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Resumo

Nesta Tese são empregadas técnicas analíticas e numéricas para investigar o fenômeno de for-

mação de dedos viscosos entre fluidos imiscíveis confinados quando um destes fluidos é um

fluido magnético complexo. Diferentes tipos de esquemas geométricos efetivamente bidimen-

sionais foram investigados. Duas situações distintas são tomadas com relação à natureza da

amostra de fluido magnético: um fluido newtoniano usual, e um fluido magneto-reológico que

apresenta umyield stressdependente da intensidade do campo magnético. Equações gover-

nantes adequadas são derivadas para cada um dos casos. Para obter um entendimento analítico

dos estágios iniciais da evolução temporal da interface foiempregada uma análise fracamente

não-linear de modos acoplados. Este tipo de análise acessa aestabilidade de uma interface

inicialmente perturbada e também revela a morfologia dos dedos emergentes. Em algumas

circunstâncias soluções estacionárias podem ser encontradas mesmo na ordem não-linear mais

baixa. Nesta situação é feita uma comparação de algumas destas soluções com soluções es-

táticas totalmente não-lineares obtidas através de um formalismo de vortex-sheet na condição

de equilíbrio. Em seguida foi desenvolvido um modelo dephase-fieldaplicado a fluidos mag-

néticos que é capaz de simular numericamente a dinâmica totalmente não-linear do sistema.

O modelo consiste em introduzir uma função auxiliar que reproduz uma interface difusa de

espessura finita. Utilizando esta ferramenta também é possível estudar um complexo problema

de dedos viscosos de origem biológica: o fluxo de actina como um fluido ativo dentro de um

fragmento lamelar.

Palavras-chave: Formação de dedos viscosos. Ferrofluido. Fluido magneto-reológico. Yield

stress. Phase-field.



Abstract

In this thesis, analytical and numerical approaches are employed in order to investigate the

phenomenon of viscous fingering between confined immisciblefluids when one of the fluids

is a complex magnetic fluid. Different types of effectively two-dimensional geometrical setups

and applied magnetic field configurations are investigated.Two distinct situations are taken for

the nature of magnetic fluid sample: a regular Newtonian ferrofluid, and a magnetorheological

fluid that presents a magnetic field-dependent yield stress.Suitable governing equations are

derived for each one of the cases. To obtain analytical insight about early stages of the time

evolving interface we employ a weakly nonlinear mode-coupling approach. This kind of anal-

ysis accesses the stability of an initially perturbed interface, and also reveals the morphology

of the emerging fingers. At some circumstances, stationary solutions may be found already at

lowest nonlinear order. In this context, we compare some of these solutions to fully nonlinear

steady profiles obtained by using a vortex-sheet formalism at the equilibrium condition. More-

over, we develop a phase-field model applied to magnetic fluids that is capable of numerically

simulate the fully nonlinear dynamics of the system. The model consists on introducing an

auxiliary function that reproduces a diffuse interface of finite thickness. By utilizing this tool

we are also able to study a complex viscous fingering problem of biological origin: the flow of

actin as an active fluid inside of a lamellar fragment.

Keywords: Viscous fingering. Ferrofluid. Magnetorheological fluid. Yield stress. Phase-

field.



List of Figures

1.1 Schematic top views of the Saffman-Taylor instability based on experiments at

the channel geometry [3]. 15

1.2 Ferrofluid viscous fingering patterns produced by different magnetic field con-

figurations. The left panel [19] depicts the labyrinthine instability formed when

a uniform magnetic field is applied perpendicularly to the plates. The mid and

right panels [20] show spiral and protozoan-like shapes that arise when a rotat-

ing magnetic field is added to the perpendicular field. 17

1.3 Magnetorheological fluid sample at the abscence of an applied magnetic field

(left) and at the presence of a magnet (right). 18

1.4 Figure extracted from [35]. The left panel shows a fairlycircular actin lamellar

fragment that does not propagate. When perturbed this fragment may acquire

the steady shape in the right panel that propagates upwards,where the white

bar in the bottom gives a one micrometer scale. 19

2.1 Schematic illustration of the vertical Hele-Shaw cell setup. Fluid 1 is a fer-

rofluid (shaded region), while fluid 2 is nonmagnetic. The densities and vis-

cosities of the fluids are respectively denoted byρ j , andη j , where j = 1 and 2.

A uniform magnetic fieldH0 is applied along the positive y direction, and the

acceleration of gravity points downward (g= −gŷ). The cell has thicknessb,
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CHAPTER 1

Introduction

1.1 Pattern formation in viscous fingering

Classical viscous fingering pattern formation takes place when a less viscous fluid displaces

a more viscous one in the confined geometry of two narrowly spaced parallel plates, the so

called Hele-Shaw (H-S) cell [1]. The initially flat interface between these two immiscible

fluids becomes unstable, so broad perturbations arise and tend to grow, what is commonly

referred to as the Saffman-Taylor instability (see Fig. 1.1). This problem has produced a lot

interest for physicists and engineers during several decades due to its prototypical character

with many theoretical and practical implications. Mathematically, it is defined as a nonlocal

moving boundary problem of Laplacian growth, and it is intimately related to a variety of

groundbreaking phenomena, such as dendritic growth, oil recovery, etc [2]. In practice, it is an

excellent laboratory because of its relative simplicity both experimentally and in its theoretical

formulation.

Figure 1.1: Schematic top views of the Saffman-Taylor instability based on experiments at the

channel geometry [3].

Despite of being most known by its classical viscosity-driven setup, the Saffman-Taylor

instability may also be driven by other kinds of mechanisms.For instance, the rotating Hele-
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Shaw problem is a variation of the traditional instability [1, 2], in which the cell rotates, and the

competition between centrifugal and capillary forces results in interface destabilization. During

the last two decades different aspects of the problem have been investigated, including the

development of zero surface tension time-dependent exact solutions [4, 5, 6], the consideration

of miscible fluid displacements [7], the dependence of pattern morphologies on viscous [8, 9]

and wetting [10] effects, the influence of Coriolis force on the interfacial dynamics [11, 12],

and the occurrence of complex pinch-off phenomena [13].

Another suggestive variant of the Hele-Shaw problem with usual viscous fluids considers

that at least one of the fluids is a ferrofluid [14, 15], a superparamagnetic liquid which promptly

responds to even modest magnetic stimuli. This property turns out to be very interesting since

it introduces the possibility of generating pretty different viscous fingering patterns by adjust-

ing an applied magnetic field. One compelling example of pattern-forming systems in confined

ferrofluids is related to the labyrinthine instability [16,17, 18], in which highly branched struc-

tures are formed when a magnetic field is applied perpendicularly to the plates of a Hele-Shaw

cell (see left panel in Fig. 1.2). Beautiful spiral patternsand amazing protozoan-like shapes

can also arise when a rotating magnetic field is added to the perpendicular field setup [20] (see

right panel in Fig. 1.2). The emergence of peculiar diamond-ring-shaped structures has been

detected in centrifugally-driven Hele-Shaw flows under theaction of an azimuthal magnetic

field [21]. In addition, quite regular n-fold symmetric shapes emerge in both immiscible [22]

and miscible [23] ferrofluids when perpendicular and azimuthal magnetic fields are applied

simultaneously. Finally, the development of starfish-likemorphologies has been recently pre-

dicted if a radial magnetic field configuration is used [24].

In contrast to what happens to ferrofluids, the investigation of Hele-Shaw pattern formation

with magnetorheological (MR) fluids has been amply overlooked. Magnetorheological flu-

ids consist of much larger, micronsized magnetized particles dispersed in aqueous or organic

carrier liquids. The unique feature of this kind of magneticfluid is the abrupt change in its

viscoelastic properties upon the application of an external magnetic field [25, 26, 27, 28, 29]

(see Fig. 1.3). In the absence of an applied field ("off" state) the magnetized particles in the sus-

pension are randomly distributed, so that MR fluids appear similar to usual nonmagnetic fluids.
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Figure 1.2: Ferrofluid viscous fingering patterns produced by different magnetic field configu-

rations. The left panel [19] depicts the labyrinthine instability formed when a uniform magnetic

field is applied perpendicularly to the plates. The mid and right panels [20] show spiral and

protozoan-like shapes that arise when a rotating magnetic field is added to the perpendicular

field.

However, when a magnetic field is applied ("on" state) the large particles suspended in the fluid

interact, and tend to align and link together along the field’s direction, creating long particle

chains, columns, and other more complex structures. Interestingly, the formation of such struc-

tures restrict the motion of the fluid, allowing it to displaya solidlike behavior. A MR fluid can

be characterized by its yield stress, which measures the strength of the field-induced structures

formed.

Despite all the efforts and important results obtained by researchers on the development

of viscous fingering in Newtonian Hele-Shaw flows (i. e., constant viscosity fluid flow), the

pattern forming dynamics with yield stress fluids, even at the nonmagnetic case, has been rel-

atively underlooked. In contrast to Newtonian fluids, yieldstress fluids [30, 31] can support

shear stresses without flowing. As long as the stress remainsbelow to a certain critical value

they do not flow, but respond elastically to deformation. So,such materials possess properties

of both viscous fluids and elastic solids, behaving like a “semi-solid". On the theoretical side,

a linear stability analysis of the Saffman-Taylor problem in rectangular and radial cells with

yield stress fluids [32] has predicted that the instability can be drastically modified. On the ex-

perimental arena some interesting findings have been disclosed in channel geometry [33, 34]:

depending on whether viscous effects or yield stresses dominates, fractal patterns, or ramified
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Figure 1.3: Magnetorheological fluid sample at the abscenceof an applied magnetic field (left)

and at the presence of a magnet (right).

structures where multiple fingers propagate in parallel mayarise.

Another remarkable scenario in which viscous fingering takes place is that of biological

fluids. Recently, it has been shown that in appropriate circumstances the flow of actin in lamel-

lar fragments satisfies Darcy’s law in an effectively two-dimensional geometry [35, 36], thus

reducing the dynamics to a free-boundary problem similar tothat of viscous-fingering in Hele-

Shaw cells, but with different boundary conditions [37]. The comprehension of this mechanism

is of major importance for one to attain shape polarization that allows cell motility and thread-

milling. As shown in Fig. 1.4, a lamellar cell fragment may undergo on a shape transition that

produces threadmilling by actin polymerization.

In order to fill some of the gaps exposed above, this Thesis proposes a theoretical study

about the viscous fingering phenomenon in complex magnetic fluids. And by complex mag-

netic fluids we comprehend ferrofluids, MR fluids, yield stress fluids and lamellar fragments.

During its development, we make use of analytical and numerical tools to elucidate the main

aspects of the dynamics and morphology of such interfacial pattern formations.
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Figure 1.4: Figure extracted from [35]. The left panel showsa fairly circular actin lamellar

fragment that does not propagate. When perturbed this fragment may acquire the steady shape

in the right panel that propagates upwards, where the white bar in the bottom gives a one

micrometer scale.

1.2 Darcy’s law for Newtonian fluids

We now make a brief derivation of the governing equations forclassical viscous fingering

in regular Newtonian fluids. By understanting this simpler situation we will be able to describe

more complex systems in our further investigation.

Consider two immiscible and incompressible fluids of viscosity η j and densityρ j (where

j = 1,2 labels the different fluids) are placed between two parallel rigid plates of transversal

separationb. The equation that governs the hydrodynamic flow of such fluids is the Navier-

Stokes equation

ρ j

[

∂u j

∂ t
+(u j ·∇)u j

]

=−∇Pj +η j∇2u j , (1.1)

whereu is the 3-D fluid velocity andP is its 3-D pressure field. Eventual extra forces would

appear added at the right hand side of Eq. (1.1). Since we are dealing with an effective two-

dimensional problem, we may reduce the 3-D flow to an equivalent 2-D one by gap-averaging

Eq. (1.1) at the direction perpendicular to the plates. Thisis done by considering non-slip

boundary conditions at the plates and taking, thus, the velocity profile as being parabolic at

19



the transversal direction. We also assume that the lubrication approximation is valid, i. e.,

that inertial terms in the right hand side of Eq. 1.1 are negligible when compared to viscous

contributions. By following these steps we get Darcy’s law

v j =− b2

12η j
∇p j , (1.2)

wherev, p and∇ are now the gap-averaged velocity, pressure and 2-D gradient operator, re-

spectively. This is also the equation that describes fluid flow in porous media.

To complete the description of the moving boundary problem between two fluids we must

also take into account the boundary conditions across the fluid-fluid interface

(v2−v1) ·n = 0, (1.3)

(v2−v1) ·s=
2b2

12(η1+η2)
s· [∇(p1− p2)+A(v2+v1)], (1.4)

whereA = (η1−η2)/(η1+η2) is the viscous contrast. Eq. (1.3) is the kinematic boundary

condition and it imposes that both fluids have the same normalvelocity component at the in-

terface, since the normal interface velocity itself is given byVn = v2 ·n = v1 ·n. On the other

hand, Eq. (1.4) says that the tangential velocity components are discontinuous at the interface,

and we say that(v2− v1) · s is the interface vortex-sheet. This is the only source of vorticity

in the problem, since at each bulk phase Eq. (1.2) guaranteesthat the flow is vortex-free. The

remaining ingredient is the pressure jump condition

p1− p2 = σκ , (1.5)

whereσ is the surface tension between the fluids andκ is the interface in-plane curvature.

To conclude we point out that since the fluids are incompressible

∇ ·vj = 0, (1.6)

what means pressure obeys Laplace’s equation∇2p j = 0. Therefore the moving boundary
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problem is completely determined in terms of the velocity field by Eqs. (1.6), (1.3) and (1.4).

1.3 Thesis outline

In Chapter 2 we investigate the problem of a ferrofluid confined in a vertical Hele-Shaw

cell and subjected to an in-plane uniform magnetic field. In Section 2.1 we take the particular

case where the applied magnetic field is normal to the initially flat interface and show the main

results of Ref. [38]. In Section 2.2 we subject both upper andlower fluids to a parallel flow and

let the applied magnetic field to make a tilting angle with theinitial interface, as in Ref. [39].

In both cases, we perform a weakly nonlinear analysis that isable to reproduce the morphology

of such pattern formation phenomenon at lowest nonlinear order. A mode-coupling theory is

used to compare the early nonlinear evolution of the interface with asymptotic shapes obtained

when relevant forces equilibrate. Our nonlinear results indicate that the time-evolving shapes

tend to approach stable stationary solutions for the normalmagnetic field case, and propagating

steady nonlinear waves for the tilted field.

In Chapter 3 we study the behavior of a magnetorheological fluid droplet confined to a

Hele-Shaw cell in the presence of an applied magnetic field. In Section 3.1 we consider the

case of an in-plane radially increasing external magnetic field case, as explored in Ref. [40]. In

Section 3.2 we take a rotating H-S cell under the presence of an azimuthal field produced by a

current carrying wire, as in Ref. [41]. Interfacial patternformation is investigated by consider-

ing the competition among capillary, viscoelastic, and magnetic forces. The contribution of a

magnetic field-dependent yield stress is taken into account. Linear stability analysis reveals the

stabilizing role played by yield stress. On the other hand, amode-coupling approach predicts

that the resulting fingering structures should become less and less sharp as yield stress effects

are increased. By employing a vortex-sheet formalism we have been able to identify a family

of exact stationary solutions of the problem. A weakly nonlinear approach is employed to ex-

amine this fact and to gain analytical insight into relevantaspects related to the stability of such

exact stationary solutions.
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In Chapter 4 we report analytical results contained in Ref. [42] for the development of inter-

facial instabilities in a radial Hele-Shaw cell in which a nonmagnetic yield stress fluid is pushed

by a Newtonian fluid of negligible viscosity. By dealing witha gap averaging of the Navier-

Stokes equation, we derive a Darcy-law-like equation for the problem, valid in the regime of

high viscosity compared to yield stress effects, and that accounts for a general yielding direc-

tion.

In Chapter 5 we present phase-field numerical models inspired by Ref. [43] that simulate

viscous fingering in a H-S cell. In Section 5.2 we develop suchdiffuse interface method for the

case of magnetic fluids, and in Section 5.3 this is done for thecase of lamellar fragments.

Finally, in Chapter 6 we present our main conclusions and perspectives.
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CHAPTER 2

Field-induced patterns in ferrofluids

A ferrofluid is a stable colloidal suspension of nanometric magnetic particles dispersed in

a nonmagnetic liquid carrier [14, 15] which responds paramagnetically to applied magnetic

fields. The most remarkable feature of this material is the fact that it combines the fluidity of

liquids and the magnetic properties typical of solids. The magnetic susceptibility of ferrofluids

is much higher than that of ordinary solid paramagnets, so that it promptly reacts to even minor

magnetic stimuli. This behavior leads to the development ofa number of interesting field-

induced interfacial instabilities, and pattern formationprocesses which have attracted much

interest [44, 45, 46, 47, 48].

One striking example of pattern-forming systems in ferrofluids is the popular Rosensweig

(or, peak) instability [49]. It occurs when a uniform magnetic field is applied normal to an

initially flat, ferrofluid free surface. The competition between magnetic, gravitational, and cap-

illary forces results in the rising of a three-dimensional (3D) array of spiky structures, that look

like horns growing from the liquid free surface. During the last four decades both linear and

nonlinear aspects of the problem have been vigorously investigated [49, 50, 51, 52, 53, 54].

Recent variations of this archetypal ferrohydrodynamic instability revealed other exceptional

properties such as the formation of stable solitonlike structures at the magnetic fluid-air inter-

face [55], the verification of a hybrid-type instability in miscible ferrofluids where peak and

labyrinthine patterns arise [56], and the occurrence of magnetic wave turbulence on the surface

of the ferrofluid [57].

An effectively 2D counterpart of the traditional 3D Rosensweig instability can be obtained

when a more viscous and more dense ferrofluid is placed below anonmagnetic fluid in the con-

fined geometry of a vertical Hele-Shaw cell. Experimental studies [58, 59] have demonstrated

that the initially flat fluid-fluid interface goes unstable ifa uniform magnetic field is applied

normal to it, and in the plane of the Hele-Shaw cell. It has been shown that above a certain
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critical value of the applied field, the interface deforms leading to the formation of a regular

pattern formed by a periodic line of quasi-2D peaked structures. In Ref. [59] a Darcy’s law

approach is used to describe the early dynamics of such ferrofluid peak arrangement. The ini-

tial evolution of small interfacial deformations has been studied by a linear stability analysis,

in which the condition for the neutrality of such deformations was determined. However, not

much has been discussed about the development of such confined peak-shaped morphology at

nonlinear stages of the dynamics.

A related theoretical investigation [52] tried to mimic thefully 3D Rosensweig problem by

focusing on an idealized version of the system. A high-orderperturbative approach has been

employed to study the static surface profile of a vertical, truly 2D ferrofluid layer subjected

to a normal magnetic field. The starting point of their analysis assumes that the shape of the

perturbed ferrofluid interface is determined by a pressure equilibrium condition. In this context,

a somewhat cumbersome Galerkin-type anzatz is used to expand both the magnetic field and

the surface deflection up to fifth-order in the perturbation amplitudes. As a result, peaks are

obtained for larger values of the applied magnetic field. Despite the relative intricacy of their

analytical method, no specific mechanism is proposed to explain the formation of the static

peaks within the nonlinear regime. Moreover, the nonlinearstability of such static structures

has not been analyzed.

2.1 Normal-field instability in confined ferrofluids

In this section we show that the phenomenon of ferrofluid peakformation in vertical Hele-

Shaw cells under a normal, in-plane magnetic field can be properly reproduced at lowest non-

linear perturbative order through a mode coupling approachof the dynamics [60, 61]. By

employing a second-order theory and considering the interplay of a small number of Fourier

modes, we show that the main features of the ferrofluid peak formation in confined geome-

try can be revealed in a very simple and clear manner. The nonlinear coupling is due to the

influence of a normal magnetic traction term which appears ina generalized Young-Laplace
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Figure 2.1: Schematic illustration of the vertical Hele-Shaw cell setup. Fluid 1 is a ferrofluid

(shaded region), while fluid 2 is nonmagnetic. The densitiesand viscosities of the fluids are

respectively denoted byρ j , andη j , where j = 1 and 2. A uniform magnetic fieldH0 is applied

along the positive y direction, and the acceleration of gravity points downward (g=−gŷ). The

cell has thicknessb, and interfacial perturbations are represented byζ = ζ (x, t).

pressure drop boundary condition for ferrofluids. We have also studied the stationary shapes

obtained when the forces involved balance equally. This offers the opportunity to contrast the

shapes of time evolving and steady state structures. Nonlinear stationary solutions are found to

be stable.

2.1.1 Mode coupling strategy

Consider a vertical Hele-Shaw cell of thicknessb containing two semi-infinite immiscible

viscous fluids. Denote the densities and viscosities of the lower and upper fluids, respectively

as ρ1, η1 and ρ2, η2 (Fig. 2.1). The cell lies parallel to the xy plane, where the yaxis is

vertically upward. Between the two fluids there exists a surface tensionσ , and the lower fluid

is assumed to be a ferrofluid (magnetizationM ), while the upper fluid is nonmagnetic (zero

magnetization). Acceleration of gravityg=−gŷ, whereŷ denotes the unit vector in the y-axis.
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A uniform external magnetic fieldH0 = H0ŷ is applied in the plane of the cell, being normal to

the initially flat fluid-fluid interface.

Due to the action of the magnetic field the fluid-fluid interface may deform, and its per-

turbed shape is described asI (x,y, t) = y−ζ (x, t) = 0, whereζ (x, t) = ∑+∞
k=−∞ ζk(t)exp(ikx)

represents the net interface perturbation with Fourier amplitudesζk(t), and wave numbersk.

We follow the standard approximations used by other investigators [14, 15, 16, 17, 62, 63] and

assume that the ferrofluid is magnetized such that its magnetization is constant and collinear

with the applied fieldM(H) = M(H0)ŷ. We consider only the lowest order effect of the mag-

netic interactions that would result in fluid motion.

For the confined geometry of a Hele-Shaw cell, we reduce the 3Dflow to an equivalent

2D one by averaging the Navier-Stokes equation over the direction perpendicular to the plates

(defined by the z axis). Using no-slip boundary conditions and neglecting inertial terms, one

derives a modified Darcy’s law as [17, 38, 59, 62]

v j =− b2

12η j

{

∇p j −
1
b

∫ +b/2

−b/2
µ0(M ·∇)Hdz+ρ jgŷ

}

(2.1)

where j = 1 ( j = 2) labels the lower (upper) fluid, andp j denotes the hydrodynamic pressure.

The local magnetic field appearing in (2.1) differs from the applied fieldH0 by a demagnetizing

field of the polarized ferrofluidH = H0+Hd, whereHd = −∇ϕ, andϕ is a scalar magnetic

potential. Notice that since the applied field is spatially uniform it eventually drops out in the

calculation of the magnetic term in (2.1), and the magnetic effects are due to the demagnetizing

field.

As commented earlier we consider that the magnetization of the magnetic fluid in a uniform

magnetic field is both uniform and constant, an assumption first introduced by Cebers and

Maiorov [16]. This corresponds to methodC in Ref. [64], where the validity of the constant

magnetization hypothesis has been examined. We emphasize that although the magnetization

is assumed to be uniform, the demagnetizing field is not. It isprecisely this shape dependent

demagnetizing field contribution (the so-called “fringingfield") that gives rise to the fingering
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instabilities in this model (see, for instance, Refs. [17, 63]). The influence of the constant

magnetization approximation on the nature of the flat-deformed interface transition is discussed

in Ref. [65] for the ferrofluid labyrinthine pattern formation case.

Equation (2.1) can be conveniently rewritten as

v j =− b2

12η j
∇
{

p j +µ0
M
b

∫ +b/2

−b/2

∂ϕ
∂y

dz+ρ jgy

}

(2.2)

where

ϕ =
1

4π

∫

S

M ·n′

|r − r ′|d
2r ′ =

1
4π

∫ +∞

−∞

∫ +b/2

−b/2

Mŷ ·n′ dx′dz′
√

(x−x′)2+(y−y′)2+(z−z′)2
.

(2.3)

The unprimed coordinatesr denote arbitrary points in space, and the primed coordinates r ′ are

integration variables within the magnetic domainS , andd2r ′= dx′dz′ denotes the infinitesimal

area element. The vectorn′ represents the unit normal to the magnetic domain in consideration.

In Eq. (2.2) the velocity depends on a linear combination involving gradients of hydrodynamic

pressure, magnetic potential, and gravity term, so we may think of the term between curly

brackets as an effective pressure.

From Eq. (2.2) and the incompressibility condition∇ · v j = 0 it can be verified that the

velocity potentialφ j (v j =−∇φ j) obeys Laplace’s equation. The problem is then specified by

the augmented pressure jump boundary condition at the interface

p1− p2 = σκ − 1
2

µ0(M ·n)2, (2.4)

plus the kinematic boundary condition, which states that the normal components of each fluid’s

velocity are continuous at the interface

n ·∇φ1 = n ·∇φ2. (2.5)
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The first term on the right-hand side of Eq. (2.4) represents the usual contribution related to

surface tension and interfacial curvatureκ . The second term is the so-called magnetic normal

traction [14, 15], which considers the influence of the normal component of the magnetization

at the interface. For the current field configuration this magnetic piece is at least of second-

order in the interface perturbationζ , being legitimately nonlinear. The magnetic traction term

will have a key role in determining the shape of the emerging interfacial patterns at the onset

of nonlinear effects.

We proceed by following standard steps performed in weakly nonlinear studies [60, 61].

First, Fourier expansions are defined for the velocity potentials, and then boundary condi-

tions (2.4) and (2.5) are used to expressφ j in terms ofζk consistently up to second-order.

By substituting these relations in Eq. (2.2), and Fourier transforming, yields a dimensionless

mode coupling equation for the system (fork 6= 0)

ζ̇k = λ (k)ζk+ ∑
k′ 6=0

[F(k,k′) ζk′ζk−k′ +G(k,k′) ζ̇k′ζk−k′ ],

(2.6)

where

λ (k) = |k|
[

NBW(k)−NG−k2] (2.7)

denotes the linear growth rate. The parameter

NB =
µ0M2b

σ
(2.8)

represents a magnetic Bond number, and measures the ratio ofmagnetic to capillary forces.

Likewise,

NG =
(ρ1−ρ2)gb2

σ
(2.9)

defines a gravitational Bond number, and measures the importance of gravitational force rela-

28



tive to the surface tension. In addition,

W(k) =
1
π

∫ ∞

0

(

sinτ
τ

)2

[
√

(k/2)2+ τ2− τ] dτ (2.10)

is clearly a positive quantity, and originates from the contribution of the demagnetizing field.

The second-order mode coupling terms are given by

F(k,k′) =
NB

2
|k|k′(k−k′), (2.11)

G(k,k′) = A|k|[sgn(kk′)−1]. (2.12)

The sgn function equals±1 according to the sign of its argument, and the viscosity contrast

is defined asA= (η1−η2)/(η1+η2). In Eqs. (2.6)-(2.12) lengths and velocities are rescaled

by b, andσ/[12(η1+ η2)], respectively. We focus on the situation in whichρ1 > ρ2, and

η1 ≫ η2, so that the fluid-fluid interface is gravitationally stable(NG > 0) andA≈ 1. This is

done to allow a more direct connection with existing experiments [58, 59] whereη1 ≫ η2. As

a matter of fact, the second-order results presented in the rest of this section remain practically

unchanged asA is modified.

It is worth noting that the coupling term (2.11) comes from magnetic normal traction con-

tribution in the pressure jump condition (2.4). This is exactly the term that is responsible for

the development of peaked ferrofluid patterns already at second-order. Observe that there is

no demagnetizing field contribution at second-order. We stress that the theoretical results pre-

sented in the following sections utilize dimensionless quantities which are extracted from the

realistic physical parameters used in the experiments of Ref. [59].

2.1.2 Pattern morphology and nonlinear stability of stationary patterns

Before examining how we can use the mode coupling equation (2.6) to access purely non-

linear aspects related to the morphology of the interface, we briefly discuss a few useful con-

cepts associated with the linear growth rate (2.7). Since a positiveλ (k) leads to an unstable
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Figure 2.2: Linear growth rateλ (k) as a function of the wave numberk for NG = 1.44, and

three different values of the magnetic Bond numberNB. The critical (kc), fastest growing (k∗),

and threshold (kt) wave numbers are also indicated. The critical magnetic Bond number is

NB = 11.12.

behavior, Eq. (2.7) tells us that the magnetic termsNB andW(k) are destabilizing. On the

other hand, gravity and surface tension try to stabilize interfacial disturbances. The interplay

of these competing effects determines the linear stabilityof the flat interface. This is illustrated

in Fig. 2.2 which plotsλ (k) in terms ofk, for NG = 1.44, and three increasingly larger values

of the magnetic Bond number. It is clear from Fig. 2.2 that thetransition from a stable to an

unstable situation occurs if both of the following conditions are met

λ (k) = 0, and
∂λ (k)

∂k
= 0.

This defines a critical wave numberkc and a critical magnetic Bond number at which this

exchange of stability takes place. Thus, whenNB is increased from zero, the interface remains

flat over a range of values ofNB up to a point when transition suddenly occurs (NB = 11.12),

and a line of peaks withk= kc is formed. This is in fact what is observed experimentally [58,
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59]. Note that the experimental investigation performed inRef. [58] reveals the emergence of

nonzero height peaks at the critical field, and a hysteresis phenomenon is observed. However,

this effect is not contemplated by our analytical model, andalso not detected in Ref. [59].

For largerNB two other quantities of interest can be defined for a range of wave numbers

over whichλ (k) ≥ 0 (see Fig. 2.2):k∗, the wave number of the fastest growing mode, max-

imizesλ (k); kt , the threshold wave number beyond which all modes are stable, is the largest

wave number for whichλ (k) vanishes. AsNB grows,k∗ andkt shift to the right and modes of

higher wave number become unstable.

At this point, we turn our attention to the weakly nonlinear,intermediate stages of pattern

evolution, and use the equation of motion (2.6) to investigate how the magnetic field influences

the shape of the fingering patterns at the onset of nonlinear effects. Inspired by an approach

originally proposed in Refs. [60, 61], we focus on a mechanism controlling the finger shape

behavior through magnetic means, and consider the couplingof a small number of modes. For

a givenNB larger than the critical value, only discrete modes multiple ofk∗ are selected. In this

framework, we examine the interaction of the fundamental mode with its own harmonic. For

the rest of this section, we considerNB above the critical situation, and take the fundamental

wave numberk= k∗ as the fastest growing mode. Consequently, the harmonic mode 2k∗ always

lies to the right of the threshold wave numberkt . Therefore, the harmonic is always linearly

stable against growth.

As extensively discussed in Refs. [24, 60, 61] when one considers the second-order coupling

of just two modes (i.e., the fundamental and its harmonic) one finds that the presence of the

fundamental naturally forces growth of the harmonic mode through a nonlinear driven term in

the mode coupling equations. The interesting point is that the sign of such nonlinear driven

term dictates whether fingertip sharpening or fingertip broadening is favored by the dynamics.

If the nonlinear term is positive, the harmonic mode is driven positive, the sign that is required

to cause upward pointing fingers to become sharp, favoring fingertip sharpening. In contrast,

if the nonlinear coupling term is negative, growth of a negative harmonic is favored, leading to

upward-pointing fingertip broadening. Based on this mechanism the finger shape behavior of

confined fluid systems can be described in a very simple manner.
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It turns out that the ferrofluid finger tip-sharpening behavior observed experimentally in

Refs. [58, 59] can be described by the mechanism mentioned above. The justification is that

finger tip-sharpening requires the growth of a sizable harmonic mode. Of course, this cannot be

achieved through a purely linear description. However, by inspecting Eq. (2.6), we note that the

second-order termF(n,n′), which is reminiscent of the magnetic normal traction contribution

in (2.4), does involve magnetic field effects. This term drives growth of the harmonic mode

(with the phase appropriate to sharpen finger tips) despite its linear stability, leading to the

development of peaked ferrofluid structures already at second-order.

Considering such a mechanism our aim is to illustrate the time evolution of the interface

and the occurrence of ferrofluid finger tip-sharpening. It isconvenient for the subsequent dis-

cussions to consider cosineak = ζk + ζ−k and sinebk = i(ζk − ζ−k) modes, rather than the

complex modes employed in Eq. (2.6). Describing the fundamental as a cosine mode with

positive amplitude, we only need to examine the harmonic cosine mode to analyze finger tip

behavior and pattern morphology. Under such circumstances, the evolving interface can be

described asζ (x, t) = ak(t)coskx+a2k(t)cos2kx, where the perturbation amplitudesak(t) and

a2k(t) are obtained from the second-order solution of the mode coupling Eq. (2.6). Specifically,

one needs to solve the following coupled nonlinear differential equations

ȧ2k = λ (2k)a2k+
1
2
[F(2k,k)ak+G(2k,k)ȧk] ak,

(2.13)

ȧk = λ (k)ak+
1
2
[F(k,−k)ak+G(k,−k)ȧk] a2k+

1
2
[F(k,2k)a2k+G(k,2k)ȧ2k] ak.

(2.14)

By solving Eqs. (2.13) and (2.14) the interface evolution isplotted in Fig. 2.3 forNG = 1.44,

NB = 13.83, k∗ = 3, and considering initial conditionsak(0) = 0.0001, anda2k(0) = 0. Note

that the harmonic mode is absent initially. The times shown are t = 0.8,1.2, and 2. The re-

sulting patterns reveal the emergence of increasingly sharp, peaked structures of the ferrofluid
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Figure 2.3: Time evolution of the interface shape. The shaded region represents the ferrofluid

pattern morphology at timet = 2. The interface profile fort > 2 is indistinguishable from the

one shown att = 2.

penetrating the nonmagnetic fluid. As time increases the downward moving fingers of the up-

per fluid look wider and flatter at their extremities, gettingcloser to the stationary shape already

revealed att = 2 (shaded region in Fig. 2.3). This characteristic shape is consistent with the ex-

perimental patterns exhibited in Refs. [58, 59], and also with the purely static profiles obtained

theoretically in Ref. [52]. It is also worthwhile to note that the interface profiles obtained for

t > 2 lie on top of the curve plotted at timet = 2 signalizing that a steady state has been reached.

Considering the simplicity of our analytical approach (lowest-order nonlinear coupling of just

two Fourier modes), as expected we find that a precise quantitative agreement between our the-

oretical shapes and the experimental profiles is not observed. However, the main morphological

features of the real ferrofluid patterns can be indeed predicted and satisfactorily depicted by our

mode coupling theory.

Complementary information about the pattern-forming phenomenon depicted in Fig. 2.3 is

provided by Fig. 2.4 which plots the time evolution of the cosine perturbation amplitudesak

anda2k. We clearly observe that the weakly nonlinear coupling dictates naturally the enhanced

growth of a positive harmonic mode, precisely the phase thatis required to produce finger tip-

sharpening. It is also evident that after an initial period of growth both perturbation amplitudes

33



saturate, so that they remain unchanged as time progresses.This confirms the idea that the

system tends to a steady state configuration.

0 1 2 3
t

0

0.04

0.08

P
er
tu
rb
at
io
n

am
p
li
tu
d
es

ak
a2 k

Figure 2.4: Time evolution of the perturbation amplitudesak(t) anda2k(t) for the evolving

interface depicted in Fig. 2.3. It is clear that both amplitudes eventually tend to stationary

values.

The nontrivial stationary cosine amplitudes for the harmonic (ast
2k) and fundamental (ast

k )

can be obtained analytically by setting their time derivative terms to zero in the mode coupling

equations (2.13) and (2.14), yielding

ast
2k =

−2λ (k)
[F(k,−k)+F(k,2k)]

, (2.15)

ast
k =

√

4λ (2k)λ (k)
F(2k,k)[F(k,−k)+F(k,2k)]

, (2.16)

where

F(k,−k)+F(k,2k) =−2NBk2|k|< 0,
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F(2k,k) = NBk2|k|> 0,

λ (k)> 0, andλ (2k)< 0.

It is reassuring to observe thatast
2k is a genuinely positive quantity.

We close this section by examining the stability of the stationary solutions. In fact, we have

verified that the steady solution given by Eqs. (2.15) and (2.16) is stable. This is done by con-

sidering the nonlinear differential equations (2.13) and (2.14). Through a standard linearization

process close to the stationary solution, we diagonalize the resulting system of equations, de-

termining the eigenvalues which dictate the stability of the fixed point [66]

ε± =
λ (2k)

2

{

1±
√

1+
16k2NBλ (k)

λ (2k)[λ (k)+2k2NB]

}

.

(2.17)

For the stationary solution under consideration both eigenvalues have negative real parts, char-

acterizing a stable node or spiral. Regardless of the initial conditions for the perturbation am-

plitudes the system asymptotically approaches the stable fixed point. It is worth pointing out

that this is in contrast with the typical unstable behavior exhibited by other steady (nonzero

surface tension) solutions obtained for nonmagnetic [67, 68] and magnetic [24, 40, 41] fluids

in Hele-Shaw cells. We also find that the unperturbed (flat) interface is a saddle point, and

therefore unstable.

2.2 Nonlinear traveling waves in confined ferrofluids

Frontal fluid flows in the confined geometry of a Hele-Shaw cellhave been plentifully in-

vestigated during the last five decades. Under frontal flow, the motion of the fluids is normal

to the initially undisturbed interface between them, and might lead to the formation of viscous

fingering phenomena [1, 2]. Curiously, the related problem of fluids flowing parallel to their
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separating interface, and the development of interfacial traveling waves in the Hele-Shaw setup

has been much less exploited in the literature [69, 70, 71, 72]. Zeybek and Yortsos [69, 70]

studied parallel flow in a horizontal Hele-Shaw cell. In the limit of large capillary numbers

and large wavelength they have found Korteweg-de Vries (KdV) dynamics leading to stable

finite amplitude soliton solutions. Afterward, Gondret, Rabaud, and co-workers [71, 72] exam-

ined, through experiments and theory, the appearance of traveling waves for parallel flow in a

vertical Hele-Shaw cell. They have observed that the interface is destabilized above a certain

critical flow velocity, so that waves grow and propagate along the cell. Such waves are initially

sinusoidal then turn to localized structures presenting a nonlinear shape.

The theoretical model presented in Ref. [71] was based on a modified Darcy equation for the

gap-averaged flow with an additional term representing inertial effects. Within this context a

Kelvin-Helmholtz instability for inviscid fluids has been found. For viscous fluids they derived

a Kelvin-Helmholtz-Darcy equation and verified that the threshold for instability was governed

by inertial effects, while the wave velocity was determinedby the Darcy’s law flow of viscous

fluids. Their theoretical analysis has been backed up by their own experimental results. Theo-

retical improvements in the description of the system have been proposed in Refs. [73, 74, 75]

where the gap-averaged approach utilized in [71] has been replaced by an alternative scheme

directly based on the fully three-dimensional Navier-Stokes equation. In the end, the calcula-

tions in Refs. [73, 74, 75] lead to an equation of motion similar to the one derived in [71], but

with slightly different coefficients.

One additional example of parallel flow in vertical Hele-Shaw cells is the linear stability

analysis performed by Miranda and Widom [76]. The major difference between their work

and the ones performed in Refs. [69, 70, 71, 72, 73, 74, 75] is the fact that one of the fluids

is a ferrofluid [14, 15], and that an external magnetic field isapplied. The field could lie

in the plane of the Hele-Shaw cell, either tangential or normal to the fluid-fluid interface. A

ferrofluid behaves as a regular viscous fluid except that it can experience forces due to magnetic

polarization [77]. This opens up the possibility of investigating the role played by the magnetic

field in the dynamics of the parallel flow. It has been shown [76] that the dispersion relation

governing mode growth is modified so that the magnetic field can destabilize the interface even
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in the absence of inertial effects. However, it has been deduced that the magnetic field would

not affect the speed of wave propagation. Despite all that, astudy addressing the effect of the

magnetic field on the morphological structure and nonlinearevolution of the propagating waves

is still lacking.

In this section we re-examine the problem initially proposed in Ref. [76] by considering

the action of an in-plane, tilted applied magnetic field which makes an arbitrary angle with the

direction defined by the unperturbed fluid-fluid interface. This apparently naive modification

proves to be crucial in creating a connection between the applied field and the propagating wave

velocity. Moreover, in contrast to what was done in [76] we gobeyond the linear regime, and

tackle the problem by using a perturbative weakly nonlinearapproach. This particular theoreti-

cal tool enables one to extract valuable analytical information at the onset of nonlinearity. As a

consequence, one can investigate the influence of the magnetic field on the nonlinear dynamics

and ultimate shape of the traveling surface waves.

The layout of this section is as follows. Section 2.2.1 introduces the governing equations

of the parallel flow system with a ferrofluid, and presents ourmode-coupling approach which

is valid at lowest nonlinear perturbative order [60, 61]. Linear and weakly nonlinear dynamics

are discussed in Secs. 2.2.2 and 2.2.3. We show that the effect of the magnetic field on the

velocity and shape of the propagating waves can be accessed by considering the interplay of a

small number of Fourier modes. One important result is the feasibility of sustaining, moving,

and controlling a traveling wave solely under the action of an external magnetic field. Station-

ary wave profiles are found for different values of the magnetic field tilting angle. Our main

conclusions are summarized in Sec. 6.1.

2.2.1 Governing equations and analytical calculations

Consider two semi-infinite immiscible viscous fluids, flowing with velocitiesU j where j =

1 ( j = 2) labels the lower (upper) fluid. The flow takes place along thex direction in a vertical

Hele-Shaw cell of thicknessb (Fig. 2.5). The densities and viscosities of the fluids are denoted

respectively asρ j , andη j . The cell lies parallel to thexy plane, where they axis is vertically
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upward. Between the fluids there exists a surface tensionσ , and the lower fluid is assumed to

be a ferrofluid (magnetizationM ), while the upper fluid is nonmagnetic (zero magnetization).

Acceleration of gravityg = −gŷ, whereŷ is the unit vector in they-axis. The base flow is

horizontal withη1U1 = η2U2 [71] because the flows in the two fluids are driven by the same

pressure gradient.

A uniform external magnetic fieldH0 = H0(cosα x̂+sinα ŷ) is applied in the plane of the

cell. The shape of the perturbed fluid-fluid interface is described asI (x,y, t) = y− ζ (x, t) =

0, whereζ (x, t) = ∑+∞
k=−∞ ζk(t)exp(ikx) represents the net interface perturbation with Fourier

amplitudesζk(t), and wave numbersk.

For the quasi two-dimensional (2D) geometry of the Hele-Shaw cell, the 3D fluid flow is

reduced to an equivalent 2D one by averaging the Navier-Stokes equation over the direction

perpendicular to the plates. Using no-slip boundary conditions and neglecting inertial terms,

the flow in such a confined environment is governed by the modified Darcy’s law in Eq. (2.1).

Figure 2.5: Schematic configuration of the parallel flow in a vertical Hele-Shaw cell. The lower

fluid is a ferrofluid, while the upper fluid is nonmagnetic. An external uniform magnetic field

H0 is applied making an angleα with the initially undisturbed interface separating the fluids.

The role of inertia in the problem can be quantified by a Reynolds number (relative measure

of inertial and viscous forces) which is directly proportional to the cell gap thickness, and in-
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versely proportional to the viscosity of fluid, Rej = (ρ jU jb)/(12η j). Since most experimental

and theoretical studies of ferrofluid flow in Hele-Shaw cellsdeal with very thin cell gaps and

highly viscous fluids, the vanishing Reynolds number limit is readily validated. Under such

circumstances, the fluid motion is perfectly described by the gap-averaged modified Darcy’s

law (2.1). As discussed in Refs. [71, 78, 79] in unidirectional Hele-Shaw parallel flow, the in-

ertial effects can be neglected, even at relatively large Reynolds numbers as long as Rej < Rec,

where Rec is the Reynolds number corresponding to the laminar-turbulent transition.

We follow the standard approximations used in the previous section and assume that the

magnetization is collinear with the applied fieldM(H) = M(cosα x̂+ sinα ŷ), whereM =

M(H0). Only the lowest order effect of the magnetic interactions that would result in fluid

motion is considered. We emphasize that although the magnetization is taken to be uniform,

the demagnetizing field is not.

Taking into consideration the physical assumptions mentioned above, and the particular

geometry of our system Eq. (2.1) can be rewritten as

v j =− b2

12η j
∇

{

p j +ρ jgy+µ0
M
b

∫ +b/2

−b/2

[

cosα
∂ϕ
∂x

+sinα
∂ϕ
∂y

]

dz

}

,

(2.18)

where

ϕ =
1

4π

∫

S

M ·n′

|r − r ′|d
2r ′

=
1

4π

∫ +∞

−∞

∫ +b/2

−b/2

M(cosα x̂+sinα ŷ) ·n′ dx′dz′
√

(x−x′)2+(y−y′)2+(z−z′)2
.

(2.19)

The unprimed coordinatesr denote arbitrary points in space, and the primed coordinates r ′ are

integration variables within the magnetic domainS , andd2r ′= dx′dz′ denotes the infinitesimal

area element. The vectorn′ represents the unit normal to the magnetic domain under study.

By inspecting Eq. (2.18) we observe that the velocity depends on a linear combination

involving gradients of hydrodynamic pressure, gravity, and magnetic potential, respectively.
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So, the term between curly brackets in (2.18) can be seen as aneffective pressure. Therefore,

as in the Hele-Shaw problem with nonmagnetic fluids [1, 2], the flow is potential,v j =−∇φ j ,

but now with a velocity potential given by

φ j =
b2

12η j

{

p j −µ0M2I(x,y)+ρ jgy
}

, (2.20)

where

I(x,y) =
1

4πb

∫ +∞

−∞

∫ +b/2

−b/2

∫ +b/2

−b/2

[

−cosα ∂ζ (x′)
∂x′ +sinα

]

√

1+
(

∂ζ (x′)
∂x′

)2

× [cosα (x−x′)+sinα (y−ζ (x′))] dx′dz′dz
√

(x−x′)2+(y−ζ (x′))2+(z−z′)2
.

(2.21)

In Eq. (2.21) the integral indz is related to the gap-average calculation [see Eq. (2.18)],while

the integrals indx′ anddz′ come from the surface integral in the magnetic domain of interest

S [see Eq. (2.19)]. Notice that incompressibility (∇ · v j = 0) then yields Laplace’s equation

for the velocity potential.

The problem is specified by the two boundary conditions givenby Eqs. (2.4) and (2.5).

Equation (2.4) is an augmented pressure jump condition at the interface, whereκ denotes the

interfacial curvature. A crucial difference of this expression from the one utilized in the non-

magnetic situation is given by the second term on the right-hand side: the so-called magnetic

normal traction [14, 15] which considers the influence of thenormal component of the mag-

netization at the interface. For the current field configuration this magnetic piece is at least of

second-order inζ , being legitimately nonlinear. This magnetic term contributes to determine

the shape of the traveling wave profiles at the onset of nonlinear effects. The second boundary

condition (2.5) simply states the continuity of the normal flow velocity at the interface.

Our next task is to derive an equation of motion for the perturbation amplitudes which is

able to capture the essential physics at the lowest nonlinear level. This is done by following

standard steps performed in previous weakly nonlinear studies [38, 60, 61]. First, we define
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Fourier expansions for the velocity potentials. Then, we expressφ j in terms of the perturba-

tion amplitudesζk by considering the kinematic boundary condition (2.5). Substituting these

relations, and the modified pressure jump condition Eq. (2.4) into Eq. (2.20), always keeping

terms up to second-order inζ , and Fourier transforming, we find the dimensionless equation of

motion (fork 6= 0)

ζ̇k = Λ(k)ζk

+ ∑
k′ 6=0

[F(k,k′) ζk′ζk−k′ +G(k,k′) ζ̇k′ζk−k′ ],

(2.22)

where the overdot denotes total time derivative,

Λ(k) = λ (k)− ik

[

c0+NB|k|
sin2α

2

]

(2.23)

is a complex linear growth rate, and

λ (k) = |k|{NB[sin2 α W1(k)−cos2α W2(k)]

− k2−NG} (2.24)

is its real part.

The system is characterized by three dimensionless parameters

NB =
µ0M2b

σ
, NG =

(ρ1−ρ2)gb2

σ
, and

c0 =
12(η1U1+η2U2)

σ
.

The magnetic Bond numberNB measures the ratio of magnetic to capillary forces, while the

gravitational Bond numberNG accounts for the relative importance of gravitational force to the

surface tension. The parameterc0 represents the propagation contribution due to the parallel

flow. Notice thatc0 can be seen as a modified capillary number Ca= Ca1+Ca2, where Caj =
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12η jU j/σ is the capillary number of fluidj. In addition,

W1(k) =
1
π

∫ ∞

0

(1−coskτ)
τ2 [

√

τ2+1− τ] dτ, (2.25)

and

W2(k) =
k
π

∫ ∞

0

sinkτ
τ

[
√

τ2+1− τ] dτ (2.26)

originate from the contribution of the demagnetizing field.

The second-order mode-coupling terms are given by

F(k,k′) = NB|k|
k′(k′−k)

2

{

cos2α

+ i sin2α
[

W1(k′)
k′

− W2(k)
2k

+
W3(k,k′)
k′(k′−k)

]

}

,

(2.27)

and

G(k,k′) = A|k|[sgn(kk′)−1], (2.28)

where

W3(k,k
′) =

1
π

∫ ∞

0
[sinkτ −sink′τ −sin(k−k′)τ]

×
{

[
√

τ2+1− τ]
τ4 +

1
2τ

[

1
τ
− 1√

τ2+1

]

}

dτ

(2.29)

is another demagnetizing integral. Notice the presence of the imaginary part in (2.27), that is

proportional toNB and sin2α, and would vanish for a purely vertical or horizontal magnetic

field. The sgn function equals±1 according to the sign of its argument, and the viscosity

contrast is defined asA = (η1−η2)/(η1+η2). In Eqs. (2.22)-(2.29) lengths and velocities

are rescaled byb, andσ/[12(η1+η2)], respectively. Without loss of generality we focus on

the situation in whichρ1 > ρ2, andη1 ≫ η2, so that the interface is gravitationally stable
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(NG > 0) andA≈ 1. Since the gravitational Bond number plays a minor role to our analysis,

for the rest of this section we fix its value asNG = 1.4. We recover the results for the vertical

magnetic field configuration without flow, previously studied in Ref. [38], by settingα = π/2

andc0 = 0. It should be noted that the theoretical results presentedin the following section

utilize dimensionless quantities which are extracted fromthe realistic physical parameters used

in the experiments of Refs. [71] and [59].
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Figure 2.6: The real part of the linear growth rateλ (k) as a function of the wave numberk for

NG = 1.4. Continuous (dashed) curves refer toNB = 20 (NB = 30). For eachNB we plot curves

for three values of the angleα, where lighter gray curves correspond to higher values ofα.

2.2.2 Linear regime

Before examining how we can use the mode-coupling equation (2.22) to access important

nonlinear aspects related to the traveling waves, we brieflydiscuss a few useful concepts as-

sociated with the linear growth rate (2.23). The real part ofthe growth rate Re[Λ(k)] = λ (k)

governs the exponential growth or decay of the wave amplitudes at the linear regime. Since

a positiveλ (k) leads to an unstable behavior, Eq. (2.24) tells us that the term W1(k) [W2(k)],
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Figure 2.7: Dominant wave numberkmax as a function of the angleα for NG = 1.4 and three

different values ofNB. The dots indicate the critical values ofα below which the interface is

stable.

proportional toNB and representing the contribution of the vertical (horizontal) magnetic field

component, is destabilizing (stabilizing). On the other hand, gravity and surface tension try

to stabilize interfacial disturbances. The interplay of these competing effects determines the

linear stability of the initially flat fluid-fluid interface.This is illustrated in Fig. 2.6 which plots

λ (k) in terms ofk, for two values ofNB, and three increasingly larger values of the angleα.

By inspecting Eq. (2.24) it is clear that the magnetic field (demagnetizing field contribution)

causes the instability, even in the absence of inertial effects [38, 76].

It is clear from Fig. 2.6 that, for a given magnetic Bond number and by increasingα, the

transition from a stable to an unstable situation occurs when λ (k) = 0 anddλ (k)/dk = 0,

what defines a critical value forα. Moreover, the maximum ofλ (k) takes place atk = kmax,

that characterizes the dominant wave number of the emergentpattern. It increases and moves

towards higher values ofk asα approachesπ/2. The behavior ofλ (k) as a function ofα is

magnified by increasingNB. We point out that, in order to observe any instability band,NB
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must be above the critical value given by the vertical field situation (NB > 11.12) [38], as it was

shown in Sec. 2.1.

The behavior ofkmax as a function ofα is depicted in Fig. 2.7. Here we see that asα

approachesπ/2 (α ≈ 1.57)kmax reaches a maximum possible value for a givenNB. The critical

values ofα are marked with dots and vertical dashed lines. By increasing the magnetic field

the curves move upwards, and the critical values ofα decrease.

The imaginary part of the growth rate (2.23), Im[Λ(k)], divided by−k give us the phase ve-

locity of perturbations at the linear regime. It presents a parallel flow contribution represented

by c0, and a magnetic one proportional toNB that comes from the fact that the magnetic field

has nonzerox andy components. This last term is very important for our analysis of propagat-

ing profiles, and would not be present if the magnetic field wassimply vertical (α = π/2) or

horizontal (α = 0) as considered in Ref. [76]. In order to detect any influenceof the magnetic

field on the phase velocity we must consider the interval between these two limiting situations

(0< α < π/2). From these comments the key role played by the tilted magnetic field becomes

evident: now one could have wave propagation even ifc0 = 0, and it would be exclusively due

to magnetic effects.

2.2.3 Weakly nonlinear dynamics

At this point, we turn our attention to the weakly nonlinear,intermediate stages of interfa-

cial pattern evolution. We use the equation of motion (2.22)to investigate how the magnetic

field influences the shape and velocity of the propagating waves. We employ a theoretical

approach originally proposed in Refs. [60, 61], and focus ona mechanism controlling the in-

terface behavior through magnetic means. This is done by considering the coupling of a small

number of modes. For a givenα larger than the critical value, only discrete modes multiple of

the dominant wave numberkmaxare selected due to translational invariance. In this framework,

we examine the interaction of the fundamental modek with its own harmonic 2k. For the rest

of this section, we consider values ofα above the critical situation, and take the fundamental

wave numberk= kmax as the fastest growing mode.
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Figure 2.8: Numerical time evolution of the absolute value of the perturbation amplitudes

for the fundamental mode (2
√

ζkζ−k) and its first harmonic (2
√

ζ2kζ−2k). The parameters

considered correspond to the continuous dark gray curve in Fig. 2.6 (NG = 1.4, c0 = 0.5, NB =

20 andα = 1.30). As time grows, the amplitudes tend to saturate and reachstationary values

indicating the propagation of an unchanged shape profile.

Considering these two modes the moving interface profile canbe described as

ζ (x, t) = ζk(t)exp(ikx)+ζ−k(t)exp(−ikx)

+ ζ2k(t)exp(2ikx)+ζ−2k(t)exp(−2ikx),

(2.30)

with ζk andζ−k (alsoζ2k andζ−2k) being complex conjugates. Specifically, one needs to solve

the following coupled nonlinear differential equations

ζ̇2k = Λ(2k)ζ2k+[F(2k,k)ζk+G(2k,k)ζ̇k] ζk,

(2.31)
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Figure 2.9: Propagating wave profile forc0= 0.5,NB = 20 andα = π/2, resulting in vf = 0.56.

The profile and velocity are reflected in relation to they axis if we perform the transformation

c′0 =−c0.

ζ̇k = Λ(k)ζk+[F(k,−k)ζ−k+G(k,−k)ζ̇−k] ζ2k

+ [F(k,2k)ζ2k+G(k,2k)ζ̇2k] ζ−k.

(2.32)

The interface evolution is obtained by numerically solvingEqs. (2.31) and (2.32). We have

verified that the amplitudes and relative phase of the solutions saturate for later times, leading

to stationary propagating profiles. Figure 2.8 shows the time evolution of the absolute value

of the perturbation amplitudes. We consider very low initial amplitude values (ζk = 0.001 and

ζ2k =0.0001) and parametersNG =1.4,c0= 0.5,NB= 20 andα = 1.30. This figure depicts the

amplitudes evolution beginning from a nearly flat interface, exponentially growing at the linear

stage, and then saturating at later times. So, after a transient period of growth the perturbation

amplitudes remain unchanged as time progresses. The main difference from these findings and

the results in Ref. [38] is the fact that here the saturated modesζk and ζ2k now maintain a

locked phase difference between them, in such a way to lead toa steady profile propagation. It

is also evident from Fig. 2.8 that the weakly nonlinear coupling naturally dictates the enhanced

growth of a positive harmonic mode.
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Figure 2.10: (a) Propagating wave profile forNB = 20 andα = 1.17, resulting in vf = 17.83.(b)

Propagating wave profile forNB = 20 andα = 1.30, resulting in vf = 16.98. The profile and

velocity are reflected in relation to they axis if we perform the transformationα ′ = π−α. Note

that herec0 = 0.

An example of a steady propagating profile found numericallyis plotted in Fig. 2.9 for

NG = 1.4, c0 = 0.5, NB = 20 andα = π/2 (kmax= 5.07). Its real growth rate is represented

by the light gray solid curve in Fig. 2.6. The resulting wave pattern shows a sequence of sharp

peaked structures separated by wider troughs. These shapesare similar to the ones obtained in

the situation in which there is no parallel flow, and the magnetic field is vertical [38]. There

is little morphological difference produced by the introduction of the parallel flow, represented

by a nonvanishingc0, if α = π/2, but now we have a propagating profile instead of a stationary

one. We define vf as the final propagation velocity of the saturated profile, which in Fig. 2.9

case equals 0.56. Note that vf is not given solely by the linear phase velocity in (2.23), but it is

a result of the weakly nonlinear coupling between the modes in the saturated regime.

Sincec0 has very little influence on the morphology of the rising wavepatterns (inde-

pendently of the angleα), we takec0=0 in Fig. 2.10, and focus on the role of the magnetic

field tilting angleα in determining the morphology of the propagating solutions. In practical

terms, for finite surface tension flows, the limitc0 = 0 can be obtained by setting the velocities

U1 = U2 = 0. Forα close to the critical value, as it is shown in Fig. 2.10(a), the solution is

dominated by the fundamental mode and the shape of the profileresembles a pure propagating

cosine wave. Asα is increased, the wave morphology changes and we see a seriesof slightly

inclined peaks, as exemplified in Fig. 2.10(b). This is possible due to the significant magnitude
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of the first harmonic mode. For higher values ofα we get peaked structures similar to the ones

depicted in Fig. 2.9 (whereα = π/2). Notice that it is sufficient to explore the influence of the

tilted magnetic field in the range 0≤ α ≤ π/2. This is justified by the fact that the propagat-

ing wave problem is reflected with relation to they axis under the transformationα ′ = π −α,

and it is symmetric under the transformationα ′ = π +α. Complementary information about

the influence ofα on the magnitude of the final propagating velocities will be exploited in the

discussion of Fig. 2.11.

2.2.4 Analytical approach to steady solutions

In order to have a more quantitative account of the propagating steady profiles numerically

predicted in Sec. 2.2.3, we now carry out an analytical studyaiming to find wave solutions to

our problem, and analyze their stability.

To obtain a steady propagating solution we impose thatζ (x, t)= ζ (kx−ωt), whereω is real

and vf = ω/k is the final propagating velocity. Therefore, we can writeζk(t) = c1exp(−iωt)

and ζ2k(t) = c2exp(−i2ωt) as propagating modes with constant amplitudes. We may take

c1 as a real constant without loss of generality, since an imaginary part of it would simply

translate the resulting profile. However, we keepc2 as a complex number, so there is a phase

difference between the modesζk andζ2k, something that is relevant for the profile morphology.

By inserting these conditions into Eqs. (2.31) and (2.32) weget a complete set of nonlinear

time-independent equations that determinec1, c2 and ω [see Eqs. (2.34) and (2.35) in Sec.

2.2.5].

By manipulating the equations of the system described abovewe find a cubic algebraic

equation forω with real coefficients that depends on the functions expressed by Eqs. (2.23)-

(2.29). We have verified that within our range of physical parameters (taken from the experi-

ments in Refs. [71] and [59]), this polynomial equation has apositive discriminant, and there-

fore, three different real roots are found (see Sec. 2.2.5 for details). To find out which of these

solutions gives the actual propagating velocity we performa stability analysis of the propagat-

ing solution by perturbing the modes’ stationary amplitudes ζk(t) = (ε1+c1)exp(−iωt), and
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ζ2k(t) = (ε2+c2)exp(−i2ωt), with ε1 = ε1(t) real andε2 = ε2(t) complex. By inserting this

conditions in Eqs.(2.31) and (2.32), and expanding up to first order inε, the stability analysis

of the solution leads to a set of equations that can be expressed in a matrix form as





ε̇1

ε̇2



=





A11 A12

A21 A22









ε1

ε2



 , (2.33)

where

A11 =
Λ(k)+ iω +(F(k,−k)+F(k,2k)+ iG(k,−k)ω)c2

1−G(k,−k)c2
,

A12 =
(F(k,−k)+F(k,2k))c1+ iG(k,−k)ωc1

1−G(k,−k)c2
,

A21 = 2F(2k,k)c1,

A22 = Λ(2k)+ i2ω.

If the real part of an eigenvalue of the matrixA is positive (negative), it indicates that there is an

unstable (stable) branch of the dynamic system defined by Eqs. (2.31) and (2.32), and whether

the perturbations increase (decrease) with time. For each of the analyzed set of parameters,

there is only one root forω that makes negative the real parts of both eigenvalues ofA . Thus,

it defines the actual stable propagating solution. This rootis explicitly given in Eq. (2.42) in

Sec. 2.2.5.

Figure 2.11 makes a comparison of the analytical weakly nonlinear prediction for final

propagating velocity from (2.42) (plotted as continuous curves) with the one obtained by nu-

merically solving the differential equations (2.31) and (2.32) (plotted as dots). It is also shown

the linear prediction for the fastest growing mode phase velocity Im[−Λ(kmax)/kmax] displayed

as dotted curves. This is done to investigate the plausibility of the purely linear approximation.

Here we plot vf as a function ofα for three values ofNB = 20,25,30 with black, dark gray and

light gray curves, respectively. Since we are considering the case wherec0 = 0, there are only

contributions to vf that come from the tilted magnetic field. The vertical dashedlines indicate

the critical values ofα below which the interface is stable and remains flat. As we cansee, the
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Figure 2.11: Propagating final velocity vf as a function ofα for c0 = 0, NB = 20 (black),

NB = 25 (dark gray) andNB = 30 (light gray). The dotted curves depict the linear prediction of

the fastest growing mode phase velocity, the solid curves correspond to the analytical weakly

nonlinear prediction, and the dots show the velocities obtained by numerically evaluating the

time evolution of Eqs. (2.31) and (2.32). The dashed vertical lines indicate the critical values

of α.

curves reach a maximum of vf for a value ofα greater than the critical one, and then tend to

zero asα approachesπ/2, when there is no magnetic field tilting. In addition, it is observed

that for any value ofα the final velocity gets larger whenNB is increased. So, by tuningα and

NB one can control vf .

By comparing the solid curves with the dotted ones, we noticethat the linear prediction

works well whenα is near its critical value or nearπ/2. This can be understood by the obser-

vation that near the critical value ofα only the fundamental modekmax has noticeable ampli-

tude, and there is effectively just one mode acting, and thusnegligible nonlinear coupling. For

higher values ofα there is a relevant difference between the weakly nonlinearand the linear

prediction, indicating that the coupling between thekmax and its harmonic is significant. More-
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over, forα nearπ/2 there is no second-order contribution to the propagation,so the agreement

with the linear prediction is good again. On the other hand, by comparing the solid curves with

the dots, we verify that there is an excellent agreement between the analytical weakly nonlinear

predictions, and the numerical results. Therefore, we conclude that the coupling between the

modes plays a fundamental role in determining the final propagation velocity.

2.2.5 Nonlinear velocity calculation

In this section we present the details of the analytical calculation for the nonlinear wave

velocity vf . We begin by substituting the ansatz expressionsζk(t) = c1exp(−iωt) andζ2k(t) =

c2exp(−i2ωt) in Eqs. (2.31) and (2.32) to obtain the following equations involving c1, c2 and

ω

ω = iΛ(k)+ ic2[F(k,−k)+F(k,2k)

+ i(G(k,−k)−G(k,2k))ω], (2.34)

2ωc2 = iΛ(2k)c2+ ic2
1[F(2k,k)− iG(2k,k)ω], (2.35)

where we have used thatζ−k(t) = ζ ∗
k (t) andc1 = c∗1, with the star representing complex con-

jugation. By taking the real and imaginary parts of these equations, and by eliminating the

variablesc1 andc2, we find a third order polynomial equation forω

aω3+bω2+cω +d = 0, (2.36)

whose coefficients are real, and given by

a = Re[(G(k,−k)−G(k,2k)){2F(2k,k)

+ G(2k,k)(2Λ(k)+Λ(2k))}

− 2G(2k,k)(F(k,−k)+F(k,2k))],

(2.37)
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b = Im[(F(k,−k)+F(k,2k)){2F(2k,k)

+ G(2k,k)(2Λ∗(k)+Λ∗(2k))}

+ (G(k,−k)−G(k,2k)){F∗(2k,k)(2Λ(k)

+ Λ(2k))+G(2k,k)Λ(k)Λ(2k)}],

(2.38)

c = Re[(F∗(k,−k)+F∗(k,2k)){G(2k,k)Λ(k)Λ(2k)

+ F∗(2k,k)(2Λ(k)+Λ(2k))}

− (G(k,−k)−G(k,2k))F∗(2k,k)Λ(k)Λ(2k)],

(2.39)

d = Im[(F∗(k,−k)+F∗(k,2k))F∗(2k,k)Λ(k)Λ(2k)].

(2.40)

The problem is further simplified by noticing that Eq. (2.28)imposes thatG(k,2k)=G(2k,k)=

0. The discriminant of Eq. (2.36) is

∆ = 18abcd−4b3d+b2c2−4ac3−27a2d2,

(2.41)

being always positive for the range of physical parameters considered in this work [59, 71]. As

a result, there are three distinct real roots given by

ω1 =− b
3a

+
(1− i

√
3)(−b2+3ac)

3 2
2
3a p

− (1+ i
√

3)p

3 2
4
3a

,

(2.42)
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ω2 =− b
3a

+
(1+ i

√
3)(−b2+3ac)

3 2
2
3a p

− (1− i
√

3)p

3 2
4
3a

,

(2.43)

ω3 =− b
3a

+
2

1
3(−b2+3ac)

3a p
− p

3 2
1
3a

, (2.44)

where

p =
[

−2b3+9abc−27a2d

+
√

4(−b2+3ac)3+(−2b3+9abc−27a2d)2
] 1

3
.

(2.45)

By performing a stability analysis for each of these roots, as described in Sec. 2.2.4, we ver-

ify that ω1 is the only one that is indeed stable. Therefore, the solution related toω1 [Eq. (2.42)]

is the one that prevails from the system dynamics, so that theobserved final nonlinear propa-

gating velocity is given by vf = ω1/k.
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CHAPTER 3

Field-induced patterns in MR fluids

As it was explained in the previous chapter, magnetic fluids termed as ferrofluids [14, 15]

are stable colloidal suspensions typically containing water or oil combined with nanometersized

magnetic particles. This particular type of magnetic fluid is ultrastable against settling, behaves

superparamagnetically, can be considered to be a Newtonianfluid, and is characterized by its

prompt response to even modest magnetic fields. Due to its responsiveness to magnetic stimuli,

the study of ferrofluid interfacial pattern formation has become considerably popular [80, 81].

In particular, under spatially confined circumstances of a Hele-Shaw cell the viscosity-driven

Saffman-Taylor instability [1] is supplemented by a magnetically induced instability, leading

to a variety of interesting interfacial behaviors. The Hele-Shaw flow problem, with either non-

magnetic or magnetic fluids, has already proven its prototypical role in the context of interfacial

pattern formation [2].

On the other hand, the study of Hele-Shaw pattern formation with magnetorheological

(MR) fluids has not been much investigated. Magnetorheological fluids consist of much larger,

micronsized magnetized particles dispersed in aqueous or organic carrier liquids, display strong

nonNewtonian features, and are much less stable than ferrofluids. The unique feature of this

kind of magnetic fluid is the abrupt change in its viscoelastic properties upon the application

of an external magnetic field [25, 26, 27, 28, 29]. A MR fluid canbe characterized by its yield

stress, which measures the strength of its solidlike behavior. As opposed to Newtonian fluids,

yield stress fluids [30] (magnetic or not) can support shear stresses without flowing. As long

as the stress remains below to a certain critical value they do not flow, but respond elastically

to deformation. In MR fluids the yield stress is magnetic field-dependent, and varies quadrat-

ically with the strength of the applied field. As the magnitude of the applied magnetic field is

increased, the yield stress which is associated to the highest value of stress required to break

the existing network of magnetic interactions, also increases. In this sense, MR fluids work as
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smart materials whose viscoelastic properties can be conveniently tuned by an applied magnetic

field. By the way, the appearance of viscoelastic propertiessuch as yield stress in ferrofluids,

and its quadratic dependence on the applied magnetic field has been recently verified experi-

mentally [82, 83]. Nevertheless, it has been found that in ferrofluids the field-dependent yield

stress is indeed very small as compared to the typical valuesobtained for MR fluids.

3.1 Radial magnetic field

Figure 3.1: Schematic illustration of a Hele-Shaw cell of thicknessb containing an initially

circular droplet (dashed curve) of a MR fluid, surrounded by anonmagnetic fluid. The anti-

Helmholtz coils produce a magnetic fieldH pointing radially outwards in the plane of the cell.

Fingering interfacial patterns arise due to the action of the radial magnetic field.

In this section we embark upon the study of pattern formationphenomena in MR fluids

confined in Hele-Shaw geometry. Considering the paradigmatic role played by Hele-Shaw

flows [1, 2, 14, 15, 80, 81], our investigation can be of significance to a number of physical,

biological, and engineering systems related to the viscousfingering phenomenon. It is in this

context where the problem we study can gain some more generalrelevance. We follow a
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previous analysis recently performed by our research group[24] in which the response of a

ferrofluid droplet to a radial magnetic field has been investigated. Here, unlike most common

situations examined in the literature, we focus on the situation where the constrained drop is

a magnetorheologicalfluid, allowing its yield stress to be manipulated via the application of

an external radial magnetic field. The magnetically tuned viscoelastic properties introduced

by this system open up the possibility of unveiling still unexplored pattern morphologies and

interesting dynamic behavior.

In Sec. 3.1.1 the basic equations describing the system are presented, and the moving

boundary problem is properly specified. By employing a mode-coupling approach (Sec. 3.1.2)

we have been able to study the linear stability of the rising patterns, as well as to examine im-

portant aspects of their morphology at the onset of nonlinear effects. A more detailed account

of the resulting nonlinear shapes is provided by the determination of nontrivial exact stationary

solutions for the problem with nonzero surface tension. These solutions are obtained through a

vortex-sheet formalism, and reveal the development of characteristic swollen polygon-shaped

patterns (Sec. 3.1.3). We have also identified a magnetically induced shape transition in which

the interface goes from convex to concave as magnetic field effects are considerably larger than

interfacial tension. A summary of our chief conclusions is presented in Sec. 6.2.

3.1.1 Physical problem and governing equations

Figure 3.1 illustrates an incompressible, MR fluid droplet of unperturbed radiusR and vis-

cosityη, which is surrounded by a nonmagnetic, Newtonian fluid of negligible viscosity. The

fluids are located between two narrowly spaced flat plates of aHele-Shaw cell of thicknessb.

The surface tension between the fluids is nonzero and denotedby γ. We consider that the MR

fluid droplet is subjected to a radial magnetic field

H =
H0

L
r r̂ , (3.1)

wherer is the radial distance from the origin of the coordinate system (located at the center

of the droplet),H0 is a constant,L is a characteristic length, and̂r is a unit vector in the
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radial direction. It is worth pointing out that this specificmagnetic field configuration can be

generated by a pair of identical Helmholtz coils whose currents are equal and flow in opposite

directions (“anti-Helmholtz" configuration). The experimental conditions required to obtain

such a radial magnetic field have been discussed in detail in Ref. [84].

For the quasi-two-dimensional geometry of the Hele-Shaw cell, one reduces the three-

dimensional flow to an equivalent two-dimensional one by averaging the Navier-Stokes equa-

tion over the direction perpendicular to the plates. The gap-average procedure is performed

by neglecting the inertial terms, considering a large aspect ratio geometry (R≫ b), and using

the Bingham model for yield stress fluids [32, 85]. By taking into account the contribution of

viscoelastic and magnetic effects, plus the existence of a magnetic field-dependent yield stress

σy = σy(H), one can write a modified Darcy’s law for confined MR fluids [32,85, 86]

v =− b2

12η

[

∇Π+
3σy(H)

b
r̂
]

. (3.2)

The derivation of Eq. (3.2) assumes the regime of high viscosity compared to yield effects. On

the basis of the symmetry of the applied magnetic field configuration, we consider the prevalent

yielding occurring along the radial direction. Note that one recovers the usual Darcy’s law for

Newtonian magnetic fluids [16, 17] by settingσy(H) = 0.

The gap-averaged generalized pressure is defined as

Π =
1
b

∫ +b/2

−b/2
[P−Ψ] dz, (3.3)

whereP is the three-dimensional hydrodynamic pressure,

Ψ = µ0

∫ H

0
MdH (3.4)

represents a magnetic pressure,µ0 denotes the magnetic permeability of free space, andM is

the magnetization of the MR fluid. Note that for the nonmagnetic fluid M = 0. In this context,

the magnetic body force acting on the MR fluid is given byµ0M∇H [14, 15], whereH is the

applied magnetic field.
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The magnetic field-dependent yield stress is given by [27, 28, 29, 82, 83, 87, 88]

σy(H) = σy0+αH2, (3.5)

whereσy0 represents the yield stress in the absence of the magnetic field, andα is a constant

that depends on the material properties of the MR fluid, beingproportional to the particle

volume fraction [29]. In general the field dependence of a yield stress fluid is represented by

a power lawσy(H)−σy0 ∼ Hn with 1 ≤ n ≤ 2, and the case we consider heren = 2 is the

one for which the magnetization is linearly related to the applied magnetic field [27, 28, 29]

M = χH, whereχ is the magnetic susceptibility. This linear relation holdsas long asH ≪Hsat,

whereHsat is the field magnitude at saturation magnetization[ O(102 kA/m−103 kA/m)]. It

is worth emphasizing that, despite the nonNewtonian character of the MR fluid (due to its yield

stress), we consider that it presents a constant viscosity.This assumption enables the flow to

stay potential. Of course, more involved theoretical descriptions may incorporate a shear and

magnetic field-dependent viscosity to certain types of magnetic fluids [89], but this is beyond

the scope of our current work.

Forces arising from gradients of the mean pressure, as in thecase of Darcy’s law (3.2),

characterize an irrotational flow in the bulk. In this framework Darcy’s law (3.2) can be conve-

niently rewritten in adimensionlessform

v = −∇φ ,

φ = p−χNBr2+S0r +Sr3,

(3.6)

whereφ is a velocity potential, andp is the gap-averaged hydrodynamic pressure. The param-

eter

NB =
µ0H2

0r3
0

2γL2 (3.7)

represents the dimensionless magnetic Bond number, and measures the ratio of magnetic to
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capillary forces. In addition

S0 =
3σy0r2

0

γb
(3.8)

and

S=
αH2

0r4
0

γL2b
(3.9)

are related to the yield stress contributions at zero, and nonzero applied magnetic field, respec-

tively. In Eq. (3.6) lengths and velocities are rescaled byr0, andγb2/(12ηr2
0), respectively.

The typical length scaler0 is of the order of the unperturbed droplet radiusR, and will be more

properly defined subsequently (Sec. 3.1.3). From now on, we work with the dimensionless

version of the equations.

By inspecting Eq. (3.6) the driving and stabilizing forces of the problem become appar-

ent. It has a radial driving force pushing the MR fluid off-center, with a term growing linearly

with the radial coordinate (proportional toNB) stemming from the magnetic pressure Eq. (3.4).

Moreover, it presents two stabilizing contributions, the first one being a constant force (propor-

tional toS0), and a second which is quadratic (proportional toS) in the radial coordinate. These

stabilizing forces come from the two terms of the yield stress given by Eq. (3.5). Already at this

point, we can find noteworthy connections of Eq. (3.6) with general Hele-Shaw flow problems:

one can identify the rotating Hele-Shaw centrifugal force [8, 90, 91], and the channel-geometry

constant driving force (gravity or pressure difference) [92, 93] but of stabilizing nature. On the

other hand, the quadratic term in the force (proportional toS) is unparalleled, being exclusively

related to the field-dependent yield stress.

Further specification about the velocity potential is provided by the augmented pressure

jump boundary condition

∆p= κ −NBχ2r2(n̂ · r̂)2, (3.10)

wheren̂ denotes the unit normal vector to the interface. The first term on the right-hand side of

Eq. (3.10) represents the usual contribution related to surface tension and interfacial curvature

κ . Hereκ is the dimensionless in-plane curvature. The meniscus curvature, in the direction

perpendicular to the plates, is of larger magnitude, but nearly constant. Therefore, its gradient

is nearly zero, so that it does not significantly affect the dynamics. When the assumption of
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constant meniscus curvature is valid, the cell gap thickness can be scaled out of the problem,

since it always appears together with the viscosity. This isthe reason why the basic equations

of the problem are not explicitly dependent onb. The second term in Eq. (3.10) is set by

the so-called magnetic normal traction [14, 15], which considers the influence of the normal

component of the magnetization at the interface, and its linear relation to the applied magnetic

field.

From the incompressibility condition∇ · v = 0 it can be verified that the velocity potential

is Laplacian. Therefore, the definition of the moving boundary problem is specified by the

following equations

∇2φ = 0, (3.11)

∂φ
∂n

|in =
∂φ
∂n

|out, (3.12)

∂φ
∂s

|in−
∂φ
∂s

|out = Γ, (3.13)

where the subscripts label the inner (in) and outer (out) fluids, and∂/∂s= ∂s (∂/∂n = ∂n) is

the derivative along the tangent (normal) direction to the interface. Equation (3.12) describes

the continuity of the normal velocity at the interface, and Eq. (3.13) its tangential jump of mag-

nitudeΓ. This jump originates a nonzero vorticity region restricted to the interface separating

the fluids [94, 95]. With the help of the generalized Darcy’s law Eq. (3.6), and the pressure

jump Eq. (3.10) an explicit expression for the vortex sheet strength can be derived yielding

Γ = 2∂s
{

κ −NBr2χ [1+χ(n̂ · r̂)2]+S0r +Sr3
}

−
(

∂φ
∂s

|in+
∂φ
∂s

|out

)

.

(3.14)

While presenting our results in Secs. 3.1.2 and 3.1.3 we makesure that the values of all rel-

evant dimensionless quantities we utilize [Eqs. (3.7)-(3.9)] are consistent with realistic physical

parameters related to existing magnetic field arrangements, and material properties of MR flu-

ids. For the typical parameters related to the Hele-Shaw setup under study, we takeb= 10−3

m (which appears inS0 andS), andR= 10−2−10−1 m. Recall thatr0 (that shows up inNB,
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S0, andS) has the same order of magnitude ofR. While dealing with the strength of the mag-

netic fields, we consider a relatively low values 2.5 kA/m≤ H0 ≤ 10 kA/m which are easily

achievable by using a typical Helmholtz coils setup, where the radius of a coil is considerably

larger than the radius of the MR fluid droplet. The characteristic lengthL related to the radial

magnetic configuration is of the order of a few centimeters [84]. The quantitiesH0 andL are

present in the paramentersNB andS. Regarding the material properties of the MR fluid, inS

we takeα = 3.0×10−7 N/A2 [82, 88], and inS0 consider that the “off" state yield stressσy0

varies from 0.3 Pa to 45 Pa [88, 96]. For the magnetic susceptibility we take 0.1≤ χ ≤ 1 [97].

Finally, for the surface tensionγ we use a typical value of 10−3 Pa m in the parameters given

by Eqs. (3.7)-(3.9).

3.1.2 Linear stability and weakly nonlinear dynamics

After having formally stated the moving boundary problem interms of the velocity poten-

tial, we proceed by employing a perturbative mode-couplingapproach to examine the linear

stability of the interface, and morphological features of the resulting patterns at the onset of

nonlinear effects.

Due to the action of the radial magnetic field the fluid-fluid interface may deform, and its

perturbed shape is described asR(ϕ, t) = R+ζ (ϕ, t), whereζ (ϕ, t) = ∑+∞
n=−∞ ζn(t)exp(inϕ)

represents the net interface perturbation with Fourier amplitudesζn(t), and discrete azimuthal

wave numbersn. The azimuthal angle in the plane of the Hele-Shaw cell is denoted byϕ. We

define Fourier expansions for the velocity potential, and use the boundary conditions presented

in Sec. 3.1.1 to expressφ in terms ofζn to obtain a dimensionless mode-coupling differential

equation for the system (forn 6= 0), accurate to second-order in the perturbation amplitudes

dζn

dt
= λ (n) ζn

+ ∑
n′ 6=0

[

F(n,n′)+λ (n′)G(n,n′)
]

ζn′ζn−n′ ,

(3.15)

62



where

λ (n) = |n|
[

2NBχ(1+χ)− 1
R3(n

2−1)− S0

R
−3SR

]

(3.16)

is the linear growth rate. The second-order mode-coupling terms are represented as

F(n,n′) =
|n|
R

{

NBχ [1+χ(1+n′(n−n′))]

− 1
R3

[

1− n′

2
(3n′+n)

]

−3SR

}

,

(3.17)

G(n,n′) =
1
R
{|n|[sgn(nn′)−1]−1}. (3.18)

The sgn function equals±1 according to the sign of its argument. Notice that whenS= S0 = 0

Eqs. (3.16)-(3.18) reproduce the results obtained in Ref. [24] for the corresponding problem in

Newtonian ferrofluids, where yield stress effects have beencompletely neglected.

The terms appearing in the expression for the functionF(n,n′) in Eq. (3.17) arise from the

magnetic applied field, surface tension, and field-dependent yield stress, respectively. The term

proportional toχ2 comes from the square of the projection of the interface normal in the radial

direction in the pressure jump condition [Eq. (3.10)]. In contrast the functionG(n,n′) defined

in Eq. (3.18) presents no dependence on magnetic effects.

We use Eq. (3.15) to investigate how the development of interfacial instabilities at early

stages of the pattern formation is influenced by the radial magnetic field. At the linear level,

the relevant physical effects examined in the discussion ofEq. (3.6) just add up, as expressed

by the linear growth rate. Since a positiveλ (n) leads to an unstable interface, Eq. (3.16)

tells us that for a given nonzeroχ , NB destabilizes the system. As expected, the magnetic

contribution to the growth rate tends to move the MR fluid toward regions of higher magnetic

fields, stimulating the growth of fingering structures. Thisbehavior is analogous to the role

played by the centrifugal force in the rotating Hele-Shaw problem [8, 90, 91]. On the other
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hand, the term involving(n2− 1) is associated to the surface tension and plays a stabilizing

role. The terms related to the yield stress contribution (SandS0) are also stabilizing and tend to

inhibit fingering formation. In particular the termS0 is related to a constant radial force acting

similarly to gravity or pressure difference appearing in the usual Saffman-Taylor problem in

channel geometry [92, 93].

By examining Eq. (3.16) it is evident that increasingly larger values ofSandS0 shrink the

band of unstable modes [which can be accessed by takingλ (n) = 0]. In addition, we notice

that the maximum ofλ (n) which occurs atn= nmax, where

nmax=

√

1
3

{

1+R3

[

2NBχ(1+χ)− S0

R
−3SR

]}

(3.19)

decreases asSor S0 is ramped up. As it is well known, the fastest growing mode, given by the

closest integer tonmax, is the mode that will tend to dominate during early stages ofthe pattern

formation.

In summary, at the very early stages of the dynamics the role of the yield stress terms is

to decrease the wave number of maximum growth just as the maximum growth rate, and to

tight the band of unstable modes. Conversely, bothNB andχ tend to destabilize the system.

Note that the additional magnetization term appearing in Eq. (3.10) is of second order in the

interface perturbationζ , being legitimately nonlinear and therefore of no influenceat purely

linear stages of interfacial evolution.

Despite the importance of the linear stability analysis, interesting information about the

morphology of the rising patterns can be acquired at the weakly nonlinear stage of the interface

evolution. We investigate how the radial magnetic field influences the shape of the emerging

MR fluid patterns by using the full mode-coupling differential equation (3.15). As in Refs. [24,

61] we study a mechanism controlling the finger shape behavior through magnetic means, and

consider the coupling of a small number of modes. To simplifyour discussion we rewrite

Eq. (3.15) in terms of cosine and sine modes, where the cosinean = ζn+ ζ−n and sinebn =

i (ζn−ζ−n) amplitudes are real-valued. Without loss of generality we choose the phase of the

fundamental mode so thatan > 0 andbn = 0. Under such circumstances, finger tip-sharpening

64



and tip-broadening phenomena are described by consideringthe influence of a fundamental

moden on the growth of its harmonic 2n. One key piece of information about the morphology

of the emerging patterns can be extracted from the equation of motion (3.15) for the harmonic

cosine mode
da2n

dt
= λ (2n) a2n+

1
2

T(2n,n) a2
n, (3.20)

where the finger tip function is given by

T(2n,n) = [F(2n,n)+λ (n) G(2n,n)] , (3.21)

due to Eqs. (3.17) and (3.18). It can be shown that the equivalent growth of the sine modeb2n

is uninfluenced byan and does not present second-order couplings, so we focus on the growth

of the cosine mode.
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Figure 3.2: Behavior of the finger tip functionT(2n,n) as the magnetic Bond numberNB is

varied, forR= 0.9, χ = 0.5, and two different values of the zero field yield stress parameter:

S0 = 57.6 (solid curves), andS0 = 128 (dashed curves). For each value ofS0, three increasing

magnitudes for the magnetic field-dependent yield stress parameter are used:S= 60 (black),

S= 67 (dark gray), andS= 74 (light gray).

65



The interesting point about the functionT(2n,n) is that it controls the finger shape behavior.

The sign ofT(2n,n) dictates whether finger tip-sharpening or finger tip-broadening is favored

by the dynamics. From Eq. (3.20) we see that ifT(2n,n) > 0, the result is a driving term of

ordera2
n forcing growth ofa2n > 0, the sign that is required to cause outwards-pointing fingers

to become sharp, favoring finger tip-sharpening. In contrast, if T(2n,n)< 0 growth ofa2n < 0

would be favored, leading to outwards-pointing finger tip-broadening.

In order to gain insight about the morphological response ofthe fingers to the action of a

radial magnetic field, and also to the effects induced by yield stress, in Fig. 3.2 we plotT(2n,n)

as a function ofNB. We consider two distinct values ofS0, and for each one of them we take

three increasingly larger values ofS. As in Ref. [24], to ensure that both participating modes (n

and 2n) are able to grow we taken such thatλ (2n) = 0, implying in the observance of a critical

value ofNB for each pair ofS0 andS.

By inspecting Fig. 3.2 we readily observe thatT(2n,n) is a positive, increasing function

of NB, indicating that once the fingers are formed they tend to develop sharp tips. Moreover,

for a givenS0 we notice thatT(2n,n) tends to decrease as one increases the value ofS. This

indicates that the yield stress influences the shape of the patterns, inhibiting the formation of

pronounced spiked tips. It is also clear that larger values of S0 favor further suppression of

sharp edged fingers.

We conclude this section by contrasting the finger tip behavior studied here with other

general Hele-Shaw problems. First, we point out that in the channel geometry Hele-Shaw

setup [92, 93] there is no coupling between the fundamental and its first harmonic mode, lead-

ing to absence of finger tip-splitting at second order. Besides, the situation of a Newtonian

ferrofluid in the presence of a radial magnetic field [24] doespresent such a coupling, resulting

in a high magnitude, positive finger tip functionT(2n,n) which favors the formation of sharp

fingers. However, in the MR fluid case, the presence of the yield stress (negative sign) termsS

andS0 in the mode-coupling functionF(n,n′) and inλ (n) conspire to produce a positive finger

tip function of smaller magnitude, resulting in fingering structures that are less sharp than the

ones obtained with Newtonian ferrofluids.

The weakly nonlinear predictions suggest that the resulting fingers should become less and
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less sharp as the yield stress parameters are augmented. In this sense, our mode-coupling

approach enables one to access analytically the morphologyof the emerging structures already

at very early nonlinear stages of the dynamics. This is in contrast to the usual purely linear

results which primarily refer to the stability of the patterns.

3.1.3 Exact stationary solutions

In this section we turn to a more specific description of the patterns’ morphology through

the calculation of exact solutions for this problem. The exact stationary solutions reveal even

more details about the shape of the patterns. Similarly to Ref. [24] we apply a vortex-sheet

formalism [94, 95] in order to access the exact stationary shapes obtained when a droplet of a

confined MR fluid is subjected to a radial magnetic field. As discussed in detail in Refs. [68, 98]

this type of exact solutions with nonzero surface tension can be found by imposing a condition

of zero vorticity (Γ = 0) plus considering a stationary state (∂φ/∂s|in = ∂φ/∂s|out = 0) in

Eq. (3.14). Under such circumstances, we find that the curvature of the interface satisfies a

nonlinear ordinary differential equation

∂s
{

κ −NBr2χ [1+χ(n̂ · r̂)2]+S0r +Sr3
}

= 0,

(3.22)

which can be integrated to obtain

κ = κ(r, r sinψ) = a+b r2+c (r sinψ)2−S0r −Sr3, (3.23)

wherea is a constant of integration. For brevity we defineb=NBχ , andc=NBχ2. In Eq. (3.23)

we have used the fact thatn̂ · r̂ =±sinψ, whereψ is the angle between the radius vectorr̂ and

the tangent vector̂s at the interface.

Our goal is to study the fully nonlinear family of planar curves whose curvature has the

general form given by Eq. (3.23). These curves are the nonzero surface tension exact stationary

solutions which balance the competing capillary, viscoelastic, and magnetic effects at the MR
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fluid interface. A number of important morphological features of the stationary solutions can

be obtained by the numerical evaluation of the nonlinear differential equation (3.22), without

recourse to intensive numerical simulations. This way, we can explore the richness behind a

family of curves whose curvatures are prescribed by Eq. (3.23) by manipulating the relevant

control parameters of the problem, namelyNB, χ , S0, S, the constanta, and the specifications

r0 = r(ϕ = 0) andψ0 = ψ(ϕ = 0). For a thorough discussion about the numerical approach

used to solve the type of differential equation given in (3.22) we refer the reader to Ref. [98].

The parameterr0 defines the maximum radial distance obtained for a given stationary pat-

tern, and is of the order of the unperturbed droplet radiusR. At this point, we justify our choice

of r0 as a convenient parameter to rescale lengths in our problem.If the unperturbed radiusR

were to be chosen as the parameter to rescale lengths, a very strict constraint would be imposed

to the system, since in this case all the areas of the resulting exact steady shapes should have

to coincide. It turns out that it is not at all trivial to keep the areas of all perturbed patterns the

same, and simultaneously fulfill the requirements that all interfacial curves should be closed

(i.e., commensurable with 2π), and non-self-intersecting. We have circumvented this practical

difficulty by conveniently selectingr0 as the appropriate length scale for the problem without

loss of generality.

In Fig. 3.3 we present a representative collection of possible exact stationary solutions for

the problem of a confined MR fluid droplet under the influence ofa radial magnetic field. The

shapes are obtained forNB = 256,χ = 0.5, ψ0 = π/2, r0 = 1, S0 = 57.6, and by considering

four decreasing values of the magnetic field-dependent yield stress parameterS: (a) 105.13, (b)

100.13, (c) 93.13, and (d) 84.13. For convenience, for each value ofS, we adjust the constanta

so that the final pattern has the number of fingers (or, edges)n= nmaxas arising from the linear

regime according to Eq. (3.19). We emphasize that the choiceof a is arbitrary, and the way we

set it should not be interpreted as if the linear regime dictates the final morphological features of

the fully nonlinear exact steady shapes. Note that all patterns shown in this work are stationary

shapes, andnot a time evolving sequence of events. The resulting peculiar shapes depicted in

Fig. 3.3 resemble convex-shaped polygons. In fact, they arewhat we could name asn-gons with

n= 2,3,4 and 5 corners. They look like “swollen" regular polygons presenting convex edges.
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This family of shapes differs from the ones obtained in Ref. [24] for Newtonian ferrofluids,

where concave-shaped polygons and peaky starfish-like structures (with edges curved inward)

have been obtained. So, the convex-shape signature of the patterns can be attributed to the

yield stress effects introduced by the parametersS0 andS. It is also evident from Fig. 3.3 that

by decreasing the value ofS (keepingNB andS0 fixed) the number of fingering structures (or,

corners) increases.

Figure 3.3: Typical stationary shape solutions forNB = 256,χ = 0.5, ψ0 = π/2, r0 = 1, S0 =

57.6, and (a)S= 105.13, (b)S= 100.13, (c)S= 93.13, and (d)S= 84.13.

Figure 3.4 addresses a situation similar to the one illustrated in Fig. 3.3, but now taking a

larger value of the zero applied field yield stress parameterS0 = 128. We setNB = 256,χ = 0.5,

ψ0 = π/2, r0 = 1, and consider the following decreasing values ofS: (a) 81.67, (b) 76.67, (c)

69.67, and (d) 60.67. As in Fig. 3.3 for each value ofS we adjust the magnitude ofa so

thatn= nmax. The resulting exact shapes are again characterized as regular n-gons presenting

convex-shaped edges, where the number of corners increase for lower values ofS. However,

the patterns shown in Fig. 3.4 forS0 = 128, are even more “inflated" than the ones obtained in

Fig. 3.3 forS0 = 57.6. In Fig. 3.4 the edges bulge outward, making the tips of the fingers to

become not as sharp as the ones obtained in Fig. 3.3. In other words, the consideration of larger

values ofS0 resulted in the inhibition of sharper tips. The comparison between the characteristic

shapes presented in Figs. 3.3 and 3.4 reinforces the validity of the weakly nonlinear predictions
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made in Sec. 3.1.2, which prognosticated diminished tendency toward finger tip-sharpening for

largerS0.

Another situation of interest refers to the response of the patterns to increased values of

the magnetic Bond numberNB. This issue is investigated in Fig. 3.5. It depicts interfacial

MR fluid patterns generated by takingχ = 0.5, ψ0 = π/2, r0 = 1, a = −6.36, S0 = 38.02,

S= 23.80, and four increasingly larger magnitudes ofNB: (a) 109.85, (b) 126.57, (c) 148.06,

and (d) 150.53. Instead of plain convex-shaped structures, different types of patterns arise

as NB increases: first, in Fig. 3.5 (a) a nearly perfect square withalmost straight edges is

observed. Therefore, the convex polygon sides obtained in Figs. 3.3 and 3.4 have flattened

out. As NB increases further [Fig. 3.5(b)] a sort of “shape transition" is revealed, showing

the appearance of a concave-shaped 4-gon presenting more pointy corners (or, fingers). If

NB continues to increase [Fig. 3.5(c)] the number of fingers also increases, while protrusions

start growing from them leading to the formation of a starfish-like pattern presenting 5 fingers,

similar to those observed in Ref. [24] for Newtonian ferrofluids. If the ramping ofNB goes on

[Fig. 3.5(d)], the growth in the number of fingers continues and a six-fingered limiting shape is

obtained for which the fingers tend to pinch-off. Incidentally, equivalent pinch-off phenomena

have also been found in Ref. [24]. The fact that the patterns presented in Fig. 3.5 tend to the

shapes obtained for Newtonian ferrofluids under a radial field makes perfect sense: asNB is

increased the yield stress effects are eventually overcome, making the MR fluid to behave like

usual ferrofluids. Note that the linear prediction which regards the growth of a larger number

of fingers for increasedNB is consonant with the generic features of the the exact solutions

illustrated in Fig. 3.5. Moreover, the weakly nonlinear prediction related to the formation of

sharper and sharper fingering structures asNB is increased can be also verified.

We close this section by discussing an important issue for the relevance of the exact solu-

tions we have found in this work, which refers to their stability. It is known that similar classes

of exact solutions, for instance those that arise in the rotating Hele-Shaw problem [68, 98], are

unstable. Likewise, the exact stationary patterning structures which emerge when a Newtonian

ferrofluid droplet is subjected to an applied radial magnetic field [24] are also unstable. To the

best of our knowledge the only known stable exact solutions are those related to peculiar shapes
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Figure 3.4: Typical stationary shape solutions forNB = 256,χ = 0.5, ψ0 = π/2, r0 = 1, S0 =

128, and (a)S= 81.67, (b)S= 76.67, (c)S= 69.67, and (d)S= 60.67.

presenting cusplike protrusions obtained for rotating Hele-Shaw flows, in the limit of infinitely

long filaments [13].

Despite the stabilizing role played by yield stress effects, we have verified that the exact

solutions for MR fluids we investigated in this work are in fact unstable. Most situations will

not have a steady state attractor so that a direct connectionto the linear and weakly nonlinear

regimes can be nontrivial. Moreover, it is correct to say that most of the exact stationary shapes

found in Refs. [13, 24, 67, 68, 98], and the ones obtained in this work, are of considerable dif-

ficulty to be observed experimentally in a direct fashion. Inpractice, as discussed in Ref. [68]

in order to obtain such stationary solutions one has to be able to carefully set initial conditions

which should be sufficiently close to these prescribed forms. In the case of magnetic fluids, this

question of experimental accessibility of the steady exactsolutions could be possibly facilitated

by designing a magnet with the desired shape, and using it to set the proper initial condition

in a more controlled fashion [99]. Once this situation is achieved one would verify a slowing

down of the dynamics in the neighborhood of stationary states. Actually, an analogous line

of reasoning has been recently used in Ref. [13] where it is argued that exact stationary solu-

tions obtained for the rotating Hele-Shaw problem could be of relevance to explain a transient
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slowing down observed in existing experiments [100].

Figure 3.5: Gallery of possible patterns for increasingly larger values of the magnetic Bond

numberNB. It is assumed thatχ = 0.5, ψ0 = π/2, r0 = 1, a= −6.36,S0 = 38.02,S= 23.80,

and (a)NB = 109.85, (b)NB = 126.57, (c)NB = 148.06, and (d)NB = 150.53.

3.2 Stationary shapes of confined rotating magnetic liquid droplets

Since the seminal experimental work by Plateau [101] the study of rotating fluid droplets

has attracted the attention of both experimentalists and theorists from several branches of

physics. In particular, the understanding of the various equilibrium shapes (ellipsoidlike, two-

lobed “peanut" structures, and triangular morphologies) assumed by rotating droplets has caused

a lot of excitement [102, 103, 104, 105]. Interestingly, analogies traced between surface tension

and gravitational, or nuclear forces have used a spinning droplet description to model more

complex phenomena occurring in rotating stars [106] and in nuclear physics processes [107,

108].

An effectively two-dimensional (2D) version of the fully 3Drotating droplet problem can
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be examined when the fluid drop is placed in the spatially confined environment of a rotating

Hele-Shaw cell [8, 109]. The rotating Hele-Shaw problem is avariation of the traditional

viscosity-driven Saffman-Taylor instability [1, 2], in which the cell rotates, and the competition

between centrifugal and capillary forces results in interface destabilization. During the last two

decades different aspects of the problem have been investigated, including the development of

zero surface tension time-dependent exact solutions [4, 5,6], the consideration of miscible fluid

displacements [7], the dependence of pattern morphologieson viscous [8, 9] and wetting [10]

effects, the influence of Coriolis force on the interfacial dynamics [11, 12], and the occurrence

of complex pinch-off phenomena [13].

A suggestive variant of the usual rotating Hele-Shaw problem with nonmagnetic fluids con-

siders that the spinning fluid is a ferrofluid [14, 15]. Its magnetic property turns out to be very

handy since it introduces the possibility of controlling the rotating fluid interface by tuning

an external magnetic field. The dynamics of ferrofluid droplets in rotating Hele-Shaw cells

subjected to an applied azimuthal magnetic field has been studied in Refs. [21, 110]. Such a

magnetic field configuration is produced by a current-carrying wire located at the center of the

rotating cell, and aligned with its axis of rotation. Linearstability at early time stages [110]

revealed the stabilizing role played by the azimuthal field which acts against destabilizing cen-

trifugal effects. On the other hand, fully nonlinear stagesof the advanced time dynamics both

in the absence and presence of the magnetic field, have been examined by numerical simula-

tions [21] through conformal mapping techniques.

The numerical investigation performed in [21] unveiled interesting aspects about the time

evolution and morphological features of the rotating ferrofluid patterns. Under zero applied

field circumstances, and considering an initially motionless Hele-Shaw cell, surface tension

makes the ferrofluid droplet to assume a circular shape. However, when the cell is rotated

the drop can be distorted as centrifugal forces tend to pull it apart. As the speed of rotation

increases one reaches a point where the competition betweensurface tension and centrifugal

forces causes the circular drop to become unstable, and it transforms into a two-fingered, or

dumbbell-shaped, object. Further increase in rotation speed should then add a third finger, and,

beyond that, four fingers. Eventually, the droplet ought to become a complex multi-fingered
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structure where fingers stretch and compete. Ultimately, the formation of filamented arms

presenting bulbous ends is observed, where pinch-off events tend to occur. These numerical

findings are in agreement with experimental observations [8, 9] and also with phase field [13]

and boundary integral simulations [111] for the rotating Hele-Shaw problem with nonmagnetic

fluids.

Figure 3.6: Sketch of a rotating Hele-Shaw cell of thicknessb containing an initially circular

magnetic fluid droplet of radiusR. The in-plane azimuthal magnetic fieldH is produced by

a long wire carrying an electric currentI . The cell rotates with constant angular velocityΩ

around an axis coincident with the wire.

The scenario described above is significantly changed when the azimuthal magnetic field is

turned on. The magnetic field generates a radial magnetic body force pointing inward which

tends to attract the evolving ferrofluid droplet toward the current-carrying wire. The interplay

of centrifugal, capillary, and magnetic effects results inthe rising of a different family of mor-

phological structures. For example, the two-fingered dumbbell obtained under the zero field

situation develops a bump in the middle that gets larger for larger magnetic field magnitudes.

In fact, it has been verified [21] that increasingly larger values of the magnetic field progres-

sively reduces the number of outgrowing fingers. For a sufficiently strong field, a complete

interface stabilization could be reached, and a circular shape would be recovered.

The patterns obtained in [21] are non-equilibrium shapes representing the “final" states

before pinch-off. In other words, the shapes are evolving and the ferrofluid droplets are about

to pinch break into multiple drops. It has also been found that, regardless the number of fingers,
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the time evolution of all patterns share a peculiar feature:for large magnetic field strengths

one observes a nearly circular droplet, with just one bulbous finger sticking out from it. This

peculiar nonlinear phenomenon has been designated as the “diamond ring" instability.

In this section we extend the previous contributions reported in Refs. [21, 110] in some

important aspects. First, instead of describing the time evolution of non-equilibrium pattern’s

morphologies, we focus on the study of stationary shapes obtained when the forces involved

balance equally. This offers the opportunity to contrast the shapes of time evolving and steady

state structures. In addition, as opposed to [21, 110] we go beyond purely linear analysis,

which does not predict stationary states, and apply a perturbative mode-coupling approach

to access relevant features of the interface up to quadraticnonlinearities. This is utilized to

gain analytical insight about the stability of the stationary exact solutions. The second-order

approximation patterns are compared to the exact solutions, and good agreement is found even

at lowest nonlinear order, and considering a small number ofperturbative modes.

Furthermore, instead of addressing the influence of magnetic effects just on ferrofluids,

we investigate the response of both ferrofluids and magnetorheological (MR) fluids. Ferroflu-

ids generally behave like Newtonian liquids, but MR fluids present a strong magnetic field-

dependent yield stress. Yield stress is one of the distinguishing properties of a solid, but usual

fluids are not commonly known to exhibit such a property. However, nonNewtonian fluids un-

der external driving do exhibit this behavior. This is a matter that has perhaps been known in the

polymer and engineering communities for awhile, but has attracted the attention of mainstream

soft matter researchers only in this decade [112, 113]. Magnetically tunable yield stress can

be neglected in most existing ferrofluids [82, 83], but is very relevant in MR fluids. Here, we

study how the field-dependent viscoelastic properties of the MR fluid determine the ultimate

droplet shapes when they are subjected to an azimuthal magnetic field in a rotating Hele-Shaw

cell. It can be seen that the difference in material properties of ferrofluids and MR fluids has a

significant influence on the morphology of the emerging patterns.

It is worth pointing out that the study of Hele-Shaw pattern formation with MR fluids has

been largely unexplored in the literature, and only very recently it has been performed by

a couple of research groups [40, 99]. This work brings usefulcontributions for the better
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understanding of this interesting topic in magnetohydrodynamic pattern formation.

3.2.1 Specification of the moving boundary problem

Figure 3.6 illustrates an incompressible, magnetic fluid droplet of unperturbed radiusR,

viscosityη, and densityρ located between two narrowly spaced flat plates of a Hele-Shaw

cell of thicknessb. The outer fluid is nonmagnetic and has negligible viscosityand density.

The surface tension at the fluid-fluid interface is denoted byγ. We consider that the droplet is

subjected to an azimuthal magnetic field produced by a long straight current-carrying wire that

is perpendicular to (coaxial with) the plates of the Hele-Shaw cell

H =
I

2πr
êϕ . (3.24)

The electric current is represented byI , r is the radial distance from the origin of the coordinate

system (located at the center of the cell), andêϕ is a unit vector in the azimuthal direction. The

azimuthal angle in the plane of the cell is denoted byϕ. A stabilizing magnetic body force

∼ ∇H, whereH = |H|, acts on the fluid pointing in the inward radial direction [14, 110]. The

cell rotates with constant angular velocityΩ about an axis perpendicular to the plane of the

flow, and directed along the wire. The centrifugal force points radially outward and tends to

spread the droplet out.

Following the standard approach in Hele-Shaw problems, onestarts by neglecting inertial

contributions in the 3D Navier-Stokes equation, and by imposing a no-slip boundary condition

at the cell plates. Then, by taking a parabolic velocity profile, an effectively 2D flow is obtained

by averaging the 3D Navier-Stokes equation over the cell gapdirection. By considering the

contribution of centrifugal [8], magnetic [16, 17] and viscoelastic effects [32, 85], plus the

existence of a magnetic field-dependent yield stressσy = σy(H) [40, 86, 87, 88], one can write

a modified Darcy’s law for the gap-averaged velocityv of the confined magnetic fluid

v =− b2

12η

[

∇
(

Π− ρΩ2r2

2

)

+
3σy(H)

b
êr

]

. (3.25)
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As in Eq. (3.2), the derivation of Eq. (3.25) assumes the regime of high viscosity compared

to yield effects, and prevalent yielding occurring along the radial direction, defined by the

unit vectorêr . Note that one recovers the usual Darcy’s law for Newtonian ferrofluids in a

motionless Hele-Shaw cell (Ω = 0) [16, 17] by setting the yield stress contributionσy(H) = 0.

We point out that, despite the nonNewtonian character of theMR fluid (due to its sizable yield

stress), we consider that it presents a constant viscosity.This assumption enables the flow to

stay potential.

In Eq. (3.25) the gap-averaged generalized pressureΠ is defined as (3.3), whereP is the

3D hydrodynamic pressure andΨ represents the magnetic pressure. We also assume a linear

relationshipM = χH, and that the magnetic field-dependent yield stress is givenby (3.5).

Since the velocity field is irrotational in the bulk, it is convenient to state our moving bound-

ary problem in terms of a velocity potentialφ , wherev = −∇φ . This allows one to recognize

both sides of Eq. (3.25) as gradients of scalar fields, so thatit can be rewritten in adimensionless

form as

φ = p− χNB

r2 −NΩr2+S0r − S
r
, (3.26)

where p is the gap-averaged hydrodynamic pressure. The system is characterized by four

dimensionless parameters

NB =
µ0I2

8π2γr0
, NΩ =

ρΩ2r3
0

2γ
,

S0 =
3σy0r2

0

γb
, S=

3αI2

4π2γb
.

The parameterNB represents the magnetic Bond number, and measures the ratioof magnetic

to capillary forces. On the other hand, the interplay between centrifugal and surface tension

effects is described by a rotational Bond numberNΩ. Moreover,S0 andSare related to the yield

stress contributions at zero, and nonzero applied magneticfield, respectively. In Eq. (3.26)

lengths and velocities are rescaled byr0, andγb2/(12ηr2
0), respectively. As in Ref. [40] we

adopt the typical length scaler0 as being of the order of the unperturbed droplet radiusR.
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Note that from this point on, we work with the dimensionless version of the equations. We

stress that in the presentation of our results in Secs. 3.2.2and 3.2.3 we make sure that the

values of all relevant dimensionless quantities we utilizeare consistent with realistic physical

parameters [40, 87, 88, 96, 97] related to existing magneticfield arrangements, and material

properties of ferrofluids and MR fluids.

By examining Eq. (3.26) it is evident that the only destabilizing contribution comes from

the action of the centrifugal force (term proportional toNΩ). In contrast, the azimuthal mag-

netic field term involvingNB, which is originated from the magnetic pressure Eq. (3.4), has

a stabilizing role. This can be also said about the yield stress pieces derived from Eq. (3.5):

both the zero field (S0) and the field-dependent (S) yield stress terms tend to restrain interface

destabilization.

Another important piece of information is provided by the augmented Young-Laplace pres-

sure jump boundary condition

∆p= κ − NBχ2

r2 (n̂ · êϕ)
2, (3.27)

wheren̂ denotes the unit normal vector to the interface. The first term on the right-hand side

of Eq. (3.27) represents the usual contribution related to surface tension and the in-plane in-

terfacial curvatureκ . The second term in Eq. (3.27) is set by the so-called magnetic normal

traction [14, 15], which considers the influence of the normal component of the magnetization

at the interface, and its linear relation to the applied magnetic field.

From the incompressibility condition∇ · v = 0 it can be verified that the velocity potential

is Laplacian. Therefore, the definition of the moving boundary problem is specified by the

following equations

∇2φ = 0, (3.28)

∂φ
∂n

|in =
∂φ
∂n

|out, (3.29)

∂φ
∂s

|in−
∂φ
∂s

|out = Γ, (3.30)

where the subscripts label the inner (in) and outer (out) fluids, and∂/∂s= ∂s (∂/∂n = ∂n) is
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the derivative along the tangent (normal) direction to the interface. Equation (3.29) describes

the continuity of the normal velocity at the interface, and Eq. (3.30) its tangential jump of mag-

nitudeΓ. This jump originates a nonzero vorticity region restricted to the interface separating

the fluids [94, 95]. With the help of the generalized Darcy’s law Eq. (3.26), and the pressure

jump Eq. (3.27) an explicit expression for the vortex sheet strength can be derived yielding

Γ = 2∂s

{

κ − χNB

r2 [1+χ(n̂ · êϕ)
2]−NΩr2+S0r − S

r

}

−
(

∂φ
∂s

|in+
∂φ
∂s

|out

)

.

(3.31)

Equation (3.31) is the starting point for the calculation ofthe steady shapes that will be exam-

ined in Sec. 3.2.2.

3.2.2 Exact stationary solutions

3.2.2.1 Access to fully nonlinear steady shapes

The possibility of obtaining exact stationary solutions provides a useful way to access fully

nonlinear features of the patterns’ morphologies through arelatively simple method, which

does not rely on complicated numerical simulations. The physical and geometric properties

of a special family of curves associated with the motion of a nonmagnetic fluid interface in a

rotating Hele-Shaw cell have been recently studied [13, 68,98]. Such a family of stationary

exact solutions withnonzerosurface tension consists of interface shapes which balanceexactly

the competing capillary and centrifugal forces. The outcome is the formation of fully nonlinear

patterns presenting fingers that assume a teardrop-like shape, and eventually tend to be detached

from the main body of the rotating fluid characterizing a pinch-off phenomenon.

A generalized set of exact steady shapes can be obtained whena confined ferrofluid, or a

MR fluid droplet is subjected to a radial magnetic field. As in the centrifugally-driven case,

the radial field acts to destabilize the system. In these magnetohydrodynamic situations the

79



emerging stationary solutions result from the balance of centrifugal, capillary, magnetic, and

viscoelastic effects. Within this context, different morphologies have been found including

starfish-like [24] structures, and bulgy polygonal shapes [40].

As in Refs. [24, 40, 68, 98] we apply a vortex-sheet formalism[94, 95] to get the exact

stationary shapes obtained when a rotating droplet of a confined magnetic fluid is subjected to

an azimuthal magnetic field. This type of exact solutions canbe found by imposing a condition

of zero vorticity (Γ = 0) plus considering a stationary state (∂φ/∂s|in = ∂φ/∂s|out = 0) in

Eq. (3.31). Under such circumstances, we find that the curvature of the magnetic fluid interface

satisfies a nonlinear ordinary differential equation whichcan be readily integrated yielding

κ(r,cosψ) = a+
χNB

r2 [1+χ cos2 ψ]

+ NΩr2−S0r +
S
r
,

(3.32)

wherea is a constant of integration. In Eq. (3.32) we have usedn̂ · êϕ =±cosψ. The main pur-

pose of our study is to investigate the fully nonlinear family of planar curves whose curvature

has the general form given by Eq. (3.32). Different morphologies can be obtained by manip-

ulating the relevant control parameters of the problem, namely NB, χ , NΩ, S0, S, the constant

a, and the specificationsr0 = r(s= 0), ϕ0 = ϕ(s= 0), andψ0 = ψ(s= 0), wheres denotes

the arclength. For a more detailed account of the numerical approach used to solve the type of

differential equation leading to (3.32) we refer the readerto Ref. [98].

A relevant aspect about the type of exact solutions we study here refers to their stability.

The great majority of the exact steady shapes computed in Refs. [24, 40, 68, 98] are unstable.

The only exception is the somewhat exotic shape presenting cusplike protrusions presented in

Ref. [13]. Here, however, we have at our disposal tunable stabilizing effects provided by the

azimuthal magnetic field and field-induced yield stress. Within this context it is of interest

to examine how these controllable effects can affect the stability of the exact solutions. The

analysis of the stability of these steady exact solutions will be examined in Sec. 3.2.3. Another

important point is related to the usefulness of the exact steady shapes, and how their morpholo-
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Figure 3.7: Typical stationary shape solutions for a Newtonian ferrofluid droplet (S0 = S= 0),

and three different values of the rotational Bond numberNΩ. The intensity of the magnetic

Bond numberNB increases from left to right.

gies compare to corresponding time-evolving patterns obtained by numerical simulations [21].

3.2.2.2 Newtonian ferrofluid

We initiate our analysis of the possible exact stationary shapes by focusing on the situation

in which the magnetic fluid is a Newtonian ferrofluid, so that yield stress effects are negligible

(S0 = S= 0). This is related to the situation that has been examined inRef. [21] where the

time evolution of a ferrofluid rotating droplet has being described numerically. To investigate

the role played by the magnetic Bond numberNB on the shape of the patterns, in Fig. 3.7 we

present a prototypical compilation of possible exact stationary solutions for three distinct values

of the rotational Bond number:NΩ=22.5 (first row),NΩ=27.5 (second row), andNΩ=30 (third

row). For a givenNΩ the magnitude ofNB increases from left to right: 6.6250≤ NB ≤ 7.3731

(first row), 4.3485≤ NB ≤ 4.4090 (second row), and 3.4529≤ NB ≤ 3.4680 (third row). The

rest of the parameters assume the following values:χ = 0.5,ψ0 = π/2, r0 = 1, and the arbitrary
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constanta=−21.0786.

Before proceeding, we call the reader’s attention to two important points: first, we em-

phasize that the set of patterns illustrated in Figs. 3.7 and3.8 represent a series of separate

stationary shapes, andnot a time evolving sequence of events. In addition, as it is apparent

from these figures, the areas of the various patterns are not necessarily the same. To circum-

vent the constant area constraint, as in Ref. [40] we conveniently choose a characteristic radial

distancer0 as a parameter to rescale lengths in our problem. The parameter r0 can be taken as

either the minimum or the maximum radial distance defined fora given stationary shape [98].

For each exact pattern, the unperturbed radiusR is determined by the circle of equivalent area.

All this is done without loss of generality.

The stabilizing nature of the azimuthal field is quite evident in Fig. 3.7: regardless the value

of NΩ, the number of fingering structures tend to decrease from 5 to1 asNB is increased. For

lower values of the rotational Bond number (NΩ=22.5) one observes the formation of patterns

containing smooth fingers which are relatively thick at their “necks". As centrifugal effects

increase in intensity (NΩ=27.5) the fingers are more powerfully pushed outward, and thinner

necks develop. If such effects are further increased (NΩ=30) bulbous fingers having very thin

necks (which are about to pinch-off) arise. Of course, if even larger values ofNΩ are used the

interface boundaries would overlap, representing nonphysical solutions.

For any given value ofNΩ the central part of the segments connecting adjacent fingerstend

to be flattened out asNB increases, changing from concave to convex. This is responsible to

the formation of small bumps of fluid between neighboring fingers. Despite the fact that all

these patterns represent stationary (equilibrium) shapes, non-equilibrium structures that have

been previously obtained in Ref. [21] for the time evolutionof the system are recovered: for

instance, single fingered (“diamond ring") patterns, and twofold morphologies with a bump in

the middle can be readily identified in Fig. 3.7 for higher values ofNB. In real experiments

and time-evolving numerical descriptions the initial conditions are usually nonsymmetric, so

that fingers compete and advance over others. However, it seems reasonable to speculate that if

one runs numerical simulations like those performed in Ref.[21] with non-random noise, and

instead used a symmetric initial disturbance, the resulting time evolving patterns would look
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Figure 3.8: Typical stationary shape solutions for a MR fluiddroplet, and two different values of

the zero field yield stress parameterS0. BothNB andNΩ are kept fixed, while the field-induced

yield stress parameterS increases from left to right.

similar to the steady state structures depicted in Fig. 3.7.

3.2.2.3 Magnetorheological fluid

We move on by investigating the influence of viscoelastic andmagnetically-induced yield

stress effects on the shape of the exact solutions. In order to do that, in Fig. 3.8 we turn to the

situation in which the confined magnetic liquid is a MR fluid. So, now both the zero field yield

stress parameterS0, and its field-induced counterpartSwill assume nonzero values. Here we fix

the value of the magnetic Bond number (NB= 3.4529), and consider two different characteristic

values forS0: 40 (first row) and 50 (second row). On the other hand, the valueSincreases from

left to right: 28.458≤ S≤ 30.352 (first row), and 39.906≤ S≤ 40.352 (second row). The

rotational Bond number is fixed atNΩ=30, and all the other parameters are the same as the ones

used in Fig. 3.7. Under such circumstances, any changes in the shape of the patterns can be

attributed to the yield stress effects introduced by the parametersS0 andS.

By inspecting Fig. 3.8 one can immediately notice that the morphologies obtained for MR

fluids are considerably different from those of ferrofluids (Fig. 3.7). The resulting exact shapes

constituteN-fold structures, where the number of fingers decrease for larger values ofS. More-

over, asS is increased more and more fluid is concentrated around the current-carrying wire
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(center of the droplet). This occurs because the effect of the attracting magnetic body force is

now supplemented by the stabilizing field-induced yield stress which is inversely proportional

to the squared radial distance to the wire. One of the most evident features for the patterns

obtained forS0 = 40 is the fact that they look a bit “swollen" as compared to those obtained

in Fig. 3.7. AsS increases the segments connecting the resulting short fingers tend to bulge

outward, leading to morphologies not really characterizedby a neck formation. For example,

for one-, two-, and threefold structures there is so much fluid located around the center of the

drop that only slightly protruded structures emerge. However, whenS0 = 50 still another kind

of shapes arise, now showing a lot of MR fluid concentrated in the bulk, connected through

necks to small droplets which are not as inflated as the ones observed in Fig. 3.7 forNΩ = 30.

Unfortunately, to date there are neither experiments nor time evolving numerical simula-

tions for MR fluid droplets in rotating Hele-Shaw cells, so that we could compare their specific

shapes to the exact stationary solutions depicted in Fig. 3.8. For the same reasons as those dis-

cussed at the end of Sec. 3.2.2.2, it would not be completely surprising to find morphological

similarities between the steady patterns shown in Fig. 3.8 and eventual time evolving shapes

simulated for symmetric initial conditions.

3.2.3 Mode-coupling approach and the stability of the exactsolutions

Impelled by the morphological similarities found between some of the exact stationary

solutions discussed in Sec. 3.2.2, and the time evolving shapes obtained in Ref. [21], we employ

a perturbative mode-coupling approach [61] to gain analytical insight about the stability of the

exact stationary solutions. In this context, the stationary approximate interface obtained with

a weakly nonlinear analysis can be compared with the fully nonlinear exact steady shapes, as

long as the lengths of the fingers are not too large. We discussto what extent a few perturbative

orders can account for the entire exact solution and hence, acertain truncation in the number

of Fourier modes involved can be regarded as a good representation of the exact shapes.

Within our mode-coupling approach the perturbed shape of the interface can be described

asR(ϕ, t) = R+ ζ (ϕ, t), whereζ (ϕ, t) = ∑+∞
n=−∞ ζn(t)exp(inϕ) represents the net interface
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Figure 3.9: Newtonian ferrofluid situation. Left panel: cosine Fourier amplitudes as a function

of the azimuthal mode numbern. Right panel: comparison between exact and weakly nonlinear

(WNL) solutions for the steady interface shape.

perturbation with complex Fourier amplitudesζn(t), and discrete azimuthal wave numbersn.

The zeroth mode is included in the Fourier expansion to keep the area of the perturbed shape

independent of the perturbationζ .

We define Fourier expansions for the velocity potential, anduse the boundary conditions

presented in Sec. 3.2.1 to expressφ in terms ofζn to obtain a dimensionless mode-coupling

differential equation for the system (forn 6= 0), accurate to second-order in the perturbation

amplitudes. We present the evolution of the perturbation amplitudes as

ζ̇n = λ (n)ζn

+ ∑
n′ 6=0

[F(n,n′) ζn′ζn−n′ +G(n,n′) ζ̇n′ζn−n′ ],

(3.33)

where the overdot represents a total time derivative with respect to time,

λ (n) = |n|
[

2NΩ − 2NBχ
R4 − (n2−1)

R3 − S0

R
− S

R3

]

(3.34)
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Figure 3.10: Magnetorheological fluid situation. Left panel: cosine Fourier amplitudes as a

function of the azimuthal mode numbern. Right panel: comparison between exact and weakly

nonlinear (WNL) solutions for the steady interface shape.

denotes the linear growth rate, and the functionsF(n,n′) and G(n,n′) are the second order

mode-coupling terms given by

F(n,n′) =
|n|
R

{

NΩ +
χNB

R4 [3+χn′(n′−n)]

− 1
R3

[

1− n′

2
(3n′+n)

]

+
S
R3

}

, (3.35)

and

G(n,n′) =
1
R
{|n|[sgn(nn′)−1]−1}. (3.36)

By examining Eq. (3.34) for the linear growth rate, it is clear that the only destabilizing

term is the one related to the centrifugal driving. Azimuthal field, surface tension, and yield

stress effects act to restrain interface deformation. The terms appearing in the expression for

the functionF(n,n′) in Eq. (3.35) arise from the centrifugal force, magnetic applied field,

surface tension, and field-dependent yield stress, respectively. The term proportional toχ2

comes from the square of the projection of the interface normal in the azimuthal direction in

the pressure jump condition [Eq. (3.27)]. The functionG(n,n′) defined in Eq. (3.36) couples
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Figure 3.11: Left panel: 2D phase portrait. Right panel: time evolving weakly nonlinear pat-

terns (solid interfaces) for two different initial conditions (1 and 4). The dashed interface repre-

sents the saddle point associated to the MR fluid weakly nonlinear pattern shown in Fig. 3.10.

the perturbed floẇζ with the interface shape perturbationζ , and presents no dependence on

magnetic effects. Already at second order, and by using justa few modes we are able to obtain

stationary solutions of small perturbation amplitudes.

Figure 3.9 illustrates a comparison between exact stationary shapes and the weakly nonlin-

ear (WNL) steady solutions obtained from Eq. (3.33). We begin by focusing on the threefold

ferrofluid pattern presented in the first row of Fig. 3.7 for which NΩ = 22.5. For this lower

value ofNΩ the exact shape is not very perturbed, so that the interface position is a single val-

ued function of the azimuthal angleϕ, and the weakly nonlinear approach can be applied. Note

that for higher values ofNΩ shown in Fig. 3.7 the resulting patterns become too deformed, so

that a Fourier analysis is no longer valid.

The left panel in Fig. 3.9 presents the absolute value of the cosine Fourier amplitudesan

for various modesn. The data represented by the bars in black are extracted directly from the

fully nonlinear threefold pattern in the first row of Fig. 3.7. The cosine and sine amplitudes are

defined asan = ζn+ζ−n, andbn = i (ζn−ζ−n), respectively. As expected from the symmetry

properties and commensurability of the exact solutions, the magnitudes of the sine amplitudes

are much smaller than the cosine ones (typically one thousand times smaller), so that they can

be safely neglected. The Fourier spectrum of the exact solution demonstrates that the cosine
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amplitudes drop quickly asn is increased, in such a way that it is very well described by only

three harmonic modes, namely,N, 2N, and 3N, whereN = 3. The open circles express the

approximate values of the stationary cosine amplitudes by considering the interplay of these

three particular Fourier modes, using the mode-coupling equation (3.33) and setting its time

derivative terms to zero. Note this procedure is equilaventof expanding Eq. (3.32) up to second

order in the perturbation amplitudes.

The right panel in Fig. 3.9 contrasts the exact shape and the stationary weakly nonlinear

solution by utilizing the data shown in the left panel. By inspecting Fig. 3.9 we see that the

weakly nonlinear theory works reasonably well in approaching the exact interface shape, even

though only three modes are used at the lowest nonlinear order. Similar type of results can

be obtained by considering the coupling of only three modes for N-fold patterns withN ≥ 3.

However, for the stationary shapes in Fig. 3.7 presenting one or two protusions, a good weakly

nonlinear representation of the exact solution requires the consideration of a higher number of

participating modes (five modes for the twofold pattern, andnine modes for the onefold shape).

Similarly to the case of ferrofluids, Fig. 3.10 depicts the behavior of the cosine Fourier

amplitudes for varyingn (left panel), and the comparison between exact and weakly nonlinear

shapes (right panel) for a magnetorheological fluid. We consider the fourfold exact pattern in

the first row of Fig. 3.8, and describe the weakly nonlinear solution by assuming the coupling

of three modesN, 2N, and 3N, whereN = 4. Here the general conclusions are analogous to the

ones we have presented for the ferrofluid case (Fig. 3.9), butthe accordance between exact and

weakly nonlinear solutions are even better for the MR fluid situation. This is due to the fact

that, in addition to the stabilizing role played by the applied azimuthal field, the field-dependent

yield stress contributes to the emergence of further stabilized morphologies. Once again,N-fold

patterns withN ≥ 3 are very well described by considering three harmonic modes. However,

for N = 1 andN = 2 a larger number of modes is necessary for a satisfatory weakly nonlinear

description of the exact shapes (four modes for the twofold pattern, and eleven modes for the

onefold shape).

Now we turn to one last, and important aspect related to the stability of the stationary solu-

tions. Despite the stabilizing role of both applied azimuthal field and magnetic field-dependent
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yield stress, we have verified that the steady solutions are unstable. This is done by setting

a system of nonlinear differential equations for three cosine harmonic modesN, 2N, and 3N,

and by using the mode-coupling equation (3.33). Through a standard linearization process

close to the stationary solution, we diagonalize the resulting system of equations, determining

the eigenvalues which dictate the stability of the fixed point [66]. For any given pattern we

have two negative eigenvalues, and one positive, characterizing a 3D saddle-point. Within this

scenario we find that the unperturbed (circular) interface is indeed stable. Therefore, if one per-

turbs a stationary solution it can either relax to a circle orevolve to an increasingly deformed

multifingered pattern whose resulting fingers ultimately tend to pinch-off. These generic fea-

tures are similar to what has been observed in Refs. [13, 68] for the exact stationary solutions

obtained in rectangular and rotating Hele-Shaw problems with nonmagnetic fluids.

The characteristic unstable signature of the stationary solutions is illustrated in Fig. 3.11.

On the left panel we show a projection of the phase portrait ona 2D subspace determined by two

eigenvectors of the stationary solution, which establish stable and unstable directions. These

directions are indicated by dashed lines. The dot filled in black corresponds to an attractor, and

it is associated to the stable circular interface. On the other hand, the white dot represents a

saddle-point which refers to the fourfold MR fluid weakly nonlinear pattern shown in Fig. 3.10.

The solid curves represent the trajectories of the system onsuch 2D phase space for different

initial conditions close to the saddle-point. The remaining dots (1-2-3, and 4-5-6) exemplify

subsequent time evolving events determined by initial conditions 1 and 4. The right panel

depicts the weakly nonlinear shapes related to the paths 1-2-3, and 4-5-6 shown on the left

panel. In addition, the dashed pattern refers to the saddle-point situation. It is evident that

above the basin of attraction of the stable node the fingered patterns tend to grow (trajectory,

and patterns 1-2-3), and below it they move toward a stable circular interface (trajectory, and

patterns 4-5-6).

We stress that the nontrivial exact stationary shapes we study in this work are obtained

under circumstances associated to a linearly stable regime. This means that is not possible

to obtain these exact steady shapes from the time evolution of a nearly circular initial state.

However, if one sets an initial condition sufficiently closeto the stationary solution, a slowing
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down of the dynamics would be detected leading to a circle or to growing fingers. It is also

worth noting that all the stationary solutions found in thischapter are indeed unstable.
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CHAPTER 4

Darcy’s law formulation for Bingham fluids

It is well known that when a less viscous fluid pushes a more viscous one in the confined

geometry of a Hele-Shaw cell, the interface separating the fluids develops the Saffman-Taylor

instability [1] leading to the formation of fingerlike patterns [2]. The specific morphology of

these patterns depend on the nature of the fluids, and on the geometry of the flow. Most of the

existing studies on the viscous fingering instability referto Newtonian fluids. In this case, the

resulting interfacial shapes range from a single, smooth, steady-state finger in rectangular (or,

channel) geometry [92, 94, 114, 115, 116, 117, 118, 119, 120], to multi-fingered structures in

which repeated tip-splitting produces highly ramified patterns in the radial flow setup [61, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131]. These pattern forming phenomena have

been extensively studied during the last fifty years throughanalytical calculations, numerical

simulations, and experiments.

Although not as numerous as in the Newtonian fluid case, otherHele-Shaw flow investiga-

tions have revealed that a distinct variety of patterns can be formed when one of the fluids is

nonNewtonian [132]. While Newtonian fluids are characterized by a constant viscosity, non-

Newtonian fluids display a multiplicity of hydrodynamic behaviors ranging from elasticity and

plasticity to shear thinning and shear thickening, and in general have a shear-dependent viscos-

ity.

The rheological properties of nonNewtonian fluids exert a profound effect on the shape

of the emerging interfacial patterns in Hele-Shaw flows. Rectangular and radial Hele-Shaw

experiments involving nonNewtonian fluids like polymer solutions, liquid crystals, clays and

foams unveiled pattern morphologies presenting snowflake-like shapes [133] and fracturelike

structures [134, 135]. For shear-thinning fluids traditional finger tip-splitting events are inhib-

ited, and the appearance of dendritic patterns with side branching is favored. Cracklike patterns

presenting angular branches and sharp tips have also been found. On the other hand, flow with
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shear-thickening fluids [136] displays patterns similar tothose found in Newtonian fluids but

with either narrowing or widening of the fingers, which can present asymmetric humps. This

morphological diversity and rich dynamical behavior motivated a number of theoretical stud-

ies of the problem through linear and weakly nonlinear analyzes, and sophisticated numerical

simulations [137, 138, 139, 140, 141, 142, 143, 144, 145, 146].

Despite all the efforts and important results obtained by researchers on the development

of viscous fingering in nonNewtonian Hele-Shaw flows, the pattern forming dynamics with

yield stress fluids has been relatively underlooked. In contrast to Newtonian fluids, yield stress

fluids [30, 31] can support shear stresses without flowing. Aslong as the stress remains below

to a certain critical value they do not flow, but respond elastically to deformation. So, such

materials possess properties of both viscous fluids and elastic solids, behaving like a “semi-

solid". On the theoretical side, a linear stability analysis of the Saffman-Taylor problem in

rectangular and radial cells with yield stress fluids [32] has predicted that the instability can be

drastically modified. On the experimental arena some interesting findings have been disclosed

in channel geometry [33, 34]: depending on whether viscous effects or yield stresses dominates,

fractal patterns, or ramified structures where multiple fingers propagate in parallel may arise.

In a more recent experimental work [147] fingering in a yield stress fluid in rectangular as

well as in radial Hele-Shaw cells has been examined. As in Ref. [33, 34], different regimes lead-

ing to diverse pattern morphologies have been observed: at low velocities (where yield stress

dominates) ramified structures arise; however, for higher velocities (viscous effects prevail), in

addition to tip-splitting, interesting side branching instabilities become apparent. Although the

behavior at the low velocity regime can be quantitatively explained from the linear stability re-

sults presented in Ref. [32], the nonlinear side branching and tip-splitting instabilities detected

at higher velocities are not fully understood to date. So, a theoretical study addressing these

suggestive pattern forming phenomena in yield stress fluidsis still lacking.

In this Chapter we carry out the analytical weakly nonlinearanalysis of the problem in

which a yield stress fluid flows in a radial Hele-Shaw cell. We focus on the regime in which

viscosity effects are prevalent over yield stress. By exploring the onset of nonlinear effects we

try to gain analytical insight into the dynamic process of fingering formation. In particular,
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we seek to understand how mode-coupling dynamics leads to basic morphological features and

behaviors observed experimentally in such nonNewtonian Hele-Shaw flows [147].

Figure 4.1: Schematic configuration of radial flow in a Hele-Shaw cell. The inner fluid is

Newtonian and has negligible viscosity. The outer fluid is a yield stress fluid. The unperturbed

fluid-fluid interface (dashed curve) is a circle of radiusR. All physical parameters are defined

in the text.

The Hele-Shaw cell is depicted in Fig. 4.1 and consists of twoparallel plates separated by a

small distanceb. Consider the displacement of a nonNewtonian fluid of viscosity η and yield

stressσ0, by a Newtonian fluid of negligible viscosity in such confinedgeometry. The surface

tension between the fluids is denoted byγ. The Newtonian fluid is injected at a constant areal

flow rateQ at the center of the cell, along the direction perpendicularto the plates (z-axis).

We focus on deriving the relevant hydrodynamic equation fora Hele-Shaw flow of a yield

stress fluid. Our main goal is to obtain a Darcy’s like law which relates the gap-averaged ve-

locity with the pressure gradient and the yield stress, taking into account the coupling between

them. We start by taking the Navier-Stokes equation for an incompressible viscous fluid [148]

ρ
[

∂u
∂ t

+(u ·∇)u
]

=−∇P−∇ · τ, (4.1)

whereρ is density,u denotes the three-dimensional velocity,P is the pressure, andτ represents

the stress tensor that includes the yield stress. In the scope of the lubrication approximation,

where the distance between the platesb is much smaller than the unperturbed radiusR of the
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fluid-fluid interface, the motion is a creeping flow. Therefore, we may neglect the inertial terms

between square brackets in Eq. (4.1), as well as impose that the prevailing terms in∇ · τ are

those with transversal derivatives. Within this framework, we also consider that pressure is

constant along the transversal direction (z-axis). Thus, by integrating (4.1) we obtain

τiz =

∣

∣

∣

∣

b
2
−z

∣

∣

∣

∣

∇iP, (4.2)

wherei = r,θ is the label that indicates polar radial or azimuthal components, with the origin

placed at the center of the droplet. We have used the symmetryof the flow to state that the

shear stress is zero at the mid-planez= b/2 (since the plates are located atz= 0 andz= b).

Furthermore, as a constitutive relation for yield stress fluids, we use the Bingham model [132].

It states that, for a given shear stress higher than the fluid yield stress magnitudeσ0, there is

flow and the stress tensor is given by

τiz =−
[

η
∂ui

∂z
+σi

]

. (4.3)

This situation corresponds to|τ| > σ0, where|τ| =
√

τ2
rz+ τ2

θz. We point out that, in contrast

to previous works [40, 41, 85, 149], here we allow the yield stress to exhibit bothr and θ

polar components, in such a way that its response is now opposite to the stress tension. This

is precisely what will allow us to couple the yield stress to the velocity direction by the end of

our derivation. From Eq. (4.2) we see that the stress tensionis parallel to pressure gradient and

we may writeσi =−σ0 ∇iP/|∇P|.
On the other hand, if|τ| ≤ σ0, the shear stress do not overcome the yield stress, thus there

is no flow
∂ui

∂z
= 0, (4.4)

meaning thatσi =−τiz.

Since the problem is symmetric with respect to the mid-planez= b/2, we may assume

0 ≤ z≤ b/2 for simplicity. From Eq. (4.2) we find the critical heightzc which separates the
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sheared region from the unsheared region

zc =
b
2
− σ0

|∇P| . (4.5)

Then, by using Eq. (4.2) and the profile velocity continuity at z= zc, it is possible to determine

the velocity profile for both regions

u = −∇P
η

[

z
(

zc−
z
2

)]

for 0≤ z< zc,

u = −∇P
η

z2
c

2
for zc ≤ z≤ b

2
.

(4.6)

It is well known that this velocity profile cannot be exact fordifferent kind of flows [150, 151,

152]. However, the expression given by (4.6) is a good approximation when one only seeks the

relationship between the pressure drop and the mean velocity [32], which is exactly our case.

We define the gap-averaged velocity as

v =
1
b

∫ b

0
u dz, (4.7)

and by gap-averaging (4.6) we finally obtain a dimensionlessmodified Darcy’s law for yield

stress fluids

v =−∇P

[

1− δ
|∇P| +

4 δ 3

27|∇P|3

]

. (4.8)

The dimensionless parameter

δ =
πσ0bRf

2ηQ
(4.9)

is a modified plasticity number, and quantifies the ratio between yield stress and viscous forces.

Hereafter, we takeδ as positive (sinceQ> 0) and refer to it as the yield stress parameter. We

point out that, in Eq. (4.8) lengths and velocities were rescaled byRf andQ/(2πRf ) respec-

tively, whereRf is the radius of the unperturbed interface att = t f . From this point on we use

the dimensionless version of the equations. Our Eq. (4.8) isin agreement with the results of
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Ref. [149] which studied the simpler situation involving the purely radial flow of a perfectly

circular droplet.

Since we are interested in examining the interface destabilization process, we consider the

regime where viscous forces prevail over the yield stress and flow is facilitated, which corre-

sponds toδ ≪ 1. Therefore, we may neglect the third order term inδ shown in Eq. (4.8).

Moreover, since (4.8) states that velocity is parallel to the pressure gradient, we may rewrite it

in a more convenient way as

∇P=−v
[

1+
δ
|v|

]

. (4.10)

Equation (4.10) is an alternative form of Darcy’s law ideally suited to describe the Hele-Shaw

flow dynamics in the weak yield stress regime. The usual Newtonian Darcy’s law is recovered

when we setδ = 0. This equation was used in [42] to investigate the interfacial instabilities

that take place when a Newtonian fluid redially displaces a yield stress fluid. We address the

reader to this reference in order contemplate the differentmorphological features exhibited by

the model for this particular case.

We close this section by calling the reader’s attention to animportant distinction between

our current results and the ones obtained in Ref. [140]. Kondic et al. [140] studied a nonNew-

tonian model where shear-thinning fluids were analyzed. In their work, a theoretical model

for a shear rate dependent viscosity results in generalizedDarcy’s law [their Eq. (2)], which

is distinct from our Darcy’s law [Eq. (4.10)] for yield stress fluids. It should be emphasized

that we do not propose a shear-thinning model, i. e., a shear dependent viscosity to a nonNew-

tonian fluid. Rather, we seek for a Darcy’s law to a yield stress fluid, a nonNewtonian fluid

that can support shear stresses without flowing, and derive aspecific modified Darcy’s law

[our Eq. (4.10)] to describe flow of such a fluid in the confined geometry of a Hele-Shaw cell.

Moreover, contrary to what is done in Ref. [140], our approach considers a Bingham model

[Eq. (4.3)] whereη denotes a Newtonian (constant) viscosity.
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CHAPTER 5

Phase-field approach

Diffuse interface methods have become popular tools for physical modeling of multiphase

systems with and without flow. Among them, the phase-field method has emerged as a widely

used technique to numerically simulate complex interfacial pattern formation processes. Dif-

fuse interface models are built on the notion that the interface between the phases is not a sharp

boundary, but has a finite width and is characterized by rapidbut smooth transitions in the

density, viscosity and other physical quantities. In phase-field models, a non-conserved order

parameter, the phase fieldθ , is introduced to describe the phase transition. It has constant val-

ues in the bulk phases (e.g., in this work,θ =+1 in one bulk phase andθ =−1 in the other) and

varies smoothly across the diffuse interface region (−1 < θ < +1) in a hyperbolic tangent or

similar fashion. The propagation equation for the phase field (i.e., the phase-field equation) and

the relevant conservation equations are derived from thermodynamically consistent theories of

continuum phase transitions that account for the gradient energy across the diffuse interface.

The most appealing feature of the phase-field method is that all governing equations can be

solved over the entire computational domain without any a priori knowledge of the location

of the interfaces. Interface tracking is completely avoided and topology changes are handled

naturally without the need for any special procedures. Eventhough interface curvature and

normal direction are not explicitly evaluated, the phase-field method is especially well suited

for problems in which the interface motion depends on gradients of an external field normal to

the interface and on the local curvature of the interface.

This method introduces a mesoscaleε, which is not present in the original macroscopic

equations and determines a finite thickness to the interface. By consistency, this parameter

must be the smallest length scale of the problem. The equations are then chosen in such a

way that the original bulk equations (or sharp interface equations) and boundary conditions are

recovered in theε → 0 limit. Therefore, the phase-field equations for a given model are not
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intended to describe the true mesoscale physics of the system, and are then not unique.

In a general point of view, we may reproduce a static interface between two fluid phases

confined in two dimensions by relaxing the phase-fieldθ as

ε2∂tθ = f (θ)+ ε2∇2θ , (5.1)

where f (θ) is a function chosen to reproduce the desiredθ values at the distinct fluid phases.

We takef (θ) ≡ θ(1−θ2) in order to reproduce the bulk phases as the valuesθ =±1. Then,

Eq. (5.1) becomes a Ginzburg-Landau equation for a nonconserved order parameterθ . Theθ

field in this model is known to diffuse towards a kink solutionof a certain width in a short time

scale.

Lets for instance set as initial condition to the phase-fieldthe following step function:θ =

+1 for the inner phaseρ > 0, andθ = −1 for the outer phaseρ < 0, whereρ is the normal

distance to the arbitrary initial interface and it is positive inwards. After relaxing this initial

condition using Eq. (5.1), we obtain as the leading order solution [43, 153]θ ≈ tanh[ρ/(ε
√

2)].

Notice that this solution indicates that∇θ points at the normal direction to the interface at the

diffuse region between the phases. Moreover, the interfacecan be tracked by taking the curve

θ = 0 and its introduced thickness is of the order ofε (in fact, if we define the diffuse interface

as−0.9< θ < 0.9, its width is given by−1.5 ε
√

2< ρ < 1.5 ε
√

2). However, this kink profile

keeps evolving towards the minimization of the length of theeffective interface with normal

velocity proportional to the local curvature (i.e., according to Allen-Cahn law [43]). This issue

leads the interface to a curvature flow, causing the loss of phase (i. e., loss of fluid mass), and

will be further discussed in the following section.

5.1 Viscous fingering in usual Newtonian fluids

A consistent phase-field model suitably developed to reproduce the viscous fingering dy-

namics of usual Newtonian fluids was originally proposed by Ref. [43]. In their work, they

introduce an additional term in Eq. (5.1) in order to cancel out the local Allen-Cahn dynamics
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of the interface, and maintain the hyperbolic tangent profile while the interface moves. This

solves the problem of mass conservation at each phase and imposes a correct normal velocity at

the boundary in between them. In this section we will briefly comment some important aspects

of this model, so later on we may use it as a reference for viscous fingering in complex fluids.

First of all, we must set the original dynamical equations and boundary conditions at the

sharp interface H-S problem, and only then find out their proper phase-field equations. The

original sharp interface equations for the flow of two immiscible viscous fluids in a Hele-Shaw

cell may be written in terms of a stream function, i. e., the harmonic conjugate of the velocity

potential. Since the fluids are taken to be incompressible,∇ · v = 0 holds at the bulk of each

fluid and we may define the scalar stream functionψ for each fluid asv = ∇× (ψ z), wherez

is the unitary vector at the direction perpendicular to the H-S plates. The fact that the stream

function is continuous at the interface makes the use of thisvariable particularly convenient.

The Hele-Shaw equations in stream function formulation canbe written as

∇2ψ =−Γ δ (ρ), (5.2)

whereΓ represents the vortex-sheet strength between the fluids,δ (ρ) is the Diracδ distribution

andρ is the normal distance to the interface. The parameterΓ is evaluated at the interface as the

discontinuity of the tangential components of the outer (v2) and inner (v1) fluid velocities, i. e.,

Γ = (v2−v1) ·s at the interface, wheres denotes the unitary vector tangential to the interface.

As a matter of fact, the proper boundary conditions to the velocity field across the interface,

Eqs. (1.3) and (1.4), are already taken into account in Eq. (5.2). Moreover, by utilizing Darcy’s

law [Eq. (1.2)] we may rewrite the vortex-sheet in terms of the stream function [43]

Γ = γ +A(∂nψ2+∂nψ1), (5.3)

where∂n is the derivative at the normal direction to the interface and A= (η1−η2)/(η1+η2) is

the viscosity contrast between the fluids. Theγ term comes from the tangential pressure gradi-

ent difference at the interface and is determined by the pressure boundary condition [Eq. (1.5)].
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At the absence of external forces we have

γ = 2
σb2

12(η1+η2)
∂sκ , (5.4)

whereσ is the surface tension, and∂sκ is the derivative of the interface in-plane curvature

along the tangential direction. If there were any discontinuities caused by external forces, such

as centrifugal forces [9], they would also appear here in theγ expression.

Now we have set the sharp interface equations (5.2) and (5.3), we may write the phase-field

relaxation equation forψ as

ε̃∂tψ = ∇2ψ +A∇ · (θ∇ψ)+ γ
(1−θ2)

2
√

2ε
. (5.5)

Here, the right hand side corresponds to the Poisson equation in (5.2) at the limitε → 0. The

Dirac δ function peaked at the interface that appears multiplied byγ was substituted by a

smooth phase-field functional peaked onθ = 0, namely(1−θ2)/(2
√

2ε). Moreover, the sec-

ond term on the right hand side accounts for the normal derivatives that appear multiplied byA,

since∇θ points at the normal direction to the interface. The time derivative∂tψ was added to

introduce a rapid relaxation forψ, soε̃ is also a small artificial parameter that defines the char-

acteristic diffusion time. This equation is in accordance to their original boundary conditions

and the following generalized function

γ = 2
σb2

12(η1+η2)
s·∇κ . (5.6)

Furthermore, the time evolving equation for the phase-fieldθ is given by

ε2∂tθ = f (θ)+ ε2∇2θ + ε2κ(θ)|∇θ |− ε2V ·∇θ , (5.7)

where

V = ∇× (ψ z) (5.8)

is the phase-field advective velocity, andf (θ) = θ(1− θ2). The generalized phase-field de-

100



pendent curvature is given by

κ(θ) =−∇ ·n(θ), (5.9)

where

n(θ) =
∇θ
|∇θ | (5.10)

is the normal unitary vector, and the tangent vector is givenby

s(θ) = n(θ)×z. (5.11)

By comparing Eq. (5.1) with Eq. (5.7) we notice that two extraterms were added to the later.

The termε2κ(θ)|∇θ | was introduced to cancel off the Allen-Cahn law by killing the leading

order contribution of the spurious curvature flow. Therefore, it makes theθ kink profile stable

to any interface shape and keeps the mass balance between thephases. The last term on the

right hand side of Eq. (5.7) simply sets the proper normal velocity to the interface according to

the dynamics ofψ.

We stress that the phase-field equations (5.5) and (5.7) werecarefully set in order to re-

produce the original moving boundary problem at the sharp interface limitε,ε̃ → 0. This was

carried out in Ref. [43] by expanding the outer and inner phase equations in powers ofε and

performing an asymptotic matching between them.

5.2 Viscous fingering in magnetic fluids

We turn now our attention to the viscous fingering problem when at least one of the fluids

happens to be a magnetic fluid. Both fluids are assumed to be incompressible and obey a

generalized Darcy’s law that can be written as a potential flow, as in Eqs. (2.2) or (3.6). The

sharp interface equations of this moving boundary problem may be set in terms of the velocity

potential as shown in Eqs. (3.11), (3.12) and (3.13). We could also reformulate the problem

in terms of its stream functionψ and it would look exactly like Eq. (5.2), but with a different

expression for the vortex-sheetΓ. Therefore, there is no fundamental difference between the
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equations set in Sec. 5.1 and those written for the flow of magnetic fluids, and we may use the

phase-field equations (5.5) and (5.7) to describe both of them.

Lets take as a matter of simplification the case where fluid 1 isa Newtonian ferrofluid

and fluid 2 is a nonmagnetic fluid. In this situation, the vortex-sheet strength is obtained by

using (2.1) and (2.4) inΓ = (v2−v1) ·sat the interface. Thus, it can be written as

Γ = ∂nψ2−∂nψ1 = γ +A(∂nψ2+∂nψ1), (5.12)

whereγ is given by

γ = 2
b2

12(η1+η2)
s·∇

[

σκ − µ0χ2(H ·n)2

2
− µ0χH2

2

]

. (5.13)

In (5.13) we have also assumed that the ferrofluid magnetization is collinear with the local

magnetic field, i. e.,M = χH. In case our magnetic fluid was a MR fluid, we would also have

to include in (5.13) its magnetic field-dependent yield stress contribution, as in Eq. (3.6).

The only missing part in our description now is how to determine the local magnetic field

H at the ferrofluid domain, since this is a nonlocal problem that depends on the interface shape.

For the case where the applied magnetic fieldH0 has already a natural gradient, as in Eqs. (3.1)

and (3.24), we may consider the leading contribution to the field gradient as produced by the

applied magnetic field itself, and useH ≈ H0 in (5.13).

5.2.1 Ferrofluid in a radial magnetic field

Inspired by Refs. [24, 40] we have performed preliminary numerical phase-field simulations

of a ferrofluid confined in a H-S cell and subjected to an applied radial magnetic field. The

setup is explained in Sec. 3.1 and can be visualized in Fig. 3.1, where the inner fluid is now

a Newtonian ferrofluid and the outer fluid is a nonmagnetic fluid of negligible viscosity. The

aim here was to simulate Eqs. (5.5) and (5.7), where (5.13) iscalculated usingH = H0
L r r̂ .

Moreover, we may rescale velocities byµ0H2
0b3

24(η1+η2)L2 and lengths byb in order to rewrite (5.13)
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in the dimensionless form

γ = 2 s·∇[Bκ −χ2(r ·n)2−χr2], (5.14)

whereB= 2σL2

µ0H2
0b3 is the dimensionless surface tension. This problem can be seen as a variation

of the centrifugally driven nonmagnetic viscous fingering [9] one, with an augmented version

for pressure jump condition (2.4).

We have used a C based code to discretize our phase-field equations (5.5) and (5.7) using

finite differences in a semi-implicit in time scheme. In thisscenario, we employ first order

forward in time and second order centered in space differences to approximate the expressions

for the derivatives. For each time step the diffusive and advective terms in Eqs. (5.5) and (5.7)

are calculated implicitly. The remaining nonlinear terms are taken explicitly at the current time

step. For more details of our numerical approach see Sec.5.3.2.2.

Figure 5.1: Phase-field simulation of an initially perturbed ferrofluid droplet subjected to a

radial magnetic field. Upper panels: phase-field plots in color scale for three different times,

whereθ = +1 (θ = −1) corresponds to the inner (outer) fluid phase. Lower panels: stream

function plots for the correspondent times in the upper plots.
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Figure 5.1 shows snapshots from the simulation of Eqs. (5.5)and (5.7) for an initially cir-

cular droplet perturbed by a 4-fold mode. The upper panels display the phase-fieldθ at three

different times: t = 0, t = 0.500 andt = 1.000, where theθ = +1 phase (yellow colored)

corresponds to the ferrofluid and theθ =−1 phase (black colored) correspond to the nonmag-

netic fluid. The lower panels display the stream functionψ at the three respective values oft.

We have used the following values for the numerical parameters: ε = 0.1, ε̃ = 0.01, time step

dt = 0.005, a grid of size 120x120 and square meshdx= dy= 0.05. The relevant dimension-

less physical parameters are the viscosity contrastA= 0.95, the dimensionless surface tension

B= 0.01, and the magnetic susceptibilityχ = 0.5.

The initial condition forθ is set asθ = tanh[(R+acos4ϕ − r)/(ε
√

2)], where(r,ϕ) are

polar coordinates, the initial circular radius isR= 1.0 and the perturbation amplitude of the

fourth harmonic mode isa= 0.2. The stream function is set asψ = 0.0 at t = 0.0. Boundary

conditions at the walls are chosen to beθ =−1.0 andψ = 0.0, and correspond to zero normal

velocity for the outer fluid phase at the borders.

As we can see from Fig. 5.1, an initial perturbation of the mode n = 4 tend to increase in

amplitude for early times and then saturate, making the finger tips to get sharper and sharper.

This is in accordance with the linear prediction at (3.16) and also with the morphological fea-

tures of fully nonlinear stationary patterns in [24]. We believe that the presence of the normal

magnetization contribution at the pressure jump condition(2.4) is the main responsible for the

ultimate pattern morphology int = 1.000, since this is the only difference between the cen-

trifugally driven viscous fingering and our case. In the absence of this particular contribution

(by taking out the term proportional toχ2 in (5.14)) we would recover the centrifugally driven

result in which finger tend to grow and get broader, up to the point that pinching happens [9].

If we continue to run the simulation for later times, we notice a significative loss of mass of

the inner phase. This may be occurring due to the high curvature values the finger tips tend to

exhibit, leading the curvature radius to be of the order ofε, which would violate the phase field

assumption thatε is the smallest length scale in the problem. More numerical development still

must be done in order to correct such issues.
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5.3 Actin-based motility of lamellar fragments

Lamellar fragments are pieces of lamellipodia, the actin-based locomotion machinery of

crawling cells. These fragments have been shown to exhibit spontaneous, sustained motion

if properly deformed [35]. Despite its relative simplicity, a theoretical understanding of the

minimal ingredients to explain this phenomenon is still lacking. A challenging question is how

the treadmilling dynamics of actin, which polymerizes at the boundary, is coupled to the shape

of the fragment to sustain motion, in particular in the absence of molecular motors. Recently, it

has been shown that in an appropriate approximation, the flowof actin satisfies Darcy’s law in

an effectively two-dimensional geometry [36], thus reducing the dynamics to a free-boundary

problem similar to that of viscous-fingering in Hele-Shaw cells, but with different boundary

conditions [43].

Here we present a phase-field description of this free-boundary problem, as a tool to numer-

ically integrate the fully nonlinear dynamics of this problem, aiming at a systematic study of the

different families of steady propagating solutions, theirstability and their basins of attraction.

Such a diffuse-interface method is known to have important advantages with respect to sharp-

interface methods (boundary-integral methods or conformal mapping techniques) in Laplacian

problems, in particular when interfaces adopt complex shapes. Most importantly, their advan-

tage is most substantial when the viscosity of the displacedfluid is not neglected, a common

approximation that may have to be relaxed in order to gain a more quantitative understanding

of the problem and its biological relevance. The main goal inthis study is to complement with

fully nonlinear numerical simulations the weakly nonlinear analysis done by using conformal

mapping techniches in Ref. [154].

A phase-field strategy has already been used before within more complicated models [155,

156]. The model we present concentrates on the effects of polymerization forces combined with

friction on the substrate and with membrane tension. The absence of molecular motors in the

description makes the model simpler and more amenable to theoretical discussion. Appropriate

convergence tests have been performed showing that the model is quantitatively accurate and

competitive with respect to other techniques. Our results in the fully nonlinear regime confirm
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that actin polymerization alone can sustain motion, and provide not only the families of stable

steady shapes, but also a first characterization of their relative basins of attraction.

5.3.1 Problem formulation: sharp interface equations

Consider an initially nearly circular actin-based lamellar fragment surrounded by a non-

active viscous fluid. The flow of both fluids takes place at an effectively two-dimensional

geometry similar to a Hele-Shaw cell. Within this framework, the lubrication approximation is

valid and inertial terms are negligible. The effective viscosities (or flow permeability) of the

fluids are denoted asµ j , where j = 1 ( j = 2) labels the inner (outer) fluid. Also, the fluids in

consideration are immiscible, and there exists a surface tensionσ between them. In addition,

gravity effects happen to be along the transversal direction z which is neglected.

In this confined environment the flow is governed by Darcy’s law [37]

µ jv j =−∇pj , (5.15)

wherep j denotes the pressure.

The inner lamellar fluid (fluid 1) is consumed due to actin depolymerization, which is mod-

eled into constant areal negative divergence−k, while the outer fluid (fluid 2) is incompressible

∇ ·v1 =−k, (5.16)

∇ ·v2 = 0. (5.17)

Moreover, we assume that actin polymerization takes place at the interfacial boundary.

Therefore, fluid 1 is produced at constant velocity ratevp along the normal direction of the

interface. This assumption is specified by the following modified boundary condition

(v2−v1) ·n =−vp, (5.18)
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wheren is the unitary normal vector to the interface and points inwards. It is worth noting that

usual continuity of the velocities’ normal component is recovered by setting the polymerization

velocity termvp to zero.

The problem is completely stated in terms of the velocity fields by deriving a boundary con-

dition for the tangential jump of velocities. This is done byusing Eq. (5.15) plus the pressure

jump condition due to surface tensionp1− p2 = σκ , whereκ denotes the in-plane interfacial

curvature. Following this prescription we derive

(v2−v1) ·s=
2σ

µ1+µ2
∂sκ +A(v2+v1) ·s, (5.19)

wheres is the unitary tangential vector pointing counterclockwise, andA=(µ1−µ2)/(µ1+µ2)

represents the viscosity contrast.

Equations (5.16)-(5.19) defines the moving boundary problem of our system in which the

normal interface velocity is given byVn = v1 ·n−vp = v2 ·n.

It is useful to perform a change of variables in order to reformulate the original problem in

terms of tangentially continuous stream functions. To accomplish this goal we must redefine

a velocity field for the inner region such that Eq. (5.16) becomes divergence-free. Moreover,

aiming to obtain normal continuity condition at Eq. (5.18),the outer velocity field will also be

redefined. Therefore we introduce the following corresponding stream functions

∇× (ψ1z) = v1+
k
2

r , (5.20)

∇× (ψ2z) = v2+∇φ , (5.21)

wherez= s×n is the unitary transversal vector andr is the two-dimensional position vector.

The scalar fieldφ is defined at the outer region and it is determined by taking the divergence

of Eq. (5.21) and imposing continuity of the tangential components ofψ j at the interface.

Therefore

∇2φ = 0, (5.22)

∂nφ = vp+
k
2

r ·n ≡ α, (5.23)
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determineφ at the outer region.

Furthermore, taking the curl of Eqs. (5.20) and (5.21) leadsto

∇2ψ1,2 = 0. (5.24)

Also, one may rewrite the boundary conditions (5.18) and (5.19) at the following forms

∂sψ1 = ∂sψ2, (5.25)

∂nψ2−∂nψ1 = γ +A(∂nψ2+∂nψ1), (5.26)

where
γ
2
= B∂sκ +

(1−A)
2

∂sφ − (1+A)
2

k
2

r ·s, (5.27)

and

B=
σ

µ1+µ2
. (5.28)

Equations (5.24)-(5.26) completely define the moving boundary problem in terms of the

inner and outer stream functions,ψ1 andψ2 respectively, and they resemble Eq. (5.2). The

normal interface velocity is now expressed in terms of thesenew fields asVn = ∂sψ1−(k/2) (r ·
n)−vp = ∂sψ2−∂nφ .

5.3.2 Phase-field equations

In order to numerically obtain the fully nonlinear dynamicsof the moving boundary prob-

lem described in the last section, it is convenient to use an analogous phase-field method to

that described by Eqs. (5.5) and (5.7). We will use the auxiliary functionθ , that reproduces a

diffuse-interface of thicknessε, to rewrite the equations forψ andφ .

Apart from the physical control parametersA, B, k andvp, the dynamics in this model also

depends on the artificial interface thicknessε, a relaxation timẽε for the stream functionψ, and

a relaxation timeε ′ for the potentialφ , which may be taken in general as different for numerical

convenience. In the limitε,ε̃,ε ′ → 0 the dynamics is strictly that of Eqs. (5.24)-(5.26).
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We are able to write phase-field equations corresponding to Eqs. (5.22) and (5.24) as

ε ′∂tφ = ∇2φ +α(θ)
(1−θ2)

2
√

2ε
, (5.29)

ε̃∂tψ = ∇2ψ +A∇ · (θ∇ψ)+ γ(θ ,φ)
(1−θ2)

2
√

2ε
, (5.30)

respectively. These equations are in accordance to their original boundary conditions and the

following generalized functions

α(θ) = vp+
k
2

r ·n(θ), (5.31)

γ(θ)
2

= s(θ) ·
[

B∇κ(θ)+
(1−A)

2
∇φ − (1+A)

2
k
2

r
]

.

(5.32)

The time evolving equation for the phase-fieldθ is given by

ε2∂tθ = f (θ)+ ε2∇2θ + ε2κ(θ)|∇θ |− ε2V ·∇θ , (5.33)

where

V = ∇× (ψ z)− k
2

r −vpn(θ) (5.34)

is the phase-field advective velocity, andf (θ) ≡ θ(1− θ2). The generalized phase-field de-

pendent curvature is given by

κ(θ) =−∇ ·n(θ), (5.35)

where

n(θ) =
∇θ
|∇θ | (5.36)

is the normal unitary vector, and the tangent vector is givenby

s(θ) = n(θ)×z. (5.37)
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We have arbitrarily chosen the+1 (−1) phase as the inner (outer) one. Accordingly to

this convention, the normal vector (5.36) points inwards, the tangent vector (5.37) points at the

counterclockwise direction, and the curvature (5.35) is positive for a circle.

5.3.2.1 Dimensionless parameters

Now, we write down the dimensionless versions of our equations. Lengths and velocities

are rescaled byR0 = 2vp/k, andvp, respectively. Equations (5.29), (5.30) and (5.33) hold their

original form. On the other hand, Eqs. (5.31), (5.32) and (5.34) are rewritten as

α(θ) = 1+ r ·n(θ), (5.38)

γ(θ)
2

= s(θ) ·
[

B̃∇κ(θ)+
(1−A)

2
∇φ − (1+A)

2
r
]

,

(5.39)

V = ∇× (ψ z)− r −n(θ), (5.40)

respectively, and

B̃=
σk2

4(µ1+µ2)v3
p
. (5.41)

5.3.2.2 Numerical implementation

We follow [9, 153, 157] and use finite differences in a semi-implicit in time scheme to dis-

cretize our dimensionless phase-field equations (5.29), (5.30) and (5.33). In this scenario, we

employ first order forward in time and second order centered in space differences to approxi-

mate the expressions for the derivatives

∂tθ ≈
θn+1

i, j −θn
i, j

dt
, (5.42)

∂xθ ≈ θi+1, j −θi−1, j

2dx
, (5.43)
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∂xxθ ≈ θi+1, j −2θi, j +θi−1, j

dx2 , (5.44)

wherei ( j) stands forx (y) discretization,n for time discretization,dx is the mesh size anddt

is the time step. For each time step the diffusive and advective terms in Eqs.(5.29), (5.30) and

(5.33) are calculated implicitly, i. e., they are taken at time stepn+1. The remaining nonlinear

terms are taken explicitly at time stepn. For instance, the curvatureκ(θ) is calculated explicitly

as in [153, 157]

κ =− ∂xxθ +∂yyθ
[(∂xθ)2+(∂yθ)2+δ ]1/2

+
(∂xθ)2∂xxθ +2∂xθ∂yθ∂xyθ +(∂yθ)2∂yyθ

[(∂xθ)2+(∂yθ)2+δ ]3/2
, (5.45)

whereδ is a small numerical factor of the order 10−8 introduced to avoid divergences. The

derivatives ofκ in Eq. (5.39) are calculated using second order centered differences such as

∂xκ ≈ κi+1, j−κi−1, j
2dx .

At each time iteration, we first calculateφn+1 by usingθn in (5.29), then obtainψn+1 by

usingφn+1 andθn in (5.30), and finally we obtainθn+1 by usingψn+1 in (5.33). For each

of these sub steps, the implicit terms are calculated by inverting a (2N+1)x(2N+1) sparse

matrix obtained for the extended system composed by all the field values of the grid, including

the boundary values.

Figure 5.2 shows snapshots of the time evolution for an initially circular droplet perturbed

by Fourier modesn = 1 andn = 2 of respective amplitudesa1 and a2. The upper panels

display the phase-fieldθ at three different times:t = 0, t = 38.5 andt = 87.0, where the

θ = +1 phase (yellow colored) correspond to the cell fragment andtheθ = −1 phase (black

colored) correspond to an usual viscous fluid. The mid panelsdisplay the stream function

ψ at the three respective values oft. The lower panels display the auxiliary functionφ at

the three respective values oft. We have used the following values for numerical parameter:

ε = 0.1, ε̃ = 0.01, ε ′ = 0.01, time stepdt = 0.005, a grid of size 150x150 and square mesh

dx= dy= 0.05. The relevant dimensionless physical parameters are theviscosity contrast

A = 0.95, the dimensionless surface tensionB = 0.08, the polymerization velocityvp = 0.5

and depolymerization ratek= 1.0.

The initial condition forθ is set asθ = tanh[(R+a1cosϕ +a2 cos2ϕ − r)/(ε
√

2)], where
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Figure 5.2: Phase-field simulation of an initially perturbed cell fragment. Upper panels: phase-

field plots in color scale for three different times, whereθ = +1 (θ = −1) corresponds to the

inner (outer) fluid phase. Mid panels: stream function plotsfor the correspondent times in the

upper plots. Lower panels: auxiliaryφ function plots for the correspondent times in the upper

plots. Boundary conditions are set asθ =−1.0, ψ = 0.0 andφ = 0.0.
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(r,ϕ) are polar coordinates, the initial circular radius isR= 1.0 and the perturbation amplitudes

area1 = 0.3 anda2 = 0.2. Here, the moden = 1 is added to the dynamics in order to brake

the symmetry of the problem and introduce a propagating direction. Moreover, the auxiliary

function is set asφ = 0.0 and them relaxed by (5.29) until it saturates for the fixed initial

θ , defining thus the initial condition forφ displayed at thet = 0.0 lower panel. The same

procedure is done to find the initial condition forψ displayed at thet = 0.0 mid panel: it was

relaxed fromψ = 0.0 by using 5.30 keepingθ andφ fixed. This is done to guarantee that all

the fields satisfy the same conditions att = 0. Boundary conditions at the walls are chosen to

be θ = −1.0, ψ = 0.0 andψ = 0.0. They correspond to zero normal velocity for the outer

fluid phase at the borders, and also reflected mass sources at the boundaries produced by image

charges ofφ .

As we can see from Fig. 5.2, the initial perturbation of the moden= 2 tend to increase in

amplitude for early times, which is in agreement with the linear prediction in [36], and then

saturate at very late times due to nonlinear and also boundary effects. The linear analysis also

predicts that the moden = 1, which is responsible for translations of the droplet masscenter,

is marginally stable and therefore could be enhanced by a nonlinear coupling. However, this is

not the case in our simulation, since the shape becomes more symmetric with respect to bothx

andy axes as time grows, revealing a decrease ina1.

This is not consistent with the conformal mapping results tothis problem exposed in [154].

We should expect the droplet to saturate in a much more asymmetric shape, which would

induce the shape to achieve much larger propagating velocities. Also, it was expected a much

less prominent moden= 2, that should not reach the boundaries. These evidences suggest that

the constant valued boundary conditionsψ = 0 andφ = 0 are introducing spurious effects and

significantly changing the rising viscous fingering shapes.

In order to clarify this issue we have performed a simulationwith the same parameters of

Fig. 5.2, but this time using periodic boundary conditions for θ , ψ and φ . However, since

the periodic boundary conditions are difficult to implementat our semi-implicit code, for this

situation we have only used an explicit time integration scheme. This result is shown in Fig. 5.3.

Now in Fig. 5.3, the phase-field time evolution seems to be more coherent to the conformal

113



Figure 5.3: Phase-field simulation of an initially perturbed cell fragment. Upper panels: phase-

field plots in color scale for three different times, whereθ = +1 (θ = −1) corresponds to the

inner (outer) fluid phase. Mid panels: stream function plotsfor the correspondent times in the

upper plots. Lower panels: auxiliaryφ function plots for the correspondent times in the upper

plots. Boundary conditions are taken to be periodic forθ , ψ andφ .
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mapping weakly nonlinear predictions. The droplet is much less elongated and pretty more

asymmetric, as we can see in the snapshots oft = 18.25. Moreover, the propagating velocity is

almost three orders of magnitude larger than in Fig. 5.2, being even larger than the velocities

found in [154]. On the other hand, as the droplet touches the boundary walls we have to stop

the simulation, since the centrifugal term in (5.39) is not well defined across the boundaries.

Although we have found travelling shapes in our phase-field model, more research is needed

in order to get more quantitative and conclusive results about this specific topic. Other kinds of

boundary conditions must be taken and a direct comparison with the weakly nonlinear shapes

in [154] is still lacking.
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CHAPTER 6

Conclusions

6.1 Conclusions from Chapter 2

In Chap. 2, we have performed a weakly nonlinear analysis of the ferrofluid peak formation

problem in confined geometry. Our theoretical approach was able to extract useful analyti-

cal information about the morphology of the time-evolving interfacial patterns, as well as the

stability of resulting steady structures. This is done at lowest nonlinear order through a pertur-

bative mode coupling approach. The formation of the stationary or propagating peaks can be

qualitatively explained by a mechanism involving the interplay of just two Fourier modes (the

fundamental and its harmonic), and predicted already at second-order.

In Sec. 2.1, we have considered the normal field instability of a confined ferrofluid in the

presence of a vertical magnetic field. Our analytical results for the nonlinear interface peaked

morphology, dynamics and statics are in line with the experimental findings of Refs. [58, 59],

and also with related steady shapes calculated in [52] through a much more convoluted theo-

retical approach.

We note that the fully nonlinear description of this problemthrough numerical simulations

would be of great interest, but has not yet been analyzed. Despite its challenging nature (in part

due to the sharpness of advanced time shapes), such a numerical study using the phase-field

technique could be considered as a natural extension of our current analytic investigation.

In Sec. 2.2, we investigate the examined the influence of an in-plane tilted magnetic field on

the profile shape and propagation velocity of interfacial traveling waves between a ferrofluid

and a nonmagnetic viscous fluid. For a more general consideration, both fluids are subjected to

a basal parallel flow. We performed a weakly nonlinear analysis of the system (similar to that of

Sec. 2.1) that provided important analytic information about the dynamics of the propagating
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structures.

The action of the tilted magnetic field is revealed already atthe linear regime: it is shown

that by tilting the field one can sustain wave motion even in the absence of external flow. More-

over, it is found that the velocity of the waves depends on thetilting angle. Our nonlinear

results indicate that the time evolving interfacial wave shapes tend to approach stationary wave

profiles. In fact, the shape of such stationary wavy patternscan be manipulated by the tilted

magnetic field, resulting in different nonlinear wave forms: sinusoidal, vertical peaked struc-

tures separated by wide troughs, and skewed undulating forms. Finally, we found that the the

nonlinear wave velocity is sensitive to variations on the tilting angle, a mechanism that can be

used to control its magnitude.

It would be of interest to see our theoretical results verified by laboratory experiments.

However, we are not aware of any existing parallel flow experiment with a ferrofluid subject to

a tilted uniform magnetic field. Interestingly, there is a recent example in the literature in which

a theoretical prediction [158] about solitary wave propagation in ferrofluids has been realized

experimentally [159]. However, it considered the action ofan azimuthal magnetic field on a

cylindrical ferrofluid surface. In the same spirit, we hope our current results could pave the

way for future experimental and theoretical investigations into propagating deformations, and

localized waves in Hele-Shaw parallel flow with ferrofluids.

6.2 Conclusions from Chapter 3

The study of Hele-Shaw pattern formation in ferrofluids has been largely explored during

the last few decades. These investigations have unveiled a number of patterning structures

and interesting dynamic behaviors. However, the same cannot be said about similar studies

for confined magnetorheological fluids. In this chapter we have examined the emergence of

patterns in a complex magnetic fluid, in which its yield stress properties can be tuned by an

external radial magnetic field.

At Sec. 3.1, we have explored the problem of a MR fluid subjected to a radialy increasing
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external magnetic field. By using linear analysis, mode-coupling theory, and a vortex-sheet

formalism we have been able to identify several features about the stability and morphology of

the confined MR fluid patterns. At linear stages of the dynamics, we have found that the yield

stress contributions tend to stabilize the interface, restraining the number of fingering structures

formed. At the weakly nonlinear level, the yield stress actsto inhibit the formation of highly

spiky fingers induced by the applied field. Finally, by assuming a stationary condition we have

accessed fully nonlinear shapes, which look like swollen polygons, whose edges undergo a

morphological transition by varying from convex to concavestructures. Despite their unstable

character, this class of exact solutions shed some light on the understanding of some important

fully nonlinear aspects of this complex pattern forming system.

In Sec. 3.2, we have investigated exact stationary solutions associated to centrifugally-

driven magnetic fluid patterns subjected to an azimuthal magnetic field in the confined geome-

try of a Hele-Shaw cell. By considering the response of Newtonian ferrofluids and yield stress,

magnetorheological fluids, a vortex-sheet formalism has been employed to unveil a variety of

fully nonlinear steady shapes.

We applied a perturbative, second-order mode-coupling theory to access important static

and dynamic aspects of the pattern forming system. Our analytical predictions for stationary

solutions at lowest nonlinear order, and including just a few participating modes are compared

to the exact solutions of the problem, and a satisfactory agreement is found. This supports the

idea that the weakly nonlinear approximation provides a good reduced description of the exact

solutions. The weakly nonlinear approach is also used to examine the stability of the equilib-

rium pattern morphologies. In spite of the stabilizing action of both applied azimuthal magnetic

field and yield stress properties, we have verified that the steady solutions are unstable. Nev-

ertheless, they can help one to understand important morphological features of corresponding

fully nonlinear time evolving patterns.
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6.3 Conclusions from Chapter 4

In this chapter, we have considered a modified version of the Saffman-Taylor viscous finger-

ing problem in radial Hele-Shaw geometry. In contrast to theconventional purely Newtonian

situation, we have examined the case in which a fluid of negligible viscosity displaces a viscous

yield stress fluid. Motivated by existing experiments [34, 147] we have focused on the regime

in which viscous effects prevail over yield stress. These experiments revealed the rising of ram-

ified structures, presenting some tip-splitting events, but the predominance of side branching

phenomena.

In order to get some useful analytical hints about the influence of the yielding direction on

viscous fingering, we have deduced a Darcy-like law [Eq. (4.10)] for the gap-averaged problem,

considering that the yield stress acts parallel to the velocity direction. This expression was used

in Ref. [42] as a starting point to study the onset of pattern formation of confined yield stress

fluids in the weak yield stress regime. As a result, Eq. (4.10)revealed itself to be capable of

reproducing important morphological features observed inexperiments, such as side-branching

at the finger tips.

6.4 Conclusions from Chapter 5

We have developed a phase-field model strongly based on the one proposed by Ref. [43]

in order to simulate viscous fingering in some kind of complexfluids, namely magnetic fluids

(Sec. 5.2) and lamellar fragments (Sec. 5.3). The model consists on introducing an auxiliary

function that mimics the flow of two immiscible fluid phases byintroducing a diffuse interface

between them. As a consequence of that, the original moving boundary problem to the sharp

interface is transformed into a set of partial differentialequations for the relevant fields and

may be numerically integrated continuously across the smoothed interface.

Preliminary numerical results are in reasonable qualitative agreement with previous sim-

ulations and analytical predictions. On the other hand, thecode still requires computational
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improvement in order to solve some issues due to high curved interfaces for magnetic fluids,

and also to set more suitable boundary wall conditions for cell fragments.

As future perspectives we shall test the phase-field method to magnetic fluids under other

kinds of applied magnetic field configurations, and also for the case of MR fluids. In the case

of lamellar fragments, we intend to perform some more quantitative comparisons between our

results and those in Ref. [154]. Moreover, the study of thesetwo different branches of viscous

fingering phenomena opens up an intriguing question about the possibility of manipulating

actin-based cell motility by magnetic means. Doping cells or an extracellular medium with

nanometer sized magnetic particles is already a feasible experiment, and by applying an exter-

nal magnetic field maybe one could conveniently tune cell threadmilling. Our weakly nonlinear

analytical approach and numerical phase-field tools may help us to elucidate this kind of issue.
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