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ABSTRACT

In recent years, a family of probability distributions based on Nonextensive Statistical
Mechanics, known as g-distributions, has experienced a surge in terms of applications to
several fields of science and engineering. In this work the g-Exponential distribution will be
studied in detail. One of the features of this distribution is the capability of modeling data that
have a power law behavior, since it has a heavy-tailed probability density function (PDF) for
particular values of its parameters. This feature allows us to consider this distribution as a
candidate to model data sets with extremely large values (e.g. cycles to failure). Once the
analytical expressions for the maximum likelihood estimates (MLE) of g-Exponential are
very difficult to be obtained, in this work, we will obtain the MLE for the parameters of the g-
Exponential using two different optimization methods: particle swarm optimization (PSO)
and Nelder-Mead (NM), which are also coupled with parametric and non-parametric
bootstrap methods in order to obtain confidence intervals for these parameters; asymptotic
intervals are also derived. Besides, we will make inference about a useful performance metric
in system reliability, the called index R = P(Y < X), where the stress Y and strength X are
independent g-Exponential random variables with different parameters. In fact, when dealing
with practical problems of stress-strength reliability, one can work with fatigue life data and
make use of the well-known relation between stress and cycles until failure. For some
materials, this kind of data can involve extremely large values and the capability of the g¢-
Exponential distribution to model data with extremely large values makes this distribution a
good candidate to adjust stress-strength models. In terms of system reliability, the index R is
considered a topic of great interest, so we will develop the maximum likelihood estimator
(MLE) for the index R and show that this estimator is obtained by a function that depends on
the parameters of the distributions for X and Y. The behavior of the MLE for the index R is
assessed by means of simulated experiments. Moreover, confidence intervals are developed
based on parametric and non-parametric bootstrap. As an example of application, we consider
two experimental data sets taken from literature: the first is related to the analysis of high
cycle fatigue properties of ductile cast iron for wind turbine components, and the second one

evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel.

Keyword: Q-Exponential . Stress-Strength Reliability . Maximum Likelihood Estimators .

Nelder-Mead . Particle Swarm Optimization.



RESUMO

Nos ultimos anos, tem sido notado em diversas areas da ciéncia e engenharia, um aumento
significativo na aplicabilidade da familia ¢ de distribuicdes de probabilidade que se baseia em
Mecanica Estatistica Nao Extensiva. Uma das caracteristicas da distribuicdo g-Exponencial ¢
a capacidade de modelar dados que apresentam comportamento de lei de poténcia, uma vez
que tal distribui¢do possui uma func¢do densidade de probabilidade (FDP) que apresenta cauda
pesada para determinados valores de paradmetros. Esta caracteristica permite-nos considerar tal
distribuicdo como candidata para modelar conjuntos de dados que apresentam valores
extremamente grandes (Ex.: ciclos até a falha). Uma vez que expressdes analiticas para os
estimadores de maxima verossimilhanca dos parametros ndo sdo facilmente encontradas,
neste trabalho, iremos obter as estimativas de maxima verossimilhanga dos pardmetros através
de dois métodos de otimizacao: particle swarm optimization (PSO) e Nelder-Mead (NM), que
além das estimativas pontuais, irdo nos fornecer juntamente com abordagens bootstrap,
intervalos de confianca para os parametros da distribuicdo; intervalos assintoticos também
serdo derivados. Além disso, faremos inferéncia sobre um importante indice de
confiabilidade, o chamado Indice R = P(Y < X), onde Y (estresse) e X (for¢a) sdo variaveis
aleatorias independentes. De fato, quando tratamos de problemas praticos de forga-estresse,
podemos trabalhar com dados de fadiga e fazer uso da bem conhecida relagdo entre estresse e
ciclos até a falha. Para alguns materiais, esse tipo de variavel pode apresentar dados com
valores muito grandes e a capacidade da g-Exponencial em modelar esse tipo de dado torna
essa uma distribuicdo a ser considerada para ajustar modelos de forga-estresse. Em termos de
confiabilidade de sistemas, o indice R ¢ considerado um tépico de bastante interesse, assim
iremos desenvolver os estimadores de maxima verossimilhanca para esse indice e mostrar que
esse estimador € obtido através de uma funcdo que depende dos pardmetros da distribui¢do de
X e Y. O comportamento do estimador ¢ investigado através de experimentos simulados.
Intervalos de confianca sdo desenvolvidos através de bootstrap paramétrico e ndo-
paramétrico. Duas aplicagdes envolvendo dados de ciclos até a falha e retiradas da literatura

sdo consideradas: a primeira para ferro fundido e a segunda para aco de alta resisténcia.

Palavras-Chave: O-Exponencial . Confiabilidade For¢a-Estresse . Estimador de Maxima

Verossimilhaca . Nelder-Mead . Particle Swarm Optimization
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Chapterl Introduction

1 INTRODUCTION

1.1 Motivation

Complex systems are those whose elements that constitute them present strong
interactions with each other [1], [2]. The search for new probabilistic models to describe this
kind of systems has substantially increased over the last years[3]-[5]. In complex systems, the
entropy is not an extensive quantity, i.e., there is a dependency relationship between different
components of the system [6], and it can be argued that in such cases the statistical mechanics
of Boltzmann-Gibbs [7] is not appropriate. Then, Nonextensive Statistical Mechanics arises
as a generalization of the statistical mechanics of Boltzmann-Gibbs[6] in order to overcome
this limitation.

A family of probability distributions based on Non-extensive Statistical Mechanics,
known as g-distributions, has experienced a surge in terms of applications to several fields of
science and engineering. Since the Nonextensive Statistical Mechanics assumes
interdependencies among the components of a system, these g-distributions have the ability of
modeling complex systems. Picoli et al. [3] described the basic properties of three
distributions of this kind: g-Exponential, g-Gaussian and g-Weibull. In another work, Picoli et
al. [4] presented a comparative study, where g-Exponential, g-Weibull, and Weibull
distributions were used to investigate frequency distributions of basketball baskets, cyclone
victims, brand-name drugs by retail sales and highway length. Complex systems such as
cyclones [8], gravitational systems [9], stock market [10], [11] , journal citations [12] ,
complex DNA structural organization [13], reliability analysis [5], cosmic rays [14],
earthquakes [15], financial markets [16], internet [17], mechanical stress [18], among others
have been satisfactorily described by g-distributions.

Another field of application of g-distributions is mechanical stress. For instance, it has
been experimentally demonstrated that when a rock sample is subjected to mechanical stress,
an electrical signal is emitted[19], [20]. This electrical signal is related to the evolution of
cracks’ network within the stressed sample and is called Pressure Stimulated Current (PSC).
In [18], PSC emissions in marble and amphibolite samples are considered to follow a g-

Exponential distribution.
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The g-Exponential distribution is obtained by maximizing the non-extensive entropy
under appropriate constraints[21]. This distribution has two parameters (q and 7), differently
from the Exponential distribution that is one parametric. This feature gives more flexibility to
g-Exponential distribution with regard to its decay for the Probability Density Function (PDF)
curve. Indeed, for a fixed parameter 7, a slower or faster decay of the PDF is observed
depending on the value of q. Moreover, g-Exponential does not have the limitation of a
constant hazard rate, thus allowing the modeling of either system improvement (1 < q < 2)
or degradation (q < 1).

In the context of reliability, it is expected that for a given sample with large values (e.g.,
realizations of rare events), both g-Exponential and Weibull distributions can fit the data well.
In situations like these, the parameter g of the g-Exponential would lie within the interval (1,
2) and the shape parameter of the Weibull distribution would be in (0, 1) [4], [22].

Moreover, a prominent point of the g-Exponential distribution is its ability to model
data that presents a power law behavior [4]. Thus, we expect a superior performance of g-
Exponential over for example the Exponential and Weibull distribution in the characterization
of data sets with extremely large values, since, as pointed out by Laherrére and Sornette[22], a
stretched exponential PDF (Example: Weibull distribution) has a tail that is heavier than that
of the Exponential PDF but lighter than that of a power law PDF (Example: g-Exponential

distribution), the following figure shows this behavior:
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Figure 1.1 Behavior of the tails of the distributions q-Exponential, Weibull and Exponential.
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Thus, more than an alternative to the Weibull Distribution, the ¢-Exponential
distribution can be considered the main distribution to be considered in some situations that
we have extremely large values, for example we can mention data of cycles until failure of a
very resistant material like high-strengthed steel. This characteristic is due to the ability to
model data that are present in the tail of the distribution, i.e., extremely large values. Then, the
use of the g-Exponential with power law characteristic (1 < g < 2), in order to model fatigue
of material is an important topic to be investigated as we will propose in this work.

In fact, several studies have investigated the presence of power laws in the behavior of
data observed in fatigue analysis of materials. For instance, in[23] the acoustic emissions of
microfractures before the breakup of the sample are evaluated, where the authors used
samples made of composite inhomogeneous materials such as plaster, wood, or fiberglass.
The experimental results were similar for all materials, and the authors conclude that statistics
from acoustic energy measurements strongly suggest that the fracture can be viewed as a
critical phenomenon and energy events are distributed in magnitude as a power law.

Moreover, according to Basquin’s law, the lifetime of a system increases as a power law
with the reduction of the applied load amplitude [24]. Therefore, the alternating stress in
terms of number of cycles to failure is expressed in a power law form [25] known as the
Wohler curve (SN curve). It has also been suggested that the underlying fracture dynamics in
some systems might display self-organized criticality [26], implying that long-range
interactions between fracture events lead to a scale-free cascade of ‘avalanches’ [27]. For
instance, in [27], the authors present a scalar model of microfracturing that generates power
law behavior in properties related to acoustic emission, and a scale-free hierarchy of
avalanches characteristic of self-organized criticality [2].

In terms of system reliability, a topic of considerable interest is the inference about the
index R = P(Y < X), where X is the strength of a component that is subjected to stress Y;
when Y is greater than X, the system fails. Thus, R can be considered as a measure of system
reliability. Stress-strength models are used in many applications of physics and engineering
such as strength failure and system collapse [28].

Most of the works that aim at estimating R assume that X and Y are independent and
follow the same type of probability distributions. For instance, X and Y have been considered
as Normal [29]-[32], Exponential [33], [34] and Weibull [35]-[37] random variables.

Moreover, the Generalized Pareto and Generalized Rayleigh distributions are also discussed
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to model X and Y in [38], [39], respectively. Kundu and Gupta [40] and Raqab et al. [41] also
consider the Generalized Exponential distributions. Al-Zahrani and Al-Harbi [42] adopt the
Lomax distribution under General Progressive Censoring, and Panahi and Asadi [43] assume
that X and Y follow Lomax distributions with a common scale, but different shape parameters.

In this sense, this work seeks to contribute with the insertion of a new probabilistic
model to describe models of Stress-Strength. The fact of the g-Exponential distribution
present good results for modeling data with large order of magnitude, allow us to propose
such distribution to deal with stress-strength models when we are working with fatigue life
data (number of cycles until failure). Note that in stress-strength problems we can use life
cycle data as model input data, since there is a one-to-one relationship between stress level
and number of cycle to failure that is represented by the SN curve [25], [44]. Thus from the
SN curve we can observe that, stress level and number of cycles to failure can be
interchangeably used in problems of this kind. The Figure 1.2 represents an example of SN-

Curve:

Stress (S)

v

Nuimber of cycles to failure (N)

Figure 1.2. Example of SN-curve.

It is worth mentioning that, in order to obtain analytical expressions for estimators of g-
exponential parameters, it is necessary solving a complicated set of equations. In this way,
Shalizi [45] and Bercher and Vignat [46] have shown that a reparameterization for that set of
equations is required. However, this approach allows obtaining analytical expressions for the

MLE only when 1 < ¢ <2 and, however, the g-Exponential distribution is also defined for g <
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1. Such a parameter range corresponds to hazard rate behavior with relevant applications,
namely the reliability modeling of degrading systems. In this way, with the exception of the
case 1 < g < 2 [45], analytical expressions for the maximum likelihood estimators of ¢-
Exponential are very difficult to be obtained due to the intricate derivatives of the log-
likelihood function.

Thus, in this work the MLE for the parameters of a g-Exponential distribution are
numerically derived through two different optimization algorithms: Nelder-Mead [47] and
Particle Swarm Optimization (PSO) [48]. The results obtained from these two approaches will
be compared by means of bias and MSE (Mean Squared Error).

1.2 Objectives

1.2.1 General Objective

The main objective of this work is to develop a new Stress-Strength Model based in the

g-Exponential distribution to work with fatigue life data that present extremely large values.

1.2.2 Specific Objectives

e Apply PSO and Nelder-Mead optimization methods to maximizing the log-
likelihood function of the g-exponential distribution in order to find the
maximum likelihood estimates of the model parameters.

e Evaluate, by numerical experiments, the performance of the PSO and Nelder-
Mead optimization methods in the estimation of the g-Exponential parameters.

e Develop the estimator of the Index R=P(Y<X) based on the g-Exponential
distribution considering the particularity of the support of the g-Exponential
PDF.

e Apply PSO and Nelder-Mead optimization methods in order to find the
maximum likelihood estimates of the index R=P(Y<X).

¢ Evaluate the performance of the PSO and Nelder-Mead optimization methods in

the estimation of the index R=P(Y<X).
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e Evaluate the quality of the confidence intervals obtained for the g-Exponential
parameters and for the index R, by bootstrap methods (parametric and non-
Parametric), through simulated experiments.

e Compare, through hypothesis tests, the effectiveness of the results obtained for
the point and interval estimates of the g-Exponential parameters and of the index
R. Besides, compare the results obtained for the confidence intervals when we
use parametric and non-parametric bootstrap approaches.

e Apply the proposed model of stress-strength reliability based in the g-
Exponential distribution in a real example and comparing the results with the
results obtained when we consider other probability distributions (Weibull and

Exponential).

1.3 Structure of the Work

This work presents six chapters, including this introduction. The chapter 2 treats of the
theoretical background where first we develop the g-Exponential distribution discussing
important features and particularities of this distribution. Still in the chapter 2, we will
address the approaches for point and interval estimation of parameters and also the
optimization methods used in this work. The hypothesis tests used in order to make
comparisons with the results of the point and confidence intervals also will be discussed in
this chapter. Chapter 3 addresses the estimation of the g-exponential parameters, developing
numerical experiments for the maximum likelihood estimators and confidence intervals. The
chapter 4 presents the g-exponential distribution in the approach of calculating the index
R = P (Y <X). In this chapter we will develop the estimator of the index R respecting
important features of the g-Exponential PDF. Numerical experiments will be presented in the
chapter 4 in order to evaluate the quality of the point estimator and confidence intervals
calculated via PSO and Nelder-Mead. In chapter 5 we will present two case studies of the new
proposed stress-strength model. Also in this chapter, we will calculate the index R based in
the Weibull distribution, in order to compare the result with the result obtained with the new

proposed stress-strength model. Finally, Chapter 6 provides some concluding remarks.
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2 THEORETICAL BACKGROUND

2.1 The g-Exponential distribution

The g-Exponential PDF is given by the following expression:

2-q)
£,(0) = nq

t
equ[—<ﬁ>]; g<?2 andn>0

b

Where q is the parameter that determines the density shape and is known as entropic index, 1

is the scale parameter and expg (x) is the g-Exponential function defined as:

[1+(1—q)x]ﬁ, if[l+(1—-q)x]=0
expq(x) =

0, otherw se

Where x and g € R.

Note that the g-Exponential PDF becomes an Exponential PDF when q¢ — 1. Thus, the
q-Exponential distribution is a generalization of the Exponential one. The parameters 7 and ¢
determine how quickly the PDF decays. Note also that the ¢ parameter dictates how the
distribution deviates from exponentiality, and this deviation is also defined by the decay of
the distribution. When compared to the decay of the Exponential distribution with the same
parameter 7, the g-Exponential presents a slower decay for 1 < g <2 (Power Law
characteristic) and a faster decay for ¢ < 1; for a fixed parameter g, we will have a similar
behavior of the exponential distribution (g — 1), i.e., insofar as the value of the parameter n
increases it is observed a slower decay of the PDF.

By using the definition of the g-Exponential function, it is possible to rewrite the

density of g-Exponential:
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@-qf1 -9 ‘”t]ﬁ

n
n

fo@®) = , <2 andn >0

Furthermore, the support t is changed depending on the value of the entropic index as

follows:

[0; ), g=1

2.1)
t € 1

0;—1 , ¢<1
(1 -
77( q)

Figure 2.1 and Figure 2.2 presents the g-Exponential PDF for some possible values of g

and 7, illustrating the behavior that was previously commented.

o~
P q=-1‘5" ]7:3
o | g—1 n=3
— q=0.5; n=3
@ — ¢=15 =3
= © |
w— O
< \
o
o \
o
o | e ——
° T T T T T T
0 2 4 6 8 10
t

Figure 2.1. g-Exponential PDF for a fixed § and some possible values of q
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Figure 2.2. g-Exponential PDF for a fixed g and some possible values of n

The Cumulative Distribution Function (CDF) of the g-Exponential is defined by the

following expression:

e I

() =
0, otherwi se
where q' = ﬁ. By inverting F, (t), we obtain a g-Exponential random number generator:
1-q
— (2=
T -] 2.2)
1—-q
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Where U is a uniform random variable defined in [0,1].

An important characteristic of the g-Exponential distribution, especially in the reliability
context, is that the g-Exponential hazard rate is not necessarily constant as occurs for the
Exponential distribution. In fact, we will show that for a g-Exponential distribution, we can

model two additional behaviors for the hazard rate. To prove this, let us first define the hazard

fq(®)

rate hy(t) = R’

Then, we can write:

|-Q
<

N

-q) [1 q)t]l !
he(6) = SRR

-5

_@- C1)[ (1—q)t]

Thus, the g-Exponential distribution is able to represent two different types of hazard
rate behaviors depending on the values the parameter q assumes. For 1 < q < 2, hy(t) is a
decreasing monotonic function (Figure2.3 (a)), while for g <1, hg(t) increases

monotonically (Fi gur .3 (b)).
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Figure 2.3. (a) q-Exponential hy(t) withn = 1, and q = 1.8, (b) q-Exponential hy(t) withn =1, and q = 0.7.

Nadarajah and Kotz [49] point out that many of the g-distributions that have emerged
recently were known by other names and they particularly discuss two families of
distributions: Burr-type XII and Burr-type III, which have many g¢-distributions as special
cases. However, it is worth noting that the g-Exponential is a generalization of the Burr XII
and not the opposite, as stated by Nadarajah and Kotz [50], since the g-Exponential is valid
even for g < 1, which does not happen with the Burr XII.

2.2 Estimation of Parameters

In this section, we will briefly describe the methods that will be used in this work in
order to obtain point and interval estimates of parameters of interest. First we will describe the
Maximum Likelihood Estimation method and next we will deal with the approach of

bootstrapped and asymptotic confidence intervals.

2.2.1 Maximum Likelihood Estimation

The maximum likelihood method is one of the most used in order to obtain estimates of
the parameters of a probabilistic model. The principle is to estimate the parameter (or
parameters, if we have a multi-parametric model) which best characterizes a sample that was

obtained from a population governed by a certain probabilistic model. Thus, the method seeks
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to determine the distribution, among all those defined by the possible values of their

parameters, with greater chance of having generated the sample analyzed.

2.2.1.1 Uniparametric Case

Firstly we present the concept of likelihood function:

Consider a random sample of the random variable X, with size n: X, X5,...,.X,. We
represent the probability density function (PDF) of the random variable X, as f{x| 8), with 8 €
O, where O is the parametric space. Thus, the likelihood function of 8, for the considered

sample, can be write as [51]:
L(6; X) = [Ti=1 f (xi|6)

The Maximum Likelihood Estimator of 6 will be the value that maximizes the
likelihood function. We will denote this value as § € 6.

Normally is simpler to obtain maximum likelihood estimates maximizing the natural
logarithm of the likelihood function. Of course the value of 8 that maximizes the likelihood
function is equal to value that maximizes the logarithm of the likelihood function. In this way,

we define the log-likelihood function as:
1(6,X) =1odL(6,X)]

Thus, in the uniparametric case, we get the maximum likelihood estimate calculating the

root of the derivative of the log-likelihood function, i.e.:

dl1e,x) 0 (2.3)
do

It is important to report that in some situations, the root of the derivative of the log-

likelihood function can be obtained analytically, however, in some situations the solution of

the Equation (2.3) will only be obtained by numerical procedures.
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2.2.1.2 Multiparametric Case

In situations that we intend to estimate parameters of a multiparametric model, i.e. 8=(
0y, 04, ..., 6,) by maximum likelihood approach we can following the same ideas presented for
the uniparametric models with some adaptations. The estimates for the parameters can be

obtained by solving the following equations [51]:

d 1(6,,64, ...,0,,X)
d 6

=0 ,fori=1,..,r

2.2.1.3 Likelihood for independent samples

In some situations, we have two or more independent samples that have one or more
parameter of interest. Thus, we can represent a unique likelihood function for these variables,
as [51]:

L(GlX' QZX' ey GTX; 91y, Bzy, ey Hky; X, Y) = L(Hlx, sz, ey QTX; X)L(Qly, 92y, ey gky; Y)

Note that, this result is valid due the independence of the samples.

Thus, using the properties of the logarithmic function, we can write the log-likelihood

for two independent samples, as:

l(91X: 02%, «-0s Orx; 01y, 02y, oo, Oy X, Y) = 1(91)(. O2x, ) Orx; X) + 1(911’: 02y, s Oky; Y)

2.2.2 Bootstrap Confidence Intervals

In this section, we present the algorithms used in order to build Parametric and Non-

Parametric Bootstrap confidence Intervals for the Parameters of a model [52], [53].
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2.2.2.1 Bootstrap-p

The algorithm for constructing confidence intervals by using the bootstrap-p approach
has the following steps:
e Step 1: From an initial sample for the variable X ={x;,x,,...,x,! , estimate the

parameters 6, by maximizing the log-likelihood function;

e Step 2: Use the estimate obtained in the previous step and the random number
generator of variable X to generate new samples for X, i.e.: {x], x5,..., x,}. Based on
this new sample, compute the bootstrap sample estimate of 8, say 8", maximizing the
log-likelihood function of the variable .X;

e Step 3: Repeat step 2, N times;

e Step 4: Using the N values of 8" obtained in step 3 and by adopting a y significance
level, find the percentiles 6./, and 07_(,/,). Thus, it is possible to determine an
approximate confidence interval, with confidence interval equal to 100*(1- «)%, for

the parameter 9, as:

C.I.= [9;/2, 0;—(05/2)] (24)

2.2.2.2 Non-Parametric bootstrap

The algorithm for constructing confidence intervals by using the non-parametric
bootstrap approach is as follows:

e Step 1: From an initial sample for the variable X ={x, x,,...,x,/}, generate new samples
for X by sampling with replacement, i.e., {x{, x5 ,..., xXn}. Based on this new sample,
compute the estimate of 8, say 6% maximizing the log-likelihood function of the
variable X;

e Step 2: Repeat step 1, N times.

e Step 3: By using the N values of 8" from step 2 and by adopting a y significance level,
the percentiles 6, ,and 6;_(,/,, are obtained; they determine an approximate
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confidence interval for the parameter 8 with confidence level equals to 100*(1- a)%

using Equation (2.4).

2.2.3 Asymptotic confidence intervals

According to the asymptotic properties of the maximum likelihood estimators, the
related covariance matrix can be estimated by the inverse of the observed information matrix
(I(8|v)), i.e., the negative of the second derivative of the log-likelihood function evaluated at
the point estimate  given data ¢ [54], [55]. Note that the observed information matrix is the
negative of the Hessian. In this way, both matrices are symmetric and measure the amount of
curvature in the log-likelihood function. For example, in a r — paranet rimodel we have ,
6= (6,0, ..,6,), and the covariance matrix associated to the maximum likelihood

estimators is as follows:

van0,,0,,..,0,) =174(8,8,,..,0,|t) =

[02L(0,,0,,...,0,t) 02L(8y,0,,...,0,|t) 92L(8,, 5, ..., 0,1¢)]

00,” 00,00, 00,00,
32L(0y,0,, ..., 0,1t) 02L(61,0,,..,0,1t)  9%L(By,0,, ..., 6,]t) (25)
- 06,00, 26, 06,00,

02L(6,,0,,..,0,1t) 0°L(0,,0,,..,0,t)  92L(By, By .. 0|0)
96,00, 20,00, 00,”

Once the covariance matrix is estimated, asymptotic confidence intervals can be
constructed for the parameters of the distribution by using the asymptotic normality property
of the maximum likelihood estimators. The asymptotic (1 — ) - 100% confidence intervals

for 8,,9,, ..., 0, are given by, respectively:

CL[6y: (1 — @) - 100%)] = [91 + za\Vany, 0, + zl_(g),/rarn],
2 2
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(2.6)
L6, (1= a) - 100%] = [92 + 2a\[Vang, 0, + zl_(g)w/v/arzz],

. 2, 2 (2.7)

2.8)

C.L[6,;(1 —a)-100%] = [ér + za /var,, 6, + Zl_(g),/v’zirrr],
2

2

2.3 Optimization Methods

2.3.1 Particle Swarm Optimization

PSO [48] is a probabilistic optimization heuristic based on the motion of groups of
organisms (e.g., flocks of birds, schools of fishes), which optimizes a problem from a
population of candidate solutions (particles). According to update equations over the particles'
position and velocities, the candidate solutions explore the search-space. Each particle's
movement is influenced by its own best position and also by its neighbors' best. Thus, it is
expected that particles move toward the best solutions.

PSO has been successfully applied to different contexts. For example, [56]-[63] apply
PSO in the adjustment of the hyperparameters that emerge in the training problem of support
vector machines (SVM). Indeed, Lin et al. [56] , Lins et al. [63] and Droguett et al. [62] use
PSO not only to adjust the SVM hyperparameters, but also for variable selection. In the
specific context of parameter estimation, PSO has been used to estimate the parameters of a
generalized renewal process in order to establish preventive maintenance policies [64], to
estimate parameters of mathematical models related to chemical processes [65] and to obtain
maximum likelihood estimates for the parameters of a mixture of two Weibull distributions

[66].
For a particle j, j = 1, ..., npq, we have the following features:

e Current position in the search space (s;);

e Best position it has visited so far (p));
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e Velocity (v));
e Fitness (f;), which is the value of the objective function, which in this work is the g-

Exponential log-likelihood.

Every particle is a potential solution for the considered optimization problem, which
involves a d-dimensional search space with each dimension related to one of the decision
variables. Thus, s;, p; and v; are all d-dimensional vectors, whose entries are associated with
the decision variables of the problem. In the maximum likelihood optimization problem
related to the g-Exponential distribution, d= 2 and the first and second entries of s;, p; and v;
are related to 77 and g, respectively.

The velocity and position update equations are defined as follows:

vj(r+1) = X{vjk(r) + Uy [ij(r) - Sjk(T)] + coup [ng (r) — Sjk(T)]} (2.9)

Sik(r +1) = 5j,(r) + v (r + 1), (2.10)

Where 7 is the iteration number, ¥ is the constriction factor that avoid velocity explosion
during PSO iterations [35], ¢; and c¢; are positive constants, #; and u, are independent uniform
random numbers in [0, 1], and py is the k-th entry of vector p, related to the best position that
has been found by any neighbor of particle ;.

Whenever an infeasible particle emerges - with respect to the constraints over 7 and g
to assure the probabilistic characteristics of the g-Exponential distribution as well as to the
logarithm arguments in the g-Exponential log-likelihood. - its velocity and its position are not
altered and its fitness is not evaluated so as to avoid infeasible p; and p,. In this way,
infeasible particles may become feasible in subsequent iterations due to the influence of their
own and neighbor's feasible best positions. This approach is known as "let particles fly" [48].
The update of velocities and positions and fitness evaluations are repeated until one of the

following stop criteria is met:

a) Maximum number of iterations (7).
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b) The global best particle is the same for 10% of ny,.. In this case, the iteration
number in which the best particle has been found is used, as commented in the previous
subsection.

c) The global best fitness values in two consecutive iterations are different, but such a

difference is less than a predefined tolerance o.

2.3.2 Nelder—Mead

The Nelder—Mead method, also known as Downhill Simplex method, is a numerical
approach commonly applied to nonlinear optimization. It is used to find the minimum or
maximum of an objective function in a multi-dimensional space. This method has been one of
the direct search methods most used in unconstrained optimization problem of a function of n
variables.It has been used in several studies with the aim of maximizing the log-likelihood
function and to estimate the parameters of various probability distributions in many areas
such as: Ecology [68]; Medicine [69], [70]; Power Systems [71], [72], and Chemical
Engineering [73].

The following characteristics make it one of the most popular methods of

optimization[74]:

e FEase of computational implementation;
e Calculations of the derivatives of the objective function are not required;
e Few evaluations of the objective function are required;

e The value of the objective function sharply decreases in the first iterations.
The method uses the concept of a simplex, which is a special polynomium type with
n + 1 vertices in n dimensions.
Consider the problem of unconstrained minimization:
o f(x); Where, f: R™ — R.

In this work f(x) is the negative of the g-Exponential log-likelihood.
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In one iteration of the Nelder-Mead method, the n + 1 vertices of the simplex,

X1, X2, ..., Xn41 belonging to R™ are ordered according to the growth of the values of f, i.e:

fl) < f(x) <o < f(xp40)

Where x; is the best vertex and x,,,; is the worst vertex.

The repositioning of these vertices takes into consideration four coefficients:

e Reflection coefficient (p)
e Expansion coefficient ()
e Contraction coefficient (y)

e Reduction coefficient (o)

These coefficients must satisfy the following restrictions[47]:

p>0,y>1,0<y<land0<o<1

The default choice of these coefficients is given by: p=1, y =2,y =1/2 and
o=1/2.

The method attempts to replace the worst vertex of the simplex by one with better
value. The new vertex is obtained by reflecting, expansion or contraction of the worst vertex
along the line through this vertex and the centroid of the best n vertices. At each iteration, the

worst vertex is replaced by a new vertex or the simplex is reduced around the better vertex.
The following steps correspond to an interaction of the Nelder-Mead algorithm [47]:

Step 1 - Sort: Sort the n + 1 vertices:
f) < fx2) < - < f(Xnga)s

Step 2- Centroid: Calculate the centroid of the n best vertices:
=2
X = —
i=1 N
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Step 3- Reflected vertex: Calculate the reflected vertex (x,.):
Xp =X+ p(X — Xn41)

If f(x1) < f(xr) < f(xy,), thendo x,41 = X, and finalize the iteration.

Step 4- Expansion: If f(x;.) < f(x;), calculate the expanded vertex (x,):
Xe =X+ x(x, — X)
If f(xe) < f(x;), then do x,41 = x, and finalize the iteration, else x,4; = x, and

finalize the iteration.

Step 5- Contraction: If f (x;) > f(xp)
5.1 External:

If f(x,) < f(x,) < f(xp41), calculate the external contraction vertex (x..):
Xee =X +y(xp —X)

If f(xce) < f(xy), thendo x,41 = X, and finalize the iteration, else go to step 6.

5.2 Internal:
If f(x;) = f(xn41), calculate the internal contraction vertex (x.;):
Xeg =X —Y(X — Xny1)

If f(x¢;) < f(xpe1), thendo x,,.q = Xx; and finalize the iteration, else go to step 6.

Step 6- Reduction: Calculate vectors v; = x; + o(x; — x1),i = 2,..,n+ 1.

The vertices (not ordered), for the next iteration are: x4, U, ..., Vpy1.

Given a tolerance 4, the following stop criterion [47] takes into account the function

value in the simplex vertices:

Jznﬂ(fcxi) -r@)

i=1 n
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2.4 Hypothesis Tests

2.4.1 Shapiro-Wilk Test

The Shapiro—Wilk test [75] is a statistical test used in order to verify if a variable is

normally distributed.
The hypotheses of the test are the following:

Hy: The sample is from a normal population
H;: The sample does not come from a normal population

The test statistic is:

_ (024 a;x;)*

W=sm -2

Where, (x;) corresponds to the sorted sample values - from lowest (x;) to the largest

(xn); X = (i, x;)/n is the sample mean; and the values of ; are determined as follows:

mly—1

(ai,ay, .., a,) = T
(mTV-1V-1m)2

Where, mT = (my,my, ..., m,) denote the vector of expected values of standard normal
order statistics and V is the covariance matrix of those order statistics.

For a given level of significance («) it is possible to find the W, value in the table that
shows the critical values of Shapiro-Wilk Statistic. This table can be found in the paper
published in 1965 by Shapiro and Wilk [75].

For this test, we will reject the null hypothesis if W < W,,. If we consider the p-value,

then the null hypothesis will be rejected if the p-value was lower than the level of significance

().
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2.4.2 Student’s t-test for Paired Samples

This test allows us to infer on the equality of the averages of two paired samples. Often
each case is analyzed twice (before and after a treatment or intervention), forming pairs of
observations, whose differences are tested in order to verify if the result is zero or not [76].

Let us consider two dependent samples X = (X1, x5, ...,%X,) and Y = (¥4, V3, ., Yn)-
Then, once the samples are dependents, we consider that actually we have a sample of
couples (xq1,y1), (x2,¥3), ..., (xn, ¥). Calculating d; = x; —y;, for i =1,2,..,n we can
define the sample D = (dq,d,, ..., d,). As assumption of the Student's t-test paired, it is
necessary that the samples X and Y are normally distributed, therefore we will have:
D~N(up,0°p).

Before we perform the test we must choose the hypotheses that will be investigated:

Bilateral Unilateral to Left Unilateral to Right

Ho: up =0 Ho:pp =0 Ho:pup =0
or or

HlluD#:O Hl:”D<O H1”D>O

n
: . . = n o d;
The up parameter is estimated by the sample mean of the differences ,i.e., D = %

The o2, parameter is estimated by the sample variance of the differences .ie., S%p =
Z?=1(di_5)2
n-1 ’
The test statistic is:
_ D — up
=3
Vn

T

Under H,, the test statistic follows a Student's ¢ distribution with n — 1 degrees of
freedom. So, for a given level of significance («) it is possible to find the value of t, with
n—1 degrees of freedom in order to compare with statistic T and take the appropriate

decision about test. Following, we present the null hypothesis rejection criteria:
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Bilateral Unilateral to Left Unilateral to Right
IFT> ti(gor T < tay,then, If T < t, then, we must If T > t,_q then, we must
we must reject the null hipothesis. reject the null hipothesis. reject the null hipothesis.

If we consider the p-value, then the null hypothesis will be rejected if the p-value was

lower than the level of significance (o).

2.4.3 Wilcoxon test

This test is used to verify if the position measurements of two samples are the same . It
is applied in the case where the samples are dependent [77]. In the test application, we must
consider two dependent samples with sample size n, ie., X = (xq,x5,...,X,) and Y =
(¥1,¥2, -, ¥n)- In this case, we consider the paired observations, that is, we consider that we
have actually a sample of couple: (x1, ¥1), (X2, V3), «) (Xp, V).

Let us define d; = |x; — y;|, for i =1,2,...,n and thus we can obtain the sample

D = (dy,d;, ..., dy). The hypotheses for the test are the following:

Bilateral Unilateral to Left Unilateral to Right
Hy:A=0 Hy:A=0 Hy:A=0

or or
Hi:A#0 Hi:A<O0 Hi:A>0

In other words, we are testing whether the populations differ in location or not using the
following idea: if we accept the null hypothesis, we have that the median of the difference is
zero, i.e., populations do not differ in location. If the null hypothesis is rejected, then the
median of the difference is not zero, so we have populations that differ in location.

Once the Wilcoxon test is based on the ranks of the values obtained, initially we need to
sort the values of the absolute differences, from the lowest to the highest. For each value

sorted we associate the post R;. Then we define the indicator variable, as:

_{1, ifd; >0
Vi = 0, ifd; <0
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After this, we must obtain the products R;y;, for i=1 to n. So, with these results we

must calculate the test statistic by the sum of the products, i.e.:

n
T" = Z 1Ri1/)i
l=

The test statistic should then be compared with the critical value obtained from the
Wilcoxon table. If we consider the p-value, then the null hypothesis will be rejected if the p-

value was lower than the level of significance (o).

2.4.4 Bootstrapped Kolmogorov-Smirnov test (K-S Boot)

The one-sample Kolmogorov-Smirnov test (K-S test) is not very useful in practice
because it requires a simple null hypothesis, i.e., the distribution must be completely specified
with all parameters known beforehand [78]. A bootstrapped version of a K-S test was
proposed as alternative to overcome this problem [79]. This method results in accurate
asymptotic approximations of the p-values [80]. In this work, we will use this bootstrapped
version to check the fit of the g-Exponential distribution to each data set. This method follows

the following steps:

e Step 1: From an initial sample for the variable X = {x4, x5, ..., x,}, estimate the

parameters @ = {6;,0,, ..., 0} and construct the theoretical CDF: F, (X, @).

|ﬁn(xi) - Fn((xi' @)ll ﬁn(xi—l) - Fn((xi' @)”a

e Step 2: Evaluate Dy = maX<j<p

where F, (X) is the empirical CDF.
e Step 3: Use the estimates obtained in the first step to generate new samples for X, i.e.:

{x1j, x3,.-» Xp;}. Based on these new samples, compute the bootstrap sample
estimate of O, say 0]-* = {91‘]-, 0;]-, ) 9,:1-}.
e Step 4: Repeat step 3, N times; j = (1, 2, ... N). The number of bootstrap samples N

should be large to ensure a good approximation.
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) Step 5: EValuate D]* = nax 1<i<n F';;](xl*,]) - F.;’](x:i], @*) F;,j(xa_l)’j) -

|’

)

Fri (i 6°)
We reject the null hypothesis if Dy > D(y(1_g)+1) for a significance level a. An

approximate p-value can be computed using:

#{Dj = Do} +1
B N+1

Where #{D; = D} indicates the quantity of D; (j = 1, ... N) that was larger than D,.
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3 ESTIMATION OF THE q-EXPONENTIAL PARAMETERS BY PSO
AND NELDER-MEAD METHOD

In this section we propose the PSO and the Nelder-Mead methods as alternatives to
estimate the parameters of a g-Exponential distribution. Also confidence intervals will be
presented for the g-Exponential parameters based on the approach of bootstrap parametric and
non-parametric. Asymptotic confidence intervals also will be performed for the parameters.
Comparisons between the proposed methods will be made and a practical application will be

presented.

3.1 The Maximum Likelihood Estimator for the g-Exponential Distribution

In order to compute the MLE of q and n let X = {x;, x»,..., x,! be a random sample of
size n. From this sample, it is possible to write the likelihood function for the observed sample

as:

n 1
s =eoor G -5

and the log-likelihood function as:

l(x,q,n):nlr(z—q)+nln(%)+ﬁz1;ln[1_%] 3.1

The partial derivatives of the log-likelihood have the following results:

Zn (q — Dx;
0Woam _n Luyn@=-Dxt1
an n 1-¢q

n
nx;
al(x! qrn) _ n + Zi=1n(q - 1)xi+ 1 27:1108(77(‘1 - 1)xi+ 1)
dq q-—2 1-¢q 1-9)7
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As we can observe from the partial derivatives of the g-Exponential log-likelihood, is
very complicated to obtain analytical expressions in order to estimate the g-exponential
parameters. Thus, in this work we will use computational algorithms to maximize the log-
likelihood function, in order to obtain the estimates for the parameters g and 7. We will call

these estimates as § and 7, and they will be obtained by PSO and Nelder-Mead algorithm

3.2 Confidence intervals based on bootstrap methods

For the construction of bootstrap intervals for the parameters ¢ and 7 of a g-Exponential
distribution, we will consider two approaches: bootstrap-p and non-parametric bootstrap[52],

[53].
3.2.1 Confidence intervals based on Bootstrap-p for the g-Exponential parameters

The following steps are applied in order to construct bootstrap-p based confidence

intervals for the parameters ¢ and 7:

e Step 1: From an initial sample for the variable X = {x;, x,,..., x,}, estimate the
parameters ¢ and 77 by maximizing the Equation (3.1);

e Step 2: Use the estimates obtained in the previous step and Equation (2.2) to generate
a new sample X', ie. {x;, x2’, ..., x, }. Based on this new sample, compute the
bootstrap sample estimates for q and 7, say ¢ and 7", by maximizing the Equation
3.1);

e Step 3: Repeat step 2 N times;

e Step 4: Using the N values of ¢* and 7", obtained in step 3 and by adopting a «
significance level, find the quantiles /2 and 1— a/2 for ¢ and 7. With this
information, it is possible to determine an approximate confidence interval for the

parameters g and 77 with confidence equals to 100(1-a)% by the following equations:
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Cln; (1 — ) - 100%] = [4a/2) d1-a/2)] > (3.2)

Cllg; (1 — a) - 100%] = [Ng/2 M1 -(ay2)]- (33

3.2.2 Confidence intervals based on Non-Parametric Bootstrap for the g-
Exponential parameters

The algorithm for constructing confidence intervals for the parameters ¢ and 7 by using

the non-parametric bootstrap approach is as follows:

e Step 1: From an initial sample for the variable X = {x;, xo,..., x,}, generate a new
sample X by sampling with replacement, i.e. {x1", x2°, ..., x, }. Based on this new
sample, compute the estimates for q and 7, say q* and 7*, by maximizing the Equation
(3.1);

e Step 2: Repeat step 1, N times.

e Step 3: By using the N values of ¢ and 7 from step 2 and by adopting & as
significance level, find the quantiles /2 and 1 — a/2 for q* and 77*. Thus, with this
information, it is possible to determine by Equations (3.2) and (3.3) an approximate
confidence interval for the parameters ¢ and 7, with confidence interval equals to

100 * (1 — ) %.

3.3 Asymptotic confidence intervals for the g-Exponential parameters

For the g-Exponential distribution, we have two parameters, i.e., 8 = (#, §). For this
probabilistic model, the covariance matrix associated to the maximum likelihood estimators is

as follows:
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2L@alY  92L@aln] "
a AN =1(a Ay — | O7? ondq 3.4
vain @ = 170410 = = ongan  euman| G4
aqon 0q>
In which

’L@al) _ 1| _ym 1 _1lyn 1
an? 72 =1 1-1+4 7 (7

(3.5)
l el ]
3.6
azL(ﬁ,mt):aZL(ﬁmt):_1? 1 G.6)
ondq dqon 7<=l (ﬁ_1+q)2 ’
¢
’LMa4lt) _  _ n 2 vn —(1—a b2 _yn LI
0z @ | aa l=110g[1 a q)ﬁ]+(1—€1)2 ‘=1<§-1+a> (3.7)
1 wn 1
—Zli=1|m— 2|
S

Once the covariance matrix is estimated, asymptotic confidence intervals can be

constructed for the g-Exponential parameters by using the asymptotic normality property of

the maximum likelihood estimators. The asymptotic (1 — ) - 100% confidence intervals for
n and q are given by, respectively:

Cl[n;(1 —a) -100%] = [ﬁ + zay/Var,, 1+ zl_(g),/v’zirll],
2 2

(3.8)

Cllg; (1 — @) - 100%] = [51 + za\/VaLy,, 4+ Zl_(a)qf\//a\l’zz],
2

2

(3.9)

Equation (3.4).

In which z,» and zj4» are the @2 and 1 - /2 quantiles of the standard normal
distribution and var, var,, are the diagonal elements of the covariance matrix presented in
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3.4 Numerical experiments

In this section, some simulations will be presented in order to assess the quality of
estimates of g-Exponential parameters obtained from PSO and Nelder-Mead methods. The
PSO was implemented in the MATLAB computer software [81] and the Nelder-Mead was
performed by the function Optim of the software R [82]. We will consider sample sizes equal
to 100, 500 and 1000, and simulations for point and interval estimates will be presented.

In previous simulations, we detected that in situations where the parameter q is less than
0, the simulations showed results for the estimates that are very different from the parameters.
Table 3.1 presents these estimates obtained maximizing the log-likelihood function of the g-
Exponential distribution, in situations that q is less than zero. The results are presented
considering the average of 1000 estimates of each parameter. Observe that the results for the
estimates of 1 and q are very different from the parameters, mainly when the sample size is

small (n=100).

Table 3.1. Results for estimates of the parameters N and q obtained maximizing the Log-likelihood function of
the q-Exponential distribution — simulations for g<0

ma) | n Ul q Bias(1) Bias(q) | MSE() | MSE(g)
100 | 56558.45 | -24103.9 | 56553.45 | -24102.88 | 5.80E+11 | 1.04E+11

(5,-1) | 500 | 5.577235 | -1.24941 | 0.5772 | -0.24941 | 2.29256 | 3.91E-01
1000 | 5.753486 | -1.31194 | 0.7535 | -0.31194 | 3.99648 | 6.49E-01

In order to investigate what might be causing this problem, we have built the graphics
of the likelihood function in a situation that q parameter is greater than 0 and also otherwise.
As we can observe from Figure 3.1 (b), when the parameter q is less than 0, the graphic of the
log-likelihood function present a monotonic behavior, i.e., we cannot found a maximum value
for the parameters g and 7. This behavior does not occur when the value of g is greater than
0; see Figure 3.1 (a). Thus, for the case where the parameter g is less than 0, we propose a
reparametrization of the log-likelihood function.

In fact, we make the following

reparametrization in the parameters of the g-Exponential:
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Figure 3.1. Graphics for the log-likelihood Function — (a) parameter q is larger than 0 and (b) parameter q is

less than 0.

Observe that the reparametrization was made considering the support of the parameters,
i.e., the parameter g must be always less than 2, thus we consider a reparametrization that the
function must be always less than 2. As the same manner, the parameter 1 must be always
larger than 0, so we consider a function that always returns values greater than 2. Thus, we

will maximize the following function:
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After determine the value of ¢’ and n’, we can obtain the value of g and n by equations
(3.10) and (3.11). Table 3.2 shows the results of the estimates of the parameters obtained
maximizing the log-likelihood function of the g-Exponential distribution after a proposed
reparametrization, in situations that q is less than 0. The results are presented considering the
average of 1000 estimates of each parameter. Observe that the results for the estimates of 7
and q are still different from the parameters, but compared with the results without the
reparametrization, the estimates improved vastly. In this way, for the rest of this work we will

use the proposed reparametrization when we deal with g less than 0.

Table 3.2. Results for estimates of the parameters q and 1) obtained maximizing the Log-likelihood function of
the q-Exponential distribution after a reparametrization — simulations for <0

mq) | n Ul q Bias(1) Bias(q) | MSE() | MSE(Q)
100 | 7.5103 | -2.1153 | 25103 | -1.1153 | 33.1753 | 6.1975

(5,-1) | 500 | 53737 | -1.16683 | 0.3737 | -0.16683 | 9.22E-01 | 1.64E-01
1000 | 5.19129 | -1.08581 | 0.1913 | -0.08581 | 3.34E-01 | 5.78E-02

3.4.1 Point Estimates (MLE)

For the analysis of the MLE we consider the following sets of initial parameters: (7, q)
= (5, 1.5), (5, 1), (5, 0.5), and (5, -1). These sets are chosen in order to consider the four
important situations for the parameter q: 1 <q < 2;q—>1;0<qg <1 and g <0. For each
set of parameters we generate, by Equation (2.2), 1000 samples. Thus, for each one of these
samples, we obtained estimates for g and 7 by PSO and Nelder-Mead algorithms, which
resulted in a total of 1000 estimates for each parameter. Figure 3.2 presents the steps that we

follow to obtain the results of the numerical experiments for point estimates:
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Figure 3.2. Steps of numerical experiment (point estimates).
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Table 3.3 and Table 3.4 present the mean of these 1000 estimates for each parameter (#

and §). Moreover, we reported in Table 3.3 and Table 3.4 the related bias and MSE. For an
estimator @ of @, we have that bi a§f) = E(é) — 6 and MSE = Var(é) + bias(6)?.

Table 3.3 - Simulation results for 1000 replications — PSO Case.

Cases PSO

M a) n ] q Bias(f)) ~ Bias(g) =~ MSE()  MSE(q)
1 100 5.3316 1.4879 03316  —0.0121 2.1541 0.0029
2 5, 1.5) 500 5.0713 1.4982 0.0713  —0.0018  0.3700 0.0005
3 1000 5.0432 1.4983 0.0432  —0.0017  0.1743 0.0003
4 100 5.4545 0.9546 0.4545  —0.0454  2.2459 0.0199
5 6, 1 500 5.1078 0.9886 0.1078  —0.0114  0.3042 0.0025
6 1000 5.0566 0.9954 0.0566  —0.0046  0.1424 0.0012
7 100 5.7744 0.3627 0.7744  —0.1373 3.4889 0.0952
8 (5,0.5) 500 5.1240 0.4767 0.1240  —0.0233  0.3339 0.0080
9 1000 5.0731 0.4867 0.0731 —0.0133  0.1444 0.0034
10 100 7.8208 —2.2482 2.8208 —1.2482  54.1635 10.064
11 5,-1) 500 5.3779 —-1.1686 03779  —0.1686  0.9296 0.1657
12 1000 5.1939 —1.0869 0.1939  —0.0869  0.3369 0.0583

47




Chapter 3 Estimation of the g-Exponential Parameters By PSO and Nelder-Mead Method

Table 3.4 - Simulation results for 1000 replications — Nelder-Mead Case.

Nelder-Mead
Cases — —

™9 n U] q Bias(f) ~ Bias(g) ~ MSE(®)  MSE(q)
1 100 5.3301 1.4879  0.3301 -0.0121 2.1536 0.0029
2 (5, 1.5) 500 5.0702 1.4982  0.0702 -0.0018 0.3705 0.0005
3 1000 5.0431 1.4983  0.0431 -0.0017 0.1743 0.0003
4 100 4.8846 09892  -0.1154 -0.0108 1.2159 0.0083
5 G, 1) 500 4.6887 0.9994  -0.3113 -0.0006 0.2247 0.0005
6 1000 4.6312 1.0006  -0.3688 0.0006 0.1770 0.0002
7 100 5.7728 03630  0.7728 -0.1370 3.4889 0.0951
8 (5,0.5) 500 5.1239 0.4767  0.1239 -0.0233 0.3338 0.0080
9 1000 5.0729 0.4867  0.0729 -0.0133 0.1445 0.0034
10 100 7.5103 -2.1153  2.5103 -1.1153 33.1753 6.1975
11 5,-1) 500 53737 -1.1668  0.3737 -0.1668 0.9220 0.1644
12 1000 5.1913 -1.0858  0.1913 -0.0858 0.3342 0.0579

From Table 3.3 and Table 3.4, we can observe that the estimates obtained by PSO and
Nelder-Mead algorithms present bias and MSE that decrease as the sample size (n) increases,
corroborating the consistency of the MLE. However, both PSO and Nelder-Mead approach,
shows negative results for the bias of § (exception: Case 6 — Nelder-Mead), indicating that in
both method the ¢ parameter is underestimated. In order to provide a best visualization of the
results presented in tables 3.1 and 3.2 of the numerical experiments, we present a graphical
comparison between the point estimates obtained by PSO and Nelder-Mead and the real
values of the parameters (¢ and 71). Besides, we make some graphics to evaluate the MSE

obtained by the two optimization methods for each parameter of interest.
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Figure 3.3. Graphical comparison between results of the estimates of the q parameter obtained by PSO and

Nelder-Mead, and the true value of the parameter - (a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d)
Cases 10 to 12.
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Figure 3.4.Mean Squared Error (MSE) for the estimates of the q parameter obtained by PSO and Nelder-Mead -

(a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d) Cases 10 to 12.
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Figure 3.5. Graphical comparison between results of the estimates of the 1 parameter obtained by PSO and
Nelder-Mead, and the true value of the parameter - (a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d)
Cases 10 to 12.
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Figure 3.6. Mean Squared Error (MSE) for the estimates of the 1) parameter obtained by PSO and Nelder-Mead
- (a) Cases 1 to 3, (b) Cases 4 to 6, (c) Cases 7 to 9 and (d) Cases 10 to 12.

About the estimation of the g parameter, we can comment that when g > 1 (cases 1 to
3), the results of the MSE for the two optimization algorithms were absolutely equal,
indicating that when q > 1, the two optimization method has similar performance; In cases 4
to 6, the PSO approach present MSE larger than the obtained by Nelder-Mead, indicating a
better efficiency of the Nelder-Mead method when we deal with cases that present g — 1.
When 0 < g < 1 (cases 7 to 9), both optimization methods present similar results. In cases 10
to 12, where g < 0, it is observed a great value for the MSE in both optimization methods. In
this situation, the PSO method presents the worst performance in the estimation of the g
parameter when n=100, and for n=500 and 1000 the results for both optimization methods
are very close. We can highlight that this great values for the MSE (when g = —1) is
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observed mainly when the 7 is smaller (n = 100). Observe that in cases 10, 11 and 12, when
n increases, the bias and MSE decrease significantly.

When we estimate the n parameter, it is possible to observe that for cases 1 to 3 (g >
1), the MSE values are very close for the two optimization methods. Also, in cases 4 to 6, we
observe a similar behavior for the performance of both optimization methods, with a slight
advantage, for the Nelder-Mead method in cases 4 and 5. Cases 7 to 9 present a similar
behavior for the two methods. With respect to cases 10 to 12, where we have the negative
value for g, it is observed a MSE very high to case 10, where n = 100, in this case the PSO
present the biggest MSE. However, observe that as n increases the MSE decreases
substantially, this fact is observed for both optimization methods. With relation to the bias of
7 we perceive that in both optimization methods, the estimates present positive bias,
indicating an overestimation of the n parameter. This related fact is just not observed in the
cases thatn = 5, and ¢ — 1 (Cases 4 to 6 - Nelder-Mead).

According to the results, we can yet note, that when the q parameter is closer of its
maximum supported value, i.e., ¢ = 2, more consistent are the estimates of the parameters.
When we deal with g negative, then, the PSO and Nelder-Mead method present high values
for bias and MSE of the estimates, indicating less consistency for the two methods in this

situation, this fact is mainly observed when the # is small.
3.4.2 Interval Estimates

For the interval estimates, Table 3.5 to Table 3.8 present the simulation results for the
asymptotic, bootststrap-p and non-parametric bootstrap 90% confidence intervals. For all
these methods, we consider the same sets of initial parameters used in the simulations for the
point estimates, i.e., (7, q) = (5, 1.5), (5, 1), (5, 0.5), and (5, -1). Similarly, the same sample
sizes are considered: 100, 500 and 1000.

In the asymptotic confidence interval approach, we first generate a sample based in each
parameter analyzed by using Equation (2.2). Then, for each sample, we estimate the
parameters 77 and g by PSO and Nelder-Mead algorithms and, after estimating the covariance
matrix (Equation (3.4)), we construct the intervals by Equations (3.8) and (3.9).

In the simulations for bootstrap-p and non-parametric methods, we generate by
Equation (2.2) a sample for each set of parameters. Then, we estimate the parameters 7 and g

by PSO and Nelder-Mead algorithms. Thus, for the bootstrap-p method, using the estimates
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obtained from the initial samples, we generate 1000 new samples by Equation (2.2), which
allows us to calculate 1000 new estimates for 77 and g considering all sets of parameters. With
this information, we are able to calculate confidence intervals by Equations (3.2) and (3.3). In
the case of the non-parametric bootstrap confidence intervals, the intervals are obtained in a
similar fashion. The difference is that for the non-parametric case, we use the initial samples
(generated by Equation (2.2)) from each set of parameters) in order to generate N = 1000
samples by sampling with replacement, which allows us to calculate 1000 new estimates for
nand q considering all sets of parameters. Then, we are able to calculate the confidence
interval by Equations (3.2) and (3.3). Figure 3.7 presents the steps that we follow to obtain the
results of the numerical experiments for Parametric Bootstrap confidence interval (a) and

Non-parametric Bootstrap confidence interval (»). The simulation results are presented in

Table 3.5 to
Table 3.8.
Parametric bootstrap Non-parametric bootstrap
Point Point
estimates iR SWR: Sampling estimates
Nelder-Mead f:n?gn(i H:meggog:::faltor with replacement Nelder-Mead
£ PSO ﬁO C’iO or PSO ,’-)0 aO
Original A1 A1 Nelger-Mead Nelder-Mead
Se) 1 - A A
data set n q or fte gE-RNG o tl orPSO nl ql
> £ Nelder-Mead 9 Nelder-Mead 5 2
or PSO g A A
r’ <7 t2<Jm t SWR 5 t2 or PSO r’ q
- - Nelder-Mead Original % * Nelder-ead 0 :
r’B qB <OrPSO__ t8< GE-RNG data set tB or PSO AB ~B
—~ Bootstrap r’ q
(' samples Bootstrap
samples
>ClI[n, (1-a)'100%] = [A%2,/¥?] / 0, A@2 Al-al2
Interval 2 Al-al2 Interval >Clln, (1-a)100%] = (A0 ]
. 0.1 — [F92 Al
estimates  Cl[@, (1-@)'100%] = [G*2,G4%?] estimates  C|[q, (1-a)100%] = [§72,G 2] <
(@) (b)

Figure 3.7. Steps of numerical experiment for Parametric Bootstrap confidence interval (a) and Non-parametric
Bootstrap confidence interval (b).

Table 3.5 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for 1 via PSO.

n
™9 . Asymptotic Bootstrap-P No‘;;z;‘;‘::etnc
’ Confidence Width Confidence Width Confi denge Width
Interval Interval
Interval

100 | [3.9179,10.0493]  6.1314  [4.6383,11.2618]  6.6235  [4.7283,11.2664]  6.5381
(5,1.5) | 500 | [3.4869,53166] 1.8297  [3.6984,5.4655]  1.7672  [3.6053,5.4974]  1.8922
1000 | [4.4125,5.8216]  1.4091  [4.4704,5.8704] 14000  [4.4456,5.9302]  1.4846

6, 1) 100 [2.5587,5.9012] 3.3425 [3.0164, 6.9189] 3.9026 [2.8231, 6.5363] 3.7132
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n
1,9 . Asymptotic Bootstrap-P Nm;g—Pa:z:::etrlc
g Confidence Width Confidence Width CO(:)fiilenEe Width
Interval Interval
Interval

500 [4.2223,5.9264] 1.7041 [4.3878, 6.0363 1.6485 4.3978, 5.9974] 1.5995

100 [2.3372,7.5428] 5.2056 [3.4163, 8.7365 5.3202 2.6703,9.3328] 6.6625
(5, 0.5) 500 [4.2155, 5.8974] 1.6819 [4.3751, 6.2051 1.8300 4.3740, 6.1803] 1.8062
1000 [4.3485, 5.5088] 1.1603 [4.4700, 5.6036] 1.1336 [4.3810, 5.5552] 1.1742

] [

1000 | [4.2168,5.2148] 09980  [4.2107,53917]  1.1810  [4.1897,5.3920]  1.2023
] [
] [

100 [0.9412, 8.7827] 7.8415 [3.2894,20.8420]  17.5526  [1.9793,116.446] 114.467
5, -1) 500 [4.0571, 7.4123] 3.3552 [4.7521, 8.5209] 3.7688 [4.3313, 8.4578] 4.1265
1000 [4.1037, 5.6756] 1.5119 [4.2120, 6.1238] 19118 [4.3234,6.3180] 1.9946

Table 3.6 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for q via PSO.

q
Non-Parametric

Asymptotic Bootstrap-P

.49) n Confidence Width Confidence Width IO 1)) Width
Confidence
Interval Interval
Interval

100 [1.3831, 1.5603] 0.1772 [1.3643, 1.5423] 0.1780 [1.3679, 1.5368] 0.1690
(5, 1.5) 500 [1.4777,1.5523] 0.0746 [1.4732,1.5467 ] 0.0735 [1.4784, 1.5454] 0.0670
1000 [1.4650, 1.5181] 0.0531 [1.4617, 1.5160] 0.0543 [1.4625, 1.5152] 0.0527
100 [0.9425, 1.2565] 0.3140 [0.8573, 1.2064] 0.3492 [0.8788, 1.2249] 0.3462
A, 1) 500 [0.9133, 1.0662] 0.1529 [0.9031, 1.0525] 0.1494 [0.9054, 1.0477] 0.1423
1000 [0.9810, 1.0703] 0.0893 [0.9625, 1.0692] 0.1066 [0.9537, 1.0766] 0.1230

100 [-0.0079, 0.9059] 0.9138 [-0.2494, 0.6900] 0.9394 [-0.2128, 0.8386] 1.0514
(5,0.5) 500 [0.3704, 0.6210] 0.2506 [0.3133,0.5908] 0.2775 [0.3123, 0.5960] 0.2837
1000 [0.4318, 0.6058] 0.1740 [0.4125, 0.5870] 0.1745 [0.4274, 0.5990] 0.1716
100 [-2.7396, 0.7420] 34816  [-8.0361, -0.3534] 7.6828 [-48.684, 0.3038]  48.9878
5, -1 500 [-2.0155,-0.6176] 2.6298  [-2.4919, -0.9186] 1.5732 [-2.4383,-0.7336]  1.7046
1000 | [-1.2703,-0.6351] 1.9054  [-1.4685, -0.6804] 0.7881 [-1.5636,-0.7222]  0.8414

Table 3.7 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for 1 via Nelder-Mead.

n
) . Asymptotic Bootstrap-P lel;:;l;?::etrlc
! Confidence Width Confidence Width Confid np Width
Interval Interval onfidence
Interval

100 | [3.9256,10.0374] 6.1118 [4.6131,10.8467] 62337  [4.6935,11.0487]  6.3552
(5,1.5) | 500 | [3.4907,5.3152] 1.8245 [3.6496,5.4025]  1.7530  [3.5874,5.4404]  1.8529
1000 | [4.4143,5.8187] 1.4045 [4.4677,59013] 14336  [4.4413,5.9150] 14737

100 [2.5639,5.8982]  3.3344  [3.0158,6.7117 3.6959 2.7862,6.7110 3.9248

1000 [4.2170,5.2120]  0.9950  [4.1922, 5.3889 1.1967 4.2328, 5.4093 1.1765

100 [2.3442,7.5343]  5.1902  [3.5749, 9.1427 5.5678 2.7364,9.7146 6.9783

5,05
( ) 500 [4.2180, 5.8934] 1.6754  [4.3606, 6.2027 1.8420 4.3698, 6.1727 1.8029

] ]
] ]
] ]
5, 1) 500 | [4.2277,5.9282] 1.7005 [3.5497,5.0196]  1.4699  [4.3406,5.9994]  1.6589
] ]
] ]
] ]

— == =
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1000 [4.3508, 5.5072] 1.1564  [4.4230, 5.6383] 1.2153 [4.3848, 5.5661] 1.1813
100 [3.1257,6.6048]  3.4791 [3.1602, 16.6136] 13.4534  [2.0547,32.6716] 30.6169
5, -1) 500 [5.0395, 6.4317] 1.3922  [4.6128, 8.2581] 3.6454 [4.2517,8.0911] 3.8394
1000 [4.5740,5.2072]  0.6332  [4.2187, 6.0602] 1.8416 [4.2670, 6.2620] 1.9950

Table 3.8 - Asymptotic and bootstrap confidence intervals with 90% of confidence level for q via Nelder-Mead.

q
. Non-Parametric
(. ) n 221232?122 Width ]Z‘L‘if?ﬁ:,’.’cf Width Bootstrap Width
Interval Interval CONTLBE
Interval
100 [1.3834, 1.5601] 0.1767 [1.3603, 1.5402] 0.1798 [1.3679, 1.5372] 0.1693
5, 1.5) 500 [1.4777,1.5521] 0.0743 [1.4756, 1.5454] 0.0697 [1.4801, 1.5462] 0.0660
1000 [1.4650, 1.5180] 0.0530 [1.4623,1.5164] 0.0541 [1.4627,1.5167] 0.0540
100 [0.9429, 1.2560] 0.3131 [0.7270, 1.1266] 0.3996 [0.8700, 1.2285] 0.3586
A, 1) 500 [0.9132, 1.0657] 0.1525 [0.9011, 1.0634] 0.1623 [0.9081, 1.0511] 0.1430
1000 [0.9812, 1.0704] 0.0891 [0.9372, 1.0489] 0.1117 [0.9538, 1.0730] 0.1192
100 [-0.0064, 0.9047] 0.9112 [-0.2600, 0.6564] 0.9165 [-0.3137, 0.8348] 1.1485
(5,0.5) 500 [0.3709, 0.6205] 0.2496 [0.3228, 0.5903] 0.2675 [0.3127, 0.6024] 0.2897
1000 [0.4320, 0.6053] 0.1733 [0.4032,0.59142] 0.1882 [0.4226, 0.5971] 0.1745
100 [-4.9182,2.9180] 7.8361 [-6.2167,-0.2958]  5.9208 [-13.5112, 0.2433] 13.7545
(5,-1) 500 [-2.9879, 0.3538] 3.3417  [-2.3651, -0.8659] 1.4993 [-2.2837, -0.7130] 1.5707
1000 | [-1.7366,-0.1696] 1.5671 [-1.4357,-0.6838]  0.7519 [-1.5464, -0.7004] 0.8460

From the results presented in Tables Table 3.5 toTable 3.8 we make some graphics in

order to provide a better visualization of the results of the confidence intervals obtained by

numerical experiments:
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Figure 3.8. Upper and lower limits of the asymptotic Confidence Interval for the parameter m, obtained by PSO
and Nelder-Mead.
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Figure 3.9. Upper and lower limits of the Bootstrap-P Confidence Interval for the parameter 1), obtained by
PSO and Nelder-Mead.
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Figure 3.10. Upper and lower limits of the Non-Parametric Bootstrap Confidence Interval for the parameter ),

obtained by PSO and Nelder-Mead.
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Figure 3.11. Upper and lower limits of the asymptotic Confidence Interval for the parameter q, obtained by

PSO and Nelder-Mead.
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Figure 3.12. Upper and lower limits of the Bootstrap-P Confidence Interval for the parameter q, obtained by

PSO and Nelder-Mead.
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Figure 3.13. Upper and lower limits of the Non-Parametric Bootstrap Confidence Interval for the parameter g,

obtained by PSO and Nelder-Mead.

As we can observe in all simulated cases, the width of the intervals decreases as n

increases for both PSO and Nelder-Mead algorithms, and for the two parameters in analysis.

This is expected due to the consistency property of the MLE.

We also observe that even for the sample of 100, the asymptotic intervals presented

widths very similar to the bootstrap-p and non-parametric bootstrap confidence intervals. It is

also important to point out that when we compare the interval widths obtained by PSO and

Nelder-Mead algorithms we note that mostly the Nelder-Mead algorithm presented smaller

intervals for both 77 and ¢ — For 7 parameter we can highlight that only 27,77% of intervals
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obtained by PSO is smaller than the intervals obtained by Nelder-Mead and for the parameter
q, 41,66% of the intervals obtained by PSO is smaller than the intervals obtained by Nelder-
Mead. In general, it can be observed that for larger sample sizes (n = 1000), asymptotic and
bootstrap approaches tend to provide similar interval estimates for the g-Exponential

parameters.

3.5 Application Examples

In this section, we provide estimates of the g-Exponential parameters for fatigue data
obtained from two kind of materials. The first example, originally described in [83], deals
with the experimental determination of high cycle fatigue of ductile cast iron used for wind
turbine components and the second one, which was first reported in [84], evaluates the
gigacycle fatigue life of high-strength steel. Once the second example presents data obtained
from a more resistant material than the material of the first example, it is natural that the
cycles until failure for the high-strength steel present order of magnitudes larger than data
obtained from ductile cast iron. Thus, it is expected that for the more resistant material, the fit
by the g-Exponential distribution presents a better performance than when we consider the
Weibull distribution; this is due the fact that the g-Exponential has a heavier tail than the
Weibull distribution allowing that data with great magnitude can be well modeled by this
distribution.

We will fit the data by a g-exponential distribution using PSO and Nelder-Mead.
Besides, we will consider the modeling of data by a Weibull distribution in order to compare
the efficiency of these two distributions for this kind of data. The evaluation of the
adjustments it will be done using the bootstrapped Kolmogorov-Smirnov test and graphical

analysis.

3.5.1 Example 1

From [83], we collect data obtained from a specimen of ductile cast iron with diameter
50 mm (@50). The data set given in terms of number of cycles to failure is presented in Table

3.9:
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Table 3.9. @50 specimen fatigue test data.

Specimen Fatigue Life
Number (number of cycles to failure)

295000
869000
869900
1573335
151400
152000
183700
218000
30200
45100
46900
47300

O 0 9 N i AW~

—_ =
—_— O

—_
N

3.5.1.1 Results for the PSO Approach

Once the PSO is a probabilistic method of optimization, it can present different results
for the same data. Thus, in this example, the PSO was replicated 30 times and, as in the
numerical experiments, the provided estimates were practically the same with standard
deviations of 0.0117, 1.9239E-8 and smaller than 10 for 7, q, in this order. The estimated
MLE parameters are 7 = 161820.5715 and § = 1.3007. The 90% asymptotic confidence
intervals for n and q are [-48898.1867, 372539.3256] and [0.9249, 1.6766], respectively. Note
that, due to the very small sample size, the lower bound of the interval concerning 7 is
negative, which is not a possible value for this parameter — This is due the fact that asymptotic
confidence interval present best results only when the sample size is larger, and for the
situation of this example, the asymptotic approach is not recommended. The parametric and
non-parametric bootstrap intervals are reported in Table 3.10. All intervals were constructed
considering a confidence level equal to 90%. Unfortunately, due the small sample size , as

shown in the Table 3.8, confidence intervals are little informative, with great widths.
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Table 3.10. Bootstrap interval estimates provided by PSO for Example 1

n=12
Bootsrap-P Non-Parametric Bootstrap
Confidence Interval [52558.29, 75470383.73] [67226.68, 496841515.04]
1 Width 75417825.44 496774288.36
Confidence Interval [-125.1890, 1.5124] [-451.9696, 1.4434]
1 Width 126.7014 453.4129

3.5.1.2 Results for the Nelder-Mead Approach

The estimated MLE parameters are 7 = 161904 and § = 1.3005. The 90% asymptotic
confidence intervals for 7 and q are [-48303.41, 372111.3] and [0.9257, 1.6753], respectively.
Note also that in the Nelder-Mead approach, due to the small sample size, the lower bound of
the interval concerning 7 is negative, which is not a possible value for this parameter. The
parametric and non-parametric bootstrap intervals are reported in Table 3.11. All intervals

were constructed considering a confidence level equal to 90%.

Table 3.11. Bootstrap interval estimates provided by Nelder-Mead for Example 1

n=12
Bootsrap-P Non-Parametric Bootstrap
Confidence Interval [55548.5, 7295081.0] [71231.32, 73091176.48]
Width 7239532.5 73019945.16
Confidence Interval [-12.9756, 1.5206] [-72.3958, 1.4444]
Width 14.4962 73.8402

We observe that the behavior identified when the numerical experiments were
conducted (section 3.4.2) was maintained in implementing the example 1, i.e., the length of
the intervals obtained by Nelder-Mead was lower than those obtained by the PSO approach.
However, also in this optimization method, despite the width of intervals are smaller than the
width obtained when we use PSO, the confidence intervals were little informative due to very

small sample size.

3.5.1.3 Bootstrapped Kolmogorov-Smirnov test applied in the Example 1

In order to verify if the estimates obtained from the data of the example 1 fit well the
data of the example in a g-Exponential model, we make use of the Bootstrapped-
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Kolmogorov-Smirnov test (KS-Boot). Table 3.12 presents the estimated parameters obtained
by the PSO and Nelder-Mead algorithms for the data of the first example, the Kolmogorov-
Smirnov (K-S) distances between the empirical and fitted distribution functions, and the

corresponding p-values (K-S Boot). For this test, it was assumed N = 1000.

Table 3.12. Comparing point estimates and KS-Boot Test- PSO vs. Nelder-Mead (Example 1)

Parameter

Estimates PSO K-S (Do) p-value
2 1611?3%8657715 0.1554 oo
l;lsl;?n?:tt:: Nelder-Mead K-S (Dy) p-value
i 161504 01554 06224

Note from Table 3.12 that the parameters estimates by PSO and Nelder-Mead are very
close, which implies that the p-value of the KS-Boot test was very similar for these two
approaches. Also note that for the two approaches, the KS-Boot presents p-values that

indicate the g-Exponential distribution is a good fit for the data of the example 1.

3.5.2 Example 2

From [84] , we collect data obtained from a specimen of high-strength steel with
diameter 3 mm (@3). The data sets given in terms of number of cycles to failure are presented

in Table 3.13:
Table 3.13. O3 specimen fatigue test data.

Specimen Fatigue Life
Number | (number of cycles to failure)
1 1017286
2 2989152
3 4059346
4 4256299
5 8376572
6 9560400
7 13007977
8 25303118
9 33621704
10 55951560
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Specimen Fatigue Life
Number | (number of cycles to failure)

11 101155984

12 144322192

13 376711232

14 731957760

15 9444513800

16 9912163300

17 9918688300

18 9921105900

3.5.2.1 Results for the PSO Approach

The obtained point estimates are: 7 = 4688695.8075 and § = 1.7521. The 30 PSO
replications essentially provided the same estimates with standard deviations (0.2236 and
3.3262E-9 for 1 and q. The asymptotic intervals for n and q are: [-1077757.8706,
10455149.6121] and [1.6579, 1.8463], respectively. As mentioned previously, the asymptotic
approach is not recommended when we have small samples. For this reason, also, in this
example, the asymptotic confidence interval is little informative, and the lower bound of the
interval concerning 7 is negative, which is not a possible value for this parameter. The
bootstrap intervals (parametric and non-parametric) with 90% of confidence level are reported
in Table 3.14.

Table 3.14. Bootstrap interval estimates provided by PSO for Example 2

Bootsrap-Pn - Non-Parametric Bootstrap
Confidence Interval [1417311.8673,21929912.0205] [2099992.8679, 4184877383010.9316]
1 Width 20512600.1532 4184875283018.0640
Confidence Interval [1.5987, 1.8188] [-420.6016, 1.7886]
1 Width 0.2201 422.3902

3.5.2.2 Results for the Nelder-Mead Approach

The estimated MLE parameters are # = 4704629 and § = 1.7519. The 90%
asymptotic confidence intervals for i and q are [-1070366, 10479625] and [1.6579, 1.8459],
respectively. The bootstrap intervals (parametric and non-parametric) are reported in Table

3.15. All intervals were constructed considering a confidence level equal to 90%.
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Table 3.15. Bootstrap interval estimates provided by Nelder-Mead for Example 2

n=18
Bootsrap-P Non-Parametric Bootstrap
Confidence Interval [1456802, 20681229] [2160329, 16826841]
n Width 19224427 14666512
Confidence Interval [1.5979, 1.8220] [1.6509, 1.8014]
1 Width 0.2241 0.1505

It is easy to see from Table 3.14 and Table 3.15 that the confidence interval based on
Nelder-Mead algorithm presented confidence intervals with widths smaller than the intervals
obtained from the PSO method. The results presented in Table 3.15, shows that the
confidence interval of the parameter ¢ is more informative with a width size more appropriate
than the width obtained in the previous example. Despite this, the width of the bootstrap-p
confidence interval for the parameter n still is large, but if we compare with the results
obtained in the previous example, we observe that the results improved considerably, this is
due the fact that in this example we deal with a sample with sample slightly large than the

sample used in previous example.

3.5.2.3 Bootstrapped Kolmogorov-Smirnov test applied in the Example 2

Table 3.16 presents the estimated parameters obtained by the PSO and Nelder-Mead
algorithm for the data of the example 2, the Kolmogorov-Smirnov (K-S) distances between
the empirical and fitted distribution functions, and the corresponding p-values (K-S Boot). For

this test, we considered N = 1000.

Table 3.16. Comparing point estimates and KS-Boor Test- PSO vs. Nelder-Mead (Example 2)

Estimates PSO K-S (Do) pvalue
| AT
l;:zl;?nr?:tt:: Nelder-Mead K-S (Dy) p-value
2 417.%%9 0.1329 0.4895
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Note from Table 3.16 that, also in this example, the parameters estimates obtained by
PSO and Nelder-Mead are very close, which implies that the p-value of the KS-Boot test was
very similar for these two approaches. Also note that for the two approaches, the KS-Boot
presents p-values that indicate the g-Exponential distribution is a good fit for the data of the

example 2.

3.5.3 Comparing g-Exponential with Weibull distribution

As previously mentioned, the Weibull distribution originates from the theory of extreme
values [85]; then, for particular values of its parameters, this distribution is capable to model
data with large values. Thus, we estimate the parameters of a Weibull distribution considering
the data presented in examples 1 and 2 in order to compare the fit quality to the data sets by a
Weibull and g-Exponential distributions. The parameters estimates of the Weibull distribution
are obtained by analytical expressions[86]. The results for the estimated parameters (scale and
shape parameters for Weibull distribution), Kolmogorov-Smirnov (K-S) distances between
empirical and fitted distribution functions, and the corresponding p-values (K-S Boot
performed with N = 1000) obtained from the data sets are shown in Table 3.17, which also
include the K-S distance and p-values for the fit of the g-exponential distribution (PSO and
Nelder-Mead).

Table 3.17. Comparing Weibull vs. q-Exponential — Examples 1 and 2.

Parameters K-S Boot K-S Boot K-5 Boot
. i e A (q-Exponential) (q-Exponential)
(Weibull Distribution) (Weibull) PSO Nelder-Mead
Examples Shape Scale K-S _value K-S —value K-S _value
Parameter | Parameter (D) p (Dy) p (Dy) i

Data from 0.8336 335326.1 0.164 0.5184 0.1554 0.6090 0.1554 | 0.6224
example 1

Data from 0.3366 417229710 | 0.1648 0.2047 0.1327 0.4860 0.1329 | 0.4895
example 2

From Table 3.17, we observe that for example 1, the fit by the two distributions are
good with p-values equal to 0.5184 (for the Weibull distribution), 0.6090 (for the g-
exponential distribution — PSO) and 0.6224 (for the g-Exponential distribution — Nelder-
Mead). For example 2, although the Weibull fit is significant, it is clear that the g-exponential
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distribution showed a better fit to the data. Indeed, we observe for this example p-values
equal to 0.2047 (for the Weibull distribution), 0.4860 (for the g-exponential distribution —
PSO) and 0.4895 (for the g-Exponential distribution — Nelder-Mead). In example 2, clearly
the g-exponential distribution showed a better efficiency, since the data in this example are
constituted of extremely large values, with magnitude in order of 10°. Example 1 presents
data with magnitude somewhat lower, i.e., in the order of 10°. Thus, with these examples, we
conclude that the g-Exponential can model data with extremely large values with more
efficiency than the Weibull distribution.

Figure 3.14 and Figure 3.15 present the empirical and theoretical CDFs (Weibull and g-
Exponential) for examples 1 and 2, respectively. Once the estimates obtained from the two
methods (PSO and Nelder-Mead) are very similar, we choose, without loss of generality, the
estimates obtained from the PSO to construct the Figure 3.14 and Figure 3.15. Note that for
the first example (Figure 3.14) both g-Exponential and Weibull fits very well the empirical
data. The figure for the second example is plotted in logarithmic scale in order to provide a
better visualization of the empirical CDF, as the data set contains extremely large values. As
we can note from Figure 3.15, the empirical curve is very close to the g-Exponential CDF,
confirming that the g-exponential distribution is more efficient than Weibull distribution
when we deal with the kind of data presented in Example 2, i.e., data that encompass

extremely large values such as in case of material with high resistance to failure.
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Figure 3.14. Empirical and Theoretical (q-Exponential and Weibull) CDFs — (Example 1).
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Figure 3.15. Empirical and Theoretical (q-Exponential and Weibull) CDFs — (Example 2).
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4 A NEW STRESS-STRENGTH MODEL BASED ON g-
EXPONENTIAL DISTRIBUTION.

4.1 Maximum likelihood estimators of index R=P(Y<X)

In this section, we estimate the index R=P(Y<X) by using the maximum likelihood
method. We assume that X and Y are independent random variables and follow g-Exponential
distributions with different parameters. We can write Y ~ gExp (q, ) and X ~ qExp(r, p),
where ¢ and r are the entropic indices (shape parameters) of stress and strength, respectively,
and 7 and S are the scale parameters of stress and strength. As mentioned above, the support
of the g-Exponential can be limited (¢</) or unlimited (/<g<2) (see Equation (2.1)). In order
to calculate the index R, we use the Wolfram Mathematica computer software [87]. Due the

difference of the support of the g-Exponential, we will consider two cases in this work:

Case 1: There is no limitation on the support of X (strength), i.e., I<r<2:

ool P fenfes ]

R=P(Y<X) = s
) np Y
0 0
1= (g =1y [, Bl = 0T
r— r—1 q; r—1 _ q— 1-q 1-r _ _
Bl —12aBCc— er () () ! '7(1;72_ ] [1(1 =7+ plq - DI
BB
(r—2) A —1)% ) (41)

- -
Where:

q-1

B=r(=);

r—1

_ 2-q 3-2r (q-1B)\,
C=2F (1' q-1" 1-r"’ (r—1)n)’
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1
p=r(%)
F=r(=-2+—=)
r— q-1
And
,Fi(a,b;c;z) —¢f t1(1 - )11 —zH)Pdt

I'(a)I'(c—a) 0

Note that  ,F, (a, b; c; z)is the Gauss Hypergeometric Function [88].

Case 2: The support of X (strength) is limited, i.e., r<I:

R=P¥ <X)
1
FAP = =

r(ﬁ)(l ) @-q) [(q —nl)y+1]1 q {(Z—r) [(r —Bl)x+1]1
= B dydx =

Jo Jo
_ 1 _ 1 (@-1)p 4.2)
_1_ZFl(l'ﬁ_l'z-i_l—r'(r—l)n)

To compute the MLE of R, let Y={y,, y,...,y,} be a random sample of size n, and
X={x1,x3...,xn} be another random sample of size m. Since X and Y are independent variables,

it is possible to write the likelihood function for the observed samples as:

L(x,y,7,B,q,1m) = {(2 _q)n 1_[[ (1—Q)yl]1 Q}{(Z T)m 1_[[1_ a —T')x]l r}

:(z—q)"(%)n(Z—r)m 1_[[ (1_q)y‘]1q1_[[ 1_r)x‘]11r.
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Therefore, the log-likelihood function is written as follows:

1(x,y,7.8,9,m)
1 1
=nlr(Z—q)+nln(;)+mlr(2—r)+mln([—g> 4.3)
1 X A-qy] 1 X (1 -1r)x
+m;ln[1— 1 ]-l‘l_r;ln[l—T]

Maximizing the log-likelihood function given in Equation (4.3), results in a convoluted
system of equations and, thus, the derivation of analytical expressions for the MLE becomes
impractical. So, in this work, the maximization of the log-likelihood function in Equation
(4.3) will be performed by the Nelder-Mead Method [47] available in the Software R (optim
function) [82] and by the PSO optimization method implemented in the MATLAB software
[81].

Since §, 7, 7 and f are solutions that maximize the log-likelihood function of Equation
(4.3), and using the property of invariance of the MLE, from Equations (4.1) and (4.2) we can

obtain the MLE of R for the two previously mentioned cases:

Case 1: When the X (strength) has /<r<2:

27 I

DEF (ﬂ)_l (LY [ B9 g -y + @ - 0

B| - 1ABC -

#-2) A(f—l)‘* TF-1 (4 4)

gD
=) =r (-2

Case 2: When the X (strength) has »</:
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~

1
1.!2_1—21¢1(1,67T1—1,2+1

1 @G- 1)3) (4.5)

—# G- Di

4.2 Bootstrap Confidence Intervals

In this section, we present the construction of confidence intervals for the index R by

using bootstrap-p and non-parametric bootstrap methods [53], [89], [90].

4.2.1 Bootstrap-p

The algorithm for constructing confidence intervals by using the bootstrap-p approach
has the following steps:
e Step 1: From an initial sample for the variable X ={x;,x,...,x,»/ and another one for ¥

={Y1,Y2....yn}, estimate the parameters (q,,7,5) by maximizing Equation (4.3);

e Step 2: Use the estimates obtained in the previous step and Equation (2.2) to generate
new samples for X and Y, i.e.: {x], x5,..., xp} and {y1, ¥5,..., ¥n}. Based on these
new samples, compute the bootstrap sample estimate of R, say R*, using Equation

(4.4) or (4.5) (depending on the r value);

e Step 3: Repeat step 2, N times;

e Step 4: Using the N values of R* obtained in step 3 and by adopting a y significance
level, find the percentiles R,,, and Rj_(, /5. Thus, it is possible to determine an

approximate confidence interval, with confidence interval equal to /100%*(1-y)%, for the

index R, as:

4.2.2 Non-Parametric bootstrap

The algorithm for constructing confidence intervals by using the non-parametric

bootstrap approach is as follows:
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e Step 1: From an initial sample for the variable X ={x,x>,...,x,} and another one for ¥
={V1,Y2 -V}, generate new samples for X and Y by sampling with replacement, i.e.,
{x1, x3,..., xp} and {y7, ¥5,..., ¥n}. Based on these new samples, compute the

estimate of R, say R*, using Equation (4.4) or (4.5) (depending on the » value);

e Step 2: Repeat step 1, N times.

e Step 3: By using the N values of R* from step 2 and by adopting a y significance level,
the percentiles R, ,and Rj_ (y/2) are obtained; they determine an approximate

confidence interval for the index R with confidence level equals to 100%(1-y)% using

Equation (4.6).

4.3 Numerical Experiments

This section presents the performance evaluation of the MLE and bootstrap confidence
intervals by means of simulation experiments. Here we will use the Nelder-Mead method and
the PSO algorithm in order to obtain the estimates of MLE. We consider different sample
sizes and different parameter values. First, we analyze the MLE and then we discuss the
bootstrap confidence interval. Note that the simulations involved entropic indices ranging
between 1 and 2 (cases 1 - 11), from 0 to 1 (cases 12 - 22), and with negative values (cases 23

-33).

4.3.1 Analysis of the MLE

Several combinations of sample sizes for the stress and strength are considered: (n, m) =
(100; 100), (250, 250), (500; 500), (1000; 1000), (5000; 5000), (100; 250), (100; 500), (100;
1000), (250; 100), (500; 100) and (1000; 100). Besides, we choose three sets of parameters
values respecting three important situations for the entropic indices, i.e.: 1<r,q<2; 0<r,q<l
and r,qg <0. Thus, we have: (g, , r, ) = (1.78; 0.15; 1.9; 0.1), (0.55; 22; 0.67; 30.5), (-1.95;
0.1; -1.8; 0.18). Observe that 11 different combinations of sample sizes multiplied by 3
different parameter sets are equal to 33 initial samples. The samples for the simulations are
generated by Equation (2.2). All results are based on 1000 replications, i.e., we generate 1000

samples from each set of initial parameters for all the combinations of #» and m. Thus, a total
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of 33000 samples are generated. For each sample, we compute the MLE for ¢, #, 7, § by
maximizing Equation (4.3) via the Nelder-Mead method and PSO algorithm.

Thus, we obtain the MLE of index R by Equation (4.4) or (4.5) (depending on the »
value). This process is carried out for each of the 1000 replications. Subsequently, we obtain
the average of the estimation results for parameters ¢, #, r, f, and also for the index R. Table
4.4 presents the results for all simulation runs as well as the index R estimations. The mean
squared error (MSE) and the average biases are calculated for R over the 1000 replications.

Note that these quality indices are obtained for an estimator 8 of @ as bias(d) = E (9) -0

and MSE = Var(0) + bias(8)?.

From the simulation results (Table 4.4 and Table 4.5), the following findings are

observed:

(1) When (n; m) increase, the MSEs decrease. This suggests the consistency property of
the MLE (see Table 4.1);
(i1) For a fixed n, MSEs decrease as m increases (see Table 4.2);

(iii) For a fixed m, MSEs decrease as n increases (see Table 4.3 );

In order to illustrate behaviors (i), (ii) and (iii), excerpts from Table 4.4 and

Table 4.5 are reproduced in Table 4.1, Table 4.2 and Table 4.3 respectively.

Table 4.1. Examples of cases that present a decrease of the MSE when (n; m) increase (Nelder-Mead and PSO)

Nelder Mead

Case | n m q n r p | MSE

1 100 | 100 | 1.78 1 0.15]1.90 | 0.10 0.00120
12 100 | 100 | 0.55 | 22 |0.67 | 30.5 0.00155
23 100 | 100 |[-1.95] 0.1 | -1.8 | 0.18 0.03185
5 5000 | 5000 | 1.78 | 0.15]1.90 | 0.10 0.00002
16 5000 | 5000 | 0.55 | 22 | 0.67 | 30.5 0.00002
27 5000 | 5000 | -1.95| 0.1 | -1.8 | 0.18 0.01981
PSO
Case | n m q 1 r B | MSE

1 100 [ 100 | 1.78 1 0.15]1.90 | 0.10 0.00120
12 100 | 100 | 0.55 | 22 |0.67 | 30.5 0.00155
23 100 | 100 |-1.95] 0.1 | -1.8 | 0.18 0.00423
5 5000 | 5000 | 1.78 | 0.15]1.90 | 0.10 0.00002
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16 5000 | 5000 [ 0.55 | 22 | 0.67 | 30.5 0.00002
27 5000 | 5000 | -1.95| 0.1 | -1.8 | 0.18 0.00004

Table 4.2. Examples of cases that present a decrease of the MSE for a fixed n and an increase of m (Nelder-

Mead and PSO).

Nelder Mead
Case | n m q n r B | MSE
1 100 | 100 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00120
6 100 | 250 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00069
7 100 | 500 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00057
8 100 | 1000 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00051

PSO

Case | n m q n r p | MSE
1 100 | 100 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00120
6 100 | 250 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00069
7 100 | 500 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00057
8 100 | 1000 | 1.78 | 0.15 | 1.90 | 0.10 | 0.00051

Table 4.3. Examples of cases that present a decrease of the MSE for a fixed m and an increase of n (Nelder-
Mead and PSO).

Nelder Mead

Case | n m q n r p | MSE

12 100 100 | 0.55 |22 |0.67 |30.5 |0.00155
20 250 100 | 0.55 |22 |0.67 |30.5 |0.00113
21 500 100 | 0.55 |22 [0.67 |30.5 |0.00093
22 1000 | 100 ]0.55 [22 ]0.67 |30.5 | 0.00088
PSO
Case | n m q n T p | MSE

12 100 100 | 0.55 |22 [0.67 |30.5 |0.00155
20 250 100 | 0.55 |22 |0.67 |30.5 |0.00112
21 500 100 | 0.55 |22 [0.67 |30.5 |0.00095
22 1000 | 100 ]0.55 [22 ]0.67 |30.5 | 0.00088

Next, we present graphics that allow us a better view of the results obtained in the
simulations for the estimation of the Index R using PSO and Nelder-Mead. The data used in
the creation of these data can be found in Table 4.4 and Table 4.5. The graphics presented in

Figure 4.1 show a comparison between the point estimates obtained by PSO and Nelder-Mead
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and the real value of the Index R. Figure 4.2 presents graphics that show the MSE results
obtained by PSO and Nelder-Mead when we make the estimation of the Index R.
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Figure 4.1. Graphical comparison between results of the estimates of the Index R obtained by PSO and Nelder-
Mead, and the true value of the Index - (a) Cases 1 to 11, (b) Cases 12 to 22 and (c) Cases 23 to 33.
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Figure 4.2. Mean Squared Error (MSE) for the estimates of the Index R obtained by PSO and Nelder-Mead - (a)
Cases 1 to 11, (b) Cases 12 to 22 and (c) Cases 23 to 33.

From the graphics we can observe that the bias for cases 1 to 22 not indicates a
tendency of overestimation or underestimation, once we have bias with positive and negative
values. For the cases 23 to 33, there is a tendency of overestimation of the index R, once the
bias for these cases present always positive values. Besides, cases 23 to 33 present slightly
higher results for the MSE if compared with other cases. This fact is observed mainly when

we deal with the Nelder-Mead approach that present higher results than the obtained by PSO.
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Table 4.4. Simulation results and estimation for the index R (Nelder-Mead).

Sample Size | Parameters MLE Results (Average from 1000 samples) R

Case | , m q n r B R a 7 7 B R bias MSE

1 100 100 1.78 0.15 1.90 | 0.10 | 0.6855 1.7767 0.1647 1.8987 0.1152 0.6847 -0.00076 0.00120
2 250 250 1.78 0.15 1.90 | 0.10 | 0.6855 1.7784 0.1562 1.8995 0.1062 0.6855 0.00000 0.00051
3 500 500 1.78 0.15 1.90 | 0.10 | 0.6855 1.7792 0.1537 1.8999 0.1023 0.6851 -0.00044 0.00025
4 1000 1000 1.78 0.15 1.90 | 0.10 | 0.6855 1.7797 0.1511 1.8999 0.1021 0.6860 0.00054 0.00012
5 5000 5000 1.78 0.15 1.90 | 0.10 | 0.6855 1.7799 0.1502 1.9000 0.1005 0.6856 0.00013 0.00002
6 100 250 1.78 0.15 1.90 | 0.10 | 0.6855 1.7765 0.1648 1.8993 0.1051 0.6848 -0.00074 0.00069
7 100 500 1.78 0.15 1.90 | 0.10 | 0.6855 1.7782 0.1642 1.8997 0.1026 0.6833 -0.00222 0.00057
8 100 1000 1.78 0.15 1.90 | 0.10 | 0.6855 1.7775 0.1631 1.8998 0.101 0.6845 -0.00104 0.00051
9 250 100 1.78 0.15 1.90 | 0.10 | 0.6855 1.7787 0.1555 1.8988 0.1192 0.6874 0.00188 0.00100
10 500 100 1.78 0.15 1.90 | 0.10 | 0.6855 1.7789 0.1536 1.8984 0.1158 0.6848 -0.00066 0.00095
11 1000 100 1.78 0.15 1.90 | 0.10 | 0.6855 1.7798 0.1510 1.8979 0.1195 0.6845 -0.00097 0.00093
12 100 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.4293 25.1014 0.5754 34.3545 0.6248 -0.00111 0.00155
13 250 250 0.55 22 0.67 | 30.5 | 0.6259 | 0.5047 23.1850 0.6396 31.7394 0.6256 -0.00026 0.00059
14 500 500 0.55 22 0.67 | 30.5 | 0.6259 | 0.5270 22.5807 0.6507 31.2574 0.6266 0.00065 0.00028
15 1000 1000 | 0.55 22 0.67 | 30.5 | 0.6259 | 0.5393 22.2590 0.6569 31.0805 0.6274 0.00153 0.00013
16 5000 | 5000 | 0.55 22 0.67 | 30.5 | 0.6259 | 0.5462 22.1077 0.6682 30.5519 0.6257 -0.00022 0.00002
17 100 250 0.55 22 0.67 | 30.5 | 0.6259 | 0.4211 25.3501 0.6392 31.7864 0.6218 -0.00413 0.00100
18 100 500 0.55 22 0.67 | 30.5 | 0.6259 | 0.4361 25.0652 0.6515 31.2202 0.6214 -0.00449 0.00088
19 100 1000 | 0.55 22 0.67 | 30.5 | 0.6259 | 0.4293 25.1689 0.6611 30.8397 0.6209 -0.00496 0.00081
20 250 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.5006 23.3212 0.5706 34.5754 0.6280 0.00206 0.00113
21 500 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.5289 22.5205 0.5777 34.1914 0.6288 0.00292 0.00093
22 1000 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.5384 22.3168 0.5601 349577 0.6301 0.00417 0.00088
23 100 100 -1.95 | 0.1 -1.8 0.18 | 0.7656 | -4.2601 0.1732 -3.9959 0.3117 0.7962 0.17029 0.03185
24 250 250 -1.95 | 0.1 -1.8 0.18 | 0.7656 | -2.7699 0.1262 -2.4857 0.2212 0.7833 0.15742 0.02588
25 500 500 -1.95 | 0.1 -1.8 0.18 | 0.7656 | -2.3128 0.1116 -2.0635 0.1958 0.7745 0.14861 0.02259
26 1000 1000 -1.95 0.1 -1.8 0.18 | 0.7656 | -2.1147 0.1052 -1.9444 0.1886 0.7706 0.14468 0.02117
27 5000 | 5000 | -1.95 | 0.1 -1.8 0.18 | 0.7656 | -1.9825 0.1010 -1.8283 0.1816 0.7665 0.14061 0.01981
28 100 250 -1.95 | 0.1 -1.8 0.18 | 0.7656 | -4.5069 0.1814 -2.4393 0.2184 0.7934 0.16750 0.03026
29 100 500 -1.95 | 0.1 -1.8 0.18 | 0.7656 | -4.6143 0.1849 -2.1051 0.1984 0.7955 0.16958 0.03053
30 100 1000 | -1.95 | 0.1 -1.8 0.18 | 0.7656 | -4.4991 0.1812 -1.9677 0.1901 0.7933 0.16738 0.02966
31 250 100 -1.95 | 0.1 -1.8 0.18 | 0.7656 | -2.6900 0.1236 -4.1665 0.3223 0.7858 0.15985 0.02742
32 500 100 -1.95 0.1 -1.8 0.18 | 0.7656 | -2.3163 0.1117 -4.2061 0.3245 0.7805 0.15456 0.02536
33 1000 100 -1.95 0.1 -1.8 0.18 | 0.7656 | -2.1101 0.1051 -4.1475 0.3215 0.7765 0.15063 0.02394
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Table 4.5 - Simulation results and estimation for the index R (PSO).

Sample Size | Parameters MLE Results (Average from 1000 samples) R

Case | , m q n r B R q il 7 B R bias MSE

1 100 100 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 [ 1.7767 0.1647 1.8987 0.1151 0.6847 | -0.00075 0.00120
2 250 250 1.78 0.15 | 1.90 | 0.10 | 0.6855 1.7784 0.1562 1.8995 0.1062 0.6855 1.94E-06 | 0.00051
3 500 500 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 [ 1.7792 0.1536 1.8998 0.1022 0.6850 | -0.00044 0.00025
4 1000 | 1000 1.78 0.15 ] 1.90 | 0.10 | 0.6855 1.7796 0.1511 1.8999 0.1020 0.6860 0.00053 0.00012
5 5000 | 5000 [ 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 [ 1.7799 0.1502 1.8999 0.1005 0.6856 | 0.00013 0.00002
6 100 250 1.78 0.15 ] 1.90 | 0.10 | 0.6855 1.7765 0.1648 1.8993 0.1051 0.6848 -0.00074 0.00069
7 100 500 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 [ 1.7782 0.1642 1.8997 0.1026 0.6833 | -0.00222 0.00057
8 100 1000 1.78 0.15 ] 1.90 | 0.10 | 0.6855 1.7775 0.1631 1.8998 0.1010 0.6845 -0.00103 0.00051
9 250 100 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 [ 1.7787 0.1555 1.8988 0.1192 0.6874 | 0.00187 0.00099
10 500 100 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 | 1.7789 0.1536 1.8984 0.1158 0.6848 | -0.00067 0.00095
11 1000 | 100 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 [ 1.7798 0.1510 1.8979 0.1194 0.6845 | -0.00095 0.00093
12 100 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.4288 25.1177 | 0.5732 34.4303 | 0.6247 | -0.00115 0.00155
13 250 250 0.55 22 0.67 | 30.5 | 0.6259 | 0.5047 23.1850 | 0.6385 31.7760 | 0.6256 -0.00029 0.00059
14 500 500 0.55 22 0.67 | 30.5 | 0.6259 | 0.5270 22.5810 | 0.6495 31.2973 | 0.6265 0.00063 0.00028
15 1000 | 1000 | 0.55 22 0.67 | 30.5 | 0.6259 | 0.5393 22.2585 | 0.6569 31.0812 | 0.6274 0.00153 0.00012
16 5000 | 5000 | 0.55 22 0.67 | 30.5 | 0.6259 | 0.5462 22.1079 | 0.6682 30.5518 | 0.6257 -0.00022 0.00002
17 100 250 0.55 22 0.67 | 30.5 | 0.6259 | 0.4210 25.3530 | 0.6376 31.8416 | 0.6217 -0.00414 0.00100
18 100 500 0.55 22 0.67 | 30.5 | 0.6259 | 0.4361 25.0655 | 0.6509 31.2410 | 0.6213 -0.00454 0.00088
19 100 1000 | 0.55 22 0.67 | 30.5 | 0.6259 | 0.4292 25.1694 | 0.6605 30.8604 | 0.6209 -0.00495 0.00081
20 250 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.5002 23.3344 | 0.5692 34.6244 | 0.6280 0.00210 0.00112
21 500 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.5289 22.5202 | 0.5773 34.2074 | 0.6292 0.00328 0.00095
22 1000 | 100 0.55 22 0.67 | 30.5 | 0.6259 | 0.5384 22.3171 | 0.5597 34.9718 | 0.6300 0.00414 0.00088
23 100 100 -1.95 1 0.1 -1.8 0.18 | 0.7656 | -6.1548 0.2348 -5.3337 0.3938 0.7987 0.03315 0.00423
24 250 250 -1.95 1 0.1 -1.8 | 0.18 [ 0.7656 | -2.8707 0.1295 -2.5746 0.2267 0.7842 | 0.01859 0.00148
25 500 500 -1.95 ] 0.1 -1.8 | 0.18 | 0.7656 | -2.3326 0.1122 -2.0722 0.1963 0.7751 0.00952 0.00060
26 1000 | 1000 | -1.95 [ 0.1 -1.8 | 0.18 | 0.7656 | -2.1228 0.1055 -1.9548 0.1893 0.7710 | 0.00543 0.00026
27 5000 | 5000 [ -1.95 [ 0.1 -1.8 | 0.18 [ 0.7656 | -1.9889 0.1013 -1.8316 0.1818 0.7668 | 0.00116 0.00004
28 100 250 -1.95 1 0.1 -1.8 | 0.18 [ 0.7656 | -6.5750 0.2486 -2.4849 0.2213 0.7950 | 0.02938 0.00314
29 100 500 -1.95 1 0.1 -1.8 | 0.18 | 0.7656 | -6.4323 0.2439 -2.1153 0.1990 0.7965 | 0.03091 0.00276
30 100 1000 | -1.95 [ 0.1 -1.8 | 0.18 | 0.7656 | -6.4737 0.2455 -1.9738 0.1905 0.7943 | 0.02870 0.00251
31 250 100 -1.95 1 0.1 -1.8 | 0.18 | 0.7656 | -2.7547 0.1257 -5.7700 0.4207 0.7877 | 0.02219 0.00253
32 500 100 -1.95 | 0.1 -1.8 | 0.18 [ 0.7656 | -2.3306 0.1122 -5.9818 0.4337 0.7826 | 0.01699 0.00190
33 1000 | 100 -1.95 ] 0.1 -1.8 | 0.18 | 0.7656 | -2.1274 0.1057 -5.8382 0.4256 0.7784 | 0.01281 0.00152
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4.3.2 Bootstrap Confidence Interval

For the simulations of the confidence intervals based on bootstrap-p and on non-
parametric bootstrap, we generated 33 initial samples using the same combinations of sample
sizes and initial parameters presented in the sub-section “Analysis of the MLE”. For the case
of the bootstrap-p, we obtain, from the 33 initial samples, the MLE of the parameters by
maximizing the log-likelihood function (Equation (4.3)). Given that we have the parameters’
estimates (obtained from the initial samples) for each different combination of parameters and
sample size, we can use these estimates to generate N=/000 new samples from Equation
(2.2). For the case of the non-parametric bootstrap, we use the 33 initial samples to generate
N=1000 samples by sampling with replacement (for each different combination of parameters
and sample sizes).

From the samples generated by the bootstrap-p or by non-parametric bootstrap, we
estimate the index R from Equation (4.4) or (4.5) (depending on the r value), i.e., for each
method we generate N=1/000 bootstrap estimates of R. We present the mean of N = 1000
bootstrap estimates of R and, based on the percentile method, the corresponding 90%
confidence interval is also provided.

Table 4.9 and Table 4.10 present, respectively, the results and estimation of bootstrap-p
and non-parametric bootstrap confidence intervals for index R estimated by Nelder-Mead.
Table 4.11 and Table 4.12 present, respectively, the results and estimation of bootstrap-p and
non-parametric bootstrap confidence intervals for index R estimated by PSO. From the
simulations for the bootstrap-p and non-parametric bootstrap confidence intervals, in the most

cases, we observe that:

(1) When (n; m) increase, the amplitude of the interval (width) decreases. In order to
illustrate this behavior, Table 4.6 presents excerpts of Table 4.9 and Table 4.17
with the interval widths for the index R obtained by bootstrap-p, considering a
90% confidence level, for the three different combinations of parameters when (#,
m) = (100, 100) and (n, m) = (5000, 5000);

(ii))  For a fixed n, the widths decrease as m increases. For example, the results in
(iii)  Table 4.7 are taken from Table 4.10 and Table 4.12 demonstrate this behavior; For

a fixed m, the interval widths decrease as n increases. Table 4.8, which is formed
by excerpts of Table 4.9 and Table 4.11 exemplifies the decrease of interval widths

for bootstrap-p and 90% of confidence level.
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Table 4.6. Examples of cases that present a decrease of interval widths when (n; m) increase

Nelder-Mead

Case | n m q n T B | () =090 Width
1 100 100 1.78 | 0.15 [1.90 | 0.10 | [0.5949;0.7139] | 0.1190
12 100 100 055 |22 0.67 |30.5 |[0.5462; 0.6803] |0.1341
23 100 100 -1.95 0.1 [-1.8 |0.18 |[0.7273; 0.9553] | 0.2281
5 5000 |[5000 |1.78 [0.15 |1.90 |0.10 |[0.6777;0.6928] |0.0152
16 5000 | 5000 |0.55 |22 0.67 |30.5 | [0.6116;0.6281] | 0.0166
27 5000 |[5000 [-1.95 [0.1 |-1.8 |0.18 |[0.7699;0.9505] | 0.1806
PSO
Case | n m q n T B | (d-p) =090 Width
1 100 100 1.78 10.15 | 1.90 | 0.10 |[0.5956;0.7156] |0.1199
12 100 100 0.55 |22 0.67 |30.5 |[0.5470; 0.6778] |0.1309
23 100 100 -1.95 10.1 [-1.8 ]0.18 |[0.7104; 0.8912] | 0.1808
5 5000 [5000 [1.78 [0.15 [1.90 | 0.10 |[0.6771;0.6926] |0.0155
16 5000 | 5000 |0.55 |22 0.67 |30.5 |[0.6113;0.6281] | 0.0169
27 5000 |[5000 [-1.95 |0.1 |-1.8 |0.18 |[0.7625;0.7831] | 0.0205

Table 4.7. Examples of cases that present a decrease of interval widths for a fixed n and an increase of m.

Nelder-Mead

Case n m q n r B | (d-p)=090 Width
1 100 | 100 1.78 [0.15 [1.90 | 0.10 | [0.5991;0.7088] | 0.1097
6 100 | 250 1.78 [0.15 [1.90 | 0.10 | [0.6531;0.7386] | 0.0855
7 100 | 500 1.78 [0.15 [1.90 | 0.10 | [0.6548;0.7348] | 0.08004
8 100 | 1000 [1.78 [0.15 [1.90 | 0.10 | [0.6995;0.7694] | 0.06985
PSO
Case n m q 1 r B | (1) =090 Width
1 100 | 100 1.78 [0.15 [1.90 | 0.10 | [0.5989;0.7147] |0.1158
6 100 | 250 1.78 [0.15 [1.90 | 0.10 | [0.6509;0.7395] | 0.0885
7 100 | 500 1.78 [0.15 [{1.90 | 0.10 | [0.7058;0.7831] |0.0773
8 100 | 1000 [1.78 [0.15 |1.90 | 0.10 | [0.6586;0.7227] | 0.0641

Table 4.8. Examples of cases that present a decrease of interval widths for a fixed m and an increase of n.

Nelder-Mead

Case | n m q n T B | (1) =090 Width
12 100 | 100 | 0.55 |22 0.67 |30.5 | [0.5462; 0.6803] 0.1341
20 250 | 100 | 0.55 |22 0.67 |30.5 | [0.5786; 0.6840] 0.1055
21 500 [100 |0.55 |22 0.67 |30.5 | [0.5926; 0.6929] 0.10023
22 1000 | 100 | 0.55 |22 0.67 | 30.5 | [0.5948; 0.6931] 0.09834
PSO
Case | n m q n T B | (1) =090 Width
12 100 [ 100 |0.55 |22 0.67 | 30.5 | [0.5470; 0.6778] 0.1309
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20 250 100 [ 0.55 |22 0.67 | 30.5 |[0.5752; 0.6855] 0.1103
21 500 100 [ 0.55 |22 0.67 | 30.5 |[0.5785; 0.6748] 0.0964
22 1000 | 100 | 0.55 |22 0.67 | 30.5 |[[0.5451; 0.6412] 0.0961

Next, we present charts in order to facilitate the evaluation of simulations for the

confidence intervals constructed in this section. The data used to compile these figures are

presented in Tables Table 4.9 to Table 4.12.
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Figure 4.3. Upper and lower limits of the Bootstrap-P Confidence Interval for the Index R, obtained by PSO
and Nelder-Mead.
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Figure 4.4. Upper and lower limits of the Non-Parametric Bootstrap Confidence Interval for the Index R,
obtained by PSO and Nelder-Mead.

Note from Figures Figure 43 and Figure 4.4 that the parametric and non-parametric

bootstrap methods, showed greater efficiency in the simulations of the confidence intervals

for the index R. It is observed that for Nelder-Mead case, in both bootstrap approaches, only 3

cases shows intervals that not contain the real parameter (bootstrap-p: cases 2, 7 and 27 ; non-

parametric bootstrap: cases 2, 8 and 27). When we use PSO, it is observed a similar behavior,

i.e., when we deal with the bootstrap-p approach, there is only two cases that the intervals not

contain the real parameter (cases 2 and 7), for the non-parametric approach, the cases 2, 7, 13,

26 and 30 not contain the real parameter. We can yet comment that cases 23 to 33 showed

interval widths greater than other simulated cases, apparently, these widths are greater in the

Nelder-Mead case. In the next section, we will compare these lengths through hypothesis

tests.
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Table 4.9. Simulation results and estimation of bootstrap-p confidence interval for the index R — By Nelder-Mead

Sample Initial Parameters MLE Results for the first sample Bootstrap Estimative
Size

~ ~ ~ =~ = . Confidence Interval
Case | n m q n r p R q n r p R R (1-)=0.90 | Width
1 100 100 1.78 0.15 [ 1.90 [ 0.10 | 0.6855 | 1.7786 | 02152 | 1.9049 | 0.0680 | 0.6559 | 0.6562 | [0.5949;0.7139] [ 0.1190
2 250 250 1.78 0.15 [ 1.90 [ 0.10 | 0.6855 | 1.7516 | 0.1524 | 1.9040 | 0.1635 | 0.7504 | 0.7500 [ [0.7135;0.7852] | 0.0717
3 500 500 1.78 0.15 [ 1.90 [ 010 [ 0.6855 [ 1.7679 | 0.1658 | 1.8949 | 0.0960 | 0.6775 | 0.6780 | [0.6521;0.7044] | 0.0523
4 1000 1000 | 1.78 0.15 | 1.90 [ 0.10 | 0.6855 | 1.7795 | 0.1419 | 1.9008 | 0.0839 | 0.6809 | 0.6809 | [0.6624;0.6981] | 0.0357
5 5000 5000 | 1.78 0.15 | 1.90 [ 0.10 | 06855 | 1.7799 | 0.1539 | 1.8999 | 0.1023 | 0.6852 | 0.6853 | [0.6777:0.6928] | 0.0152
6 100 250 178 0.15 [ 1.90 [ 0.10 | 0.6855 | 1.8083 | 0.1351 1.9000 [ 0.1942 [ 0.6952 | 0.6935 | [0.6466;0.7389] | 0.0923
7 100 500 1.78 0.15 [ 1.90 [ 0.10 ] 0.6855 [ 1.7478 | 0.1764 | 1.8986 | 0.1480 | 0.7280 | 0.7279 | [0.6903;0.7643] [ 0.0741
8 100 1000 | 1.78 0.15 | 1.90 [ 0.10 | 0.6855 [ 1.7804 | 0.1335 | 1.8988 | 0.0984 | 0.6880 | 0.6870 | [0.6484;0.7247] | 0.0763
9 250 100 1.78 0.15 | 1.90 [ 0.10 | 0.6855 | 1.7645 | 0.1798 | 1.9134 | 0.0962 | 0.7219 | 0.7226 | [0.6742;0.7721] | 0.0979
10 500 100 1.78 0.15 [ 1.90 [ 010 [ 06855 [ 1.7814 [ 0.1252 | 1.9092 | 0.0886 [ 0.7101 | 0.7103 | [0.6594;0.7579] [ 0.0985
11 1000 100 1.78 0.15 [ 1.90 [ 0.10 | 0.6855 | 1.7865 | 0.1429 | 1.9006 [ 0.0851 | 0.6731 | 0.6724 | [0.6233;0.7191] [ 0.0958
12 100 100 0.55 22 0.67 | 305 | 06259 | 04668 | 23.760 | 0.6514 | 30.1452 [ 0.6193 | 0.5910 | [0.5462;0.6803] | 0.1341
13 250 250 0.55 22 0.67 | 305 | 06259 | 05433 | 21323 [ 0.6891 | 267851 [ 0.6058 | 0.5609 | [0.5651;0.6442] | 0.0791
14 500 500 0.55 22 0.67 | 305 ] 06259 | 0.5688 [ 21.164 [ 0.7129 [ 28.6894 [ 0.6261 | 0.5277 | [0.5993;0.6543] | 0.0550
15 1000 1000 [ 055 22 0.67 | 305 ] 06259 [ 05136 | 23.615 [ 0.7046 [ 296139 [ 0.6183 [ 0.5682 [ [0.5990;0.6365] | 0.0375
16 5000 5000 [ 0.55 22 0.67 | 305 | 06259 | 0.5046 | 23.435 [ 0.6784 | 30.1115 [ 0.6201 | 0.6201 | [0.6116;0.6281] | 0.0166
17 100 250 0.55 22 0.67 | 305 | 06259 | 0.5657 | 20.850 [ 0.5990 | 31.6486 | 0.6280 | 0.6228 | [0.5750;0.6790] | 0.1040
18 100 500 0.55 22 0.67 | 305 ] 06259 | 04687 | 21.546 | 0.7144 [ 294955 [ 0.6619 | 0.6437 | [0.5784;0.6974] | 0.1190
19 100 1000 | 055 22 0.67 | 305 | 06259 | 05840 | 21.738 [ 0.6679 | 297187 [ 0.6120 | 0.6072 | [0.5669;0.6543] | 0.0875
20 250 100 0.55 22 0.67 | 305 [ 06259 | 05264 | 22331 [ 0.5092 | 355572 [ 0.6304 | 0.6316 | [0.5786;0.6840] | 0.1055
21 500 100 0.55 22 0.67 | 305 | 06259 | 0.5347 | 22404 [ 04926 [ 376015 [ 0.6354 | 0.6413 | [0.5926;0.6929] | 0.1002
22 1000 100 0.55 22 0.67 | 305 [ 06259 | 05412 [ 22235 [ 04841 | 38.1364 [ 0.6373 [ 0.6252 | [0.5948;0.6931] | 0.0983
23 100 100 -1.95 |01 -1.8 | 018 | 07656 | -1.9456 | 0.1000 | -1.9409 | 0.1868 [ 0.7628 | 0.8419 | [0.7273;0.9553] | 0.2281
24 250 250 -1.95 | o1 -1.8 | 018 [ 07656 | -2.0719 [ 0.1018 [ -0.9703 [ 0.1262 [ 0.7444 | 0.8149 | [0.7258;0.9645] | 0.2387
25 500 500 -1.95 | 01 -1.8 | 018 | 07656 | -2.0422 | 0.1013 [ -1.7182 [ 0.1740 [ 0.7723 [ 0.8350 | [0.7530;0.9659] | 0.2129
26 1000 1000 [ -1.95 [ 0.1 -1.8 | 018 [ 07656 | -22531 [ 0.1100 [ -1.9402 [ 0.1884 [ 0.7759 | 0.8286 | [0.7636;0.9476] | 0.1840
27 5000 5000 [ -1.95 [ 0.1 -1.8 | 018 ] 07656 | -2.3069 | 0.1116 [ -1.9518 [ 0.1894 [ 0.7793 [ 0.8322 [ [0.7699;0.9505] | 0.1806
28 100 250 -1.95 | o1 -1.8 | 018 [ 07656 | -1.9610 [ 0.0992 [ -1.9249 [ 0.1845 [ 0.7654 | 0.8495 | [0.7509;0.9618] | 0.2109
29 100 500 -1.95 | 01 -1.8 | 018 | 07656 | -2.1204 | 0.1040 | -2.0452 [ 0.1944 | 0.7818 | 0.8614 | [0.7595;0.9833] | 0.2238
30 100 1000 | -1.95 [ 0.1 -1.8 | 018 ] 07656 | -2.1020 [ 0.1011 [ -2.0229 [ 0.1919 [ 0.7896 | 0.8692 | [0.7628;1.0000] | 0.2372
31 250 100 -1.95 | o1 -1.8 | 018 [ 07656 | -2.1965 | 0.1087 [ -1.9351 | 0.1892 [ 0.7750 | 0.8367 | [0.7370;0.9421] | 0.2051
32 500 100 -1.95 [ o1 -1.8 [ 018 ] 07656 [ -2.1050 | 0.1049 [ -1.5737 [ 0.1663 | 0.7663 | 0.8239 [ [0.7254;0.9441] | 0.2186
33 1000 100 -1.95 | 0.1 -1.8 | 018 | 07656 | -2.1120 | 0.1050 | -1.6466 | 0.1705 | 0.7679 | 0.8217 | [0.7192;0.9365] | 0.2173
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Table 4.10. Simulation results and estimation of non-parametric bootstrap confidence interval for the index R — By Nelder-Mead

Sample Initial Parameters MLE Results for the first sample Bootstrap Estimative
Size

~ ~ ~ ~ ~ . Confidence Interval
Case | n m q n r p R q n r p R R (I-) =0.90 | Width
1 100 100 178 0.15 [ 1.90 | 010 [ 06855 [ 1.7786 | 0.2152 | 1.9049 | 0.0680 | 0.6559 | 0.6565 | [0.5991;0.7088] [ 0.1097
2 250 250 1.78 0.15 [ 1.90 [ 010 [ 06855 [ 1.7516 | 0.1524 | 1.9040 | 0.1635 | 0.7504 | 0.7508 | [0.7182:0.7837] [ 0.0655
3 500 500 178 0.15 [ 1.90 [ 010 [ 06855 [ 1.7679 | 0.1658 | 1.8949 | 0.0960 | 0.6775 | 0.6779 | [0.6517;0.7042] | 0.0526
4 1000 1000 | 1.78 0.15 [ 1.90 [ 010 [ 0.6855 [ 1.7795 | 0.1419 | 1.9008 | 0.0839 | 0.6809 | 0.6803 | [0.6612;0.6979] [ 0.0367
5 5000 5000 | 1.78 0.15 [ 1.90 [ 010 [ 06855 [ 1.7799 [ 0.1539 | 1.8999 | 0.1023 | 0.6852 | 0.6851 | [0.6773;0.6930] | 0.0157
6 100 250 178 0.15 [ 1.90 [ 010 [ 0.6855 [ 1.8083 [ 0.1351 1.9000 [ 0.1942 | 0.6952 | 0.6947 | [0.6531;0.7386] | 0.0855
7 100 500 1.78 0.15 [ 1.90 [ 010 [ 06855 [ 1.7776 | 0.1633 | 1.8996 | 0.1039 | 0.6849 | 0.6944 | [0.6548;0.7348] | 0.0800
] 100 1000 | 1.78 0.15 [ 1.90 [ 010 [ 0.6855 [ 1.7759 [ 0.1621 1.8999 [ 0.1014 | 0.6869 | 0.7349 | [0.6995;0.7694] | 0.0698
9 250 100 1.78 0.15 [ 190 | 010 [ 0.6855 [ 1.7645 [ 0.1798 [ 19134 [ 0.0962 [ 0.7219 | 0.7215 | [0.6760;0.7664] | 0.0903
10 500 100 1.78 0.15 [ 1.90 [ 010 [ 06855 [ 1.7814 | 0.1252 | 1.9092 | 0.0886 | 0.7101 | 0.7104 | [0.6560;0.7672] [ 0.1112
11 1000 100 1.78 0.15 [ 1.90 [ 010 [ 06855 [ 1.7865 | 0.1429 | 1.9006 | 0.0851 | 0.6731 | 0.6736 | [0.6283;0.7210] [ 0.0927
12 100 100 0.55 22 0.67 | 305 | 0.6259 [ 0.4668 | 23.760 | 0.6514 | 30.1452 [ 0.6193 [ 0.6054 | [0.5439;0.6911] | 0.1472
13 250 250 0.55 22 0.67 | 305 | 06259 | 0.5433 | 21.323 [ 0.6891 | 267851 | 0.6058 | 1.0384 | [0.5566;0.6468] | 0.0902
14 500 500 0.55 22 0.67 | 305 | 0.6259 [ 0.5688 | 21.164 [ 0.7129 [ 286894 [ 0.6261 [ 0.6619 | [0.5980;0.6531] | 0.0550
15 1000 1000 | 0.55 22 0.67 | 305 ] 06259 [ 05136 [ 23.615 [ 0.7046 [ 296139 [ 0.6183 [ 0.6177 | [0.5994:0.6344] | 0.0350
16 5000 5000 [ 0.55 22 0.67 | 305 | 0.6259 [ 0.5046 | 23.435 | 0.6784 | 30.1115 [ 0.6201 | 0.6203 | [0.6121;0.6281] | 0.0160
17 100 250 0.55 22 0.67 | 305 | 06259 | 0.5657 | 20.850 | 0.5990 | 31.6486 | 0.6280 [ 0.6255 | [0.5689;0.6747] | 0.1058
18 100 500 0.55 22 0.67 | 305 | 0.6259 [ 04687 | 21.546 | 0.7144 [ 294955 [ 0.6619 [ 0.6528 | [0.5919;0.6967] | 0.1048
19 100 1000 | 0.55 22 0.67 | 305 ] 0.6259 [ 0.5840 | 21.738 [ 0.6679 | 297187 [ 0.6120 | 0.6097 | [0.5703;0.6529] | 0.0826
20 250 100 0.55 22 0.67 | 305 | 0.6259 [ 0.5264 | 22.331 | 0.5092 | 355572 | 0.6304 | 0.6189 | [0.5786:0.6893] | 0.1107
21 500 100 0.55 22 0.67 | 305 | 0.6259 [ 0.5510 | 22.033 | 0.6558 | 309820 [ 0.6258 | 0.6118 | [0.5725;0.6817] | 0.1093
22 1000 100 0.55 22 0.67 | 305 | 0.6259 [ 0.5758 [ 21.350 [ 0.6381 [ 274955 [ 0.5900 [ 0.5911 | [0.5411;0.6425] | 0.1015
23 100 100 -195 [ o1 -1.8 | 018 ] 0.7656 | -1.9456 | 0.1000 | -1.9409 [ 0.1868 | 0.7628 [ 0.8271 | [0.7144;0.9666] | 0.2522
24 250 250 -195 [ o1 -1.8 | 018 [ 07656 [ -2.0719 [ 0.1018 | -0.9703 | 0.1262 | 0.7444 [ 0.7962 | [0.7092;0.9486] | 0.2395
25 500 500 -195 [ 0.1 -1.8 | 018 | 07656 | -2.0422 [ 0.1013 | -1.7182 [ 0.1740 | 0.7723 [ 0.8012 | [0.7333;0.8992] | 0.1659
26 1000 1000 | -1.95 [ 0.1 -1.8 | 018 ] 07656 [ -2.2531 [ 0.1100 [ -1.9402 [ 0.1884 [ 0.7759 [ 0.8058 | [0.7527:0.8897] | 0.1370
27 5000 5000 [ -1.95 [ 0.1 -1.8 | 018 | 0.7656 | -2.3069 | 0.1116 | -1.9518 | 0.1894 | 0.7793 [ 0.7802 | [0.7680;0.7913] | 0.0233
28 100 250 -1.95 [ o1 -1.8 | 018 07656 [ -1.9610 [ 0.0992 [ -1.9249 [ 0.1845 [ 0.7654 [ 0.8105 | [0.7198;0.9260] | 0.2062
29 100 500 -195 [ 01 -1.8 | 018 | 0.7656 | -2.1204 | 0.1040 | -2.0452 [ 0.1944 | 0.7818 | 0.8266 | [0.7294;0.9180] | 0.1886
30 100 1000 | -1.95 [ 0.1 -1.8 | 018 ] 07656 [ -2.1020 [ 0.1011 [ -2.0229 | 0.1919 [ 0.7896 [ 0.8048 | [0.7040;0.8933] | 0.1893
31 250 100 -1.95 [ o1 -1.8 | 018 [ 07656 [ -2.1965 | 0.1087 | -1.9351 [ 0.1892 | 0.7750 [ 0.8084 | [0.7105;0.9231] | 0.2126
32 500 100 -1.95 [ o1 -1.8 | 018 ] 07656 [ -2.1050 [ 0.1049 [ -1.5737 [ 0.1663 [ 0.7663 [ 0.7897 | [0.7109;0.8806] | 0.1697
33 1000 100 -195 [ 0.1 -1.8 | 018 | 07656 | -2.1120 [ 0.1050 | -1.6466 | 0.1705 | 0.7679 | 0.8192 | [0.7162;0.9501] | 0.2338
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Table 4.11 - Simulation results and estimation of bootstrap-p confidence interval for the index R — By PSO
Sample Initial Parameters MLE Results for the first sample Bootstrap Estimative
Size
~ P N P = " Confidence Interval
Case | n m q n r p R q n T B R R (1-7) = 0.90 Width
1 100 100 [ 178 | 015 [ 190 | 0.10 | 0.6855 | 1.7786 | 0.2153 | 1.9050 | 0.0680 | 0.6560 | 0.6554 [0.5956; 0.7156] | 0.1199
2 250 250 | 178 | 005 [ 190 [ 0.10 [ 0.6855 | 1.7515 | 0.1524 | 1.9041 | 0.1634 | 0.7506 | 0.7499 [0.7157;0.7836] | 0.0679
3 500 500 | 178 | 015 | 1.90 | 0.10 | 0.6855 | 1.7679 | 0.1659 | 1.8949 | 0.0960 | 0.6775 | 0.6773 [0.6508; 0.7025] | 0.0517
4 1000 1000 | 178 [ 0.5 [ 1.90 [ 0.10 | 0.6855 | 1.7795 | 0.1419 | 1.9008 | 0.0840 | 0.6809 | 0.6813 [0.6635; 0.6990] | 0.0356
5 5000 | 5000 | 178 [ 0.5 | 1.90 [ 0.10 | 0.6855 | 1.7800 | 0.1538 | 1.8999 | 0.1022 | 0.6850 | 0.6851 [0.6771; 0.6926] | 0.0155
6 100 250 | 178 | 0.5 [ 190 [ 0.10 | 0.6855 | 1.8083 | 0.1352 | 1.9000 | 0.1943 | 0.6951 | 0.6969 [0.6507; 0.7449] | 0.0942
7 100 500 | 178 | 0.5 | 1.90 | 0.10 | 0.6855 | 1.7478 | 0.1763 | 1.8986 | 0.1481 | 0.7281 | 0.7288 [0.6893; 0.7665] | 0.0772
8 100 1000 | 178 [ 0.15 [ 1.90 [ 0.10 | 0.6855 | 1.7805 | 0.1334 | 1.8988 | 0.0983 | 0.6880 | 0.6880 [0.6517; 0.7220] | 0.0702
9 250 100 [ 178 | 015 | 190 | 0.10 | 0.6855 | 1.7644 | 0.1799 | 19134 | 0.0963 | 0.7220 | 0.7231 [0.6755;0.7735] | 0.0980
10 500 100 [ 178 | 015 | 190 | 0.10 | 0.6855 | 1.7814 | 0.1252 | 1.9092 | 0.0885 | 0.7099 | 0.7091 [0.6601; 0.7568] | 0.0967
11 1000 100 | 178 [ 015 [ 1.90 [0.10 | 0.6855 | 1.7866 | 0.1429 | 1.9006 | 0.0852 | 0.6731 | 0.6727 [0.6230; 0.7211] | 0.0980
12 100 100 | 055 |22 0.67 | 305 [ 0.6259 | 04667 | 23.763 | 0.6518 | 30.1359 | 0.6193 | 0.6130 [0.5470; 0.6778] | 0.1309
13 250 250 | 055 | 22 0.67 | 305 | 0.6259 | 05435 | 21.317 | 0.6893 | 267827 | 0.6059 | 0.6054 [0.5653; 0.6435] | 0.0782
14 500 500 | 055 | 22 0.67 | 305 | 0.6259 | 05685 | 21.175 | 0.7129 | 28.6889 | 0.6260 | 0.6264 [0.6002; 0.6527] | 0.0525
15 1000 1000 | 055 | 22 0.67 | 305 | 0.6259 | 05137 | 23.614 | 0.7046 | 296077 | 0.6182 | 0.6182 [0.5979; 0.6371] | 0.0392
16 5000 | 5000 | 055 [ 22 0.67 | 30.5 | 0.6259 | 05046 | 23.438 | 0.6786 | 30.095 | 0.6199 | 0.6200 [0.6113;0.6281] | 0.0169
17 100 250 [ 055 |22 0.67 | 305 | 0.6259 | 0.5660 | 20.843 | 0.5986 | 31.6643 | 0.6281 | 0.6274 [0.5777;0.6778] | 0.1001
18 100 500 | 055 | 22 0.67 | 30.5 | 0.6259 | 04688 | 21.541 | 0.7146 | 294830 | 0.6618 | 0.6417 [0.5774; 0.6982] | 0.1208
19 100 1000 | 055 | 22 0.67 [ 305 [ 0.6259 | 05842 | 21.736 | 0.6677 | 297264 | 0.6120 | 0.6108 [0.5675; 0.6534] | 0.0859
20 250 100 | 055 |22 0.67 | 30.5 | 0.6259 | 05260 | 22.340 | 0.5091 | 355524 | 0.6304 | 0.6340 [0.5752; 0.6855] | 0.1103
21 500 100 | 055 |22 0.67 | 305 | 0.6259 | 05506 | 22.042 | 0.6558 | 30.9777 | 0.6257 | 0.6280 [0.5785; 0.6748] | 0.0964
22 1000 100 | 055 |22 0.67 | 305 | 0.6259 | 05761 | 21.343 | 0.6384 | 274841 | 0.5899 | 0.5933 [0.5451; 0.6412] | 0.0961
23 100 100 | -195 [ o1 1.8 [ 0.18 [ 0.7656 | -1.9455 | 0.1000 | -1.9407 | 0.1868 | 0.7627 | 0.7975 [0.7104; 0.8912] | 0.1808
24 250 250 | -1.95 | 0.1 1.8 [ 0.8 [ 07656 | -2.0734 | 0.1018 | -2.0321 | 0.1934 | 0.7830 | 0.8033 [0.7491;0.8612] | 0.1121
25 500 500 | -1.95 | 0.1 -8 | 0.18 | 0.7656 | -2.0433 | 0.1013 | -1.7182 | 0.174 0.7725__| 0.7830 [0.7462; 0.8204] | 0.0742
26 1000 1000 | -1.95 | 0.1 -8 | 018 | 0.7656 | -2.1423 | 0.1054 | -1.9363 | 0.1881 | 0.7777 | 0.7841 [0.7588; 0.8093] | 0.0505
27 5000 | 5000 | -1.95 [ 0.1 <18 | 0.18 | 0.7656 | -1.9665 | 0.1004 | -1.9511 | 0.1893 | 0.7699 | 0.7722 [0.7625; 0.7831] | 0.0205
28 100 250 | -195 | 0.1 <18 | 0.18 | 0.7656 | -1.9620 | 0.0993 | -1.9246 | 0.1844 | 0.7652 | 0.7990 [0.7194; 0.8802] | 0.1608
29 100 500 | -1.95 | 0.1 <18 | 0.18 | 0.7656 | -1.5206 | 0.0856 | -2.0472 | 0.1945 | 0.7551 | 0.7901 [0.7128; 0.8688] | 0.1560
30 100 1000 | -1.95 | 0.1 -8 | 0.18 | 0.7656 | -2.1035 | 0.1012 | -2.0234 | 0.1920 | 0.7896 | 0.8210 [0.7292; 0.8922] | 0.1630
31 250 100 | -195 [ o1 .18 | 0.18 | 0.7656 | 2.1969 | 0.1087 | -1.9325 | 0.189 0.7748 | 0.7954 [0.7245;0.8686] | 0.1441
32 500 100 | -195 [ 0.1 <18 | 0.18 | 0.7656 | -2.1076 | 0.105 -15752 | 0.1664 | 0.7663 | 0.7819 [0.7178; 0.8506] | 0.1328
33 1000 100 | -195 [ ol <18 | 0.18 | 0.7656 | -1.7789 | 0.0941 | -1.6472 | 0.1706 | 0.7582 | 0.7727 [0.7192;0.8319] | 0.1127
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Table 4.12 - Simulation results and estimation of non-parametric bootstrap confidence interval for the index R — By PSO

Sample Initial Parameters MLE Results for the first sample Bootstrap Estimative
Size
~ - o =~ = " Confidence Interval
Case | n m q n r B R q n r B R R (1-3) = 0.90 Width
1 100 100 1.78 0.15 [ 1.90 [ 0.0 [ 06855 [ 1.7786 | 0.2153 | 1.9050 | 0.0680 | 0.6560 | 0.6559 [0.5989; 0.7147] [ 0.1158
2 250 250 1.78 0.15 [ 1.90 [ 010 [ 06855 [ 1.7515 | 0.1524 | 1.9041 | 0.1634 | 0.7506 | 0.7277 [0.6922; 0.7613] [ 0.0691
3 500 500 1.78 0.15 [ 1.90 [ 010 [ 06855 | 1.7679 | 0.1659 | 1.8949 | 0.0960 | 0.6775 | 0.6773 [0.6512;0.7026] | 0.0514
4 1000 1000 | 1.78 0.15 [ 1.90 | 0.10 [ 0.6855 [ 1.7795 [ 0.1419 [ 1.9008 [ 0.0840 [ 0.6809 [ 0.6809 [0.6628; 0.6995] | 0.0367
5 5000 5000 [ 1.78 0.15 [ 1.90 [ 0.10 [ 06855 | 1.7800 | 0.1538 | 1.8999 | 0.1022 | 0.6850 | 0.6851 [0.6767; 0.6933] | 0.0166
6 100 250 1.78 0.15 [ 1.90 | 0.10 [ 0.6855 [ 1.8083 [ 0.1352 [ 1.9000 [ 0.1943 [ 0.6951 [ 0.6962 [0.6509; 0.7395] | 0.0885
7 100 500 1.78 0.15 [ 1.90 [ 0.10 [ 06855 | 1.7478 | 0.1763 | 1.8986 | 0.1481 | 0.7281 | 0.7442 [0.7058; 0.7831] [ 0.0773
8 100 1000 | 1.78 0.15 | 1.90 [ 0.10 [ 0.6855 | 1.7805 | 0.1334 | 1.8988 | 0.0983 | 0.6880 | 0.6896 [0.6586; 0.7227] | 0.0641
9 250 100 1.78 0.15 [ 1.90 [ 010 [ 06855 | 1.7644 [ 0.1799 | 1.9134 | 0.0963 | 0.7220 | 0.7251 [0.6804; 0.7722] [ 0.0918
10 500 100 1.78 0.15 [ 1.90 [ 010 [ 06855 | 1.7814 | 0.1252 | 1.9092 | 0.0885 | 0.7099 | 0.7121 [0.6565; 0.7661] | 0.1097
11 1000 100 1.78 0.15 [ 1.90 [ 0.10 [ 0.6855 | 1.7866 | 0.1429 | 1.9006 | 0.0852 | 0.6731 | 0.7018 [0.6498; 0.7523] [ 0.1025
12 100 100 0.55 22 0.67 | 305 | 06259 | 04667 | 23763 | 0.6518 [ 30.1359 [ 0.6193 | 0.6305 [0.5619; 0.7021] | 0.1402
13 250 250 0.55 22 0.67 | 305 | 06259 | 05435 [ 21317 [ 0.6893 [ 267827 [ 0.6059 [ 0.5594 [0.5090; 0.6060] | 0.0970
14 500 500 0.55 22 0.67 | 305 | 06259 | 05685 | 21.175 [ 0.7129 [ 286889 [ 0.6260 | 0.6269 [0.6007; 0.6541] | 0.0534
15 1000 1000 | 0.55 22 0.67 | 305 | 06259 | 05137 [ 23.614 [ 0.7046 [ 296077 [ 0.6182 [ 0.6296 [0.6110; 0.6485] [ 0.0375
16 5000 5000 | 0.55 22 0.67 | 305 | 06259 | 05046 | 23.438 | 0.6786 | 30.0995 [ 0.6199 [ 0.6203 [0.6128; 0.6279] | 0.0152
17 100 250 0.55 22 0.67 | 305 | 06259 | 05660 | 20.843 | 0.5986 | 31.6643 [ 0.6281 | 0.6222 [0.5696; 0.6785] | 0.1089
18 100 500 0.55 22 0.67 | 305 | 06259 | 04688 | 21.541 [ 0.7146 | 294830 | 0.6618 | 0.6061 [0.5586; 0.6598] | 0.1012
19 100 1000 | 0.55 22 0.67 [ 305 | 06259 | 05842 [ 21.736 | 0.6677 [ 29.7264 | 0.6120 [ 0.6371 [0.5918; 0.6783] [ 0.0865
20 250 100 0.55 22 0.67 | 305 | 06259 | 05260 | 22.340 [ 0.5091 [ 355524 [ 0.6304 | 0.6378 [0.5851; 0.6891] | 0.1039
21 500 100 0.55 22 0.67 | 305 | 06259 | 05506 | 22.042 | 0.6558 | 309777 | 0.6257 | 0.6261 [0.5708; 0.6803] | 0.1095
22 1000 100 0.55 22 0.67 | 305 | 06259 | 05761 | 21343 [ 0.6384 | 274841 [ 0.5899 | 0.5998 [0.5506; 0.6520] [ 0.1013
23 100 100 -1.95 | o1 -1.8 [ 018 | 07656 | -1.9455 | 0.1000 [ -1.9407 [ 0.1868 [ 0.7627 [ 0.8388 [0.7228; 0.9562] | 0.2334
24 250 250 -1.95 |01 -1.8 | 0.18 [ 07656 | -2.0734 | 0.1018 [ -2.0321 [ 0.1934 | 0.7830 | 0.7966 [0.7400; 0.8499] | 0.1099
25 500 500 -1.95 | 01 -1.8 | 018 | 07656 | -2.0433 | 0.1013 [ -1.7182 [ 0.174 0.7725 [ 0.7922 [0.7569; 0.8287] | 0.0718
26 1000 1000 | -1.95 [ 0.1 -1.8 [ 018 | 07656 | -2.1423 | 0.1054 | -1.9363 [ 0.1881 [ 0.7777 [ 0.7962 [0.7721; 0.8222] | 0.0502
27 5000 5000 [ -1.95 [ 0.1 -1.8 [ 018 | 07656 | -1.9665 | 0.1004 [ -1.9511 [ 0.1893 [ 0.7699 [ 0.7705 [0.7594; 0.7810] [ 0.0215
28 100 250 -1.95 | o1 -1.8 [ 018 [ 07656 | -1.9620 | 0.0993 [ -1.9246 [ 0.1844 [ 0.7652 | 0.8148 [0.7130; 0.9721] [ 0.2591
29 100 500 -1.95 | 01 -1.8 | 0.18 | 07656 | -1.5206 | 0.0856 | -2.0472 [ 0.1945 [ 0.7551 [ 0.8097 [0.7573; 0.8497] | 0.0924
30 100 1000 | -1.95 [ 0.1 -1.8 [ 018 [ 07656 | -2.1035 [ 0.1012 [ -2.0234 [ 0.1920 [ 0.7896 [ 0.8329 [0.7932; 0.8632] | 0.0700
31 250 100 -1.95 | o1 -1.8 [ 018 [ 07656 | -2.1969 | 0.1087 [ -1.9325 [ 0.189 0.7748 | 0.7511 [0.6910; 0.8228] [ 0.1318
32 500 100 -1.95 [ o1 -1.8 [ 018 | 07656 | -2.1076 | 0.105 -1.5752 [ 0.1664 [ 0.7663 [ 0.8300 [0.7585; 0.8967] | 0.1382
33 1000 100 -1.95 | 01 -1.8 | 018 | 07656 | -1.7789 | 0.0941 | -1.6472 | 0.1706 | 0.7582 | 0.7781 [0.7233; 0.8282] | 0.1049

&9



Chapter 4 A New Stress-Strength Model Based on g-Exponential Distribution

4.4 Hypothesis tests applied to compare the quality of the estimation
methods

In this section, we will use the data obtained from the simulations that were made in
order to evaluate the performance of the maximum likelihood estimator for the index R
(Table 4.4 and Table 4.5) as well as the data generated in the numeric experiments made to
verify the quality of the confidence interval generated by bootstrap-p and non-parametric
bootstrap ( Table 4.9 to Table 4.12).

We will use hypothesis tests in order to verify if there are significant differences
between the different methods of estimation that were presented in this work. We consider the
variables tested in this section as paired variables, once we use the same samples in order to
calculate the point estimates by PSO and Nelder-Mead Method. As the same manner, the
interval estimates are calculated from the same sample, we only modify the method that was

used.

4.4.1 Comparing the Mean Squared Error obtained in the estimation of the R index
by Nelder-Mead and PSO

The following variables will be used for the tests of this subsection:

e Variable 1: MSE obtained by Nelder-Mead (Cases 1 to 33).
e Variable 2: MSE obtained by Nelder-Mead (Cases 1 to 11).
e Variable 3: MSE obtained by Nelder-Mead (Cases 12 to 22).
e Variable 4: MSE obtained by Nelder-Mead (Cases 23 to 33).
e Variable 5: MSE obtained by PSO (Cases 1 to 33).

e Variable 6: MSE obtained by PSO (Cases 1 to 11).

e Variable 7: MSE obtained by PSO (Cases 12 to 22).

e Variable 8: MSE obtained by PSO (Cases 23 to 33).

Note that the Variables 1 to 4 were obtained from Table 4.4 and Variables 5 to 8 were
taken from Table 4.5.
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In order to point the test more adequate for this situation, it is necessary to verify the
normality of the data sets, thus, the Variables were tested by the Shapiro-Test of normality
[75]:

Table 4.13- p-values for the Shapiro-Wilk test of normality applied in Variables I to §.

Tested Variables | p-value
Variable 1 3.24 E-07*
Variable 2 0.7316
Variable 3 0.6245
Variable 4 0.6367
Variable 5 0.0005*
Variable 6 0.7270
Variable 7 0.6011
Variable 8 0.8452

* The test is significant for & = 0.01

We can observe from the p-values of Table 4.13 that the only Variables that not are
normally distributed are Variable 1 and Variable 5. However, the fact of this two Variables
not present the normality does not mean that we do not must apply the Student's t-test for
paired samples, once this two Variables has more than 30 values, and the central limit
theorem [91], ensures that the average of these Variables are normally distributed.

So, we will proceed with the Student's t-test (paired samples) for the following

Comparisons , in order to verify if on average, the Variables present equal means:

e Comparison 1 - Variable 1: MSE obtained by Nelder-Mead (Cases 1 to 33)
“VS” Variable 5: MSE obtained by PSO (Cases 1 to 33).

e Comparison 2 - Variable 2: MSE obtained by Nelder-Mead (Cases 1 to 11)
“VS” Variable 6: MSE obtained by PSO (Cases 1 to 11).

e Comparison 3 - Variable 3: MSE obtained by Nelder-Mead (Cases 12 to 22)
“VS” Variable 7: MSE obtained by PSO (Cases 12 to 22).

o Comparison 4 - Variable 4: MSE obtained by Nelder-Mead (Cases 23 to 33)
“VS” Variable 8: MSE obtained by PSO (Cases 23 to 33).
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Formally, we can write the hypotheses used in the comparisons listed above as follows:

Hy: uysg(NM) — pysg(PSO) = 0
“vs

Hy: pysg(NM) — puysg(PSO) + 0

»

Table 4.14 — Results for the Student’s t-test for the Comparisons 1 to 4.

M?an of the Confidence Interval (95%) for the
difference .
Difference between the two p-value
LA COTL Variables
two Variables. ’
Comparison 1 0.0081 C.1.(95%) =0.0039, 0.0123] 0.0004*
Comparison 2 9.09E-7 C.1.(95%) =[-1.1165, 2.9346] 0.3409
Comparison 3 6.16E-21 C.1.(95%) = [-5.20E-06, 5.20E-06] 0.9999
Comparison 4 0.0243 C.1.(95%) =[0.0224, 0.0262] 6.99E-11*

* The test is significant for ¢ = 0.01

From Table 4.14, we can observe that only the Comparison 1 and 4 reject the
hypothesis of equality between the averages, so, the confidence interval indicates that the
difference between the two averages is positive, i.e., on average the MSE obtained by Nelder-
Mead, showed higher values than those obtained by PSO. Observe that the Case 1, is
completely influenced by the Case 4, once the Case 1, comprises all analyzed Cases and

among these Cases the only one with significant differences was the Case 4.

4.4.2 Comparing the width of the 90% Confidence Interval obtained by bootstrap-P
and Non-parametric bootstrap (Nelder-Mead Case)

From the analysis of this subsection we will use the variables 9 to 12 (taken from Table

4.9) and Variables 13 to 16 (taken from Table 4.10):

e Variable 9: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 1 to 33 (Nelder-Mead).
e Variable 10: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 1 to 11 (Nelder-Mead).
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e Variable 11: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 12 to 22 (Nelder-Mead).

e Variable 12: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 23 to 33 (Nelder-Mead).

e Variable 13: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 33 (Nelder-Mead).

e Variable 14: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 11(Nelder-Mead).

e Variable 15: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 12 to 22 (Nelder-Mead).

e Variable 16: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 23 to 33 (Nelder-Mead).

The normality of the data was tested by the Shapiro-Wilk test:

Table 4.15- p-values for the Shapiro-Wilk test of normality applied in Variables 9 to 16.

Tested Variables | p-value
Variable 9 0.0078*
Variable 10 0.5241
Variable 11 0.4650
Variable 12 0.3846
Variable 13 0.0866
Variable 14 0.6754
Variable 15 0.3515
Variable 16 0.0450**

* The test is significant for ¢ = 0.01

** The test is significant for ¢ = 0.05

Table 4.15 indicates that the Variables 9 and 16 are not normally distributed, so any
comparison made with the Variable 16 will not be performed by the Student’s test-t, in
situations that involves the Variable 16 we will use the Wilcoxon test. Any comparison made
with the Variable 9, will be done by the Student’s test-t, once this Variable presents n > 30.

The following comparisons were performed:
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Comparison 5 - Variable 9: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 1 to 33 (Nelder-Mead) “VS” Variable 13: Width of
the 90% confidence interval obtained by non-parametric bootstrap approach for Cases
1 to 33 (Nelder-Mead).

Comparison 6 — Variable10: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 1 to 11 (Nelder-Mead) “VS” Variable 14: Width of
the 90% confidence interval obtained by non-parametric bootstrap approach for Cases
1 to 11 (Nelder-Mead).

Comparison 7 - Variable 11: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 12 to 22 (Nelder-Mead) “FVS” Variable 15: Width of
the 90% confidence interval obtained by non-parametric bootstrap approach for Cases
12 to 22 (Nelder-Mead).

Comparison 8 - Variable 12: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 23 to 33 (Nelder-Mead) “VS” Variable 16: Width of
the 90% confidence interval obtained by non-parametric bootstrap approach for Cases

23 to 33 (Nelder-Mead).

Formally, we can write the hypotheses used in the comparisons listed above as follows:

Ho: pyigen(boot — p) — pyiaen(boot —np) = 0

“vs

Hq: pyigen(boot — p) — pyigen(boot —np) + 0

Table 4.16 - Results for the Student’s t-test / Wilcox test for the Comparisons 5 to 8.

Mean of the
difference Confidence Interval (95%) for the _value
between the two | Difference between the two Variables. p

Variables.
Comparison 5 0.0102 C.1.(95%) =[-0.0013, 0.0217] 0.0799(T)
Comparison 6 0.0018 C.1.(95%) = [-0.0023, 0.0059] 0.3510(T)
Comparison 7 -0.0020 C.1.(95%) =[-0.0073, 0.0033] 0.4242(T)
Comparison 8 0.0231 C.1.(95%) =[-0.0041, 0.0666] 0.0830(W)

(T) = Student’s t-test
(W) = Wilcoxon Test
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According with Table 4.16, we can conclude that there is none significant difference
between the variables tested, i.e., there is no difference between the width of the bootstrap-P
confidence interval and the width of non-parametric bootstrap confidence interval when we

estimate these confidence intervals by Nelder-Mead method.

4.4.3 Comparing the width of the 90% Confidence Interval obtained by bootstrap-P
and Non-parametric bootstrap (PSO Case)

For this analysis the variables 17 to 20 were taken from Table 4.11 and Variables 21 to

24 were collected from Table 4.12. The variables are described next:

e Variable 17: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 1 to 33 (PSO).

e Variable 18: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 1 to 11 (PSO).

e Variable 19: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 12 to 22 (PSO).

e Variable 20: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 23 to 33 (PSO).

e Variable 21: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 33 (PSO).

e Variable 22: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 11 (PSO).

e Variable 23: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 12 to 22 (PSO).

e Variable 24: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 23 to 33 (PSO).

Testing the variables about the normality, we have:
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Table 4.17- p-values for the Shapiro-Wilk test of normality applied in Variables 17 to 24.

Tested Variables | p-value
Variable 17 0.7271
Variable 18 0.5895
Variable 19 0.5440
Variable 20 0.3110
Variable 21 0.0014*
Variable 22 0.8234
Variable 23 0.1555
Variable 24 0.2088

* The test is significant for & = 0.01

As we can observe from Table 4.17, only the Variable 21 is not normally distributed,
however, this Variable present more than 30 values, so the comparison made with this
Variable can be proceed by the Student’s t-test (paired samples). Next, we present the

comparisons that were tested:

e Comparison 9 - Variable 17: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 1 to 33 (PSO) “VS” Variable 21: Width of the 90%
confidence interval obtained by non-parametric bootstrap approach for Cases 1 to 33
(PSO).

e Comparison 10 - Variable 18: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 1 to 11 (PSO) “VS” Variable 22: Width of the 90%
confidence interval obtained by non-parametric bootstrap approach for Cases 1 to 11
(PSO).

e Comparison 11 - Variable 19: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 12 to 22 (PSO) “¥VS” Variable 23: Width of the 90%
confidence interval obtained by non-parametric bootstrap approach for Cases 12 to 22
(PSO).

e Comparison 12 - Variable 20: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 23 to 33 (PSO) “VS” Variable 24: Width of the 90%
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confidence interval obtained by non-parametric bootstrap approach for Cases 23 to 33

(PSO).
Formally, we can write the hypotheses used in the comparisons listed above as follows:

Hy: pyigen(boot — p) — pyigen(boot —np) = 0

{3 »

Vs

Hy: pyiaen(boot — p) — pyiaen(boot — np) + 0

The results for the tests of Comparisons 9 to 12 are presented in the following table:

Table 4.18- Results for the Student’s t-test for the Comparisons 9 to 12.

M-ean LE Confidence Interval (95%) for the
difference .
Difference between the two p-value
between the two .
. Variables.
Variables.
Comparison 9 -4.84E-5 C.1.(95%) =[-0.0103, 0.0102] 0.9924
Comparison 10 0.0001 C.1.(95%) =[-0.0037, 0.0039] 0.9418
Comparison 11 -0.0025 C.1.(95%) = [-0.0094, 0.0045] 0.4467
Comparison 12 0.0022 C.1.(95%) =[-0.0316, 0.0360] 0.8871

Thus, from Table 4.18, we conclude that there is no difference significant between any
variable tested, therefore the same manner as in the case Nelder-Mead, there is no difference
between the width of the bootstrap-P confidence interval and the width of non-parametric

bootstrap confidence interval when we estimate these confidence intervals by PSO.

4.4.4 Comparing the width of the Confidence Interval obtained by Nelder-Mead and
PSO (Bootstrap-P Case).

The following Variables will be tested:

e Variable 9: Width of the 90% confidence interval obtained by bootstrap-P approach

for Cases 1 to 33.
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e Variable 10: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 1 to 11.

e Variable 11: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 12 to 22.

e Variable 12: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 23 to 33.

e Variable 17: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 1 to 33 (PSO).

e Variable 18: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 1 to 11 (PSO).

e Variable 19: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 12 to 22 (PSO).

e Variable 20: Width of the 90% confidence interval obtained by bootstrap-P approach
for Cases 23 to 33 (PSO).

Note that, previously we apply the Shapiro-Wilk test for verify the normality of these
Variables (See Table 4.15 and Table 4.17). We point out that among these the only Variable
that is not normally distributed is the Variable 9. However, the Variable 9 has size larger than
30, so, we can proceed with the Student's test-t even when the comparison involves this
Variable.

The following comparisons are evaluated in this subsection.

e Comparison 13 - Variable 4: Variable 9: Width of the 90% confidence interval
obtained by bootstrap-P approach for Cases 1 to 33 “VS” Variable 17: Width of the
90% confidence interval obtained by bootstrap-P approach for Cases 1 to 33 (PSO).

e Comparison 14 — Variable 10: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 1 to 11 “VS” Variable 18: Width of the 90%
confidence interval obtained by bootstrap-P approach for Cases 1 to 11 (PSO).

e Comparison 15 — Variable 11: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 12 to 22 “VS” Variable 19: Width of the 90%
confidence interval obtained by bootstrap-P approach for Cases 12 to 22 (PSO).
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e Comparison 16 - Variable 12: Width of the 90% confidence interval obtained by
bootstrap-P approach for Cases 23 to 33 “FVS” Variable 20: Width of the 90%
confidence interval obtained by bootstrap-P approach for Cases 23 to 33 (PSO).

The hypotheses can be written as following:

Ho: tyiaen(PSO) — pyigen(NM) = 0

»

“vs

Hy: tyiaen(PSO) — pyigen(NM) # 0

The results for the Student’s t-test are showed in the next table:

Table 4.19- Results for the Student’s t-test for the Comparisons 13 to 16.

Mean of the Confidence Interval (95%) for
difference between | the Difference between the two | p-value
the two Variables. Variables.
Comparison 13 -0.0322 C.1.(95%) =[-0.0501, -0.0143] 0.0009*
Comparison 14 -0.0003 C.1.(95%) =[-0.0022, 0.0014] 0.6723
Comparison 15 -0.0008 C.1.(95%) = [-0.0026, 0.0010] 0.3402
Comparison 16 -0.0954 C.1.(95%) =[-0.1218, -0.0690] 1.10E-5*

* The test is significant for & = 0.01

As we can observe from Table 4.19, for the Comparisons 14 and 15, we not detect any
significant difference. However, the Comparison 13 and 16 indicate significant difference
between the width of the confidence interval bootstrap-p calculated by Nelder-Mead and the
width of the confidence interval bootstrap-p calculated by PSO. Observe, by the confidence
interval of the difference between the variables that in both comparisons (13 and 16), the
confidence interval indicates a negative difference, so we can conclude that in both cases the
width of the intervals obtained by Nelder-Mead is larger than the width of the interval
obtained by PSO. Also note that the data of the variables tested in the Comparison 16 are
contained in the variables of the Comparison 13, and certainly the result of the Comparison 13

is being influenced by these values.
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4.4.5 Comparing the width of the Confidence Interval obtained by Nelder-Mead and

PSO (Non-Parametric Bootstrap Case).

For these comparisons we will use the following variables:

Variable 13: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 33 (Nelder-Mead).

Variable 14: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 11(Nelder-Mead).

Variable 15: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 12 to 22 (Nelder-Mead).

Variable 16: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 23 to 33 (Nelder-Mead).

Variable 21: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 33 (PSO).

Variable 22: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 1 to 11 (PSO).

Variable 23: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 12 to 22 (PSO).

Variable 24: Width of the 90% confidence interval obtained by non-parametric
bootstrap approach for Cases 23 to 33 (PSO).

Previously we present for the Variables 13 to 16 and 21 to 24, the results for the Shapiro

Wilk Test (see Table 4.15 and Table 4.17) in order to verify the normality of the data. In this

occasion, we had identified that among these Variables, only Variables 16 and 21 are not

normally distributed. So, we will apply the Wilcoxon Test to perform comparisons that

involves the Variable 16. For the Variable 21 there is no problem, once it has more than 30

values, and we can use the Student’s t-test for paired samples.

The following comparisons were performed:

Comparison 17 - Variable 13: Width of the 90% confidence interval obtained by

non-parametric bootstrap approach for Cases 1 to 33 (Nelder-Mead) “VS” Variable

100



Chapter 4 A New Stress-Strength Model Based on g-Exponential Distribution

21: Width of the 90% confidence interval obtained by non-parametric bootstrap
approach for Cases 1 to 33 (PSO).

Comparison 18 - Variable 14: Width of the 90% confidence interval obtained by
non-parametric bootstrap approach for Cases 1 to 11 (Nelder-Mead) “VS” Variable
22: Width of the 90% confidence interval obtained by non-parametric bootstrap
approach for Cases 1 to 11 (PSO).

Comparison 19 - Variable 15: Width of the 90% confidence interval obtained by
non-parametric bootstrap approach for Cases 12 to 22 (Nelder-Mead) “V'S” Variable
23: Width of the 90% confidence interval obtained by non-parametric bootstrap
approach for Cases 12 to 22 (PSO).

Comparison 20 - Variable 16: Width of the 90% confidence interval obtained by
non-parametric bootstrap approach for Cases 23 to 33 (Nelder-Mead) “VS” Variable
24: Width of the 90% confidence interval obtained by non-parametric bootstrap
approach for Cases 23 to 33 (PSO).

The hypotheses can be written as following:

Hy: pyigen(PSO) — pyigen(NM) = 0

{3

Vs »

Hy:pyiqen(PSO) — wyiaen (NM) + 0

The results for the Student's t-test are showed in the next table:

Table 4.20 - Results for the Student’s t-test / Wilcox test for the Comparisons 17 to 20.

Mean of the
difference Confidence Interval (95%) for the —value
between the Difference between the two Variables. p
two Variables.

Comparison 17 -0.0219 C.1.(95%) =[-0.0383, -0.0055] 0.0104 (T)**
Comparison 18 0.0013 C.1.(95%) =[-0.0025, 0.0051] 0.4638 (T)
Comparison 19 -0.0003 C.1.(95%) =[-0.0032, 0.0026] 0.8125 (T)
Comparison 20 -0.07145 C.1.(95%) =[-0.1082, -0.0206] 0.0068 (W)*

* The test is significant for & = 0.01
** The test is significant for & = 0.05
(T) = Student’s t-test

(W) = Wilcoxon Test

101



Chapter 4 A New Stress-Strength Model Based on g-Exponential Distribution

From Table 4.20, we can conclude that the Comparison 17 and 20 indicate significant
difference between the width of the confidence interval non-parametric bootstrap calculated
by Nelder-Mead and the width of the confidence interval non-parametric bootstrap calculated
by PSO. The confidence interval for the Difference between the two Variables indicates that
in both comparisons (17 and 20), the width obtained by Nelder-Mead is larger than the with
obtained by PSO.
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5 CASE STUDIES FOR FATIGUE LIFE WITH EXTREMELY LARGE
VALUES: APPLICATIONS OF THE NEW PROPOSED STRESS-
STRENGTH MODEL.

In this section, we present two case studies in which stress (Y) and strength (X) follow
g-Exponential distributions. The first case study, which was originally described in [83], deals
with the experimental determination of high cycle fatigue of ductile cast iron used for wind
turbine components and the second one, which was first reported in [84], evaluates the
gigacycle fatigue life of high-strength steel.

These two case studies are based on the well-known phenomenon [44], [84] that the
fatigue strength or endurance limit of large members is lower than that of small specimens
made of the same material; in other words, a specimen size effect exists, i.e., larger specimens
fail at shorter fatigue lives than smaller specimens [25], [44]. In fact, design of parts and
structures against fatigue is based on laboratory sized specimens which are usually smaller
than the real ones. Therefore, it is of great importance to determine the reliability of larger
specimens when data of smaller specimens are available. In our work, we used the analogy
that smaller specimens are stronger against fatigue and can be used as reference. Therefore,
fatigue strength of smaller specimens was used as a reference to find the reliability of the
larger specimens.

We use the stress-strength analysis in order to estimate the reliability of a specimen with
large size by using a data set for small specimen. The reliability is evaluated based on the
number of cycles to failure. Stress-Cycle curves (SN curves) are often used to present fatigue
resistance of materials at different stress levels. The SN curve simply represents number of
cycle to failure at a given stress level. Therefore, there is a one-to-one relationship between
stress level and number of cycle to failure [25], [44]. Therefore, using number of cycles
instead of stress is a reasonable selection, i.e., the number of cycles to failure can be
understood as a measure of resistance to failure. In terms of stress-strength models, such
measures are obtained in situations where the system has low resistance to fatigue failure (i.e.,
larger specimen) as well as in situations where the system has greater resistance to fatigue
failure (i.e., smaller specimen).

Indeed, in the context of our work, Y refers to the number of cycles to failure in stress

situation, i.e., number of cycles to failure of larger specimen. Similarly, X refers to the number
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of cycles to failure in strength situation, i.e., number of cycles to failure of smaller specimen.
Therefore, the reliability index R=P(Y<X) refers to the probability of the variable ¥ being
less than variable X. In other words, the index R indicates a measure of the reliability of the
larger specimen using data set for the smaller specimen as reference.

As we have mentioned above, g-Exponential distribution can be used to fit stress-
strength data when they are represented by cycles to failure obtained from specimens made of
the same material but with different sizes. Such an approach for stress and strength analysis
has been previously used, for example, in [36] and [92].

For each case study presented in this section, we estimate the parameters of two g-
Exponential distributions for data sets representing X and Y - the results will be obtained by
PSO and Nelder-Mead algorithm. The estimation method is the maximum likelihood method
discussed in section “Maximum likelihood estimators of index R=P(Y<X)”. Based on the
estimates of the parameters, we analyze the goodness-of-fit of the g-Exponential distributions
by using both graphical analysis and hypothesis testing. Thus, we show the CDF for the two
data sets along with the theoretical CDF of the g-Exponential. Finally, we perform a
bootstrapped version of the Kolmogorov-Smirnov test in order to statistically check the fit of

the g-Exponential distribution to each data set.

5.1 Case Study 1

From [83] the size effect in ductile cast iron was studied using two sets of fatigue data
for specimens with diameters 21 mm (021) and 50 mm (©50). During the tests, the
specimens were subjected to the same load condition. Figure 5.1 shows details of the

drawings of the specimens.
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Figure 5.1. Detail drawings of (a) @ 21 and (b) @ 50 specimens (all dimensions are in mm).[83]

For stress we consider fatigue data of ¥¥50 specimens, and for strength the fatigue data
of @21 specimens are used. The data sets given in terms of number of cycles to failure are

presented in Table 5.1 and Table 5.2 for diameters 21 mm and 50 mm, respectively.

Table 5.1. D21 specimen fatigue test data (Strength).

Specimen | Fatigue Life (number of
Number | cycles to failure)
1 3000000

2 716400

3 1674100

4 679400

5 801000

6 1076600

7 4181701

8 619200

9 469500

10 83200

11 92500

12 107700

105



Chapter 5

Case Studies for Fatigue Life With Extremely Large Values

Table 5.2. D50 specimen fatigue test data (Stress).

Specimen

Number

Fatigue Life (number of
cycles to failure)

o

295000

869000

869900

1573335

151400

152000

183700

218000

O R (U NN A (W

30200

(S
<

45100

[S—
S

46900

[
(8]

47300

Table 5.3 presents the estimated parameters - entropic indices (shape parameters) and

scale parameters, Kolmogorov-Smirnov (K-S) distances between the empirical and fitted

distribution functions, and the p-values of the K-S Boot test — for this test we use N=1000. As

mentioned in Section entitled “The g-Exponential distribution”, the g-Exponential distribution

shows characteristics of a power law when the entropic index presents values between 1 and

2. In this case study, we can see that both X and Y present this behavior for the analyzed data

sets.

Table 5.3. Estimated parameters, Kolmogorov-Smirnov distances and p-values for the Kolmogorov-Smirnov Test
(K-S Boot) — g-Exponential Distribution (Case Study 1).

Optimization | Entropic Scale
Method Index P | (Do) | p-value
Data sef 1 | Nelder-Mead |7 = 1.1087 |4 =884013.7 | 0.1477 | 0.7453
(Strength)|  pg(y 7 =1.1082 | =884816 | 0.1478 | 0.7353
Data set 2 | Nelder-Mead |§ = 1.3005 |7 = 161904 | 0.1554 | 0.6054
(Stress) PSO g =13007 |4 = 161820.6| 0.1554 | 0.5994

Figure 5.2 (a) and (b) present the theoretical and empirical CDFs for X and Y,

respectively. For the theoretical curve we use the results obtained by Nelder-Mead method,

once it is very similar to the results obtained by PSO. In addition, by the Kolmogorov-

Smirnov tests and the corresponding p-values (K-S Boot) reported in Table 5.3 the g-
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Exponential model adequately fits both the strength and stress data sets, as can also be seen in

the graphs shown in Figure 5.2 (a) and (b).

Strength Stress
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Figure 5.2. Theoretical (q-Exponential) and empirical CDF for data sets of Case Study 1. (a) X — Strength and
(b) Y — Stress

Given that # = 1.1087 (1 < 7 < 2), there is no limitation on the support of X, thus the
index R is estimated by Equation (4.4) as 0.7579. The value obtained for R indicates that
within the range of fatigue cycles here considered (i.e., high cycle fatigue) there is a 0.7579
probability that fatigue life of specimens with ¥21 mm diameter is longer than specimens
with @50 mm diameter. In terms of reliability, we can conclude that the value obtained for
index R indicates the system performance, i.e., based on the data presented for strength and
stress, the reliability of the larger specimen is equal to 0.7579.

Moreover, the confidence intervals (bootstrap-p and non-parametric bootstrap
approaches) are constructed by using the procedures presented in the section “Bootstrap
confidence intervals”. In this case study, we obtained a large width for the confidence interval

of R parameter due the small size of the sample.
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Table 5.4. Point and interval estimates for R = P(Y < X) — Case Study 1(Results by Nelder-Mead and PSO).

Estimate of the Parameter R=P(¥Y<X) by Nelder-Mead

~

R =0.7579
Estimate of the Parameter R=P(Y<X) by PSO
R =0.7580
Bootstrap-p confidence interval by Nelder-Mead

n=12, m=12

C.I(R,0.90)=10.4001, 0.9148] | C.I(R,0.95)=[0.2869, 0.9395]

Bootstrap-p confidence interval by PSO

n=12, m=12

C.I(R,0.90)=10.4249, 0.9236] | C.I(R,0.95)=10.2963, 0.9453]

Non-Parametric Bootstrap confidence interval by Nelder-Mead

n=12, m=12

C.I(R,0.90)=10.5730, 0.9109] | C.I(R,0.95)=10.4025, 0.9387]

Non-Parametric Bootstrap confidence interval by PSO

n=12, m=12

C.I(R,0.90)=10.4797, 0.9305] | C.I(R,0.95)=1[0.3553, 0.9544]

5.2 Case Study 2

In [84], the size effect on gigacycle fatigue life of high-strength steel was evaluated
using the following specimen geometries:

e Type A: @ 8§ mm x 10 mm specimen;
e Type B: @ 3 mm hourglass-shaped specimens.

The specimens were subjected to the same load condition. Therefore, fatigue data for
specimens Type A and Type B are selected as stress and strength, respectively. Figure 5.3
shows the detail drawings of the specimens. Data sets for strength and stress are presented in

Table 5.5 and Table 5.6 respectively.
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Figure 5.3. Detail drawings of (a) O 8 and (b) O 3 specimens (all dimensions are in mm). Adapted from [84]

Specimen | Fatigue Life (number of
Number | cycles to failure)

1 1017286
2 2989152
3 4059346
4 4256299
5 8376572
6 9560400
7 13007977
8 25303118
9 33621704
10 55951560
11 101155984
12 144322192

Table 5.5. Type B (O 3 mm hourglass-shaped specimen) fatigue test data (Strength).
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13 376711232
14 731957760
15 9444513800
16 9912163300
17 9918688300
18 9921105900

Table 5.6. Type A (D 8 x 10 mm specimen) fatigue test data (Stress).

Specimen | Fatigue Life (number of

Number | cycles to failure)

1 289867
1291756
6404257
7848468
9374890

31500474

211678768

5575744500

5926607400

o R QNN AW

In Table 5.7, we present the estimated parameters (entropic indices and scale
parameters), the Kolmogorov-Smirnov (K-S) distances between the empirical and fitted
distribution functions, and the corresponding p-values (K-S Boot — for this test we use
N=1000). Note that for stress and strength, the entropic indices present values that

characterize a power law behavior, i.e., I <g<2 for stress and /<r<2 for strength.

Table 5.7. Estimated parameters, Kolmogorov-Smirnov distances and p-values for the Kolmogorov-Smirnov Test
(K-S Boot) — g-Exponential Distribution (Case Study 2).

Entropic
Index Scale Parameter | K-S (D,) | p-value
Data set 1 Nelder-Mead |7 = 1.7519 | = 4704629 0.1329 | 0.4955
Strength N
( gth) PSO 7 =1.7521 | B = 4688696.2 | 0.1327 | 0.4705
Data set 2 Nelder-Mead |§ = 1.7643 |7i = 1450221 0.1434 | 0.8501
(Stress)

PSO g = 1.7642 |  =1453264.2 | 0.1433 | 0.8551
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Figure 5.4 (a) and Figure 5.4 (b) show the theoretical and empirical CDF for X and 7Y,
respectively. We use the results obtained by Nelder-Mead method, once it is very similar to
the results obtained by PSO. For the sake of visualization, we here use logarithmic scale to
represent X and Y because the data sets present many extreme values. We also report in Table
5.7 the bootstrapped Kolmogorov-Smirnov tests and the corresponding p-values. Based on
those results, we notice that g-Exponential model adequately fits both X and Y data sets, as

can also be seen in Figure 5.4.
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Figure 5.4. Theoretical (g-Exponential) and empirical CDF for data sets of Case Study 2. (a) X — Strength and
(b) Y — Stress

Given that # = 1.7519 (1 < < 2), there is no limitation on the support of X, thus
index R is estimated by Equation (4.6) as 0.5973. Thus, considering a component of strength
and another of stress, obtained respectively when we measure the life cycle for specimens
with 3 mm diameter and 8 mm diameter, there will be 59.73% chance that the larger specimen
will not fail.

The confidence intervals are constructed using the bootstrap-p and non-parametric
bootstrap approaches (presented in Section “Bootstrap confidence intervals”). Also in this
case study, due the small size of the samples, we obtain large width for the confidence

intervals of the parameter R.
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Table 5.8. Point and Interval estimates for R = P(Y < X) — Case Study 2.

Estimate of the Parameter R = P(Y < X) by Nelder-Mead

~

R = 0.5973
Estimate of the Parameter R = P(Y < X) by PSO
R =0.5973
Bootstrap-p confidence interval by Nelder-Mead

n=9, m=18

C.I(R,0.90) =10.4002, 0.7922] | C.I(R,0.95)=[0.3442, 0.8236]

Bootstrap-p confidence interval by PSO

n=9, m=18

C.I(R,0.90) =[0.4006, 0.7918] | C.I(R,0.95)=10.3498, 0.8303]

Non-Parametric Bootstrap confidence interval by Nelder-Mead

n=9 m=18

C.I(R,0.90)=10.4142, 0.7864] | C.I(R,0.95)=10.3800, 0.8247]

Non-Parametric Bootstrap confidence interval by PSO

n=9, m=18

C.I(R,0.90)=10.4510, 0.7716] | C.I(R,0.95)=10.4196, 0.7883]

5.3 Comparing g-Exponential with other distributions

For the sake of comparison, both Weibull and Exponential distributions were also
considered to model the experimental strength and stress data sets presented in case studies 1
and 2. The results for the estimated parameters (scale and shape parameters for Weibull
distribution, and for the Exponential distribution parameter), Kolmogorov-Smirnov (K-S)
distances between empirical and fitted distribution functions, and the corresponding p-values
(K-S Boot - performed with N=1000) obtained from the data sets are shown in Table 5.9 and
Table 5.10, which also include the K-S distance and p-values for the fit of the g-exponential
distribution. As we observe in the case studies, the approaches of PSO and Nelder-Mead
shows results very similar for the p-values, thus, without loss of generality, we will present

the comments of this section based on the results obtained by the Nelder-Mead method.
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Table 5.9. Comparing Weibull vs q-Exponential — Case Studies 1 and 2.

Parameters (K-S Boot) (K-S Boot)
(Weibull (Weibull (q-Exponential
Distribution) Distribution) Distribution)
Case Studies Shape Scale K-S _value K-S _value
Parameter | Parameter (Dy) p (Dg) p
Data set 1
Case Study | (Strength) 0.9331 1088102 0.1409 0.7322 | 0.1477 0.7453
1 Dataset2 | c336 | 3353261 | 0.164 | 05115 | 0.1554 | 0.6054
(Stress)
Data set 1
Case Study | (Strength) 0.3366 417229706 0.1648 0.2048 | 0.1329 0.4955
2 Dataset2 | 3077 | 176273348 | 02222 | 02298 | 0.1434 | 0.8501
(Stress)

Table 5.10. Comparing Exponential vs q-Exponential — Case Studies 1 and 2.

Parameter (K-S Boot) (K-S Boot)
(Exponential (Exponential (q-Exponential
Distribution) Distribution) Distribution)
Case Studies Rate K-S K-S
Parameter (Dy) p-value (Dy) p-value

Data set 1
Case (Strength)
Study 1 | Data set 2
(Stress)
Data set 1
Case (Strength)
Study 2 | Data set 2
(Stress)

8.89E-07 0.1587 | 0.7212 | 0.1477 | 0.7453

2.68E-06 0.2245 | 0.2757 | 0.1554 | 0.6054

4.42E-10 0.6048 | 9.99E-4 | 0.1329 | 0.4955

7.65E-10 0.6429 | 9.99E-4 | 0.1434 | 0.8501

For case study 1, based on the K-S boot, the fit of the Weibull distribution resulted in p-
values of 0.7322 and 0.5115 for the strength and stress data, respectively, clearly indicating
that the Weibull is an appropriate distribution to describe the stress-strength data of this case
study. In the case of the Exponential distribution, the p-value for the K-S test was equal to
0.7212 for strength and 0.2757 for stress, resulting in a reasonable fit for the experimental
data. However, for the strength data, we observed the most significant fit for g-Exponential
distribution (p-value = 0.7453), whereas Weibull distribution is the second (p-value =
0.7323), and Exponential distribution also presents a good fit (p-value = 0.7212). For the

stress, a similar behavior was observed, i.e., g-Exponential presents the most significant fit (p-
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value = 0.6054), while Weibull distribution is the second (p-value = 0.5115) and, among the
three distributions considered, the Exponential presented the worst adjustment for the stress
(p-value 0.2757).

For case study 2, based on the K-S boot, the fit of Weibull distribution resulted in p-
values of 0.2048 and 0.2297 for strength and stress data, respectively, indicating that despite
the adjustment be significant, we cannot consider this as an excellent fit. In the case of
Exponential distribution, the p-value for the K-S test was equal to 9.99E-04 for strength and
the same value for the stress, which yields a non-significant fit for Exponential distribution.
Note that g-Exponential distribution presents the most significant fit for both strength (p-value
= 0.4955) and stress (p-value = 0.8501), Weibull distribution provides the second most
significant fit for strength (p-value = 0.2048) and stress (p-value = 0.2298), whereas
Exponential distribution was not significant for both data sets.

Note also that for both case studies, when we consider g-Exponential distribution, a
power law behavior is obtained for all analyzed cases, as the entropic indices for all data sets
are greater than one. Moreover, when we consider the Weibull distribution, the shape
parameter for all cases were between 0 and 1, which indicates a behavior of stretched
exponential. As we mentioned in the Introduction, g-Exponential PDF with power law
behavior presents a heavier tail than that of a Weibull PDF (with stretched exponential
behavior). Thus, it is expected the g-Exponential to have a superior performance over Weibull
distribution when dealing with data sets that containing extremely large values. Thus,
although the fit by g-Exponential and Weibull distributions were comparable for the first case
study, g-Exponential is superior in the second one. This fact is due to the presence of
extremely large values in the associated samples (magnitude in the order of 10°).

The estimation of R when X and Y are Weibull independent variables was presented by

61

Kundu and Gupta[36]. In their work, the authors presented the expression R = 523 ,where
1 2

0, is the estimate of scale parameter for X and 8, is the estimate of scale parameter for Y.
Thus, once dataset for X and Y in case study 1 also presented a good fit for the Weibull
distribution, we computed R considering a Weibull distribution as R = 0.7649. This result is
very similar to the one when X and Y are modeled by two independent g-Exponential
distributions, i.e., R = 0.7579. This indicates that both distributions can be used in order to
estimate R = P(Y<X) for the first case study. For case study 2, when X and Y are modeled by

two independent Weibull distributions, the estimated R index is R = 0.7029, which is very
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different from the one obtained when we considered g-Exponential (R = 0.5973). This
difference is due to the fact that Weibull distribution presented an inferior fit performance for
both X and Y when compared to g-Exponential. In fact, both X and Y present extremely large
values and, as discussed previously, this kind of data is better modeled by a PDF that has the
ability to model data with characteristic of power law as is the case of g-Exponential when
1<g<2. Observe from Figures Figure 5.5 and Figure 5.6 that the Case Study 1 presents a good
fit for both distributions (g-Exponential and Weibull), this fact is not observed in Case Study
2, once the chart clearly shows that the adjustment by the g-Exponential distribution is better
than the Weibull Distribution.
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Figure 5.5. Empirical and Theoretical (q-Exponential and Weibull) CDF’s for Case Study 1 - (a) Strength and (b)
Stress
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Figure 5.6. Empirical and Theoretical (q-Exponential and Weibull) CDF's for Case Study 2 - (a) Strength and (b)
Stress
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6 CONCLUSIONS

We have introduced the g-Exponential distribution as a model for reliability data with
extremely large values in the relevant context of stress-strength reliability. More specifically,
when we deal with fatigue life data that presents a power law behavior and we need to
estimate the performance index R=P(Y<X). We have considered that the stress Y and strength
X are g-Exponential independent random variables and have proposed a procedure for
estimating index R by considering that the support of X is limited (i.e., entropic index or shape
parameter of the strength is #</) and unlimited (/<r<2). Additionally, confidence intervals
for the index R have been presented by means of parametric and non-parametric bootstrap
approaches.

In order to estimate this index R, it is necessary to estimate the parameters of these two
q-Exponential distributions (X and Y). Once the analytical expression for these parameters are
very complicated to be obtain, we used the PSO and Nelder-Mead algorithms in order to
maximize the log-likelihood function of the g-Exponential distribution. Confidence intervals
for the parameters were presented by means of asymptotic confidence intervals and
parametric and non-parametric bootstrap approaches.

From the simulation experiments made to the parameters of the g-Exponential, we
considered two algorithms of optimization (PSO and Nelder-Mead). It was shown that, for the
point estimates, the absolute bias and the MSE values related to the estimation of 1 and g
parameters via maximum likelihood decreases as the sample size increases, indicating the
consistency of the MLE for the g-Exponential distribution — This fact was observed when we
use any of two algorithms. We may note also that, in simulations that we considered a
negative value to the parameter ¢, it was observed a great value for the MSE in both
optimization methods. We can highlight that this great values for the MSE (when q = —1) is
observed mainly when the # is smaller (n = 100). However, it is important to point out that,
also was observed in the case with g negative, when n increases, the bias and MSE decreases
substantially. These facts were observed for both parameters g and 7.

In the simulations for the interval estimates of g and 1 parameter ,considering the PSO
and Nelder-Mead Algorithms, we observed that the width of the intervals obtained by

asymptotic, bootstrap-p and non-parametric bootstrap approach, generally decrease as the n
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increase, this is expected due the consistency property of the MLE. Besides, considering the
two optimization methods, the most of parameters were covered for the intervals obtained in
the simulations. We yet detected that, in most of cases, the results for the intervals obtained
for n and g by Nelder-Mead present smaller width if compared with the PSO results. In
general, for the PSO and Nelder-Mead algorithm, we notice that for larger sample sizes
(n = 1000), asymptotic and bootstrap approaches tend to provide similar interval estimates
for the g-Exponential parameters.

From the simulation experiments for the index R, it has been verified the consistency of
the MLE obtained for the Index R based on the g-Exponential distribution, once the absolute
bias and the MSE values related to the estimation of R via maximum likelihood decreases as
the sample size increases. From results, we can yet observe that the bias for cases that we
have ¢>0 not indicates a tendency of overestimation or underestimation, once we have bias
with positive and negative values. For cases that we have a ¢ negative it is observed a
tendency of overestimation of the index R, once the bias for these cases present always
positive values.

Furthermore, for different sample sizes for X and Y, the bootstrap-p non-parametric
bootstrap confidence intervals showed to be very efficient in estimating the confidence
interval of R given that for all in the most simulations the confidence intervals included the
true parameter value.

With respect to the first case study involving ductile cast iron specimens, g-Exponential
distribution properly fits both stress and strength data, as can be seen by the CDF and PDF
plots and by the bootstrapped K-S test. In addition, for the sake of comparison, we have
estimated the parameters for the situations where X and Y are both modeled by either Weibull
or Exponential distributions. The latter provided the worst fit, while g-Exponential and
Weibull models resulted in quite similar fits. Such a result was reinforced by the proximity of
the estimates for the index R obtained from both models.

In relation to the second case study involving high-strength steel, g-Exponential
distribution presented an excellent fit for both strength and stress. The Weibull distribution,
despite having a significant adjustment to the experimental data, presented smaller p-values
for both strength and stress. The Exponential distribution in turn was not significant for the

data sets of this case study.
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Therefore, based on the discussed results, it is natural to consider the g-Exponential as a
good distribution to model stress-strength reliability problems, especially when we are dealing
with data with great order of magnitude. As already mentioned, g-Exponential distribution is
able to model data that present a power law asymptotic behavior, which is an important
characteristic of cycles until fatigue failure, as corroborated by the two case studies
considered in this work, where the estimated entropic indices had values that characterize a
power law behavior, i.e., 1<gq<2 for stress and /<r<2 for strength.

Thus, comparing the adjustments considering the g-Exponential distribution with the
adjustments considering the Weibull distribution, we observe that both the first example and
the second example showed good quality in fitting the data by a g-Exponential distribution.
The Weibull distribution, presented significant adjustment in both examples, however, for the
second example, the data presented a p-value clearly more significant for the fit by a g-
Exponential. Thus, our main conclusion is that data with extremely large values are best fitted
by a g-exponential distribution, once this distribution has a heavier tail than the tail of the
Weibull distribution.

It was clearly evidenced, by the case studies, that there are situations in which the data
are better adjusted when we consider the g-exponential distribution. Thus, the use of g-
exponential distribution in Stress-Strength problems, mainly when the data of the problem
present extreme large values, provides a better fit of the data and for consequence, is able to
return a better estimate for the index R. Thus, despite the expressions for the calculation of the
Index R, when we consider the g-Exponential distribution, be more complicated than the
expression of Index R when we consider the Weibull distribution, the use of the g¢-
Exponential distribution in order to estimate the index R it is very useful in some situations,
and must be considered in order to provide more reliable estimates for the index R.

As limitation of this work we can point out that the results obtained in the estimation of
the g-Exponential parameters, when the parameter g is negative, were not very suitable,
mainly when the n is small. Nevertheless, the real purpose of this study is to work with data
that present q values greater than 1, since when q > 1 the PDF of the g-Exponential is
capably to characterize the Power Law behavior, that is a characteristic observed in fatigue
data.

For future studies, we suggest the development of new Stress-Strength models, based on

generalizations of g-Exponential distribution. For example we can quote the g-Weibull
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distribution that has demonstrated that has the capability of modeling data even more
extremes than the data modeled by the g-Exponential distribution. In addition, we should
search for new reparametrizations of the log-likelihood of the g-Exponential whe the
parameter q is less than 0, in order to verify which of these provide better results for the

consistency of the estimates, mainly when the sample size is small.
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