…,xn}, generate new samples 

for X by sampling with replacement, i.e., {��
∗, ��

∗ ,. . ., ��
∗}. Based on this new sample, 

compute the estimate of �,  say   �∗, maximizing the log-likelihood function of the 

variable X; 

 Step 2: Repeat step 1, N times. 

 Step 3: By using the N values of �∗ from step 2 and by adopting a γ significance level, 

the percentiles �� �⁄
∗ and ���(� �)⁄

∗  are obtained; they determine an approximate 
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confidence interval for the parameter � with confidence level equals to 100*(1- �)% 

using Equation (2.4). 

 

2.2.3 Asymptotic confidence intervals 
 

According to the asymptotic properties of the maximum likelihood estimators, the 

related covariance matrix can be estimated by the inverse of the observed information matrix 

(I(θ�|t)), i.e., the negative of the second derivative of the log-likelihood function evaluated at 

the point estimate θ� given data t [54], [55]. Note that the observed information matrix is the 

negative of the Hessian. In this way, both matrices are symmetric and measure the amount of 

curvature in the log-likelihood function. For example, in a r− parametric model we have , 

θ� = (θ��,θ��,… ,θ��), and the covariance matrix associated to the maximum likelihood 

estimators is as follows: 

 

var� ����,���,… ,���� = �������,���,… ,���|�� = 

 

 

−

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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�������,���,… ,���|��

����
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�������,���,… ,���|��

��������

�������,���,… ,���|��

��������
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����
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����
�
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⎥
⎥
⎥
⎥
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⎥
⎥
⎤
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, 

(2.5) 

 

Once the covariance matrix is estimated, asymptotic confidence intervals can be 

constructed for the parameters of the distribution by using the asymptotic normality property 

of the maximum likelihood estimators.  The asymptotic (1 − α) ⋅100%  confidence intervals 

for ���,���,… ,��� are given by, respectively: 

 

C. I. [��; (1 − �) ⋅100% ] = ���� + ��

�
� var� ��, ��� + �

���
�

�
�
� var� ���, 
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(2.6) 

 

C. I. [��; (1 − �) ⋅100% ] = ���� + ��

�
� var� ��, ��� + �

���
�

�
�
� var� ���, 

                   ⋮                                                               ⋮         

 

(2.7) 

  

C. I. [��; (1 − �) ⋅100% ] = ���� + ��

�
� var� ��, ��� + �

���
�

�
�
� var� ���, 

(2.8) 

 

 

2.3 Optimization Methods 
 

2.3.1 Particle Swarm Optimization  
 

PSO [48] is a probabilistic optimization heuristic based on the motion of groups of 

organisms (e.g., flocks of birds, schools of fishes), which optimizes a problem from a 

population of candidate solutions (particles). According to update equations over the particles' 

position and velocities, the candidate solutions explore the search-space. Each particle's 

movement is influenced by its own best position and also by its neighbors' best. Thus, it is 

expected that particles move toward the best solutions.  

PSO has been successfully applied to different contexts. For example, [56]–[63] apply 

PSO in the adjustment of the hyperparameters that emerge in the training problem of support 

vector machines (SVM). Indeed, Lin et al. [56] , Lins et al. [63] and Droguett et al. [62] use 

PSO not only to adjust the SVM hyperparameters, but also for variable selection. In the 

specific context of parameter estimation, PSO has been used to estimate the parameters of a 

generalized renewal process in order to establish preventive maintenance policies [64], to 

estimate parameters of mathematical models related to chemical processes [65] and to obtain 

maximum likelihood estimates for the parameters of a mixture of two Weibull distributions 

[66]. 

 

For a particle j, j = 1, ..., npart , we have the following features:  

 

 Current position in the search space (sj); 

 Best position it has visited so far (pj); 
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 Velocity (vj); 

 Fitness (fj), which is the value of the objective function, which in this work is the �-

Exponential log-likelihood. 

 

Every particle is a potential solution for the considered optimization problem, which 

involves a d-dimensional search space with each dimension related to one of the decision 

variables. Thus, sj, pj and vj are all d-dimensional vectors, whose entries are associated with 

the decision variables of the problem. In the maximum likelihood optimization problem 

related to the �-Exponential distribution, d= 2 and the first and second entries of sj, pj and vj 

are related to h and �, respectively. 

The velocity and position update equations are defined as follows: 

 

���(� + 1) = �����(�) + ��������(�) − ���(�)�+ �������� (�) − ���(�)�� (2.9) 

���(� + 1) = ���(�) + ���(� + 1), (2.10) 

   

Where r is the iteration number,  is the constriction factor that avoid velocity explosion 

during PSO iterations [35], c1 and c2 are positive constants, u1 and u2 are independent uniform 

random numbers in [0, 1], and pgk is the k-th entry of vector pg related to the best position that 

has been found by any neighbor of particle j. 

Whenever an infeasible particle emerges - with respect to the constraints over h and � 

to assure the probabilistic characteristics of the �-Exponential distribution as well as to the 

logarithm arguments in the �-Exponential log-likelihood. - its velocity and its position are not 

altered and its fitness is not evaluated so as to avoid infeasible pj and pg. In this way, 

infeasible particles may become feasible in subsequent iterations due to the influence of their 

own and neighbor's feasible best positions. This approach is known as "let particles fly" [48].  

The update of velocities and positions and fitness evaluations are repeated until one of the 

following stop criteria is met: 

 

a) Maximum number of iterations (niter). 
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b) The global best particle is the same for 10% of niter. In this case, the iteration 

number in which the best particle has been found is used, as commented in the previous 

subsection. 

c) The global best fitness values in two consecutive iterations are different, but such a 

difference is less than a predefined tolerance . 

 

2.3.2 Nelder–Mead 
 

The Nelder–Mead method, also known as Downhill Simplex method, is a numerical 

approach commonly applied to nonlinear optimization. It is used to find the minimum or 

maximum of an objective function in a multi-dimensional space. This method has been one of 

the direct search methods most used in unconstrained optimization problem of a function of � 

variables.It has been used in several studies with the aim of maximizing the log-likelihood 

function and to estimate the parameters of various probability distributions in many areas 

such as: Ecology [68]; Medicine [69], [70]; Power Systems [71], [72], and Chemical 

Engineering [73]. 

The following characteristics make it one of the most popular methods of 

optimization[74]:  

 

 Ease of computational implementation; 

 Calculations of the derivatives of the objective function are not required; 

 Few evaluations of the objective function are required; 

 The value of the objective function sharply decreases in the first iterations. 

 

The method uses the concept of a simplex, which is a special polynomium type with 

� + 1  vertices in � dimensions. 

Consider the problem of unconstrained minimization: 

 

    �(�)��ℜ �
��� ;  Where, f:ℜ � ⟶ ℜ . 

 

In this work �(�) is the negative of the �-Exponential log-likelihood. 
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In one iteration of the Nelder-Mead method, the � +  1 vertices of the simplex, 

��, ��,… , ���� belonging to ℜ �  are ordered according to the growth of the values of �, i.e: 

 

�(��) ≤ �(��) ≤ ⋯ ≤ �( ����) 

 

Where �� is the best vertex and  ���� is the worst vertex. 

The repositioning of these vertices takes into consideration four coefficients: 

 

 Reflection coefficient (�) 

 Expansion coefficient (�) 

 Contraction coefficient (�) 

 Reduction coefficient (�) 

 

These coefficients must satisfy the following restrictions[47]: 

� > 0, � > 1, 0 < � < 1 and 0 < � < 1 

 

The default choice of these coefficients is given by: � = 1,  � = 2 , � = 1/2  and 

� = 1/2. 

 

The method attempts to replace the worst vertex of the simplex by one with better 

value. The new vertex is obtained by reflecting, expansion or contraction of the worst vertex 

along the line through this vertex and the centroid of the best n vertices. At each iteration, the 

worst vertex is replaced by a new vertex or the simplex is reduced around the better vertex. 

 

The following steps correspond to an interaction of the Nelder-Mead algorithm [47]: 

 

Step 1 - Sort: Sort the � +  1 vertices: 

�(��) ≤ �(��) ≤ ⋯ ≤ �( ����); 

 

Step 2- Centroid: Calculate the centroid of the � best vertices: 

 � =̅ �
��

�

�

�� �
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Step 3- Reflected vertex: Calculate the reflected vertex (��): 

�� = � +̅ �(� −̅ ����) 

If �(��) ≤ �(��) ≤ �( ��), then do  ���� =  �� and finalize the iteration.  

 

Step 4- Expansion: If �(��) ≤ �(��), calculate the expanded vertex (��):  

�� = � +̅ �(�� − �)̅ 

If �(��) ≤ �(��), then do  ���� =  �� and finalize the iteration, else  ���� =  �� and 

finalize the iteration. 

 

 

 

Step 5- Contraction: If �(��) ≥ �(��) 

5.1 External:  

If f(x�) ≤ f(x�) ≤ f( x���), calculate the external contraction vertex (���): 

��� = � +̅ �(�� − �)̅ 

If �(���) ≤ �(��), then do  ���� =  ��� and finalize the iteration, else go to step 6. 

 

5.2 Internal: 

If �(��) ≥ �(����), calculate the internal contraction vertex (���): 

��� = � −̅ �(� −̅ ����) 

If �(���) ≤ �(����), then do  ���� =  ��� and finalize the iteration, else go to step 6. 

 

Step 6- Reduction: Calculate vectors �� = �� + �(�� − ��), � =  2,… ,� + 1. 

The vertices (not ordered), for the next iteration are: ��,��,… ,����. 

 

Given a tolerance  ����, the following stop criterion [47] takes into account the function 

value in the simplex vertices: 

� �
��(��) − �(�)̅�

�

�

���

�� �
< ���� 
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2.4 Hypothesis Tests 
 

2.4.1 Shapiro-Wilk Test 
 

The Shapiro–Wilk test [75] is a statistical test used in order to verify if a variable is 

normally distributed.  

 

The hypotheses of the test are the following: 

 

H0: The sample is from a normal population 

H1: The sample does not come from a normal population 

The test statistic is: 

 

� =
(∑ ����

�
�� � )�

∑ (�� − �)̅��
�� �

 

 

Where, (xi) corresponds to the sorted sample values - from lowest (x1) to the largest 

(xn);   � =̅ (∑ ��
�
�� � )/�  is the sample mean; and the values of ai are determined as follows: 

 

(��,��,… ,��) =
� �� ��

(� �� ������ )
�
�

 

 

Where, � � = (� �,� �,… ,� �) denote the vector of expected values of standard normal 

order statistics and �  is the covariance matrix of those order statistics. 

For a given level of significance (�) it is possible to find the � �  value in the table that 

shows the critical values of Shapiro-Wilk Statistic. This table can be found in the paper 

published in 1965 by Shapiro and Wilk [75]. 

For this test, we will reject the null hypothesis if W < W � . If we consider the p-value, 

then the null hypothesis will be rejected if the p-value was lower than the level of significance 

(�).  
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2.4.2 Student’s t-test for Paired Samples 
 
 

This test allows us to infer on the equality of the averages of two paired samples. Often 

each case is analyzed twice (before and after a treatment or intervention), forming pairs of 

observations, whose differences are tested in order to verify if the result is zero or not [76]. 

Let us consider two dependent samples � = (��,��,… ,��) and � = (��,��,… ,��). 

Then, once the samples are dependents, we consider that actually we have a sample  of 

couples (��,��),(��,��),… ,(��,��). Calculating �� = �� − ��, for � = 1,2,… ,� we can 

define the sample � = (��,��,… ,��). As assumption of the Student's t-test paired, it is 

necessary that the samples � and � are normally distributed, therefore we will have: 

�~�(��,��
�). 

Before we perform the test we must choose the hypotheses that will be investigated:  

 

 

 

 

 

 

 

The �� parameter is estimated by the sample mean of the differences ,i.e., �� =
∑ ��

�
���

�
. 

The ��
� parameter is estimated by the sample variance of the differences ,i.e., ��

� =

∑ (�����)��
���

���
. 

The test statistic is: 

� =
�� − ��

��

√�
�

 

Under ��, the test statistic follows a Student's t distribution with � − 1 degrees of 

freedom. So, for a given level of significance (�) it is possible to find the value of �, with 

� − 1 degrees of freedom in order to compare with statistic � and take the appropriate 

decision about test. Following, we present the null hypothesis rejection criteria: 

 

 

Bilateral   Unilateral to Left   Unilateral to Right 

��: �� ≠ 0 

��: �� = 0 
or 

��: �� < 0 

��: �� = 0 
or 

��: �� > 0 

��: �� = 0 
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If we consider the p-value, then the null hypothesis will be rejected if the p-value was 

lower than the level of significance (α). 

 

2.4.3 Wilcoxon test 
 

This test is used to verify if the position measurements of two samples are the same . It 

is applied in the case where the samples are dependent [77]. In the test application, we must 

consider two dependent samples with sample size �, i.e., � = (��,��,… ,��) and � =

(��,��,… ,��). In this case, we consider the paired observations, that is, we consider that we 

have actually a sample of couple: (��,��),(��,��),… ,(��,��). 

Let us define �� = |�� − ��|, for � = 1,2,… ,� and thus we can obtain the sample 

� = (��,��,… ,��). The hypotheses for the test are the following: 

 

 

 

 

 

 

In other words, we are testing whether the populations differ in location or not using the 

following idea: if we accept the null hypothesis, we have that the median of the difference is 

zero, i.e., populations do not differ in location. If the null hypothesis is rejected, then the 

median of the difference is not zero, so we have populations that differ in location. 

Once the Wilcoxon test is based on the ranks of the values obtained, initially we need to 

sort the values of the absolute differences, from the lowest to the highest. For each value 

sorted we associate the post ��. Then we define the indicator variable, as: 

 

�� = �
1,   �� �� > 0
0,   �� �� < 0

 

Bilateral  Unilateral to Left  Unilateral to Right 

If  � > �����
�

� or  � < ��
�� then, 

we must reject the null hipothesis. 

If  � < ��  then, we must 

reject the null hipothesis. 

If  � > ����  then, we must 

reject the null hipothesis. 

Bilateral   Unilateral to Left   Unilateral to Right 

��: ∆ ≠ 0 

��: ∆ = 0 
or 

��: ∆ < 0 

��: ∆ = 0 
or 

��: ∆ > 0 

��: ∆ = 0 
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After this, we must obtain the products ����, for i=1 to n. So, with these results we 

must calculate the test statistic by the sum of the products, i.e.: 

 

�� = � ����

�

�� �
 

 

The test statistic should then be compared with the critical value obtained from the 

Wilcoxon table. If we consider the p-value, then the null hypothesis will be rejected if the p-

value was lower than the level of significance (α). 

 

2.4.4 Bootstrapped Kolmogorov-Smirnov test (K-S Boot) 
 

The one-sample Kolmogorov-Smirnov test (K-S test) is not very useful in practice 

because it requires a simple null hypothesis, i.e., the distribution must be completely specified 

with all parameters known beforehand [78]. A bootstrapped version of a K-S test was 

proposed as alternative to overcome this problem [79]. This method results in accurate 

asymptotic approximations of the �-values [80]. In this work, we will use this bootstrapped 

version to check the fit of the �-Exponential distribution to each data set. This method follows 

the following steps: 

 

 Step 1: From an initial sample for the variable � = {��,��,… ,��}, estimate the 

parameters � = {��,��,… ,��} and construct the theoretical CDF: ��(�,��). 

 Step 2: Evaluate �� =  max����� �����(��) − ��(���,����,����(����) − ��(���,�����, 

where ���(�) is the empirical CDF. 

  Step 3: Use the estimates obtained in the first step to generate new samples for �, i.e.: 

{��,�
∗ , ��,�

∗  ,. . ., ��,�
∗ }. Based on these new samples, compute the bootstrap sample 

estimate of �, say ��
∗ =  {���

∗ ,���
∗ ,… ,���

∗ }. 

 Step 4: Repeat step 3, � times; � = (1,2,… �). The number of bootstrap samples � 

should be large to ensure a good approximation. 
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 Step 5: Evaluate ��
∗ =   max����� �����,�

∗ ���,�
∗ � −  ��,�

∗ ���,�
∗ ,��∗��,����,�

∗ ��(���),�
∗ � −

��,�
∗ ���,�

∗ ,��∗���; 

 

We reject the null hypothesis if �� > �(�(���)��)
∗  for a significance level �. An 

approximate �-value can be computed using: 

 

� =
#{��

∗ ≥ ��}+ 1

� + 1
 

 

Where #{��
∗ ≥ ��} indicates the quantity of ��

∗ (� = 1,… �) that was larger than ��. 
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3 ESTIMATION OF THE q-EXPONENTIAL PARAMETERS BY PSO 
AND NELDER-MEAD METHOD 

 
In this section we propose the PSO and the Nelder-Mead methods as alternatives to 

estimate the parameters of a q-Exponential distribution. Also confidence intervals will be 

presented for the q-Exponential parameters based on the approach of bootstrap parametric and 

non-parametric. Asymptotic confidence intervals also will be performed for the parameters. 

Comparisons between the proposed methods will be made and a practical application will be 

presented. 

 

3.1 The Maximum Likelihood Estimator for the q-Exponential Distribution 
 

In order to compute the MLE of q and h let X = {x1, x2,..., xn} be a random sample of 

size n. From this sample, it is possible to write the likelihood function for the observed sample 

as:  

�(�,�,�) = (2 − �)� �
1

�
�

�

� �1 −
(1 − �)��

�
�

�
���

�

�� �

 

 

 

and the log-likelihood function as:  

 

�(�,�,�) = � ��(2 − �) + � ���
1

�
� +

1

1 − �
� ���1 −

(1 − �)��

�
�

�

�� �
 (3.1) 

 

The partial derivatives of the log-likelihood have the following results: 

 

��(�,�,�)

��
=

�

�
+

�
(� − 1)� �

�(� − 1)� �+ 1

�

�=1

1 − �
 

 

 

��(�,�,�)

��
=

�

� − 2
+

�
�� �

�(� − 1)� �+ 1

�

�� �

1 − �
+

� log (�(� − 1)� �+ 1)
�

�� �

(1 − �)�
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As we can observe from the partial derivatives of the q-Exponential log-likelihood, is 

very complicated to obtain analytical expressions in order to estimate the q-exponential 

parameters.  Thus, in this work we will use computational algorithms to maximize the log-

likelihood function, in order to obtain the estimates for the parameters � and h. We will call 

these estimates as �� and �̂, and they will be obtained by PSO and Nelder-Mead algorithm 

 

3.2 Confidence intervals based on bootstrap methods 
 

For the construction of bootstrap intervals for the parameters q and h of a q-Exponential 

distribution, we will consider two approaches: bootstrap-p and non-parametric bootstrap[52], 

[53]. 

3.2.1 Confidence intervals based on Bootstrap-p for the q-Exponential parameters 
 

The following steps are applied in order to construct bootstrap-p based confidence 

intervals for the parameters q and h: 

 

 Step 1: From an initial sample for the variable X = {x1, x2,..., xn}, estimate the 

parameters q and h by maximizing the Equation (3.1); 

 Step 2: Use the estimates obtained in the previous step and Equation (2.2) to generate 

a new sample X*, i.e. {x1
*, x2

*, ..., xn
*}. Based on this new sample, compute the 

bootstrap sample estimates for � and h, say �∗ and h∗, by maximizing the Equation 

(3.1); 

 Step 3: Repeat step 2 � times; 

 Step 4: Using the � values of �∗ and h∗, obtained in step 3 and by adopting a a  

significance level, find the quantiles a/2 and 1 − a/2 for q* and h*. With this 

information, it is possible to determine an approximate confidence interval for the 

parameters � and h with confidence equals to 100(1-a)% by the following equations: 
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��[�; (1 − �) ⋅100% ] = [�� �⁄
∗ ,���(�/�)

∗ ] , (3.2) 

��[�; (1 − �) ⋅100% ] = [�� �⁄
∗ ,���(�/�)

∗ ]. (3.3) 

 

3.2.2 Confidence intervals based on Non-Parametric Bootstrap for the q-
Exponential parameters 

 

The algorithm for constructing confidence intervals for the parameters q and h by using 

the non-parametric bootstrap approach is as follows: 

 

 Step 1: From an initial sample for the variable X = {x1, x2,..., xn}, generate a new 

sample X* by sampling with replacement, i.e. {x1
*, x2

*, ..., xn
*}. Based on this new 

sample, compute the estimates for � and h, say �∗ and h∗, by maximizing the Equation 

(3.1); 

 Step 2: Repeat step 1, � times. 

 Step 3: By using the � values of q* and h* from step 2 and by adopting a as 

significance level, find the quantiles a/2 and 1 − a/2 for q* and h*. Thus, with this 

information, it is possible to determine by Equations (3.2) and (3.3) an approximate 

confidence interval for the parameters q and h, with confidence interval equals to 

100 ∗ (1 − �)% . 

 

3.3 Asymptotic confidence intervals for the q-Exponential parameters 
 

For the q-Exponential distribution, we have two parameters, i.e., �� = (�̂,��). For this 

probabilistic model, the covariance matrix associated to the maximum likelihood estimators is 

as follows: 
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var� (�̂,��) = ���(�̂,��|�) = − �

���(��,��|�)

���

���(��,��|�)

����

���(��,��|�)

����

���(��,��|�)

���

�

��

, (3.4) 

 

In which 

 

���(��,��|�)

��� =
�

��� �� − ∑ �
�

��

��
�����

��
�� � � −

�

��
∑ �

�

���
��

��
������

���
�� � , 

(3.5) 

 

���(��,��|�)

����
=

��ℒ(��,��|�)

����
= −

�

��
∑ �

�

�
��

��
������

���
�� � , 

(3.6) 

 

���(��,��|�)

��� = −
�

(����)� +
�

(����)�
∑ log�1 − (1 − ��)

��

��
��

�� � +
�

(����)�
∑ �

�
��

��
�����

��
�� � −

�

����
∑ �

�

�
��

��
������

���
�� � . 

(3.7) 

 

 

Once the covariance matrix is estimated, asymptotic confidence intervals can be 

constructed for the �-Exponential parameters by using the asymptotic normality property of 

the maximum likelihood estimators.  The asymptotic (1 − �) ⋅100%  confidence intervals for 

h and � are given by, respectively: 

 

CI[�; (1 − �) ⋅100% ] = ��̂ + ��

�
� var� ��, �̂ + �

���
�

�
�
� var� ���, 

 

(3.8) 

CI[�; (1 − �) ⋅100% ] = ��� + ��

�
� var� ��, �� + �

���
�

�
�
� var� ���, (3.9) 

 

In which za/2 and z1-a/2 are the a/2 and 1 - a/2 quantiles of the standard normal 

distribution and var� ��, var� �� are the diagonal elements of the covariance matrix presented in 

Equation (3.4). 
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3.4 Numerical experiments 
 

In this section, some simulations will be presented in order to assess the quality of 

estimates of q-Exponential parameters obtained from PSO and Nelder-Mead methods. The 

PSO was implemented in the MATLAB computer software [81] and the Nelder-Mead was 

performed by the function Optim of the software R [82]. We will consider sample sizes equal 

to 100, 500 and 1000, and simulations for point and interval estimates will be presented. 

In previous simulations, we detected that in situations where the parameter � is less than 

0, the simulations showed results for the estimates that are very different from the parameters. 

Table 3.1 presents these estimates obtained maximizing the log-likelihood function of the �-

Exponential distribution, in situations that � is less than zero. The results are presented 

considering the average of 1000 estimates of each parameter. Observe that the results for the 

estimates of � and � are very different from the parameters, mainly when the sample size is 

small (n=100). 

 

Table 3.1. Results for estimates of the parameters � and q obtained maximizing the Log-likelihood function of 
the q-Exponential distribution – simulations for q<0 

 

(�,�) 

 

� 

 

�̂ ̅

 

��� 

 

Bias(�̂) 

 

Bias(��) 

 

MSE(�̂) 

 

MSE(��) 

(5, -1) 

100 56558.45 -24103.9 56553.45 -24102.88 5.80E+11 1.04E+11 

500 5.577235 -1.24941 0.5772 -0.24941 2.29256 3.91E-01 

1000 5.753486 -1.31194 0.7535 -0.31194 3.99648 6.49E-01 

 

In order to investigate what might be causing this problem, we have built the graphics 

of the likelihood function in a situation that � parameter is greater than 0 and also otherwise. 

As we can observe from Figure 3.1 (b), when the parameter � is less than 0, the graphic of the 

log-likelihood function present a monotonic behavior, i.e., we cannot found a maximum value 

for the parameters � and �. This behavior does not occur when the value of � is greater than 

0; see Figure 3.1 (a). Thus, for the case where the parameter � is less than 0, we propose a 

reparametrization of the log-likelihood function. In fact, we make the following 

reparametrization in the parameters of the �-Exponential: 
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� = 2 − ��� �
��

35
� (3.10) 

� = exp (��). (3.11) 

 

 

(a) 

n = 100 
Parameters: 
� =  1.5 and � = 5 
Maximum of the Graphic: 
� =  1.5042   and � = 5 
Estimates of Maximum Likelihood: 

�� = 1.4850  and  �̂ = 5.3605 

 

(b) 

n = 100 
Parameters: 
� =  −1 and � = 5 
Maximum of the Graphic: 
� =  −19.1667 and � = 51 
Estimates of Maximum Likelihood: 

�� = −0.2117 and  �̂ = 2.9666 

 

Figure 3.1. Graphics for the log-likelihood Function – (a) parameter � is larger than 0 and (b) parameter � is 

less than 0. 

 

Observe that the reparametrization was made considering the support of the parameters, 

i.e., the parameter � must be always less than 2, thus we consider a reparametrization that the 

function must be always less than 2. As the same manner, the parameter � must be always 

larger than 0, so we consider a function that always returns values greater than 2. Thus, we 

will maximize the following function: 
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��(�,��,��) = � ���2 − �2 − ��� �
�′

35
�   �� + � ���

1

exp��′�
�

+
1

1 − �2 − ��� �
�′

35
�   �

� ��

⎝

⎜
⎛

1 −

�1 − �2 − ��� �
�′

35
�   �� ��

exp (�′)
⎠

⎟
⎞�

�� �
 

 

 

After determine the value of �� and ��, we can obtain the value of � and � by equations 

(3.10) and (3.11). Table 3.2 shows the results of the estimates of the parameters obtained 

maximizing the log-likelihood function of the �-Exponential distribution after a proposed 

reparametrization, in situations that � is less than 0. The results are presented considering the 

average of 1000 estimates of each parameter. Observe that the results for the estimates of � 

and � are still different from the parameters, but compared with the results without the 

reparametrization, the estimates improved vastly. In this way, for the rest of this work we will 

use the proposed reparametrization when we deal with � less than 0.  

 

Table 3.2. Results for estimates of the parameters q and � obtained maximizing the Log-likelihood function of 
the q-Exponential distribution after a reparametrization – simulations for q<0 

 

(�,�) 

 

� 

 

�̂ ̅

 

��� 

 

Bias(�̂) 

 

Bias(��) 

 

MSE(�̂) 

 

MSE(��) 

(5, -1) 

100 7.5103 -2.1153 2.5103 -1.1153 33.1753 6.1975 

500 5.3737 -1.16683 0.3737 -0.16683 9.22E-01 1.64E-01 

1000 5.19129 -1.08581 0.1913 -0.08581 3.34E-01 5.78E-02 

 

3.4.1 Point Estimates (MLE) 
 

For the analysis of the MLE we consider the following sets of initial parameters: (h, q) 

= (5, 1.5), (5, 1), (5, 0.5), and (5, -1). These sets are chosen in order to consider the four 

important situations for the parameter q: 1 < � < 2; � → 1; 0 < � < 1 and � < 0. For each 

set of parameters we generate, by Equation (2.2), 1000 samples. Thus, for each one of these 

samples, we obtained estimates for � and h by PSO and Nelder-Mead algorithms, which 

resulted in a total of 1000 estimates for each parameter. Figure 3.2 presents the steps that we 

follow to obtain the results of the numerical experiments for point estimates: 
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Figure 3.2. Steps of numerical experiment (point estimates). 

 

Table 3.3 and Table 3.4 present the mean of these 1000 estimates for each parameter (�̂ 

and ��). Moreover, we reported in Table 3.3 and Table 3.4 the related bias and MSE. For an 

estimator �� of �, we have that bias(��) = ����� − � and MSE = ������� + ����(��)�. 

 

Table 3.3 - Simulation results for 1000 replications – PSO Case. 

Cases   PSO 

 (�,�) � �̂ ̅ ��� Bias(�̂) Bias(��) MSE(�̂) MSE(��) 

1 

(5, 1.5) 

100 5.3316 1.4879 0.3316 −0.0121 2.1541 0.0029 

2 500 5.0713 1.4982 0.0713 −0.0018 0.3700 0.0005 

3 1000 5.0432 1.4983 0.0432 −0.0017 0.1743 0.0003 

4 

(5,  1) 

100 5.4545 0.9546 0.4545 −0.0454 2.2459 0.0199 

5 500 5.1078 0.9886 0.1078 −0.0114 0.3042 0.0025 

6 1000 5.0566 0.9954 0.0566 −0.0046 0.1424 0.0012 

7 

(5, 0.5) 

100 5.7744 0.3627 0.7744 −0.1373 3.4889 0.0952 

8 500 5.1240 0.4767 0.1240 −0.0233 0.3339 0.0080 

9 1000 5.0731 0.4867 0.0731 −0.0133 0.1444 0.0034 

10 

(5, -1) 

100 7.8208 −2.2482 2.8208 −1.2482 54.1635 10.064 

11 500 5.3779 −1.1686 0.3779 −0.1686 0.9296 0.1657 

12 1000 5.1939 −1.0869 0.1939 −0.0869 0.3369 0.0583 
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Table 3.4 - Simulation results for 1000 replications – Nelder-Mead Case. 

Cases 
  Nelder-Mead 

(�,�) � �̂  ̅ ��� Bias(�̂) Bias(��) MSE(�̂) MSE(��) 

1 

(5, 1.5) 

100 5.3301 1.4879 0.3301 -0.0121 2.1536 0.0029 

2 500 5.0702 1.4982 0.0702 -0.0018 0.3705 0.0005 

3 1000 5.0431 1.4983 0.0431 -0.0017 0.1743 0.0003 

4 

(5, 1) 

100 4.8846 0.9892 -0.1154 -0.0108 1.2159 0.0083 

5 500 4.6887 0.9994 -0.3113 -0.0006 0.2247 0.0005 

6 1000 4.6312 1.0006 -0.3688 0.0006 0.1770 0.0002 

7 

(5, 0.5) 

100 5.7728 0.3630 0.7728 -0.1370 3.4889 0.0951 

8 500 5.1239 0.4767 0.1239 -0.0233 0.3338 0.0080 

9 1000 5.0729 0.4867 0.0729 -0.0133 0.1445 0.0034 

10 

(5, -1) 

100 7.5103 -2.1153 2.5103 -1.1153 33.1753 6.1975 

11 500 5.3737 -1.1668 0.3737 -0.1668 0.9220 0.1644 

12 1000 5.1913 -1.0858 0.1913 -0.0858 0.3342 0.0579 

 

 

From Table 3.3 and Table 3.4, we can observe that the estimates obtained by PSO and 

Nelder-Mead algorithms present bias and MSE that decrease as the sample size (�) increases, 

corroborating the consistency of the MLE. However, both PSO and Nelder-Mead approach, 

shows negative results for the bias of �� (exception: Case 6 – Nelder-Mead), indicating that in 

both method the q parameter is underestimated. In order to provide a best visualization of the 

results presented in tables 3.1 and 3.2 of the numerical experiments, we present a graphical 

comparison between the point estimates obtained by PSO and Nelder-Mead and the real 

values of the parameters (q and �). Besides, we make some graphics to evaluate the MSE 

obtained by the two optimization methods for each parameter of interest. 
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        (a) 

 
        (b)  

 
        (c) 

 
     (d) 

 

Figure 3.3. Graphical comparison between results of the estimates of the q parameter obtained by PSO and 
Nelder-Mead, and the true value of the parameter -  (a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d) 

Cases 10 to 12. 
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        (c)  

        (d) 

Figure 3.4.Mean Squared Error (MSE) for the estimates of the q parameter obtained by PSO and Nelder-Mead - 
(a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d) Cases 10 to 12. 
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Figure 3.5. Graphical comparison between results of the estimates of the � parameter obtained by PSO and 
Nelder-Mead, and the true value of the parameter -  (a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d) 

Cases 10 to 12. 
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        (a) 

 
        (b) 

 
        (c) 

 
        (d) 

 
Figure 3.6. Mean Squared Error (MSE) for the estimates of the � parameter obtained by PSO and Nelder-Mead 

- (a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d) Cases 10 to 12. 

 

About the estimation of the � parameter, we can comment that when � > 1 (cases 1 to 

3), the results of the MSE for the two optimization algorithms were absolutely equal, 

indicating that when � > 1, the two optimization method has similar performance; In cases 4 

to 6, the PSO approach present MSE larger than the obtained by Nelder-Mead, indicating a 

better efficiency of the Nelder-Mead method when we deal with cases that present � → 1. 

When 0 < � < 1 (cases 7 to 9), both optimization methods present similar results. In cases 10 

to 12, where q < 0, it is observed a great value for the MSE in both optimization methods. In 

this situation, the PSO method presents the worst performance in the estimation of the q 

parameter when n=100, and for n=500 and 1000 the results for both optimization methods 

are very close. We can highlight that this great values for the MSE (when � = −1) is 
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observed mainly when the n is smaller (� = 100). Observe that in cases 10, 11 and 12, when 

� increases, the bias and MSE decrease significantly. 

When we estimate the � parameter, it is possible to observe that for cases 1 to 3 (� >

1), the MSE values are very close for the two optimization methods. Also, in cases 4 to 6, we 

observe a similar behavior for the performance of both optimization methods, with a slight 

advantage, for the Nelder-Mead method in cases 4 and 5. Cases 7 to 9 present a similar 

behavior for the two methods. With respect to cases 10 to 12, where we have the negative 

value for q, it is observed a MSE very high to case 10, where � = 100, in this case the PSO 

present the biggest MSE. However, observe that as � increases the MSE decreases 

substantially, this fact is observed for both optimization methods. With relation to the bias of 

�̂ we perceive that in both optimization methods, the estimates present positive bias, 

indicating an overestimation of the � parameter. This related fact is just not observed in the 

cases that � = 5, and q → 1 (Cases 4 to 6 - Nelder-Mead). 

According to the results, we can yet note, that when the � parameter is closer of its 

maximum supported value, i.e., � = 2, more consistent are the estimates of the parameters. 

When we deal with � negative, then, the PSO and Nelder-Mead method present high values 

for bias and MSE of the estimates, indicating less consistency for the two methods in this 

situation, this fact is mainly observed when the n is small.  

3.4.2 Interval Estimates  
 

For the interval estimates, Table 3.5 to Table 3.8 present the simulation results for the 

asymptotic, bootststrap-p and non-parametric bootstrap 90% confidence intervals. For all 

these methods, we consider the same sets of initial parameters used in the simulations for the 

point estimates, i.e., (h, q) = (5, 1.5), (5, 1), (5, 0.5), and (5, -1). Similarly, the same sample 

sizes are considered: 100, 500 and 1000. 

In the asymptotic confidence interval approach, we first generate a sample based in each 

parameter analyzed by using Equation (2.2). Then, for each sample, we estimate the 

parameters � and � by PSO and Nelder-Mead algorithms and, after estimating the covariance 

matrix (Equation (3.4)), we construct the intervals by Equations (3.8) and (3.9).  

In the simulations for bootstrap-� and non-parametric methods, we generate by 

Equation (2.2) a sample for each set of parameters. Then, we estimate the parameters � and � 

by PSO and Nelder-Mead algorithms. Thus, for the bootstrap-� method, using the estimates 
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obtained from the initial samples, we generate 1000 new samples by Equation (2.2), which 

allows us to calculate 1000 new estimates for � and � considering all sets of parameters. With 

this information, we are able to calculate confidence intervals by Equations (3.2) and (3.3). In 

the case of the non-parametric bootstrap confidence intervals, the intervals are obtained in a 

similar fashion. The difference is that for the non-parametric case, we use the initial samples 

(generated by Equation (2.2)) from each set of parameters) in order to generate � = 1000 

samples by sampling with replacement, which allows us to calculate 1000 new estimates for 

� and � considering all sets of parameters. Then, we are able to calculate the confidence 

interval by Equations (3.2) and (3.3). Figure 3.7 presents the steps that we follow to obtain the 

results of the numerical experiments for Parametric Bootstrap confidence interval (a) and 

Non-parametric Bootstrap confidence interval (b). The simulation results are presented in  

Table 3.5 to  

 

Table 3.8.  

 

(a) 

 

(b) 

Figure 3.7. Steps of numerical experiment for Parametric Bootstrap confidence interval (a) and Non-parametric 
Bootstrap confidence interval (b). 

 
Table 3.5 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for � via PSO. 

(�,�) � 

� 

Asymptotic 
Confidence 

Interval 
Width 

Bootstrap-P  
Confidence 

Interval 
Width 

Non-Parametric 
Bootstrap  

Confidence 
Interval 

Width 

(5, 1.5) 

100 [3.9179, 10.0493] 6.1314 [4.6383, 11.2618] 6.6235 [4.7283, 11.2664] 6.5381 

500 [3.4869, 5.3166] 1.8297 [3.6984, 5.4655] 1.7672 [3.6053, 5.4974] 1.8922 

1000 [4.4125, 5.8216] 1.4091 [4.4704, 5.8704] 1.4000 [4.4456, 5.9302] 1.4846 

(5, 1) 100 [2.5587, 5.9012] 3.3425 [3.0164, 6.9189] 3.9026 [2.8231, 6.5363] 3.7132 
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(�,�) � 

� 

Asymptotic 
Confidence 

Interval 
Width 

Bootstrap-P  
Confidence 

Interval 
Width 

Non-Parametric 
Bootstrap  

Confidence 
Interval 

Width 

500 [4.2223, 5.9264] 1.7041 [4.3878, 6.0363] 1.6485 [4.3978, 5.9974] 1.5995 

1000 [4.2168, 5.2148] 0.9980 [4.2107, 5.3917] 1.1810 [4.1897, 5.3920] 1.2023 

(5, 0.5) 

100 [2.3372, 7.5428] 5.2056 [3.4163, 8.7365] 5.3202 [2.6703, 9.3328] 6.6625 

500 [4.2155, 5.8974] 1.6819 [4.3751, 6.2051] 1.8300 [4.3740, 6.1803] 1.8062 

1000 [4.3485, 5.5088] 1.1603 [4.4700, 5.6036] 1.1336 [4.3810, 5.5552] 1.1742 

(5, -1) 

100 [0.9412, 8.7827] 7.8415 [3.2894, 20.8420] 17.5526 [1.9793, 116.446] 114.467 

500 [4.0571, 7.4123] 3.3552 [4.7521, 8.5209] 3.7688 [4.3313, 8.4578] 4.1265 

1000 [4.1037, 5.6756] 1.5119 [4.2120, 6.1238] 1.9118 [4.3234, 6.3180] 1.9946 

 

Table 3.6 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for � via PSO. 

(�,�) � 

q 

Asymptotic 
Confidence 

Interval 
Width 

Bootstrap-P  
Confidence 

Interval 
Width 

Non-Parametric 
Bootstrap  

Confidence 
Interval 

Width 

(5, 1.5) 

100 [1.3831, 1.5603] 0.1772 [1.3643, 1.5423] 0.1780 [1.3679, 1.5368] 0.1690 

500 [1.4777, 1.5523] 0.0746 [1.4732, 1.5467 ] 0.0735 [1.4784, 1.5454] 0.0670 

1000 [1.4650, 1.5181] 0.0531 [1.4617, 1.5160] 0.0543 [1.4625, 1.5152] 0.0527 

(5, 1) 

100 [0.9425, 1.2565] 0.3140 [0.8573, 1.2064] 0.3492 [0.8788, 1.2249] 0.3462 

500 [0.9133, 1.0662] 0.1529 [0.9031, 1.0525] 0.1494 [0.9054, 1.0477] 0.1423 

1000 [0.9810, 1.0703] 0.0893 [0.9625, 1.0692] 0.1066 [0.9537, 1.0766] 0.1230 

(5, 0.5) 

100 [-0.0079, 0.9059] 0.9138 [-0.2494, 0.6900] 0.9394 [-0.2128, 0.8386] 1.0514 

500 [0.3704, 0.6210] 0.2506 [0.3133, 0.5908] 0.2775 [0.3123, 0.5960] 0.2837 

1000 [0.4318, 0.6058] 0.1740 [0.4125, 0.5870] 0.1745 [0.4274, 0.5990] 0.1716 

(5, -1) 

100 [-2.7396, 0.7420] 3.4816 [-8.0361, -0.3534] 7.6828 [-48.684, 0.3038] 48.9878 

500 [-2.0155,-0.6176] 2.6298 [-2.4919, -0.9186] 1.5732 [-2.4383, -0.7336] 1.7046 

1000 [-1.2703, -0.6351] 1.9054 [-1.4685, -0.6804] 0.7881 [-1.5636, -0.7222] 0.8414 

 

 

Table 3.7 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for � via Nelder-Mead. 

(�,�) � 

� 

Asymptotic 
Confidence 

Interval 
Width 

Bootstrap-P  
Confidence 

Interval 
Width 

Non-Parametric 
Bootstrap  

Confidence 
Interval 

Width 

(5, 1.5) 

100 [3.9256, 10.0374] 6.1118 [4.6131, 10.8467] 6.2337 [4.6935, 11.0487] 6.3552 

500 [3.4907, 5.3152 ] 1.8245 [3.6496, 5.4025] 1.7530 [3.5874, 5.4404] 1.8529 

1000 [4.4143, 5.8187] 1.4045 [4.4677, 5.9013] 1.4336 [4.4413, 5.9150] 1.4737 

(5, 1) 

100 [2.5639, 5.8982] 3.3344 [3.0158, 6.7117] 3.6959 [2.7862, 6.7110] 3.9248 

500 [4.2277, 5.9282] 1.7005 [3.5497, 5.0196] 1.4699 [4.3406, 5.9994] 1.6589 

1000 [4.2170, 5.2120] 0.9950 [4.1922, 5.3889] 1.1967 [4.2328, 5.4093] 1.1765 

(5, 0.5) 
100 [2.3442, 7.5343] 5.1902 [3.5749, 9.1427] 5.5678 [2.7364, 9.7146] 6.9783 

500 [4.2180, 5.8934] 1.6754 [4.3606, 6.2027] 1.8420 [4.3698, 6.1727] 1.8029 
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1000 [4.3508, 5.5072] 1.1564 [4.4230, 5.6383] 1.2153 [4.3848, 5.5661] 1.1813 

(5, -1) 

100 [3.1257, 6.6048] 3.4791 [3.1602, 16.6136] 13.4534 [2.0547, 32.6716] 30.6169 

500 [5.0395, 6.4317] 1.3922 [4.6128, 8.2581] 3.6454 [4.2517, 8.0911] 3.8394 

1000 [4.5740, 5.2072] 0.6332 [4.2187, 6.0602] 1.8416 [4.2670, 6.2620] 1.9950 

 

 
Table 3.8 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for q via Nelder-Mead. 

(�,�) � 

� 

Asymptotic 
Confidence 

Interval 
Width 

Bootstrap-P  
Confidence 

Interval 
Width 

Non-Parametric 
Bootstrap  

Confidence 
Interval 

Width 

(5, 1.5) 

100 [1.3834, 1.5601] 0.1767 [1.3603, 1.5402] 0.1798 [1.3679, 1.5372] 0.1693 

500 [1.4777, 1.5521] 0.0743 [1.4756, 1.5454] 0.0697 [1.4801, 1.5462] 0.0660 

1000 [1.4650, 1.5180] 0.0530 [1.4623, 1.5164] 0.0541 [1.4627, 1.5167] 0.0540 

(5, 1) 

100 [0.9429, 1.2560] 0.3131 [0.7270, 1.1266] 0.3996 [0.8700, 1.2285] 0.3586 

500 [0.9132, 1.0657] 0.1525 [0.9011, 1.0634] 0.1623 [0.9081, 1.0511] 0.1430 

1000 [0.9812, 1.0704] 0.0891 [0.9372, 1.0489] 0.1117 [0.9538, 1.0730] 0.1192 

(5, 0.5) 

100 [-0.0064, 0.9047] 0.9112 [-0.2600, 0.6564] 0.9165 [-0.3137, 0.8348] 1.1485 

500 [0.3709, 0.6205] 0.2496 [0.3228, 0.5903] 0.2675 [0.3127, 0.6024] 0.2897 

1000 [0.4320, 0.6053] 0.1733 [0.4032, 0.59142] 0.1882 [0.4226, 0.5971] 0.1745 

(5, -1) 

100 [-4.9182, 2.9180] 7.8361 [-6.2167, -0.2958] 5.9208 [-13.5112, 0.2433] 13.7545 

500 [-2.9879, 0.3538] 3.3417 [-2.3651, -0.8659] 1.4993 [-2.2837, -0.7130] 1.5707 

1000 [-1.7366, -0.1696] 1.5671 [-1.4357, -0.6838] 0.7519 [-1.5464, -0.7004] 0.8460 

 

From the results presented in Tables Table 3.5 toTable 3.8 we make some graphics in 

order to provide a better visualization of the results of the confidence intervals obtained by 

numerical experiments: 
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Figure 3.8. Upper and lower limits of the asymptotic Confidence Interval for the parameter �, obtained  by PSO 

and Nelder-Mead. 
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Figure 3.9. Upper and lower limits of the Bootstrap-P  Confidence Interval for the parameter �, obtained  by 

PSO and Nelder-Mead. 
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Figure 3.10. Upper and lower limits of the Non-Parametric Bootstrap Confidence Interval for the parameter �, 
obtained  by PSO and Nelder-Mead. 
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Figure 3.11. Upper and lower limits of the asymptotic Confidence Interval for the parameter q, obtained  by 
PSO and Nelder-Mead. 

 

 

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1 2 3
Cases

Parameter

PSO - Lower (C.I.)

PSO - Upper (C.I.)

NM - Lower (C.I.)

NM - Upper (C.I.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 5 6
Cases

Parameter

PSO - Lower (C.I.)

PSO - Upper (C.I.)

NM - Lower (C.I.)

NM - Upper (C.I.)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

7 8 9

Cases

Parameter

PSO - Lower (C.I.)

PSO - Upper (C.I.)

NM - Lower (C.I.)

NM - Upper (C.I.)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

10 11 12

Cases

Parameter

PSO - Lower (C.I.)

PSO - Upper (C.I.)

NM - Lower (C.I.)

NM - Upper (C.I.)



Chapter 3                                      Estimation of the q-Exponential Parameters By PSO and Nelder-Mead Method  

60 
 

 
 

 

 
  

 
Figure 3.12. Upper and lower limits of the Bootstrap-P  Confidence Interval for the parameter q, obtained  by 

PSO and Nelder-Mead. 
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Figure 3.13. Upper and lower limits of the Non-Parametric Bootstrap Confidence Interval for the parameter q, 

obtained  by PSO and Nelder-Mead. 
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obtained by PSO is smaller than the intervals obtained by Nelder-Mead and for the parameter 

q, 41,66% of the intervals obtained by PSO is smaller than the intervals obtained by Nelder-

Mead. In general, it can be observed that for larger sample sizes (� = 1000), asymptotic and 

bootstrap approaches tend to provide similar interval estimates for the �-Exponential 

parameters. 

 

3.5 Application Examples 
 

In this section, we provide estimates of the �-Exponential parameters for fatigue data 

obtained from two kind of materials. The first example, originally described in [83], deals 

with the experimental determination of high cycle fatigue of ductile cast iron used for wind 

turbine components and the second one, which was first reported in [84], evaluates the 

gigacycle fatigue life of high-strength steel. Once the second example presents data obtained 

from a more resistant material than the material of the first example, it is natural that the 

cycles until failure for the high-strength steel present order of magnitudes larger than data 

obtained from ductile cast iron. Thus, it is expected that for the more resistant material, the fit 

by the �-Exponential distribution presents a better performance than when we consider the 

Weibull distribution; this is due the fact that the �-Exponential has a heavier tail than the 

Weibull distribution allowing that data with great magnitude can be well modeled by this 

distribution.  

We will fit the data by a q-exponential distribution using PSO and Nelder-Mead. 

Besides, we will consider the modeling of data by a Weibull distribution in order to compare 

the efficiency of these two distributions for this kind of data. The evaluation of the 

adjustments it will be done using the bootstrapped Kolmogorov-Smirnov test and graphical 

analysis.  

 

3.5.1 Example 1 
 

From [83], we collect data obtained from a specimen of ductile cast iron with diameter 

50 mm (Ø50). The data set given in terms of number of cycles to failure is presented in Table 

3.9: 
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Table 3.9. Ø50 specimen fatigue test data. 

Specimen 
Number 

Fatigue Life  
(number of cycles to failure) 

1 295000 

2 869000 

3 869900 

4 1573335 

5 151400 

6 152000 

7 183700 

8 218000 

9 30200 

10 45100 

11 46900 

12 47300 

 

3.5.1.1 Results for the PSO Approach 
 

Once the PSO is a probabilistic method of optimization, it can present different results 

for the same data. Thus, in this example, the PSO was replicated 30 times and, as in the 

numerical experiments, the provided estimates were practically the same with standard 

deviations of 0.0117, 1.9239E-8 and smaller than 10-16 for �, �, in this order. The estimated 

MLE parameters are �̂ = 161820.5715 and �� = 1.3007. The 90% asymptotic confidence 

intervals for � and � are [-48898.1867, 372539.3256] and [0.9249, 1.6766], respectively. Note 

that, due to the very small sample size, the lower bound of the interval concerning � is 

negative, which is not a possible value for this parameter – This is due the fact that asymptotic 

confidence interval present best results only when the sample size is larger, and for the 

situation of this example, the asymptotic approach is not recommended. The parametric and 

non-parametric bootstrap intervals are reported in Table 3.10. All intervals were constructed 

considering a confidence level equal to 90%. Unfortunately, due the small sample size , as 

shown in the Table 3.8, confidence intervals are little informative, with great widths. 
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Table 3.10. Bootstrap interval estimates provided by PSO for Example 1 

� = �� 
  Bootsrap-P Non-Parametric Bootstrap 

� 
Confidence Interval [52558.29, 75470383.73] [67226.68, 496841515.04] 

Width 75417825.44 496774288.36 

� 
Confidence Interval [-125.1890, 1.5124] [-451.9696, 1.4434] 

Width 126.7014 453.4129 

 

 

3.5.1.2 Results for the Nelder-Mead Approach 
 

The estimated MLE parameters are �̂ = 161904 and �� =  1.3005. The 90% asymptotic 

confidence intervals for � and � are [-48303.41, 372111.3] and [0.9257, 1.6753], respectively. 

Note also that in the Nelder-Mead approach, due to the small sample size, the lower bound of 

the interval concerning � is negative, which is not a possible value for this parameter. The 

parametric and non-parametric bootstrap intervals are reported in Table 3.11. All intervals 

were constructed considering a confidence level equal to 90%.  

 

Table 3.11. Bootstrap interval estimates provided by Nelder-Mead for Example 1 

 � = �� 
  Bootsrap-P Non-Parametric Bootstrap 

� 
Confidence Interval [55548.5, 7295081.0] [71231.32, 73091176.48] 

Width 7239532.5 73019945.16 

� 
Confidence Interval [-12.9756, 1.5206] [-72.3958, 1.4444] 

Width 14.4962 73.8402 

 
 

We observe that the behavior identified when the numerical experiments were 

conducted (section 3.4.2) was maintained in implementing the example 1, i.e., the length of 

the intervals obtained by Nelder-Mead was lower than those obtained by the PSO approach. 

However, also in this optimization method, despite the width of intervals are smaller than the 

width obtained when we use PSO, the confidence intervals were little informative due to very 

small sample size. 

 

3.5.1.3 Bootstrapped Kolmogorov-Smirnov test applied in the Example 1 
 
 

In order to verify if the estimates obtained from the data of the example 1 fit well the 

data of the example in a q-Exponential model, we make use of the Bootstrapped-
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Kolmogorov-Smirnov test (KS-Boot). Table 3.12 presents the estimated parameters obtained 

by the PSO and Nelder-Mead algorithms for the data of the first example, the Kolmogorov-

Smirnov (K-S) distances between the empirical and fitted distribution functions, and the 

corresponding p-values (K-S Boot). For this test, it was assumed � = 1000. 

 

 

Table 3.12. Comparing point estimates and KS-Boot Test- PSO vs. Nelder-Mead (Example 1) 

Parameter 
Estimates 

PSO K-S (��) p-value 

�̂ 161820.5715 
0.1554 0.6090 

�� 1.3007 
Parameter 
Estimates 

Nelder-Mead K-S (��) p-value 

�̂ 161904 
0.1554 0.6224 

�� 1.3005 
 
 

Note from Table 3.12 that the parameters estimates by PSO and Nelder-Mead are very 

close, which implies that the �-value of the KS-Boot test was very similar for these two 

approaches. Also note that for the two approaches, the KS-Boot presents �-values that 

indicate the �-Exponential distribution is a good fit for the data of the example 1. 

 

3.5.2 Example 2 
 

From [84] , we collect data obtained from a specimen of high-strength steel with 

diameter 3 mm (Ø3). The data sets given in terms of number of cycles to failure are presented 

in Table 3.13: 

Table 3.13. Ø3 specimen fatigue test data. 

Specimen 
Number 

Fatigue Life 
(number of cycles to failure) 

1 1017286 

2 2989152 

3 4059346 

4 4256299 

5 8376572 

6 9560400 

7 13007977 

8 25303118 

9 33621704 

10 55951560 
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Specimen 
Number 

Fatigue Life 
(number of cycles to failure) 

11 101155984 

12 144322192 

13 376711232 

14 731957760 

15 9444513800 

16 9912163300 

17 9918688300 

18 9921105900 

 
 

3.5.2.1 Results for the PSO Approach 
 
 

The obtained point estimates are: �̂ = 4688695.8075 and �� = 1.7521. The 30 PSO 

replications essentially provided the same estimates with standard deviations (0.2236 and 

3.3262E-9 for � and �. The asymptotic intervals for � and � are: [-1077757.8706, 

10455149.6121] and [1.6579, 1.8463], respectively. As mentioned previously, the asymptotic 

approach is not recommended when we have small samples. For this reason, also, in this 

example, the asymptotic confidence interval is little informative, and the lower bound of the 

interval concerning � is negative, which is not a possible value for this parameter. The 

bootstrap intervals (parametric and non-parametric) with 90% of confidence level are reported 

in Table 3.14.  

Table 3.14. Bootstrap interval estimates provided by PSO for Example 2 

 � = 18 
  Bootsrap-P Non-Parametric Bootstrap 

� 
Confidence Interval [1417311.8673, 21929912.0205] [2099992.8679, 4184877383010.9316] 

Width 20512600.1532 4184875283018.0640 

� 
Confidence Interval [1.5987, 1.8188] [-420.6016, 1.7886] 

Width 0.2201 422.3902 

 

3.5.2.2 Results for the Nelder-Mead Approach 
 
 

The estimated MLE parameters are �̂ = 4704629 and �� =  1.7519. The 90% 

asymptotic confidence intervals for � and � are [-1070366, 10479625] and [1.6579, 1.8459], 

respectively. The bootstrap intervals (parametric and non-parametric) are reported in Table 

3.15. All intervals were constructed considering a confidence level equal to 90%. 
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Table 3.15. Bootstrap interval estimates provided by Nelder-Mead for Example 2 

 � = 18 
  Bootsrap-P Non-Parametric Bootstrap 

� 
Confidence Interval [1456802, 20681229] [2160329, 16826841] 

Width 19224427 14666512 

� 
Confidence Interval [1.5979, 1.8220] [1.6509, 1.8014] 

Width 0.2241 0.1505 

 
 

It is easy to see from Table 3.14 and Table 3.15 that the confidence interval based on 

Nelder-Mead algorithm presented confidence intervals with widths smaller than the intervals 

obtained from the PSO method. The results presented in Table 3.15, shows that the 

confidence interval of the parameter q is more informative with a width size more appropriate 

than the width obtained in the previous example. Despite this, the width of the bootstrap-p 

confidence interval for the parameter � still is large, but if we compare with the results 

obtained in the previous example, we observe that the results improved considerably, this is 

due the fact that in this example we deal with a sample with sample slightly large than the 

sample used in previous example. 

 
 

3.5.2.3 Bootstrapped Kolmogorov-Smirnov test applied in the Example 2 
 
 

Table 3.16 presents the estimated parameters obtained by the PSO and Nelder-Mead 

algorithm for the data of the example 2, the Kolmogorov-Smirnov (K-S) distances between 

the empirical and fitted distribution functions, and the corresponding p-values (K-S Boot). For 

this test, we considered � = 1000. 

 

Table 3.16. Comparing point estimates and KS-Boor Test- PSO vs. Nelder-Mead (Example 2) 

Parameter 
Estimates 

PSO K-S (��) p-value 

�̂ 4688695.8075 
0.1327 0.4860 

�� 1.7521 
Parameter 
Estimates 

Nelder-Mead K-S (��) p-value 

�̂ 4704629 
0.1329 0.4895 

�� 1.7519 
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Note from Table 3.16 that, also in this example, the parameters estimates obtained by 

PSO and Nelder-Mead are very close, which implies that the �-value of the KS-Boot test was 

very similar for these two approaches. Also note that for the two approaches, the KS-Boot 

presents �-values that indicate the �-Exponential distribution is a good fit for the data of the 

example 2. 

 

3.5.3 Comparing q-Exponential with Weibull distribution 
 

As previously mentioned, the Weibull distribution originates from the theory of extreme 

values [85]; then, for particular values of its parameters, this distribution is capable to model 

data with large values. Thus, we estimate the parameters of a Weibull distribution considering 

the data presented in examples 1 and 2 in order to compare the fit quality to the data sets by a 

Weibull and �-Exponential distributions. The parameters estimates of the Weibull distribution 

are obtained by analytical expressions[86]. The results for the estimated parameters (scale and 

shape parameters for Weibull distribution), Kolmogorov-Smirnov (K-S) distances between 

empirical and fitted distribution functions, and the corresponding p-values (K-S Boot 

performed with N = 1000) obtained from the data sets are shown in Table 3.17, which also 

include the K-S distance and �-values for the fit of the �-exponential distribution (PSO and 

Nelder-Mead). 

 

Table 3.17. Comparing Weibull vs. �-Exponential – Examples 1 and 2. 

 

 

Parameters  
(Weibull Distribution) 

K-S Boot  
(Weibull) 

K-S Boot  
(�-Exponential) 

PSO 

K-S Boot  
(�-Exponential) 

Nelder-Mead 
Examples Shape 

Parameter 
Scale 

Parameter 
K-S 
(��) 

p-value 
K-S 
(��) 

p-value 
K-S 
(��) 

p-value 

Data from 
example 1 

0.8336 335326.1 0.164 0.5184 0.1554 0.6090 0.1554 0.6224 

Data from 
example 2 

0.3366 417229710 0.1648 0.2047 0.1327 0.4860 0.1329 0.4895 

 

From Table 3.17, we observe that for example 1, the fit by the two distributions are 

good with �-values equal to 0.5184 (for the Weibull distribution), 0.6090 (for the �-

exponential distribution – PSO) and 0.6224 (for the �-Exponential distribution – Nelder-

Mead). For example 2, although the Weibull fit is significant, it is clear that the �-exponential 
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distribution showed a better fit to the data. Indeed, we observe for this example �-values 

equal to 0.2047 (for the Weibull distribution), 0.4860 (for the �-exponential distribution – 

PSO) and 0.4895 (for the �-Exponential distribution – Nelder-Mead). In example 2, clearly 

the �-exponential distribution showed a better efficiency, since the data in this example are 

constituted of extremely large values, with magnitude in order of 109. Example 1 presents 

data with magnitude somewhat lower, i.e., in the order of 106. Thus, with these examples, we 

conclude that the �-Exponential can model data with extremely large values with more 

efficiency than the Weibull distribution.  

Figure 3.14 and Figure 3.15 present the empirical and theoretical CDFs (Weibull and �-

Exponential) for examples 1 and 2, respectively. Once the estimates obtained from the two 

methods (PSO and Nelder-Mead) are very similar, we choose, without loss of generality, the 

estimates obtained from the PSO to construct the Figure 3.14 and Figure 3.15. Note that for 

the first example (Figure 3.14) both �-Exponential and Weibull fits very well the empirical 

data. The figure for the second example is plotted in logarithmic scale in order to provide a 

better visualization of the empirical CDF, as the data set contains extremely large values. As 

we can note from Figure 3.15, the empirical curve is very close to the �-Exponential CDF, 

confirming that the �-exponential distribution is more efficient than Weibull distribution 

when we deal with the kind of data presented in Example 2, i.e., data that encompass 

extremely large values such as in case of material with high resistance to failure. 

 

Figure 3.14. Empirical and Theoretical (�-Exponential and Weibull) CDFs – (Example 1). 
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Figure 3.15. Empirical and Theoretical (�-Exponential and Weibull) CDFs – (Example 2). 
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4 A NEW STRESS-STRENGTH MODEL BASED ON q-
EXPONENTIAL DISTRIBUTION. 

 

4.1 Maximum likelihood estimators of index R=P(Y<X) 
 

In this section, we estimate the index R=P(Y<X) by using the maximum likelihood 

method. We assume that X and Y are independent random variables and follow q-Exponential 

distributions with different parameters. We can write Y ~ qExp (q, η) and X ~ qExp(r, β), 

where q and r are the entropic indices (shape parameters) of stress and strength, respectively, 

and η and β are the scale parameters of stress and strength. As mentioned above, the support 

of the q-Exponential can be limited (q<1) or unlimited (1<q<2) (see Equation (2.1)). In order 

to calculate the index R, we use the Wolfram Mathematica computer software [87]. Due the 

difference of the support of the q-Exponential, we will consider two cases in this work: 

 

Case 1: There is no limitation on the support of X (strength), i.e., 1<r<2: 
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� = � �
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� = � �
�

���
�;  

 � = � �
�

���
�; 

� = � �
�

���
− 2 +

�

���
�  

And 

 ���(�,�; �; �) =
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Γ(�)Γ(���)
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�

�
  

 

Note that ���(�,�; �; �)is the Gauss Hypergeometric Function [88]. 

 

 

Case 2: The support of X (strength) is limited, i.e., r<1: 
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To compute the MLE of R, let Y={y1, y2,…,yn} be a random sample of size n, and 

X={x1,x2,…,xm} be another random sample of size m. Since X and Y are independent variables, 

it is possible to write the likelihood function for the observed samples as:  

 

�(�,�,�,�,�,�) = �(2 − �)� �
1

�
�

�

� �1 −
(1 − �)��

�
�

�
���

�

�� �

� �(2 − �)� �
1

�
�

�

� �1 −
(1 − �)��

�
�

�
���

�

�� �

� 

 

 

= (2 − �)� �
1

�
�

�

(2 − �)� �
1

�
�

�

� �1 −
(1 − �)��

�
�

�
���

�

�� �

� �1 −
(1 − �)��

�
�

�
���

�

�� �

. 



Chapter 4                                                         A New Stress-Strength Model Based on q-Exponential Distribution 
 

73 
 

 

Therefore, the log-likelihood function is written as follows:  
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1

�
� + �  ��(2 − �) + �  ���

1

�
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+
1

1 − �
� ���1 −

(1 − �)��

�
�

�

�� �

+
1

1 − �
� �� �1 −

(1 − �)��

�
�

�

�� �

 

(4.3) 

 

 

Maximizing the log-likelihood function given in Equation (4.3), results in a convoluted 

system of equations and, thus, the derivation of analytical expressions for the MLE becomes 

impractical. So, in this work, the maximization of the log-likelihood function in Equation 

(4.3) will be performed by the Nelder-Mead Method [47] available in the Software R (optim 

function) [82] and by the PSO optimization method implemented in the MATLAB software 

[81].  

Since ��, �� , �� and �� are solutions that maximize the log-likelihood function of Equation 

(4.3), and using the property of invariance of the MLE, from Equations (4.1) and (4.2) we can 

obtain the MLE of R for the two previously mentioned cases: 

 

Case 1: When the X (strength) has 1<r<2: 
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(4.4) 

Where �� = � �
����

����
�; �� = � �

���̂

�̂��
�; �� =  ��� �1,

����

����
;

����̂

���̂
;

(����)��

(�̂��)��
�; �� = � �

�

�̂��
�; 

 �� = � �
�

���̂
�; �� = � �

�

�̂��
− 2 +

�

����
�. 

 

Case 2: When the X (strength) has r<1: 
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�� = 1 −  ��� �1,
1

�� − 1
− 1; 2 +

1

1 − �̂
;
(�� − 1)��

(�̂ − 1)�̂
� (4.5) 

4.2 Bootstrap Confidence Intervals 
 

In this section, we present the construction of confidence intervals for the index R by 

using bootstrap-p and non-parametric bootstrap methods [53], [89], [90]. 

 

4.2.1 Bootstrap-p 
 

The algorithm for constructing confidence intervals by using the bootstrap-p approach 

has the following steps: 

 Step 1: From an initial sample for the variable X ={x1,x2,…,xm}  and another one for Y 

={y1,y2,...,yn}, estimate the parameters (q,η,r,β) by maximizing Equation (4.3); 

 Step 2: Use the estimates obtained in the previous step and Equation (2.2) to generate 

new samples for X and Y, i.e.: {��
∗, ��

∗ ,. . ., ��
∗ } and {��

∗, ��
∗ ,. . ., ��

∗}. Based on these 

new samples, compute the bootstrap sample estimate of R, say �∗, using Equation 

(4.4) or (4.5) (depending on the r value); 

 

 Step 3: Repeat step 2, � times; 

 Step 4: Using the � values of �∗ obtained in step 3 and by adopting a γ significance 

level, find the percentiles �� �⁄
∗  and ���(� �)⁄

∗ . Thus, it is possible to determine an 

approximate confidence interval, with confidence interval equal to 100*(1-γ)%, for the 

index R, as: 

�. �. = [�� �⁄
∗ ,�(���) �⁄

∗ ]. 

 

(4.6) 

 

 

4.2.2 Non-Parametric bootstrap  
 

The algorithm for constructing confidence intervals by using the non-parametric 

bootstrap approach is as follows: 
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 Step 1: From an initial sample for the variable X ={x1,x2,…,xm}  and another one for Y 

={y1,y2,…,yn}, generate new samples for X and Y by sampling with replacement, i.e., 

{��
∗, ��

∗ ,. . ., ��
∗ }  and {��

∗, ��
∗ ,. . ., ��

∗}. Based on these new samples, compute the 

estimate of R,  say   �∗, using Equation (4.4) or (4.5) (depending on the r value); 

 

 Step 2: Repeat step 1, N times. 

 
 Step 3: By using the N values of �∗ from step 2 and by adopting a γ significance level, 

the percentiles �� �⁄
∗ and ���(� �)⁄

∗  are obtained; they determine an approximate 

confidence interval for the index R with confidence level equals to 100*(1-γ)% using 

Equation (4.6). 

 

4.3 Numerical Experiments 
 

This section presents the performance evaluation of the MLE and bootstrap confidence 

intervals by means of simulation experiments. Here we will use the Nelder-Mead method and 

the PSO algorithm in order to obtain the estimates of MLE. We consider different sample 

sizes and different parameter values. First, we analyze the MLE and then we discuss the 

bootstrap confidence interval. Note that the simulations involved entropic indices ranging 

between 1 and 2 (cases 1 - 11), from 0 to 1 (cases 12 - 22), and with negative values (cases 23 

- 33). 

 

4.3.1 Analysis of the MLE 
 

Several combinations of sample sizes for the stress and strength are considered: (n; m) = 

(100; 100), (250; 250), (500; 500), (1000; 1000), (5000; 5000), (100; 250), (100; 500), (100; 

1000), (250; 100), (500; 100) and (1000; 100). Besides, we choose three sets of parameters 

values respecting three important situations for the entropic indices, i.e.: 1<r,q<2; 0<r,q<1 

and r,q <0. Thus, we have: (q, η, r, β) = (1.78; 0.15; 1.9; 0.1), (0.55; 22; 0.67; 30.5), (-1.95; 

0.1; -1.8; 0.18). Observe that 11 different combinations of sample sizes multiplied by 3 

different parameter sets are equal to 33 initial samples. The samples for the simulations are 

generated by Equation (2.2). All results are based on 1000 replications, i.e., we generate 1000 

samples from each set of initial parameters for all the combinations of n and m. Thus, a total 
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of 33000 samples are generated. For each sample, we compute the MLE for q, η, r, β by 

maximizing Equation (4.3) via the Nelder-Mead method and PSO algorithm.  

Thus, we obtain the MLE of index R by Equation (4.4) or (4.5) (depending on the r 

value). This process is carried out for each of the 1000 replications. Subsequently, we obtain 

the average of the estimation results for parameters q, η, r, β, and also for the index R. Table 

4.4 presents the results for all simulation runs as well as the index R estimations. The mean 

squared error (MSE) and the average biases are calculated for �� over the 1000 replications. 

Note that these quality indices are obtained for an estimator �� of θ as ����(��) = ����� − � 

and ��� = ������� + ����(��)�. 

 

From the simulation results (Table 4.4 and Table 4.5), the following findings are 

observed: 

 

(i) When (n; m) increase, the MSEs decrease. This suggests the consistency property of 

the MLE (see Table 4.1); 

(ii)  For a fixed n, MSEs decrease as m increases (see Table 4.2); 

(iii) For a fixed m, MSEs decrease as n increases (see Table 4.3 ); 

 

In order to illustrate behaviors (i), (ii) and (iii), excerpts from Table 4.4 and  

Table 4.5 are reproduced in Table 4.1, Table 4.2 and Table 4.3 respectively.  

 
 
Table 4.1. Examples of cases that present a decrease of the MSE when (n; m) increase (Nelder-Mead and PSO) 

 

Nelder Mead 
Case n m � � � � MSE 
1 100 100 1.78 0.15 1.90 0.10 0.00120 
12 100 100 0.55 22 0.67 30.5 0.00155 
23 100 100 -1.95 0.1 -1.8 0.18 0.03185 
5 5000 5000 1.78 0.15 1.90 0.10 0.00002 
16 5000 5000 0.55 22 0.67 30.5 0.00002 
27 5000 5000 -1.95 0.1 -1.8 0.18 0.01981 

PSO 
Case n m � � � � MSE 
1 100 100 1.78 0.15 1.90 0.10 0.00120 
12 100 100 0.55 22 0.67 30.5 0.00155 
23 100 100 -1.95 0.1 -1.8 0.18 0.00423 
5 5000 5000 1.78 0.15 1.90 0.10 0.00002 
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Table 4.2. Examples of cases that present a decrease of the MSE for a fixed n and an increase of m (Nelder-
Mead and PSO). 

 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

Table 4.3. Examples of cases that present a decrease of the MSE for a fixed m and an increase of n (Nelder-
Mead and PSO). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next, we present graphics that allow us a better view of the results obtained in the 

simulations for the estimation of the Index R using PSO and Nelder-Mead. The data used in 

the creation of these data can be found in Table 4.4 and Table 4.5. The graphics presented in 

Figure 4.1 show a comparison between the point estimates obtained by PSO and Nelder-Mead 

16 5000 5000 0.55 22 0.67 30.5 0.00002 
27 5000 5000 -1.95 0.1 -1.8 0.18 0.00004 

Nelder Mead 
Case n m � � � � MSE 
1 100 100 1.78 0.15 1.90 0.10 0.00120 
6 100 250 1.78 0.15 1.90 0.10 0.00069 
7 100 500 1.78 0.15 1.90 0.10 0.00057 
8 100 1000 1.78 0.15 1.90 0.10 0.00051 

PSO 
Case n m � � � � MSE 
1 100 100 1.78 0.15 1.90 0.10 0.00120 
6 100 250 1.78 0.15 1.90 0.10 0.00069 
7 100 500 1.78 0.15 1.90 0.10 0.00057 
8 100 1000 1.78 0.15 1.90 0.10 0.00051 

Nelder Mead 
Case n m � � � � MSE 
12 100 100 0.55 22 0.67 30.5 0.00155 
20 250 100 0.55 22 0.67 30.5 0.00113 
21 500 100 0.55 22 0.67 30.5 0.00093 
22 1000 100 0.55 22 0.67 30.5 0.00088 

PSO 
Case n m � � � � MSE 
12 100 100 0.55 22 0.67 30.5 0.00155 
20 250 100 0.55 22 0.67 30.5 0.00112 
21 500 100 0.55 22 0.67 30.5 0.00095 
22 1000 100 0.55 22 0.67 30.5 0.00088 
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and the real value of the Index R. Figure 4.2 presents graphics that show the MSE results 

obtained by PSO and Nelder-Mead when we make the estimation of the Index R. 

 

 
    (a) 

 
         (b) 

 

 
       (c) 

 
Figure 4.1. Graphical comparison between results of the estimates of the Index � obtained by PSO and Nelder-

Mead, and the true value of the Index -  (a) Cases 1 to 11, (b) Cases 12 to 22 and (c) Cases 23 to 33. 
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      (b) 

 
      (c) 

Figure 4.2. Mean Squared Error (MSE) for the estimates of the Index � obtained by PSO and Nelder-Mead - (a) 
Cases 1 to 11, (b) Cases 12 to 22 and (c) Cases 23 to 33. 

 
From the graphics we can observe that the bias for cases 1 to 22 not indicates a 

tendency of overestimation or underestimation, once we have bias with positive and negative 

values. For the cases 23 to 33, there is a tendency of overestimation of the index R, once the 

bias for these cases present always positive values. Besides, cases 23 to 33 present slightly 

higher results for the MSE if compared with other cases. This fact is observed mainly when 

we deal with the Nelder-Mead approach that present higher results than the obtained by PSO. 
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Table 4.4. Simulation results and estimation for the index R (Nelder-Mead). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Sample Size Parameters MLE Results (Average from 1000 samples) �� 
Case n m � � � � � ��� ��� ��� ��� ��� bias MSE 

1 100 100 1.78 0.15 1.90 0.10 0.6855 1.7767 0.1647 1.8987 0.1152 0.6847 -0.00076 0.00120 

2 250 250 1.78 0.15 1.90 0.10 0.6855 1.7784 0.1562 1.8995 0.1062 0.6855 0.00000 0.00051 

3 500 500 1.78 0.15 1.90 0.10 0.6855 1.7792 0.1537 1.8999 0.1023 0.6851 -0.00044 0.00025 

4 1000 1000 1.78 0.15 1.90 0.10 0.6855 1.7797 0.1511 1.8999 0.1021 0.6860 0.00054 0.00012 

5 5000 5000 1.78 0.15 1.90 0.10 0.6855 1.7799 0.1502 1.9000 0.1005 0.6856 0.00013 0.00002 

6 100 250 1.78 0.15 1.90 0.10 0.6855 1.7765 0.1648 1.8993 0.1051 0.6848 -0.00074 0.00069 

7 100 500 1.78 0.15 1.90 0.10 0.6855 1.7782 0.1642 1.8997 0.1026 0.6833 -0.00222 0.00057 

8 100 1000 1.78 0.15 1.90 0.10 0.6855 1.7775 0.1631 1.8998 0.101 0.6845 -0.00104 0.00051 

9 250 100 1.78 0.15 1.90 0.10 0.6855 1.7787 0.1555 1.8988 0.1192 0.6874 0.00188 0.00100 

10 500 100 1.78 0.15 1.90 0.10 0.6855 1.7789 0.1536 1.8984 0.1158 0.6848 -0.00066 0.00095 

11 1000 100 1.78 0.15 1.90 0.10 0.6855 1.7798 0.1510 1.8979 0.1195 0.6845 -0.00097 0.00093 
12 100 100 0.55 22 0.67 30.5 0.6259 0.4293 25.1014 0.5754 34.3545 0.6248 -0.00111 0.00155 
13 250 250 0.55 22 0.67 30.5 0.6259 0.5047 23.1850 0.6396 31.7394 0.6256 -0.00026 0.00059 
14 500 500 0.55 22 0.67 30.5 0.6259 0.5270 22.5807 0.6507 31.2574 0.6266 0.00065 0.00028 
15 1000 1000 0.55 22 0.67 30.5 0.6259 0.5393 22.2590 0.6569 31.0805 0.6274 0.00153 0.00013 
16 5000 5000 0.55 22 0.67 30.5 0.6259 0.5462 22.1077 0.6682 30.5519 0.6257 -0.00022 0.00002 
17 100 250 0.55 22 0.67 30.5 0.6259 0.4211 25.3501 0.6392 31.7864 0.6218 -0.00413 0.00100 
18 100 500 0.55 22 0.67 30.5 0.6259 0.4361 25.0652 0.6515 31.2202 0.6214 -0.00449 0.00088 
19 100 1000 0.55 22 0.67 30.5 0.6259 0.4293 25.1689 0.6611 30.8397 0.6209 -0.00496 0.00081 
20 250 100 0.55 22 0.67 30.5 0.6259 0.5006 23.3212 0.5706 34.5754 0.6280 0.00206 0.00113 
21 500 100 0.55 22 0.67 30.5 0.6259 0.5289 22.5205 0.5777 34.1914 0.6288 0.00292 0.00093 
22 1000 100 0.55 22 0.67 30.5 0.6259 0.5384 22.3168 0.5601 34.9577 0.6301 0.00417 0.00088 
23 100 100 -1.95 0.1 -1.8 0.18 0.7656 -4.2601 0.1732 -3.9959 0.3117 0.7962 0.17029 0.03185 
24 250 250 -1.95 0.1 -1.8 0.18 0.7656 -2.7699 0.1262 -2.4857 0.2212 0.7833 0.15742 0.02588 
25 500 500 -1.95 0.1 -1.8 0.18 0.7656 -2.3128 0.1116 -2.0635 0.1958 0.7745 0.14861 0.02259 
26 1000 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1147 0.1052 -1.9444 0.1886 0.7706 0.14468 0.02117 
27 5000 5000 -1.95 0.1 -1.8 0.18 0.7656 -1.9825 0.1010 -1.8283 0.1816 0.7665 0.14061 0.01981 
28 100 250 -1.95 0.1 -1.8 0.18 0.7656 -4.5069 0.1814 -2.4393 0.2184 0.7934 0.16750 0.03026 
29 100 500 -1.95 0.1 -1.8 0.18 0.7656 -4.6143 0.1849 -2.1051 0.1984 0.7955 0.16958 0.03053 
30 100 1000 -1.95 0.1 -1.8 0.18 0.7656 -4.4991 0.1812 -1.9677 0.1901 0.7933 0.16738 0.02966 
31 250 100 -1.95 0.1 -1.8 0.18 0.7656 -2.6900 0.1236 -4.1665 0.3223 0.7858 0.15985 0.02742 
32 500 100 -1.95 0.1 -1.8 0.18 0.7656 -2.3163 0.1117 -4.2061 0.3245 0.7805 0.15456 0.02536 
33 1000 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1101 0.1051 -4.1475 0.3215 0.7765 0.15063 0.02394 
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Table 4.5 - Simulation results and estimation for the index R (PSO). 

 

 
 

 Sample Size Parameters MLE Results (Average from 1000 samples) �� 
Case n m � � � � � ��� ��� ��� ��� ��� bias MSE 

1 100 100 1.78 0.15 1.90 0.10 0.6855 1.7767 0.1647 1.8987 0.1151 0.6847 -0.00075 0.00120 

2 250 250 1.78 0.15 1.90 0.10 0.6855 1.7784 0.1562 1.8995 0.1062 0.6855 1.94E-06 0.00051 

3 500 500 1.78 0.15 1.90 0.10 0.6855 1.7792 0.1536 1.8998 0.1022 0.6850 -0.00044 0.00025 

4 1000 1000 1.78 0.15 1.90 0.10 0.6855 1.7796 0.1511 1.8999 0.1020 0.6860 0.00053 0.00012 

5 5000 5000 1.78 0.15 1.90 0.10 0.6855 1.7799 0.1502 1.8999 0.1005 0.6856 0.00013 0.00002 

6 100 250 1.78 0.15 1.90 0.10 0.6855 1.7765 0.1648 1.8993 0.1051 0.6848 -0.00074 0.00069 

7 100 500 1.78 0.15 1.90 0.10 0.6855 1.7782 0.1642 1.8997 0.1026 0.6833 -0.00222 0.00057 

8 100 1000 1.78 0.15 1.90 0.10 0.6855 1.7775 0.1631 1.8998 0.1010 0.6845 -0.00103 0.00051 

9 250 100 1.78 0.15 1.90 0.10 0.6855 1.7787 0.1555 1.8988 0.1192 0.6874 0.00187 0.00099 

10 500 100 1.78 0.15 1.90 0.10 0.6855 1.7789 0.1536 1.8984 0.1158 0.6848 -0.00067 0.00095 

11 1000 100 1.78 0.15 1.90 0.10 0.6855 1.7798 0.1510 1.8979 0.1194 0.6845 -0.00095 0.00093 

12 100 100 0.55 22 0.67 30.5 0.6259 0.4288 25.1177 0.5732 34.4303 0.6247 -0.00115 0.00155 
13 250 250 0.55 22 0.67 30.5 0.6259 0.5047 23.1850 0.6385 31.7760 0.6256 -0.00029 0.00059 

14 500 500 0.55 22 0.67 30.5 0.6259 0.5270 22.5810 0.6495 31.2973 0.6265 0.00063 0.00028 

15 1000 1000 0.55 22 0.67 30.5 0.6259 0.5393 22.2585 0.6569 31.0812 0.6274 0.00153 0.00012 

16 5000 5000 0.55 22 0.67 30.5 0.6259 0.5462 22.1079 0.6682 30.5518 0.6257 -0.00022 0.00002 

17 100 250 0.55 22 0.67 30.5 0.6259 0.4210 25.3530 0.6376 31.8416 0.6217 -0.00414 0.00100 

18 100 500 0.55 22 0.67 30.5 0.6259 0.4361 25.0655 0.6509 31.2410 0.6213 -0.00454 0.00088 

19 100 1000 0.55 22 0.67 30.5 0.6259 0.4292 25.1694 0.6605 30.8604 0.6209 -0.00495 0.00081 

20 250 100 0.55 22 0.67 30.5 0.6259 0.5002 23.3344 0.5692 34.6244 0.6280 0.00210 0.00112 

21 500 100 0.55 22 0.67 30.5 0.6259 0.5289 22.5202 0.5773 34.2074 0.6292 0.00328 0.00095 

22 1000 100 0.55 22 0.67 30.5 0.6259 0.5384 22.3171 0.5597 34.9718 0.6300 0.00414 0.00088 

23 100 100 -1.95 0.1 -1.8 0.18 0.7656 -6.1548 0.2348 -5.3337 0.3938 0.7987 0.03315 0.00423 
24 250 250 -1.95 0.1 -1.8 0.18 0.7656 -2.8707 0.1295 -2.5746 0.2267 0.7842 0.01859 0.00148 

25 500 500 -1.95 0.1 -1.8 0.18 0.7656 -2.3326 0.1122 -2.0722 0.1963 0.7751 0.00952 0.00060 

26 1000 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1228 0.1055 -1.9548 0.1893 0.7710 0.00543 0.00026 

27 5000 5000 -1.95 0.1 -1.8 0.18 0.7656 -1.9889 0.1013 -1.8316 0.1818 0.7668 0.00116 0.00004 

28 100 250 -1.95 0.1 -1.8 0.18 0.7656 -6.5750 0.2486 -2.4849 0.2213 0.7950 0.02938 0.00314 

29 100 500 -1.95 0.1 -1.8 0.18 0.7656 -6.4323 0.2439 -2.1153 0.1990 0.7965 0.03091 0.00276 

30 100 1000 -1.95 0.1 -1.8 0.18 0.7656 -6.4737 0.2455 -1.9738 0.1905 0.7943 0.02870 0.00251 

31 250 100 -1.95 0.1 -1.8 0.18 0.7656 -2.7547 0.1257 -5.7700 0.4207 0.7877 0.02219 0.00253 

32 500 100 -1.95 0.1 -1.8 0.18 0.7656 -2.3306 0.1122 -5.9818 0.4337 0.7826 0.01699 0.00190 

33 1000 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1274 0.1057 -5.8382 0.4256 0.7784 0.01281 0.00152 
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4.3.2 Bootstrap Confidence Interval  
 

For the simulations of the confidence intervals based on bootstrap-p and on non-

parametric bootstrap, we generated 33 initial samples using the same combinations of sample 

sizes and initial parameters presented in the sub-section “Analysis of the MLE”. For the case 

of the bootstrap-p, we obtain, from the 33 initial samples, the MLE of the parameters by 

maximizing the log-likelihood function (Equation (4.3)). Given that we have the parameters’ 

estimates (obtained from the initial samples) for each different combination of parameters and 

sample size, we can use these estimates to generate N=1000 new samples from Equation 

(2.2). For the case of the non-parametric bootstrap, we use the 33 initial samples to generate 

N=1000 samples by sampling with replacement (for each different combination of parameters 

and sample sizes). 

From the samples generated by the bootstrap-p or by non-parametric bootstrap, we 

estimate the index R from Equation (4.4) or (4.5) (depending on the r value), i.e., for each 

method we generate N=1000 bootstrap estimates of R. We present the mean of N = 1000 

bootstrap estimates of R and, based on the percentile method, the corresponding 90% 

confidence interval is also provided.  

Table 4.9 and Table 4.10 present, respectively, the results and estimation of bootstrap-p 

and non-parametric bootstrap confidence intervals for index R estimated by Nelder-Mead. 

Table 4.11 and Table 4.12 present, respectively, the results and estimation of bootstrap-p and 

non-parametric bootstrap confidence intervals for index R estimated by PSO. From the 

simulations for the bootstrap-p and non-parametric bootstrap confidence intervals, in the most 

cases, we observe that: 

 

(i) When (n; m) increase, the amplitude of the interval (width) decreases. In order to 

illustrate this behavior, Table 4.6 presents excerpts of Table 4.9 and Table 4.11 

with the interval widths for the index R obtained by bootstrap-p, considering a 

90% confidence level, for the three different combinations of parameters when (n, 

m) = (100, 100) and (n, m) = (5000, 5000); 

(ii) For a fixed n, the widths decrease as m increases. For example, the results in  
(iii) Table 4.7 are taken from Table 4.10 and Table 4.12 demonstrate this behavior; For 

a fixed m, the interval widths decrease as n increases. Table 4.8, which is formed 

by excerpts of Table 4.9 and Table 4.11 exemplifies the decrease of interval widths 

for bootstrap-p and 90% of confidence level.  
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Table 4.6. Examples of cases that present a decrease of interval widths when (n; m) increase 

 

 

Table 4.7. Examples of cases that present a decrease of interval widths for a fixed n and an increase of m. 

 

Table 4.8. Examples of cases that present a decrease of interval widths for a fixed m and an increase of n. 

Nelder-Mead 
Case n m � � � � (1-γ) = 0.90 Width 
1 100 100 1.78 0.15 1.90 0.10 [0.5949; 0.7139] 0.1190 
12 100 100 0.55 22 0.67 30.5 [0.5462; 0.6803] 0.1341 
23 100 100 -1.95 0.1 -1.8 0.18 [0.7273; 0.9553] 0.2281 
5 5000 5000 1.78 0.15 1.90 0.10 [0.6777; 0.6928] 0.0152 
16 5000 5000 0.55 22 0.67 30.5 [0.6116; 0.6281] 0.0166 
27 5000 5000 -1.95 0.1 -1.8 0.18 [0.7699; 0.9505] 0.1806 

PSO 
Case n m � � � � (1-γ) = 0.90 Width 
1 100 100 1.78 0.15 1.90 0.10 [0.5956; 0.7156] 0.1199 
12 100 100 0.55 22 0.67 30.5 [0.5470; 0.6778] 0.1309 
23 100 100 -1.95 0.1 -1.8 0.18 [0.7104; 0.8912] 0.1808 
5 5000 5000 1.78 0.15 1.90 0.10 [0.6771; 0.6926] 0.0155 
16 5000 5000 0.55 22 0.67 30.5 [0.6113; 0.6281] 0.0169 
27 5000 5000 -1.95 0.1 -1.8 0.18 [0.7625; 0.7831] 0.0205 

Nelder-Mead 
Case n m � � � � (1-γ) = 0.90 Width 
1 100 100 1.78 0.15 1.90 0.10 [0.5991; 0.7088] 0.1097 
6 100 250 1.78 0.15 1.90 0.10 [0.6531; 0.7386] 0.0855 
7 100 500 1.78 0.15 1.90 0.10 [0.6548; 0.7348] 0.08004 
8 100 1000 1.78 0.15 1.90 0.10 [0.6995; 0.7694] 0.06985 

PSO 
Case n m � � � � (1-γ) = 0.90 Width 
1 100 100 1.78 0.15 1.90 0.10 [0.5989; 0.7147] 0.1158 
6 100 250 1.78 0.15 1.90 0.10 [0.6509; 0.7395] 0.0885 
7 100 500 1.78 0.15 1.90 0.10 [0.7058; 0.7831] 0.0773 
8 100 1000 1.78 0.15 1.90 0.10 [0.6586; 0.7227] 0.0641 

Nelder-Mead 
Case n m � � � � (1-γ) = 0.90 Width 
12 100 100 0.55 22 0.67 30.5 [0.5462; 0.6803] 0.1341 
20 250 100 0.55 22 0.67 30.5 [0.5786; 0.6840] 0.1055 
21 500 100 0.55 22 0.67 30.5 [0.5926; 0.6929] 0.10023 
22 1000 100 0.55 22 0.67 30.5 [0.5948; 0.6931] 0.09834 

PSO 
Case n m � � � � (1-γ) = 0.90 Width 
12 100 100 0.55 22 0.67 30.5 [0.5470; 0.6778] 0.1309 
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Next, we present charts in order to facilitate the evaluation of simulations for the 

confidence intervals constructed in this section. The data used to compile these figures are 

presented  in Tables Table 4.9 to Table 4.12. 

 

  
Cases 

 
          Cases 

 
Cases 

 
Figure 4.3. Upper and lower limits of the Bootstrap-P  Confidence Interval for the Index R, obtained  by PSO 

and Nelder-Mead. 
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20 250 100 0.55 22 0.67 30.5 [0.5752; 0.6855] 0.1103 
21 500 100 0.55 22 0.67 30.5 [0.5785; 0.6748] 0.0964 
22 1000 100 0.55 22 0.67 30.5 [0.5451; 0.6412] 0.0961 
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Cases 

 
Cases 

 
Cases 

Figure 4.4. Upper and lower limits of the Non-Parametric Bootstrap Confidence Interval for the Index R, 
obtained  by PSO and Nelder-Mead. 

 

 

Note from Figures Figure 4.3 and Figure 4.4 that the parametric and non-parametric 

bootstrap methods, showed greater efficiency in the simulations of the confidence intervals 

for the index R. It is observed that for Nelder-Mead case, in both bootstrap approaches, only 3 

cases shows intervals that not contain the real parameter (bootstrap-p: cases 2, 7 and 27 ; non-

parametric bootstrap: cases 2, 8 and 27). When we use PSO, it is observed a similar behavior, 

i.e., when we deal with the bootstrap-p approach, there is only two cases that the intervals not 

contain the real parameter (cases 2 and 7), for the non-parametric approach, the cases 2, 7, 13, 

26 and 30 not contain the real parameter. We can yet comment that cases 23 to 33 showed 

interval widths greater than other simulated cases, apparently, these widths are greater in the 

Nelder-Mead case. In the next section, we will compare these lengths through hypothesis 

tests. 
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Table 4.9. Simulation results and estimation of bootstrap-p confidence interval for the index R – By Nelder-Mead 

 

 Sample 
Size 

Initial Parameters MLE Results for the first sample Bootstrap Estimative 

Case n m � � � � � �� �� �� �� �� �∗ 
Confidence Interval 
(1-γ) = 0.90 Width 

1 100 100 1.78 0.15 1.90 0.10 0.6855 1.7786 0.2152 1.9049 0.0680 0.6559 0.6562 [0.5949; 0.7139] 0.1190 
2 250 250 1.78 0.15 1.90 0.10 0.6855 1.7516 0.1524 1.9040 0.1635 0.7504 0.7500 [0.7135; 0.7852] 0.0717 

3 500 500 1.78 0.15 1.90 0.10 0.6855 1.7679 0.1658 1.8949 0.0960 0.6775 0.6780 [0.6521; 0.7044] 0.0523 
4 1000 1000 1.78 0.15 1.90 0.10 0.6855 1.7795 0.1419 1.9008 0.0839 0.6809 0.6809 [0.6624; 0.6981] 0.0357 
5 5000 5000 1.78 0.15 1.90 0.10 0.6855 1.7799 0.1539 1.8999 0.1023 0.6852 0.6853 [0.6777; 0.6928] 0.0152 
6 100 250 1.78 0.15 1.90 0.10 0.6855 1.8083 0.1351 1.9000 0.1942 0.6952 0.6935 [0.6466; 0.7389] 0.0923 

7 100 500 1.78 0.15 1.90 0.10 0.6855 1.7478 0.1764 1.8986 0.1480 0.7280 0.7279 [0.6903; 0.7643] 0.0741 
8 100 1000 1.78 0.15 1.90 0.10 0.6855 1.7804 0.1335 1.8988 0.0984 0.6880 0.6870 [0.6484; 0.7247] 0.0763 
9 250 100 1.78 0.15 1.90 0.10 0.6855 1.7645 0.1798 1.9134 0.0962 0.7219 0.7226 [0.6742; 0.7721] 0.0979 
10 500 100 1.78 0.15 1.90 0.10 0.6855 1.7814 0.1252 1.9092 0.0886 0.7101 0.7103 [0.6594; 0.7579] 0.0985 

11 1000 100 1.78 0.15 1.90 0.10 0.6855 1.7865 0.1429 1.9006 0.0851 0.6731 0.6724 [0.6233; 0.7191] 0.0958 
12 100 100 0.55 22 0.67 30.5 0.6259 0.4668 23.760 0.6514 30.1452 0.6193 0.5910 [0.5462; 0.6803] 0.1341 
13 250 250 0.55 22 0.67 30.5 0.6259 0.5433 21.323 0.6891 26.7851 0.6058 0.5609 [0.5651; 0.6442] 0.0791 
14 500 500 0.55 22 0.67 30.5 0.6259 0.5688 21.164 0.7129 28.6894 0.6261 0.5277 [0.5993; 0.6543] 0.0550 

15 1000 1000 0.55 22 0.67 30.5 0.6259 0.5136 23.615 0.7046 29.6139 0.6183 0.5682 [0.5990; 0.6365] 0.0375 
16 5000 5000 0.55 22 0.67 30.5 0.6259 0.5046 23.435 0.6784 30.1115 0.6201 0.6201 [0.6116; 0.6281] 0.0166 
17 100 250 0.55 22 0.67 30.5 0.6259 0.5657 20.850 0.5990 31.6486 0.6280 0.6228 [0.5750; 0.6790] 0.1040 
18 100 500 0.55 22 0.67 30.5 0.6259 0.4687 21.546 0.7144 29.4955 0.6619 0.6437 [0.5784; 0.6974] 0.1190 
19 100 1000 0.55 22 0.67 30.5 0.6259 0.5840 21.738 0.6679 29.7187 0.6120 0.6072 [0.5669; 0.6543] 0.0875 
20 250 100 0.55 22 0.67 30.5 0.6259 0.5264 22.331 0.5092 35.5572 0.6304 0.6316 [0.5786; 0.6840] 0.1055 
21 500 100 0.55 22 0.67 30.5 0.6259 0.5347 22.404 0.4926 37.6015 0.6354 0.6413 [0.5926; 0.6929] 0.1002 
22 1000 100 0.55 22 0.67 30.5 0.6259 0.5412 22.235 0.4841 38.1364 0.6373 0.6252 [0.5948; 0.6931] 0.0983 
23 100 100 -1.95 0.1 -1.8 0.18 0.7656 -1.9456 0.1000 -1.9409 0.1868 0.7628 0.8419 [0.7273; 0.9553] 0.2281 

24 250 250 -1.95 0.1 -1.8 0.18 0.7656 -2.0719 0.1018 -0.9703 0.1262 0.7444 0.8149 [0.7258; 0.9645] 0.2387 
25 500 500 -1.95 0.1 -1.8 0.18 0.7656 -2.0422 0.1013 -1.7182 0.1740 0.7723 0.8350 [0.7530; 0.9659] 0.2129 
26 1000 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.2531 0.1100 -1.9402 0.1884 0.7759 0.8286 [0.7636; 0.9476] 0.1840 
27 5000 5000 -1.95 0.1 -1.8 0.18 0.7656 -2.3069 0.1116 -1.9518 0.1894 0.7793 0.8322 [0.7699; 0.9505] 0.1806 

28 100 250 -1.95 0.1 -1.8 0.18 0.7656 -1.9610 0.0992 -1.9249 0.1845 0.7654 0.8495 [0.7509; 0.9618] 0.2109 
29 100 500 -1.95 0.1 -1.8 0.18 0.7656 -2.1204 0.1040 -2.0452 0.1944 0.7818 0.8614 [0.7595; 0.9833] 0.2238 
30 100 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1020 0.1011 -2.0229 0.1919 0.7896 0.8692 [0.7628; 1.0000] 0.2372 
31 250 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1965 0.1087 -1.9351 0.1892 0.7750 0.8367 [0.7370; 0.9421] 0.2051 

32 500 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1050 0.1049 -1.5737 0.1663 0.7663 0.8239 [0.7254; 0.9441] 0.2186 
33 1000 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1120 0.1050 -1.6466 0.1705 0.7679 0.8217 [0.7192; 0.9365] 0.2173 
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Table 4.10. Simulation results and estimation of non-parametric bootstrap confidence interval for the index R – By Nelder-Mead 

 

 Sample 
Size 

Initial Parameters MLE Results for the first sample Bootstrap Estimative 

Case n m � � � � � �� �� �� �� �� �∗ 
Confidence Interval 
(1-γ) = 0.90 Width 

1 100 100 1.78 0.15 1.90 0.10 0.6855 1.7786 0.2152 1.9049 0.0680 0.6559 0.6565 [0.5991; 0.7088] 0.1097 
2 250 250 1.78 0.15 1.90 0.10 0.6855 1.7516 0.1524 1.9040 0.1635 0.7504 0.7508 [0.7182; 0.7837] 0.0655 

3 500 500 1.78 0.15 1.90 0.10 0.6855 1.7679 0.1658 1.8949 0.0960 0.6775 0.6779 [0.6517; 0.7042] 0.0526 
4 1000 1000 1.78 0.15 1.90 0.10 0.6855 1.7795 0.1419 1.9008 0.0839 0.6809 0.6803 [0.6612; 0.6979] 0.0367 
5 5000 5000 1.78 0.15 1.90 0.10 0.6855 1.7799 0.1539 1.8999 0.1023 0.6852 0.6851 [0.6773; 0.6930] 0.0157 
6 100 250 1.78 0.15 1.90 0.10 0.6855 1.8083 0.1351 1.9000 0.1942 0.6952 0.6947 [0.6531; 0.7386] 0.0855 

7 100 500 1.78 0.15 1.90 0.10 0.6855 1.7776 0.1633 1.8996 0.1039 0.6849 0.6944 [0.6548; 0.7348] 0.0800 
8 100 1000 1.78 0.15 1.90 0.10 0.6855 1.7759 0.1621 1.8999 0.1014 0.6869 0.7349 [0.6995; 0.7694] 0.0698 
9 250 100 1.78 0.15 1.90 0.10 0.6855 1.7645 0.1798 1.9134 0.0962 0.7219 0.7215 [0.6760; 0.7664] 0.0903 
10 500 100 1.78 0.15 1.90 0.10 0.6855 1.7814 0.1252 1.9092 0.0886 0.7101 0.7104 [0.6560; 0.7672] 0.1112 

11 1000 100 1.78 0.15 1.90 0.10 0.6855 1.7865 0.1429 1.9006 0.0851 0.6731 0.6736 [0.6283; 0.7210] 0.0927 
12 100 100 0.55 22 0.67 30.5 0.6259 0.4668 23.760 0.6514 30.1452 0.6193 0.6054 [0.5439; 0.6911] 0.1472 
13 250 250 0.55 22 0.67 30.5 0.6259 0.5433 21.323 0.6891 26.7851 0.6058 1.0384 [0.5566; 0.6468] 0.0902 
14 500 500 0.55 22 0.67 30.5 0.6259 0.5688 21.164 0.7129 28.6894 0.6261 0.6619 [0.5980; 0.6531] 0.0550 

15 1000 1000 0.55 22 0.67 30.5 0.6259 0.5136 23.615 0.7046 29.6139 0.6183 0.6177 [0.5994; 0.6344] 0.0350 
16 5000 5000 0.55 22 0.67 30.5 0.6259 0.5046 23.435 0.6784 30.1115 0.6201 0.6203 [0.6121; 0.6281] 0.0160 
17 100 250 0.55 22 0.67 30.5 0.6259 0.5657 20.850 0.5990 31.6486 0.6280 0.6255 [0.5689; 0.6747] 0.1058 
18 100 500 0.55 22 0.67 30.5 0.6259 0.4687 21.546 0.7144 29.4955 0.6619 0.6528 [0.5919; 0.6967] 0.1048 
19 100 1000 0.55 22 0.67 30.5 0.6259 0.5840 21.738 0.6679 29.7187 0.6120 0.6097 [0.5703; 0.6529] 0.0826 
20 250 100 0.55 22 0.67 30.5 0.6259 0.5264 22.331 0.5092 35.5572 0.6304 0.6189 [0.5786; 0.6893] 0.1107 
21 500 100 0.55 22 0.67 30.5 0.6259 0.5510 22.033 0.6558 30.9820 0.6258 0.6118 [0.5725; 0.6817] 0.1093 
22 1000 100 0.55 22 0.67 30.5 0.6259 0.5758 21.350 0.6381 27.4955 0.5900 0.5911 [0.5411; 0.6425] 0.1015 
23 100 100 -1.95 0.1 -1.8 0.18 0.7656 -1.9456 0.1000 -1.9409 0.1868 0.7628 0.8271 [0.7144; 0.9666] 0.2522 

24 250 250 -1.95 0.1 -1.8 0.18 0.7656 -2.0719 0.1018 -0.9703 0.1262 0.7444 0.7962 [0.7092; 0.9486] 0.2395 
25 500 500 -1.95 0.1 -1.8 0.18 0.7656 -2.0422 0.1013 -1.7182 0.1740 0.7723 0.8012 [0.7333; 0.8992] 0.1659 
26 1000 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.2531 0.1100 -1.9402 0.1884 0.7759 0.8058 [0.7527; 0.8897] 0.1370 
27 5000 5000 -1.95 0.1 -1.8 0.18 0.7656 -2.3069 0.1116 -1.9518 0.1894 0.7793 0.7802 [0.7680; 0.7913] 0.0233 

28 100 250 -1.95 0.1 -1.8 0.18 0.7656 -1.9610 0.0992 -1.9249 0.1845 0.7654 0.8105 [0.7198; 0.9260] 0.2062 
29 100 500 -1.95 0.1 -1.8 0.18 0.7656 -2.1204 0.1040 -2.0452 0.1944 0.7818 0.8266 [0.7294; 0.9180] 0.1886 
30 100 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1020 0.1011 -2.0229 0.1919 0.7896 0.8048 [0.7040; 0.8933] 0.1893 
31 250 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1965 0.1087 -1.9351 0.1892 0.7750 0.8084 [0.7105; 0.9231] 0.2126 

32 500 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1050 0.1049 -1.5737 0.1663 0.7663 0.7897 [0.7109; 0.8806] 0.1697 
33 1000 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1120 0.1050 -1.6466 0.1705 0.7679 0.8192 [0.7162; 0.9501] 0.2338 
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Table 4.11 - Simulation results and estimation of bootstrap-p confidence interval for the index R – By PSO 

 

 Sample 
Size 

Initial Parameters MLE Results for the first sample Bootstrap Estimative 

Case n m � � � � � �� �� �� �� �� �∗ 
Confidence Interval 
(1-γ) = 0.90 Width 

1 100 100 1.78 0.15 1.90 0.10 0.6855 1.7786 0.2153 1.9050 0.0680 0.6560 0.6554 [0.5956; 0.7156] 0.1199 
2 250 250 1.78 0.15 1.90 0.10 0.6855 1.7515 0.1524 1.9041 0.1634 0.7506 0.7499 [0.7157; 0.7836] 0.0679 
3 500 500 1.78 0.15 1.90 0.10 0.6855 1.7679 0.1659 1.8949 0.0960 0.6775 0.6773 [0.6508; 0.7025] 0.0517 

4 1000 1000 1.78 0.15 1.90 0.10 0.6855 1.7795 0.1419 1.9008 0.0840 0.6809 0.6813 [0.6635; 0.6990] 0.0356 
5 5000 5000 1.78 0.15 1.90 0.10 0.6855 1.7800 0.1538 1.8999 0.1022 0.6850 0.6851 [0.6771; 0.6926] 0.0155 
6 100 250 1.78 0.15 1.90 0.10 0.6855 1.8083 0.1352 1.9000 0.1943 0.6951 0.6969 [0.6507; 0.7449] 0.0942 
7 100 500 1.78 0.15 1.90 0.10 0.6855 1.7478 0.1763 1.8986 0.1481 0.7281 0.7288 [0.6893; 0.7665] 0.0772 

8 100 1000 1.78 0.15 1.90 0.10 0.6855 1.7805 0.1334 1.8988 0.0983 0.6880 0.6880 [0.6517; 0.7220] 0.0702 
9 250 100 1.78 0.15 1.90 0.10 0.6855 1.7644 0.1799 1.9134 0.0963 0.7220 0.7231 [0.6755; 0.7735] 0.0980 
10 500 100 1.78 0.15 1.90 0.10 0.6855 1.7814 0.1252 1.9092 0.0885 0.7099 0.7091 [0.6601; 0.7568] 0.0967 
11 1000 100 1.78 0.15 1.90 0.10 0.6855 1.7866 0.1429 1.9006 0.0852 0.6731 0.6727 [0.6230; 0.7211] 0.0980 

12 100 100 0.55 22 0.67 30.5 0.6259 0.4667 23.763 0.6518 30.1359 0.6193 0.6130 [0.5470; 0.6778] 0.1309 
13 250 250 0.55 22 0.67 30.5 0.6259 0.5435 21.317 0.6893 26.7827 0.6059 0.6054 [0.5653; 0.6435] 0.0782 
14 500 500 0.55 22 0.67 30.5 0.6259 0.5685 21.175 0.7129 28.6889 0.6260 0.6264 [0.6002; 0.6527] 0.0525 
15 1000 1000 0.55 22 0.67 30.5 0.6259 0.5137 23.614 0.7046 29.6077 0.6182 0.6182 [0.5979; 0.6371] 0.0392 

16 5000 5000 0.55 22 0.67 30.5 0.6259 0.5046 23.438 0.6786 30.0995 0.6199 0.6200 [0.6113; 0.6281] 0.0169 
17 100 250 0.55 22 0.67 30.5 0.6259 0.5660 20.843 0.5986 31.6643 0.6281 0.6274 [0.5777; 0.6778] 0.1001 
18 100 500 0.55 22 0.67 30.5 0.6259 0.4688 21.541 0.7146 29.4830 0.6618 0.6417 [0.5774; 0.6982] 0.1208 
19 100 1000 0.55 22 0.67 30.5 0.6259 0.5842 21.736 0.6677 29.7264 0.6120 0.6108 [0.5675; 0.6534] 0.0859 

20 250 100 0.55 22 0.67 30.5 0.6259 0.5260 22.340 0.5091 35.5524 0.6304 0.6340 [0.5752; 0.6855] 0.1103 
21 500 100 0.55 22 0.67 30.5 0.6259 0.5506 22.042 0.6558 30.9777 0.6257 0.6280 [0.5785; 0.6748] 0.0964 
22 1000 100 0.55 22 0.67 30.5 0.6259 0.5761 21.343 0.6384 27.4841 0.5899 0.5933 [0.5451; 0.6412] 0.0961 
23 100 100 -1.95 0.1 -1.8 0.18 0.7656 -1.9455 0.1000 -1.9407 0.1868 0.7627 0.7975 [0.7104; 0.8912] 0.1808 

24 250 250 -1.95 0.1 -1.8 0.18 0.7656 -2.0734 0.1018 -2.0321 0.1934 0.7830 0.8033 [0.7491; 0.8612] 0.1121 
25 500 500 -1.95 0.1 -1.8 0.18 0.7656 -2.0433 0.1013 -1.7182 0.174 0.7725 0.7830 [0.7462; 0.8204] 0.0742 
26 1000 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1423 0.1054 -1.9363 0.1881 0.7777 0.7841 [0.7588; 0.8093] 0.0505 
27 5000 5000 -1.95 0.1 -1.8 0.18 0.7656 -1.9665 0.1004 -1.9511 0.1893 0.7699 0.7722 [0.7625; 0.7831] 0.0205 
28 100 250 -1.95 0.1 -1.8 0.18 0.7656 -1.9620 0.0993 -1.9246 0.1844 0.7652 0.7990 [0.7194; 0.8802] 0.1608 
29 100 500 -1.95 0.1 -1.8 0.18 0.7656 -1.5206 0.0856 -2.0472 0.1945 0.7551 0.7901 [0.7128; 0.8688] 0.1560 
30 100 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1035 0.1012 -2.0234 0.1920 0.7896 0.8210 [0.7292; 0.8922] 0.1630 
31 250 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1969 0.1087 -1.9325 0.189 0.7748 0.7954 [0.7245; 0.8686] 0.1441 
32 500 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1076 0.105 -1.5752 0.1664 0.7663 0.7819 [0.7178; 0.8506] 0.1328 

33 1000 100 -1.95 0.1 -1.8 0.18 0.7656 -1.7789 0.0941 -1.6472 0.1706 0.7582 0.7727 [0.7192; 0.8319] 0.1127 
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Table 4.12 - Simulation results and estimation of non-parametric bootstrap confidence interval for the index R – By PSO 

 Sample 
Size 

Initial Parameters MLE Results for the first sample Bootstrap Estimative 

Case n m � � � � � �� �� �� �� �� �∗ 
Confidence Interval 
(1-γ) = 0.90 Width 

1 100 100 1.78 0.15 1.90 0.10 0.6855 1.7786 0.2153 1.9050 0.0680 0.6560 0.6559 [0.5989; 0.7147] 0.1158 

2 250 250 1.78 0.15 1.90 0.10 0.6855 1.7515 0.1524 1.9041 0.1634 0.7506 0.7277 [0.6922; 0.7613] 0.0691 
3 500 500 1.78 0.15 1.90 0.10 0.6855 1.7679 0.1659 1.8949 0.0960 0.6775 0.6773 [0.6512; 0.7026] 0.0514 
4 1000 1000 1.78 0.15 1.90 0.10 0.6855 1.7795 0.1419 1.9008 0.0840 0.6809 0.6809 [0.6628; 0.6995] 0.0367 
5 5000 5000 1.78 0.15 1.90 0.10 0.6855 1.7800 0.1538 1.8999 0.1022 0.6850 0.6851 [0.6767; 0.6933] 0.0166 
6 100 250 1.78 0.15 1.90 0.10 0.6855 1.8083 0.1352 1.9000 0.1943 0.6951 0.6962 [0.6509; 0.7395] 0.0885 
7 100 500 1.78 0.15 1.90 0.10 0.6855 1.7478 0.1763 1.8986 0.1481 0.7281 0.7442 [0.7058; 0.7831] 0.0773 
8 100 1000 1.78 0.15 1.90 0.10 0.6855 1.7805 0.1334 1.8988 0.0983 0.6880 0.6896 [0.6586; 0.7227] 0.0641 
9 250 100 1.78 0.15 1.90 0.10 0.6855 1.7644 0.1799 1.9134 0.0963 0.7220 0.7251 [0.6804; 0.7722] 0.0918 
10 500 100 1.78 0.15 1.90 0.10 0.6855 1.7814 0.1252 1.9092 0.0885 0.7099 0.7121 [0.6565; 0.7661] 0.1097 
11 1000 100 1.78 0.15 1.90 0.10 0.6855 1.7866 0.1429 1.9006 0.0852 0.6731 0.7018 [0.6498; 0.7523] 0.1025 
12 100 100 0.55 22 0.67 30.5 0.6259 0.4667 23.763 0.6518 30.1359 0.6193 0.6305 [0.5619; 0.7021] 0.1402 
13 250 250 0.55 22 0.67 30.5 0.6259 0.5435 21.317 0.6893 26.7827 0.6059 0.5594 [0.5090; 0.6060] 0.0970 
14 500 500 0.55 22 0.67 30.5 0.6259 0.5685 21.175 0.7129 28.6889 0.6260 0.6269 [0.6007; 0.6541] 0.0534 
15 1000 1000 0.55 22 0.67 30.5 0.6259 0.5137 23.614 0.7046 29.6077 0.6182 0.6296 [0.6110; 0.6485] 0.0375 
16 5000 5000 0.55 22 0.67 30.5 0.6259 0.5046 23.438 0.6786 30.0995 0.6199 0.6203 [0.6128; 0.6279] 0.0152 
17 100 250 0.55 22 0.67 30.5 0.6259 0.5660 20.843 0.5986 31.6643 0.6281 0.6222 [0.5696; 0.6785] 0.1089 

18 100 500 0.55 22 0.67 30.5 0.6259 0.4688 21.541 0.7146 29.4830 0.6618 0.6061 [0.5586; 0.6598] 0.1012 
19 100 1000 0.55 22 0.67 30.5 0.6259 0.5842 21.736 0.6677 29.7264 0.6120 0.6371 [0.5918; 0.6783] 0.0865 
20 250 100 0.55 22 0.67 30.5 0.6259 0.5260 22.340 0.5091 35.5524 0.6304 0.6378 [0.5851; 0.6891] 0.1039 
21 500 100 0.55 22 0.67 30.5 0.6259 0.5506 22.042 0.6558 30.9777 0.6257 0.6261 [0.5708; 0.6803] 0.1095 

22 1000 100 0.55 22 0.67 30.5 0.6259 0.5761 21.343 0.6384 27.4841 0.5899 0.5998 [0.5506; 0.6520] 0.1013 
23 100 100 -1.95 0.1 -1.8 0.18 0.7656 -1.9455 0.1000 -1.9407 0.1868 0.7627 0.8388 [0.7228; 0.9562] 0.2334 
24 250 250 -1.95 0.1 -1.8 0.18 0.7656 -2.0734 0.1018 -2.0321 0.1934 0.7830 0.7966 [0.7400; 0.8499] 0.1099 
25 500 500 -1.95 0.1 -1.8 0.18 0.7656 -2.0433 0.1013 -1.7182 0.174 0.7725 0.7922 [0.7569; 0.8287] 0.0718 

26 1000 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1423 0.1054 -1.9363 0.1881 0.7777 0.7962 [0.7721; 0.8222] 0.0502 
27 5000 5000 -1.95 0.1 -1.8 0.18 0.7656 -1.9665 0.1004 -1.9511 0.1893 0.7699 0.7705 [0.7594; 0.7810] 0.0215 
28 100 250 -1.95 0.1 -1.8 0.18 0.7656 -1.9620 0.0993 -1.9246 0.1844 0.7652 0.8148 [0.7130; 0.9721] 0.2591 
29 100 500 -1.95 0.1 -1.8 0.18 0.7656 -1.5206 0.0856 -2.0472 0.1945 0.7551 0.8097 [0.7573; 0.8497] 0.0924 
30 100 1000 -1.95 0.1 -1.8 0.18 0.7656 -2.1035 0.1012 -2.0234 0.1920 0.7896 0.8329 [0.7932; 0.8632] 0.0700 

31 250 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1969 0.1087 -1.9325 0.189 0.7748 0.7511 [0.6910; 0.8228] 0.1318 
32 500 100 -1.95 0.1 -1.8 0.18 0.7656 -2.1076 0.105 -1.5752 0.1664 0.7663 0.8300 [0.7585; 0.8967] 0.1382 
33 1000 100 -1.95 0.1 -1.8 0.18 0.7656 -1.7789 0.0941 -1.6472 0.1706 0.7582 0.7781 [0.7233; 0.8282] 0.1049 
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4.4 Hypothesis tests applied to compare the quality of the estimation 
methods 
 

In this section, we will use the data obtained from the simulations that were made in 

order to evaluate  the performance of the maximum likelihood estimator for the index R 

(Table 4.4 and Table 4.5) as well as the data generated in the numeric experiments made to 

verify the quality of  the confidence interval generated by bootstrap-p and non-parametric 

bootstrap ( Table 4.9 to Table 4.12).  

We will use hypothesis tests in order to verify if there are significant differences 

between the different methods of estimation that were presented in this work. We consider the 

variables tested in this section as paired variables, once we use the same samples in order to 

calculate the point estimates by PSO and Nelder-Mead Method. As the same manner, the 

interval estimates are calculated from the same sample, we only modify the method that was 

used.  

4.4.1 Comparing the Mean Squared Error obtained in the estimation of the R index 
by Nelder-Mead and PSO 

 

 

The following variables will be used for the tests of this subsection:  

 

 Variable 1: MSE obtained by Nelder-Mead (Cases 1 to 33). 

 Variable 2: MSE obtained by Nelder-Mead (Cases 1 to 11). 

 Variable 3: MSE obtained by Nelder-Mead (Cases 12 to 22). 

 Variable 4: MSE obtained by Nelder-Mead (Cases 23 to 33). 

 Variable 5: MSE obtained by PSO (Cases 1 to 33). 

 Variable 6: MSE obtained by PSO (Cases 1 to 11). 

 Variable 7: MSE obtained by PSO (Cases 12 to 22). 

 Variable 8: MSE obtained by PSO (Cases 23 to 33). 

 

Note that the Variables 1 to 4 were obtained from Table 4.4 and Variables 5 to 8 were 

taken from Table 4.5. 
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In order to point the test more adequate for this situation, it is necessary to verify the 

normality of the data sets, thus, the Variables were tested by the Shapiro-Test of normality 

[75]: 

 

Table 4.13- p-values for the Shapiro-Wilk test of normality applied in Variables 1 to 8. 

Tested Variables p-value 

Variable 1 3.24 E-07* 

Variable 2 0.7316 

Variable 3 0.6245 

Variable 4 0.6367 

Variable 5 0.0005* 

Variable 6 0.7270 

Variable 7 0.6011 

Variable 8 0.8452 

* The test is significant for � = 0.01 

 

We can observe from the p-values of Table 4.13 that the only Variables that not are 

normally distributed are Variable 1 and Variable 5. However, the fact of this two Variables 

not present the normality does not mean that we do not must apply the Student's t-test for 

paired samples, once this two Variables has more than 30 values, and the central limit 

theorem [91], ensures that the average of these Variables are normally distributed. 

So, we will proceed with the Student's t-test (paired samples) for the following 

Comparisons , in order to verify if on average, the Variables present equal means: 

 
 

 Comparison 1 -  Variable 1: MSE obtained by Nelder-Mead (Cases 1 to 33) 

“VS” Variable 5: MSE obtained by PSO (Cases 1 to 33). 

 Comparison 2 - Variable 2: MSE obtained by Nelder-Mead (Cases 1 to 11) 

“VS” Variable 6: MSE obtained by PSO (Cases 1 to 11). 

 Comparison 3 - Variable 3: MSE obtained by Nelder-Mead (Cases 12 to 22) 

“VS” Variable 7: MSE obtained by PSO (Cases 12 to 22). 

 Comparison 4 - Variable 4: MSE obtained by Nelder-Mead (Cases 23 to 33) 

“VS” Variable 8: MSE obtained by PSO (Cases 23 to 33). 
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Formally, we can write the hypotheses used in the comparisons listed above as follows: 

 

��:����(��) − ����(���) = � 

“vs” 

��: ����(��) − ����(���) ≠ � 

 

Table 4.14 – Results for the Student’s t-test for the Comparisons 1 to 4. 

 

Mean of the 
difference 

between the 
two Variables. 

Confidence Interval (95%) for the 
Difference between the two 

Variables. 
p-value 

Comparison  1 0.0081 C.I.(95%) = [0.0039, 0.0123] 0.0004* 

Comparison  2 9.09E-7 C.I.(95%) = [-1.1165, 2.9346] 0.3409 

Comparison  3 6.16E-21 C.I.(95%) = [-5.20E-06, 5.20E-06] 0.9999 

Comparison  4 0.0243 C.I.(95%) = [0.0224, 0.0262] 6.99E-11* 

* The test is significant for � = 0.01 

 

From Table 4.14, we can observe that only the Comparison 1 and 4 reject the 

hypothesis of equality between the averages, so, the confidence interval indicates that the 

difference between the two averages is positive, i.e., on average the MSE obtained by Nelder-

Mead, showed higher values than those obtained by PSO. Observe that the Case 1, is 

completely influenced by the Case 4, once the Case 1, comprises all analyzed Cases and 

among these Cases the only one with significant differences was the Case 4. 

 

4.4.2 Comparing the width of the 90% Confidence Interval obtained by bootstrap-P 
and Non-parametric bootstrap (Nelder-Mead Case) 

 
 

From the analysis of this subsection we will use the variables 9 to 12 (taken from Table 

4.9) and Variables 13 to 16 (taken from Table 4.10):  

 

 Variable 9: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 33 (Nelder-Mead). 

 Variable 10: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 11 (Nelder-Mead). 
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 Variable 11: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 12 to 22 (Nelder-Mead). 

 Variable 12: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 23 to 33 (Nelder-Mead). 

 Variable 13: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 33 (Nelder-Mead). 

 Variable 14: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 11(Nelder-Mead). 

 Variable 15: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 12 to 22 (Nelder-Mead). 

 Variable 16: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 23 to 33 (Nelder-Mead). 

 

The normality of the data was tested by the Shapiro-Wilk test: 

 

Table 4.15- p-values for the Shapiro-Wilk test of normality applied in Variables 9 to 16. 

Tested Variables p-value 

Variable 9 0.0078* 

Variable 10 0.5241 

Variable 11 0.4650 

Variable 12 0.3846 

Variable 13 0.0866 

Variable 14 0.6754 

Variable 15 0.3515 

Variable 16 0.0450** 

* The test is significant for � = 0.01 

** The test is significant for � = 0.05 

 

Table 4.15 indicates that the Variables 9 and 16 are not normally distributed, so any 

comparison made with the Variable 16 will not be performed by the  Student’s test-t, in 

situations that involves the Variable 16 we will use the Wilcoxon test. Any comparison made 

with the Variable 9, will be done by the Student’s test-t, once this Variable presents n > 30.  

The following comparisons were performed: 
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 Comparison 5 -  Variable 9: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 1 to 33 (Nelder-Mead) “VS” Variable 13: Width of 

the 90% confidence interval obtained by non-parametric bootstrap approach for Cases 

1 to 33 (Nelder-Mead). 

 Comparison 6 – Variable10: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 1 to 11 (Nelder-Mead) “VS”  Variable 14: Width of 

the 90% confidence interval obtained by non-parametric bootstrap approach for Cases 

1 to 11 (Nelder-Mead). 

 Comparison 7 - Variable 11: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 12 to 22 (Nelder-Mead) “VS”  Variable 15: Width of 

the 90% confidence interval obtained by non-parametric bootstrap approach for Cases 

12 to 22 (Nelder-Mead). 

 Comparison 8 - Variable 12: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 23 to 33 (Nelder-Mead) “VS”  Variable 16: Width of 

the 90% confidence interval obtained by non-parametric bootstrap approach for Cases 

23 to 33 (Nelder-Mead). 

 

Formally, we can write the hypotheses used in the comparisons listed above as follows: 

 

��:������(���� − �) − ������(���� − ��) = � 

“vs” 

��:������(���� − �) − ������(���� − ��) ≠ � 

 

Table 4.16 - Results for the Student’s t-test / Wilcox test for the Comparisons 5 to 8. 

 

Mean of the 
difference 

between the two 
Variables. 

Confidence Interval (95%) for the 
Difference between the two Variables. 

p-value 

Comparison 5 0.0102 C.I.(95%) = [-0.0013, 0.0217] 0.0799(T) 

Comparison 6 0.0018 C.I.(95%) = [-0.0023, 0.0059] 0.3510(T) 

Comparison 7 -0.0020 C.I.(95%) = [-0.0073, 0.0033] 0.4242(T) 

Comparison 8 0.0231 C.I.(95%) = [-0.0041, 0.0666] 0.0830(W) 

(T) = Student’s t-test 
(W) = Wilcoxon Test 
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According with Table 4.16, we can conclude that there is none significant difference 

between the variables tested, i.e., there is no difference between the width of the bootstrap-P 

confidence interval and the width of non-parametric bootstrap confidence interval when we 

estimate these confidence intervals by Nelder-Mead method. 

 

4.4.3 Comparing the width of the 90% Confidence Interval obtained by bootstrap-P 
and Non-parametric bootstrap (PSO Case) 

 

For this analysis the variables 17 to 20 were taken from Table 4.11 and Variables 21 to 

24 were collected from  Table 4.12. The variables are described next: 

 
 

 Variable 17: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 33 (PSO). 

 Variable 18: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 11 (PSO). 

 Variable 19: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 12 to 22 (PSO). 

 Variable 20: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 23 to 33 (PSO). 

 Variable 21: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 33 (PSO). 

 Variable 22: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 11 (PSO). 

 Variable 23: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 12 to 22 (PSO). 

 Variable 24: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 23 to 33 (PSO). 

 

Testing the variables about the normality, we have:  
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Table 4.17- p-values for the Shapiro-Wilk test of normality applied in Variables 17 to 24. 

Tested Variables p-value 

Variable 17 0.7271 

Variable 18 0.5895 

Variable 19 0.5440 

Variable 20 0.3110 

Variable 21 0.0014* 

Variable 22 0.8234 

Variable 23 0.1555 

Variable 24 0.2088 

* The test is significant for � = 0.01 

 

As we can observe from Table 4.17, only the Variable 21 is not normally distributed, 

however, this Variable present more than 30 values, so the comparison made with this 

Variable can be proceed by the Student’s t-test (paired samples). Next, we present the 

comparisons that were tested: 

 

 Comparison 9 -  Variable 17: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 1 to 33 (PSO) “VS” Variable 21: Width of the 90% 

confidence interval obtained by non-parametric bootstrap approach for Cases 1 to 33 

(PSO). 

 Comparison 10 - Variable 18: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 1 to 11 (PSO) “VS”  Variable 22: Width of the 90% 

confidence interval obtained by non-parametric bootstrap approach for Cases 1 to 11 

(PSO). 

 Comparison 11 - Variable 19: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 12 to 22 (PSO) “VS”  Variable 23: Width of the 90% 

confidence interval obtained by non-parametric bootstrap approach for Cases 12 to 22 

(PSO). 

 Comparison 12 - Variable 20: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 23 to 33 (PSO)  “VS”  Variable 24: Width of the 90% 
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confidence interval obtained by non-parametric bootstrap approach for Cases 23 to 33 

(PSO). 

Formally, we can write the hypotheses used in the comparisons listed above as follows: 

 

��:������(���� − �) − ������(���� − ��) = � 

“vs” 

��:������(���� − �) − ������(���� − ��) ≠ � 

 

The results for the tests of Comparisons 9 to 12 are presented in the following table: 

 
Table 4.18- Results for the Student’s t-test for the Comparisons 9 to 12. 

 

Mean of the 
difference 

between the two 
Variables. 

Confidence Interval (95%) for the 
Difference between the two 

Variables. 
p-value 

Comparison  9 -4.84E-5 C.I.(95%) = [ -0.0103, 0.0102] 0.9924 

Comparison  10 0.0001 C.I.(95%) = [-0.0037, 0.0039] 0.9418 

Comparison  11 -0.0025 C.I.(95%) = [-0.0094, 0.0045] 0.4467 

Comparison  12 0.0022 C.I.(95%) = [-0.0316, 0.0360] 0.8871 

 
Thus, from Table 4.18, we conclude that there is no difference significant between any 

variable tested, therefore the same manner as in the case Nelder-Mead, there is no difference 

between the width of the bootstrap-P confidence interval and the width of non-parametric 

bootstrap confidence interval when we estimate these confidence intervals by PSO. 

 
 

4.4.4 Comparing the width of the Confidence Interval  obtained by Nelder-Mead and 
PSO (Bootstrap-P Case). 

 
 

The following  Variables will be tested:  

 
 Variable 9: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 33. 
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 Variable 10: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 11. 

 Variable 11: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 12 to 22. 

 Variable 12: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 23 to 33. 

 Variable 17: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 33 (PSO). 

 Variable 18: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 1 to 11 (PSO). 

 Variable 19: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 12 to 22 (PSO). 

 Variable 20: Width of the 90% confidence interval obtained by bootstrap-P approach 

for Cases 23 to 33 (PSO). 

 

Note that, previously we apply the Shapiro-Wilk test for verify the normality of these 

Variables (See Table 4.15 and Table 4.17). We point out that among these the only Variable 

that is not normally distributed is the Variable 9. However, the Variable 9 has size larger than 

30, so, we can proceed with the Student's test-t even when the comparison involves this 

Variable. 

The following comparisons are evaluated in this subsection. 

 Comparison 13 - Variable 4: Variable 9: Width of the 90% confidence interval 

obtained by bootstrap-P approach for Cases 1 to 33 “VS”  Variable 17: Width of the 

90% confidence interval obtained by bootstrap-P approach for Cases 1 to 33 (PSO). 

 Comparison 14 – Variable 10: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 1 to 11 “VS”  Variable 18: Width of the 90% 

confidence interval obtained by bootstrap-P approach for Cases 1 to 11 (PSO). 

 Comparison 15 – Variable 11: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 12 to 22 “VS”  Variable 19: Width of the 90% 

confidence interval obtained by bootstrap-P approach for Cases 12 to 22 (PSO). 
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 Comparison 16 - Variable 12: Width of the 90% confidence interval obtained by 

bootstrap-P approach for Cases 23 to 33 “VS”  Variable 20: Width of the 90% 

confidence interval obtained by bootstrap-P approach for Cases 23 to 33 (PSO). 

The hypotheses can be written as following: 

 

��:������(���) − ������(��) = � 

“vs” 

��:������(���) − ������(��) ≠ � 

 

The results for the Student’s t-test are showed in the next table: 

 

Table 4.19- Results for the Student’s t-test for the Comparisons 13 to 16. 

 
Mean of the 

difference between 
the two Variables. 

Confidence Interval (95%) for 
the Difference between the two 

Variables. 
p-value 

Comparison  13 -0.0322 C.I.(95%) = [-0.0501, -0.0143] 0.0009* 

Comparison  14 -0.0003 C.I.(95%) = [-0.0022, 0.0014] 0.6723 

Comparison  15 -0.0008 C.I.(95%) = [-0.0026, 0.0010] 0.3402 

Comparison  16 -0.0954 C.I.(95%) = [-0.1218, -0.0690] 1.10E-5* 

* The test is significant for � = 0.01 

 
As we can observe from Table 4.19, for the Comparisons 14 and 15, we not detect any 

significant difference. However, the Comparison 13 and 16 indicate significant difference 

between the width of the confidence interval bootstrap-p calculated by Nelder-Mead and the 

width of the confidence interval bootstrap-p calculated by PSO. Observe, by the confidence 

interval of the difference between the variables that in both comparisons (13 and 16), the 

confidence interval indicates a negative difference, so we can conclude that in both cases the 

width of the intervals obtained by Nelder-Mead is larger than the width of the interval 

obtained by PSO. Also note that the data of the variables tested in the Comparison 16 are 

contained in the variables of the Comparison 13, and certainly the result of the Comparison 13 

is being influenced by these values. 
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4.4.5 Comparing the width of the Confidence Interval  obtained by Nelder-Mead and 
PSO (Non-Parametric Bootstrap Case). 

 
 

For these comparisons we will use the following variables: 

 

 Variable 13: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 33 (Nelder-Mead). 

 Variable 14: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 11(Nelder-Mead). 

 Variable 15: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 12 to 22 (Nelder-Mead). 

 Variable 16: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 23 to 33 (Nelder-Mead). 

 Variable 21: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 33 (PSO). 

 Variable 22: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 1 to 11 (PSO). 

 Variable 23: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 12 to 22 (PSO). 

 Variable 24: Width of the 90% confidence interval obtained by non-parametric 

bootstrap approach for Cases 23 to 33 (PSO). 

Previously we present for the Variables 13 to 16 and 21 to 24, the results for the Shapiro 

Wilk Test (see Table 4.15 and Table 4.17) in order to verify the normality of the data. In this 

occasion, we had identified that among these Variables, only Variables 16 and 21 are not 

normally distributed. So, we will apply the Wilcoxon Test to perform comparisons that 

involves the Variable 16. For the Variable 21 there is no problem, once it has more than 30 

values, and we can use the Student’s t-test for paired samples. 

 

The following comparisons were performed: 

 

 Comparison 17 - Variable 13: Width of the 90% confidence interval obtained by 

non-parametric bootstrap approach for Cases 1 to 33 (Nelder-Mead) “VS”  Variable 
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21: Width of the 90% confidence interval obtained by non-parametric bootstrap 

approach for Cases 1 to 33 (PSO). 

 Comparison 18 - Variable 14: Width of the 90% confidence interval obtained by 

non-parametric bootstrap approach for Cases 1 to 11 (Nelder-Mead) “VS”  Variable 

22: Width of the 90% confidence interval obtained by non-parametric bootstrap 

approach for Cases 1 to 11 (PSO). 

 Comparison 19 - Variable 15: Width of the 90% confidence interval obtained by 

non-parametric bootstrap approach for Cases 12 to 22 (Nelder-Mead) “VS”  Variable 

23: Width of the 90% confidence interval obtained by non-parametric bootstrap 

approach for Cases 12 to 22 (PSO). 

 Comparison 20 - Variable 16: Width of the 90% confidence interval obtained by 

non-parametric bootstrap approach for Cases 23 to 33 (Nelder-Mead) “VS”  Variable 

24: Width of the 90% confidence interval obtained by non-parametric bootstrap 

approach for Cases 23 to 33 (PSO). 

The hypotheses can be written as following: 

��:������(���) − ������(��) = � 

“vs” 

��:������(���) − ������(��) ≠ � 

 

The results for the Student's t-test are showed in the next table: 

Table 4.20 - Results for the Student’s t-test / Wilcox test for the Comparisons 17 to 20. 

 

Mean of the 
difference 

between the 
two Variables. 

Confidence Interval (95%) for the 
Difference between the two Variables. 

p-value 

Comparison 17 -0.0219 C.I.(95%) = [-0.0383, -0.0055] 0.0104 (T)** 

Comparison 18 0.0013 C.I.(95%) = [-0.0025, 0.0051] 0.4638 (T) 

Comparison 19 -0.0003 C.I.(95%) = [-0.0032, 0.0026] 0.8125 (T) 

Comparison 20 -0.07145 C.I.(95%) = [-0.1082, -0.0206] 0.0068 (W)* 

* The test is significant for � = 0.01 
** The test is significant for � = 0.05 
(T) = Student’s t-test 
(W) = Wilcoxon Test 
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From Table 4.20, we can conclude that the Comparison 17 and 20 indicate significant 

difference between the width of the confidence interval non-parametric bootstrap calculated 

by Nelder-Mead and the width of the confidence interval non-parametric bootstrap calculated 

by PSO. The confidence interval for the Difference between the two Variables indicates that 

in both comparisons (17 and 20), the width obtained by Nelder-Mead is larger than the with 

obtained by PSO. 
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5 CASE STUDIES FOR FATIGUE LIFE WITH EXTREMELY LARGE 
VALUES: APPLICATIONS OF THE NEW PROPOSED STRESS-
STRENGTH MODEL. 

 
In this section, we present two case studies in which stress (Y) and strength (X) follow 

q-Exponential distributions. The first case study, which was originally described in [83], deals 

with the experimental determination of high cycle fatigue of ductile cast iron used for wind 

turbine components and the second one, which was first reported in [84], evaluates the 

gigacycle fatigue life of high-strength steel. 

These two case studies are based on the well-known phenomenon [44], [84] that the 

fatigue strength or endurance limit of large members is lower than that of small specimens 

made of the same material; in other words, a specimen size effect exists, i.e., larger specimens 

fail at shorter fatigue lives than smaller specimens [25], [44]. In fact, design of parts and 

structures against fatigue is based on laboratory sized specimens which are usually smaller 

than the real ones. Therefore, it is of great importance to determine the reliability of larger 

specimens when data of smaller specimens are available. In our work, we used the analogy 

that smaller specimens are stronger against fatigue and can be used as reference. Therefore, 

fatigue strength of smaller specimens was used as a reference to find the reliability of the 

larger specimens. 

We use the stress-strength analysis in order to estimate the reliability of a specimen with 

large size by using a data set for small specimen. The reliability is evaluated based on the 

number of cycles to failure. Stress-Cycle curves (SN curves) are often used to present fatigue 

resistance of materials at different stress levels. The SN curve simply represents number of 

cycle to failure at a given stress level. Therefore, there is a one-to-one relationship between 

stress level and number of cycle to failure [25], [44]. Therefore, using number of cycles 

instead of stress is a reasonable selection, i.e., the number of cycles to failure can be 

understood as a measure of resistance to failure. In terms of stress-strength models, such 

measures are obtained in situations where the system has low resistance to fatigue failure (i.e., 

larger specimen) as well as in situations where the system has greater resistance to fatigue 

failure (i.e., smaller specimen).  

Indeed, in the context of our work, Y refers to the number of cycles to failure in stress 

situation, i.e., number of cycles to failure of larger specimen. Similarly, X refers to the number 
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of cycles to failure in strength situation, i.e., number of cycles to failure of smaller specimen. 

Therefore, the reliability index R=P(Y<X) refers to the probability of the variable Y  being 

less than variable X. In other words, the index R indicates a measure of the reliability of the 

larger specimen using data set for the smaller specimen as reference. 

As we have mentioned above, q-Exponential distribution can be used to fit stress-

strength data when they are represented by cycles to failure obtained from specimens made of 

the same material but with different sizes. Such an approach for stress and strength analysis 

has been previously used, for example, in [36] and [92]. 

For each case study presented in this section, we estimate the parameters of two q-

Exponential distributions for data sets representing X and Y - the results will be obtained by 

PSO and Nelder-Mead algorithm. The estimation method is the maximum likelihood method 

discussed in section “Maximum likelihood estimators of index R=P(Y<X)”. Based on the 

estimates of the parameters, we analyze the goodness-of-fit of the q-Exponential distributions 

by using both graphical analysis and hypothesis testing. Thus, we show the CDF for the two 

data sets along with the theoretical CDF of the q-Exponential. Finally, we perform a 

bootstrapped version of the Kolmogorov-Smirnov test in order to statistically check the fit of 

the q-Exponential distribution to each data set. 

 

5.1 Case Study 1  
 

From [83] the size effect in ductile cast iron was studied using two sets of fatigue data 

for specimens with diameters 21 mm (Ø21) and 50 mm (Ø50). During the tests, the 

specimens were subjected to the same load condition. Figure 5.1 shows details of the 

drawings of the specimens. 
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Figure 5.1. Detail drawings of (a) Ø 21 and (b) Ø 50 specimens (all dimensions are in mm).[83] 

 
For stress we consider fatigue data of Ø50 specimens, and for strength the fatigue data 

of Ø21 specimens are used. The data sets given in terms of number of cycles to failure are 

presented in Table 5.1 and Table 5.2 for diameters 21 mm and 50 mm, respectively. 

 
Table 5.1. Ø21 specimen fatigue test data (Strength). 

 
Specimen 
Number 

Fatigue Life (number of 
cycles to failure) 

1 3000000 

2 716400 

3 1674100 

4 679400 

5 801000 

6 1076600 

7 4181701 

8 619200 

9 469500 

10 83200 

11 92500 

12 107700 
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Table 5.2. Ø50 specimen fatigue test data (Stress). 
 

Specimen 
Number 

Fatigue Life (number of 
cycles to failure) 

1 295000 

2 869000 

3 869900 

4 1573335 

5 151400 

6 152000 

7 183700 

8 218000 

9 30200 

10 45100 

11 46900 

12 47300 
 
 
 

Table 5.3 presents the estimated parameters - entropic indices (shape parameters) and 

scale parameters, Kolmogorov-Smirnov (K-S) distances between the empirical and fitted 

distribution functions, and the p-values of the K-S Boot test – for this test we use N=1000. As 

mentioned in Section entitled “The q-Exponential distribution”, the q-Exponential distribution 

shows characteristics of a power law when the entropic index presents values between 1 and 

2. In this case study, we can see that both X and Y present this behavior for the analyzed data 

sets. 

Table 5.3. Estimated parameters, Kolmogorov-Smirnov distances and p-values for the Kolmogorov-Smirnov Test 
(K-S Boot) – q-Exponential Distribution (Case Study 1). 

 

 

Optimization 
Method 

Entropic 
Index 

Scale 
Parameter 

K-S (��) p-value 

Data set 1 
(Strength) 

Nelder-Mead �̂  =  1.1087 �� = 884013.7 0.1477 0.7453 

PSO �̂  = 1.1082 �� = 884816 0.1478 0.7353 

Data set 2 
(Stress) 

Nelder-Mead ��  =  1.3005 �̂  =  161904 0.1554 0.6054 

PSO ��  = 1.3007  �̂  =  161820.6 0.1554 0.5994 

 
Figure 5.2 (a) and (b) present the theoretical and empirical CDFs for X and Y, 

respectively. For the theoretical curve we use the results obtained by Nelder-Mead method, 

once it is very similar to the results obtained by PSO. In addition, by the Kolmogorov-

Smirnov tests and the corresponding p-values (K-S Boot) reported in Table 5.3 the q-
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Exponential model adequately fits both the strength and stress data sets, as can also be seen in 

the graphs shown in Figure 5.2 (a) and (b). 

 

 
Figure 5.2. Theoretical (q-Exponential) and empirical CDF for data sets of Case Study 1. (a) X – Strength and 

(b) Y – Stress 

 
Given that �̂ = 1.1087 (1 < �̂ < 2), there is no limitation on the support of X, thus the 

index R is estimated by Equation (4.4) as 0.7579. The value obtained for R indicates that 

within the range of fatigue cycles here considered (i.e., high cycle fatigue) there is a 0.7579 

probability that fatigue life of specimens with Ø21 mm diameter is longer than specimens 

with Ø50 mm diameter. In terms of reliability, we can conclude that the value obtained for 

index R indicates the system performance, i.e., based on the data presented for strength and 

stress, the reliability of the larger specimen is equal to 0.7579. 

Moreover, the confidence intervals (bootstrap-p and non-parametric bootstrap 

approaches) are constructed by using the procedures presented in the section “Bootstrap 

confidence intervals”. In this case study, we obtained a large width for the confidence interval 

of R parameter due the small size of the sample.  
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Table 5.4. Point and interval estimates for R = P(Y < X) – Case Study 1(Results by Nelder-Mead and PSO). 

 
Estimate of the Parameter  R=P(Y<X) by Nelder-Mead 

�� = 0.7579 
Estimate of the Parameter  R=P(Y<X) by PSO 

�� = 0.7580 
Bootstrap-p confidence interval by Nelder-Mead 

n=12, m=12 
C.I (R,0.90) = [0.4001, 0.9148] C.I (R,0.95) = [0.2869, 0.9395] 

Bootstrap-p confidence interval by PSO 
n=12, m=12 

C.I (R,0.90) = [0.4249, 0.9236] C.I (R,0.95) = [0.2963, 0.9453] 
Non-Parametric Bootstrap confidence interval by Nelder-Mead 

n=12, m=12 
C.I (R,0.90) = [0.5730, 0.9109] C.I (R,0.95) = [0.4025, 0.9387] 

Non-Parametric Bootstrap confidence interval by PSO 
n=12, m=12 

C.I (R,0.90) = [0.4797, 0.9305] C.I (R,0.95) = [0.3553, 0.9544] 
 

 

5.2 Case Study 2  
 

In [84], the size effect on gigacycle fatigue life of high-strength steel was evaluated 

using the following specimen geometries: 

 Type A: Ø 8 mm x 10 mm specimen; 

 Type B: Ø 3 mm hourglass-shaped specimens. 

The specimens were subjected to the same load condition. Therefore, fatigue data for 

specimens Type A and Type B are selected as stress and strength, respectively. Figure 5.3 

shows the detail drawings of the specimens. Data sets for strength and stress are presented in 

Table 5.5 and Table 5.6 respectively. 
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Figure 5.3. Detail drawings of (a) Ø 8 and (b) Ø 3 specimens (all dimensions are in mm). Adapted from [84] 

 
 

Table 5.5. Type B (Ø 3 mm hourglass-shaped specimen) fatigue test data (Strength). 

 
Specimen 
Number 

Fatigue Life (number of 
cycles to failure) 

1 1017286 

2 2989152 

3 4059346 

4 4256299 

5 8376572 

6 9560400 

7 13007977 

8 25303118 

9 33621704 

10 55951560 

11 101155984 

12 144322192 
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13 376711232 

14 731957760 

15 9444513800 

16 9912163300 

17 9918688300 

18 9921105900 
 
 
 

Table 5.6. Type A (Ø 8  x 10 mm specimen) fatigue test data (Stress). 
 

Specimen 
Number 

Fatigue Life (number of 
cycles to failure) 

1 289867 

2 1291756 

3 6404257 

4 7848468 

5 9374890 

6 31500474 

7 211678768 

8 5575744500 

9 5926607400 
 

 
In Table 5.7, we present the estimated parameters (entropic indices and scale 

parameters), the Kolmogorov-Smirnov (K-S) distances between the empirical and fitted 

distribution functions, and the corresponding p-values (K-S Boot – for this test we use 

N=1000). Note that for stress and strength, the entropic indices present values that 

characterize a power law behavior, i.e., 1<q<2 for stress and 1<r<2 for strength. 

 
Table 5.7. Estimated parameters, Kolmogorov-Smirnov distances and p-values for the Kolmogorov-Smirnov Test 

(K-S Boot) – q-Exponential Distribution (Case Study 2). 

 

 

 Entropic 
Index 

Scale Parameter K-S (��) p-value 

Data set 1 
(Strength) 

Nelder-Mead �̂  = 1.7519 ��  =  4704629 0.1329 0.4955 

PSO �̂  = 1.7521 ��  =  4688696.2 0.1327 0.4705 

Data set 2 
(Stress) 

Nelder-Mead ��  = 1.7643 �̂  = 1450221 0.1434 0.8501 

PSO ��  =  1.7642 �̂  = 1453264.2 0.1433 0.8551 
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Figure 5.4 (a) and Figure 5.4 (b) show the theoretical and empirical CDF for X and Y, 

respectively. We use the results obtained by Nelder-Mead method, once it is very similar to 

the results obtained by PSO. For the sake of visualization, we here use logarithmic scale to 

represent X and Y because the data sets present many extreme values. We also report in Table 

5.7 the bootstrapped Kolmogorov-Smirnov tests and the corresponding p-values. Based on 

those results, we notice that q-Exponential model adequately fits both X and Y data sets, as 

can also be seen in Figure 5.4. 

 
 

 
Figure 5.4. Theoretical (q-Exponential) and empirical CDF for data sets of Case Study 2. (a) X – Strength and 

(b) Y – Stress 

 
Given that �̂ = 1.7519 (1 < �̂ < 2), there is no limitation on the support of X, thus 

index R is estimated by Equation (4.6) as 0.5973. Thus, considering a component of strength 

and another of stress, obtained respectively when we measure the life cycle for specimens 

with 3 mm diameter and 8 mm diameter, there will be 59.73% chance that the larger specimen 

will not fail. 

The confidence intervals are constructed using the bootstrap-p and non-parametric 

bootstrap approaches (presented in Section “Bootstrap confidence intervals”). Also in this 

case study, due the small size of the samples, we obtain large width for the confidence 

intervals of the parameter R. 
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Table 5.8. Point and Interval estimates for  R = P(Y < X) – Case Study 2. 

 
Estimate of the Parameter  � = �(� < �) by Nelder-Mead 

�� = 0.5973 
Estimate of the Parameter  � = �(� < �) by PSO 

�� = 0.5973 
Bootstrap-p confidence interval by Nelder-Mead 

n=9, m=18 
C.I (R,0.90) = [0.4002, 0.7922] C.I (R,0.95) = [0.3442, 0.8236] 

Bootstrap-p confidence interval by PSO 
n=9, m=18 

C.I (R,0.90) = [0.4006, 0.7918] C.I (R,0.95) = [0.3498, 0.8303] 
Non-Parametric Bootstrap confidence interval by Nelder-Mead 

n=9, m=18 
C.I (R,0.90) = [0.4142, 0.7864] C.I (R,0.95) = [0.3800, 0.8247] 

Non-Parametric Bootstrap confidence interval by PSO 
n=9, m=18 

C.I (R,0.90) = [0.4510, 0.7716] C.I (R,0.95) = [0.4196, 0.7883] 
 
 
 

5.3 Comparing q-Exponential with other distributions 
 

For the sake of comparison, both Weibull and Exponential distributions were also 

considered to model the experimental strength and stress data sets presented in case studies 1 

and 2. The results for the estimated parameters (scale and shape parameters for Weibull 

distribution, and for the Exponential distribution parameter), Kolmogorov-Smirnov (K-S) 

distances between empirical and fitted distribution functions, and the corresponding p-values 

(K-S Boot - performed with N=1000) obtained from the data sets are shown in Table 5.9 and 

Table 5.10, which also include the K-S distance and �-values for the fit of the q-exponential 

distribution. As we observe in the case studies, the approaches of PSO and Nelder-Mead 

shows results very similar for the p-values, thus, without loss of generality, we will present 

the comments of this section based on the results obtained by the Nelder-Mead method. 
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Table 5.9. Comparing Weibull vs q-Exponential – Case Studies 1 and 2. 

 Parameters  
(Weibull  

Distribution) 

(K-S Boot) 
(Weibull 

Distribution) 

(K-S Boot)  
(�-Exponential 
Distribution) 

Case Studies Shape 
Parameter 

Scale 
Parameter 

K-S 
(��) 

p-value 
K-S 
(��) 

p-value 

Case Study 
1 

Data set 1 
(Strength) 

0.9331 1088102 0.1409 0.7322 0.1477 0.7453 

Data set 2 
(Stress) 

0.8336 335326.1 0.164 0.5115 0.1554 0.6054 

Case Study 
2 

Data set 1 
(Strength) 

0.3366 417229706 0.1648 0.2048 0.1329 0.4955 

Data set 2 
(Stress) 

0.3077 176273348 0.2222 0.2298 0.1434 0.8501 

 

 

Table 5.10. Comparing Exponential vs q-Exponential – Case Studies 1 and 2. 

 
 Parameter  

(Exponential 
Distribution) 

(K-S Boot) 
(Exponential 
Distribution) 

(K-S Boot)  
(�-Exponential 
Distribution) 

Case Studies Rate 
Parameter 

K-S 
(��)  

p-value 
K-S 
(��) 

p-value 

Case 
Study 1 

Data set 1 
(Strength) 

8.89E-07 0.1587 0.7212 0.1477 0.7453 

Data set 2 
(Stress) 

2.68E-06 0.2245 0.2757 0.1554 0.6054 

Case 
Study 2 

Data set 1 
(Strength) 

4.42E-10 0.6048 9.99E-4 0.1329 0.4955 

Data set 2 
(Stress) 

7.65E-10 0.6429 9.99E-4 0.1434 0.8501 

 
 

For case study 1, based on the K-S boot, the fit of the Weibull distribution resulted in p-

values of 0.7322 and 0.5115 for the strength and stress data, respectively, clearly indicating 

that the Weibull is an appropriate distribution to describe the stress-strength data of this case 

study. In the case of the Exponential distribution, the p-value for the K-S test was equal to 

0.7212 for strength and 0.2757 for stress, resulting in a reasonable fit for the experimental 

data. However, for the strength data, we observed the most significant fit for q-Exponential 

distribution (p-value = 0.7453), whereas Weibull distribution is the second (p-value = 

0.7323), and Exponential distribution also presents a good fit (p-value = 0.7212). For the 

stress, a similar behavior was observed, i.e., q-Exponential presents the most significant fit (p-
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value = 0.6054), while Weibull distribution is the second (p-value = 0.5115) and, among the 

three distributions considered, the Exponential presented the worst adjustment for the stress 

(p-value 0.2757).  

For case study 2, based on the K-S boot, the fit of Weibull distribution resulted in p-

values of 0.2048 and 0.2297 for strength and stress data, respectively, indicating that despite 

the adjustment be significant, we cannot consider this as an excellent fit. In the case of 

Exponential distribution, the p-value for the K-S test was equal to 9.99E-04 for strength and 

the same value for the stress, which yields a non-significant fit for Exponential distribution. 

Note that q-Exponential distribution presents the most significant fit for both strength (p-value 

= 0.4955) and stress (p-value = 0.8501), Weibull distribution provides the second most 

significant fit for strength (p-value = 0.2048) and stress (p-value = 0.2298), whereas 

Exponential distribution was not significant for both data sets.  

Note also that for both case studies, when we consider q-Exponential distribution, a 

power law behavior is obtained for all analyzed cases, as the entropic indices for all data sets 

are greater than one. Moreover, when we consider the Weibull distribution, the shape 

parameter for all cases were between 0 and 1, which indicates a behavior of stretched 

exponential. As we mentioned in the Introduction, q-Exponential PDF with power law 

behavior presents a heavier tail than that of a Weibull PDF (with stretched exponential 

behavior). Thus, it is expected the q-Exponential to have a superior performance over Weibull 

distribution when dealing with data sets that containing extremely large values. Thus, 

although the fit by q-Exponential and Weibull distributions were comparable for the first case 

study, q-Exponential is superior in the second one. This fact is due to the presence of 

extremely large values in the associated samples (magnitude in the order of 109). 

The estimation of R when X and Y are Weibull independent variables was presented by 

Kundu and Gupta[36]. In their work, the authors presented the expression �� =
���

�������
 ,where 

��� is the estimate of scale parameter for X and ��� is the estimate of scale parameter for Y. 

Thus, once dataset for X and Y in case study 1 also presented a good fit for the Weibull 

distribution, we computed R considering a Weibull distribution as �� = 0.7649. This result is 

very similar to the one when X and Y are modeled by two independent q-Exponential 

distributions, i.e., �� = 0.7579. This indicates that both distributions can be used in order to 

estimate R = P(Y<X) for the first case study. For case study 2, when X and Y are modeled by 

two independent Weibull distributions, the estimated R index is �� = 0.7029, which is very 
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different from the one obtained when we considered q-Exponential (�� = 0.5973). This 

difference is due to the fact that Weibull distribution presented an inferior fit performance for 

both X and Y when compared to q-Exponential. In fact, both X and Y present extremely large 

values and, as discussed previously, this kind of data is better modeled by a PDF that has the 

ability to model data with characteristic of power law as is the case of q-Exponential when 

1<q<2. Observe from Figures Figure 5.5 and Figure 5.6 that the Case Study 1 presents a good 

fit for both distributions (q-Exponential and Weibull), this fact is not observed in Case Study 

2, once the chart clearly shows that the adjustment by the q-Exponential distribution is better 

than the Weibull Distribution. 

 

 

       (a) 

 

       (b) 

Figure 5.5. Empirical and Theoretical (q-Exponential and Weibull) CDFs for Case Study 1 - (a) Strength and (b) 
Stress 
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       (a) 

 

       (b) 

Figure 5.6. Empirical and Theoretical (q-Exponential and Weibull) CDFs for Case Study 2 - (a) Strength and (b) 
Stress 
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6 CONCLUSIONS 
 

We have introduced the q-Exponential distribution as a model for reliability data with 

extremely large values in the relevant context of stress-strength reliability. More specifically, 

when we deal with fatigue life data that presents a power law behavior and we need to 

estimate the performance index R=P(Y<X). We have considered that the stress Y and strength 

X are q-Exponential independent random variables and have proposed a procedure for 

estimating index R by considering that the support of X is limited (i.e., entropic index or shape 

parameter of the strength is r<1) and unlimited (1<r<2). Additionally, confidence intervals 

for the index R have been presented by means of parametric and non-parametric bootstrap 

approaches. 

In order to estimate this index R, it is necessary to estimate the parameters of these two 

�-Exponential distributions (� and �). Once the analytical expression for these parameters are 

very complicated to be obtain, we used the PSO and Nelder-Mead algorithms in order to 

maximize the log-likelihood function of the �-Exponential distribution. Confidence intervals 

for the parameters were presented by means of asymptotic confidence intervals and 

parametric and non-parametric bootstrap approaches.  

From the simulation experiments made to the parameters of the �-Exponential, we 

considered two algorithms of optimization (PSO and Nelder-Mead). It was shown that, for the 

point estimates, the absolute bias and the MSE values related to the estimation of � and � 

parameters  via maximum likelihood decreases as the sample size increases, indicating the 

consistency of the MLE for the �-Exponential distribution – This fact was observed when we 

use any of two algorithms. We may note also that, in simulations that we considered a 

negative value to the parameter q, it was observed a great value for the MSE in both 

optimization methods. We can highlight that this great values for the MSE (when � = −1) is 

observed mainly when the n is smaller (� = 100). However, it is important to point out that, 

also was observed in the case with � negative, when � increases, the bias and MSE decreases 

substantially. These facts were observed for both parameters � and �.  

In the simulations for the interval estimates of q and � parameter ,considering the PSO 

and Nelder-Mead Algorithms, we observed that the width of the intervals obtained by 

asymptotic, bootstrap-p and non-parametric bootstrap approach, generally decrease as the � 
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increase, this is expected due the consistency property of the MLE.  Besides, considering the 

two optimization methods, the most of parameters were covered for the intervals obtained in 

the simulations. We yet detected that, in most of cases, the results for the intervals obtained 

for � and � by Nelder-Mead present smaller width if compared with the PSO results. In 

general, for the PSO and Nelder-Mead algorithm, we notice that for larger sample sizes 

(� = 1000), asymptotic and bootstrap approaches tend to provide similar interval estimates 

for the �-Exponential parameters. 

From the simulation experiments for the index R, it has been verified the consistency of 

the MLE obtained for the Index R based on the q-Exponential distribution, once the absolute 

bias and the MSE values related to the estimation of R via maximum likelihood decreases as 

the sample size increases. From results, we can yet observe that the bias for cases that we 

have q>0 not indicates a tendency of overestimation or underestimation, once we have bias 

with positive and negative values. For cases that we have a q negative it is observed a 

tendency of overestimation of  the index R, once the bias for these cases present always 

positive values.  

Furthermore, for different sample sizes for X and Y, the bootstrap-p non-parametric 

bootstrap confidence intervals showed to be very efficient in estimating the confidence 

interval of R given that for all in the most simulations the confidence intervals included the 

true parameter value.  

With respect to the first case study involving ductile cast iron specimens, q-Exponential 

distribution properly fits both stress and strength data, as can be seen by the CDF and PDF 

plots and by the bootstrapped K-S test. In addition, for the sake of comparison, we have 

estimated the parameters for the situations where X and Y are both modeled by either Weibull 

or Exponential distributions. The latter provided the worst fit, while q-Exponential and 

Weibull models resulted in quite similar fits. Such a result was reinforced by the proximity of 

the estimates for the index R obtained from both models. 

In relation to the second case study involving high-strength steel, q-Exponential 

distribution presented an excellent fit for both strength and stress. The Weibull distribution, 

despite having a significant adjustment to the experimental data, presented smaller p-values 

for both strength and stress. The Exponential distribution in turn was not significant for the 

data sets of this case study.  
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Therefore, based on the discussed results, it is natural to consider the q-Exponential as a 

good distribution to model stress-strength reliability problems, especially when we are dealing 

with data with great order of magnitude. As already mentioned, q-Exponential distribution is 

able to model data that present a power law asymptotic behavior, which is an important 

characteristic of cycles until fatigue failure, as corroborated by the two case studies 

considered in this work, where the estimated entropic indices had values that characterize a 

power law behavior, i.e., 1<q<2 for stress and 1<r<2 for strength.  

Thus, comparing the adjustments considering the �-Exponential distribution with the 

adjustments considering the Weibull distribution, we observe that both the first example and 

the second example showed good quality in fitting the data by a �-Exponential distribution. 

The Weibull distribution, presented significant adjustment in both examples, however, for the 

second example, the data presented a �-value clearly more significant for the fit by a �-

Exponential. Thus, our main conclusion is that data with extremely large values are best fitted 

by a �-exponential distribution, once this distribution has a heavier tail than the tail of the 

Weibull distribution.  

It was clearly evidenced, by the case studies, that there are situations in which the data 

are better adjusted when we consider the q-exponential distribution. Thus, the use of q-

exponential distribution in Stress-Strength problems, mainly when the data of the problem 

present extreme large values, provides a better fit of the data and for consequence, is able to 

return a better estimate for the index R. Thus, despite the expressions for the calculation of the 

Index R, when we consider the q-Exponential distribution, be more complicated than the 

expression of Index R when we consider the Weibull distribution, the use of the q-

Exponential distribution in order to estimate the index R it is very useful in some situations, 

and must be considered in order to provide more reliable estimates for the index R. 

As limitation of this work we can point out that the results obtained in the estimation of 

the �-Exponential parameters, when the parameter � is negative, were not very suitable, 

mainly when the � is small. Nevertheless, the real purpose of this study is to work with data 

that present � values greater than 1, since when � > 1 the PDF of the �-Exponential is 

capably to characterize the Power Law behavior, that is a characteristic observed in fatigue 

data.  

For future studies, we suggest the development of new Stress-Strength models, based on 

generalizations of q-Exponential distribution. For example we can quote the q-Weibull 
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distribution that has demonstrated that has the capability of modeling data even more 

extremes than the data modeled by the q-Exponential distribution. In addition, we should 

search for new reparametrizations of the log-likelihood of the �-Exponential whe the 

parameter � is less than 0, in order to verify which of these provide better results for the 

consistency of the estimates, mainly when the sample size is small. 
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