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Abstract

In this work, we prove that any infinite finitely generated
integral domain is bi-interpretable with the structure of the
natural numbers. Using this argument, we demonstrate that
any infinite f.g. ring R which has nilpotent prime I such that
R/I is an integral domain is Quasi-Finitely Axiomatizable

(QFA).

Keywords: 1. Mathematical Logic. 2. Model Theory.
3. First Order Logic. 4. QFA Rings.



Resumo

Nesta tese, provamos que todo dominio infinito finitamente
gerado € bi-interpretavel com a estrutura dos numeros
naturais. Usando este argumento, demonstramos que todo
anel f.g. R que tem um ideal primo nilpotente I tal que R/I €
um dominio € Quase-Finitamente Axiomatizavel.

Palavras-chave: 1. Logica Matematica. 2. Teoria de Modelos.
3. Logica de Primeira Ordem. 4. Anéis QFA.



Capitulo 1

Preliminaries

Model Theory is the part of Mathematical Logic that deals with definability
of mathematical objects. In other words, Model Theory classifies structures,
functions and sets using logical formulae. For example, we may try to char-
acterize a structure seeing which logical formulae are true in it and, on the
other hand, we may look at a set of formulae and ask about whether there
is a model of it, by some existential theorem or by construction of such one.
We intend to introduce in this chapter basic definitions and results in Model
Theory, likewise some useful results in algebra, in order to fully understand
this work. The reader who is familiar with these concepts may skip this
chapter. However, even for the reader that has never read anything about
model theory we recommend to review a litte bit of ZFC, the axiomatization
of Set Theory of Zermelo-Fraenkel with the Axiom of Choice.

1.1 First Order Logic

In this section, our intention is to present the basic definitions of first order
logic: structures, signatures, models, terms, formulae, sentences, theories,
homomorphisms, definable sets (for more details about it, see Hodges [Ho]).
Then, we start with the definition of structure.

Definition 1.1.1 We may define structure with few words saying that it is a
mathematical object that consists of a set equiped with some logical symbols.

Formally, a structure A have the following objects:

1) Domain of A. A set dom(A), which is called domain of A. The el-



ements in dom(A) are called the elements of the structure A. The
cardinality of A, say |A|, is the cardinality of the set dom(A).

2) Constants. Special elements in dom(A). We call them “constants.”
FEach constant is named by one or more constant symbols. If ¢ is a
constant symbol, then we write c* to denote the constant that is named

by c in A.

3) Relations. For each natural number n, a set of n-ary relations over
dom(A). Each relation is named by one or more relation symbols. If
R is a constant symbol, then we write R* to denote the relation that is

named by R in A.

4) Functions. For each natural number n, a set of n-ary functions over
dom(A). Each function is named by one or more function symbols. If
F is a constant symbol, then we write F4 to denote the relation that is

named by F in A.

Note: Each set in 1), 2) or 3) above may be empty, and all structure is
supposed to have “=" for equality of elements.

Definition 1.1.2 The signature of a structure is just the union of the sets of
constant symbols, relation symbols and function symbols of a structure A. If
dom(A)=B and the signature of A is L ={C4,...,C,,Ry,...,Rs, F1,..., F;},
then we write A as (B,C1,...,C,Ry,...,Rs, Fy, ..., F,) and say that A is

an L-structure.

Example 1.1.1 (Graphs) Let G a simple graph whose vertex set is V and
edges set is E. How could we see G as a structure in the sense above? One
way 1s to consider G as a structure such that dom(G) =V and E is a binary

relation symbol such that
E%(2,y) <= (z,9) is an edge of G.
Using the notation, we write structure G as G = (V, E).

Example 1.1.2 (Rings) Consider a ring R with unit. Then, we may see
R as (R,0,1,+x), for which 0 is the constant symbol that names zero, 1 is



the constant symbol that names the identity of R, + is the function symbol
for the sum in R, and finally X is the function symbol for the multiplication
n R.

Now we are going to introduce the definition of homomorphism of L-structures.
Let A, B be L-structures. Then

Definition 1.1.3 A homomorphism “f : A — B”is a function f : dom(A) —
dom(B) such that

(1) For each constant symbol ¢ of L, f(c?) = cP.

(2) For each n > 0, an n-ary relation symbol R of L, and an n-tuple
(a1,...,a,) of dom(A), then

(a1,...,a,) € R* = (f(a1),..., f(a,)) € RE. (1.1.1)

(8) For each n > 0, an n-ary function symbol F of L, and an n-tuple
(al) B 7a7L) ofdom(A), then f(FA(ah s 7a7’b)) = FB(f(al)a cee f(an))

If a homomorphism f : A — B is injective and we have “<” in (1.1.1)
above, then we call it an embedding. Finally, a homomorphism f : A — B
is an isomorphism if it is a surjective embedding.

Aside from all these symbols, we may want to combine them with variables
x,9,8,t,... to build more symbols. Then, we introduce the notion of term
and atomic formula.

Definition 1.1.4 (Term) We define term by induction:
(a)Every variable is a term of L. (b) Fvery constant is a term of L. (¢) If F

is an n-ary function symbol, for some n > 0, and tq,...,t, are terms, then
F(ty,...,ty) is a term of L.

Example 1.1.3 y, 1, x(y,+(y, 1)), and x(x,y) are terms of L = {0,1,+, x }.
We will use “z+vy” to say +(z,y) and “x x y” to say x(zx,y)

Definition 1.1.5 (Atomic Formula) We also define atomic formula by
induction:

(a) If s and t are terms of L, them s =t is an atomic formula of L. (b)
If R is an n-ary relation symbol, for some n > 0, and ty,...,t, are terms,
then R(ty,...,t,) is an atomic formula of L. An atomic formula is called an

atomic sentence if it does not have variables on its composition.



Example 1.1.4 y < 0, 14+ 1 =0, and y X 1 < y are atomic formulae of
L={0,1,+4,x,<}.

Finally, we introduce the logic symbols: — (not), A (and), V (or), V (for
all element...), 3 (there is an element...) to contruct more sophisticated
expressions. Now we are ready to define the class of formulae of a signature
L, and then the first-order logic of L.

Definition 1.1.6 The class of formulae of a signature L is the smallest class
X such that:

All atomic formulae of L are in X. If ¢ € X, then =¢ € X (—¢ means “p
is false”). If ® C X, then \/ ® and \ ® are in X (\/ ® means “at least one
formula in ® is true”, and N\ © means “all the formulae in ® are true”). If
¢ € X and z is a variable, then ¥Yx ¢ and Iz ¢ are in X (VYx ¢ means “¢ is

)

true for all x,” and 3z ¢ means “there is x such that ¢ is true”).

Definition 1.1.7 (First-order Logic of L) The First-order Logic of L is
the subset of the class of formulae of L consisting of formulae that use a

finite number of symbols of L and/or the logic symbols.

Example 1.1.5 Consider L = {0, 1,+x} with the following list of axioms

DV, y,z (x+y)+z=x+Wy+2), Vea+0=uz, Ve,yx+y=y+x.
2)Ve,y,z (xxy)xz=axx (yxz), Veaxl=xz, Verlxz=uzx.
)Vr,y,ze X (y+z2)=xxy+xxz Ve,yz(x+y Xz=xXz+yXz,

Then the first-order language of the rings, £,,,, is the set of all finite

formulas of such L equiped with this list of axioms.

Let A be an L-structure and ¢ a formula of L. We say that A is a model of
¢ if ¢ is true in A. When this happens, we use the notation A = ¢. A theory
in L is a set of sentences of L. If a structure A is a model for all the sentences
in a theory 7', then we also use the notation A = T to say this. The theory
of an L- structure A, Th(A), is the set of all sentences in the first-order logic
of L that are true in A. Starting from this point, everytime we say “formula”
we mean “first-order formula”, “sentence” will mean “first-order sentence,”
and so on. We end this section with one of the most important definitions
in model theory.



Definition 1.1.8 (Definable sets) Let A be an L-structure and B C dom(A).
We say that B is definable if there is a formula p(zx) such that

r € B <= p(2)

A homomorphism f : A — Ais called definable if graph(f) := {(a,b) ; f(a) =
b} is definable. An element a of a structure A is definable if {a} is definable.

Example 1.1.6 Consider the structure of the natural numbers (N, 0,1, +, x).
The set S = {sums of the first n nonzero natural numbers} is definable. In-
deed, since we know that > i = M, then we define S by the formula

2
ceS<dn2=n(n+1).

1.2 Interpretations

Now, we introduce the concept of interpretation and bi-interpretation of
structures. Let K and L be signatures, A a K-structure, B an L-structure,
and n > 0 an integer.

Definition 1.2.1 (Interpretation) One n-dimentional interpretation I of

B in A is defined by three ingredients:

(1) One formula Op(x, ..., xy,). (this will specify the domain of the inter-
pretation)

(2) For each formula ¢(xq, ..., x,) in L of the formx =y, c =y, F(xo,...,z,) =
y, or R(xg,...,x,), for which x,y,xo,...,T, are variables, c is a con-
stant symbol, F is a n-ary function symbol, and R is a n-ary rela-
tion symbol, we have a formula ¢r(To,...,T,) of K, for which T; :=

(xi,1,...,2;,n) for each i.

(3) A surjective function fr : Or(A™) — dom(B) such that for each for-
mula ¢ in (2) and for all @; € Op(A™) we have that

B ¢(frav, - . ., fran) <= A ér(ap, . .., @)

for which fra; == (fr(a;1),..., fr(ain)) for each i.



10

This definition, seems to be complicated. Putting on simple terms, B is
interpretable in A if we can define formulae to translate operations in B to
operations in some power of A. We construct now an interpretation of the
rational on the integrers.

Example 1.2.1 For those who know basic commutative algebra, Q is the
localization of Z \ {0} in Z. For our intentions, we say that Q is formed
by elements a/b such that b # 0 together with the operations a/b+ c¢/d =
(ad+bc)/(cd) and a/bx c/d = (axc)/(cxd). Since we are in (Z,0,1,+, X),
we need to find some “equivalent” formulae for these formulae in some power

of Z. Indeed, consider the formulae over Z X Z.:
8p(x1, (L’Q) <— =0

(21, T2, y1, Y2) <= Or(21, 22) A Or(y1, Y2) A 21.y2 = 2.1
ar(z1, T2, Y1, Y2, 21, 22) <= tp(T1.Y2 + T2.Y1, T2.Y2, 21, 22)
pr(T1, Ta, Y1, Y2, 21, 22) <= (2191, T2.Y2, 21, 22)

and

foon(@) —Q
T1
X1, To) — —
(@,22) = 2
Note that i expresses equality in Q, ar expresses the graph of the addition

function, and ur expresses the graph of the multiplication function. That is
a/b=c/din Q<> ir(a,b,c,d) in Z

a/b+c/d=e/f in Q<= ar(a,b,c,d,e, f) in Z
a/bxc/d=-e/f in Q <= pur(a,b,c,d,e, f) in Z
Thus, I' is a bidimensional interpretation of Q in 7Z.

Interpretations are very useful, for we can express sentences about other
structures through them. We now show that we can interpret the localization
of a multiplicative set S of a commutative ring R, and then we prove that we
can interpret finite degree extentions of the field of fractions of some ring in
such ring. Then, we present an example: one interpretation of (Q(v/2), +, x)
in (Z,+, x).
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Lemma 1.2.1 There are formulae E(x1,x2,y1,v2), A(x1, 22,91, Y2, 21, 22),
and M (x1, 2,1, Yo, 21, 22) S0 that for any commutative ring R and multi-
plicative set S C R, if S is definable by the formula F(x), then the localiza-
tion ST'R is interpretable in R as {(z,y) € R* S(y)}/E, and the graph of
addition is the image of A under E and of multiplication is M under E.

Proof: Define
E(x1,9,y1,y2) < 3t F(t) N F(x2) A F(y2) A (t.(21.92 — 22.y1) = 0)

A2, T2, Y1, Yo, 21, 22) & E(21.92 + T2.y1, 2.2, 21, 22)
M (21, 22, Y1, Y2, 21, 22) & E(21.91, 2292, 21, 22)
Then, if we define

(mlaxQ) ~T (ylny) = E($17$Qayla92)

X = (x1,22), Y = (y1,92), Z = (21, 29)
XerY=2<AX,Y, Z)
XerY=2< MX,Y,Z)
As we did in the Example (1.2.1), we use the same arguments to ensure

that T' is an interpretation of Rg in R, that is, (R?/ ~,0,1,®gs, ®g) =~
(RS7071a+7X) O

Corollarium 1.2.1 There is a uniform interpretation of the field of frac-

tions of R, say Frac(R), across the class of integral domains R.
Proof: Set F(z) < — 2 =0 and apply the lemma for S = {z; F(x)}. B

Lemma 1.2.2 For any fized positive integer d, there is a formula Ey (in d®
variables indexed as a = (a; ;1)) and formulae Aq(z1...,Taq, Y1...Ya, 21...24; @)
and My(x,y,x;a) so that for each a if Eq(a) holds, then Aq(x,y, z;a) defines
the graph of a binary operation +, on R and M(x,y, z;a) defines the graph
of a binary operation X, on R so that identifying R with R x (0,...,0), the
structure (R%, +4, X4) is an integral domain extending R. Moreover, every
such integral domain which is free of rank d over R is encoded by some a

satisfying Eq(a).
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Proof: Suppose that R is a degree-d extension of a ring R generated by
the basis {eq, - ,e4}. Then, to understand how is the multiplication in R’
we see what happens in its generators. Indeed, we have for i,j € {1,--- ,d}
the equality

€i-€j = Q4 j1€1 + Q5262 + -+ + 4 j4€q ,

for which a;;r € R is the coefficient of e;.e; related to e,. Since R’ is
commutative, then Vi, j,k a;;, = a;,;%. The relations among ey, -, eq will
uniquely determine these a; ;5. Therefore, we may suppose that we know all
the d*-matrix a = (a;;x). With this matrix in hand, define

d
Ad(mlv s Tdy Y1y 5 Ydy Ry o0 2ds a) = /\Il + Yi = 2
i=1
My(Z1, ooy Ty Y1y ooy Ydy 215 oo 25 @)

|}
Zl’j X (yz X aj,i,l) =z

1 =1

A

d d
I=1 j=

Finally, considering X := (z1,...,2q), Y := (Y1,...,Ya), and Z := (21, ..., 24),
we abbreviate these formulas to

X@Y =7 < AyX,Y, Z;a)

X @Y =2 = MyX,Y, Z;a)
Then, we define E4(a) by

VA,B,C,X,Y,Z (Y @, Z=A NX®A=B NX®Y=C)=C®;Z=DB
VA,B (A®;B=0)=A=0VB=0
VA BA®R;B=B®;A
(Note: We did not add the distributive property of ®, over @4, because
they follow from the definition.). Then, if a = (a; ;%) is such that E4(a), it
follows that (RdQ, @4, ®q) is a degree-d extension of R which is an integral

domain. In order to see R as a subring, of this degree-d extension, isomorphic
to R x (0,---,0), we add the formula

\V/i,j,k (] 7’é k= aijk = 0) AN (j =k= aijk = 1)

to Ey(a). So, with these definitions, we have that (R%, @4, ®,) is a degree-d
extension of R such that R is viewed as R x (0,---,0). O
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Example 1.2.2 Suppose we are in (Z,0,1,+, X) and want to express the
sentence “there is an x in Q[v/2] such that x> —2 = 0.” Then, we first see the
elements of Q[v/2] as elements of Z* with the operations

(&+&@>@(&+w@>:(@+@ﬁ)

T21 X292 Y21 Y22 22,1 22,2
defined by
211 $1,1_|_y1,1 T11Y21 T X21.Y10 & 212 331,2+y1,2  T12.Y22 T T22.Y12
22,1 T21 Y21 T21-Y2,1 22,2 T22 Y22 T22.Y2,2
and
T1,1 X1,2 Y11 Y12 211 21,2
(— + V2 |||+ —\/5 =(——4+—=V2
T21 T2.2 Y21 Y22 22,1 22,2
defined by

21,1 T11-Y1,1-T22.Y2,2 + 2.x1,2-?/1,2-1'2,1-y2,1 & 212 T11-Y1,2-T22.Y21 + - T1,2.Y1,1-T2,1-Y2,2

221 T2,1-Y2,1-T22.Y22 22,2 T21.Y2,2-T22.Y2,1

or equivalently

T T 1. T11- 2.1 9. T1 9.
<£+ﬂ\/§)®<&+&\/§> ::< 1,1 ?/1,1+ 1,1 91,2\/5)@< 1,2 y172+ 1,2 yl,l\/§>

T21 T22 Y21 Y22 T21-Y2,1 T1,2.Y2.2 Z2,2.Y2,2 T22.Y2,1

Therefore, we can define

L(($1,la T2,1,21,2, 372,2% (yl,la Y2,1,Y1,25 92,2))

0

(= @o1.T22.Y21.Y22 = 0) A (11921 = To1.Y11) A (T12.Y22 = T22.Y1.2)

(we will use this “” to talk about equalities of members of Q[v/2]), and

Oé((xl,l, T2,1,21,2, 332,2), (yl,la Y2,1, Y1,2, y2,2)a (21,1, 22,1, %1,2, 22,2))

0

L((xl,l-y2,1 +T21.Y1,1,%21-Y2.1, T1,2.Y2,2 +T22.Y1 2, 1U2,2~I2,2), (21,1, 2215, 71,2, 22,2))

(we use “a” as the definition of sum in Q[v/2]), and, finally,

M((flfl,la T2,1,21,2, 95272), (?Jl,la Y2,15 Y1,2, y2,2)a (21,1, 22,15 %1,2, 22,2))
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0

a((xl,l-yl,la T21-Y2,1,21,1-Y1,2, !102,1-92,2), (2.x1,2-y172, T22.Y22,21,2-Y1,1, $2,2~y2,1), (21,1, 22,15 21,2, 22,2))

(to talk about multiplication). Therefore, to say “there is an x in Q[v/2] such

that x* — 2 = 0”we use the translation

EI5131,1, X21,21,2,T22 #(@1,1, X21,T1,2, 152,2), (3f1,1, T21,%1,2, 552,2), (27 1,0, 0))

Moreover, we can abbreviate these sentences, by using X = (x11, %21, %12, Ta2),
Y = (v11,Y21, V12, Y22) and Z = (211, 221, 21,2, 22.2) and defining X @Y =
ZeaoX)Y,Z)and X QY =7 < w(X,Y,Z). So, the translation of some
sentence about (Q(v/2),0,1,+, x) is just changing 0 by (0,1), 1 by (1,1), the
variables by “their capital letters”, and “+7 and “xX7 by “®” and “®”. [

We end this section with the notion of bi-interpretation.

Definition 1.2.2 (Bi-interpretation) Let K and L be signatures, A a K-
structure, and B an L-structure. We say that A is bi-interpretable with B
if there is an interpretation I'y of A in B and there is an interpretation I'g
of B in A such that the composition of I' 4 and I'g is definable in B and the

composition of I'g and I' 4 is definable in A.

For counterexamples of bi-interpretability, we assert that Z[e]/(g?) is not bi-
interpretable with Z. The Appendix contains a proof of this fact. Now, we go
to next section that says that if we add a definable symbol to the language,
then we essentially do not change the class of definable sets.

1.3 Definitional Expansions

Definition 1.3.1 Let L and L' be signaturess such that L C L', and T a
theory in L'. For an n-ary relation symbol R of L', we say that a formula ¢
of L is an explicit definition of R relative to T" if T" proves

vxh'" y L R(C(]l,"' 71771) <—>QO(CL’1,"' 7xn)

Analogously, if ¢ is a constant and F' is a n-ary function symbol, then their
explicit definitions in L would be formulae ¢ and 1) (respectively) of L such
that T" proves

Ve c¢=x +— ¢(x)
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vxlv”' y Tny Y F(xla"' ,.’,Un) :Z/<—>¢($17 7131171/)

Definitional expansions are used in most cases to avoid writing extremely
long sentences when we have this possibility of abbreviation. For example,
in 7" = Th(Z,0,1,+, x) we can use “x < y” to say Ini,ng,n3,ng y =
r+n?+n3+n2+n?+1. The following results about definitional expansions
have simple proofs (they are the theorems 2.6.3 and 2.6.4 of [Hd]).

Proposition 1.3.1 Let L and L' be signatures such that L C L' and T a
theory in L'. Let M and N be L'-structures which are models of T', R a
relation symbol of L' and ¢ an explicit definition of R relative to T". If for
every a € M™ = N™ we have that M |= p(a) < N = ¢(a), then RM = RV,

The same occurs for constants and function symbols.

This proposition is just a restatement of Definition 1.3.1.

Theorem 1.3.1 Let L and L' be signatures such that L C L', and T" a theory
in L'. Suppose that for each symbol S of L' \ L we have an explicit defini-
tion pg of S relative to T'. Consider U = {Vx1, - &y S(x1, -+ ,2,) <
o(xy, -+ ) ; Sisin L'\ L}. Then, if M is a model of U, then for each
formula ¥(zq, -+ ,x,) of L' there is a formula ¥*(z1, -+ ,x,) of L such that

M EY(ay, - a,) Y(ay, - a,) <V (a, - ,a,) .

We also say that ¢ is an explicit definition of S in a structure M if ¢
is an explicit definition of S relative to Th(M). Then, if we consider M’ as
M expanded with S in its signature, then we say that M’ is a definitional
expansion of M. The theorem above ensures that when we take definitional
expansions M’ of a structure M the changes in the language are not signifi-
cant to Th(M), because any sentence in L'\ L can be reduced to a sentence in
L. Moreover, this kind of change in the language does not cause an essential
change to the class of definable sets, since if A € dom(M') = dom(M) is a
definable set of M’, then, by the last theorem, we can build a definition of A
in M by replacing the definable symbol with its explicit definition.

Example 1.3.1 We can define divisibility on the natural numbers (N, 0,1, +, X)
by writing

x|y <= 3Im y=mx
So, we may consider the definitional expansion (N,0,1,+, X, | ) and define

a prime number by

x is prime <= —p =1 A Va,b x|(a.b) = (z]a V x|b)
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Hence, as we suggested before, the following formulae are equivalent
(Im a.b=m.x)= ((In a =n.x) VvV (Jo b= o.x))

z|(a.b) = (z]a V z|b)

This Example (1.3.1) ilustrates how useful the usage of definitional expan-
sions is to write sentences of the theory of some structure. In the next chap-
ter, we will use definitional expantions of the first-order language of rings to
contruct sentences to characterize some rings in a specific class.

1.4 Godel Coding

In this section we describe the Godel Coding, or Godel S-functions, in N.
More specifically, we will show how we can code finite sequences over the nat-
ural numbers, and then we will present the sentences that are true in every
model of PA™, the finitely many basic algebraic axioms for Peano Arithmetic
(see [Ka] for details and proofs). At the end of this section, we provide one
example to ilustrate how important is the Godel Coding, by proving that if
a infinite finitely generated ring R is interpretable with N, then there is a
formula o(z,y) that defines “there is an automorphism ¢ : R — R such
that o(z) = y”.

Let xg,--- ,x,_1 be a finite sequence of natural numbers. Now we are going
to say how to code in this sequence in N with a natural number that can
be used to recover the sequence. Consider b = max(n,zg, - ,x,_1); and
m = b!, the factorial of b.

Claim 1: The finite sequence m + 1,2m + 1,--- ,nm + 1 is pairwise co-
prime.
Proof: Suppose that there is a prime number p and i,j € {0,--- ,n} such

that ¢ < j, p|(im+1) and p|(jm+1). Then, we have that p|(j—i)m and j—i <
n < b. Since p is prime, p|(j —i) or p|m. Since m = b(b—1).--- .(j—1).--- .1,
then p|(j — i) = p/m. In any case we have that p|m. Hence, plim. Since
p|(im + 1), then p|(im + 1 —im), that is, p|1. This a contradiction with the
fact that p is prime. [
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Now, suppose that we have a system

x =z mod(m + 1)
x =x; mod(2m + 1)

T = x,-1 mod(nm+ 1)

So, since Claim 1 holds, the Chinese remainder theorem ensures that there is
a solution a € N for this system (see [IR]). Thus, consider a € N a solution of
this system. We claim that the pair (a,m) codes the sequence xq, -+ , 2, 1,
that is, we can recover this sequence from the pair (a, m). Indeed, for each i €
{0,--- ,n} we have that z; is the remainder when we divide a by m(i+1)+1,
that is, a = z; mod(m(i+ 1)+ 1) (a is a solution of the system). Therefore,
given such pair (a,m) we can find its sequence xg, - ,z,. Since we want
to use just a single natural number to encode one sequence, we will use the
pairing function < .,. > over N x N given by

(x4+y).(r+y+1)

<x,y >= 5 Ty

Claim 2: The pairing function is a bijection between N x N and N.

Proof: Since for all z,y € N we have an even number in the set {x +
y,x+y+1}, then Im(< .,. >) € N. We now prove that the pairing function
is injective. Suppose that < x,y >=< u,v >. Then, x +y = u + v. Indeed,
suppose £ +y < u+v. So, x +y + 1 < u+ v. Hence,

(x4+y).(r+y+1) (x4+y)(r+y+1)

<ay>= +y< +y+1=
Y 9 Y 9 Y

(x4+y+1).(z+y+2) < (u+v).(ut+v+2)
2 - 2
which is an absurd. Using this same argument when supposing that v+ v <

x + 1y, we have another absurd. Therefore, x + vy = u +v. Now it is just note
that

+v=<u,v>=<ux,y >

. 1 . 1
(z+y) (§+y+ ):<u’v>_(u+v) (Z—irv—l— ):v.

y=<x,Yy>—

and since x +y = v + v, x = u. Then, the pairing function is intective. Now
we prove by induction on n that there is x,y € N such that < x,y >=n. If
n = 0, then take x = 0 and y = 0, and we are done. Suppose that there is
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x,y € N such that < z,y >=n—1. If z > 0, then x — 1 > 0 and we can
consider

(-D+@+D(z-D+H+H+1)

n+1= 5 +y+1
that is, n+1 =<z —1,y+1>. If x =0, then
1

n:n—1+1:<0,y>+1:%+y+1:
+1)+2y+2 +1).(y+2

yy+D+2y+2 _ (+D)W+2) g .

2 2

Therefore, we have the surjectivity of < .,. >, and then the pairing function
is a bijection. [J

So, there is an injection

{finite sequences of N} — N
{zo, -+ ,xp 1} —<a,m >.

We summarize now what we used to ensure we can code a sequence g, - - - , T, _1
into one single number: we had to find a number m such that the elements
in the sequence m + 1,--- ,nm + 1 are pairwise coprime; we had to find a
solution to the system A~ 2 = z; mod((i + 1)m + 1); and we had to define
a bijective pairing function. It is true that we can define all these steps in
any model of PA. Since this is not the main object of this work, we will skip
the proof of this fact (for more details, see [Ka]). Nevertheless, we present
now the powerful tool that ensure we can do the same thing as above but in
any model of PA.

Proposition 1.4.1 (Goédel’s Lemma) Let M be a model of PA, and n €
N such that xg,--- ,x,—1 € M. Then, there exists a formula (x), = z and
u € M such that M |= (u); = x; for alli <n.

The formulae (x), = z are known by “Gddel’s f-functions,” for they are
frequently written as 5(x,y) = z. Since we are dealing with sequences, we
will use the notation (z), = z.

In the Chapter 4, we will be widely using Godel coding to express formulas
to define some sets and homomorphisms. Here is an example of the power of
Godel coding;:
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Proposition 1.4.2 Let R be a ring that is generated by ay,--- ,a,. If R is
bi-interpretable in 7, then there is a formula ¢(x,y) defining the graph of
o € Aut(R).

Proof: Since R is bi-interpretable with Z, we have a definable copy of R,
say (Z,®g, ®g), and the elements ay, - ,a,,0(ay),- -+ ,0(a,) are definable.
Since N is definable in Z, we can translate the Godel coding to talk about
sequences in R. For our convenience, we save the length of the sequence in
the first slot of the sequence. So, suppose that (z); =g y is the translated
Godel coding in the copy of R and set the formula

L(r,z1,-+ ,xn) <= Vm 0 <m < (1) = /\(T) =g T; V
i=1

J,l<m | (7T)m =r ((T)j ®r (T)

(T)m ©r (1)1 =R (7);
It is true that if © € R is the image of (a1, - ,a,) by some f € Z[ty, -+ ,t,],
then o(z) = f(o(a1),- - ,0(a,)) for which o is an automorphism of R. Then,

consider V(7,y1, -+ ,yn;y) : (7,91, ,yn) A (7))o = y. Then we define
the formula ¢(z,y) by

o(z,y) =
(1) 3rV(7, a1, ,an;2) = V(1,0(a1), - ,0(an);y).

(2)Va,b,c (3rp

qj(Ta A1,y Qp; a)/\\IJ(p, A1, ,ap; b)/\\D(Tv U(al)> e 7U(an); C)/\\I/(p, U(al)a T

= a = b. (injectivity of o)
(3) VyTz, 7 W(7,a1,- - ,an;2) NV(T,0(a1),- -+ ,0(a,);y). (surjectivity of o)

In other words, the sentence above says that (z,y) is in graph(o) iff (1)
there is a polynomial f € Z[zy,--- ,x,] such that f(ai,---,a,) = = and
flo(ar), - ,0(ay)) = y; (2) for all ab,c if there is f,g € Z[xy, -+, x,]
such that f(ay,--- ,a,) = a, g(ay, -+ ,a,) = b, f(o(ay), -+ ,0(a,)) = ¢ and
g(o(ay),--- ,0(a,)) = ¢, then a = b; (3) for all y there is f(xq1,---,x,) €
Zlzy.--- ,x,] and x € Rsuchthat f(ay,--- ,a,) =z and f(o(ay), -+ ,0(a,)) =
y. This is exactly the description of o as an automorphism over R. There-
fore, any o € Aut(R) is definable if R is bi-interpretable with Z. n
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This are the preliminaries in model theory necessary to understand the follow-
ing chapters. In the next chapter, interpretations and definitional expansions
will be widely used. We introduce the definition of QFA-rings and use these
concepts to provide some examples of QFA-rings.



Capitulo 2

Quasi-finitely Axiomatizable
Rings

2.1 QFA Rings

In this chapter, we are going to define and present some instances of an in-
tersting class of structures, the quasi-finitely axiomatizable rings.

Definition 2.1.1 Let L,;,4 be the language of first order of the rings and K
be the class of the finitely generated commutative rings. We say that S € K
is quasi-finitely aziomatizable, or QFA, if there is a sentence ¢ € L,ing such
that S |= ¢ and if A € K is such that A |= ¢, then we have A~ S. If S € K
is QFA and ¢ € L,ng is such sentence, we also say that S is QFA via ¢ or
that p is a QFA-sentence for S.

Note that if S € K is QFA via ¢ and also via ¢, then every model of ¢
that is in IC is a model of ¢ (and vice & versa). In 2004, O. Belegradek raised
the question “which f.g. rings are QFA.” Note that, since Z[xy, - ,x,] is
noetherian and Z[zy, - - , x,] is the free ring in n variables, each f.g. ring is
noetherian.

Example 2.1.1 As a very first ezample, we claim that (Z/27,0,1,4+,-) is
QFA via the sentence

0z, (F0=1)AWNz z=0Vx=1)

21
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If we suppose that A € K is a model of ¢z,, then A have exactly two
elements. Indeed, since 0 # 1, we have that 1 +1 # 1, and that 1 +1 = 0.
Then there is an isomorphism 1 : Zo — A (note that any homomorphism

has to be an isomorphism in this case).

Roughly speaking, a ring is QFA if we can describe it in K, up to isomorphism,
just by asserting properties holding among its elements usings only a finite
number of words built from terms and the logical symbols in the first order
language of rings. We may be using here definitional expantions of L,
without mentioning it. There is also an equivalent notion for QFA groups.
Some authors, like Andre Nies, have developed some work in this direction
(see [An]). However, in this text we will concentrate in the ring case. To be
QFA is a very strong characteristic for a ring to have. For instance, to be
QFA implies categoricity in some sense. For the next sections we will show
some samples of nontrivial QFA structures and prove that in fact they are
QFA by building isomorphisms in each case. It is not too hard to see that
we can contruct to each finite structure, as we did with Z,, its QFA-sentence
(for example, see [VA4]). That is why we just treat infinite structures in the
following.

2.2 The integers

The ring of integers is the most important mathematical structure that any-
one would study. Therefore, it does make sense to ask whether (Z,0, 1, 4, x)
is QFA in order to go on investigating through /C. In 2004, Sabbagh proved
(see [Ni]) that Z is QFA by using Gddel coding to define the factorial function
n +— n!, but we decided to present a more elementary sentence.

Proposition 2.2.1 The integers are QFA.

Proof: Firstly, we want to define an order x < y < “y —x — 1 is a natural
number”. Every natural number is the sum of four squares (Lagrange’s
Theorem, see [IR]). Then, we can define the natural numbers in Z by

N={z€Z; 3ni,ng,n3,ny & =n3+n3+n3+ni}
With this definition of N, we define the order “<” by
2

Vo,y,z <y & Ing,ng,nz,ng Y=+ 1+n]+ns+n;+n;

<y ANy<z) =zx<z
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O<z)AN(z<y) =zx<zy
r<y =r+z<y+=z

Now we add a sentence to say that the model is “discrete”
Yo,y (z<yV(@=y)V(iz=y+1)V(y+1<z)

for which “¢V1) < (pA—Y)V (=dA)” is the exclusive or (we can ensure that
the positive elements of a model in IC for these sentences satisfies PA™; PA~
consists of the finitely many basic algebraic axioms for Peano Arithmetic,
see [Ka], and so it can be considered as a single sentence). Actually some of
those, like (z < y) A (y < z2) = x < z, are part of PA~. Therefore a model
in IC of these sentences is a model of Th(Z)) and finally a sentence ¢ to say
that for all elements of the model there is a bigger element that is equivalent
to a power of 2.

Yw): Ve 1<z= (T w=rz)= (Is x=29))

¢ Vzw (z <w)Ap(w).

Claim: The conjunction ¢ N PA= is a QFA-sentence for Z, for which

PA= is the relativisation of PA™ to the set {a € M ; 3ny,ng,n3,ngy = =
n? +ni+n3+ni}.
Proof: Let M € K be such that M = ¢ A PA~. Since M | PA~, M
is an ordered rings. Now we will prove that the natural map Z — M is an
isomorphism. Since M is ordered, this map is injective. Suppose that this
map is not surjective. We will use the following theorem (see [Ka]) to ensure
that there is an element in M that is greater than all integers.

Theorem 2.2.1 (Thm. 2.2 in [Ka]) Let M |= PA~. Then the map N —
M given by n — n™ is an embedding sending N onto an initial segment of
M.

Since the map is not surjective, then, by Theorem 2.2.1, there is a € M
such that ¥n n < a. So, by ¢ there is an element 6, € |M| such that
(o < bp) N )(6y). Hence, ¢ ensures the following lemma.

Lemma 2.2.1 For all i € N we have that 2° divides 0.

Proof: (Lema 2.2.1) We prove this lemma by induction on ¢ € N. Since
0y = 2°.6,, then we have that the base case holds. Suppose that 6, is divisible
by 2", that is, that there exists #,, such that 8, = 2".6,,. Since 6, is greater



24

that all integers, so is #,,. Thus, 6, > 1 and ¥(6y) implies that there ex-
ists 0,41 such that 0, = 2.0,,,1. Hence, 0y = 2".0, = 2".2.0,,,1 = 2" 0,1,
that is, 6y is divisible by 2"*1. Therefore, the lemma follows, by induction. [J

Suppose that we have all the sequence {6;};,cy from Lemma 2.2.1. Then,
we can build a properly ascending chain of ideals

(91)C(92>C(93)C'--C<9n)c...

Since all the 6;’s are transcendent, this chain goes on forever. So, M is
not a Noetherian ring, which is a contradiction with the fact that M € K
(M is finitely generated). O
Hence, if we consider

w0z Vr,y,z (v <y < Ing,ng,nz,ng y=a+1+nt+n3+ni+ni)A
(z<y)AN(y<z) =z<2)A
(0<2)A(x<y) = zz <2y
(x<y =>zr4+2<y+2)A
(@ <yV(@=y)V(iz=y+1V(y+1<z)A
(VzF3w z<wAVr 1<z= (T w=rz)= (Is x=29))))
(2.2.1)

then the arguments above ensure that if S € K A S | ¢z, then S ~ Z. So,
vz is a QFA-sentence for Z. "

Now we go on investigating other interesting cases.
2.3 The rings Z[¢|/(¢?) and Z[e]/(£%).

At first, we can uniquely represent elements of Z[¢]/(e?) and Z[e]/(g?), re-
spectively, by a + be and r + se + te?, for which a,b,7,s,t € Z and ¢ is a
distinguished element of the ring satisfying € # 0 and 2 = 0. Nevertheless,
these sentences describing how the elements in these rings are have sentences
"a,b € Z"and "a,b,c € Z " that depend on a predicate for Z. Therefore, we
should have a explicit definition of Z in Th(Z[e]/(¢?)). With this purpose,
we could try to find such definition p(z) € L, of Z valid in Z[e]/(e?), id
est "p(x) < x € 77, and then say that

Z[e)/(e*) = {a + be ; w(a) Ap(b) A=e=0Ae*=0}



25

However, the integers Z unfortunately (or fortunately) are not definable
in Z[e]/(?) (the arguments for this last claim will be presented in the first
section of the appendix). But fortunately we can at least interpret Z in
Zle]/(?), and we shall use one interpretation to construct a QFA-sentence
©ope/2) for Z[e]/(€?). Indeed, we first add the sentence 6 : "Je —e = 0A€® =

07 and then define the equivalence relation = ~ y by the following sentence
Vao,y o~y < 3Im x=1y+me

for which € is given by . And now, to say that ~ induces an interpretation of
Z., we consider a QFA-sentence of Z, say ¢z, and relativise it by substitution
of the symbol “=" by “~”, say ¢z. Thus, if S € K satisfies these sentences,
then necessarily S/ ~ ~ 7 via 1g — 1z. To complete our sentence Pate /()

we add just one more sentence, namely Vz,y exr = ey = = ~ y. Putting
everything together, our QFA-sentence for Z[e|/(g?) is given by

Papape2y - (Je —e=0Ae=0)A
Ve,y,z (x~y < 3Im x=y+meA
(z <y < Ing,ng,ng,ny y~z+14+n2+n2+n2+n?)A
(z<y Ay<z) =x<2)A
(0<2)A(z<y) = 2z < zy)A
(z<y =z+2<y+2)A
(z <yV(z ~y)V(e~y+1)V(y+1<z)A
(
(

(2.3.1)

Note that we introduced the definable symbols ~ and <. Hence, Py e2) 18

actually a sentence of the definitional expansion (Z[e]/(¢2),0,1,,~, <). Now
we are going to prove that ¢,,,.2, works.

Proposition 2.3.1 Let .2 € Lying(~, <) be as above. Then, Z[e]/(?)
is QFA via p,,.2).

Proof: Let S € K be a model of ¢,,.2. Since S/AZJ = ¢z, we have that
n.lg corresponds to n in the quotient and for each x € S there is a unique
n € Z for which z ~ n. We define the map ® : Z[s] — S such that
17 — 1g and € — €. From the definition, we conclude directly that ® is a
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homomorphism. Moreover, ® induces a homomorphism ¥ : Z[e]/(¢?) — S
given by
a+bs—alg+blg.e

So, as an isomorphism is a surjective embedding, it suffices to prove that ¥
is bijective.

Lemma 2.3.1 U : Z[¢]/(e?) — S is surjective.

Proof: Take y € S. So, there is a representative a.1lg € .S for the class that
has y. Hence, since y and a.lg are in the same class, there is m € S such
that y = a.1g + me. Analogously, there is a representative b.1g € S for the
class that has m. Like before, there is n € S such that m = b.1g 4+ ne. Thus,
we can express y as y = a.lg +me = a.1g+ (b.1g + ne)e = a.1g + b.1g€ + ne>.
Since S = ¢y 2, then € = 0. Hence, y = a.1g+b.1ge. Then, if we consider
T = a+ be € Z[e]/(?) such that a,b € Z are such as in the definition of ¥,
we have that ¥(z) =y. O

Lemma 2.3.2 U : Z[g]/(e?) — S is injective.

Proof: Suppose that z = a + be is such that U(a + be) = 0. So, a.lg —0 =
—be . alg~0 ..a=0. Then, we have that b.1ge = 0.c. By Parey/(e2), We
have b.1g ~ 0 . b=0. Therefore, z =0. O

Then, S ~ Ze]/(¢?) and the proposition is proved. l

Analogously, we can build ¢35, such that the ring Z[e]/(¢?) is QFA
via ©,,.3,. Just by changing and adding sentences to the last sentence we
built, we find

Py - (Je e =0A=e=0Ae =0)A
Vr,y, 2 (xr@y & Im 2=y +meA

(x <y < 3Iny,ng,ng,ny y£g;+1+n%+n%+n§+ni)/\

(x<y)AN(y<z) =>zx<2)A

(0<2) A (z <y) = zx <zy)A

(r<y =z+z<y+2)A

((z < y)V(z ~y)V(z~y+1)V(y+ 1 < 2)A

(

(

)V
Veadw z<wAMVMe 1<z= (Fr w=rz)=(3s x=2s))))A

Er=ey=1~y)

(2.3.2)
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Claim: Z[e]/(e?) is QFA via ©y))3,-

Proof: Suppose that S € K is a model of ¢, ,.3,. We build, like before, a
homomorphism ¥ : Z[e|/(e*) — S given by

a+be+ce? —s alg+blge+ c.lge?

Once again, it is enough to prove that W is a bijection. The surjectivity
follows analogously as before. Take y € S. Then, since S/ ~ ~7,y€alg
for some a € 7Z. Then, there is m € S such that y = a.1g + me. Since
m € b.1g for some b € 7Z, there is n € S such that m = b.1g + ne. Anal-
ogously, there is ¢ € S such that n = c.1g + ge and n € c.1g. Thus, we
write y = a.1g + (b.1g + (c.1s + ge)e)e = a.lg + b.1ge + c.15€* + qe3. Since
S E ©u..3), then € = 0. Hence, y = a.lg + b.1ge + c.1g¢®. Then, taking
T =a+be+ce? € Zle]/(e3), U(x) = y and the surjectivity of ¥ follows.

The argument for the injectivity is similar. Suppose that x = a + be + ce? is
such that ¥(z) = a.1g + b.1g€ + c.1g¢> = 0. If we multiply the last equation
by €2, we have that a.1ge2 = 0, since €3 = 0. So, a.1g ~ 0 .. a = 0. Now, the
equation becomes b.1ge + c.1g¢2 = 0. So, if we multiply by €, then we have
that b.1g.€2 = 0. So, b.1g ~ 0 .. b= 0. Now the equation is just c.1ge = 0,
and then ¢.1g ~ 0 .". ¢ = 0. Therefore, z = 0 and the injectivity of ¥ follows.
u

2.4 Therings Z[e]/(¢?, 5¢%) and Z[e, n|/ (3,13, en?)

At this point, the reader probably is thinking “why more examples?” One
possible answer for this question is that we are considering these other ex-
amples to exhibit some of the complications which may arise.

Consider S := Zl[e]/(e*,5e3) and Sy := Z[e,n]/(e3,n*,en?). We shall
present QFA-sentences g, and g, for S; and S, respectively. Once again,
we produce a sentence very close to the previous ones. We leave the proof to
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the reader that S is QFA via

¥s, -

(Fe =€ =0A5 =0Aet =0)A

Vo,y,z (x~y < 3Im x=y+meA

(x <y & 3ni,ng,ng,ng y~x+14nd+ni+ns+nd)A
(x<y)ANy<z) =zx<2)A

(0<2)AN(x<y) = zz <2y

(x<y =z+z2<y+2)A

((z <yV(z ~y)V(z~y+DV(y+1<z)A

V3w z<wA Mz 1<z=(3Fr w~re)= (3s z~25))))A
(ex = ey = x ~ y)A

(x=ey=a~y)

(

Er=ey=3Im =~ y+5m)

(2.4.1)

In the case of Sy, it seems to be more complicated. Nevertheless, it
also follows from the same argument, but with a bigger, and slightly more
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difficult, sentence. Indeed, we can define

0s, : (e = =0A€ =0)A
(3n —n*=0An*=0)A
(=€’n =0 A en® = 0)A
Ve,y,z (x~y < 3rs x=y+re+ sn)A
<y < Imy,ma,ms,my Y~z + 14+ m?4m2+mi+m3)A
(x<y)AN(y<z) =z<2)A
0<z2)A(x<y) = zx < 2zy)A
<y =>x+z<y+2)A

(
(
(
(
((z <y)V(z ~yV(z~y+1V(y+1<x))A

(V23w z<wA Mz 1<z=(3r w~re)= (3s z~2s)))A
(

(

(

(

(

ex+ny:6p+nq:>((xfap)/\(ygq))/\

=y +ng=x ~ YA

nc =nly+ep =z~ YA

enx = eny = T ~ y)A

ne = Eny = x ~ y)

(2.4.2)
Proposition 2.4.1 Sy is QFA via g, .

Proof: Let S € K be a model of ¢s. Since SQ/AZJ ~ 7, we construct a map
O : Z[e,n] — S such that

(175777) = (15,6,71)

Like before, ® induces a homomorphism ¥ : S; — S, and it suffices to show
that W is bijective to be an isomorphism. Let y be an element of S. We can
use the same argument of taking fixed representatives of classes in Sy/ ~ to
write y = ao.ls+a1.156+a2.15n—|—a270.1562+a1’1.156n+a072.15n2—i—ag,l.lsezn.
So, setting © = ag+ a1€ + aan+ azpe® + a1 16n+ ag 2n® + az 1€°n € Sa, we have
U(z) =y and then V¥ is surjective. We shall shorten the proof of injectivity
of U too. Suppose that U(z) = ¥U(y) for some z,y € Sy. So,

2 2 2
ag-ls +aj.lse +az.1sn + ajo.1s€” +aj . 1sen + agq.lsn” + a5, .1g€"n =

2 2 2
ag-ls +af 1ge +ay.1sn + ay . 1€ + af ;. 1gen + af 5. 1sn” + aj;.1gen.
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Therefore

aglg —ag.ls = (af.1s —aj.1lg + (a8 g.1s — a34.1s)e + (af ;. 1g — af ;. 1g)n)e+
ay.lg —a3.1g + (af5.1s — af 5. 1s)n + (a4 .15 — a3 ;. 15)e’)n.

Hence, af.ls ~ af.ls .. afls = aj.ls .. af = a}.

rearranging the first identity, it follows that

Simplifying and

(a}.1s + a3y 1ge + af . 1sn)e + (a3.1s + af 5. 1sn + a3 . 1ge*)n =
(af.1s + a8 g 1ge +af . 1sn)e + (a3.1g + af 5.1sn + af . 15€°)n.

Z Z
Thus 749 ~ rev Aag.lg ~ adls . aflg=a{lgNaslg=adlg ..
ay = ay N ai = ay. After canceling the commom terms, we can see that

(a5 — @g,o)-lsez = ((a}; —af )lse + (agy — agq)lsn + (a5, — @:26,1)1352)”
and
(ag,Q - ag,z)-lSHQ = (alzl,o - CL32£,0)156 + (alll,l - aylc,l)lSn + (a’g,l - a§,1)15€n)€

Z Z . .
Then af,.1s ~ aj,.1s A af4.1s ~ af,.1g implies that a3 ,.1g = af,.15 A
afo-1s = ago.1s and, then, a3, = a3, A af, = ag,. Now, it remains

en(af.1s +ay,.1s€) = en(aj ;.15 + a5 ;.1g¢)

It follows that (af ;.1s+aj.15€) ~ (af,.1s+as,.1s€) . afy.1g ~ afls .
aj g =af . 1g . af, = af,. Finally,

at 1g€’n = aj,.1se*n
Z Y . Y . _ Y
2 2 2
ag + aje + azn + a;Oe + a:f,1577 + a?izn + ag,lg n=
2 2 2
= ag + afe + ajn + ab " + af 1en + agn” + ah €7

and then we have that W is injective. Therefore, S >~ Sy. [

This ends with our list of examples to understand what is done when proving
that some f.g. ring is QFA. In the next chapter, we will start with a theorem
that says that if R is a f.g. ring which is an integral domain, then R is bi-

interpretable with N. Moreover, if ay,--- ,a, are generators of R, then there
is a formula F(xy1,--- ,x,) such that R is a model of F(ay,--- ,a,) and, if S
is a integral domain with by,--- b, € S, then S = f(by, - ,b,) <= there

is an isomorphism R — S such that a; — b; for i < n. As a sequel, we use
this result to obtain a generalization for the previous examples, proving one
theorem about a class of QFA rings.



Capitulo 3

Integral Domains and the

General Case

As we mentioned at the end of the last chapter, we need an auxiliary result
to present QFA-formulas for the class of f.g. rings we are studying. Thus,
we divide this chapter into two sections: the first one presents an important
result about f.g. rings which are integral domains, and the second one has
some comments about those examples in the last chapter and provides a
theorem that says that a certain class of f.g. rings is QFA.

3.1 Infinite f.g. integral domains are
bi-interpretable with Z

For the result of this section, we firstly tried to prove our claims using el-
ementary arguments. However, some parts still need more research to pull
them down to simpler proofs. In the meanwhile, we are using a result due
to Bjorn Poonen in Uniform First-Order Definitions in Finitely Generated
Fields, in Duke Math. J. (see [Po]).

Theorem 3.1.1 if R is an infinite f.g. ring which is an integral domain,
then R is bi-interpretable with N. Moreover, if ay,--- ,a, are generators
of R, then there is a formula Fgr(zy,---,x,) such that R is a model of
Fr(ay, -+ ,a,) and, if S is a integral domain with by,--- b, € S, then
S | Fr(by,--- ,b,) <= there is an isomorphism R — S such that a; — b;
for eachi e {1,--- ,n}.

31
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Proof: We proceed by induction on n = trdegz(R).

Case n = 0 and n = 1: If char(R) = 0, then the base case is n = 0,
that is, R is an integral domain and Frac(R) is a global field. If char(R) = p,
then the base case is n = 1, that is, R is an integral domain and Frac(R) is
a function field (if n = 0, then R would be finite). Both cases were solved in

[Ru]. O

Case n + 1: Suppose the result is true for all f.g. integral domains R with
trdegz(R) = n, that is, that R is bi-interpretable with N and if a4, - - - , a,, are

generators of R, then there is a formula Fg(z1, - - ,z,) such that R is a model
of Fr(ay, -+ ,ay,) and, if S is a f.g. integral domain with by, --- ,b, € S, then
S Fg(by,- -+ ,b,) <= there is an isomorphism R — S such that a; — b;.

We are going to separate into two cases, and then we prove that all cases can
be reduced to these two.

Case 1: R’ = R|x] and R’ is relatively algebraically closed over R.

We will prove that R’ := R][z| is bi-interpretable with N by proving the
following steps:

Step 1: R is definable. We prove Step I with two claims. The argu-
ments in Claim 1 are a variant of the arguments we can find in [Ni].

Claim 1: R[z]/(p) is R-isomorphic to R <= p = ax + b with b € R and
a € R invertible.

Proof of Claim 1: (<) Suppose that p = ax + b with b € R and a invertible.
Then, we can build the homomorphism

Rjx] — R
fr f(=a™'b)

Using the canonical projection R[z] — R[z]/(p) and the Isomorphism The-
orem, we can conclude that R[x]/(p) is isomorphic to R. Moreover, it is
not hard to see that R is fixed by this isomorphism. Hence, R[x]/(p) is R-
isomorphic to R.

(=) Suppose that we have an isomorphism R — R[z]|/(p) that fixes R.
Thus, p cannot be a constant, otherwise we could not have injectivity. Since
R is fixed by this surjective homomorphism, we have that each equivalence
class in R[x]/(p) has to have one constant (actually it is just one). So,
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for the element x there is a constant ¢ and a polynomial h(z) such that
x —c = h(z).p € R[z]. Since we have an equality between polynomials in R
and p is not a constant, then h(z) is a constant, say A € R, and p = ax+D0 for
some a,b € R. Then, x — ¢ = (A.a)x + A.b and, therefore, we have A.a = 1.
Thus, p = ax + b with b € R and a invertible. This ends the proof of (=),
and therefore this proves Claim 1. [J

Using the definition z =, y & Im =z = y + m.p likewise functions @, and
®p, we can interpret R[z|/(p) with (R[z],®,, ®,). Relativising the formula
Fg in the interpretation, we have a formula to define the set

C={p=ar+b;be R NIA Aa=1}
Using this auxiliary set, we can define R in R[z] with the formula
recRe=VyeC y+r’cC

Indeed, if r € R, theny +7> € C forally € C. If Vy € C y+1r? € C,
then z +r? € C. Hence degy(r) = 0, otherwise degy(x + %) > 1, which is a
contradiction with z +r? € C. So, r € R. (Step 1)

Step 2: There is a copy R* of R[z] interpretable in R.

Proof: Since R is interpretable in N, we can relativize the Godel coding
of N to the interpretation of R in N, namely (N, ®g, ®g). Each finite se-
quence of R will have its length saved in the first slot of its code. Then, we
define the interpretation with

=y <> Vi(x), =g (y)

TBoy =~ z2<=Vi#0(2);Br (y)i =r (2);

and
TRLY =~ 2

T
Vi < (x)o + (y)o
(35 Vi(j=0=1(s); =0)A(J <i=(s)j+1=1(5); Br (x)iﬁ"(y)jﬂ))
A (2)i = ()i

Thus, we are interpreting (R[z], 4+, x) in N as ({finite sequences of R}, ®.., ®.).
Since R interprets N, we relativize all above formulae to have the formulae
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of the interpretation of this copy, say R*, in R. [J(Step 2)

Step 3: There is a definable (in R) embedding 2 : R — R* identi-
fying R with the constant polynomials.

Proof: Define the graph of Q : R — R* by

graph(2) := {(a,b) ; (b)o =1 A (b)1 = a}.

Note that this definition says that b just has the constant coefficient and that
this coefficient is a. So, it does its work.  [(Step 3)

Step 4: R* x R -+ R with (f,a) — f(a) is definable in R.

The graph(®) is definable by
{(f,a,b); "a € RTA"b € R'A(Vx (x)g = IN(x); =1 =" (z—a™)|*(f-b") in R* )}

for which the formula "(x — a*)|*(f — b*) in R*7 is the interpretation of
(z—a)|(f —b) in R[z]" in R* = ({finite sequences of R}, ®.,®.), since “|”
is definable and so is R, and a* = 2(a) and b* = Q(b).  O(Step 4)

Step 5: R[z] x R —— R with (f,a) — f(a) is definable in R[z].

Analogously, we have

graph(I') = {(f,a,b) ; Ta€ RTATbe RN (z —a)|(f —b) in R}.

Step 6: R* and R = R[z] are definably isomorphic in R'.

We construct such isomorphism by doing
R* - R[z]
[y

such that
graph(©) =

{(f,9); ("(f,a,b) € graph(®)"'A"(g,a,c) € graph(I')7) = b = c}.

Since all these formulae are definable, then we have Step 6 done. [

Gathering the steps: we have that Step 2 and Step 3 together imply that R*
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is bi-interpretable with R, and Step 5 says that R* is definably isomorphic
to R’ = R[z]. Therefore, R[x] is bi-interpretable with N.

Since R[z] is bi-interpretable with N, then we can build the formula F,(xy,- -+, Z541)
using the formulae that define the interpretation of R in N, together with the
formula interpreting N in R, and the formula that defines the isomorphism
between R and the interpreted copy of R in the interpreted copy of N*. With

this, Case 1 holds.[]

Case 2: R = R]s,t]/g(s,t), R is relatively algebraically closed in R', and g
is absolutely irreducible over R[s,t].

First, as we did before, we want to define R in R’. For this, we make use of
the following result we mentioned in the beginning of the chapter.

Theorem 3.1.2 (Thm. 1.4 in [Po]) For each n natural number, there exists
a formula ¥, (t1,- -+ ,t,) that when interpreted in a finitely generated field K

s true if and only if t,--- ,t, are algebraically dependent over k.

As we did in Chapter 1, we can interpret the field of fractions of R/, namely
R := Frac(R'), using formulas to define @7 and @z such that (R, ®7r, ®77) =~
(R’,+, x). Since equality in R’ is interpreted in R’ with the formula (z1, x5) ~
(y1,12) € T1.y2 = o.y1, then "z € R'7 is definable in R’ by (z1,23) € R' <
Jy y.wxg =1 (x5 is invertible). Now, fix generators ay,--- ,a, of R and take

a formula ¥, 1(t1, -+ ,t,11) given by Theorem 3.1.2. Now, do

rER<= R E(@eR)AYn(ar,  ,am,)

Thus, R is definable in R'. It follows that R’ is bi-interpretable with the
structure (R, +, X, R), for which R is a predicate for R. Let R” be the
interpreted copy of R’ in R. Hence, R” can be viewed as a set of functions on
the curve defined by g(z,y) = 0. Now, if we define the evaluation R — R
such that f — f(p) (some p on the curve defined by ¢), then we can identify
R’ and R” by the way they act on the curve. Possibly, we have to consider
we are in some degree-d extension of the field of fractions of R, say Frac(R).
Let’s construct these formulae now. First, to interpret Frac(R) in R’, we can
use, like in Chapter 1, the formulae

E(%,Imyb yz) ~ R(%) A R(y2) A (T'Ez-yz = 0) A (951-3/2 = $2-y1)

IThis formula will be included in the next version of this thesis.
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A1, T2, Y1, Y2, 21, 22) & E(21.92 + T2.y1, 2.2, 21, 22)
M (21, 22, Y1, Y2, 21, 22) & E(21.91, 2292, 21, 22)

Then, we use the notation X := (x1,m2), Y 1= (y1,y2), Z = (21,292), 0 :=
(0,1), 1:=(1,1) to abbreviate the formulae

XaY =2 AX,Y,2)

X®Y =2 e MX,Y,Z)
With this considerations, we see that ((R')2,0,1,®,®) = (Frac(R),0,1,+, x).

Now, for a fixed d, we can build a formula to talk about the total space
of all degree-d extentions of Frac(R). Like in chapter zero, we have to build
a formula with parameters {a;;;} which define the multiplication in the
degree-d extention. So, we do

d
Ad(Xs o X, VoY), (Z1, o Za)i {aiga}) & \ Xi @Y = Z
=1

Md((Xla -"7Xd)7 (}/17 <eey }/d)a (Zh cey Zd)a {ai,j,k})
T
d d d
/\ZZXJ' ®@ (Y, ®aj1) = 2
=1 j=1 i=1

for which Zle Bi:=B @& B &--- & By )
Finally, considering X := (X1, ..., Xy), Y = (Y1, ..., Ya),and Z := (Z4, ..., Zy),
we define . . . o
X@©aY =7 & AuX,)Y, Z;{aij1})
X Xd ? = Z = Md(X,?, Z; {ai,j,k})
VA, B,C,X,Y,Z (Y®,Z =ANX®sA=BAX®,Y =C) = C®Z=B
VA,B (A®sB=0)=A=0VB=0
VA, BA®yB=B®, A

(Note: We did not add the distributive property of ®, over @4, because they
follow from the definition.). In order to see R’ as a subring, of this degree-d
extension, isomorphic to R’ x (0,---,0), we add the formula

< /\ @ik = O) A ( /\ Qi jj = 1)

{(i,4,k) 5 1<i,j.k<n & j#k} {(i,4,k) 5 1<i,j,k<n}
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So, with these definitions, we have that ((R)%,®q, ®q4) is a degree-d exten-
sion of Frac(R) such that R’ is viewed as R’ x (0,--- ,0).

Since R is bi-int. with N and N interprets R[s,t]/(g(s,t), then R inter-
prets R[s,t]/(g(s,t)) (we can see Rz, ] as finite sequences with indices from
N x N of elements of R equiped with specific sum and product, and then we
consider the equivalence relation z ~ y < Im = —y = m.g). So, let R” be
the interpreted copy of R’ in R. Then, construct the isomorphism

R — R
f—=nh

iff for each s and ¢ satisfying g,(s,t) = 0, s and t in some degree-d extension
of Frac(R) we have that f,(s,t) = hq(s,t). So, the graph of the isomorphism
is defined by

{(f, ) :3((ar, az)ige) Vi, 3,k R(a1)ijw) A R((a2)i) A =(az)ije =0
& JA, B ga(x,y) = Az —s) + By —t) =
for which gq4, f4, hq are g, f, h when viewed (interpreted) in the degree-d exten-
sion of Frac(R) (whose multiplication is defined by the a; ; 1), and A, B, C, D
lie on this extension. To end with this definition, we just use a definition for

the graph of the evaluation map fy — fq(z,y) = z}* . With these consider-
ations, we proved that Rl[s,t]/(g(s,t)) is bi-int. with N.

Since R[s,t]/(g(s,t)) is bi-interpretable with N, we can proceed with the same

argument of Case 1 to construct the QFA-formula Fris /(g(s,6)) (T1, - -+ Tng1)-
With this, Case 2 holds. [

Now, we show that any case can be reduced to these two.

Lemma 3.1.1 If R’ is a f.g. integral domain of trdegz(R') = n + 1, then
there is a relatively algebraically closed subring R and two elements s,t € R’
such that R = R][s| or R[s,t]/(g(s,t)) as an abstract ring.

Proof: Take aq,--- ,a,,1 generators of R'. Consider R the algebraic clo-
sure of {ay,--- ,a,}. Since aj, -+ ,a,41 are generators of R', then R C R'. If
an41 is algebraically independent of R, then R’ = R[a,.;] and we are done.

2This definition is being fixed and will be included in the next version of this thesis.
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If not, then there is some relation g(a,--- ,a,,ane1) = 0 in R'. We may
assume this is the only relation over the generators we have (otherwise we
decrease the transcendence degree of R’). Consider R the algebraic closure of
{ay, -+ ,a,_1}. Now, consider §(an,an+1) := g(ai, - ,an,ays1). Therefore,

R = Rlay, an1]/(g(an, anti1)), and we are done. O

So, any case can be viewed like the cases above, and then the result holds by
the induction principle. ]

3.2 The General Case

As we mentioned before, all of the previous examples of QFA rings have
something in commom. We shall now make explicit their similarity. In
this section, we will consider finitely generated rings R’ such that there is
a nilpotent prime ideal I C R/, id est there is n > 0 such that I™ = 0 and
R'/I = R is an integral domain. Observe that, for instance, the last ring of
the last chapter is the case for which R := Z[e,n]/(e3,m%,en?), [ = (g,7), and
R = 7. Now, let’s think about what is going on among the already presented
arguments. All of the constructions of the QFA-sentences until now involve
relations between the elements z,--- ,; induced by the ideals I, I?,---,
I"~!. Furthermore, one can realize that we always added the sentences

vz Vr,y,z (r <y < 3Ing,ng,ng,ng y£x+1+nf+n§+n§+ni)/\
(z<yANy<z) =z2<2)AN((0<2)A(z<y) = 2zz < 2zy)A
(x<y =>x+z<y+2)A
(@ <y)V(z=yV(r=y+ HV(y+1 <))\
(VzFw z<wA(Vzr 1<z= (T w=rx)= (Is ©=2s))))
(3.2.1)

whose relativisation was used to state that the equivalent classes interpret
the rational integers. With ¢z in hands we used the relations induced by
those ideals to build our sentences.

Due to Theorem 3.1.1, we will assume that in the general case we know
Fr(xy,--- ,2;), and then try to find a QFA-formula for R’. For this, we will
use some already known facts of Computational Algebra we find in [BV]. In-
deed, since R[zy, -+ ,x;] is a R-module and, for each 1 < j <mn —1, [7/[/*!
is a R-submodule of R[xy,--- ,x;], then we can find, with Buchberger’s algo-
rithm, generators for I7 /71, Using this, we have
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Theorem 3.2.1 Let K be the class of finitely generated rings. Consider
R € K such that R' is finitely generated over R, an integral domain, by
elements x,...,x, of R' and that I = (x1,...,2,) is a nilpotent, prime ideal
for which R'/I = R (as an R-algebra). Then, we can contruct a QF A-

formula for R'.

Proof: By the theorem about integral domains, we have a QFA-formula for

R and a set of generators (aq,--- ,a;), namely Fg(xq,---,2;). We want to
construct a QFA-formula for R', namely Fr/(s1, -+, s, t1, - ,t,). Consider

the ideal I(xq, -+ ,2,/R) :={f € Rly1, - ,ya] ; f(x1,-++ ,2,) =0in R'}.

Since I(xy, -+ ,z,/R) is f.g., we can take generators g1 (Y1, s Yn)yeer Ge(Y1, -+ s Yn)
for I(xy,-- ,z,/R). For each i, we rewrite the g¢;’s as ¢;(y1, - ,yn) =
hi(y1,-*+ yYn, a1, -+ ,a;), for which the h;’s are in Z[zy,--- ,x,4]. Then,

we could define Fg/(sy,--+, 8, t1,-++ ,t,) as

FR’(Sla"' 7Sl7t17"' 7tn): FR(Sla"' 781) A

k
N Rty tan, o a) A (3.2.2)
=1

Tthere is no other relation™

for which Fr(xy,--- ;) is the relativization of Fg(zy,--- ,2;) when equal-
ity is replaced by ~ such that z ~ y < x —y € I ("f € I is definable by
I(ag)o<ipicnsent | = 2 apx?). Then, if we define "there is no other relations™,
we are done. Indeed, we can do this by defining "z is R-linearly indepen-
dent on uy,--- ,u, ', for we could say “there is not a relation A such that h

is R-independent on the h;’s”. Remember that I, as an R-module, is iso-
morphic to its graded ring gr(I) = I/I? ® I?/I3 @ ... ® ["'/I". Indeed,
we can use Buchberger’s algorithm to find a basis x(11),- -, 2(1,¢,) for I/1?
starting from (xy,---,x,). Using the same argument, we can extract a ba-
SIS T(2,1), * * * » T(2,e9) fOr I2/1° from (a7, 2122, T1T3, ..., T1 T, T3, ..., Ty, T2).
We repeat this argument until we get a basis (:U(n_m), . ,x(n_l,enfl)) for
I/ =11 So,if weset B = (Z(1,1), s T(er)s - - Tne1,1)s" " s L(nTen_1))s
then for each i € {1,--- ,n—1} the reduction maps B; := (z(,1), -+ , T(1,e,) —
B;/I"™! are one-to-one. Therefore, B is a basis to I. Now, we define I with
relsImy,--,m, v= ZZ:l my.Bl|,, for which B, is the ¢'" coordinate
of B. Likewise, the sentences "z € [/ are definable for each j. Furthermore,
we can define x € I7/I7! by

€
v € /P <= Imy,-- ,m., x= Zmzx(w)
z=1
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So, foreachd > 0and j € {1,--- ,n—1} we can define sentences 6;(p1, - - - , pa)
that say “py,---,pa € I7/I7T! are R-linearly independent ” by

d
0i(prs -+ s pa) == Fby,-++ by (bipr + -+ bapa € P = N\ b€ P
=1

Therefore, since I ~ gr(I) as R'/I-modules and R'/I = R, then “py, -, pg
are R-linearly independent ” is equivalent to

n—1
/\ 5j(:017 e apd>
j=1

Hence, for each d > 0 the sentences O4(p1,--- ,pa) : "p1,---,pa are R-
linearly independent is definable, and so is "there is no other relations™.

Finally, let S be a f.g. ring with ¢y, -+, ¢, b1, b, € S.
IfSE Frilcy,--- ,c,b1,- -+, by), then, by Fr(cy, -+ ,¢), we have that ¢y, -+, ¢

are generators of S/(by, - - - , b,) and there is an isomorphism S/ (b, - - - , b,) —
R such that ¢; — a; for each i. By the other part of Fr/(c1, -+, ¢, b1, ,by)
ensures that by, - - - , b, satisfy the same relations over S/(by,- -+ ,b,) ~ R that

the fixed generators ¢g;,---,¢g, of [ in R'. Then, R — S defined by a; — ¢;
and g; — b; is an isomorphism. Since the converse is trivial, we have that
Fri(s1, -+ ,si,t1,-+ ,t,) is a QFA-formula for R’ n



Capitulo 4

Appendix

4.1 Z[e]/(?) is not biinterpretable with Z

Now we are going to prove the assertion that name this section. For this,
we are going to present arguments we got from “(Non)-bi-interpretability of
infinite finitely generated commutative rings with N” through pritave com-
munication, due to Matthias Aschenbrenner & Thomas Scanlon.

Suppose that ¢z is a QFA-sentence for Z. As we know, we can use ¢y to
construct a QFA-sentence for the ring S = Z[e]/(£?). However, we afirmed
that there is not a biinterpretation between S and Z. Now we are going to
prove this in the following proposition as a consequence of lemmas.

Proposition 4.1.1 Z[e|/(g?) is not biinterpretable with Z, even using pa-

rameters.

Proof: Let’s begin with this lemma

Lemma 4.1.1 Let k be an integral domain of characteristic zero, R a finitely
generated k-algebra which is also an integral domain of characteristic zero,
andt € R transcendental over k. Then, there exists a k-derivation 0 : R — R
such that Ot # 0.

Proof: (Lemma 4.1.1) Let ¢;,--- ,t, be a system of generators for R over
k with t; = t. Let K be the field of fractions of R. Then, as char(k) = 0
and t is transcendental over k, then there exists a k-derivative D : K — K

41
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with D(t) = 1 and D(t;) = §* for some a;, b; € R. Consider

D= (ﬂb) D

Thus, D: K —s K is still a k-derivative and 0 := l~)|R : R — K actually
takes values in R. Indeed, if a € R, then we may write a = f(tq,--- ,t,) for
some polynomial f € k[Xy, -+, X,]. So,

D(a) = 4 gf (ti, - tn) - D(t:) = of (- 1) - (H@) - a

Z; N i1 8;1:1
which is in R and, moreover, D(t) = H b;#0. O
i=1

Lemma 4.1.2 If k is an integral domain of characteristic zero, R is also an
integral of characteristic zero, k C R is a subring of R, t € R transcendental
over k, then there is a limit ultrapower *R = R and a k-derivation 0 : *R —
*R such that Ot # 0.

Proof: (Lemma 4.1.2) Consider [ :={S C R; Sis f.g. k—algebra andt €

S}t For Sel set (S):={TCR; TelandS CT}. LetC be the filter

generated by {(S) ; S € I'}. Then, there is an ultrafilter # that has C. For

S € llet Dg: S — S be a k-derivation with Dg(t) # 0, provided by

Lemma 4.1.1. Note that Hu S C RY, for which R" is the ultrapower of R
Sel

relative to Y. Hence, [],, Ds is a partial function R — R whose domain

is H“ S. Via the diagonal embedding

Ser
A:R— RY
T (r)ser
we have that A(R) C Hu S since k and 7 are in R (k[t,r]) € C CU. Recall

Sel
that we define Ult(R, o) by considering: for o = 0, put Ult(R,0) := R; given
this definition for some c, then for its successor put Ult(R, a™) := UIt(R, a)¥;
and finally Ult(R, A) := lm UIt(R, a) for A a limit when the limit is taken

a<<A
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along the diagonal embeddings. Define D : R — RY = UIt(R,1) as the
composit of P := H“ Dg with the diagonal embedding

Sel
R &, pu
b P
N4
RZ/{

by the above considerations, D is a k-derivation over R and by Lo$’s theo-
rem, Dt # 0.

Let 0 = Ult(D,w) : UIL(R,w) — UIL(RY,w) = Ult(R,w). Then, the
diagram

R D, RY

\ 1
U(R,w) -2 UI(RY,w)
commutes and, hence, 0(t) #0. O

Lemma 4.1.3 (Beth definability) Let M be an L-structure and A C M
some subset. If A is L-definable, then if P is a new predicate, M is considered
as a L(P)-structure via P(M) = A and, moreover, if N =ppy M is any
elementary extension of M in L(P) and 0 : N — N is an L-automorphism
of N, then one must have c(P(N)) C P(N).

The proof of this lemma can be found in Hodges [Ho].

Lemma 4.1.4 If the L-structure M is biinterpretable with (Z,4+,-,0,1), f:
M — M is a L-definable function and a € M, then O¢(a) := {f"(a); n €
N} is L-definable.

Proof: (Lemma 4.1.4) Using Gddel coding of sequences in N, one sees that
the orbit of a point under a definable function is definable in the interpreta-
tion of M in N. By biinterpretability, any set defined in the interpretation is
already L-definable. U

Lemma 4.1.5 If (Z[e]/(e?),+,-,0,1,e) were biinterpretable with N, then Z
considered as a subring of Zle]/(€?) would be L-definable.
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Proof: (Lemma 4.1.5) Using the notation like in Lemma 4, we have that
7 = Oa:r—m:Jrl(O) U Om}—mfl(())

Applying Lemma 4 for these two orbits, we have that Z would be £-definable.
d

Lemma 4.1.6 There exists a limit ultrapower *Z = 7. of Z with a non trivial
deriwative D "7, —*Z.

Proof: (Lemma 4.1.6) Let R > Z be any proper ultrapower of Z with
t € R\ Z. Thus, we can apply Lemma 4.1.2 forR, t and k =7Z. O

Lemma 4.1.7 There exists a limit ultrapower *R = Z[e|/(€*) and an auto-
morphism o "R —*R fizing Z[e]/(e*) pointwise but having o(*Z) L*Z.

Proof: (Lemma 4.1.7) Let D : *Z — *Z be the derivation of Lemma 4.1.6.

Then,
0 : ("Z)e]/(e*) — (Z)[e)/(e*)
r+ey—x+ (Dr+y)e

is an automorphism with inverse x+¢cy +— x+(y—Dx)e. Since D is nontrivial,
there exists t €*Z with Dt # 0. So,

o(t)=t+ Dte 7 0.

Finally, we can go back to prove the proposition.

Proof: (Proposition) Suppose that Z[e]/(¢?) is biinterpretable with Z. By
Lemma 4.1.5, Z is definable. Choosing P as a new predicate to Z, by Beth
definability, if N >,y M is any elementary extension of M in L£(P) and
o : N — N is an L-automorphism of N, then one must have o(P(N)) C
P(N). But this contradicts Lemma 4.1.7, that says that F*R = Z[e|/(g?),
o€ Aut(*R), and o(*Z) * Z. Then the proposition is true. n
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