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Resumo

A instabilidade de Saffman-Taylor se dd na interface entre dois fluidos viscosos no interior
de uma célula de Hele-Shaw (CHS). A CHS € um aparato experimental que consiste em duas
placas, usualmente planas e paralelas, separadas por uma distdncia muito pequena. Sabe-se
que quando um fluido viscoso desloca outro mais viscoso, em uma CHS, a interface entre eles
se torna instavel e estruturas chamadas de “dedos viscosos” surgem. Em funcdo da geometria
da CHS e da for¢ca motriz do fluxo, tais dedos podem bifurcar, afinar, competir em tamanho e
interferirem uns com os outros, formando as mais diversas estruturas morfoldgicas. Estudos
com fluidos newtonianos em CHS vém sendo feitos desde o final do século XIX. No entanto,
apenas recentemente, a cerca de trinta anos, estudos com fluidos ndo newtonianos em CHS
vém sendo conduzidos, e em sua maioria estudos analiticos lineares ou ndo lineares puramente
numéricos. Este trabalho tenta preencher essa lacuna com um estudo analitico ndo linear de
fluidos nao newtonianos em CHS. Estudamos a CHS de geometria radial com levantamento da
placa superior e injecdo como forcas motrizes do fluxo. Nestes casos estudamos o fluido yield
stress, um tipo especial de fluido ndo newtoniano que se comporta como um “semissélido”. Es-
tudamos também o fluido power-law que introduz, na viscosidade, uma dependéncia do fluxo.
Em cada caso fomos capazes de estabelecer conexdes entre as nossas previsoes tedricas e 0s ex-
perimentos e simulacdes encontrados na literatura. Tais previsdes sdo acerca da estabilidade e
morfologia da interface como: bifurcacdo de dedos, a estrutura conhecida como side branching
e a competicao entre dedos.

Palavras-chave: Cé¢lula de Hele-Shaw, fluido ndo newtoniano, fluido yield stress, fluido
power-law, competicdo de dedos viscosos, side branching.



Abstract

The Saffman-Taylor instability arises at the interface between two viscous fluids in a Hele-
Shaw cell (HSC). A HSC is an experimental apparatus that consists of two plates, usually flat
and parallel, separated by a very small distance. It’s known that when a less viscous fluid
displaces a more viscous one, in a HSC, the interface between them becomes unstable and the
so called “viscous fingers” arise. Due to the geometry of the HSC and the driving force of the
flux, such fingers can bifurcate, become narrow, compete in size and interfere with each other
creating the most diverse morphological structures. Studies with Newtonian fluids in HSC
have been made since the end of the XIX century. However, only recently, about thirty years
ago, studies with non-Newtonian fluids in HSC have been conducted, mostly addressing linear
analytical studies or nonlinear purely numerical ones. The work exposed in this dissertation
intends to fill this gap with a nonlinear analytical study of non-Newtonian fluids in HSC. In this
work we have studied the radial geometry HSC with the lifting of the upper plate and injection
as the driving forces. In these cases we have studied the yield stress fluid, a special kind of non-
Newtonian fluid that behaves as a “semi-solid”. We have also studied the power-law fluid that
introduces, in viscosity, a dependence on the flux. In each case we were capable of establish
connections between our theoretical predictions and the experiments and simulations found in
the literature. Such predictions are about the stability and morphology of the interface: finger
bifurcation, the structure called side branching, and the competition between fingers.

Keywords: Hele-Shaw cell, non-Newtonian fluid, yield stress fluid, power-law fluid, viscous
finger competition, side branching.
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CHAPTER 1

Introduction

1.1 Pattern formation

We all observe the beautiful patterns present in nature: the colors in the wings of a butterfly,
the stripes of a zebra, the shape of a snowflake or the shell of a snail [see Fig. 1.1]. It makes us
wonder why and how they occur. The answer to these type of questions can be very complex
and pass through many fields of science as mathematics [1], physics [2] and biology [3,4].

Figure 1.1 Beautiful patterns found in nature. From left to right and top to bottom: butterfly, shell of
snail, snowflake, zebra, coral, and fish.

One way to start answering questions about pattern shape and form is to try to understand
the mechanisms behind their formation. Besides the aesthetic and academic interest, the under-
standing of pattern formation can be useful to industrial and technological applications [5].

Keeping all of that in mind, we try to gain some analytical insight on the mechanism of
pattern formation. In this work, we are going to explore the formation of patterns at the interface

13



1.2 THE CLASSICAL SAFFMAN-TAYLOR INSTABILITY 14

between fluids. Such interfacial patterns, as shown in Fig. 1.2, are the result of the development
of hydrodynamic instabilities [2].

Figure 1.2 Interfacial fluid instabilities: Diffusion, magnetic fluid, water-air interface.

1.2 The classical Saffman-Taylor instability

To study hydrodynamic instabilities we are going to use the Hele-Shaw cell (HSC). In a HSC
the fluids are confined in a quasi-two-dimensional geometry. The classical cell consists in
two parallel plane plates separated by a very small distance, but there are many other HSC
with curved and non-parallel plates. Such a cell was developed by Henry Selby Hele-Shaw.
In 1885 Hele-Shaw was invited to organize the Department of Engineering at the University
College Liverpool (founded in 1881), his second department, where he served as a Professor of
Engineering until 1904 when he moved to South Africa. During this period Hele-Shaw carried
out his seminal experiments at University College Liverpool, designing the cell that bears his
name.

The particular hydrodynamic instability which we are interested in this work is the Saffman-
Taylor instability: it arises at the interface separating two fluids in the confined geometry of a
HSC. The Saffman-Taylor problem appeared in 1956 when Sir Geoffry Taylor and Philip G.
Saffman used the HSC to model a problem in oil recovery industry. The physical mechanism
used to extract oil from the oil well is to inject water in some point of the well and recover oil
from another point. The well is a porous media and the equation describing flow in a porous
media is, within some approximations, the same as the one that describes the flow in a HSC, the
Darcy’s law. In their work [2] Saffman and Taylor have shown that when a less viscous fluid
displaces a more viscous one the interface separating them tends to destabilize and structures
called “viscous fingers” start to grow [see Fig. 1.3]. This is similar to the oil recovery situation,
where water (less viscous fluid) displaces oil (more viscous fluid) in a porous media and when
the fingers start to grow, and a fraction of the oil remains in the well after the water reaches the
extraction point.
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Figure 1.3 Development of a viscous finger. A less viscous fluid (in white) displaces the more viscous
one (crosshatched).

1.3 Rheological behavior of fluids

The specific morphology of the patterns formed in a HSC depend on the nature of the fluids, on
the geometry of the flow and on its driving force. Most of the existing studies on the viscous
fingering instability refer to Newtonian fluids. In this case, the resulting interfacial shapes
range from a single, smooth, steady-state finger in rectangular (or, channel) geometry [6—14],
to multi-fingered structures in which repeated tip-splitting produces highly ramified patterns
in the radial flow setup [15-26]. These pattern forming phenomena have been extensively
studied during the last fifty years through analytical calculations, numerical simulations, and
experiments.

Although not as numerous as in the Newtonian fluid case, other Hele-Shaw flow investiga-
tions have revealed that a distinct variety of patterns can be formed when one of the fluids is
non-Newtonian [27]. While Newtonian fluids are characterized by a constant viscosity, non-
Newtonian fluids display a multiplicity of hydrodynamic behaviors ranging from elasticity and
plasticity to shear thinning and shear thickening, and in general have a shear-dependent viscos-
ity.

Before we start to talk about rheology of fluids we have to define some important quantities
such as viscosity, shear stress and rate of strain. The rate of strain is a quantity that measures
how much the velocity changes along some direction and can be written as

=3[+ 52,

with u being the velocity vector: e = [Vu+ (Vu)7]/2 is the rate-of-strain tensor, and T
denotes matrix transposition. The shear stress tensor 7 is a quantity that contains all the infor-
mation about shear stress in such a way that the shear stress on a surface defined by a normal
vector e; is given by

(1.1

ti=e;-T. (1.2)

For the Newtonian case the shear stress is proportional to the rate of strain and its constant
of proportionality 1) is called viscosity.

We can classify fluids through their rheological behavior. Rheology is the study of the flow
of matter, primarily in the liquid state, but also in solids under conditions in which they respond
with plastic flow rather than deforming elastically in response to an applied force. It applies



1.3 RHEOLOGICAL BEHAVIOR OF FLUIDS 16

to substances which have a complex microstructure, such as muds, sludges, suspensions, poly-
mers and other glass formers (e.g., silicates), as well as many foods and additives, bodily fluids
(e.g., blood) and other biological materials or other materials which belong to the class of soft
matter. We classify the rheology of a material by relating the strain rate to the shear stress
applied, as shown in Fig. 1.4.

Bingham

Shear Stress

Newtonian

Shear—thickening

Rate of strain

Figure 1.4 Flow curve for the Newtonian and non-Newtonian fluids discussed in this work: Newtonian,
Bingham fluid, shear-thinning and shear-thickening.

The simplest rheological behavior is the linear one, where the the rate of strain grows lin-
early with the shear stress. The viscosity, derivative of the shear stress with respect to the rate
of strain, in this case is constant. Since it was proposed by Newton, its name is Newtonian
behavior. The Newtonian behavior explains, roughly, a great part of the fluids, but its gen-
eral inaccuracy leads us to search for more complex behaviors, the so called non-Newtonian
behaviors. We have, for example, the yield stress fluid that can be modelled by the Bing-
ham plastic fluid model, that in contrast to Newtonian fluids can support shear stresses without
flowing. As long as the stress remains below a certain critical value oy they do not flow, but
respond elastically to deformation and after that critical value it flows as a Newtonian fluid.
So, such materials possess properties of both viscous fluids and elastic solids, behaving like
a “semi-solid". Other simple forms of non-Newtonian behavior are the shear-thinning, where
an increase in the shear stress causes a decreases in viscosity, and shear-thickening, where an
increase in the shear stress causes an increases in viscosity. This dependence gives the flow
curve a convex or concave profile. In this dissertation we are going to work with those three
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non-Newtonian fluids in comparison to Newtonian fluids. In table 1.1 we can see examples of
such fluids.

Rheology Example
Newtonian (approximately) Water, air, thin motor oil
Yield stress Mud, toothpaste, slurry, mayonnaise
Shear-thinning Lava, ketchup, blood, nail polish, whipped cream
Shear-thickening (less common) || Cornstarch + water (oobleck), soaked sand + water

Table 1.1 Examples of Newtonian and non-Newtonian fluids.

The rheological properties of non-Newtonian fluids exert a profound effect on the shape
of the emerging interfacial patterns in Hele-Shaw flows. Rectangular and radial Hele-Shaw
experiments involving non-Newtonian fluids like polymer solutions, liquid crystals, clays and
foams unveiled pattern morphologies presenting snowflake-like shapes [28] and fracturelike
structures [29, 30]. For shear-thinning fluids traditional finger tip-splitting events are inhibited,
and the appearance of dendritic patterns with side branching is favored. Cracklike patterns
presenting angular branches and sharp tips have also been found. One can see some of those
patterns in Fig. 1.5. On the other hand, flow with shear-thickening fluids [31] displays patterns
similar to those found in Newtonian fluids but with either narrowing or widening of the fin-
gers, which can present asymmetric humps. This morphological diversity and rich dynamical
behavior motivated a number of theoretical studies of the problem through linear and weakly
nonlinear analyzes, and sophisticated numerical simulations [32—41].

Figure 1.5 Typical morphological patterns in HSC with non-Newtonian fluids. Fracturelike pattern on
the top, and side branching pattern on the bottom.
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1.4 Yield stress fluids in a HSC

1.4.1 Injection-driven flow

Despite all the efforts and important results obtained by researchers on the development of vis-
cous fingering in non-Newtonian Hele-Shaw flows, the pattern forming dynamics with yield
stress fluids [42—44] has been relatively underlooked. On the theoretical side, a linear sta-
bility analysis of the Saffman-Taylor problem in rectangular and radial cells with yield stress
fluids [45] has predicted that the instability can be drastically modified. On the experimental
arena some interesting findings have been disclosed in channel geometry [46,47]: depending
on whether viscous effects or yield stresses dominates, fractal patterns, or ramified structures,
where multiple fingers propagate in parallel, may arise.

In a more recent experimental work [48] fingering in a yield stress fluid in rectangular as
well as in radial Hele-Shaw cells has been examined. As in Ref. [46,47] different regimes, lead-
ing to diverse pattern morphologies have been observed: at low velocities (where yield stress
dominates) ramified structures arise; however, for higher velocities (viscous effects prevail), in
addition to tip-splitting, interesting side branching instabilities become apparent. Although the
behavior at the low velocity regime can be quantitatively explained from the linear stability re-
sults presented in Ref. [45], the nonlinear side branching and tip-splitting instabilities detected
at higher velocities are not fully understood to date. So, a theoretical study addressing these
suggestive pattern forming phenomena in yield stress fluids is still lacking. In this spirit, we
will investigate such a problem in chapter 2.

1.4.2 Lifting-driven flow

An interesting variation of the traditional radial Saffman-Taylor problem [49] is the study of
interfacial instabilities in HSC presenting variable gap-spacing [see Fig. 1.6]. The lifting Hele-
Shaw problem occurs when the upper cell plate is lifted, while the lower plate remains at
rest [50]. In this lifting flow configuration the inner fluid is viscous (e.g., oil), surrounded by an
outer fluid of negligible viscosity (for instance, air). The lifting forces the fluid-fluid interface
to move inwards. Consequently, the interface becomes unstable leading to the formation of a
distinct class of fingering patterns [51-58].

In contrast to the injection-driven radial viscous flow situation where finger tip-splitting
is the prevalent pattern forming mechanism [22, 25, 26, 49], a salient morphological aspect
in lifting H-S flows is finger competition. Numerical simulations and experiments [50-56]
reveal a strong competition (i.e. finger length variability) among the fingers of the invading
less viscous fluid, which advance towards the center of the cell, as we can see in Fig. 1.7.
It is also observed that the outermost limit of the interface ceases to shrink, indicating that
the competition among the fingering structures of the more viscous fluid is considerably less
intense.

The characteristic features of the finger competition dynamics described above are de-
tected in laboratory and numerical experiments when the inner fluid is Newtonian [50-56].
It is true that depending on the nature of the viscous fluid used, different types of interfacial
patterns arise [52,57,58]. Nevertheless, inspection of the experimental patterns obtained in
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Figure 1.6 Schematic configuration of lifting-driven flow in a HSC, extracted from Ref. [50]. A blob
of viscous fluid surrounded by air is invaded by fingers when the upper cell plate is lifted.

Ref. [52] seems to indicate that finger competition phenomena somewhat analogous to those
found in Newtonian fluids, also occurs when the invaded fluid is non-Newtonian. Specifi-
cally, in Ref. [52] this happens when the stretched material is a yield stress fluid. Despite the
existence of some theoretical works which analyze the development of finger competition in
miscible [59] and immiscible [60] lifting HS flows with Newtonian fluids, a corresponding the-
oretical investigation focusing on the finger competition behavior in yield stress fluids has not
been performed. We will investigate this aspect of the problem in chapter 3.

It has been recently shown [55] that in addition to the material parameters (viscosity, surface
tension, etc.) of the fluids involved in lifting HS flows, a purely geometric factor plays an
important role in determining pattern shape and evolution. Such a parameter is the aspect ratio,
that expresses the ratio of the initially unperturbed, circular radius of the fluid-fluid interface to
the initial HS plate spacing. Within this context, the aspect ratio measures the cell confinement.
The experiments performed in [55] for Newtonian fluids demonstrated that the size and number
of growing fingers are significantly sensitive to changes in the aspect ratio. Therefore, one facet
of the lifting HS problem that deserves a closer investigation is the influence of the aspect ratio
on the finger competition dynamics. This can be done by considering that the inner fluid is
either Newtonian or yield stress. A comparative study of the finger competition responses of
these fluids during the lifting process is also of interest, and will be investigated in chapter 3.

1.5 Controlling instabilities in power-law fluids in a HSC

Although the viscous fingering problem in Hele-Shaw cells has become one of the simplest yet
most illuminating paradigms of interfacial pattern formation, depending on the situation the
development of interfacial instabilities can be undesirable. One emblematic example in which
the emergence of viscous fingering instability is clearly counterproductive is oil recovery [61].
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Figure 1.7 Experiment on lifting HSC, extracted from Ref. [52]. Time evolution of the fingers in
the lifting-driven flow: we can see competition of the inward moving fingers, and at a later time the
recircularization phenomena.

In this context, the viscous fingering instability is a major source of poor oil recovery, once
rapidly evolving ramified fingers may reach the entrance of the well, and mainly water, and not
oil is retrieved. It is also known that viscous fingering has a potentially harmful character in
chromatographic separation [62, 63]. In addition, fingering instabilities are also unwanted in
applications involving coatings [64, 65] and adhesives [53,55]. So, processes aimed towards
minimizing the fingering instabilities, or controlling the growth of viscous fingers are of tech-
nological and scientific importance.

A recent emerging research area concerns the buildup of controlling strategies to the vis-
cous fingering instability problem. Due to its academic and practical relevance this particular
topic has attracted the attention of engineers, physicists, and mathematicians [26,66—77]. An
interesting type of controlling scheme focuses on determining the number of fingers by prop-
erly adjusting the flow injection rate [26, 66—69]: instead of using the usual constant injection
rate Q (area covered per unit time), which results in finger proliferation, these studies employ a
time-dependent injection flux Q(z) ~ =13, As long as the injection rate presents this specific
time dependence, the system evolves by keeping fixed the number of interfacial fingers [see
Fig. 1.8]. It has been demonstrated that under such time-dependent flow rate the system always
evolves into well behaved n-fold symmetric structures [26]. Even though this particular pro-
cess was not able to eliminate the interfacial disturbances, it does offer a valid way to prescribe
and control the morphology of the resulting patterns, avoiding the appearance of inconvenient
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branched morphologies.

Figure 1.8 Patterns in a injection-driven HSC: (a) constant Q, (b) Q(t) ~ 1~1/3. We can clearly see the
well-defined 7-fold symmetry in (b), where the finger branch is avoided. Figure extracted from Ref. [67].

An alternative line of research [70-77] seeks for mechanisms that are capable not only to
restrain branched pattern formation, but that also inhibit the establishment of interfacial defor-
mations. In this framework the main goal would be to obtain front propagation in the form
of nearly stable, axisymmetric interfaces. This has been achieved by a couple of different
procedures: first, by utilizing a two-stage piecewise constant injection process which applies
a relatively low injection rate followed by a proper, stronger injection stage [70]. Another
suppression method [72-74] employs a standard constant pumping rate O, but substitutes the
originally rigid Hele-Shaw upper plate with an elastic membrane. In this case, the onset of in-
stability is deferred due to the membrane elastic distortions which reduce destabilizing pressure
perturbations. Additional investigations [75—77] have shown that the introduction of a small
gradient in the gap of the Hele-Shaw cell (tapered cell geometry), so that the rigid plates are
not exactly parallel, can suppress the usual viscous fingering instability. In the limit of small
taper angles, the dominantly stabilization mechanism is through variable transverse curvature
(i.e. capillary effects).

Finally, it has been proposed that one could even optimally minimize the rising of any sort
of interfacial disturbances via a variational method [71]. This variational scheme allows one
to systematically search for the particular Q(¢) that leads to ideal minimization of the viscous
fingering instability. It has been found that such an optimal injection rate varies linearly in
time. The effectiveness of this particularly simple pattern formation controlling process has
been substantiated by experiments and nonlinear numerical simulations in Ref. [71], as we can
see in Fig. 1.9.

Interestingly, the studies mentioned above which tried to control the number of resulting
interfacial fingers through a time-dependent injection rate [26,66—69], or that attempted to sup-
press or minimize the disturbances at the fluid-fluid interface [70-77] always consider the flow
of Newtonian fluids. Therefore, a systematic theoretical investigation of similar controlling and
minimizing protocols involving the displacement of non-Newtonian fluids still need to be ad-
dressed. This happens in spite of the fact that there is a considerable number of theoretical and
experimental works that examine dynamics and pattern formation in Hele-Shaw cells in which
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Figure 1.9 Figures extracted from Ref. [71]. Comparison of constant pumping rate (left panel) and
their optimal pumping rate (right panel): simulations (top row) and experiments (bottom row). We can
clearly see the efficiency of their controlling protocol.

the displaced fluid is non-Newtonian [28—41,45-48,78-82].

Considering the scientific and practical significance of non-Newtonian flows in Hele-Shaw
geometry, in chapter 4 we examine the development of controlling and minimizing strategies
in radial Hele-Shaw flows, now assuming that the displaced fluid is non-Newtonian. As in
Ref. [41] we study a situation in which the dislocated fluid exhibits the simplest non-Newtonian
rheology: a power-law viscosity. In this framing, we focus on understanding how the existing
stabilization protocols for Newtonian fluids [26, 66—77] are modified by the fact that the dis-
placed fluid can be either shear-thinning or shear-thickening.

Fortunately the work presented in the following three chapters has generated three publica-
tions in the periodic Physical Review E [78, 83, 84]. During this period, we have also another
publication [85], not presented here, in the same periodic with the student Rodolfo Brandao.



CHAPTER 2

Injecting flow in a HSC with a yield stress fluid

2.1 Chapter outline

In this chapter we carry out the weakly nonlinear analysis of the problem in which a yield
stress fluid flows, in a radial HSC, being pushed by an injected Newtonian fluid. We focus on
the regime in which viscosity effects are prevalent over yield stress. By exploring the onset
of nonlinear effects we try to gain analytical insight into the dynamic process of fingering
formation. In particular, we seek to understand how mode-coupling dynamics leads to basic
morphological features and behaviors observed experimentally in such non-Newtonian Hele-
Shaw flows [48].

The rest of this chapter is organized as follows: Sec. 2.2 formulates the problem and derives
a generalized Darcy-like law. In Sec. 2.3 we perform a Fourier decomposition of the interface
shape, and from the alternative form of Darcy’s law study the influence of weak yield stress
effects on the development of interfacial patterns. Coupled, nonlinear, ordinary differential
equations governing the time evolution of Fourier amplitudes are derived in detail. Section 2.4
discusses both linear and weakly nonlinear dynamics. It concentrates on the dawning of finger
tip-splitting and side branching phenomena.

2.2 Problem formulation

In this chapter we are going to consider the displacement of a non-Newtonian yield stress
fluid of viscosity 1, surface tension Y and yield stress 0y, by an injected Newtonian fluid of
negligible viscosity in the confined geometry of a HSC. The schematic configuration of such
physical system is depicted in Fig. 2.1. The surface tension between the fluids is denoted by 7.
The Newtonian fluid is injected at a constant areal flow rate Q at the center of the cell, along
the direction perpendicular to the plates (z-axis).

We focus on deriving the relevant hydrodynamic equation for a Hele-Shaw flow of a yield
stress fluid. Our main goal is to obtain a Darcy’s like law which relates the gap-averaged ve-
locity with the pressure gradient and the yield stress, taking into account the coupling between
them. We start by taking the Navier-Stokes equation for an incompressible viscous fluid [86]

p[g—?—k(u-V)u] =-VP-V.1, @2.1)

where p is density, u denotes the three-dimensional velocity, P is the hydrodynamic pressure,
and 7 represents the stress tensor that includes the yield stress [See Eq. (2.3)]. In the scope of

23
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Q Newtonian fluid

Yield stress fluid

Figure 2.1 Schematic configuration of radial flow in a Hele-Shaw cell. The inner fluid is Newtonian
and has negligible viscosity. The outer fluid is a yield stress fluid. The unperturbed fluid-fluid interface
(dashed curve) is a circle of radius R. All physical parameters are defined in the text.

the lubrication approximation, where the distance between the plates b is much smaller than the
unperturbed radius R of the fluid-fluid interface, the motion is a creeping flow. Therefore, we
may neglect the inertial terms between square brackets in Eq. (2.1), as well as impose that the
prevailing terms in V - T are those with transversal derivatives. Within this framework, we also
consider that pressure is constant along the transversal direction (z-axis). Thus, by integrating

(2.1) we obtain

b

Ti; = ’— —Z ViP, (2.2)

2
where i = r, 0 is the label that indicates polar radial or azimuthal components, with the origin
placed at the center of the droplet. We have used the symmetry of the flow to state that the
shear stress is zero at the mid-plane z = b/2 (since the plates are located at z = 0 and z = b).
Furthermore, as a constitutive relation for yield stress fluids, we use the Bingham model [27].
It states that, for a given shear stress higher than the fluid yield stress magnitude oy, there is
flow and the stress tensor is given by

81/!,‘

Ti; = — [Tla—z + G,‘:| . 2.3)

This situation corresponds to |T| > 0y, where |T| = /72 4 75.. We point out that here we

allow the yield stress to exhibit both r and 6 polar components, in such a way that its response
is opposite to the stress tension. This is precisely what will allow us to couple the yield stress
to the velocity direction by the end of our derivation.

On the other hand, if |7| < oy, the shear stress do not overcome the yield stress, thus there

is no flow Py
U;
— =0 2.4
3z ) 2.4)

meaning that o; = —7;;,.
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We define the gap-averaged velocity as

1 rb
V= —/ udz, (2.5)
b Jo
Now we can use (2.1-2.5) to obtain a dimensionless modified Darcy’s law for yield stress fluids
5 48
v=-VP|]l— + . (2.6)
IVP|  27|vP)?
The dimensionless parameter
T G()bR f
=— (2.7)
2nQ

1s a modified plasticity number, and quantifies the ratio between yield stress and viscous forces.
For the remainder of this chapter, we take 6 as positive (since Q > 0) and refer to it as the yield
stress parameter. We point out that, in Eq. (2.6) lengths and velocities were rescaled by Ry
and Q/(27mRy) respectively, where Ry is the radius of the unperturbed interface at r =t [see
Eq. (2.9)]. We refer the reader to Ref. [78] for more details on the derivation and validity of
our modified Darcy’s law model for yield stress fluids [Eq.( 2.6)]. From this point on we use
the dimensionless version of the equations. Our Eq. (2.6) is in agreement with the results of
Ref. [87] which studied the simpler situation involving the purely radial flow of a perfectly
circular droplet.

Since we are interested in examining the interface destabilization process, we consider the
regime where viscous forces prevail over the yield stress and flow is facilitated, which corre-
sponds to 0 < 1. Therefore, we may neglect the third order term in 6 shown in Eq. (2.6).
Moreover, since (2.6) states that velocity is parallel to the pressure gradient, we may rewrite it
in a more convenient way as

ve—v|ie . 28)
Equation (2.8) is an alternative form of Darcy’s law ideally suited to describe the Hele-Shaw
flow dynamics in the weak yield stress regime. The usual Newtonian Darcy’s law is recovered
when we set 6 = 0.

2.3 Mode-coupling equation

To perform the weakly nonlinear analysis of the system, we consider that the initial circular
fluid-fluid interface is slightly perturbed [see Fig. 2.1], Z = R(¢) + £ (0,1) ({/R < 1), where
the time dependent unperturbed radius is given by

R(t) = \/R3+21, (2.9)

Ry being the dimensionless unperturbed radius at # = 0. The interface perturbation is written in
the form of a Fourier expansion

+oo
§(0,1)="Y. Cult)exp(inb), (2.10)

n——oo
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where §,(1) = (1/2x) 02” £(6,r)exp(—in0) d6 denotes the complex Fourier mode amplitudes

and 7 is an integer wave number. In our Fourier expansion (2.10) we include the n = 0 mode to

keep the area of the perturbed shape independent of the perturbation {. Mass conservation im-

poses that the zeroth mode is written in terms of the other modes as {y = —(1/2R) ¥ |&,(1)|>.
n#0

We stress that our perturbation scheme keeps terms up to the second order in § and up to first
order in §.

The weakly nonlinear approach to radial, Newtonian Hele-Shaw flow developed in Ref. [25],
related the fluid velocity to a scalar velocity potential v = —V @, this replacement made possi-
ble by the irrotational nature of the flow for Newtonian fluids. For non-Newtonian yield stress
fluids, in contrast, flows governed by the modified Darcy’s law (2.8) exhibit vorticity. Hence, as
in Ref. [39] we perform our calculations using a vector potential v =V x A. The most general
form of the vector potential can be written as

A=

0+ Y Am (§> exp(in@)] 7, (2.11)

m,n#0

where A,,, are the Fourier coefficients of the velocity vector potential and Z is the outward
unit-normal to the upper cell plate. The radial and polar components of the fluids velocities are

Ly Y inA R (inB) (2.12)
V= — inApn | —— | exp(in0), .
r 0 ym+1 p
and
R™ .
Vg = Z mAn (m—H) exp (inB). (2.13)
m,n=£0 r

We exploit the fact that VP must be curl free, V x VP = 0. It simplifies the general form of
the vector potential expansion given in Eq. (2.11). It also reveals that, without loss of generality,

one can rewrite the vector potential as
R i
Y B, (—) rexp(inf)| » 2,
n#0 r

R |n|
A = {9+2An (—) exp (in@) + &
n#0 r
replacing the array of coefficients A,,, with the simpler set of A, and B,,. Observe that the
vector potential (2.14) is simply a superposition of a purely Newtonian term (o< 8%, coefficients
A,,) and a non-Newtonian contribution (o< 8!, coefficients By,)

(2.14)

A=Ay+Apnn. (2.15)

The flow described by Ay is irrotational, while Axy has a curl.
Similarly, we express the pressure of the outer fluid as a sum of Newtonian and non-
Newtonian pressures, and propose a general form for their Fourier expansion

P = Py +Pyn, (2.16)
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where

n|
Py = —log (%) + Z Dn (§> exp (inB), 2.17)

n#0 r

and

n|
—r+Y n (5) rexp(in@)] : (2.18)
n#0 r
The gradient of the complex pressure field (2.16) must satisfy the non-Newtonian Darcy’s
law given by Eq. (2.8). By inspecting the » and 8 components of (2.8), and by examining the
Newtonian and non-Newtonian components of it, we can express the Fourier coefficients of Py,
Pyy and Apy in terms of the Fourier coefficients of Ay,

pn =isgn(n) (Ay), (2.19)
qn = iApsgn(n)B(n) + Z mAy, (n—m)Ap—_pm k(n,m), (2.20)
m#£0,m#£n
B, = Awa(n) + Y, m(iAy)(n—m)An_m h(n,m), (2.21)
m#£0,m#n

where in order to keep the results in a compact form, we introduced the coefficients

_ Inf(n| =1)
o (n) = 2 —1) (2.22)
n2
B (n) = Q=1 (2.23)
h(n,m) = 2|n]1— 1 [(1 —|n—m|)sgn(m) —2(n—m) + g(l —sgn[m(n —m)])] ,(2.24)
and
k(n,m) = % lsgn(m) —(|n|] — l)h(n,m)] . (2.25)

Note that sgn(n) = 1 if n > 0 and sgn(n) = —1ifn < 0.

Using Egs. (2.19)-(2.21), which are consistent with the Darcy’s law (2.8), we can relate the
full expression of the velocity and pressure, up to first order in 6, with the coefficient A,,. Now
we seek to express A, in terms of the perturbation amplitudes.

To fulfill this goal, we consider the generalized pressure jump condition at the interface,
that can be written as [49]

Pl =-T K'ng, (2.26)
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and the kinematic boundary condition [22,49]

x4 10%
=g 220

|

which states that the normal components of each fluid’s velocity at the interface equals the

velocity of the interface itself.
In (2.26)
_ bPmy
oNRQ
is a surface tension parameter, and | is the curvature in the direction parallel to the plates.

By expanding Egs. (2.26) and (2.27) up to the first order in ¢ and ¢ and first order in & we
(1)

find the coefficient of the vector potential corresponding to the n-th evolution mode, A, "/,

(2.28)

il (1) = EC T %c} [1 - 8Ra(n), (2.29)

where the overdot denotes total time derivative. '
Now we can use Egs. (2.26) and (2.29) to calculate, up to the second order in § and { and

first order in &, the vector potential corresponding to the n-th evolution mode, A;z),

@y 1 1
) =z L [2|n|R

m#n,0

T o M)
|n|R? 2

+  ou(n,m)| §nCum

+ Z |:%+5RV(H,I’I1):| Cmgnfm
m#n,0

—+ 6R3 Z Mémén—m

m#n,0 ’n‘

k .
+ SR ;0% Ennms (2.30)

where the coefficients

w(nm) = ﬁ{k(n,mH(I—W)Mm)—a(m)—ﬁ(n) B%(mh@—l)]},
(2.31)
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m) = - [k(n,m) _B(n)+ (1 - L) B(m)— (X(m)] . (2.32)

In| |m|

Finally, by using Eqgs. (2.27), (2.29) and (2.30) one can find the equation of motion for the
perturbation amplitudes {,. We present the evolution of the perturbation amplitudes in terms
of 8, { and ¢

&=EM 48P (2.33)
where .
V=2 (n) g, (2.34)
_ r 2 n| n| -1 T 2 _
M) = g (il =)= galnl (v = 1) #8570 77 | ==+ palnl(n® — 1) 235)

is the linear growth rate, and

&Y = Y [Fv(nm)+8 Fuy(nm)] Enlum
m#n,0
+ Z [GN<n7m)+(SGNN(n=m)] Can—m
m#n,0
+ 0 Z HNN(”am) Canfm
m#n,0
+ 6 Z JNN(nym) Can—m
m#n,0

(2.36)

In Eq. (2.36) the coefficients Fy, Fyy, Gy, Gnn, Hyn, and Jyy represent the second order New-
tonian (N) and non-Newtonian (NN) terms. These second order coefficients present spe-
cial reflection symmetries € (n,—m) = € (—n,m), and € (—n,—m) = € (n,m), where € =
Fn,Fyn,Gn,GnN, Hyn, and Jyp, as the reader can see in Egs. (2.37)-(2.42). Such symmetries
facilitate the analysis performed in subsection (2.4.2).

(2.37)
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Fun(n,m) = ﬁ{(z——) o(m)

G ) = 241 = sgntm) — .

Gy (nm) = (2= a(m)
+ b o= B+ (1= o) BOm) )
+  f(n,m),

Hyy (n,m) = f(n,m),
Iyn (n,m) = R? f(n,m),

f(n,m) =nh(n,m)+ |nlk(n,m).
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(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

Equation (2.33) is the mode-coupling equation of the Saffman-Taylor problem with yield
stress fluids in radial geometry. It gives us the time evolution of the perturbation amplitudes
., accurate to second order, in the weak yield stress limit. Notice that Eq. (2.33) is conve-
niently written in terms of two dimensionless parameters: 8 [Eq. (2.7)] and I" [Eq. (2.28)]. The
generalized Darcy law (2.8) and the equation of motion (2.33) constitute central results of this

chapter.

2.4 Discussion

We proceed by using our mode-coupling approach to investigate the interface evolution at first
and second order in {. To simplify our discussion it is convenient to rewrite the net perturba-

tion (2.10) in terms of cosine and sine modes

£(0,t)="Co+ i [an(t)cos(nB) +by(t)sin(nb)],
n=1

(2.44)
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where a, = §,+ {_,, and b, = i(§, — {_,) are real-valued. Without loss of generality, for the
remainder of this chapter, we choose the phase of the fundamental mode so that a, > 0 and
b, = 0. Henceforth, we study the development of interfacial instabilities, and examine how the
yield stress parameter 6 and the effective surface tension I affect pattern morphology. It should
be noted that the theoretical results presented in the following sections utilize dimensionless
quantities which are extracted from the realistic physical parameters used in the experiments of
Refs. [22-24] and [47,48].

2.4.1 First order: Linear analysis

Before analyzing the weakly nonlinear regime, and try to understand how nonlinearity affects
the morphology of the emerging patterns, we briefly discuss some useful information which
can be extracted from the linear growth rate (2.35). The wave number of maximum growth
[obtained by setting dA(n)/dn = 0] for a Newtonian fluid (0 = 0) can be easily calculated
from Eq. (2.35), yielding

1 R
n o= 3 (1 + f)' (2.45)

From Eq. (2.35), one can obtain an explicit solution for the wave number 7,,,, with maximal
growth rate for a yield stress fluid (6 # 0). Although this expression is rather complex, in the
limit I < 1 it simplifies to (see Appendix A)

OR

Ponax 0 (1 + T) . (2.46)

It is worth noting that a similar kind of approximation has been performed in Ref. [40], leading
to their Eq. (62). We stress that this limit (very small I') is consistent with experimental data of
Refs. [22-24] and [47,48] which imply in I" of the order of 10—3. We have also verified that
the critical wave number [obtained by setting A (n) = 0], that is the maximum wave number for
which the growth rate is still positive, is shifted towards higher wave numbers as the yield stress
parameter O is increased. These findings indicates that yield stress effects tend to destabilize
the interface in the weak yield stress regime.

Further insight on the linear behavior can be obtained from Fig. 2.2 which plots A(n) as a
function of mode number n for three different values of the yield stress parameter 6 (0, 0.075,
and 0.15), and I" = 4.45 x 1073, By examining Fig. 2.2, we notice that by increasing & one
observes an increased growth rate of the fastest growing mode 7y, so that it is shifted towards
larger wave number values. Since n,,,, is related to the typical number of fingers formed at
the onset of the instability, this means that higher 6 would induce the formation of patterns
tending to present an increased number of fingered structures. It is also clear that the action
of yield stress widens the band of unstable modes. These linear stability results indicate that
interfacial instabilities involving multi-fingered structures presenting finger tip-splitting and
side branching would be plausible candidates to arise due to the action of yield stress effects.
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Figure 2.2 Linear growth rate A(n) as a function of mode n, for three values of &, surface tension
parameter I' = 4.45 x 1073, and t = ty = 0.495. To better guide the eye the maxima of the curves are
explicitly indicated by small dots.

2.4.2 Second order: Weakly nonlinear analysis

Now the mode-coupling equation (2.33) is utilized in its entirety to study the onset of pattern
formation through the coupling of a small number of modes. Specifically, we will be interested
in examining the action of the yield stress parameter 6 on the mechanisms of finger tip-splitting
and side branching. Such morphological structures were described in experimental works [46—
48].

2.4.2.1 Tip-splitting mechanism

Within the scope of our mode-coupling theory, finger tip-splitting and finger tip-narrowing are
related to the influence of a fundamental mode n on the growth of its harmonic 2n [25,39]. For
consistent second order expressions, we replace the time derivative terms a, and b, by A (n) a,
and A(n) by, respectively. Under these circumstances the equation of motion for the cosine
mode 2n is

1
aon = A(2n) ay, + 5 T(2n,n) af,, (2.47)
where the tip-splitting function is given by

T(n,m) = Fy(n,m)+A(m)Gn(n,m)+ 6 [Fyn(n,m)
+ A(m) Gyn(n,m)+A(n—m) Hyy(n,m)
+ A(m) A(n—m) Jyn(n,m)]. (2.48)
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Equation (2.47) shows that the presence of the fundamental mode n forces growth of the har-
monic mode 2n. The function 7'(2n,n) acts like a driving force and its sign dictates if finger
tip-splitting is favored or not by the dynamics. If 7 (2n,n) < 0, ay, is driven negative, precisely
the sign that leads to finger tip-widening and finger tip-splitting. If 7(2n,n) > 0 growth of
azn, > 0 would be favored, leading to outwards-pointing finger tip-narrowing.

— TI'=445x10"°
— I'=245x1073

0 0.04 0.08 0.12 0.16
0

Figure 2.3 Tip-splitting function 7'(2n,n) plotted against the yield stress parameter &, for two values
of the surface tension parameter I': 4.45 x 1073, and 2.45 x 1073, Here t = tr = 0.495. Note that the
qualitative behavior of T (2n,n) is basically the same for the two values of I'. As expected, for a given
0, smaller I" leads to enhanced tendency towards finger tip-widening and splitting.

Figure 2.3 plots the behavior of T'(2n,n) as a function of 8, for two different values of the
surface tension parameter I". To simplify our analysis we consider the onset of growth of mode
2n [using the condition A(2n) = 0] in the Newtonian limit § = 0, where we know T'(2n,n)
is negative [25]. By inspecting Fig. 2.3 we see that, regardless of the value of I', T'(2n,n)
becomes more negative as 0 increases, driving ap, negative [see Eq.(2.47)]. Considering the
presence of only modes n and 2n this indicates an enhanced tendency of the fingers to get wider,
and possibly split. These second order results are consistent with the first order predictions
described in section 2.4.1, which associated larger 6 with finger proliferation.

It is important to notice that, although Fig. 2.3 indicates an increasing tendency to observe
tip-splitting for larger values of & and lower values of I', this is not sufficient to guarantee
that finger tip-splitting will be the dominant morphological feature. It is necessary to analyze
the interplay between the tip-splitting and other relevant nonlinear phenomena such as side
branching in order to determine the ultimate shape of the evolving pattern. In the following
section we investigate the role of the side branching mechanism in our system, and analyze
which effect prevails for each set of dimensionless parameters.

2.4.2.2 Side branching mechanism

Another relevant non-Newtonian effect that can be studied at second order refers to the side
branching phenomenon [39]. In the realm of a mode-coupling theory, side branching requires
the presence of mode 3. If the harmonic mode amplitude as,, is positive and sufficiently large,
it can produce interfacial lobes branching out sidewards which we interpret as side branching.
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As commented at the introduction of this work, an experimental study of radial Hele-Shaw
flow with yield stress fluids (in the regime where viscous effects are prevalent over yield stress),
detected the development of patterns exhibiting occasional tip-splitting and dominant side
branching [48]. Taking these experimental facts into consideration we analyze the interplay
of three modes: n, 2n, and 3n. More precisely, we examine the influence of the fundamental
mode 7, and its harmonic 2n, on the growth of mode 3n. The equation of motion for the cosine
3n mode is

1
azp = A(3n) az, + 5 S(3n) anpan,, (2.49)

where the side branching function S(3n) = [T (3n,n) + T (3n,2n)] can be easily obtained from
Eq. (2.48). By analyzing Eq. (2.49) we observe that mode 3n can be spontaneously generated
due to the driving term proportional to a,a,, such that it enters through the dynamics even
when it is missing from the initial conditions. The existence and phase of mode 3n depends on
the interplay of the modes n and 2n. Side branching would be favored if a3, > 0.

To study the growth of mode 3n, in Fig. 2.4 we plot the function S(3n) as the yield stress
parameter is varied. Here, we consider the onset of growth of mode 3n [i.e. obeying the
condition A (3n) = 0] in the Newtonian limit 6 = 0. From Fig. 2.4 one can verify that S(3n) is
indeed negative for all values of 6. As shown in section 2.4.2.1, starting with a fundamental
mode a,,, the harmonic mode ay,, is driven negative. Hence the product S(3n)a,as, in Eq. (2.49)
1s positive, driving as, > 0, exactly the sign that favors side branching. Of course, whether side
branching actually occurs depends on the magnitude of as,,.
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Figure 2.4 Behavior of the side branching function S(3n) as the yield stress parameter § is increased,
for two values of the surface tension parameter I': 4.45 x 1073, and 2.45 x 1073, Here t = t; = 0.495.

It is worth pointing out that there exists a subtle interconnection between modes 3x and 2n,
described by the evolution equation (2.49), and a similar expression for the growth of mode 2n,

1
dop = A(2n) az, + 3 [T (2n,n) a2 + Sap anazy), (2.50)



2.4 DISCUSSION 35

where Sy, = [T'(2n,—n) + T (2n,3n)] is positive, but decreases in magnitude as 6 is increased.
Hence, when 8 = 0 side branching via a positive a3, will tend to drive ay, less negative, di-
minishing the intensity of tip splitting but also, as a by-product, reducing a the growth rate of
asz, itself. Fortunately, these effects become less important when 6 > 0, so that side branching
could still be detected by properly tuning 6 and I'.

The role of the yield stress parameter in determining the side branching behavior is illus-
trated in Fig. 2.5 which depicts the time evolution of the interface, plotted at equal time inter-
vals, considering the interaction of three representative cosine modes: a fundamental n = 4 and
its harmonics 2n = 8, and 3n = 12. The final time is t = 0.495, Ry = 0.1, and I' =4.45 x 1073,
The initial amplitudes at = 0 are a,, = Ry/(32.5), az, = 0, and a3, = 0, so that modes 2n and
3n are both initially absent.

Figure 2.5 Snapshots of the evolving interface, plotted at equal time intervals for the interaction of three
cosine modes n =4, 2n =8, and 3n = 12 when (a) 6 = 0, and (b) 6 = 0.15. Here I' = 4.45 x 1073,
t =ty =0.495, and Ry = 0.1. In (a) fingers widen and tip-splitting is imminent, while in (b) the rising
of three-lobed finger shapes indicate that side branching is favored.

In Fig. 2.5(a), when yield stress effects are absent (6 = 0), we see a nearly circular initial
interface evolving to a four-fingered structure. Finger broadening can be observed and, at later
times, the finger tips become increasingly flat, showing a tendency to bifurcate. The develop-
ment of broad fingers in Fig. 2.5(a) results from nonlinear effects, as predicted by Eq. (2.47),
when the mode 2n is driven negative. Notice that there is no sign of the presence of a mode 3n
in Fig. 2.5(a), indicating that side branching would not be favored when § = 0.

A different scenario is observed in Fig. 2.5(b), where the yield stress parameter is nonzero
(6 = 0.15). Contrary to what is shown in Fig. 2.5(a), in Fig. 2.5(b) we see the development
of an initially fourfold structure which evolves towards a 12-fold fingered morphology, clearly
showing the presence and growth of a sizable amplitude a3, > 0. This indicates that the pres-
ence of a nonzero, sufficiently large yield stress parameter does favor side branching formation
at second order. Therefore, our weakly nonlinear results predict enhanced side branching be-
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havior when the role of yield stress is taken into account.

In order to reinforce the conclusions reached from Fig. 2.5, in Fig. 2.6 we compare the time
evolution of the cosine perturbation amplitudes of modes n, 2n, and 3n when yield stress effects
are neglected (dashed curves) and taken into account (solid curves). All initial conditions and
physical parameters are identical to the ones utilized in Fig. 2.5. It is clear that as a result of
the weakly nonlinear coupling we find the enhanced growth of modes 2n (with az, < 0) and
3n (with a3, > 0), and a diminished growth of the fundamental mode n. This provides supple-
mentary information supporting the effectiveness of the side branching formation mechanism
at the onset of nonlinearity.

0.2
0.1
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-0.1 Solid curves (6 = 0.15)
Dashed curves (6 = 0)

0O 01 02 03 04 05
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Figure 2.6 Time evolution of the cosine perturbation amplitudes of modes n =4, 2n = 8§, and 3n = 12,
for 6 = 0 (dashed curves), and & = 0.15 (solid curves). These are the amplitudes related to the patterns
depicted in Fig. 2.5.

It is worth noting that, although in Fig. 2.6 a,, is more negative for the yield stress case
in comparison to the Newtonian one, this does not necessarily imply that tip-splitting will be
the prevalent morphological feature of the emergent pattern. As a matter of fact, the positive
amplitude of a3, is also increased due to the effect of the yield stress when compared to the
0 = 0 situation. Consequently, side branching is also favored and eventually overcomes the
tip-splitting tendency. Therefore, we find necessary to plot the interface with all three modes
(n,2n,3n) put together in order to determine the prevailing mechanism at the weakly nonlinear
regime. As it is further discussed, we proceed by inspecting our parameter space in Fig. 2.7 to
unveil the final predominant morphology for each set of parameters.

We conclude this chapter by briefly presenting a morphological “parameter diagram” for
the onset of pattern formation in our radial injecting flow Hele-Shaw system with a yield stress
fluid. Figure 2.7 shows typical emerging patterns by considering the parameter space (6, I).
Since the parameters & [Eq. (2.7)] and I [Eq. (2.28)] depend on the final unperturbed radius Ry,
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the representative patterns shown in the insets of Fig. 2.7 are plotted in such a way that Ry and
Ry are kept fixed, while the initial perturbation amplitudes are chosen in order to allow better
visualization of the nonlinear effects. In other words, we choose the adequate perturbation
amplitudes such that at R = Ry the weakly nonlinear evolution reaches its limit of validity
(interfaces plotted at different times do not intercept [88]). For this reason the initial conditions
of the four insets of Fig. 2.7 are not exactly the same, presenting small differences in their
innermost interfacial contours.

8

0 0.05 0.1 0.15 0.2

Figure 2.7 Morphological diagram in the parameter space (0, I'). The dashed lines delimitate the
boundary between different morphological regions (I, II, and III), such boundaries were determined by
examining the emerging patterns.

In the morphological diagram depicted in Fig. 2.7 we can identity three different regions:
for lower values of I" and nonzero &(region I) we verify that tip-splitting is unfavored for a
non-Newtonian yield stress fluid, so that the resulting patterns present a small bump in the mid-
dle of each evolving finger, indicating preferred side branching behavior. On the other hand,
for higher values of I' (region III) finger tip-splitting arises without any evident manifestation
of side branching, generating petal-like patterns which are similar to the ones obtained in the
purely Newtonian problem when 6 is small. It is also clear that stronger splitting results when
0 is increased, leading to shapes showing fingers with increased spreading. Finally, for inter-
mediate values of I" (region II) we have the delicate interplay between modes 2n and 3n men-
tioned earlier [Egs. (2.49) and (2.50)], leading to a competition between the two participating
mechanisms, which ends up forming three-lobed, side branched structures. We call the readers
attention to the subtle difference between regions I and II, while in region I the mode 3n grows
at the beginning of the evolution, in region II the mode 3n grows at the end of the evolution.
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This difference is important because, in the side branching structure, the lateral branches starts
to grow after the fundamental mode is fully developed. Therefore, we have the side branching
structure formed in region II, while in region I it’s only a seminal behavior. The morpholog-
ical diagram contemplates the possibility of existence of tip-splitting events (region III), plus
the prevalence of side branching phenomena (regions I and II), being generally consistent with
available experimental results [47,48].



CHAPTER 3

Lifting flow in a HSC with a yield stress fluid

3.1 Chapter outline

In this chapter we perform the weakly nonlinear analysis of the problem in which a viscous
yield stress fluid, surrounded by an inviscid fluid, flows in a lifting HSC. By exploring the
onset of nonlinear effects we try to gain analytical insight into the dynamic process of finger
competition. Particularly, we seek to understand how mode-coupling dynamics can describe
the influence of both the aspect ratio, and the non-Newtonian nature of the distended fluid on
the finger competition behavior.

The remainder of this chapter is organized as follows: Sec. 3.2 presents our theoretical
weakly nonlinear approach. From our modified Darcy’s law for yield stress fluids [Eq. (2.6)]
we derive a second-order mode-coupling equation that describes the time evolution of the in-
terfacial amplitudes. This is done by explicitly considering the role played by the inner fluid
non-Newtonian yield stress nature, as well as the geometric aspect ratio. A discussion on the
action of these two elements in regulating finger competition events is presented in Sec. 3.4.

3.2 Problem formulation

Finger competition in HSC is an intrinsically nonlinear effect and cannot be properly addressed
by purely linear analysis [22, 25,49]. To elucidate key effects related to finger competition
phenomena in lifting HS flow with a yield stress fluid we employ a weakly nonlinear approach.
By doing this one is able to study both interface stability issues at the early linear regime, as
well as important morphological aspects at weakly nonlinear, intermediate stages of pattern
evolution.

We begin by considering a HS cell of a variable gap width b(¢) containing a non-Newtonian
fluid of viscosity 1 and yield stress op, surrounded by an inviscid Newtonian fluid [Fig. 3.1].
The surface tension between the fluids is denoted by . The upper cell plate can be lifted
along the direction perpendicular to the plates (z-axis), and the lower plate is held fixed. The
initial fluid-fluid interface is circular, having radius Ry = R(t = 0) and initial gap thickness
bo = b(t = 0). By using volume conservation the time dependent radius of the unperturbed
interface is given by

R(1) =Ry ol 3.1)

In the lifting HSC with a yield stress fluid the flow is governed by two dimensionless equa-

39
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2 b()

Figure 3.1 Schematic configuration of the lifting HS cell. The inner fluid (in gray) is a yield fluid
of viscosity 1), while the outer fluid is Newtonian and has negligible viscosity. The unperturbed time-
dependent fluid-fluid interface (dashed curve) is a circle of radius R = R(¢). The interface perturbation
amplitude is denoted by { = £(6,1), and 0 is the polar angle. The direction of lifting is along the z-axis.

tions: our modified Darcy’s-law [Eq. (2.8)], here due to different adimensionalization,

2
q b
VP=—> 1146 — 3.2
bz{ i ‘I’Vd " G2
and the gap-averaged incompressibility condition [50]
b(1)
V.v=——2. 3.3
YT ) :3)
In Eq. (3.2), as in chapter 2, P is the pressure, v denotes the fluid velocity, and
Ry
=— 34
9= %50 (3.4)
represents the initial aspect ratio, g > 1. Its worth pointing out that Ib% > 1 for all times until
tr. Moreover,
b
— 900 (3.5)
4n[b(0)]

is the yield stress parameter, similar to 6 in chapter 2, that quantifies the ratio between yield
stress and viscous forces, where b(t) = db(t)/dt is the upper plate velocity along the z-axis.
We point out that, in Egs. (3.2) and (3.3) in-plane lengths, b(¢), and time are rescaled by Ry,
b, and the characteristic time T = by /|b(0)|, respectively. For the rest of this work we use the
dimensionless version of the equations. Here, as in chapter 2, we still interested in examining
the regime where viscous forces prevail over the yield stress and flow is facilitated, which
corresponds to § < 1.

3.3 Mode-coupling equation

To perform the weakly nonlinear analysis of the system, we consider that the initial circular
fluid-fluid interface is slightly perturbed [see Fig. 3.1], R = R(r) + £ (6,7) ({/R < 1). As in
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chapter 2, the interface perturbation is written in the form of a Fourier expansion {(0,7) =
o Gu(t)exp (in@), where ,(¢) = (1/27) 02” £(0,t)exp(—inB) dO denotes the complex
Fourier mode amplitudes, n is an integer wave number, and 0 is the polar angle. The n =0
mode is included to keep the area of the perturbed shape independent of the perturbation (.
Mass conservation imposes that the zeroth mode is written in terms of the other modes as
o= —(1/2R) ¥,120|£a(t)]. Note that our perturbative analysis keeps terms up to the second-
order in { and up to first order in §.
Taking the divergence of Eq. (3.2) and using the incompressibility condition (3.3) the pres-
sure is seen to be anharmonic (nonvanishing Laplacian). Hence, we perform our calculations

considering that v=V x A — V¢, where
)b
~ 4b
is a scalar velocity potential [50,60], and

(3.6)

5 (4+8) () eno] )1 o0

r Il
A = Ap(=) exp(inf) + &
{’;) <R> n#0

is a vector potential. Observe that the vector potential (3.7) is simply a superposition of a purely
Newtonian term (< 8°, coefficients A,,) and a non-Newtonian contribution (o< 8!, coefficients
By)

A=Ay+Apny. (3.8)

The flow described by Ay is irrotational, while Ayy has a curl.
Similarly, we express the pressure of the inner fluid as a sum of Newtonian and non-
Newtonian pressures, and propose a general form for their Fourier expansion

P =Py +Pyn, (3.9)
where - .
bg® , ry\ln .
Py = il +n§6pn (1_3) exp (in6), (3.10)
and
o
PNN = —7q r
qn S r\ Il )
+ 8 ;0 (7”+r—§) (E) exp (ind). G.11)
n

The gradient of the complex pressure field (3.9) must satisfy the non-Newtonian Darcy’s
law given by Eq. (3.2). By inspecting the r and 6 components of (3.2), and by examining the
Newtonian and non-Newtonian components of it, we can express the Fourier coefficients of Py,
Pyy and Apy in terms of the Fourier coefficients of Ay,

_ig’sgn(n)

pn =" An, (3.12)
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igh(n
qn = — qB( )An, (3.13)
b
bq
Sn=75 Z m(n—m) w(m,n)AuAp—m, (3.14)
b
m#0,m#£n
b2
B, = —a(n)A, (3.15)
qb
b3
Ch=— Z im(n—m) v(m,n)AnA,—m,
qb m#£0,m#n

(3.16)

where in order to keep the results in a more compact form, we introduced the coefficients

M@Z%%%ig, (3.17)
N@Iaﬁﬁﬁ, (3.18)
w(n,m) mlz sen(m)
£ (nl-3) sgn[m(n—m)]], (3.19)
and
Vonm) = sl () — 4 sen(on) (3.20)

Note that sgn(n) = 1 if n > 0 and sgn(n) = —1if n < 0.

Using Egs. (3.12)-(3.16), which are consistent with our Darcy’s law (3.2), we can derive
the general expression of the vector potential Fourier coefficients in terms of the perturbation
amplitudes. To fulfill this goal, consider that the pressure jump condition at the interface can
be written as [49,51,53,55]

r
Plx = — K|, (3.21)
q
where ¥
r=——1 (3.22)
12116(0)]

is a surface tension parameter, and | is the curvature in the direction parallel to the plates.
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Equation (3.21) is the simplest version of the Young-Laplace pressure boundary condition,
and does not include the curvature in the direction perpendicular to the cell plates. Since the
depth of the cell varies in lifting Hele-Shaw flows, in principle one could expect the perpen-
dicular curvature to play some role on the dynamics of the system. To the best of our knowl-
edge the only existing study which discusses the alleged role of the perpendicular curvature in
lifting Hele-Shaw flows has been performed by M. Ben Amar and D. Bonn [51]. The three-
dimensional model presented in Ref. [51] is somewhat involved, and just leads to a modest
improved agreement between their experiments and theory. In any case, the validity and accu-
racy of the simpler condition given in (3.21) has been substantiated by the excellent agreement
between experiments and state-of-the-art numerical simulations performed in Refs. [53,55]. In
view of these facts we choose to use the simpler condition (3.21).

By expanding Eq. (3.21) up to the second-order in { and up to first order in § one can find
the coefficient of the vector potential corresponding to the n-th evolution mode, A,gk), in terms
of the k-th order in { (k = 1, 2) [39,78]. These vector potential coefficients can be introduced
into the kinematic boundary condition [22,49]

88_9; = [%3—9; (—ve) +vr1 , (3.23)

|

which states that the normal components of each fluid’s velocity at the interface equals the
velocity of the interface itself. By using Eq. (3.23) plus our modified Darcy’s law (3.2), and
Eq. (3.21) one can finally find the equation of motion for perturbation amplitudes &,. From here,
the calculus and intermediate steps to the derivation of the equation of motion for perturbation
amplitudes {,, in this chapter, are completely analogous to those done in chapter 2. We present
the evolution of the perturbation amplitudes in terms of 6 and the k-th order in the perturbation
amplitude

& =W 4+ EP) (3.24)
where .
&Y =2 ()¢, (3.25)
b r'b? 5
Aln) = %(M—l)—ﬁlfﬂ (n*—1)
bln| 23

+

2

(3.26)
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is the linear growth rate, and

é;’gz) = Z [En(n,m)+ 6 Fyn(n,m)] §nCoem
m#n,0
+ ; [GN(H7M)+5GNN(n,m)] Can—m
m##n,0
+ 6 Z HNN(nﬂm) Can—m
m#n,0
+ 9 Z JnN(n,m) Cmén—m
m#n,0
Fy(n,m) = i( sgn( )—|n’_1)_r_bz| |(1_@_3_mz)
v(nm) = o 5| nsgnim)— = prre 5 > )
Fyn(n,m) = %{f(nz,m)
1 2rp nm  3m?
5 s (15 =) | B0~ et

m m

w1 - =L a(m)—Mum—n}

L] sgn(am) — [n] — 1],

GN(nam) = E

(Im| = 1)

GNN(n,m) =

b {f(mm) ~ |nlB(m)
bgR? 2 m
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b2
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(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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In Eq. (3.27) the coefficients Fy, Fyny,Gn,Gyn,Hyn, and Jyy represent the second-order
Newtonian (N) and non-Newtonian (NN) terms. These second-order coefficients present the
same special reflection symmetries described in chapter 2.

Equation (3.24) is the mode-coupling equation of the lifting HSC problem with a yield
stress fluid. It gives us the time evolution of the perturbation amplitudes &,, accurate to second-
order, in the weak yield stress limit. Notice that Eq. (3.24) is conveniently written in terms
of three dimensionless quantities: the aspect ratio g [Eq. (3.4)], the yield stress parameter O
[Eq. (3.5)], and the surface tension parameter I" [Eq. (3.22)]. Since the role of I" has already
been sufficiently discussed in Refs. [50,53,55], we focus on understanding the action of ¢ and
0 in determining stability and shape of the interface.

Despite the complex functional form of the mode-coupling terms in (3.27), as we will see
in Sec. 3.4.2 the weakly nonlinear scheme furnishes a fairly simple picture for the important
mechanism of finger competition in lifting HS flows. It should be noted that the theoretical
results presented in the following sections utilize dimensionless quantities which are extracted
from the realistic physical parameters used in the experiments of Refs. [52,53,55]. In accor-
dance with these experimental studies we consider that the gap width grows linearly with time,
so that the lifting velocity b is constant.

3.4 Discussion

We proceed by using our mode-coupling approach to investigate the interface evolution at first
and second order in {. To simplify our discussion it is convenient to rewrite the net perturba-
tion (2.10) in terms of cosine and sine modes, as we did in chapter 2 [Eq. (2.44)].

Without loss of generality, for the remainder of this chapter, we choose the phase of the
fundamental mode so that @, > 0 and b,, = 0. Henceforth, we study the development of inter-
facial instabilities, and examine how the yield stress parameter 6 and the aspect ratio g affect
the finger competition dynamics.

3.4.1 First order: Linear analysis

Before analyzing the weakly nonlinear regime, and try to understand how nonlinearity affects
the finger competition, we briefly discuss some useful information which can be extracted
from the linear growth rate (3.26). We start by discussing the physical origin of each term
in the linear growth rate expression. Since a positive growth rate A(n) leads to an unstable
interface, Eq. (3.26) tells us that the lifting force contribution appearing as the first term on
the right hand side tends to destabilize the system since 5 > 0. On the other hand, the second
term proportional to |n|(n? — 1) is associated to the surface tension connected to the in-plane
curvature, and plays a stabilizing role. It can be noticed that increasingly larger values of g
(large confinement) tend to inhibit the stabilizing effect due to surface tension.

The description of the terms proportional to 6 in Eq. (3.26) is as follows: the first con-
tribution is due to the coupling between the surface tension parameter I" and yield stress, and
its net effect is destabilizing. Meanwhile, the second term is uniquely related to yield stress
and has a stabilizing role. We have verified that for the typical experimental circumstances of
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Refs. [52, 53, 55] this last term is dominant so that the overall linear effect of the term pro-
portional to 6 in Eq. (3.26) is indeed to stabilize the interface. We can also see that strong
confinement (high aspect ratio) leads to a less efficient stabilization via yield stress effects.

We continue by briefly discussing some useful information which can be extracted from
the linear growth rate (3.26). The wave number of maximum growth [obtained by setting
dA(n)/dt = 0] for a Newtonian fluid (6 = 0) can be easily calculated from Eq. (3.26), yielding

1 ¢R3b
N
Mooy = \/§ (1 + T ) . (3.35)
From Egq. (3.26), one can obtain an explicit solution for the wave number n,,,, with maximal

growth rate for a yield stress fluid (6 # 0). Although this expression is rather complex, in the

limit (n )2 > nl .. > 1 (which is consistent with experiments [52, 53,55]) it simplifies to

o, (182 i 3.36

Nmax ~ nmax ( bq_R) ) ( . )
the intermediate steps to this calculus are analogous to those in appendix A. One can verify that
the critical wave number [obtained by setting A (n) = 0] which is the maximum wave number
for which the growth rate is still positive, is slightly shifted towards lower wave numbers as the
yield stress parameter 0 is increased. We can also verify in Egs. (3.26) and (3.36) that when ¢
is too large (great confinement) the yield stress contribution tends to decay so the behavior of
the non-Newtonian fluid approaches the Newtonian one.

In opposition to Fig. 2.2, Fig. 3.2 shows us that, in the lifting-driven flow, the effect of 0 at
linear level is very slight. On the other hand, in Fig. 3.2 we can see that the effect of the aspect
ratio at linear level is very strong.

From the findings presented in this section we see that yield stress effects tend to stabilize
the interface in the weak yield stress regime. Since n,,,, [Eq. (3.36)] is related to the typical
number of fingers formed at the onset of the instability, this means that higher 6 would in-
duce the formation of patterns tending to present a decreased number of fingered structures.
Conversely, larger ¢ tend to destabilize the system favoring the development of patterns having
more fingers.

3.4.2 Second order: Weakly nonlinear analysis

Now the full mode-coupling equation (3.24) is utilized to study the onset of pattern formation
through the coupling of a small number of modes. We follow Refs. [25,60] and consider finger
length variability as a measure of the competition among fingers. Within our approach the
finger competition mechanism can be described by the influence of a fundamental mode n,
assuming 7 is even, on the growth of its sub-harmonic mode n/2. By using Egs. (3.24)-(3.27)
the equations of motion for the sub-harmonic mode can be written as

dnjp = {A(n/2)+C(n) an} ay, (3.37)

bujr = {A(n/2) = €(n) an} by, (3.38)
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Figure 3.2 Linear growth rate A(n) as a function of mode n, for three values of 6 and two values of
g, surface tension parameter I' = 0.5, and ¢ =ty = 0.0015. To better guide the eye the maxima of the
curves are explicitly indicated by small dots.

where the finger competition function is given by

e =4 [r (5-5)+7 (3)]

and T (n,m) is described in Eq. (2.48).

From Egs. (3.37) and (3.38) we verify that a negative C(n) increases the growth of the sine
sub-harmonic b, /,, while inhibiting growth of its cosine sub-harmonic a,,/,. The result is an
increased variability among the lengths of fingers of the outer fluid penetrating into the inner
one. This effect describes the competition of inward fingers. We stress this is in line with what
is observed in numerical simulations [50] and experiments [52, 53, 56]. Reversing the sign
of C(n) would exactly reverse these conclusions, such that modes a, /2 would be favored over
modes b, /. In this case, competition of the outward moving fingers of the inner fluid would
have preferential growth.

At this point we emphasize a few important ideas related to the finger competition mech-
anism described by Eqgs. (3.37) and (3.38). The action of the sub-harmonic mode breaks the
n-fold rotational symmetry of the fundamental by alternately increasing and decreasing the
length of each of the n fingers. The fact that when C(n) < 0 sine modes b,, /2 grow, and co-
sine modes a,/, decay does not really mean that finger competition only occurs for inward
moving fingers. Actually, finger competition is present for both inward and outward moving
fingers. However, while the competition among inward moving fingers is favored, the compe-
tition among outward moving fingers is restrained. What our finger competition mechanism
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determines is the preferred direction for finger growth and finger length variability. So, when
C(n) < 0, even though there exists finger competition in both directions (inward and outward),
the competition among inward moving fingers is much stronger than the competition among
outward moving fingers.

For the typical experimental parameters used in Refs. [52, 53, 55] we have found that
C(n) < 0 indicating a restrained growth of cosine sub-harmonic modes a,, /2, accompanied by
a simultaneous increased growth of sine sub-harmonic modes b, . This general behavior is
illustrated in Fig. 3.3 which depicts the time evolution of the mode amplitudes (a) a,,/,, and (b)
by, for different values of the yield stress parameter 0, and aspect ratio ¢. In Fig. 3.3 we take
the initial amplitudes as a,, /> (0) = b,,»(0) = 0.001, and a,(0) = 0.01. In addition, I'= 0.5, and
the final time 77 = 0.0015. These parameters are also utilized to plot Fig. 3.4 and Fig. 3.5.

(b)
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Figure 3.3 Time evolution of the (a) cosine (a, ;) and (b) sine (b, /) perturbation amplitudes for the sub-
harmonic mode, considering different values of & and g. Here a,,(0) = b,/,(0) = 0.001, a,(0) = 0.01,
['=0.5,and 1y = 0.0015.

In Fig. 3.3 curves in black (gray) show the amplitudes’ time evolution when the inner fluid
is yield stress (Newtonian). Moreover, the solid (dashed) curves depict the situation in which
the aspect ratio is large (small), given by g = 105 (¢ = 75). By inspecting Fig. 3.3(a) it is
clear that the amplitudes of the mode a,,/; do tend to decrease as time progresses. Regardless
the value of the aspect ratio g one observes that the yield stress nature of the inner fluid tend
to attenuate such a decrease. It is also evident that stronger attenuation takes place for large
values of g. On the other hand, by examining Fig. 3.3(b) we notice that the amplitudes of
the sine mode b, /, show an increase as time evolves. But, similarly to what has been seen in
Fig. 3.3(a) the growth of b, /2 is unfavored for larger (smaller) values of 6 (q). Therefore, the
main conclusion extracted from Fig. 3.3 is that finger competition of inward moving fingers is
facilitated for stronger confinement (i.e. larger ¢), and inhibited for higher yield stress effects
(larger 6).
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In Fig. 3.3 we can also verify that the difference between yield stress and Newtonian curves
is smaller for low values of ¢, this is in agreement with Eqs. (3.26) and (3.36) where we can
see that greater confinement (large ¢) tends to decrease the difference between Newtonian and
yield stress behavior.

In order to reinforce the conclusions reached from Fig. 3.3, and to illustrate our finger com-
petition findings in a more pictorial way in Fig. 3.4 we plot the fluid-fluid interface at final time
t =17 =0.0015 as a function of the polar angle 6. Recall that here we consider the same initial
conditions and physical parameters used in Fig. 3.3. This is done for different values of 0 and
q. The most noteworthy feature of Fig. 3.4 is the conspicuous competition between the inward
moving fingers of the outer fluid penetrating the inner fluid. It is also clear that the outward
moving fingers of the inner fluid do not tend to compete as much. All these more visual ver-
ifications are in agreement with the predictions based on the mode-coupling equations (3.37)
and (3.38), and with the fact that the finger competition function C(n) is negative. By exam-
ining Fig. 3.4 we can also confirm the fact the finger competition of inward moving fingers is
enhanced for larger values of the aspect ratio, and repressed by yield stress effects.

outer fluid

1.03

0.97 inner fluid
0.94
—— §=008,9g=105 —==—- §=008,q=75
— §=0 ,q=105 =—==-6=0 ,q=75
0 0.02 0.04 0.06 0.08

Figure 3.4 Snapshot of the fluid-fluid interface position R as a function of the polar angle 6 att =ty =
0.0015, for different values of § and g. This graph uses the same physical parameters utilized in Fig. 3.3.

Complementary information about the time evolution of the finger competition behavior
in our system can be obtained by analyzing Fig. 3.5 that plots the difference in finger lengths
for consecutive inward moving fingers AR as a function of time, for 0 <7 <¢;. Note that the
quantity AR is obtained by calculating the difference between the interface positions of the
finger tips R for consecutive inward moving fingers of the outer fluid. Finger length variability
(i.e. finger competition) does not change much if ¢ and § are varied at lower times. However,
as time advances we can easily verify that finger competition of inward fingers does increase



3.4 DISCUSSION 50

significantly for higher values of ¢, and tends to be diminished by the action of yield stress
effects.

o
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Figure 3.5 Difference between the interface positions of the finger tips for consecutive inward moving

fingers of the outer fluid AR as a function of time, for different values of 6 and ¢. This figure uses the
same physical parameters utilized in Figs. 3.3 and 3.4.



CHAPTER 4
Controlling and minimizing fingering instabilities
in non-Newtonian power-law fluids in a
injection-driven HSC

4.1 Chapter outline

In this chapter, differently of the previous ones, we study the linear analysis of the problem in
which a non-Newtonian fluid flows, in a radial HSC, being pushed by an injected Newtonian
fluid. By exploring the onset of linear effects we try to understand the dynamic process of
controlling and minimizing fingering formation. As in Ref. [41] we study a situation in which
the dislocated fluid exhibits the simplest non-Newtonian rheology: a power-law viscosity. In
this framing, we focus on examining how the existing stabilization protocols for Newtonian
fluids [26,66-77] are modified by the fact that the displaced fluid can be either shear-thinning
or shear-thickening.

The rest of this chapter is organized as follows: Sec. 4.2 formulates the problem and derives
the growth rate for the power-law fluids. In Sec. 4.3 we expose the variational strategy for
minimizing fingering instabilities. Finally, in Sec. 4.4 we present our strategy to control the
number of fingers at the interface.

4.2 Problem formulation and linear growth rate

Consider the displacement of a viscous, non-Newtonian, power-law fluid by a Newtonian fluid
of negligible viscosity in a quasi-two-dimensional Hele-Shaw cell of constant gap spacing b.
We define a cylindrical coordinate system (r, 0,7) in such a way that its origin is located at the
center of the cell. The lower (upper) Hele-Shaw cell plate is located at z = 0 (z = b), and the
surface tension between the fluids is denoted by ¢. Note that b is the smallest length scale of
the problem. The inviscid fluid is injected into the non-Newtonian fluid through a role localized
at the origin, at a given injection rate Q = Q(¢) (equal to the area covered per unit time) which
may depend on time.

The perturbed fluid-fluid interface [see Fig. 4.1] is described as Z(0,t) = R(t) + £(0,1)
(/R < 1), where 0 represents the azimuthal angle, and R(¢) is the time dependent unperturbed
radius

1 t
Mﬂ:¢%+EAQWMﬁ 4.1)

with Ry being the unperturbed radius at t = 0. The interface perturbation is written in the form

51
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of a Fourier expansion [Eq. 2.10].

The perturbative approach we employ keeps terms up to the first-order in {. Our main task
in this section is to obtain the linear growth rate of interfacial perturbations. This is a lengthy
and nontrivial calculation that has been originally performed by Sader et al. [41]. For the sake
of clarity below we describe the main steps of the derivation. We refer the reader to Ref. [41] for
details. It is worth pointing out that the linear growth rate plays a central role in the controlling
and minimizing schemes that will be described and discussed in Sec. 4.3 and 4.4.

Power—law fluid

Figure 4.1 Schematic illustration (top view) of the radial flow in a Hele-Shaw cell. The inner fluid is
inviscid and the outer fluid is a power-law fluid. The unperturbed time-dependent fluid-fluid interface
(dashed curve) is a circle of radius R = R(¢). The interface perturbation amplitude is denoted by { =
£(0,1), and 0 is the azimuthal angle. The injection point is located at the center of the cell.

The non-Newtonian fluid with which we will be concerned is described by the Oswald-de
Waele power-law model [27,41,79,91] whose constitutive equation is

7 =2m2e:¢](* /2, (4.2)

where T is the excess stress tensor, € = [Vu+ (Vu)7]/2 is the rate-of-strain tensor, with u
being the three-dimensional velocity vector, (Vu);; = diuj, and T denotes matrix transposition.
Note that in Eq. (4.2) the colon represents an inner product, e : € = }; ;e €, Where ey are
the Cartesian components of tensor e. In addition, m and o are positive material constants.
The constant o (0 < o < 2) is the so-called power-law index, with @ < 1 corresponding to a
shear-thinning fluid, & > 1 to a shear-thickening fluid, and o = 1 to a Newtonian fluid. The
constant m relates the Newtonian viscosity to the power-law index o.
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Ignoring inertia and body forces the governing equations of the system are the Navier-
Stokes equation

V.1=VP 4.3)
and the continuity equation for an incompressible fluid
V.u=0, 4.4)

where P = P(r,0,z) is the pressure. In the framework of the quasi-two-dimensional geometry
of the Hele-Shaw cell, the problem is specified by two boundary conditions [2,49]: (i) the
pressure jump boundary condition

p|r:% = —GK",,:%, (45)

where p(r,0) = f(f P(r,0,z)dz/b is the gap-averaged pressure, and K is the interfacial curvature
Kk in the plane of the Hele-Shaw cell; plus (ii) the kinematic boundary condition

0% 10%
e ( - ;%VO),_%’ (40

which states that the normal components of each fluid’s velocity at the interface is equal to the
velocity of the interface itself. Here v(r,0) = (v,,vg) = [ou(r,0,z)dz/b represents the two-
dimensional gap-averaged fluid velocity. Note that within the scope of the linear stability theory
Eq. (4.5) relates p with {, and o, while Eq. (4.6) connects the interface velocity components
with both &, and &,.

To obtain the equation of motion for the perturbation amplitude &, first one applies a first-
order perturbation method to the constitutive Eq. (4.2) and to the governing Eqs. (4.3) and (4.4),
imposing the no-slip boundary conditions at the cell’s plates, i.e. u =0 at z =0 and z = b.
Then, upon consideration of the pressure interface condition (4.5) and the kinematic boundary
condition (4.6), one obtains that

Gn = A(n)Gn, 4.7)

where the overdot means total time derivative,

An) = 5 [n_2_ 1} N pla—1) {nz(nz_ 1)} |

R | c(n) R(5-2a) c(n)
(4.8)
is the linear growth rate, R = Q/(27R),
— —_ )2 2
C(ﬂ)zl a+\/(12 a)?+4n o 9)

and

I(a) = {4 —102(2)} <‘;’1’;) (2—05). (4.10)
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In Eq. (4.10) n is the viscosity of the fluid when o = 1. Equation (4.8) reproduces the classic
linear dispersion relation derived by Paterson [see Eq. (10) in Ref. [22]] for radial Hele-Shaw
flow with Newtonian fluids when one sets & = 1. The solution of the Eq. (4.7) is given by

Gu(t) = Cu(0)exp{I(n,R,R)}, (4.11)

where .

I(n,R,R) = A(n,R,R)dt’, 4.12)
te(n)

with 7. (n) being the time at which a mode n becomes unstable [A (n) = 0], and A (n) = A (n,R,R)
. We assume that &, (t) = §,(0) if 0 <t <1.(n) [25,71]. We point out that the theoretical results
presented in this chapter are obtained by utilizing parameter values that are consistent with
those used in typical experimental realizations of radial Hele-Shaw flows with Newtonian [22—
24,26,66,67] and non-Newtonian [28-31] fluids: 1 = 8 g/(cm s), 6 = 25 dyne/cm, b = 0.1
cm, and Ry = 0.45 cm.

We close this section by adding a brief discussion of the validity of the linearization about
the time-varying base state. In general, when linear stability analyses are performed about a
non-stationary frame of reference it is known that so-called Perron effects [89] may invalidate
the usual approach to the stability of the problem. For instance, finding negative eigenvalues
of the linearized evolution operator does not generally mean stability of the underlying time-
dependent solution. The converse is also true: finding positive eigenvalues does not generally
mean instability. However, we point out that when Eq. (4.7) is written in matrix form for
modes n, we end up with a linear system of decoupled equations, where the matrix associated
to the system is already diagonal. In this case the base of eigenvectors [the modes exp (in6)]
is time-independent so that the information about the stability of the system can be reliably
extracted from the eigenvalues A (n). Under such circumstances, Perron-type difficulties can be
excluded. On the other hand, whenever such difficulties arise one could use a “quasi-steady"
strategy [90], and consider that the time scale of any disturbances is implicitly assumed to be
much faster than the time scale on which the base state changes. In this framework, Perron-type
difficulties can be properly avoided.

4.3 Minimizing the interfacial amplitudes

A variational method aimed to minimize interfacial instabilities occurring between two im-
miscible Newtonian fluids in a Hele-Shaw cell has been recently proposed in Ref. [71]. This
controlling technique has been successfully applied for the injection-driven flow in a radial
Hele-Shaw cell in the following context: if one wishes to inject a certain volume of fluid in a
given time, what would be the optimal time-dependent injection rate Q(z) so that the emerging
perturbation amplitudes could be minimized? In this section, we apply this approach and an-
swer this arduous question to an even more complex situation involving the radial Hele-Shaw
flow of an inviscid fluid displacing a viscous, non-Newtonian, power-law fluid.

At the linear level, the mode of maximum growth rate (nm,x) can be obtained by the condi-
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tion [dA (n)/dn] = 0. This calculation yields

B 1 (RZR)Z—a N (R2R>2—oc
”lmax—\/g {1+W} N\/W (4.13)

for an unstable growth situation of the interface. Notice that we can minimize the perturba-
tions amplitudes (4.11) by extremizing the integral (4.12). Moreover, since nm,y is the fastest
growing mode, we focus on minimizing the integral

N=Nmax

t
(e, R, R) = / A(R,R)dY, 4.14)
0

where 7. (nmax) = 0 and
.2 1 RF%2 R
A(R,R) =~ = ——=
3,/3al(a) R* R

only depends on R and R. This simplified growth rate expression is obtained by using Eq. (4.8),
Eq. (4.13), and taking c(n) = n\/o. We have verified that the convenient approximation c¢(n) ~
n+/o involves an error smaller than 5 % to npax, if 0 < o < 1.8. Therefore, in practical terms it
can be utilized without loss of accuracy. This assumption will be used in the remainder of this
chapter, and is a key point to allow analytical access to our major findings.

In the minimization process of Eq. (4.14) we wish to inject a certain amount of the inviscid
fluid by keeping fixed initial and final radii, during a time interval [0,77]. Under such cir-
cumstances, we have a variational problem which can be solved by using the Euler-Lagrange

equation

d (dAr ar

([ ZZ)=Z= 4.16

dt (aR) OR’ (4.16)
with fixed endpoints R(f = 0) = R and R(t =t¢) = Ry. Substituting the growth rate (4.15) into
Eq. (4.16) we obtain the differential equation

(4.15)

. 2(a—1)R?
R=="""__/’"" 4.17
(4—a) R’ @17)
whose solution can be neatly written as
RV _RY 1)y
R(t)= |R'+ Ry~ Ro) z] , (4.18)
Iy
where 30 )
-
= —— 4.19

see table (4.1).
From Eq. (4.1) Q(¢) = 27RR, then it’s possible o write the optimal pumping rate as

2-n/y
(R}~ R} [Ru (R}~ RY) ] |

— 1
vi/ 0 T

o(t) =2m

(4.20)
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Table 4.1 Table showing the values of the exponents according to the power-law index «.

It is interesting to note that our optimal pumping rate (4.20) does not depend either on the
Hele-Shaw cell gap width b or on the material properties of the fluids (n and ¢). However,
there is a clear dependence on the power-law index « [see Fig 4.2]. Notice that when @ = 1
(y=1) Eq. (4.20) reproduces the simpler Newtonian result originally obtained in Ref. [71]
where the optimum injection rate evolves linearly with time.

Before we proceed an important clarification must be given: despite its simplicity and el-
egance, the minimization procedure described above leading to Eq. (4.20) does not provide a
rigorous mathematical proof that it really provides the true optimum minimum of the problem.
Note that our main approximation is that we minimize the integral I (nmax, R, R) [see Eq. (4.14),
where 1 = nmay], and not the maximum of I(n, R, R) with respect to R({n},t), which is a much
more difficult task. On the other hand, the validity of our simplified theoretical minimization
procedure has been substantiated by laboratory experiments and fully nonlinear numerical sim-
ulations in Ref. [71] for the Newtonian flow case. These facts support the idea that despite of
the fact that our minimization procedure may not lead to the exact true optimum of the problem,
it does offer a useful and simple approximation to it. So, in this chapter whenever we mention
the optimal (or, ideal) injection rate we refer to it in the context of our simplified minimization
method.

Usual radial viscous fingering flow considers insertion of a specific volume of fluid at a
constant injection rate. Under such circumstance, with R(t = 0) = Ry and R(t = t7) = Ry,
Eq. (4.1) can be written as

(R} — R§)
Qop=—"".
Iy

Notice that from Eq. (4.21) the parameters to be fixed in the variational protocol could be ei-
ther Ry and 77, or Qp and 7. Figure 4.2 depicts how the optimum injection rate Q(z) [Eq. (4.20)]
varies with time when the displaced fluid is Newtonian (o = 1), shear-thinning (¢ = 0.6), and

(4.21)
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Figure 4.2 Time-dependent injection rate as a function of time for the optimal injection Q(¢) (solid
curves) and the equivalent constant injection rate Qg (dashed line). Here we set « = 1.4, ¢ = 1.0, and
o = 0.6. The total volume of injected fluid (area under the curves) in the interval [0,7;] should be the
same for all pumping rates.

shear-thickening (¢ = 1.4). The dashed horizontal line represents the equivalent constant injec-
tion rate Qg [Eq. (4.21)]. Here we set Qg =5 cm? /s, and ty = 30 s. One can see that the volume
of injected fluid is the same for all pumping rates but just at ¢ = 7, before and after that R(z)
is different for each pumping rate. It is worth noticing that when the displaced fluid is shear-
thinning (shear-thickening) in order to minimize interfacial disturbances one should first inject
with an injection rate higher (lower) than the one used in the Newtonian case. Then, for later
times the opposite situation must take place to ensure amplitude minimization: lower (higher)
pumping rate as compared with the Newtonian case, if the dislocated fluid is shear-thinning
(shear-thickening).

Now we turn to the comparison of the resulting interface morphologies obtained when ones
utilizes the constant injection rate (4.21), and the ideal pumping rate (4.20) at =7y. The results
presented in Fig. 4.3 are obtained by setting the initial perturbation amplitude 10~#Ry, and final
time 7y = 27 s. Figure 4.3 plots the amplitude given by Eq. (4.11) divided by the unperturbed
radius at ¢y, for the optimal pumping {,(¢7)/R (solid curves), and for the equivalent constant
injection ¢ (t7)/Ry (dashed curves) as functions of the wave number n. The constant injection
rate Qp and o are: (a) 11.1 cmz/s and 1.4; (b) 2.26 cmz/s and 1.0; (¢) 1.0 cmz/s and 0.6. Note
that the values of Qg were chosen so that £? (tr) /Ry has approximately the same magnitude (~
0.08). This procedure allows us to compare the efficacy of the variational method for different
power law indices .

By examining Fig. 4.3, we can readily see a substantial reduction of the final perturbation
amplitudes when the ideal injection is used. Furthermore, it is also observed that the stabiliza-
tion protocol works better for the shear-thickening case [Fig. 4.3(a)]. The physical explanation
for the success of the optimum stabilization method [Eq. (4.20)] is based on the fact that initially
Q(r) is sufficiently small, so that the front evolves with a sizable unperturbed shape. As time
progresses the pumping increases appreciably, but as long as it takes place at a large interfacial
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Figure 4.3 Perturbation amplitudes divided by Ry at r = t¢, for the optimal injection {,(t¢)/Ry (solid
curves) and for the equivalent constant pumping situation C,?(tf) /Ry (dashed curves) as functions of the

wave number #.

radius, the injection is no longer able to promote a considerable destabilization of the propa-
gating front. In other words, the onset of instability is delayed, and when it eventually occurs
disturbances arise with a reduced growth rate. One could say that by this reason the optimum
pumping rate of the shear-thickening fluid would work in the Newtonian and shear-thinning
fluids better than their own optimal pumping rates. That is not what we have observed.

The efficiency of the variational protocol can be seen even more easily in Fig. 4.4. This fig-
ure plots the interface evolution for constant injection rate (left panel), and the interface patterns
for the ideal pumping situation (right panel) at ¢y = 27 s, and equal time intervals At =t /5.
Here the values considered for Qg and o are the same as the ones used in Fig. 4.3: [(a) and (b)]
11.1 cm? /s and 1.4; [(c) and (d)] 2.26 cm?/s and 1.0; and, [(e) and (f)] 1.0 cm? /s and 0.6. The
patterns in Fig. 4.4 have the same initial conditions (including the random phases attributed to
each mode), and 40 modes have been considered. It is evident that finger formation is con-
siderably inhibited on the interfaces shown on the right panel of Fig. 4.4. As we observed in
Fig. 4.3, Fig. 4.4 illustrates that the minimization of the emerging fingers for shear-thickening

fluids works better in comparison with the variational protocol used for shear-thinning fluids.
These findings are consistent with the fact that shear-thinning (shear-thickening) has the ef-
fect of providing increasing (restraining) growth rates of fingering patterns in comparison to
Newtonian fluids [41]. However, as shown in Figs. 4.4(e) and 4.4(f), our variational method is
still able to considerably decrease the magnitude of interfacial disturbances, even in the shear-

thinning case.

4.4 Keeping the number of fingers fixed

In this section our task is to determine what is the functional form of a time-dependent injection
rate Q(t) for which the number of fingers remain unchanged as time progresses. Note that in
contrast to the situation examined in Sec. 4.3, here the total amount of injected fluid and the
final pumping time are not fixed quantities. By using Eq. (4.13), and imposing that . 1s kept
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Figure 4.4 Linear time evolution of the interfacial patterns formed during constant injection rate (left
column), and optimal pumping (right column) for: 11.1 cm?/s and a = 1.4 [(a) and (b)], 2.26 cm?/s
and o = 1.0[(c) and (d)], and 1.0 cm? /s and a = 0.6 [(e) and (f)]. All computational boundaries shown
are squares, and lengths are measured in units of centimeters.
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unchanged yields
R*R = f(0t, nmax), (4.22)

where "
(0 o) = [() (B — )], 4.23)

is time-independent, and I'(o) is given by Eq. (4.10).
Solving the differential equation (4.22) and using the fact that Q = 27RR we readily obtain
Q(t) = 27 f (&, Aimax) [3F (0, timax ) + RY)] 13
This is the adequate time-dependent injection rate needed to maintain the number of fingers
fixed for viscous flow in a radial Hele-Shaw cell with a displaced power-law fluid. The corre-
sponding Newtonian expression obtained in Refs. [26,66—-68] is recovered by setting @ = 1 in
Eq. (4.24). One first noteworthy point about Eq. (4.24) is the fact that, regardless the nature of
the fluid (Newtonian, shear-thinning, or shear-thickening) the proper time-dependent injection
rate to control the numbers of fingers at the interface obeys the ~!/3 dependence. All non-
Newtonian effects come into play via the function f(ot,nmax). This is a finding that could not

(4.24)
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be anticipated a priori, since in principle a different exponent or even another functional form
for Q(t) could arise for the non-Newtonian situation.

Figure 4.5 illustrates how the injection rate (4.24) varies with time for three values of o
and npax = 6. In order to control the number of emerging fingers, the shear-thickening case
requires a considerably larger injection rate magnitude in comparison with the Newtonian and
shear-thinning situations.

Q(t) (cm?/s)

0 20 40 60
t(s)

Figure 4.5 Plot of the injection rate (4.24) as a function of time, for nn,x = 6. Three values of the
power-law index are considered: ¢ = 1.4, & = 1.0, and ot = 0.6.

We close this section by discussing Fig. 4.6. It plots the linear evolution of the interface
using the time-dependent injection rate Eq. (4.24) for «: 1.4 [Fig. 4.6(a) and Fig. 4.6(b)]; 1.0
[Fig. 4.6(c) and Fig. 4.6(d)]; and 0.6 [Fig. 4.6(e) and Fig. 4.6(f)]. All patterns have the same
initial unperturbed radius Ry, and the same initial perturbation amplitude 2x10™*R,. These
linear simulations include 40 Fourier modes, and each row [(a) and (b), (c) and (d), (e) and (f)]
presents a distinct set of random phases. The column on the left (right) considers that ny,x = 6
(nmax = 8). First, we can verify that for a fixed initial condition we can choose the number of
emerging fingers at the interface just by manipulating the injection rate provided by Eq. (4.24).
Furthermore, it is apparent that the control of the number of fingers is eventually achieved
regardless the value of the power law index a.
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Figure 4.6 Linear time evolution of the interfacial patterns formed during the time-dependent injection
rate (4.24), for nymax = 6 (left column) and 7, = 8 (right column). Here we set oo = 1.4 [(a) and (b)],
o = 1.0 [(c) and (d)], and & = 0.6 [(e) and (f)]. The final times used are: (a) 3.2 x 103 s, (b) 9 s, (c)
1.2x10%s, (d) 128, (e) 1.5 x 10% s, and (f) 6 5. All computational boundaries shown are squares, and
lengths are measured in units of centimeters.




CHAPTER 5

Conclusion

Since only a relatively smaller part of the fluids of academic and technological interest are
Newtonian it is natural to make an effort to understand how the well known HSC problem
behaves when a non-Newtonian behavior comes into play. There are several theoretical and
experimental evidences that the rheology of the fluids have a deep influence on the stability and
morphology of the emerging patterns. In this work we have performed a theoretical study to
gain analytical insight into this influence.

In chapter 2 we have considered a modified version of the Saffman-Taylor viscous finger-
ing problem in radial Hele-Shaw geometry. In contrast to the conventional purely Newtonian
situation, we have examined the case in which a fluid of negligible viscosity displaces a viscous
yield stress fluid. Motivated by existing experiments [47,48] we have focused on the regime in
which viscous effects prevail over yield stress. These experiments revealed the rising of ram-
ified structures, presenting some tip-splitting events, but the predominance of side branching
phenomena.

In order to get some analytical insight into the onset of pattern formation we have derived
two main theoretical results: first, using the lubrication approximation we deduced a Darcy-
like law for the gap-averaged problem. Then, by employing a perturbative weakly nonlinear
approach we have found the mode-coupling differential equation which governs the time evo-
lution of the interface at lowest nonlinear order. In this framework, we have shown that consid-
eration of the coupling between a small number of modes allows one to predict and detect the
occurrence of both tip-splitting and side branching.

Finger widening and splitting occur through the favored growth of the harmonic mode 2n,
while side branching develops through the enhanced growth of mode 3n. Nonlinear mode-
coupling enhances the growth of these specific perturbations with appropriate relative phases.
Lastly, we provided a morphological phase diagram that shows the flow and fluid parameters
required to develop either tip-splitting or side branching. In conclusion, in chapter 2 we have
developed a relatively simple analytical model which is able to capture the most salient features
of this interesting and complex pattern formation problem.

In addition to injection-driven flows in constant-gap HSC, there are several experimental
and theoretical studies on the lifting flow problem in the confined geometry of a variable-gap
HSC. Most of these investigations focus on understanding purely linear, early time dynamic
stages of the problem, or its advanced time, fully nonlinear dynamics. Researchers consider
that an inner fluid (which can be Newtonian or non-Newtonian) is surrounded by another fluid
of much smaller viscosity. Under lifting flow circumstances, the fluid-fluid interface deforms,
producing a variety of complex interfacial patterns. On the theoretical side, the study of such
complicated patterns is usually performed by analytical linear stability analyses, or by sophis-
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ticated numerical simulations.

In chapter 3 we studied the linear and nonlinear dynamics of a yield stress fluid located
in a lifting HSC, focusing in the regime of viscous effects prevailing over yield stress. We
used the same Darcy-like law and perturbative weakly nonlinear approach used in chapter 2
that allows analytic access not only to linear stability issues, but also to key nonlinear aspects
of the interface morphology. We derived a nonlinear differential equation describing the time
evolution of the perturbation amplitudes. This equation has been utilized to describe finger
competition phenomena in lifting HSC in terms of two dimensionless controlling parameters:
the geometric aspect ratio g (a measure of the HSC confinement), and the yield stress parameter
0 (relative measure of yield stress to viscous forces). Our results indicate that while 6 > 0 tends
to restrain finger competition of inward moving fingers of the penetrating outer fluid, larger
values of g (great confinement) enhance competition among these fingering structures. These
conclusions are in general agreement with existing experimental studies [52,53,55].

Then we turned our attention to control process in HSC with non-Newtonian fluids.It is
known that the displacement of liquids from confined geometries by using a gas phase is an
important problem to many technologies. In this context, hydrodynamic instabilities can turn
the process inefficient and uneconomical. Therefore, it is necessary to develop ways of reduc-
ing or eliminating the detrimental effects of viscous instabilities to make this type of processes
economically viable even under adverse conditions. The academic counterpart of this practi-
cal situation involves the displacement of a viscous fluid by a less viscous one in the spatially
constrained geometry of a HSC. Efficient removal of the more viscous phase is achieved when
the development of such instabilities is inhibited. Most existing studies that somehow try to
control the emergence of these interfacial disturbances consider that the displaced fluid is New-
tonian. An improved understanding of the link between non-Newtonian flow properties and
interfacial instability will certainly improve the selection guidelines for controlling protocols
on the scientific level, and hopefully provide a basis for future technological applications.

Motivated by these facts, in chapter 4 we considered the displacement of a viscous non-
Newtonian (power-law) fluid by an inviscid fluid in a radial Hele-Shaw cell. First, for the case
in which the total amount of injected fluid is fixed, we employed a variational approach for ob-
taining the optimal injection process, i.€., the policy which minimizes the growth of the viscous
fingering instability. In this case, we have found that the optimization process is substantially
dependent on the power law index. Then, considering that the total amount of injected fluid
is not fixed, we focused on searching for a time-dependent injection process that intended to
control the total number of resulting fingers arising at the interface. We have found that re-
gardless the nature of the displaced fluid (Newtonian, shear-thinning, or shear-thickening) the
desired injection rate scales as Q(t) ~ t~1/3, but with a proportionality constant that depends
on the power law index o. The efficiency of these two different controlling strategies has been
verified through linear simulations of the early time stages of the interface dynamics.

The theoretical work presented in chapter 4 makes specific predictions that have not yet
been subjected to experimental or fully nonlinear numerical check. In the case of earlier
controlling studies involving a Newtonian displaced fluid [26, 66, 67, 71], linear predictions
have indeed been supported by long-time laboratory experiments and fully nonlinear numer-
ical simulations. For instance, the time-dependent injection rate Q(r) ~ t~'/3 predicted in
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Refs. [26,66] by a simple linear stability analysis, ended up suppressing key nonlinear effects
(i.e., finger tip-splitting and finger competition), revealing self-similar structures in Newtonian
fluids at advance time regime [26, 67]. The same was also true for the linear stability based
variational protocol proposed in Ref. [71], where the predicted strong stabilization of the inter-
facial amplitudes has been substantiated by experiments and intensive nonlinear simulations.
Therefore, it would be of interest to examine the robustness and validity of the proposed non-
Newtonian controlling and minimizing protocols presented here for advanced times. A possible
extension of the work presented in chapter 4 would be the investigation of similar controlling
and minimizing techniques for other complex fluids, such as viscoelastic and yield-stress flu-
ids [42,43,46-48, 78], in which important effects like elasticity and plasticity must be taken
into account.

We hope the work carried out in this dissertation will instigate further theoretical and ex-
perimental studies on the challenging but rich research topic of HSC flow with non-Newtonian
fluids.
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APPENDIX A

Derivation of n,,,, for the yield stress fluid in a
injection-driven HSC, equation (2.46)

This appendix describes the main steps of the derivation of Eq. (2.46). By using Eq. (2.35)
and setting [dA(n)/dn| = 0 for the situation in which 6 # 0, we obtain a complicated
equation for 7,4,

N=Nmax

— (3 2 1 S max -
R2 R3 ( Minax ) + { (anax _ 1)2

4 r 2nmax (3yax — 2Ny — Momax + 1) —0
R? (2nmax — 1)? '

(A.1)

By considering the limit I’ < 1, so that the product 6T is negligibly small, Eq. (A.1) can be
rewritten in a much simpler form
I 2

E(?)nmax_ 1) = 1+3R{

212  — 2+ 1 }
(2nmax — 1)2
(A.2)

Recalling that we only consider contributions up to first order in &, notice that on the right

hand side of Eq. (A.2) we can replace n,,,,, by n%ax [Eq. (2.45)] without loss of generality. In

this context, and assuming that (nl,,.)? > nl¥, > 1, we may approximate (212,,, — 2%max +

1)/ (20max — 1)? = 1/2. Thus, Eq. (A.2) is simplified further, leading to

/R I &R\’
Nmax = 3_1_, (1+E+7) . (A.3)

By utilizing this equation plus Newton’s generalized binomial theorem [92]
(x4y) =x"+r "y (A.4)
where x =1+I'/R,y=06R/2,and r = 1/2 we get

R| / T OS8R 1 5
Mmax =\ 31 1+E+T 1+£+ﬁ(5)
\/ R
/R
(1+II_E)+6R ;T (A.5)
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By considering the situation I' < 1, we may write (1 +R/I") ~ R/I"and (1 +I'/R) ~ 1. Then,

Eq. (A.5) leads to
1 R OR
Nnax = 3 (l—i—f) <1+T> . (A.6)

With the help of Eq. (2.45), this last expression readily leads to Eq. (2.46).



