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Resumo

Nesta Tese sdo empregadas técnicas analiticas e numéniaasyestigar o fenébmeno de for-
macédo de dedos viscosos entre fluidos imisciveis confinagamsdg um destes fluidos € um
fluido magnético complexo. Diferentes tipos de esquemaméeios efetivamente bidimen-
sionais foram investigados. Duas situac¢des distintas@@adas com relagdo a natureza da
amostra de fluido magnético: um fluido newtoniano usual, e uiltidimagneto-reoldgico que
apresenta unyield stressdependente da intensidade do campo magnético. Equacoes gov
nantes adequadas séo derivadas para cada um dos casoft&auanentendimento analitico
dos estagios iniciais da evolugdo temporal da interfacerfgiregada uma analise fracamente
nao-linear de modos acoplados. Este tipo de analise acesstaldlidade de uma interface
inicialmente perturbada e também revela a morfologia do®slemergentes. Em algumas
circunstancias solucdes estacionarias podem ser endastreesmo na ordem ndo-linear mais
baixa. Nesta situacdo é feita uma comparacdo de algumass dedticies com solucdes es-
taticas totalmente ndo-lineares obtidas através de unafismo de vortex-sheet na condicao
de equilibrio. Em seguida foi desenvolvido um modelgtiase-fieldaplicado a fluidos mag-
néticos que é capaz de simular numericamente a dinamideméstée ndo-linear do sistema.
O modelo consiste em introduzir uma funcéo auxiliar queagpz uma interface difusa de
espessura finita. Utilizando esta ferramenta também éyabestudar um complexo problema
de dedos viscosos de origem bioldgica: o fluxo de actina caméluido ativo dentro de um

fragmento lamelar.

Palavras-chave: Formagéo de dedos viscosos. Ferrofluido. Fluido magnelogieo. Yield

stress Phase-field



Abstract

In this thesis, analytical and numerical approaches ardagmg in order to investigate the
phenomenon of viscous fingering between confined immisdibigs when one of the fluids
is a complex magnetic fluid. Different types of effectivalyotdimensional geometrical setups
and applied magnetic field configurations are investigafaa. distinct situations are taken for
the nature of magnetic fluid sample: a regular Newtoniaroflerid, and a magnetorheological
fluid that presents a magnetic field-dependent yield str8sstable governing equations are
derived for each one of the cases. To obtain analytical imsgout early stages of the time
evolving interface we employ a weakly nonlinear mode-coypapproach. This kind of anal-
ysis accesses the stability of an initially perturbed ifsig®, and also reveals the morphology
of the emerging fingers. At some circumstances, statior@utisns may be found already at
lowest nonlinear order. In this context, we compare soméede solutions to fully nonlinear
steady profiles obtained by using a vortex-sheet formalisttimeaequilibrium condition. More-
over, we develop a phase-field model applied to magneticsflindt is capable of numerically
simulate the fully nonlinear dynamics of the system. The eh@dnsists on introducing an
auxiliary function that reproduces a diffuse interface ofté thickness. By utilizing this tool
we are also able to study a complex viscous fingering probfmotogical origin: the flow of

actin as an active fluid inside of a lamellar fragment.

Keywords: Viscous fingering. Ferrofluid. Magnetorheological fluid.eM stress. Phase-

field.
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CHAPTER 1

Introduction

1.1 Pattern formation in viscous fingering

Classical viscous fingering pattern formation takes placema less viscous fluid displaces
a more viscous one in the confined geometry of two narrowlgegaoarallel plates, the so
called Hele-Shaw (H-S) cell [1]. The initially flat interfadetween these two immiscible
fluids becomes unstable, so broad perturbations arise awdtdegrow, what is commonly
referred to as the Saffman-Taylor instability (see Fig).1This problem has produced a lot
interest for physicists and engineers during several decdde to its prototypical character
with many theoretical and practical implications. Matheicadly, it is defined as a nonlocal
moving boundary problem of Laplacian growth, and it is irdiely related to a variety of
groundbreaking phenomena, such as dendritic growth, coMexy, etc [2]. In practice, it is an
excellent laboratory because of its relative simplicityfbexperimentally and in its theoretical

formulation.

—m\\%ﬁ%

Figure 1.1: Schematic top views of the Saffman-Taylor inditst based on experiments at the

channel geometry [3].

Despite of being most known by its classical viscosity-en\setup, the Saffman-Taylor

instability may also be driven by other kinds of mechanisfa: instance, the rotating Hele-
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Shaw problem is a variation of the traditional instability 2], in which the cell rotates, and the
competition between centrifugal and capillary forces itssn interface destabilization. During
the last two decades different aspects of the problem hage mwestigated, including the
development of zero surface tension time-dependent eghttans [4, 5, 6], the consideration
of miscible fluid displacements [7], the dependence of patteorphologies on viscous [8, 9]
and wetting [10] effects, the influence of Coriolis force twe interfacial dynamics [11, 12],
and the occurrence of complex pinch-off phenomena [13].

Another suggestive variant of the Hele-Shaw problem witlalisiscous fluids considers
that at least one of the fluids is a ferrofluid [14, 15], a supeamagnetic liquid which promptly
responds to even modest magnetic stimuli. This propertystaut to be very interesting since
it introduces the possibility of generating pretty diffet@iscous fingering patterns by adjust-
ing an applied magnetic field. One compelling example ofgsatforming systems in confined
ferrofluids is related to the labyrinthine instability [16, 18], in which highly branched struc-
tures are formed when a magnetic field is applied perperatigub the plates of a Hele-Shaw
cell (see left panel in Fig. 1.2). Beautiful spiral patteemsl amazing protozoan-like shapes
can also arise when a rotating magnetic field is added to ttpepdicular field setup [20] (see
right panel in Fig. 1.2). The emergence of peculiar diamong-shaped structures has been
detected in centrifugally-driven Hele-Shaw flows under dogon of an azimuthal magnetic
field [21]. In addition, quite regular n-fold symmetric slespemerge in both immiscible [22]
and miscible [23] ferrofluids when perpendicular and azmbmagnetic fields are applied
simultaneously. Finally, the development of starfish-likerphologies has been recently pre-
dicted if a radial magnetic field configuration is used [24].

In contrast to what happens to ferrofluids, the investigatioHele-Shaw pattern formation
with magnetorheological (MR) fluids has been amply overtmbk Magnetorheological flu-
ids consist of much larger, micronsized magnetized pasidispersed in agueous or organic
carrier liquids. The unique feature of this kind of magndticd is the abrupt change in its
viscoelastic properties upon the application of an extemegnetic field [25, 26, 27, 28, 29]
(see Fig. 1.3). In the absence of an applied field ("off" $tde magnetized particles in the sus-

pension are randomly distributed, so that MR fluids appeailai to usual nonmagnetic fluids.
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Figure 1.2: Ferrofluid viscous fingering patterns producgdifferent magnetic field configu-

rations. The left panel [19] depicts the labyrinthine ihdity formed when a uniform magnetic

field is applied perpendicularly to the plates. The mid agttrpanels [20] show spiral and
protozoan-like shapes that arise when a rotating magnete i added to the perpendicular
field.

However, when a magnetic field is applied ("on" state) thgdararticles suspended in the fluid
interact, and tend to align and link together along the feelitection, creating long particle
chains, columns, and other more complex structures. ktiaggy, the formation of such struc-
tures restrict the motion of the fluid, allowing it to displagolidlike behavior. A MR fluid can
be characterized by its yield stress, which measures thegttr of the field-induced structures
formed.

Despite all the efforts and important results obtained Isgaechers on the development
of viscous fingering in Newtonian Hele-Shaw flows (i. e., ¢ansviscosity fluid flow), the
pattern forming dynamics with yield stress fluids, even atribnmagnetic case, has been rel-
atively underlooked. In contrast to Newtonian fluids, yistdess fluids [30, 31] can support
shear stresses without flowing. As long as the stress rerbaios to a certain critical value
they do not flow, but respond elastically to deformation. Sah materials possess properties
of both viscous fluids and elastic solids, behaving like arissolid”. On the theoretical side,
a linear stability analysis of the Saffman-Taylor problemréctangular and radial cells with
yield stress fluids [32] has predicted that the instabiléy be drastically modified. On the ex-
perimental arena some interesting findings have been desttlim channel geometry [33, 34]:

depending on whether viscous effects or yield stressesrtias, fractal patterns, or ramified
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Figure 1.3: Magnetorheological fluid sample at the abscehae applied magnetic field (left)

and at the presence of a magnet (right).

structures where multiple fingers propagate in parallel arese.

Another remarkable scenario in which viscous fingering $gidace is that of biological
fluids. Recently, it has been shown that in appropriate nistances the flow of actin in lamel-
lar fragments satisfies Darcy’s law in an effectively twoadnsional geometry [35, 36], thus
reducing the dynamics to a free-boundary problem similéinab of viscous-fingering in Hele-
Shaw cells, but with different boundary conditions [37].eldomprehension of this mechanism
is of major importance for one to attain shape polarizatiat &llows cell motility and thread-
milling. As shown in Fig. 1.4, a lamellar cell fragment maydengo on a shape transition that
produces threadmilling by actin polymerization.

In order to fill some of the gaps exposed above, this Thesiggses a theoretical study
about the viscous fingering phenomenon in complex magneittsfl And by complex mag-
netic fluids we comprehend ferrofluids, MR fluids, yield s¢résids and lamellar fragments.
During its development, we make use of analytical and nuraktools to elucidate the main

aspects of the dynamics and morphology of such interfaaitiém formations.
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Figure 1.4: Figure extracted from [35]. The left panel shanfgirly circular actin lamellar
fragment that does not propagate. When perturbed this ffaggmay acquire the steady shape
in the right panel that propagates upwards, where the whitdrbthe bottom gives a one

micrometer scale.

1.2 Darcy’s law for Newtonian fluids

We now make a brief derivation of the governing equationsfassical viscous fingering
in regular Newtonian fluids. By understanting this simplaragion we will be able to describe
more complex systems in our further investigation.

Consider two immiscible and incompressible fluids of vistyog; and densityp; (where
j = 1,2 labels the different fluids) are placed between two pdratied plates of transversal
separatiorb. The equation that governs the hydrodynamic flow of suchdlisdhe Navier-
Stokes equation

Ou;i
Pj [5—tl+(Uj~D)u]} :—DPj—l—I’)jDZUj, (1.2

whereu is the 3-D fluid velocity andP is its 3-D pressure field. Eventual extra forces would
appear added at the right hand side of Eq. (1.1). Since weealind with an effective two-
dimensional problem, we may reduce the 3-D flow to an equit&leD one by gap-averaging
Eq. (1.1) at the direction perpendicular to the plates. Thidone by considering non-slip

boundary conditions at the plates and taking, thus, thecitglprofile as being parabolic at
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the transversal direction. We also assume that the lubicapproximation is valid, i. e.,
that inertial terms in the right hand side of Eq. 1.1 are ryigle when compared to viscous
contributions. By following these steps we get Darcy’s law

b2

wherev, p and are now the gap-averaged velocity, pressure and 2-D graoipeEnator, re-
spectively. This is also the equation that describes fluid floporous media.
To complete the description of the moving boundary probletwken two fluids we must

also take into account the boundary conditions across thkefflid interface

(V2—v1) n =0, (1.3)
2b?
(Vo—V1)-8= ms' [0(p1— P2) +A(v2+V1)], (1.4)

whereA = (N1 —n2)/(n1+ n2) is the viscous contrast. Eq. (1.3) is the kinematic boundary
condition and it imposes that both fluids have the same novelatity component at the in-
terface, since the normal interface velocity itself is gy V,, = v2-n = vp -n. On the other
hand, Eqg. (1.4) says that the tangential velocity companar discontinuous at the interface,
and we say thatv, —v1) - sis the interface vortex-sheet. This is the only source ofiwity

in the problem, since at each bulk phase Eq. (1.2) guarattiaethe flow is vortex-free. The

remaining ingredient is the pressure jump condition

p1— P2 = OK, (1.5)

whereg is the surface tension between the fluids arnid the interface in-plane curvature.

To conclude we point out that since the fluids are incompiéssi
O-v; =0, (1.6)
what means pressure obeys Laplace’s equa{ﬂ%pj = 0. Therefore the moving boundary
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problem is completely determined in terms of the velocitidfley Eqgs. (1.6), (1.3) and (1.4).

1.3 Thesis outline

In Chapter 2 we investigate the problem of a ferrofluid comfimea vertical Hele-Shaw
cell and subjected to an in-plane uniform magnetic field. éot®n 2.1 we take the particular
case where the applied magnetic field is normal to the itytit interface and show the main
results of Ref. [38]. In Section 2.2 we subject both upperlaner fluids to a parallel flow and
let the applied magnetic field to make a tilting angle with ithiéal interface, as in Ref. [39].
In both cases, we perform a weakly nonlinear analysis tredilesto reproduce the morphology
of such pattern formation phenomenon at lowest nonlinederorA mode-coupling theory is
used to compare the early nonlinear evolution of the interfaith asymptotic shapes obtained
when relevant forces equilibrate. Our nonlinear resultiicate that the time-evolving shapes
tend to approach stable stationary solutions for the noma@jnetic field case, and propagating
steady nonlinear waves for the tilted field.

In Chapter 3 we study the behavior of a magnetorheological flwoplet confined to a
Hele-Shaw cell in the presence of an applied magnetic fieildSdction 3.1 we consider the
case of an in-plane radially increasing external magnetid tiase, as explored in Ref. [40]. In
Section 3.2 we take a rotating H-S cell under the presence azinuthal field produced by a
current carrying wire, as in Ref. [41]. Interfacial pattéonmation is investigated by consider-
ing the competition among capillary, viscoelastic, and nedig forces. The contribution of a
magnetic field-dependent yield stress is taken into acchumear stability analysis reveals the
stabilizing role played by yield stress. On the other hanthoale-coupling approach predicts
that the resulting fingering structures should become leddess sharp as yield stress effects
are increased. By employing a vortex-sheet formalism we lh@@en able to identify a family
of exact stationary solutions of the problem. A weakly noedir approach is employed to ex-
amine this fact and to gain analytical insight into relevasyiects related to the stability of such

exact stationary solutions.
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In Chapter 4 we report analytical results contained in REH] for the development of inter-
facial instabilities in a radial Hele-Shaw cell in which ameagnetic yield stress fluid is pushed
by a Newtonian fluid of negligible viscosity. By dealing wighgap averaging of the Navier-
Stokes equation, we derive a Darcy-law-like equation ferghoblem, valid in the regime of
high viscosity compared to yield stress effects, and thebaats for a general yielding direc-
tion.

In Chapter 5 we present phase-field numerical models irgpiyeRef. [43] that simulate
viscous fingering in a H-S cell. In Section 5.2 we develop diffbse interface method for the
case of magnetic fluids, and in Section 5.3 this is done foc#ise of lamellar fragments.

Finally, in Chapter 6 we present our main conclusions angpestives.
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CHAPTER 2

Field-induced patterns in ferrofluids

A ferrofluid is a stable colloidal suspension of nanometregmetic particles dispersed in
a nonmagnetic liquid carrier [14, 15] which responds pagmeéically to applied magnetic
fields. The most remarkable feature of this material is tloe tfzat it combines the fluidity of
liquids and the magnetic properties typical of solids. Tragnetic susceptibility of ferrofluids
is much higher than that of ordinary solid paramagnets, aaitbromptly reacts to even minor
magnetic stimuli. This behavior leads to the developmerd olumber of interesting field-
induced interfacial instabilities, and pattern formatjmocesses which have attracted much
interest [44, 45, 46, 47, 48].

One striking example of pattern-forming systems in feridfus the popular Rosensweig
(or, peak) instability [49]. It occurs when a uniform magodteld is applied normal to an
initially flat, ferrofluid free surface. The competition lbeten magnetic, gravitational, and cap-
illary forces results in the rising of a three-dimensiorgi) array of spiky structures, that look
like horns growing from the liquid free surface. During tlast four decades both linear and
nonlinear aspects of the problem have been vigorously figated [49, 50, 51, 52, 53, 54].
Recent variations of this archetypal ferrohydrodynamstability revealed other exceptional
properties such as the formation of stable solitonlikecstmes at the magnetic fluid-air inter-
face [55], the verification of a hybrid-type instability inisaible ferrofluids where peak and
labyrinthine patterns arise [56], and the occurrence ofmatig wave turbulence on the surface
of the ferrofluid [57].

An effectively 2D counterpart of the traditional 3D Rosersgyvinstability can be obtained
when a more viscous and more dense ferrofluid is placed befmmmagnetic fluid in the con-
fined geometry of a vertical Hele-Shaw cell. Experimentadiss [58, 59] have demonstrated
that the initially flat fluid-fluid interface goes unstableaifuniform magnetic field is applied

normal to it, and in the plane of the Hele-Shaw cell. It hasnb&®own that above a certain
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critical value of the applied field, the interface deformadig to the formation of a regular
pattern formed by a periodic line of quasi-2D peaked stmestu In Ref. [59] a Darcy’s law
approach is used to describe the early dynamics of suchlfed@eak arrangement. The ini-
tial evolution of small interfacial deformations has be&mdged by a linear stability analysis,
in which the condition for the neutrality of such deformasovas determined. However, not
much has been discussed about the development of such abpéa&-shaped morphology at
nonlinear stages of the dynamics.

A related theoretical investigation [52] tried to mimic thily 3D Rosensweig problem by
focusing on an idealized version of the system. A high-opturbative approach has been
employed to study the static surface profile of a verticallytD ferrofluid layer subjected
to a normal magnetic field. The starting point of their aniglgssumes that the shape of the
perturbed ferrofluid interface is determined by a pressgudierium condition. In this context,

a somewhat cumbersome Galerkin-type anzatz is used to éXmh the magnetic field and
the surface deflection up to fifth-order in the perturbatiorpbtudes. As a result, peaks are
obtained for larger values of the applied magnetic field. diteghe relative intricacy of their
analytical method, no specific mechanism is proposed tca@xphe formation of the static
peaks within the nonlinear regime. Moreover, the nonlireability of such static structures

has not been analyzed.

2.1 Normal-field instability in confined ferrofluids

In this section we show that the phenomenon of ferrofluid geakation in vertical Hele-
Shaw cells under a normal, in-plane magnetic field can begolppeproduced at lowest non-
linear perturbative order through a mode coupling apprazctine dynamics [60, 61]. By
employing a second-order theory and considering the ilagmf a small number of Fourier
modes, we show that the main features of the ferrofluid peakdton in confined geome-
try can be revealed in a very simple and clear manner. Thanearlcoupling is due to the

influence of a normal magnetic traction term which appeai® generalized Young-Laplace
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Figure 2.1: Schematic illustration of the vertical Helea$hcell setup. Fluid 1 is a ferrofluid
(shaded region), while fluid 2 is nonmagnetic. The densdras viscosities of the fluids are
respectively denoted hyj, andn;j, wherej = 1 and 2. A uniform magnetic field is applied
along the positive y direction, and the acceleration of igygwints downwardd = —gy). The

cell has thicknesb, and interfacial perturbations are represented by (x,t).

pressure drop boundary condition for ferrofluids. We hage atudied the stationary shapes
obtained when the forces involved balance equally. Thierefthe opportunity to contrast the
shapes of time evolving and steady state structures. Nemstationary solutions are found to

be stable.

2.1.1 Mode coupling strategy

Consider a vertical Hele-Shaw cell of thickndssontaining two semi-infinite immiscible
viscous fluids. Denote the densities and viscosities ofdtwett and upper fluids, respectively
as p1, N1 and po, N2 (Fig. 2.1). The cell lies parallel to the xy plane, where thaxys is
vertically upward. Between the two fluids there exists aaeftensioro, and the lower fluid
is assumed to be a ferrofluid (magnetizatdr), while the upper fluid is nonmagnetic (zero

magnetization). Acceleration of gravity= —gy, wherey denotes the unit vector in the y-axis.
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A uniform external magnetic fielbdlo = Hpy is applied in the plane of the cell, being normal to
the initially flat fluid-fluid interface.

Due to the action of the magnetic field the fluid-fluid intedfanay deform, and its per-
turbed shape is described.ax,y,t) =y — {(x,t) = 0, where{ (x,t) = 3,7 _ {k(t) exp(ikx)
represents the net interface perturbation with Fourierlianges ¢ (t), and wave numberis.
We follow the standard approximations used by other ingasbirs [14, 15, 16, 17, 62, 63] and
assume that the ferrofluid is magnetized such that its memgien is constant and collinear
with the applied fieldM (H) = M(Hp)y. We consider only the lowest order effect of the mag-
netic interactions that would result in fluid motion.

For the confined geometry of a Hele-Shaw cell, we reduce théd@®Dto an equivalent
2D one by averaging the Navier-Stokes equation over thetthreperpendicular to the plates
(defined by the z axis). Using no-slip boundary conditiond aeglecting inertial terms, one

derives a modified Darcy’s law as [17, 38, 59, 62]

2 1 +b/2
Vj= : {Dj

“1on; Ho(M ‘D)HdZ+PJQY}

~b/opp2
2.1)

wherej = 1 (j = 2) labels the lower (upper) fluid, am denotes the hydrodynamic pressure.
The local magnetic field appearing in (2.1) differs from tppléed fieldH by a demagnetizing
field of the polarized ferrofluidd = Ho + Hgq, whereHy = —[¢, and¢ is a scalar magnetic
potential. Notice that since the applied field is spatiatyfarm it eventually drops out in the
calculation of the magnetic term in (2.1), and the magnédtects are due to the demagnetizing
field.

As commented earlier we consider that the magnetizatiomeofitagnetic fluid in a uniform
magnetic field is both uniform and constant, an assumptish iftroduced by Cebers and
Maiorov [16]. This corresponds to meth@dlin Ref. [64], where the validity of the constant
magnetization hypothesis has been examined. We emphhsizalthough the magnetization
is assumed to be uniform, the demagnetizing field is not. prexisely this shape dependent

demagnetizing field contribution (the so-called “fringifigid") that gives rise to the fingering
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instabilities in this model (see, for instance, Refs. [13])6 The influence of the constant
magnetization approximation on the nature of the flat-deémt interface transition is discussed
in Ref. [65] for the ferrofluid labyrinthine pattern formati case.
Equation (2.1) can be conveniently rewritten as
b? M [+0/29¢
Vi=———U<pj+ —/ ——dz+ pj
j {p] Ho o2 Y PJQY}

12n;
(2.2)

where

¢_i/ M-’ /+°°/+b/2 My -n" dXdZ
Y y|r—r’| T anm b2 /(X—X)2+(y—y)2+(z—2)?

(2.3)

The unprimed coordinatesdenote arbitrary points in space, and the primed coordimatre
integration variables within the magnetic domatt) andd?r’ = dX¥dZ denotes the infinitesimal
area element. The vectofrepresents the unit normal to the magnetic domain in coresida.
In Eq. (2.2) the velocity depends on a linear combinationlving gradients of hydrodynamic
pressure, magnetic potential, and gravity term, so we meK thf the term between curly
brackets as an effective pressure.

From Eq. (2.2) and the incompressibility conditiah vj = 0 it can be verified that the
velocity potentiakp; (v; = —O¢j;) obeys Laplace’s equation. The problem is then specified by

the augmented pressure jump boundary condition at thdaoter
1 2
P1—P2=0K—ZHo(M-n)%, (2.4)

plus the kinematic boundary condition, which states thatibrmal components of each fluid’s

velocity are continuous at the interface

n-O@ =n-Og. (2.5)
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The first term on the right-hand side of Eq. (2.4) represdmsutsual contribution related to
surface tension and interfacial curvatureThe second term is the so-called magnetic normal
traction [14, 15], which considers the influence of the ndrooanponent of the magnetization
at the interface. For the current field configuration this n&ig piece is at least of second-
order in the interface perturbati@n being legitimately nonlinear. The magnetic traction term
will have a key role in determining the shape of the emergmgrfacial patterns at the onset
of nonlinear effects.

We proceed by following standard steps performed in weaklylinear studies [60, 61].
First, Fourier expansions are defined for the velocity pidés) and then boundary condi-
tions (2.4) and (2.5) are used to exprggsin terms of {, consistently up to second-order.
By substituting these relations in Eq. (2.2), and Fouriangforming, yields a dimensionless

mode coupling equation for the system (ko# 0)

G=2(&+ 5 [F(K) Gelire + Gk K) Geliic],

KZ0
(2.6)
where

A(K) = K| [NeW(k) — Ng — K?] (2.7)

denotes the linear growth rate. The parameter

UOMZb
Ng = 2.

B . (2.8)

represents a magnetic Bond number, and measures the ratiagsfetic to capillary forces.
Likewise,
(p1— p2)gh?

Ng = s (2.9)

defines a gravitational Bond number, and measures the iampatof gravitational force rela-
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tive to the surface tension. In addition,

o /ai 2
W(k>:7_1r/o (L:T) [\/(k/2)2+12—1]dT (2.10)

is clearly a positive quantity, and originates from the cdwition of the demagnetizing field.

The second-order mode coupling terms are given by
no__ Na /
F(k,k)_?|k|k(k—k’), (2.11)

G(k,K) = Alk|[sgr(kK) — 1]. (2.12)

The sgn function equalsl according to the sign of its argument, and the viscosityiresh

is defined a?\ = (N1 —n2)/(N1+n2). In Egs. (2.6)-(2.12) lengths and velocities are rescaled
by b, and o /[12(n1 + n2)], respectively. We focus on the situation in whiph > p,, and

N1 > N2, so that the fluid-fluid interface is gravitationally stafiMds > 0) andA~ 1. This is
done to allow a more direct connection with existing expenis [58, 59] where)1 > n,. As

a matter of fact, the second-order results presented ireit@®f this section remain practically
unchanged aA is modified.

It is worth noting that the coupling term (2.11) comes fromgmetic normal traction con-
tribution in the pressure jump condition (2.4). This is d@kathe term that is responsible for
the development of peaked ferrofluid patterns already airgkorder. Observe that there is
no demagnetizing field contribution at second-order. Wesstthat the theoretical results pre-
sented in the following sections utilize dimensionlessmiiti@s which are extracted from the

realistic physical parameters used in the experiments bii&s.

2.1.2 Pattern morphology and nonlinear stability of statimary patterns

Before examining how we can use the mode coupling equati@) {@ access purely non-
linear aspects related to the morphology of the interfaaebriefly discuss a few useful con-

cepts associated with the linear growth rate (2.7). Sincesitipe A (k) leads to an unstable
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Figure 2.2: Linear growth raté (k) as a function of the wave numbkrfor Ng = 1.44, and
three different values of the magnetic Bond numildgr The critical &), fastest growingk®),
and thresholdl¢) wave numbers are also indicated. The critical magneticdBmmmber is

N =1112.

behavior, Eqg. (2.7) tells us that the magnetic tetdasandW (k) are destabilizing. On the
other hand, gravity and surface tension try to stabilizerfatial disturbances. The interplay
of these competing effects determines the linear stalofitize flat interface. This is illustrated
in Fig. 2.2 which plotsi (k) in terms ofk, for Ng = 1.44, and three increasingly larger values
of the magnetic Bond number. It is clear from Fig. 2.2 thattta@sition from a stable to an

unstable situation occurs if both of the following conditsoare met

_ oA (k) _
A(k) =0, andW =0.

This defines a critical wave numbkg and a critical magnetic Bond number at which this
exchange of stability takes place. Thus, wiNgnis increased from zero, the interface remains
flat over a range of values dfg up to a point when transition suddenly occug & 11.12),

and a line of peaks witk = k; is formed. This is in fact what is observed experimentall, [5
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59]. Note that the experimental investigation performe&ef. [58] reveals the emergence of
nonzero height peaks at the critical field, and a hysterdsa@menon is observed. However,
this effect is not contemplated by our analytical model, also not detected in Ref. [59].

For largerNg two other quantities of interest can be defined for a rangeav®ewumbers
over whichA (k) > 0 (see Fig. 2.2)k*, the wave number of the fastest growing mode, max-
imizesA (K); k, the threshold wave number beyond which all modes are statilee largest
wave number for whiciA (k) vanishes. AdNg grows,k* andk; shift to the right and modes of
higher wave number become unstable.

At this point, we turn our attention to the weakly nonlineatermediate stages of pattern
evolution, and use the equation of motion (2.6) to investigp@w the magnetic field influences
the shape of the fingering patterns at the onset of nonliféaste Inspired by an approach
originally proposed in Refs. [60, 61], we focus on a mechani®ntrolling the finger shape
behavior through magnetic means, and consider the coupliagmall number of modes. For
a givenNg larger than the critical value, only discrete modes mudtgflk* are selected. In this
framework, we examine the interaction of the fundamentadenwith its own harmonic. For
the rest of this section, we considég above the critical situation, and take the fundamental
wave humbek = k* as the fastest growing mode. Consequently, the harmonie @&ddlways
lies to the right of the threshold wave numider Therefore, the harmonic is always linearly
stable against growth.

As extensively discussed in Refs. [24, 60, 61] when one densithe second-order coupling
of just two modes (i.e., the fundamental and its harmoni@ famds that the presence of the
fundamental naturally forces growth of the harmonic modeugh a nonlinear driven term in
the mode coupling equations. The interesting point is thatsign of such nonlinear driven
term dictates whether fingertip sharpening or fingertip 8eméng is favored by the dynamics.
If the nonlinear term is positive, the harmonic mode is dripesitive, the sign that is required
to cause upward pointing fingers to become sharp, favorimgpfiip sharpening. In contrast,
if the nonlinear coupling term is negative, growth of a nagalharmonic is favored, leading to
upward-pointing fingertip broadening. Based on this meigmanhe finger shape behavior of

confined fluid systems can be described in a very simple manner
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It turns out that the ferrofluid finger tip-sharpening bebawbserved experimentally in
Refs. [58, 59] can be described by the mechanism mentionegeall he justification is that
finger tip-sharpening requires the growth of a sizable haioimode. Of course, this cannot be
achieved through a purely linear description. Howevernspéecting Eq. (2.6), we note that the
second-order terr (n,n’), which is reminiscent of the magnetic normal traction ciwiion
in (2.4), does involve magnetic field effects. This term dsigrowth of the harmonic mode
(with the phase appropriate to sharpen finger tips) destgiteniear stability, leading to the
development of peaked ferrofluid structures already atrs®coder.

Considering such a mechanism our aim is to illustrate the &wolution of the interface
and the occurrence of ferrofluid finger tip-sharpening. ttaavenient for the subsequent dis-
cussions to consider cosimg = {x + {_x and sineby = i({x — {_x) modes, rather than the
complex modes employed in Eq. (2.6). Describing the funddaies a cosine mode with
positive amplitude, we only need to examine the harmonimeosiode to analyze finger tip
behavior and pattern morphology. Under such circumstartbesevolving interface can be
described ag (x,t) = ax(t) coskx+ ag(t) cos kx, where the perturbation amplitudagt) and
ay(t) are obtained from the second-order solution of the modeloayuig. (2.6). Specifically,

one needs to solve the following coupled nonlinear diffeedequations

. 1 )
do = A(2K)anc+ 5[F (2K Ka+ G2k ka a,
(2.13)

) 1 ) 1 )
&= A (K)a+ 5[F (k, —K)ax+ G(k, —K)a] @z + 5 [F (k. 2K) 2z + G(k, 2K)az &

(2.14)

By solving Egs. (2.13) and (2.14) the interface evolutigpicgted in Fig. 2.3 foNg = 1.44,
Ng = 13.83,k* = 3, and considering initial conditiorex(0) = 0.0001, anday(0) = 0. Note
that the harmonic mode is absent initially. The times shovert & 0.8,1.2, and 2. The re-

sulting patterns reveal the emergence of increasinglypsip@aked structures of the ferrofluid
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Figure 2.3: Time evolution of the interface shape. The stadgion represents the ferrofluid
pattern morphology at time= 2. The interface profile for > 2 is indistinguishable from the

one shown at = 2.

penetrating the nonmagnetic fluid. As time increases thend@rd moving fingers of the up-
per fluid look wider and flatter at their extremities, gettatgser to the stationary shape already
revealed at = 2 (shaded region in Fig. 2.3). This characteristic shapensistent with the ex-
perimental patterns exhibited in Refs. [58, 59], and aldb e purely static profiles obtained
theoretically in Ref. [52]. It is also worthwhile to note tithe interface profiles obtained for
t > 2 lie on top of the curve plotted at tinhe= 2 signalizing that a steady state has been reached.
Considering the simplicity of our analytical approach (&st+order nonlinear coupling of just
two Fourier modes), as expected we find that a precise qaawitigreement between our the-
oretical shapes and the experimental profiles is not obdeHewever, the main morphological
features of the real ferrofluid patterns can be indeed piediend satisfactorily depicted by our
mode coupling theory.

Complementary information about the pattern-forming mmeanon depicted in Fig. 2.3 is
provided by Fig. 2.4 which plots the time evolution of the ioesperturbation amplitudes
anday. We clearly observe that the weakly nonlinear couplingades naturally the enhanced
growth of a positive harmonic mode, precisely the phaseishatuired to produce finger tip-

sharpening. It is also evident that after an initial peribdrowth both perturbation amplitudes
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saturate, so that they remain unchanged as time progre$bes confirms the idea that the

system tends to a steady state configuration.
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Figure 2.4: Time evolution of the perturbation amplitu@g&) anday(t) for the evolving
interface depicted in Fig. 2.3. It is clear that both amplés eventually tend to stationary

values.

The nontrivial stationary cosine amplitudes for the harmcéagf() and fundamentalaﬁt)
can be obtained analytically by setting their time derxaterms to zero in the mode coupling

equations (2.13) and (2.14), yielding

st _ —2A (k)
B~ [F K K + F (2K (2.15)
o 41 (2K)A (K)
% = \/ F (2K K)[F (k, —K) + F (K, 2K)] (2.16)

where

F (k,—k) + F (k, 2k) = —2Ngk?|K| < O,
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F (2k, k) = Ngk?|k| > 0,

A (k) > 0, andA (2k) < 0.

It is reassuring to observe tha@{( is a genuinely positive quantity.

We close this section by examining the stability of the stary solutions. In fact, we have
verified that the steady solution given by Eqs. (2.15) antig@is stable. This is done by con-
sidering the nonlinear differential equations (2.13) éhd4). Through a standard linearization
process close to the stationary solution, we diagonalieedhlulting system of equations, de-

termining the eigenvalues which dictate the stability & tixed point [66]

A2 16k2NgA (K)
=y {H \/1+ 2 (2K)[A (K) + 2k?Ng] } ‘

(2.17)

For the stationary solution under consideration both eigleres have negative real parts, char-
acterizing a stable node or spiral. Regardless of the imitiaditions for the perturbation am-
plitudes the system asymptotically approaches the statdd fioint. It is worth pointing out
that this is in contrast with the typical unstable behavixikited by other steady (nonzero
surface tension) solutions obtained for nonmagnetic [8 a@d magnetic [24, 40, 41] fluids
in Hele-Shaw cells. We also find that the unperturbed (flagrface is a saddle point, and

therefore unstable.

2.2 Nonlinear traveling waves in confined ferrofluids

Frontal fluid flows in the confined geometry of a Hele-Shaw hkalle been plentifully in-
vestigated during the last five decades. Under frontal flbe/,motion of the fluids is normal
to the initially undisturbed interface between them, andghhlead to the formation of viscous

fingering phenomena [1, 2]. Curiously, the related problériuids flowing parallel to their
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separating interface, and the development of interfacdakting waves in the Hele-Shaw setup
has been much less exploited in the literature [69, 70, 7]L, Z8&ybek and Yortsos [69, 70]
studied parallel flow in a horizontal Hele-Shaw cell. In tivait of large capillary numbers
and large wavelength they have found Korteweg-de Vries (Kdixhamics leading to stable
finite amplitude soliton solutions. Afterward, Gondret@ad, and co-workers [71, 72] exam-
ined, through experiments and theory, the appearancewveditng waves for parallel flow in a
vertical Hele-Shaw cell. They have observed that the iateris destabilized above a certain
critical flow velocity, so that waves grow and propagate gltre cell. Such waves are initially
sinusoidal then turn to localized structures presentingrdimear shape.

The theoretical model presented in Ref. [71] was based ordified Darcy equation for the
gap-averaged flow with an additional term representingialegffects. Within this context a
Kelvin-Helmholtz instability for inviscid fluids has beeaudnd. For viscous fluids they derived
a Kelvin-Helmholtz-Darcy equation and verified that theetirold for instability was governed
by inertial effects, while the wave velocity was determifgdhe Darcy’s law flow of viscous
fluids. Their theoretical analysis has been backed up by tlwer experimental results. Theo-
retical improvements in the description of the system haentproposed in Refs. [73, 74, 75]
where the gap-averaged approach utilized in [71] has bgdaced by an alternative scheme
directly based on the fully three-dimensional Navier-@®lkquation. In the end, the calcula-
tions in Refs. [73, 74, 75] lead to an equation of motion samib the one derived in [71], but
with slightly different coefficients.

One additional example of parallel flow in vertical Hele-@8heells is the linear stability
analysis performed by Miranda and Widom [76]. The majoredéhce between their work
and the ones performed in Refs. [69, 70, 71, 72, 73, 74, 7%ladact that one of the fluids
is a ferrofluid [14, 15], and that an external magnetic fieldpplied. The field could lie
in the plane of the Hele-Shaw cell, either tangential or radrta the fluid-fluid interface. A
ferrofluid behaves as a regular viscous fluid except thahiecgerience forces due to magnetic
polarization [77]. This opens up the possibility of invgstiing the role played by the magnetic
field in the dynamics of the parallel flow. It has been showr] [iit the dispersion relation

governing mode growth is modified so that the magnetic fietdd=stabilize the interface even
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in the absence of inertial effects. However, it has been cedithat the magnetic field would
not affect the speed of wave propagation. Despite all thsiiudy addressing the effect of the
magnetic field on the morphological structure and nonliesatution of the propagating waves
is still lacking.

In this section we re-examine the problem initially propbse Ref. [76] by considering
the action of an in-plane, tilted applied magnetic field vilmcakes an arbitrary angle with the
direction defined by the unperturbed fluid-fluid interfacénisTapparently naive modification
proves to be crucial in creating a connection between thieapield and the propagating wave
velocity. Moreover, in contrast to what was done in [76] webgyond the linear regime, and
tackle the problem by using a perturbative weakly nonlirsggaroach. This particular theoreti-
cal tool enables one to extract valuable analytical infaromeat the onset of nonlinearity. As a
conseqguence, one can investigate the influence of the magdjekt on the nonlinear dynamics
and ultimate shape of the traveling surface waves.

The layout of this section is as follows. Section 2.2.1 idtroes the governing equations
of the parallel flow system with a ferrofluid, and presentsmode-coupling approach which
is valid at lowest nonlinear perturbative order [60, 61jnéar and weakly nonlinear dynamics
are discussed in Secs. 2.2.2 and 2.2.3. We show that the effdte magnetic field on the
velocity and shape of the propagating waves can be accegsmhbidering the interplay of a
small number of Fourier modes. One important result is thsifglity of sustaining, moving,
and controlling a traveling wave solely under the actionroéaternal magnetic field. Station-
ary wave profiles are found for different values of the maigrfeld tilting angle. Our main

conclusions are summarized in Sec. 6.1.

2.2.1 Governing equations and analytical calculations

Consider two semi-infinite immiscible viscous fluids, flogiwith velocitiesU; wherej =
1 (j = 2) labels the lower (upper) fluid. The flow takes place alorgxttirection in a vertical
Hele-Shaw cell of thickneds(Fig. 2.5). The densities and viscosities of the fluids areotid

respectively apj, andnj. The cell lies parallel to they plane, where thg axis is vertically
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upward. Between the fluids there exists a surface tensj@nd the lower fluid is assumed to
be a ferrofluid (magnetizatioll ), while the upper fluid is nonmagnetic (zero magnetization)
Acceleration of gravityg = —gy, wherey is the unit vector in thegaxis. The base flow is
horizontal withniU; = noUz [71] because the flows in the two fluids are driven by the same
pressure gradient.

A uniform external magnetic fielly = Hp(cosa X+ sina y) is applied in the plane of the
cell. The shape of the perturbed fluid-fluid interface is désd as.# (x,y,t) =y — {(x,t) =
0, where{ (x,t) = ¥..° . {«(t) exp(ikx) represents the net interface perturbation with Fourier
amplitudes{(t), and wave numbeis

For the quasi two-dimensional (2D) geometry of the Helevshall, the 3D fluid flow is
reduced to an equivalent 2D one by averaging the NaviereStekuation over the direction
perpendicular to the plates. Using no-slip boundary camistand neglecting inertial terms,

the flow in such a confined environment is governed by the nemtiifiarcy’s law in Eq. (2.1).

b

Figure 2.5: Schematic configuration of the parallel flow iregtical Hele-Shaw cell. The lower
fluid is a ferrofluid, while the upper fluid is nonmagnetic. Atternal uniform magnetic field

Ho is applied making an angle with the initially undisturbed interface separating thedtu

The role of inertia in the problem can be quantified by a Reysialimber (relative measure

of inertial and viscous forces) which is directly proponi#b to the cell gap thickness, and in-
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versely proportional to the viscosity of fluid, Re: (p;jU;b)/(12n;). Since most experimental
and theoretical studies of ferrofluid flow in Hele-Shaw cdisl with very thin cell gaps and
highly viscous fluids, the vanishing Reynolds number limiteadily validated. Under such
circumstances, the fluid motion is perfectly described l&ydhp-averaged modified Darcy’s
law (2.1). As discussed in Refs. [71, 78, 79] in unidirecéibHele-Shaw parallel flow, the in-
ertial effects can be neglected, even at relatively largeBlels numbers as long as Re Re,
where Rg is the Reynolds number corresponding to the laminar-teriutransition.

We follow the standard approximations used in the previ@esien and assume that the
magnetization is collinear with the applied fieli(H) = M(cosa X + sina ), whereM =
M(Ho). Only the lowest order effect of the magnetic interactidmat twould result in fluid
motion is considered. We emphasize that although the miagtien is taken to be uniform,
the demagnetizing field is not.

Taking into consideration the physical assumptions meeticabove, and the particular

geometry of our system Eq. (2.1) can be rewritten as

Y 2 osa 2 4 sina 2]
Vi= gy Oy Pty Hey [ [COS“W”'nGTy il
(2.18)
where
B 1 M.n/ 2.1
v = ﬁ/y\r—f’\dr
- /+oo/+b/2 M(cosa X+ sina §)-n’ dXdZ
am b2 /(x=X)2+(y—y)2+(z—7Z)?
(2.19)

The unprimed coordinatesdenote arbitrary points in space, and the primed coordimatre

integration variables within the magnetic domadf) andd?r’ = d¥dZ denotes the infinitesimal

area element. The vectof represents the unit normal to the magnetic domain undey.stud
By inspecting Eq. (2.18) we observe that the velocity depemd a linear combination

involving gradients of hydrodynamic pressure, gravityd amagnetic potential, respectively.

39



So, the term between curly brackets in (2.18) can be seen effemtive pressure. Therefore,
as in the Hele-Shaw problem with nonmagnetic fluids [1, &,ftow is potentialyj = —Ogj;,

but now with a velocity potential given by

{IOJ HoM?L(x,Y) + pjay} , (2.20)
where
+o r+b/2 +b/2 — cosa 0§§,)+sma]
09 =g/ [y |
4T[b b/2 b/2 Az (X)

1+ (%55

" [cosa (x—X')+sina (y—{(X))] dXdZdz
Vx=x)2+(y—{(¥)2+(z-2)2

(2.21)

In EQ. (2.21) the integral idzis related to the gap-average calculation [see Eq. (2.08)]e
the integrals idX anddZ come from the surface integral in the magnetic domain of éste
< [see Eq. (2.19)]. Notice that incompressibility {v; = 0) then yields Laplace’s equation
for the velocity potential.

The problem is specified by the two boundary conditions giverqgs. (2.4) and (2.5).
Equation (2.4) is an augmented pressure jump conditioneaihtierface, where denotes the
interfacial curvature. A crucial difference of this expsEs from the one utilized in the non-
magnetic situation is given by the second term on the rigimdhside: the so-called magnetic
normal traction [14, 15] which considers the influence of tloemal component of the mag-
netization at the interface. For the current field configarathis magnetic piece is at least of
second-order irf, being legitimately nonlinear. This magnetic term conités to determine
the shape of the traveling wave profiles at the onset of neatieffects. The second boundary
condition (2.5) simply states the continuity of the normaWhflvelocity at the interface.

Our next task is to derive an equation of motion for the péstion amplitudes which is
able to capture the essential physics at the lowest nomlieeal. This is done by following

standard steps performed in previous weakly nonlinearnes88, 60, 61]. First, we define
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Fourier expansions for the velocity potentials. Then, weressg; in terms of the perturba-
tion amplitude<(x by considering the kinematic boundary condition (2.5). Sitlsting these
relations, and the modified pressure jump condition Eq.) (B Eqg. (2.20), always keeping
terms up to second-order § and Fourier transforming, we find the dimensionless eqoaf
motion (fork # 0)

& = N
+ 3 F(kK) Gl + Gk K) dedic v
KZ0
(2.22)
where the overdot denotes total time derivative,
AK) = A (K) —ik [004- NglK S'”ZZD'} (2.23)
is a complex linear growth rate, and
A(k) = |k/{Ng[sir?a Wi (k) —cos a Wax(Kk)]
— K—Ng} (2.24)

is its real part.

The system is characterized by three dimensionless pagesnet

toM?2b (p1— p2)gk?

B o’ G o )
~ 12(mU1+naUp)
Co = = :

The magnetic Bond numb&iz measures the ratio of magnetic to capillary forces, whig th
gravitational Bond numbeMg accounts for the relative importance of gravitational ét@ the
surface tension. The parametgrrepresents the propagation contribution due to the péaralle

flow. Notice thatcy can be seen as a modified capillary numberQaa, + Cap, where Ca =
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12njU;/o is the capillary number of fluid. In addition,

Wi (K) = 7_11 /000(1_:725”)[\/ 124 1-1]dr, (2.25)
and ‘
Wo(K) = 7—kT /O S'r;kr[\/ 21 1-1]dr (2.26)

originate from the contribution of the demagnetizing field.

The second-order mode-coupling terms are given by

e
FkK) = NB|k|k(k2 k){cosm

i oo [VA(K) - Wa(k) | Wa(K,K)
+ |S|n2£7[ YR +k’(k’—k)}}’
(2.27)
and
G(k,K') = Alk|[sgn(kK) — 1], (2.28)
where
/ _l . _ cinl/ T _ i 1
VV3(k,k)_n/O [SinkT —sink' T —sin(k— k') 1]
[VT2+1-1 11 1 d
A *E[?‘wz—ﬂ] '
(2.29)

is another demagnetizing integral. Notice the presenchedimhaginary part in (2.27), that is
proportional toNg and sin2x, and would vanish for a purely vertical or horizontal magmet
field. The sgn function equalsl according to the sign of its argument, and the viscosity
contrast is defined a& = (n1—n2)/(N1+ n2). In Egs. (2.22)-(2.29) lengths and velocities
are rescaled by, ando/[12(n1+ n32)], respectively. Without loss of generality we focus on

the situation in whichp; > po, andny > ny, so that the interface is gravitationally stable
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(Ng > 0) andA ~ 1. Since the gravitational Bond number plays a minor roleuoamalysis,

for the rest of this section we fix its value Bg = 1.4. We recover the results for the vertical

magnetic field configuration without flow, previously stutlia Ref. [38], by settingr = 11/2

andcp = 0. It should be noted that the theoretical results presentdéae following section

utilize dimensionless quantities which are extracted ftberealistic physical parameters used

in the experiments of Refs. [71] and [59].
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Figure 2.6: The real part of the linear growth ratgk) as a function of the wave numblefor
Ng = 1.4. Continuous (dashed) curves refeNgp= 20 (Ng = 30). For eachiNg we plot curves

for three values of the angte, where lighter gray curves correspond to higher values.of

2.2.2 Linear regime

Before examining how we can use the mode-coupling equali@®2) to access important
nonlinear aspects related to the traveling waves, we brikélguss a few useful concepts as-
sociated with the linear growth rate (2.23). The real pathefgrowth rate Ré (k)] = A (k)
governs the exponential growth or decay of the wave amg@guwat the linear regime. Since

a positiveA (k) leads to an unstable behavior, Eq. (2.24) tells us that tine\té (k) [Wo(k)],
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Figure 2.7: Dominant wave numblehax as a function of the angle for Ng = 1.4 and three
different values ofNg. The dots indicate the critical values @fbelow which the interface is

stable.

proportional toNg and representing the contribution of the vertical (hortabrmagnetic field
component, is destabilizing (stabilizing). On the othemndhagravity and surface tension try
to stabilize interfacial disturbances. The interplay afgh competing effects determines the
linear stability of the initially flat fluid-fluid interfaceThis is illustrated in Fig. 2.6 which plots
A (k) in terms ofk, for two values ofNg, and three increasingly larger values of the armle
By inspecting Eq. (2.24) it is clear that the magnetic fieldnj@gnetizing field contribution)
causes the instability, even in the absence of inertiateffi38, 76].

It is clear from Fig. 2.6 that, for a given magnetic Bond numdned by increasingr, the
transition from a stable to an unstable situation occursrwhik) = 0 anddA (k)/dk = 0,
what defines a critical value far. Moreover, the maximum of (k) takes place at = Kynax
that characterizes the dominant wave number of the emepgdtetrn. It increases and moves
towards higher values df asa approachest/2. The behavior ofA (k) as a function ofx is

magnified by increasingjls. We point out that, in order to observe any instability balNg,
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must be above the critical value given by the vertical fieldation (Ng > 11.12) [38], as it was
shown in Sec. 2.1.

The behavior okmnax as a function ofo is depicted in Fig. 2.7. Here we see thatas
approachesr/2 (a ~ 1.57) kmaxreaches a maximum possible value for a giNgnh The critical
values ofa are marked with dots and vertical dashed lines. By incregaia magnetic field
the curves move upwards, and the critical valueg diecrease.

The imaginary part of the growth rate (2.23),[Ik)], divided by—k give us the phase ve-
locity of perturbations at the linear regime. It presentsagftel flow contribution represented
by cp, and a magnetic one proportionallllg that comes from the fact that the magnetic field
has nonzera andy components. This last term is very important for our analg$ipropagat-
ing profiles, and would not be present if the magnetic field siagply vertical @ = 11/2) or
horizontal @ = 0) as considered in Ref. [76]. In order to detect any influesfdbe magnetic
field on the phase velocity we must consider the interval betwthese two limiting situations
(0 < a < m/2). From these comments the key role played by the tilted miggfield becomes
evident: now one could have wave propagation eveg # 0, and it would be exclusively due

to magnetic effects.

2.2.3 Weakly nonlinear dynamics

At this point, we turn our attention to the weakly nonlingatermediate stages of interfa-
cial pattern evolution. We use the equation of motion (2i@2jvestigate how the magnetic
field influences the shape and velocity of the propagatingesiawVe employ a theoretical
approach originally proposed in Refs. [60, 61], and focusaanechanism controlling the in-
terface behavior through magnetic means. This is done bgidernng the coupling of a small
number of modes. For a givenlarger than the critical value, only discrete modes musti
the dominant wave numbé&,,xare selected due to translational invariance. In this fraonle,
we examine the interaction of the fundamental mkdéth its own harmonic R. For the rest
of this section, we consider values @fabove the critical situation, and take the fundamental

wave humbek = knax as the fastest growing mode.
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Figure 2.8: Numerical time evolution of the absolute valdigh® perturbation amplitudes

for the fundamental mode (Z{k_«) and its first harmonic (€ {k{-2). The parameters
considered correspond to the continuous dark gray curvegir2bFe Ng = 1.4, ¢cp = 0.5,Ng =

20 anda = 1.30). As time grows, the amplitudes tend to saturate and rei@tionary values

indicating the propagation of an unchanged shape profile.

Considering these two modes the moving interface profilebeattescribed as

06t) = Zu(t)exp(ikn) + Z_i(t) exp(—ikx)

+ Z(t) exp(2ikx) + {_ak(t) exp(—2ikx),
(2.30)

with ¢, and{_y (alsoo and{_») being complex conjugates. Specifically, one needs to solve

the following coupled nonlinear differential equations

Ik = MN2K)a+ [F (2K K) Qi+ G(2k,K) ] L,
(2.31)
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Figure 2.9: Propagating wave profile fgy= 0.5, Ng = 20 anda = 11/2, resulting in y = 0.56.
The profile and velocity are reflected in relation to yhexis if we perform the transformation
Cp = —Co-

& = ARG+ F(k K k+ Gk —K)Z i L
+ [F (K 2K) o + G (K, 2K) Zak] Lk
(2.32)

The interface evolution is obtained by numerically solviggg. (2.31) and (2.32). We have
verified that the amplitudes and relative phase of the smiatsaturate for later times, leading
to stationary propagating profiles. Figure 2.8 shows the t@volution of the absolute value
of the perturbation amplitudes. We consider very low ihiaplitude values{x = 0.001 and
(> =0.0001) and parametelg = 1.4,¢co = 0.5,Ng = 20 anda = 1.30. This figure depicts the
amplitudes evolution beginning from a nearly flat interfaegonentially growing at the linear
stage, and then saturating at later times. So, after a énaingeriod of growth the perturbation
amplitudes remain unchanged as time progresses. The nff@iredce from these findings and
the results in Ref. [38] is the fact that here the saturatedesdy and {5 how maintain a
locked phase difference between them, in such a way to leadt®ady profile propagation. It
is also evident from Fig. 2.8 that the weakly nonlinear couyphaturally dictates the enhanced

growth of a positive harmonic mode.
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Figure 2.10: (a) Propagating wave profile My = 20 anda = 1.17, resulting iny = 17.83.(b)
Propagating wave profile fddg = 20 anda = 1.30, resulting in y = 16.98. The profile and
velocity are reflected in relation to tlyeaxis if we perform the transformatiarl = m— a. Note

that herecg = 0.

An example of a steady propagating profile found numericallglotted in Fig. 2.9 for
Ng = 1.4, co = 0.5, Ng = 20 anda = 11/2 (kmax = 5.07). Its real growth rate is represented
by the light gray solid curve in Fig. 2.6. The resulting wawtprn shows a sequence of sharp
peaked structures separated by wider troughs. These stuapgimilar to the ones obtained in
the situation in which there is no parallel flow, and the maigrfeeld is vertical [38]. There
is little morphological difference produced by the intratlan of the parallel flow, represented
by a nonvanishingo, if a = 11/2, but now we have a propagating profile instead of a statjonar
one. We define y as the final propagation velocity of the saturated profileictvin Fig. 2.9
case equals.B6. Note that y is not given solely by the linear phase velocity in (2.23},ibis
a result of the weakly nonlinear coupling between the moddisa saturated regime.

Sincecy has very little influence on the morphology of the rising waadterns (inde-
pendently of the angler), we takecy=0 in Fig. 2.10, and focus on the role of the magnetic
field tilting anglea in determining the morphology of the propagating solutioimspractical
terms, for finite surface tension flows, the limgt= 0 can be obtained by setting the velocities
U; = U, = 0. Fora close to the critical value, as it is shown in Fig. 2.10(ag folution is
dominated by the fundamental mode and the shape of the pregienbles a pure propagating
cosine wave. A is increased, the wave morphology changes and we see a ckesigghtly

inclined peaks, as exemplified in Fig. 2.10(b). This is palegilue to the significant magnitude
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of the first harmonic mode. For higher valuesoive get peaked structures similar to the ones
depicted in Fig. 2.9 (where = 11/2). Notice that it is sufficient to explore the influence of the
tilted magnetic field in the range<Q a < 11/2. This is justified by the fact that the propagat-
ing wave problem is reflected with relation to thexis under the transformatiar’ = m— a,
and it is symmetric under the transformatioh= m+ a. Complementary information about
the influence otr on the magnitude of the final propagating velocities will Bpleited in the

discussion of Fig. 2.11.

2.2.4 Analytical approach to steady solutions

In order to have a more quantitative account of the propagatieady profiles numerically
predicted in Sec. 2.2.3, we now carry out an analytical stidyng to find wave solutions to
our problem, and analyze their stability.

To obtain a steady propagating solution we impose{ltatt) = { (kx— wt), wherewis real
and v = w/k is the final propagating velocity. Therefore, we can wiité) = ¢ exp(—iwt)
and {x(t) = cpexp(—i2wt) as propagating modes with constant amplitudes. We may take
c1 as a real constant without loss of generality, since an inzagipart of it would simply
translate the resulting profile. However, we kesm@as a complex number, so there is a phase
difference between the modésandd{ox, something that is relevant for the profile morphology.
By inserting these conditions into Egs. (2.31) and (2.32)geta complete set of nonlinear
time-independent equations that determingc, and w [see Egs. (2.34) and (2.35) in Sec.
2.2.5].

By manipulating the equations of the system described ab@véind a cubic algebraic
equation forw with real coefficients that depends on the functions expieby Eqgs. (2.23)-
(2.29). We have verified that within our range of physicalgpaeters (taken from the experi-
ments in Refs. [71] and [59]), this polynomial equation hg®asitive discriminant, and there-
fore, three different real roots are found (see Sec. 2.2.8dtails). To find out which of these
solutions gives the actual propagating velocity we perfarstability analysis of the propagat-

ing solution by perturbing the modes’ stationary amplitudgt) = (€1 + c1) exp(—iwt), and
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Qok(t) = (&2+Cp) exp(—i2wt), with &1 = &1(t) real ande; = &,(t) complex. By inserting this
conditions in Egs.(2.31) and (2.32), and expanding up todider ing, the stability analysis

of the solution leads to a set of equations that can be exgaess matrix form as
€ A I3
.1 _ 11 12 1 , (2.33)
& a1 )

A(K) +iw-+ (F(k,—K) + F (k, 2K) + iG(k, —K)w)c»
= :

where

1—G(k,—k)Cz
o (Flk k) +F(k 2K)e1 +1G (K, —k) o
12 = 1-G(k, —K)Cy ’

%1 = 2F(2k,k)C1,
y = N2K)+i20.

If the real part of an eigenvalue of the matrixis positive (negative), it indicates that there is an
unstable (stable) branch of the dynamic system defined by(E&d) and (2.32), and whether
the perturbations increase (decrease) with time. For ehtiiieaanalyzed set of parameters,
there is only one root fow that makes negative the real parts of both eigenvalues.ofhus,

it defines the actual stable propagating solution. This i@ekplicitly given in Eq. (2.42) in
Sec. 2.2.5.

Figure 2.11 makes a comparison of the analytical weaklyineat prediction for final
propagating velocity from (2.42) (plotted as continuousses) with the one obtained by nu-
merically solving the differential equations (2.31) andB@ (plotted as dots). It is also shown
the linear prediction for the fastest growing mode phaseoil Im[—A(Kmax) /Kmax displayed
as dotted curves. This is done to investigate the plausilofithe purely linear approximation.
Here we plot y as a function ofx for three values ofg = 20, 25, 30 with black, dark gray and
light gray curves, respectively. Since we are consideltiregcse whereg = 0, there are only
contributions to y that come from the tilted magnetic field. The vertical dasless indicate

the critical values ofr below which the interface is stable and remains flat. As wesean the
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Figure 2.11: Propagating final velocity \as a function ofa for cg = 0, Ng = 20 (black),
Ns = 25 (dark gray) andNg = 30 (light gray). The dotted curves depict the linear predicof
the fastest growing mode phase velocity, the solid curveespond to the analytical weakly
nonlinear prediction, and the dots show the velocitiesiabthby numerically evaluating the
time evolution of Eqgs. (2.31) and (2.32). The dashed vdrtices indicate the critical values

of a.

curves reach a maximum of ¥or a value ofa greater than the critical one, and then tend to
zero asa approachest/2, when there is no magnetic field tilting. In addition, it isserved
that for any value otr the final velocity gets larger whe¥g is increased. So, by tunirg and

Ng one can control y.

By comparing the solid curves with the dotted ones, we ndtie¢ the linear prediction
works well whena is near its critical value or near/2. This can be understood by the obser-
vation that near the critical value of only the fundamental mode,ax has noticeable ampli-
tude, and there is effectively just one mode acting, and niegéigible nonlinear coupling. For
higher values ofx there is a relevant difference between the weakly nonliaedrthe linear

prediction, indicating that the coupling between khgy and its harmonic is significant. More-
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over, fora nearrt/2 there is no second-order contribution to the propagasiothe agreement
with the linear prediction is good again. On the other hagd;dmparing the solid curves with
the dots, we verify that there is an excellent agreementdmtthe analytical weakly nonlinear
predictions, and the numerical results. Therefore, we loolecthat the coupling between the

modes plays a fundamental role in determining the final pyapan velocity.

2.2.5 Nonlinear velocity calculation

In this section we present the details of the analyticaludaton for the nonlinear wave
velocity vi. We begin by substituting the ansatz expressis = ¢y exp(—iwt) and{x(t) =
coexp(—i2wt) in Egs. (2.31) and (2.32) to obtain the following equatian®lving c;, ¢; and

w

w = iN(K)+ic[F(k,—k)+F(k, 2k)
+ i(G(k,—k) — G(k, 2k)) w], (2.34)
20, = iN(2K)cp 4 ic2[F (2k, k) — iG(2k, k) ], (2.35)

where we have used thét(t) = {7 (t) andcy = cj, with the star representing complex con-
jugation. By taking the real and imaginary parts of theseaéiqus, and by eliminating the

variablesc; andc,, we find a third order polynomial equation far
aw® 4+ bw? +cw+d =0, (2.36)
whose coefficients are real, and given by

a = Re(G(k —k) — G(k,2K)){2F (2k,k)
+ G2k, K) (2A(K) + A(2K))}
— 2G(2k, k) (F (k, —K) + F (k, 2K))],
(2.37)
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b = Im[(F(k,—k)+F(k,2k)){2F (2k k)
+ G(2k,k)(2A*(K) + A*(2k)) }
+ (G(k,—k) — G(k, 2k)){F* (2k, k) (2A(k)
+ A(2k)) + G(2k, K)A(K)A(2K) }],

(2.38)
¢ = Re(F*(k,—k)+F*(k 2k)){G(2k, K)A(K)A(2K)
+OFF (2K K)(2AK) + A(2K))}
—(G(k, —K) — G(k, 2K))F* (2k, K)A(K)A(2K)],
(2.39)
d = Im[(F*(k,—Kk) +F*(k, 2k))F* (2k, K)A(K)A(2K)].
(2.40)

The problem is further simplified by noticing that Eq. (2.28poses thaG(k, 2k) = G(2k, k) =
0. The discriminant of Eq. (2.36) is

A = 18abcd— 4b3d 4 b?c? — 4ac® — 27a%d?,
(2.41)

being always positive for the range of physical parametensicered in this work [59, 71]. As
a result, there are three distinct real roots given by
b (1-iv3)(—b?*+3ac) (1+iv3)p

W =—--+ - 5
3a 32%ap 3 23a

(2.42)
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b (1+iV3)(-b?+3ac) (1-iv3)p

(UZ — T AL + - )
3a 32%ap 3 23a
(2.43)
__£+2%(—b2+3ac)_ P (2.44)
="z 3ap 3235’ '
where
p = [— 2b® + 9abc— 27a%d
1
+ \/4(—b2 +3ac)3 + (—2b3 + 9abc— 27a2d)2| °.
(2.45)

By performing a stability analysis for each of these roadgje@scribed in Sec. 2.2.4, we ver-
ify that c is the only one that is indeed stable. Therefore, the saluglated tav; [EQ. (2.42)]
is the one that prevails from the system dynamics, so thabllerved final nonlinear propa-

gating velocity is given by y= w /k.
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CHAPTER 3

Field-induced patterns in MR fluids

As it was explained in the previous chapter, magnetic flugdshed as ferrofluids [14, 15]
are stable colloidal suspensions typically containingawat oil combined with nanometersized
magnetic particles. This particular type of magnetic flgidlirastable against settling, behaves
superparamagnetically, can be considered to be a Newtflnidnand is characterized by its
prompt response to even modest magnetic fields. Due to fismes/eness to magnetic stimuli,
the study of ferrofluid interfacial pattern formation hast@e considerably popular [80, 81].
In particular, under spatially confined circumstances ofedeFShaw cell the viscosity-driven
Saffman-Taylor instability [1] is supplemented by a magradly induced instability, leading
to a variety of interesting interfacial behaviors. The H8leaw flow problem, with either non-
magnetic or magnetic fluids, has already proven its protospole in the context of interfacial
pattern formation [2].

On the other hand, the study of Hele-Shaw pattern formatigh magnetorheological
(MR) fluids has not been much investigated. Magnetorheosbdjuids consist of much larger,
micronsized magnetized particles dispersed in aqueouganit carrier liquids, display strong
nonNewtonian features, and are much less stable than ted=fl The unique feature of this
kind of magnetic fluid is the abrupt change in its viscoetaptoperties upon the application
of an external magnetic field [25, 26, 27, 28, 29]. A MR fluid ¢encharacterized by its yield
stress, which measures the strength of its solidlike beinads opposed to Newtonian fluids,
yield stress fluids [30] (magnetic or not) can support sheasses without flowing. As long
as the stress remains below to a certain critical value tbayad flow, but respond elastically
to deformation. In MR fluids the yield stress is magnetic fié&pendent, and varies quadrat-
ically with the strength of the applied field. As the magnéuw the applied magnetic field is
increased, the yield stress which is associated to the $igladue of stress required to break

the existing network of magnetic interactions, also insesa In this sense, MR fluids work as
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smart materials whose viscoelastic properties can be ceewty tuned by an applied magnetic
field. By the way, the appearance of viscoelastic propestieh as yield stress in ferrofluids,
and its quadratic dependence on the applied magnetic fislthdan recently verified experi-
mentally [82, 83]. Nevertheless, it has been found thatrofkiids the field-dependent yield

stress is indeed very small as compared to the typical valoisned for MR fluids.

3.1 Radial magnetic field

Radial
/ et

Anti—Helmholtz
coils

~N\
Hele—Shaw cell

Figure 3.1: Schematic illustration of a Hele-Shaw cell a€khessb containing an initially
circular droplet (dashed curve) of a MR fluid, surrounded moamagnetic fluid. The anti-
Helmholtz coils produce a magnetic fihtipointing radially outwards in the plane of the cell.

Fingering interfacial patterns arise due to the action efridial magnetic field.

In this section we embark upon the study of pattern formagibenomena in MR fluids
confined in Hele-Shaw geometry. Considering the paradigmake played by Hele-Shaw
flows [1, 2, 14, 15, 80, 81], our investigation can be of sigaifice to a number of physical,
biological, and engineering systems related to the visiogering phenomenon. It is in this

context where the problem we study can gain some more geredeabince. We follow a
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previous analysis recently performed by our research gf@dpin which the response of a
ferrofluid droplet to a radial magnetic field has been investigatede Herlike most common
situations examined in the literature, we focus on the sdnavhere the constrained drop is
a magnetorheologicdluid, allowing its yield stress to be manipulated via the laggpion of
an external radial magnetic field. The magnetically tunestaelastic properties introduced
by this system open up the possibility of unveiling still ypred pattern morphologies and
interesting dynamic behavior.

In Sec. 3.1.1 the basic equations describing the systemrasemed, and the moving
boundary problem is properly specified. By employing a moodepling approach (Sec. 3.1.2)
we have been able to study the linear stability of the risiatjgons, as well as to examine im-
portant aspects of their morphology at the onset of nontiaffacts. A more detailed account
of the resulting nonlinear shapes is provided by the detatiun of nontrivial exact stationary
solutions for the problem with nonzero surface tension.sétsolutions are obtained through a
vortex-sheet formalism, and reveal the development ofadtaristic swollen polygon-shaped
patterns (Sec. 3.1.3). We have also identified a magnsticaluced shape transition in which
the interface goes from convex to concave as magnetic fifddtefare considerably larger than

interfacial tension. A summary of our chief conclusionsrsgented in Sec. 6.2.

3.1.1 Physical problem and governing equations

Figure 3.1 illustrates an incompressible, MR fluid dropletimperturbed radiuR and vis-
cosity p, which is surrounded by a nonmagnetic, Newtonian fluid ofigésie viscosity. The
fluids are located between two narrowly spaced flat platesHe#la-Shaw cell of thickneds
The surface tension between the fluids is nonzero and debgtgdWe consider that the MR

fluid droplet is subjected to a radial magnetic field

H=—rf, (3.1)

wherer is the radial distance from the origin of the coordinate exys{located at the center

of the droplet),Hp is a constantL is a characteristic length, arfdis a unit vector in the
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radial direction. It is worth pointing out that this specifiagnetic field configuration can be
generated by a pair of identical Helmholtz coils whose aus@are equal and flow in opposite
directions (“anti-Helmholtz" configuration). The expegntal conditions required to obtain
such a radial magnetic field have been discussed in detagfin&4].

For the quasi-two-dimensional geometry of the Hele-Shally oee reduces the three-
dimensional flow to an equivalent two-dimensional one byaymg the Navier-Stokes equa-
tion over the direction perpendicular to the plates. The-gagrage procedure is performed
by neglecting the inertial terms, considering a large asgao geometry R > b), and using
the Bingham model for yield stress fluids [32, 85]. By takintpiaccount the contribution of
viscoelastic and magnetic effects, plus the existence cdignetic field-dependent yield stress
oy = oy(H), one can write a modified Darcy’s law for confined MR fluids [83, 86]

b2

V:_ﬁ

o 2500

: (3.2)

The derivation of Eq. (3.2) assumes the regime of high visgcoempared to yield effects. On
the basis of the symmetry of the applied magnetic field cordign, we consider the prevalent
yielding occurring along the radial direction. Note thaearcovers the usual Darcy’s law for
Newtonian magnetic fluids [16, 17] by settiog(H) = 0.

The gap-averaged generalized pressure is defined as

1 +b/2
n—r/  P-¥dz (3.3)
b.J/-p2

whereP is the three-dimensional hydrodynamic pressure,

H
W uo/ MdH (3.4)
0

represents a magnetic pressyug denotes the magnetic permeability of free space,Mnsd
the magnetization of the MR fluid. Note that for the nonmamgrfétid M = 0. In this context,
the magnetic body force acting on the MR fluid is givengg[TH [14, 15], whereH is the

applied magnetic field.
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The magnetic field-dependent yield stress is given by [2729882, 83, 87, 88]
oy(H) = oy0 + aH?, (3.5)

whereoyg represents the yield stress in the absence of the magnédicdted a is a constant
that depends on the material properties of the MR fluid, b@irgportional to the particle
volume fraction [29]. In general the field dependence of &dystress fluid is represented by
a power lawoy(H) — gyo ~ H" with 1 < n < 2, and the case we consider here- 2 is the
one for which the magnetization is linearly related to thpliegal magnetic field [27, 28, 29]
M = xH, wherey is the magnetic susceptibility. This linear relation hadddong a$1 < Hsgy,
whereHgg is the field magnitude at saturation magnetizafi@{10° kA /m— 10> kA /m)]. It
is worth emphasizing that, despite the nonNewtonian cteratthe MR fluid (due to its yield
stress), we consider that it presents a constant viscoHitig assumption enables the flow to
stay potential. Of course, more involved theoretical dptons may incorporate a shear and
magnetic field-dependent viscosity to certain types of retigriluids [89], but this is beyond
the scope of our current work.

Forces arising from gradients of the mean pressure, as inabe of Darcy’s law (3.2),
characterize an irrotational flow in the bulk. In this franoelwvDarcy’s law (3.2) can be conve-

niently rewritten in adimensionlesform

vV = —D(P,
@ = p—xNgr?+Sr+Sr,
(3.6)

whereg is a velocity potential, ang is the gap-averaged hydrodynamic pressure. The param-

eter
Nk — poHar3
B= 12

represents the dimensionless magnetic Bond number, ansumnesathe ratio of magnetic to

(3.7)
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capillary forces. In addition

30,0r2

S= yygo (3.8)
and »
aHsr

S— ngbO (3.9

are related to the yield stress contributions at zero, andero applied magnetic field, respec-
tively. In Eq. (3.6) lengths and velocities are rescaled gyand yb?/ (12nr8), respectively.
The typical length scalg, is of the order of the unperturbed droplet radRjgnd will be more
properly defined subsequently (Sec. 3.1.3). From now on, ok with the dimensionless
version of the equations.

By inspecting Eg. (3.6) the driving and stabilizing forcdsttee problem become appar-
ent. It has a radial driving force pushing the MR fluid off-tamwith a term growing linearly
with the radial coordinate (proportional k) stemming from the magnetic pressure Eg. (3.4).
Moreover, it presents two stabilizing contributions, thstfone being a constant force (propor-
tional toSy), and a second which is quadratic (proportiongbt the radial coordinate. These
stabilizing forces come from the two terms of the yield strgisen by Eq. (3.5). Already at this
point, we can find noteworthy connections of Eqg. (3.6) witheyal Hele-Shaw flow problems:
one can identify the rotating Hele-Shaw centrifugal fo@€e90, 91], and the channel-geometry
constant driving force (gravity or pressure difference), [93] but of stabilizing nature. On the
other hand, the quadratic term in the force (proportion§) ts unparalleled, being exclusively
related to the field-dependent yield stress.

Further specification about the velocity potential is pded by the augmented pressure
jump boundary condition

Ap= K —Ngx2r?(A-f)?, (3.10)

wheref denotes the unit normal vector to the interface. The first tem the right-hand side of
Eq. (3.10) represents the usual contribution related tiasartension and interfacial curvature
K. Herek is the dimensionless in-plane curvature. The meniscusatun®, in the direction
perpendicular to the plates, is of larger magnitude, butipeanstant. Therefore, its gradient

is nearly zero, so that it does not significantly affect theaiyics. When the assumption of
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constant meniscus curvature is valid, the cell gap thickiwas be scaled out of the problem,
since it always appears together with the viscosity. Thieeésreason why the basic equations
of the problem are not explicitly dependent bn The second term in Eq. (3.10) is set by
the so-called magnetic normal traction [14, 15], which cdes the influence of the normal
component of the magnetization at the interface, and iealimelation to the applied magnetic
field.

From the incompressibility condition - v = 0 it can be verified that the velocity potential
is Laplacian. Therefore, the definition of the moving bougdaroblem is specified by the

following equations

D@ =0, (3.11)

i} i}
0_gl’(1)|in = a—gr(:|out7 (3.12)
o9, 99 (3.13)

S lin = 5glout= r,
where the subscripts label the inner)(and outer §uf) fluids, andd/ds= ds (3/0n = dy) is
the derivative along the tangent (normal) direction to titeriface. Equation (3.12) describes
the continuity of the normal velocity at the interface, argd 3.13) its tangential jump of mag-
nitudel". This jump originates a nonzero vorticity region restricte the interface separating
the fluids [94, 95]. With the help of the generalized Darcgw/ IEQ. (3.6), and the pressure
jump Eq. (3.10) an explicit expression for the vortex sh&eingith can be derived yielding

[ = 20s{k —Ngr?x[1+x(A-F)? + Sr +Sr*}

0 0
- <0—Z|in+ a—(£|out) .

(3.14)

While presenting our results in Secs. 3.1.2 and 3.1.3 we maieethat the values of all rel-
evant dimensionless quantities we utilize [Egs. (3.79)]3re consistent with realistic physical
parameters related to existing magnetic field arrangemantsmaterial properties of MR flu-
ids. For the typical parameters related to the Hele-Shauwpsatder study, we take= 102
m (which appears i andS), andR= 102 — 101 m. Recall tharg (that shows up ifNg,
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S, andS) has the same order of magnitudeFofWhile dealing with the strength of the mag-
netic fields, we consider a relatively low value§ RA/m < Hp < 10 kA/m which are easily
achievable by using a typical Helmholtz coils setup, whbeertdius of a coil is considerably
larger than the radius of the MR fluid droplet. The charasteriengthL related to the radial
magnetic configuration is of the order of a few centimetedd.[d he quantitieddy andL are
present in the paramentdig andS. Regarding the material properties of the MR fluid Sn
we takea = 3.0 x 10~7 N/A? [82, 88], and inS consider that the “off" state yield stresgy
varies from 0.3 Pa to 45 Pa [88, 96]. For the magnetic suduggptiwe take Q1 < xy < 1[97].
Finally, for the surface tensiopwe use a typical value of 1§ Pa m in the parameters given
by Egs. (3.7)-(3.9).

3.1.2 Linear stability and weakly nonlinear dynamics

After having formally stated the moving boundary problemerms of the velocity poten-
tial, we proceed by employing a perturbative mode-coupsipgroach to examine the linear
stability of the interface, and morphological featuresha tesulting patterns at the onset of
nonlinear effects.

Due to the action of the radial magnetic field the fluid-fluiteriace may deform, and its
perturbed shape is describedZ$¢,t) = R+ {(§,t), where{ (¢,t) = ¥ ., {n(t) exp(ing)
represents the net interface perturbation with Fourierlianaes,(t), and discrete azimuthal
wave numbers. The azimuthal angle in the plane of the Hele-Shaw cell iotihby$. We
define Fourier expansions for the velocity potential, arelthe boundary conditions presented
in Sec. 3.1.1 to expresgin terms of{, to obtain a dimensionless mode-coupling differential

equation for the system (far#£ 0), accurate to second-order in the perturbation amplgude

ddn
E - A(”) ¢n
+ Z [F(nvn/)+A<n/)G(n7n/)} Zn’ann’y
=0

(3.15)
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where

A(n) = |n| {ZNBx(l-l—x) — %(nz— 1) — % —38!%

(3.16)

is the linear growth rate. The second-order mode-coupéngs are represented as

F(n,n') = %{Ngx[l+x(1+ n'(n—n'))]
— % [1—%/(3n’+n)} —SSR},
(3.17)
G(n,n') = %{\n\[sgr(nrf)—l] —1}. (3.18)

The sgn function equals1 according to the sign of its argument. Notice that wBenS =0
Egs. (3.16)-(3.18) reproduce the results obtained in Rd}.fpr the corresponding problem in
Newtonian ferrofluids, where yield stress effects have loeempletely neglected.

The terms appearing in the expression for the fundiiom n’) in Eq. (3.17) arise from the
magnetic applied field, surface tension, and field-dependeld stress, respectively. The term
proportional tox2 comes from the square of the projection of the interface mbmrthe radial
direction in the pressure jump condition [Eq. (3.10)]. Imtrast the functiorG(n,n’) defined
in Eq. (3.18) presents no dependence on magnetic effects.

We use Eg. (3.15) to investigate how the development of fext&l instabilities at early
stages of the pattern formation is influenced by the radigjmatic field. At the linear level,
the relevant physical effects examined in the discussidbgf(3.6) just add up, as expressed
by the linear growth rate. Since a positidén) leads to an unstable interface, Eq. (3.16)
tells us that for a given nonzenp, Ng destabilizes the system. As expected, the magnetic
contribution to the growth rate tends to move the MR fluid taua@gions of higher magnetic
fields, stimulating the growth of fingering structures. Thehavior is analogous to the role

played by the centrifugal force in the rotating Hele-Shawatpem [8, 90, 91]. On the other
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hand, the term involvingn® — 1) is associated to the surface tension and plays a stabilizing
role. The terms related to the yield stress contribut®andSy) are also stabilizing and tend to
inhibit fingering formation. In particular the terf is related to a constant radial force acting
similarly to gravity or pressure difference appearing ia tisual Saffman-Taylor problem in
channel geometry [92, 93].

By examining Eq. (3.16) it is evident that increasingly Ergalues ofSandS, shrink the
band of unstable modes [which can be accessed by taking= 0]. In addition, we notice

that the maximum oA (n) which occurs ah = Npay Where

Nimax = \/%{1+R3[2N5x(1+x)—%—38%} (3.19)

decreases &or & is ramped up. As it is well known, the fastest growing modeegiby the
closest integer tomay is the mode that will tend to dominate during early stagabefpattern
formation.

In summary, at the very early stages of the dynamics the rollbeoyield stress terms is
to decrease the wave number of maximum growth just as thenmgigrowth rate, and to
tight the band of unstable modes. Conversely, bddhrand x tend to destabilize the system.
Note that the additional magnetization term appearing in(BE4.0) is of second order in the
interface perturbatioq, being legitimately nonlinear and therefore of no influeatgurely
linear stages of interfacial evolution.

Despite the importance of the linear stability analysisenesting information about the
morphology of the rising patterns can be acquired at the lyeednlinear stage of the interface
evolution. We investigate how the radial magnetic field iefloes the shape of the emerging
MR fluid patterns by using the full mode-coupling differetgquation (3.15). As in Refs. [24,
61] we study a mechanism controlling the finger shape beh#fiviough magnetic means, and
consider the coupling of a small number of modes. To simmifly discussion we rewrite
Eq. (3.15) in terms of cosine and sine modes, where the cagirel, + {_,, and sineb, =
i ({n— {—n) amplitudes are real-valued. Without loss of generality Wwease the phase of the

fundamental mode so that > 0 andb, = 0. Under such circumstances, finger tip-sharpening
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and tip-broadening phenomena are described by considdmengfluence of a fundamental
moden on the growth of its harmonic2 One key piece of information about the morphology
of the emerging patterns can be extracted from the equatiorotion (3.15) for the harmonic

cosine mode
dapn
dt

= A(2n) ag + % T(2n,n) &2, (3.20)

where the finger tip function is given by
T(2n,n) = [F(2n,n) + A (n) G(2n,n)], (3.21)

due to Egs. (3.17) and (3.18). It can be shown that the eanvgrowth of the sine mod®,
is uninfluenced by, and does not present second-order couplings, so we focuearawth

of the cosine mode.
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T(2n,n
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Figure 3.2: Behavior of the finger tip functioln(2n,n) as the magnetic Bond numbig is
varied, forR= 0.9, x = 0.5, and two different values of the zero field yield stress aizr:
S = 57.6 (solid curves), an& = 128 (dashed curves). For each valu&gfthree increasing
magnitudes for the magnetic field-dependent yield streempeter are useds = 60 (black),
S=67 (dark gray), an®&= 74 (light gray).
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The interesting point about the functi®n2n, n) is that it controls the finger shape behavior.
The sign ofT (2n,n) dictates whether finger tip-sharpening or finger tip-brodwigis favored
by the dynamics. From Eq. (3.20) we see thal (£n,n) > 0, the result is a driving term of
orderaZ forcing growth ofaz, > 0, the sign that is required to cause outwards-pointing fsge
to become sharp, favoring finger tip-sharpening. In cotitii$ (2n,n) < 0 growth ofaz, < 0
would be favored, leading to outwards-pointing finger tipddening.

In order to gain insight about the morphological responsteffingers to the action of a
radial magnetic field, and also to the effects induced bydyséless, in Fig. 3.2 we pldt(2n, n)
as a function ofNg. We consider two distinct values &), and for each one of them we take
three increasingly larger values &fAs in Ref. [24], to ensure that both participating modes (
and ) are able to grow we takesuch thatA (2n) = 0, implying in the observance of a critical
value ofNg for each pair o5y andS.

By inspecting Fig. 3.2 we readily observe tia®2n,n) is a positive, increasing function
of Ng, indicating that once the fingers are formed they tend toldpv&harp tips. Moreover,
for a givenSy we notice thafl (2n,n) tends to decrease as one increases the valGe ©his
indicates that the yield stress influences the shape of ttterps, inhibiting the formation of
pronounced spiked tips. It is also clear that larger valde§ydavor further suppression of
sharp edged fingers.

We conclude this section by contrasting the finger tip bedrastudied here with other
general Hele-Shaw problems. First, we point out that in th@noel geometry Hele-Shaw
setup [92, 93] there is no coupling between the fundamentiita first harmonic mode, lead-
ing to absence of finger tip-splitting at second order. Besidhe situation of a Newtonian
ferrofluid in the presence of a radial magnetic field [24] doesent such a coupling, resulting
in a high magnitude, positive finger tip functidr(2n,n) which favors the formation of sharp
fingers. However, in the MR fluid case, the presence of thel wkss (negative sign) terr8s
andS, in the mode-coupling functioR (n,n") and inA (n) conspire to produce a positive finger
tip function of smaller magnitude, resulting in fingeringustures that are less sharp than the
ones obtained with Newtonian ferrofluids.

The weakly nonlinear predictions suggest that the reguftngers should become less and
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less sharp as the yield stress parameters are augmentedis sehse, our mode-coupling
approach enables one to access analytically the morphofdgg emerging structures already
at very early nonlinear stages of the dynamics. This is irtreghto the usual purely linear

results which primarily refer to the stability of the patier

3.1.3 Exact stationary solutions

In this section we turn to a more specific description of thiéggpas’ morphology through
the calculation of exact solutions for this problem. Theat)sationary solutions reveal even
more details about the shape of the patterns. Similarly to [24] we apply a vortex-sheet
formalism [94, 95] in order to access the exact stationaapsh obtained when a droplet of a
confined MR fluid is subjected to a radial magnetic field. Asdssed in detail in Refs. [68, 98]
this type of exact solutions with nonzero surface tensionbmafound by imposing a condition
of zero vorticity ( = 0) plus considering a stationary statg(/ds|in = 0¢/0Sout = 0) in
Eq. (3.14). Under such circumstances, we find that the aur@aif the interface satisfies a

nonlinear ordinary differential equation

0 { K —Ngr2x[1+ x(A-7)?] + Sor +Sr} =0,
(3.22)

which can be integrated to obtain
K = K(r,rsing) = a+b r?+c (rsing)? —Sr —Sr, (3.23)

whereais a constant of integration. For brevity we define Ngx, andc = Ngx2. In Eq. (3.23)
we have used the fact thatf = +sing, wherey is the angle between the radius vedt@nd
the tangent vect@ at the interface.

Our goal is to study the fully nonlinear family of planar casvwhose curvature has the
general form given by Eq. (3.23). These curves are the normzeface tension exact stationary

solutions which balance the competing capillary, viscsttaand magnetic effects at the MR
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fluid interface. A number of important morphological fea&siiof the stationary solutions can
be obtained by the numerical evaluation of the nonlinedewdifitial equation (3.22), without
recourse to intensive numerical simulations. This way, e e€xplore the richness behind a
family of curves whose curvatures are prescribed by Eq3{3% manipulating the relevant
control parameters of the problem, namBly, x, &, S the constang, and the specifications
ro=r(¢ =0) andyp = Y(¢ = 0). For a thorough discussion about the numerical approach
used to solve the type of differential equation given in 23 &e refer the reader to Ref. [98].

The parameterg defines the maximum radial distance obtained for a giverostaty pat-
tern, and is of the order of the unperturbed droplet raRiuAt this point, we justify our choice
of ro as a convenient parameter to rescale lengths in our probfahe unperturbed radiuR
were to be chosen as the parameter to rescale lengths, @netrga@nstraint would be imposed
to the system, since in this case all the areas of the regudtiact steady shapes should have
to coincide. It turns out that it is not at all trivial to kedpetareas of all perturbed patterns the
same, and simultaneously fulfill the requirements thatra#rfacial curves should be closed
(i.e., commensurable withr, and non-self-intersecting. We have circumvented thastical
difficulty by conveniently selectingy as the appropriate length scale for the problem without
loss of generality.

In Fig. 3.3 we present a representative collection of pésskact stationary solutions for
the problem of a confined MR fluid droplet under the influenca cddial magnetic field. The
shapes are obtained fdg = 256, x = 0.5, Yo = 11/2,r0 = 1, S = 57.6, and by considering
four decreasing values of the magnetic field-dependerd gieéss paramet& (a) 10513, (b)
10013, (c) 9313, and (d) 8413. For convenience, for each value)tve adjust the constaat
so that the final pattern has the number of fingers (or, edges)maxas arising from the linear
regime according to Eq. (3.19). We emphasize that the clofiaés arbitrary, and the way we
set it should not be interpreted as if the linear regime thstthe final morphological features of
the fully nonlinear exact steady shapes. Note that all pattehown in this work are stationary
shapes, andot a time evolving sequence of events. The resulting pecutiapss depicted in
Fig. 3.3 resemble convex-shaped polygons. In fact, theywhat we could name asgons with

n=2,3,4 and 5 corners. They look like “swollen" regular polygoneganting convex edges.
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This family of shapes differs from the ones obtained in R24][for Newtonian ferrofluids,

where concave-shaped polygons and peaky starfish-liketstas (with edges curved inward)
have been obtained. So, the convex-shape signature of ttegnsacan be attributed to the
yield stress effects introduced by the parame$grandS. It is also evident from Fig. 3.3 that
by decreasing the value &f(keepingNs andS, fixed) the number of fingering structures (or,

corners) increases.

(a) (b)
(c) (d)

Figure 3.3: Typical stationary shape solutionsifgr= 256,x = 0.5, Yo =11/2,r0=1, S =
57.6,and (a)S= 10513, (b)S=10013, (c)S=9313, and (d)S=84.13.

Figure 3.4 addresses a situation similar to the one illtestran Fig. 3.3, but now taking a
larger value of the zero applied field yield stress paranfgter128. We seNg = 256, x = 0.5,
Yo = 1/2,rg =1, and consider the following decreasing valueSofa) 8167, (b) 7667, (c)
69.67, and (d) 6B7. As in Fig. 3.3 for each value & we adjust the magnitude @f so
thatn = nmax The resulting exact shapes are again characterized dareggons presenting
convex-shaped edges, where the number of corners increakever values ofS. However,
the patterns shown in Fig. 3.4 f& = 128, are even more “inflated” than the ones obtained in
Fig. 3.3 forg = 57.6. In Fig. 3.4 the edges bulge outward, making the tips of tigefis to
become not as sharp as the ones obtained in Fig. 3.3. In othidsythe consideration of larger
values ofS resulted in the inhibition of sharper tips. The comparisetwkeen the characteristic

shapes presented in Figs. 3.3 and 3.4 reinforces the yabidihe weakly nonlinear predictions
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made in Sec. 3.1.2, which prognosticated diminished tendenvard finger tip-sharpening for
largerSy.

Another situation of interest refers to the response of #igepns to increased values of
the magnetic Bond numbeédg. This issue is investigated in Fig. 3.5. It depicts inteidhc
MR fluid patterns generated by taking= 0.5, Yo = /2, rp =1, a= —6.36, = 38.02,
S= 2380, and four increasingly larger magnituded\pf (a) 10985, (b) 12657, (c) 14806,
and (d) 15063. Instead of plain convex-shaped structures, differgoes of patterns arise
as Ng increases: first, in Fig. 3.5 (a) a nearly perfect square waithost straight edges is
observed. Therefore, the convex polygon sides obtainedgs B.3 and 3.4 have flattened
out. AsNg increases further [Fig. 3.5(b)] a sort of “shape transltimnrevealed, showing
the appearance of a concave-shaped 4-gon presenting miotg porners (or, fingers). If
Ng continues to increase [Fig. 3.5(c)] the number of fingers alsreases, while protrusions
start growing from them leading to the formation of a starfikl pattern presenting 5 fingers,
similar to those observed in Ref. [24] for Newtonian ferrafii If the ramping ofNg goes on
[Fig. 3.5(d)], the growth in the number of fingers continued a six-fingered limiting shape is
obtained for which the fingers tend to pinch-off. Incidelytaéquivalent pinch-off phenomena
have also been found in Ref. [24]. The fact that the patteresgmted in Fig. 3.5 tend to the
shapes obtained for Newtonian ferrofluids under a radiad fiehkes perfect sense: Hg is
increased the yield stress effects are eventually overcoraking the MR fluid to behave like
usual ferrofluids. Note that the linear prediction whichamety the growth of a larger number
of fingers for increasedlls is consonant with the generic features of the the exactisakit
illustrated in Fig. 3.5. Moreover, the weakly nonlineargiotion related to the formation of
sharper and sharper fingering structureblgss increased can be also verified.

We close this section by discussing an important issue frdlevance of the exact solu-
tions we have found in this work, which refers to their stéilt is known that similar classes
of exact solutions, for instance those that arise in theirgddele-Shaw problem [68, 98], are
unstable. Likewise, the exact stationary patterning simnes which emerge when a Newtonian
ferrofluid droplet is subjected to an applied radial magnigid [24] are also unstable. To the

best of our knowledge the only known stable exact solutioesrese related to peculiar shapes
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(a) (b)

Figure 3.4: Typical stationary shape solutionsifgr= 256,x = 0.5, Yo =11/2,10=1, S =
128, and (ap= 8167, (b)S= 76.67, (c)S=69.67, and (d)S= 60.67.

presenting cusplike protrusions obtained for rotatinge-ehaw flows, in the limit of infinitely
long filaments [13].

Despite the stabilizing role played by yield stress effeats have verified that the exact
solutions for MR fluids we investigated in this work are intfaostable. Most situations will
not have a steady state attractor so that a direct conndctite linear and weakly nonlinear
regimes can be nontrivial. Moreover, it is correct to say thast of the exact stationary shapes
found in Refs. [13, 24, 67, 68, 98], and the ones obtainedigwibrk, are of considerable dif-
ficulty to be observed experimentally in a direct fashionptactice, as discussed in Ref. [68]
in order to obtain such stationary solutions one has to beetaldarefully set initial conditions
which should be sufficiently close to these prescribed folmthe case of magnetic fluids, this
guestion of experimental accessibility of the steady egaltttions could be possibly facilitated
by designing a magnet with the desired shape, and using dttthe proper initial condition
in a more controlled fashion [99]. Once this situation isiaetd one would verify a slowing
down of the dynamics in the neighborhood of stationary statctually, an analogous line
of reasoning has been recently used in Ref. [13] where itgseat that exact stationary solu-

tions obtained for the rotating Hele-Shaw problem could fhelevance to explain a transient
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slowing down observed in existing experiments [100].

(@) (b)

(c) (d)

Figure 3.5: Gallery of possible patterns for increasingligér values of the magnetic Bond
numberNg. It is assumed thgt = 0.5, Yo = 11/2,r9=1,a= —6.36, S = 38.02, S= 23.80,
and (a)Ng = 10985, (b)Ng = 12657, (c)Ng = 14806, and (dNg = 150.53.

3.2 Stationary shapes of confined rotating magnetic liquid mbplets

Since the seminal experimental work by Plateau [101] thdysai rotating fluid droplets
has attracted the attention of both experimentalists apdri$ts from several branches of
physics. In particular, the understanding of the variouslgagium shapes (ellipsoidlike, two-
lobed “peanut” structures, and triangular morphologissiyiened by rotating droplets has caused
a lot of excitement [102, 103, 104, 105]. Interestingly,lagaes traced between surface tension
and gravitational, or nuclear forces have used a spinningletr description to model more
complex phenomena occurring in rotating stars [106] anduiciear physics processes [107,
108].

An effectively two-dimensional (2D) version of the fully 3Dtating droplet problem can
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be examined when the fluid drop is placed in the spatially cedfienvironment of a rotating
Hele-Shaw cell [8, 109]. The rotating Hele-Shaw problem igadation of the traditional
viscosity-driven Saffman-Taylor instability [1, 2], in wdi the cell rotates, and the competition
between centrifugal and capillary forces results in irstegfdestabilization. During the last two
decades different aspects of the problem have been inag=tigncluding the development of
zero surface tension time-dependent exact solutions §, Bhe consideration of miscible fluid
displacements [7], the dependence of pattern morphole@giesscous [8, 9] and wetting [10]
effects, the influence of Coriolis force on the interfacihdmics [11, 12], and the occurrence
of complex pinch-off phenomena [13].

A suggestive variant of the usual rotating Hele-Shaw probléth nonmagnetic fluids con-
siders that the spinning fluid is a ferrofluid [14, 15]. Its matic property turns out to be very
handy since it introduces the possibility of controllingg tfotating fluid interface by tuning
an external magnetic field. The dynamics of ferrofluid drtsgpla rotating Hele-Shaw cells
subjected to an applied azimuthal magnetic field has beehestin Refs. [21, 110]. Such a
magnetic field configuration is produced by a current-cagywire located at the center of the
rotating cell, and aligned with its axis of rotation. Linesability at early time stages [110]
revealed the stabilizing role played by the azimuthal fiekdolh acts against destabilizing cen-
trifugal effects. On the other hand, fully nonlinear stagethe advanced time dynamics both
in the absence and presence of the magnetic field, have baenred by numerical simula-
tions [21] through conformal mapping techniques.

The numerical investigation performed in [21] unveilecenaisting aspects about the time
evolution and morphological features of the rotating féaid patterns. Under zero applied
field circumstances, and considering an initially motigsléiele-Shaw cell, surface tension
makes the ferrofluid droplet to assume a circular shape. Mew&hen the cell is rotated
the drop can be distorted as centrifugal forces tend to palpart. As the speed of rotation
increases one reaches a point where the competition betsugtate tension and centrifugal
forces causes the circular drop to become unstable, anahgforms into a two-fingered, or
dumbbell-shaped, object. Further increase in rotatioerégaould then add a third finger, and,

beyond that, four fingers. Eventually, the droplet oughtéodme a complex multi-fingered

73



structure where fingers stretch and compete. Ultimately,fthmation of filamented arms
presenting bulbous ends is observed, where pinch-off suentl to occur. These numerical
findings are in agreement with experimental observation8][@nd also with phase field [13]
and boundary integral simulations [111] for the rotatinde48haw problem with nonmagnetic
fluids.

Azimuthal
Current—carrying wire I magnetic field

Figure 3.6: Sketch of a rotating Hele-Shaw cell of thicknesentaining an initially circular
magnetic fluid droplet of radiuR. The in-plane azimuthal magnetic fiekdl is produced by
a long wire carrying an electric curreht The cell rotates with constant angular velodiy

around an axis coincident with the wire.

The scenario described above is significantly changed wieeazimuthal magnetic field is
turned on. The magnetic field generates a radial magnetig fmwde pointing inward which
tends to attract the evolving ferrofluid droplet toward tlerent-carrying wire. The interplay
of centrifugal, capillary, and magnetic effects resultghia rising of a different family of mor-
phological structures. For example, the two-fingered dustidibtained under the zero field
situation develops a bump in the middle that gets largerdaydr magnetic field magnitudes.
In fact, it has been verified [21] that increasingly largeluea of the magnetic field progres-
sively reduces the number of outgrowing fingers. For a sefiity strong field, a complete
interface stabilization could be reached, and a circulapsiwould be recovered.

The patterns obtained in [21] are non-equilibrium shapesesenting the “final" states
before pinch-off. In other words, the shapes are evolvirdythe ferrofluid droplets are about

to pinch break into multiple drops. It has also been found tegardless the number of fingers,
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the time evolution of all patterns share a peculiar featdioe:large magnetic field strengths
one observes a nearly circular droplet, with just one buslfinger sticking out from it. This
peculiar nonlinear phenomenon has been designated asi@medidd ring” instability.

In this section we extend the previous contributions reggbih Refs. [21, 110] in some
important aspects. First, instead of describing the tintdugon of non-equilibrium pattern’s
morphologies, we focus on the study of stationary shapesraat when the forces involved
balance equally. This offers the opportunity to contrastgshapes of time evolving and steady
state structures. In addition, as opposed to [21, 110] weeyord purely linear analysis,
which does not predict stationary states, and apply a fEtive mode-coupling approach
to access relevant features of the interface up to quadratinearities. This is utilized to
gain analytical insight about the stability of the statighaxact solutions. The second-order
approximation patterns are compared to the exact solytamusgood agreement is found even
at lowest nonlinear order, and considering a small numbpedfirbative modes.

Furthermore, instead of addressing the influence of mageétcts just on ferrofluids,
we investigate the response of both ferrofluids and magnesdogical (MR) fluids. Ferroflu-
ids generally behave like Newtonian liquids, but MR fluidegent a strong magnetic field-
dependent yield stress. Yield stress is one of the distaigog properties of a solid, but usual
fluids are not commonly known to exhibit such a property. HoevenonNewtonian fluids un-
der external driving do exhibit this behavior. This is a reathat has perhaps been known in the
polymer and engineering communities for awhile, but haaetitd the attention of mainstream
soft matter researchers only in this decade [112, 113]. Mtcglly tunable yield stress can
be neglected in most existing ferrofluids [82, 83], but isymaievant in MR fluids. Here, we
study how the field-dependent viscoelastic properties MR fluid determine the ultimate
droplet shapes when they are subjected to an azimuthal rii@fjekl in a rotating Hele-Shaw
cell. It can be seen that the difference in material propsif ferrofluids and MR fluids has a
significant influence on the morphology of the emerging paste

It is worth pointing out that the study of Hele-Shaw pattesmiation with MR fluids has
been largely unexplored in the literature, and only veryendly it has been performed by

a couple of research groups [40, 99]. This work brings usefulitributions for the better
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understanding of this interesting topic in magnetohydnaalyic pattern formation.

3.2.1 Specification of the moving boundary problem

Figure 3.6 illustrates an incompressible, magnetic fluiabtdt of unperturbed radiug,
viscosity n, and densityp located between two narrowly spaced flat plates of a HelevSha
cell of thicknessh. The outer fluid is nonmagnetic and has negligible viscositgt density.
The surface tension at the fluid-fluid interface is denoteg.bywe consider that the droplet is
subjected to an azimuthal magnetic field produced by a laaggétt current-carrying wire that

is perpendicular to (coaxial with) the plates of the HelexBItell
H=_-— 8. (3.24)

The electric current is representedlbhy is the radial distance from the origin of the coordinate
system (located at the center of the cell), &pds a unit vector in the azimuthal direction. The
azimuthal angle in the plane of the cell is denotedg¢byA stabilizing magnetic body force
~ [OH, whereH = |H|, acts on the fluid pointing in the inward radial direction [140]. The
cell rotates with constant angular velocl®yabout an axis perpendicular to the plane of the
flow, and directed along the wire. The centrifugal force pomadially outward and tends to
spread the droplet out.

Following the standard approach in Hele-Shaw problems sten¢és by neglecting inertial
contributions in the 3D Navier-Stokes equation, and by isapga no-slip boundary condition
at the cell plates. Then, by taking a parabolic velocity pep&n effectively 2D flow is obtained
by averaging the 3D Navier-Stokes equation over the celldjagetion. By considering the
contribution of centrifugal [8], magnetic [16, 17] and wisdastic effects [32, 85], plus the
existence of a magnetic field-dependent yield stggss oy(H) [40, 86, 87, 88], one can write
a modified Darcy’s law for the gap-averaged veloeityf the confined magnetic fluid

b? pQ?r2\  3oy(H) .
v_—@{DO'I— . )+ . e(]. (3.25)
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As in Eg. (3.2), the derivation of Eg. (3.25) assumes themegof high viscosity compared
to yield effects, and prevalent yielding occurring along tladial direction, defined by the
unit vectorg.. Note that one recovers the usual Darcy’s law for Newtonamofluids in a
motionless Hele-Shaw celX= 0) [16, 17] by setting the yield stress contributiay{H) = 0.
We point out that, despite the nonNewtonian character oMReluid (due to its sizable yield
stress), we consider that it presents a constant viscoHitig assumption enables the flow to
stay potential.

In Eq. (3.25) the gap-averaged generalized presSuiedefined as (3.3), where is the
3D hydrodynamic pressure aMéirepresents the magnetic pressure. We also assume a linear
relationshipM = xH, and that the magnetic field-dependent yield stress is diy€B.5).

Since the velocity field is irrotational in the bulk, it is c@mnient to state our moving bound-
ary problem in terms of a velocity potenti@ wherev = —[g. This allows one to recognize
both sides of Eqg. (3.25) as gradients of scalar fields, satttat be rewritten in dimensionless
form as

¢ = p—Xr—I\ZIB—NQrZ-i—S)r—FS, (3.26)
where p is the gap-averaged hydrodynamic pressure. The systemaraathrized by four

dimensionless parameters

Hol ® pQ°ry

NB - Q2 Q — 9
8reyro 2y
& - 30yor§7 s 3a|2‘
yb 4r2yb

The parameteNg represents the magnetic Bond number, and measures thefatiagnetic
to capillary forces. On the other hand, the interplay betweentrifugal and surface tension
effects is described by a rotational Bond numgr MoreoverS andSare related to the yield
stress contributions at zero, and nonzero applied magheli; respectively. In Eq. (3.26)
lengths and velocities are rescaledrgy and yb?/(12nr3), respectively. As in Ref. [40] we

adopt the typical length scalg as being of the order of the unperturbed droplet radtus
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Note that from this point on, we work with the dimensionlesssion of the equations. We
stress that in the presentation of our results in Secs. a2d23.2.3 we make sure that the
values of all relevant dimensionless quantities we utiéize consistent with realistic physical
parameters [40, 87, 88, 96, 97] related to existing magfiielid arrangements, and material
properties of ferrofluids and MR fluids.

By examining Eq. (3.26) it is evident that the only destalnilg contribution comes from
the action of the centrifugal force (term proportionalNg). In contrast, the azimuthal mag-
netic field term involvingNg, which is originated from the magnetic pressure Eq. (3.4% h
a stabilizing role. This can be also said about the yieldsstpeces derived from Eq. (3.5):
both the zero field%) and the field-dependen®)yield stress terms tend to restrain interface
destabilization.

Another important piece of information is provided by thgmented Young-Laplace pres-

sure jump boundary condition

Ap=kK— (A-&)2, (3.27)
wherefi denotes the unit normal vector to the interface. The firshten the right-hand side
of Eq. (3.27) represents the usual contribution relateditéase tension and the in-plane in-
terfacial curvaturex. The second term in Eq. (3.27) is set by the so-called magnetimal
traction [14, 15], which considers the influence of the ndrosanponent of the magnetization
at the interface, and its linear relation to the applied negigtiield.

From the incompressibility condition - v = 0 it can be verified that the velocity potential
is Laplacian. Therefore, the definition of the moving bougdaroblem is specified by the

following equations

2@ =0, (3.28)
0 0
0_(If|in = a—(£|out7 (3.29)
0 0
a—i in — a—i} owt=1"T, (3.30)

where the subscripts label the inner)(and outer §uf) fluids, andd/ds= ds (3/0n = dy) is
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the derivative along the tangent (normal) direction to titeriface. Equation (3.29) describes
the continuity of the normal velocity at the interface, argd £3.30) its tangential jump of mag-

nitudel". This jump originates a nonzero vorticity region restricte the interface separating

the fluids [94, 95]. With the help of the generalized Darcgw IEq. (3.26), and the pressure
jump Eq. (3.27) an explicit expression for the vortex sh&eingith can be derived yielding

r = Zﬁs{K—Xr—l\le[l—i—x(ﬁ-é(p)z] —NQr2+Sor—FS}

0 0
— (a—i‘in-f—a—z out) .

(3.31)

Equation (3.31) is the starting point for the calculationlod steady shapes that will be exam-

ined in Sec. 3.2.2.

3.2.2 Exact stationary solutions
3.2.2.1 Access to fully nonlinear steady shapes

The possibility of obtaining exact stationary solutions\pdes a useful way to access fully
nonlinear features of the patterns’ morphologies throughlatively simple method, which
does not rely on complicated numerical simulations. Thespia} and geometric properties
of a special family of curves associated with the motion obamagnetic fluid interface in a
rotating Hele-Shaw cell have been recently studied [1398&, Such a family of stationary
exact solutions witlmonzercsurface tension consists of interface shapes which bata@mly
the competing capillary and centrifugal forces. The outedsithe formation of fully nonlinear
patterns presenting fingers that assume a teardrop-likesaad eventually tend to be detached
from the main body of the rotating fluid characterizing a prodf phenomenon.

A generalized set of exact steady shapes can be obtainedawt@nfined ferrofluid, or a
MR fluid droplet is subjected to a radial magnetic field. Ashe tentrifugally-driven case,

the radial field acts to destabilize the system. In these etapgdrodynamic situations the
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emerging stationary solutions result from the balance ofrdegal, capillary, magnetic, and
viscoelastic effects. Within this context, different mbgbogies have been found including
starfish-like [24] structures, and bulgy polygonal shagé€s.|

As in Refs. [24, 40, 68, 98] we apply a vortex-sheet formal[94 95] to get the exact
stationary shapes obtained when a rotating droplet of armhfnagnetic fluid is subjected to
an azimuthal magnetic field. This type of exact solutionslmafound by imposing a condition
of zero vorticity ( = 0) plus considering a stationary statp(/ds|in = 0¢/0Sout = 0) in
Eq. (3.31). Under such circumstances, we find that the aurwaif the magnetic fluid interface
satisfies a nonlinear ordinary differential equation whiaeh be readily integrated yielding

K(r,cosy) = a+ Xr—l\le[quxcosz Y]

S
+ Nar®—Sor+ =,
(3.32)

wherea s a constant of integration. In Eq. (3.32) we have useg = +cosy. The main pur-
pose of our study is to investigate the fully nonlinear fanaf planar curves whose curvature
has the general form given by Eq. (3.32). Different morpbae can be obtained by manip-
ulating the relevant control parameters of the problem,elaig, x, No, S, S, the constant
a, and the specificationg = r(s= 0), ¢o = ¢(s=0), andyp = Y(s= 0), wheres denotes
the arclength. For a more detailed account of the numeraiceach used to solve the type of
differential equation leading to (3.32) we refer the readdref. [98].

A relevant aspect about the type of exact solutions we stedg refers to their stability.
The great majority of the exact steady shapes computed m 22, 40, 68, 98] are unstable.
The only exception is the somewhat exotic shape presentisgjike protrusions presented in
Ref. [13]. Here, however, we have at our disposal tunableilsting effects provided by the
azimuthal magnetic field and field-induced yield stress. hilvithis context it is of interest
to examine how these controllable effects can affect thigilgtaof the exact solutions. The
analysis of the stability of these steady exact solutionidbgiexamined in Sec. 3.2.3. Another

important point is related to the usefulness of the exaeistshapes, and how their morpholo-
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Figure 3.7: Typical stationary shape solutions for a Nevaoferrofluid droplet$ = S=0),
and three different values of the rotational Bond numidgr The intensity of the magnetic

Bond numbeiNg increases from left to right.

gies compare to corresponding time-evolving patternsiodteby numerical simulations [21].

3.2.2.2 Newtonian ferrofluid

We initiate our analysis of the possible exact stationagpsis by focusing on the situation
in which the magnetic fluid is a Newtonian ferrofluid, so thielg stress effects are negligible
(S =S=0). This is related to the situation that has been examind®ein [21] where the
time evolution of a ferrofluid rotating droplet has being @ésed numerically. To investigate
the role played by the magnetic Bond numbigron the shape of the patterns, in Fig. 3.7 we
present a prototypical compilation of possible exactstetry solutions for three distinct values
of the rotational Bond numbeNg=22.5 (first row)No=27.5 (second row), ando=30 (third
row). For a giverNg the magnitude oNg increases from left to right:.6250< Ng < 7.3731
(first row), 43485< Np < 4.4090 (second row), and4529< Ng < 3.4680 (third row). The

rest of the parameters assume the following valyes:0.5, Yo = 11/2,ro = 1, and the arbitrary
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constant = —21.0786.

Before proceeding, we call the reader’s attention to twodrtgnt points: first, we em-
phasize that the set of patterns illustrated in Figs. 3.7 3aBdepresent a series of separate
stationary shapes, ambt a time evolving sequence of events. In addition, as it is eppa
from these figures, the areas of the various patterns areeeessarily the same. To circum-
vent the constant area constraint, as in Ref. [40] we coewtliyichoose a characteristic radial
distanceg as a parameter to rescale lengths in our problem. The pagargeian be taken as
either the minimum or the maximum radial distance definedafgiven stationary shape [98].
For each exact pattern, the unperturbed raBiissdetermined by the circle of equivalent area.
All this is done without loss of generality.

The stabilizing nature of the azimuthal field is quite evidarkFig. 3.7: regardless the value
of Ng, the number of fingering structures tend to decrease froml5a&Ng is increased. For
lower values of the rotational Bond numb&ig=22.5) one observes the formation of patterns
containing smooth fingers which are relatively thick at tieecks". As centrifugal effects
increase in intensityNg=27.5) the fingers are more powerfully pushed outward, amhén
necks develop. If such effects are further increadeg=B0) bulbous fingers having very thin
necks (which are about to pinch-off) arise. Of course, ifnelaeger values oNg are used the
interface boundaries would overlap, representing nonpalysolutions.

For any given value dilg the central part of the segments connecting adjacent fingeds
to be flattened out alg increases, changing from concave to convex. This is redperns
the formation of small bumps of fluid between neighboring dirsg Despite the fact that all
these patterns represent stationary (equilibrium) shapmesequilibrium structures that have
been previously obtained in Ref. [21] for the time evolutafrthe system are recovered: for
instance, single fingered (“diamond ring") patterns, anofdtd morphologies with a bump in
the middle can be readily identified in Fig. 3.7 for higherued ofNg. In real experiments
and time-evolving numerical descriptions the initial ctiizehs are usually nonsymmetric, so
that fingers compete and advance over others. Howevernitssemsonable to speculate that if
one runs numerical simulations like those performed in R4f] with non-random noise, and

instead used a symmetric initial disturbance, the regylime evolving patterns would look
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Figure 3.8: Typical stationary shape solutions for a MR ftiraplet, and two different values of

the zero field yield stress parame8r Both Ng andNg are kept fixed, while the field-induced

yield stress paramet&increases from left to right.
similar to the steady state structures depicted in Fig. 3.7.

3.2.2.3 Magnetorheological fluid

We move on by investigating the influence of viscoelastic magnetically-induced yield
stress effects on the shape of the exact solutions. In coddw that, in Fig. 3.8 we turn to the
situation in which the confined magnetic liquid is a MR fluidh, 8ow both the zero field yield
stress paramet&, and its field-induced counterp&tvill assume nonzero values. Here we fix
the value of the magnetic Bond numbBlg(= 3.4529), and consider two different characteristic
values forSy: 40 (first row) and 50 (second row). On the other hand, thee@locreases from
left to right: 28458 < S < 30.352 (first row), and 3906 < S< 40.352 (second row). The
rotational Bond number is fixed Bk,=30, and all the other parameters are the same as the ones
used in Fig. 3.7. Under such circumstances, any changeg ishidippe of the patterns can be
attributed to the yield stress effects introduced by thampaterssy andS.

By inspecting Fig. 3.8 one can immediately notice that theghologies obtained for MR
fluids are considerably different from those of ferrofluifigy( 3.7). The resulting exact shapes
constituteN-fold structures, where the number of fingers decrease ligetaalues os. More-

over, asSis increased more and more fluid is concentrated around thenttcarrying wire
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(center of the droplet). This occurs because the effecteattracting magnetic body force is
now supplemented by the stabilizing field-induced yieldsdrwhich is inversely proportional
to the squared radial distance to the wire. One of the mosieavifeatures for the patterns
obtained forg = 40 is the fact that they look a bit “swollen" as compared tosthobtained
in Fig. 3.7. AsSincreases the segments connecting the resulting shortrdinged to bulge
outward, leading to morphologies not really characterizg@ neck formation. For example,
for one-, two-, and threefold structures there is so muchl fncated around the center of the
drop that only slightly protruded structures emerge. H@vewhenS, = 50 still another kind
of shapes arise, now showing a lot of MR fluid concentratedénldulk, connected through
necks to small droplets which are not as inflated as the orseedd in Fig. 3.7 foNg = 30.
Unfortunately, to date there are neither experiments moe &volving numerical simula-
tions for MR fluid droplets in rotating Hele-Shaw cells, sattive could compare their specific
shapes to the exact stationary solutions depicted in R8g.Far the same reasons as those dis-
cussed at the end of Sec. 3.2.2.2, it would not be completgpyrising to find morphological
similarities between the steady patterns shown in Fig. BBeventual time evolving shapes

simulated for symmetric initial conditions.

3.2.3 Mode-coupling approach and the stability of the exacsolutions

Impelled by the morphological similarities found betweemme of the exact stationary
solutions discussed in Sec. 3.2.2, and the time evolvingeshabtained in Ref. [21], we employ
a perturbative mode-coupling approach [61] to gain anadyinsight about the stability of the
exact stationary solutions. In this context, the statipragproximate interface obtained with
a weakly nonlinear analysis can be compared with the fullylinear exact steady shapes, as
long as the lengths of the fingers are not too large. We didouskat extent a few perturbative
orders can account for the entire exact solution and hencestain truncation in the number
of Fourier modes involved can be regarded as a good repetgenof the exact shapes.

Within our mode-coupling approach the perturbed shapeeirterface can be described

asZ(¢,t) = R+{(,t), wherel (¢,t) = S+  n(t)exp(ing) represents the net interface
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Figure 3.9: Newtonian ferrofluid situation. Left panel: k@sFourier amplitudes as a function

of the azimuthal mode number Right panel: comparison between exact and weakly nonlinea

(WNL) solutions for the steady interface shape.

perturbation with complex Fourier amplitudég(t), and discrete azimuthal wave numbars
The zeroth mode is included in the Fourier expansion to kkegatea of the perturbed shape
independent of the perturbatidn

We define Fourier expansions for the velocity potential, asel the boundary conditions
presented in Sec. 3.2.1 to expres terms of, to obtain a dimensionless mode-coupling
differential equation for the system (for# 0), accurate to second-order in the perturbation

amplitudes. We present the evolution of the perturbatioplandes as

i = AN
+ Z [F(n,n) {wln_w +G(n,1) Zn’Zn—n’]a
n'=£0
(3.33)
where the overdot represents a total time derivative wipeet to time,
B 2Ngx (n°—1) S S
A(n)=n| |:2NQ = =3 RR
(3.34)
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Figure 3.10: Magnetorheological fluid situation. Left pneosine Fourier amplitudes as a
function of the azimuthal mode numberRight panel: comparison between exact and weakly

nonlinear (WNL) solutions for the steady interface shape.

denotes the linear growth rate, and the functiéris,n’) and G(n,r’) are the second order

mode-coupling terms given by

F(n,n) = %{NQJrX%\If[Bern’(n’—n)]
_ %[1—%/(3n’+n)}+%}, (3.35)
and
G(n,n') = %{|n|[sgr(nr() —1]—1}. (3.36)

By examining Eq. (3.34) for the linear growth rate, it is clé¢aat the only destabilizing
term is the one related to the centrifugal driving. Azimutield, surface tension, and yield
stress effects act to restrain interface deformation. €hmg appearing in the expression for
the functionF(n,n’) in Eqg. (3.35) arise from the centrifugal force, magnetic legubfield,
surface tension, and field-dependent yield stress, résplyct The term proportional tg?
comes from the square of the projection of the interface mbrmthe azimuthal direction in

the pressure jump condition [Eq. (3.27)]. The funct®m,n’) defined in Eq. (3.36) couples
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Figure 3.11: Left panel: 2D phase portrait. Right panel:etievolving weakly nonlinear pat-
terns (solid interfaces) for two different initial conditis (1 and 4). The dashed interface repre-

sents the saddle point associated to the MR fluid weakly neatipattern shown in Fig. 3.10.

the perturbed fIOV\Z with the interface shape perturbatignand presents no dependence on
magnetic effects. Already at second order, and by usinggjisiv modes we are able to obtain
stationary solutions of small perturbation amplitudes.

Figure 3.9 illustrates a comparison between exact stafy@sieapes and the weakly nonlin-
ear (WNL) steady solutions obtained from Eq. (3.33). We béyyi focusing on the threefold
ferrofluid pattern presented in the first row of Fig. 3.7 foriethNg = 22.5. For this lower
value ofNq the exact shape is not very perturbed, so that the interfasiign is a single val-
ued function of the azimuthal ang¢e and the weakly nonlinear approach can be applied. Note
that for higher values dflo shown in Fig. 3.7 the resulting patterns become too defoysed
that a Fourier analysis is no longer valid.

The left panel in Fig. 3.9 presents the absolute value of tstne Fourier amplitudes,
for various modes. The data represented by the bars in black are extractectlgifeom the
fully nonlinear threefold pattern in the first row of Fig. 3The cosine and sine amplitudes are
defined as, = {n + {—n, andb, =i ({n — {_n), respectively. As expected from the symmetry
properties and commensurability of the exact solutiorsntlagnitudes of the sine amplitudes
are much smaller than the cosine ones (typically one thalisares smaller), so that they can

be safely neglected. The Fourier spectrum of the exactisaldemonstrates that the cosine
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amplitudes drop quickly as is increased, in such a way that it is very well described Hy on
three harmonic modes, namely, 2N, and 3N, whereN = 3. The open circles express the
approximate values of the stationary cosine amplitudesamgidering the interplay of these
three particular Fourier modes, using the mode-couplingaggn (3.33) and setting its time
derivative terms to zero. Note this procedure is equilagéakpanding Eq. (3.32) up to second
order in the perturbation amplitudes.

The right panel in Fig. 3.9 contrasts the exact shape andtdétiersary weakly nonlinear
solution by utilizing the data shown in the left panel. Bypesting Fig. 3.9 we see that the
weakly nonlinear theory works reasonably well in approagtihe exact interface shape, even
though only three modes are used at the lowest nonlinear.o8lmilar type of results can
be obtained by considering the coupling of only three mode#ffold patterns withN > 3.
However, for the stationary shapes in Fig. 3.7 presentirgaonwo protusions, a good weakly
nonlinear representation of the exact solution requirestimsideration of a higher number of
participating modes (five modes for the twofold pattern, mimé& modes for the onefold shape).

Similarly to the case of ferrofluids, Fig. 3.10 depicts thédaor of the cosine Fourier
amplitudes for varying (left panel), and the comparison between exact and weakliymear
shapes (right panel) for a magnetorheological fluid. We icemghe fourfold exact pattern in
the first row of Fig. 3.8, and describe the weakly nonlinedutsan by assuming the coupling
of three modes\, 2N, and 3N, whereN = 4. Here the general conclusions are analogous to the
ones we have presented for the ferrofluid case (Fig. 3.9}hkbuaccordance between exact and
weakly nonlinear solutions are even better for the MR flutdation. This is due to the fact
that, in addition to the stabilizing role played by the ap@lazimuthal field, the field-dependent
yield stress contributes to the emergence of further stabliilmorphologies. Once agaisfold
patterns withN > 3 are very well described by considering three harmonic mot®wever,
for N =1 andN = 2 a larger number of modes is necessary for a satisfatorylywaaklinear
description of the exact shapes (four modes for the twofaltkepn, and eleven modes for the
onefold shape).

Now we turn to one last, and important aspect related to ti@lgy of the stationary solu-

tions. Despite the stabilizing role of both applied azinalfield and magnetic field-dependent
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yield stress, we have verified that the steady solutions as¢able. This is done by setting
a system of nonlinear differential equations for three mesiarmonic modeN, 2N, and 3N,
and by using the mode-coupling equation (3.33). Throughaadsird linearization process
close to the stationary solution, we diagonalize the regpitystem of equations, determining
the eigenvalues which dictate the stability of the fixed p§&®]. For any given pattern we
have two negative eigenvalues, and one positive, chaiaoggia 3D saddle-point. Within this
scenario we find that the unperturbed (circular) interfadedeed stable. Therefore, if one per-
turbs a stationary solution it can either relax to a circlewrlve to an increasingly deformed
multifingered pattern whose resulting fingers ultimatehdtéo pinch-off. These generic fea-
tures are similar to what has been observed in Refs. [13,d88hé exact stationary solutions
obtained in rectangular and rotating Hele-Shaw problentis monmagnetic fluids.

The characteristic unstable signature of the stationdrytisas is illustrated in Fig. 3.11.
On the left panel we show a projection of the phase portraét 2D subspace determined by two
eigenvectors of the stationary solution, which establtable and unstable directions. These
directions are indicated by dashed lines. The dot filled actkkcorresponds to an attractor, and
it is associated to the stable circular interface. On therotfand, the white dot represents a
saddle-point which refers to the fourfold MR fluid weakly tiaear pattern shown in Fig. 3.10.
The solid curves represent the trajectories of the systesuoh 2D phase space for different
initial conditions close to the saddle-point. The remagndlots (1-2-3, and 4-5-6) exemplify
subsequent time evolving events determined by initial d@ms 1 and 4. The right panel
depicts the weakly nonlinear shapes related to the path8,1ad 4-5-6 shown on the left
panel. In addition, the dashed pattern refers to the sgutulg-situation. It is evident that
above the basin of attraction of the stable node the fingea&ténps tend to grow (trajectory,
and patterns 1-2-3), and below it they move toward a stabdelleir interface (trajectory, and
patterns 4-5-6).

We stress that the nontrivial exact stationary shapes way stuthis work are obtained
under circumstances associated to a linearly stable regithés means that is not possible
to obtain these exact steady shapes from the time evolufiannearly circular initial state.

However, if one sets an initial condition sufficiently clasethe stationary solution, a slowing
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down of the dynamics would be detected leading to a circle@@rowing fingers. It is also

worth noting that all the stationary solutions found in tbligpter are indeed unstable.
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CHAPTER 4

Darcy’s law formulation for Bingham fluids

It is well known that when a less viscous fluid pushes a moreowus one in the confined
geometry of a Hele-Shaw cell, the interface separating thesfldevelops the Saffman-Taylor
instability [1] leading to the formation of fingerlike pattes [2]. The specific morphology of
these patterns depend on the nature of the fluids, and on timesgey of the flow. Most of the
existing studies on the viscous fingering instability reteNewtonian fluids. In this case, the
resulting interfacial shapes range from a single, smoagady-state finger in rectangular (or,
channel) geometry [92, 94, 114, 115, 116, 117, 118, 119,, 1@0hulti-fingered structures in
which repeated tip-splitting produces highly ramified gats in the radial flow setup [61, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130, 131]. Theserpdtieming phenomena have
been extensively studied during the last fifty years throaghlytical calculations, numerical
simulations, and experiments.

Although not as numerous as in the Newtonian fluid case, étetr-Shaw flow investiga-
tions have revealed that a distinct variety of patterns @afobmed when one of the fluids is
nonNewtonian [132]. While Newtonian fluids are characestiby a constant viscosity, non-
Newtonian fluids display a multiplicity of hydrodynamic l@fors ranging from elasticity and
plasticity to shear thinning and shear thickening, and imegal have a shear-dependent viscos-
ity.

The rheological properties of nonNewtonian fluids exert afquind effect on the shape
of the emerging interfacial patterns in Hele-Shaw flows. tRegular and radial Hele-Shaw
experiments involving nonNewtonian fluids like polymerwgans, liquid crystals, clays and
foams unveiled pattern morphologies presenting snowfi&keshapes [133] and fracturelike
structures [134, 135]. For shear-thinning fluids tradisidimger tip-splitting events are inhib-
ited, and the appearance of dendritic patterns with sidechiag is favored. Cracklike patterns

presenting angular branches and sharp tips have also beeah fOn the other hand, flow with
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shear-thickening fluids [136] displays patterns similathtose found in Newtonian fluids but
with either narrowing or widening of the fingers, which caeggnt asymmetric humps. This
morphological diversity and rich dynamical behavior mated a number of theoretical stud-
ies of the problem through linear and weakly nonlinear aredy and sophisticated numerical
simulations [137, 138, 139, 140, 141, 142, 143, 144, 145].146

Despite all the efforts and important results obtained sgaechers on the development
of viscous fingering in nonNewtonian Hele-Shaw flows, thegratforming dynamics with
yield stress fluids has been relatively underlooked. Inre@hto Newtonian fluids, yield stress
fluids [30, 31] can support shear stresses without flowingloAg as the stress remains below
to a certain critical value they do not flow, but respond &a#ly to deformation. So, such
materials possess properties of both viscous fluids antieksids, behaving like a “semi-
solid". On the theoretical side, a linear stability anadysf the Saffman-Taylor problem in
rectangular and radial cells with yield stress fluids [3% peedicted that the instability can be
drastically modified. On the experimental arena some istierg findings have been disclosed
in channel geometry [33, 34]: depending on whether visctiasts or yield stresses dominates,
fractal patterns, or ramified structures where multipledisgoropagate in parallel may arise.

In a more recent experimental work [147] fingering in a yidless fluid in rectangular as
well as in radial Hele-Shaw cells has been examined. As in[B&f34], different regimes lead-
ing to diverse pattern morphologies have been observedwatélocities (where yield stress
dominates) ramified structures arise; however, for higkeéraities (viscous effects prevail), in
addition to tip-splitting, interesting side branchingtadsilities become apparent. Although the
behavior at the low velocity regime can be quantitativelglained from the linear stability re-
sults presented in Ref. [32], the nonlinear side branchimtfjtgo-splitting instabilities detected
at higher velocities are not fully understood to date. Sdyemtetical study addressing these
suggestive pattern forming phenomena in yield stress flaigsll lacking.

In this Chapter we carry out the analytical weakly nonlinaaalysis of the problem in
which a yield stress fluid flows in a radial Hele-Shaw cell. \Weus on the regime in which
viscosity effects are prevalent over yield stress. By enpipthe onset of nonlinear effects we

try to gain analytical insight into the dynamic process oféring formation. In particular,
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we seek to understand how mode-coupling dynamics leadssto tmarphological features and

behaviors observed experimentally in such nonNewtonida-Beaw flows [147].

Q Newtonian fluid

Yield stress fluid

Figure 4.1: Schematic configuration of radial flow in a Hele® cell. The inner fluid is
Newtonian and has negligible viscosity. The outer fluid iseddystress fluid. The unperturbed
fluid-fluid interface (dashed curve) is a circle of radRisAll physical parameters are defined

in the text.

The Hele-Shaw cell is depicted in Fig. 4.1 and consists ofgamallel plates separated by a
small distancd. Consider the displacement of a nonNewtonian fluid of vidgag and yield
stressagg, by a Newtonian fluid of negligible viscosity in such confirggbmetry. The surface
tension between the fluids is denotedybylhe Newtonian fluid is injected at a constant areal
flow rateQ at the center of the cell, along the direction perpendicalahne platesz-axis).

We focus on deriving the relevant hydrodynamic equatiorafétele-Shaw flow of a yield
stress fluid. Our main goal is to obtain a Darcy’s like law whielates the gap-averaged ve-
locity with the pressure gradient and the yield stresspkito account the coupling between

them. We start by taking the Navier-Stokes equation for annmpressible viscous fluid [148]
p{%-l—(uﬂ)u} =_-0OP-0-T, (4.1)

wherep is densityu denotes the three-dimensional velocRys the pressure, andrepresents
the stress tensor that includes the yield stress. In theesabihe lubrication approximation,

where the distance between the pldtes much smaller than the unperturbed radiusf the
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fluid-fluid interface, the motion is a creeping flow. Therefowe may neglect the inertial terms
between square brackets in Eq. (4.1), as well as imposehbairevailing terms il - T are
those with transversal derivatives. Within this framewosle also consider that pressure is

constant along the transversal directiarakis). Thus, by integrating (4.1) we obtain

b
Tiz = ‘E—Z LiP, 4.2)

wherei = r, 8 is the label that indicates polar radial or azimuthal congmds, with the origin
placed at the center of the droplet. We have used the symmkthe flow to state that the
shear stress is zero at the mid-plare b/2 (since the plates are locatedzat 0 andz = b).

Furthermore, as a constitutive relation for yield stresgéluwve use the Bingham model [132].
It states that, for a given shear stress higher than the fieid gtress magnitudep, there is

flow and the stress tensor is given by

ou;
Ti = — —_ gil . 4.3
iz {I’] 97 + |} (4.3)
This situation corresponds to| > 0, where|T| = /13 + T3,. We point out that, in contrast

to previous works [40, 41, 85, 149], here we allow the yieldssd to exhibit botlr and 6
polar components, in such a way that its response is now dpgoghe stress tension. This
is precisely what will allow us to couple the yield stresshe velocity direction by the end of
our derivation. From Eq. (4.2) we see that the stress tensiparallel to pressure gradient and
we may writeg; = —op TiP/|0P).

On the other hand, ift| < gy, the shear stress do not overcome the yield stress, thues ther
is no flow

% =0, (4.4)

meaning that; = —T1j,.

Since the problem is symmetric with respect to the mid-plareb/2, we may assume

0 < z< b/2 for simplicity. From Eq. (4.2) we find the critical height which separates the
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sheared region from the unsheared region

- % (4.5)

Zc= :
0P|

NI T

Then, by using Eqg. (4.2) and the profile velocity continuity & z., it is possible to determine

the velocity profile for both regions

= _¥[z<zc—g)} for0<z<z,
u = —%%forzcgzgg.

(4.6)

It is well known that this velocity profile cannot be exact thiferent kind of flows [150, 151,
152]. However, the expression given by (4.6) is a good appration when one only seeks the
relationship between the pressure drop and the mean we[82it, which is exactly our case.

We define the gap-averaged velocity as
1 b
V=-— / udz 4.7)
b Jo

and by gap-averaging (4.6) we finally obtain a dimensionfesdified Darcy’s law for yield

stress fluids

) 458
v=-0P|1- + . 4.8
[ | 0P| ZWDPP] (48)
The dimensionless parameter
TtogbR¢
= 4.9)
21Q (

is a modified plasticity number, and quantifies the ratio leetwyield stress and viscous forces.
Hereafter, we také as positive (sinc€ > 0) and refer to it as the yield stress parameter. We
point out that, in Eq. (4.8) lengths and velocities were atest byR; andQ/(2mRy) respec-
tively, whereRy is the radius of the unperturbed interface att;. From this point on we use

the dimensionless version of the equations. Our Eq. (4.B) agreement with the results of

95



Ref. [149] which studied the simpler situation involvingthurely radial flow of a perfectly
circular droplet.

Since we are interested in examining the interface destabdn process, we consider the
regime where viscous forces prevail over the yield stresisflaw is facilitated, which corre-
sponds tod < 1. Therefore, we may neglect the third order termdishown in Eq. (4.8).
Moreover, since (4.8) states that velocity is parallel ®phessure gradient, we may rewrite it
in a more convenient way as

OP=—v [1+%} (4.10)

Equation (4.10) is an alternative form of Darcy’s law idgallited to describe the Hele-Shaw
flow dynamics in the weak yield stress regime. The usual Nel&toDarcy’s law is recovered
when we se® = 0. This equation was used in [42] to investigate the intéafdnstabilities
that take place when a Newtonian fluid redially displaceseddystress fluid. We address the
reader to this reference in order contemplate the diffarerphological features exhibited by
the model for this particular case.

We close this section by calling the reader’s attention targortant distinction between
our current results and the ones obtained in Ref. [140]. Koeial.[140] studied a nonNew-
tonian model where shear-thinning fluids were analyzed.héir twork, a theoretical model
for a shear rate dependent viscosity results in generabeedy’s law [their Eq. (2)], which
is distinct from our Darcy’s law [Eq. (4.10)] for yield stedluids. It should be emphasized
that we do not propose a shear-thinning model, i. e., a sleggmdient viscosity to a nonNew-
tonian fluid. Rather, we seek for a Darcy’s law to a yield striasid, a nonNewtonian fluid
that can support shear stresses without flowing, and derseaific modified Darcy’s law
[our Eg. (4.10)] to describe flow of such a fluid in the confinedpetry of a Hele-Shaw cell.
Moreover, contrary to what is done in Ref. [140], our apploaonsiders a Bingham model

[EqQ. (4.3)] wheren denotes a Newtonian (constant) viscosity.
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CHAPTER 5

Phase-field approach

Diffuse interface methods have become popular tools fosjglay modeling of multiphase
systems with and without flow. Among them, the phase-fielchoghas emerged as a widely
used technique to numerically simulate complex interfgudtern formation processes. Dif-
fuse interface models are built on the notion that the iatertbetween the phases is not a sharp
boundary, but has a finite width and is characterized by rapidsmooth transitions in the
density, viscosity and other physical quantities. In pHasd models, a non-conserved order
parameter, the phase fief is introduced to describe the phase transition. It hastaahsal-
ues inthe bulk phases (e.qg., in this wobks= +1 in one bulk phase arfdl= —1 in the other) and
varies smoothly across the diffuse interface regieth € 8 < +1) in a hyperbolic tangent or
similar fashion. The propagation equation for the phased {ied., the phase-field equation) and
the relevant conservation equations are derived from tbhédymamically consistent theories of
continuum phase transitions that account for the gradieetgy across the diffuse interface.
The most appealing feature of the phase-field method is thgbeerning equations can be
solved over the entire computational domain without anyiarpknowledge of the location
of the interfaces. Interface tracking is completely avdided topology changes are handled
naturally without the need for any special procedures. Ehengh interface curvature and
normal direction are not explicitly evaluated, the phas&dfmethod is especially well suited
for problems in which the interface motion depends on gradief an external field normal to
the interface and on the local curvature of the interface.

This method introduces a mesoscalewhich is not present in the original macroscopic
equations and determines a finite thickness to the interf&8seconsistency, this parameter
must be the smallest length scale of the problem. The equsatce then chosen in such a
way that the original bulk equations (or sharp interfaceagigns) and boundary conditions are

recovered in the — O limit. Therefore, the phase-field equations for a given et@de not
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intended to describe the true mesoscale physics of thensyatel are then not unique.
In a general point of view, we may reproduce a static interfaetween two fluid phases

confined in two dimensions by relaxing the phase-fi¢las
£20,0 = (0) + £200°6, (5.1)

wheref(8) is a function chosen to reproduce the desiBechlues at the distinct fluid phases.
We takef () = 6(1— 62) in order to reproduce the bulk phases as the vafuest+1. Then,
Eq. (5.1) becomes a Ginzburg-Landau equation for a nonceegerder parametét. The 6
field in this model is known to diffuse towards a kink solut@ia certain width in a short time
scale.

Lets for instance set as initial condition to the phase-fie&following step functionf =
+1 for the inner phasp > 0, and@ = —1 for the outer phasp < 0, wherep is the normal
distance to the arbitrary initial interface and it is pastinwards. After relaxing this initial
condition using Eq. (5.1), we obtain as the leading ordertam [43, 153]0 ~ tanHp/(ev/2)].
Notice that this solution indicates thaP points at the normal direction to the interface at the
diffuse region between the phases. Moreover, the intedanebe tracked by taking the curve
6 = 0 and its introduced thickness is of the ordeedin fact, if we define the diffuse interface
as—0.9 < 8 < 0.9, its width is given by-1.5 £v/2 < p < 1.5 £4/2). However, this kink profile
keeps evolving towards the minimization of the length of éfffective interface with normal
velocity proportional to the local curvature (i.e., acaagito Allen-Cahn law [43]). This issue
leads the interface to a curvature flow, causing the loss aé@lfi. e., loss of fluid mass), and

will be further discussed in the following section.

5.1 Viscous fingering in usual Newtonian fluids

A consistent phase-field model suitably developed to repredhe viscous fingering dy-
namics of usual Newtonian fluids was originally proposed ley. R43]. In their work, they

introduce an additional term in Eq. (5.1) in order to canc#ltbe local Allen-Cahn dynamics
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of the interface, and maintain the hyperbolic tangent grafihile the interface moves. This
solves the problem of mass conservation at each phase andesa correct normal velocity at
the boundary in between them. In this section we will briefiynenent some important aspects
of this model, so later on we may use it as a reference for ustingering in complex fluids.
First of all, we must set the original dynamical equationd boundary conditions at the
sharp interface H-S problem, and only then find out their prgghase-field equations. The
original sharp interface equations for the flow of two imnitiée viscous fluids in a Hele-Shaw
cell may be written in terms of a stream function, i. e., theri@nic conjugate of the velocity
potential. Since the fluids are taken to be incompressible;, = 0 holds at the bulk of each
fluid and we may define the scalar stream functjofor each fluid av = O x (¢ z), wherez
is the unitary vector at the direction perpendicular to th8 Hlates. The fact that the stream
function is continuous at the interface makes the use ofvduigble particularly convenient.

The Hele-Shaw equations in stream function formulationkmmwritten as
0w =—T 3(p), (5.2)

wherel” represents the vortex-sheet strength between the flijgg,is the Diracd distribution
andp is the normal distance to the interface. The paranieieevaluated at the interface as the
discontinuity of the tangential components of the outg) &nd inner ¥,) fluid velocities, i. e.,

Ir = (v2—V1) - sat the interface, wheredenotes the unitary vector tangential to the interface.
As a matter of fact, the proper boundary conditions to theaig} field across the interface,
Egs. (1.3) and (1.4), are already taken into account in ER).(Moreover, by utilizing Darcy’s

law [EqQ. (1.2)] we may rewrite the vortex-sheet in terms @& sitream function [43]
[ =y+A(GhY2+dntn), (5.3)

wheregd, is the derivative at the normal direction to the interfaceé Ar-= (N1 —n2)/(N1+n2) is
the viscosity contrast between the fluids. Therm comes from the tangential pressure gradi-

ent difference at the interface and is determined by thespresboundary condition [Eqg. (1.5)].
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At the absence of external forces we have

ob?

————— 0K, 54
12(n1+n2) ° -4

y=2
where g is the surface tension, arddk is the derivative of the interface in-plane curvature
along the tangential direction. If there were any discaritias caused by external forces, such
as centrifugal forces [9], they would also appear here iryteepression.
Now we have set the sharp interface equations (5.2) and, (8&e3nay write the phase-field

relaxation equation fog as

(1-6?)
2\2e

g0 =DPY+AD- (60Y) +y (5.5)

Here, the right hand side corresponds to the Poisson eguat(®.2) at the limite — 0. The
Dirac & function peaked at the interface that appears multiplied/lwas substituted by a
smooth phase-field functional peaked®g- 0, namely(1— 62)/(2v/2¢). Moreover, the sec-
ond term on the right hand side accounts for the normal deresthat appear multiplied b,
sinceJ0 points at the normal direction to the interface. The timevag¢ive d; ) was added to
introduce a rapid relaxation fap, so¢ is also a small artificial parameter that defines the char-
acteristic diffusion time. This equation is in accordaneéhteir original boundary conditions

and the following generalized function

ob?
=2——— s-[K. 5.6
Y 12(n1+n2) (56)

Furthermore, the time evolving equation for the phase-fiisigiven by

£20,0 = £(0) + £20%0 + £2k(0)|06| — €2V - 018, (5.7)

where

V=0Ox(y2) (5.8)

is the phase-field advective velocity, ah(®) = 8(1— 62). The generalized phase-field de-
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pendent curvature is given by

K(8)=-0-n(8), (5.9)
where
0e

is the normal unitary vector, and the tangent vector is gben
S(8) =n(0) x z. (5.11)

By comparing Eqg. (5.1) with Eq. (5.7) we notice that two extgans were added to the later.
The terme?k (8)|06| was introduced to cancel off the Allen-Cahn law by killing tleading
order contribution of the spurious curvature flow. Therefor makes thé kink profile stable
to any interface shape and keeps the mass balance betwegha$es. The last term on the
right hand side of Eq. (5.7) simply sets the proper normaicigf to the interface according to
the dynamics ofp.

We stress that the phase-field equations (5.5) and (5.7) eagefully set in order to re-
produce the original moving boundary problem at the shamgrfimce limite,€ — 0. This was
carried out in Ref. [43] by expanding the outer and inner preguations in powers af and

performing an asymptotic matching between them.

5.2 Viscous fingering in magnetic fluids

We turn now our attention to the viscous fingering problemmvateleast one of the fluids
happens to be a magnetic fluid. Both fluids are assumed to leenpressible and obey a
generalized Darcy’s law that can be written as a potential, fés in Egs. (2.2) or (3.6). The
sharp interface equations of this moving boundary probleay be set in terms of the velocity
potential as shown in Egs. (3.11), (3.12) and (3.13). Wectaldo reformulate the problem
in terms of its stream functiogy and it would look exactly like Eqg. (5.2), but with a different

expression for the vortex-shelet Therefore, there is no fundamental difference between the
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equations set in Sec. 5.1 and those written for the flow of ragfiuids, and we may use the
phase-field equations (5.5) and (5.7) to describe both ofithe

Lets take as a matter of simplification the case where fluid & Mewtonian ferrofluid
and fluid 2 is a nonmagnetic fluid. In this situation, the veisbeet strength is obtained by

using (2.1) and (2.4) i = (v — V1) - sat the interface. Thus, it can be written as

[ = O — On1 = Y+ A(On2+ dnin), (5.12)
wherey is given by
b HoxX?(H n)?  pHoxH?
=2———s-0|0K— — . 5.13
Y 12(n1+n2) 2 2 .13

In (5.13) we have also assumed that the ferrofluid magnetizad collinear with the local
magnetic field, i. e M = xH. In case our magnetic fluid was a MR fluid, we would also have
to include in (5.13) its magnetic field-dependent yield streontribution, as in Eg. (3.6).

The only missing part in our description now is how to deterentihe local magnetic field
H at the ferrofluid domain, since this is a nonlocal problent tiegpends on the interface shape.
For the case where the applied magnetic fig{chas already a natural gradient, as in Egs. (3.1)
and (3.24), we may consider the leading contribution to thle fyradient as produced by the

applied magnetic field itself, and ubke~ Hg in (5.13).

5.2.1 Ferrofluid in a radial magnetic field

Inspired by Refs. [24, 40] we have performed preliminary etical phase-field simulations
of a ferrofluid confined in a H-S cell and subjected to an apptedial magnetic field. The
setup is explained in Sec. 3.1 and can be visualized in Fig.vhere the inner fluid is now
a Newtonian ferrofluid and the outer fluid is a nonmagnetiafhfi negligible viscosity. The
aim here was to simulate Egs. (5.5) and (5.7), where (5.18lsulated usingd = %r F.

2K3
Moreover, we may rescale velocities % and lengths by in order to rewrite (5.13)
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in the dimensionless form
y=2s-0[Bk — x2(r-n)2— xr?, (5.14)

whereB = uiggbg is the dimensionless surface tension. This problem candreasea variation
0

of the centrifugally driven nonmagnetic viscous fingeriygne, with an augmented version

for pressure jump condition (2.4).

We have used a C based code to discretize our phase-fieldetgudb.5) and (5.7) using
finite differences in a semi-implicit in time scheme. In tkenario, we employ first order
forward in time and second order centered in space diffetaecapproximate the expressions
for the derivatives. For each time step the diffusive andeative terms in Egs. (5.5) and (5.7)
are calculated implicitly. The remaining nonlinear termestaken explicitly at the current time

step. For more details of our numerical approach see Sez.®.3
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Figure 5.1: Phase-field simulation of an initially pertutbferrofluid droplet subjected to a
radial magnetic field. Upper panels: phase-field plots imicetale for three different times,
wheref8 = +1 (8 = —1) corresponds to the inner (outer) fluid phase. Lower parstieam

function plots for the correspondent times in the uppersplot
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Figure 5.1 shows snapshots from the simulation of Eqgs. @n8) (5.7) for an initially cir-
cular droplet perturbed by a 4-fold mode. The upper pansislay the phase-fiel@ at three
different times:t = 0, t = 0.500 andt = 1.000, where the® = +1 phase (yellow colored)
corresponds to the ferrofluid and tBe= —1 phase (black colored) correspond to the nonmag-
netic fluid. The lower panels display the stream functjoat the three respective valuestof
We have used the following values for the numerical pararaete= 0.1, € = 0.01, time step
dt = 0.005, a grid of size 120x120 and square mégh- dy = 0.05. The relevant dimension-
less physical parameters are the viscosity confast).95, the dimensionless surface tension
B = 0.01, and the magnetic susceptibilpgy= 0.5.

The initial condition for@ is set asd = tanh(R+acos4p —r)/(ev/2)], where(r,¢) are
polar coordinates, the initial circular radiusks= 1.0 and the perturbation amplitude of the
fourth harmonic mode ia = 0.2. The stream function is set gs= 0.0 att = 0.0. Boundary
conditions at the walls are chosen tobe- —1.0 andy = 0.0, and correspond to zero normal
velocity for the outer fluid phase at the borders.

As we can see from Fig. 5.1, an initial perturbation of the soé- 4 tend to increase in
amplitude for early times and then saturate, making the fitige to get sharper and sharper.
This is in accordance with the linear prediction at (3.16]) also with the morphological fea-
tures of fully nonlinear stationary patterns in [24]. Weibe¢ that the presence of the normal
magnetization contribution at the pressure jump conditi4) is the main responsible for the
ultimate pattern morphology ih= 1.000, since this is the only difference between the cen-
trifugally driven viscous fingering and our case. In the algseof this particular contribution
(by taking out the term proportional i? in (5.14)) we would recover the centrifugally driven
result in which finger tend to grow and get broader, up to thetgbat pinching happens [9].

If we continue to run the simulation for later times, we neticsignificative loss of mass of
the inner phase. This may be occurring due to the high cumaglues the finger tips tend to
exhibit, leading the curvature radius to be of the ordeg,athich would violate the phase field
assumption that is the smallest length scale in the problem. More numeriea¢tbpment still

must be done in order to correct such issues.
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5.3 Actin-based motility of lamellar fragments

Lamellar fragments are pieces of lamellipodia, the actisda locomotion machinery of
crawling cells. These fragments have been shown to extpbittaneous, sustained motion
if properly deformed [35]. Despite its relative simplicity theoretical understanding of the
minimal ingredients to explain this phenomenon is stilkiag. A challenging question is how
the treadmilling dynamics of actin, which polymerizes a boundary, is coupled to the shape
of the fragment to sustain motion, in particular in the alogesf molecular motors. Recently, it
has been shown that in an appropriate approximation, thedi@atin satisfies Darcy’s law in
an effectively two-dimensional geometry [36], thus redigcihe dynamics to a free-boundary
problem similar to that of viscous-fingering in Hele-Shavls;ebut with different boundary
conditions [43].

Here we present a phase-field description of this free-bayngroblem, as a tool to numer-
ically integrate the fully nonlinear dynamics of this pretsl, aiming at a systematic study of the
different families of steady propagating solutions, ttstability and their basins of attraction.
Such a diffuse-interface method is known to have importdaaatages with respect to sharp-
interface methods (boundary-integral methods or confomagping techniques) in Laplacian
problems, in particular when interfaces adopt complex esbaplost importantly, their advan-
tage is most substantial when the viscosity of the displdicedl is not neglected, a common
approximation that may have to be relaxed in order to gain eemoantitative understanding
of the problem and its biological relevance. The main go#his study is to complement with
fully nonlinear numerical simulations the weakly nonlineaalysis done by using conformal
mapping techniches in Ref. [154].

A phase-field strategy has already been used before withia owmplicated models [155,
156]. The model we present concentrates on the effects piravlzation forces combined with
friction on the substrate and with membrane tension. Theratgsof molecular motors in the
description makes the model simpler and more amenabledodtieal discussion. Appropriate
convergence tests have been performed showing that thel magleantitatively accurate and

competitive with respect to other techniques. Our resualthe fully nonlinear regime confirm
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that actin polymerization alone can sustain motion, andigeonot only the families of stable

steady shapes, but also a first characterization of thaitivelbasins of attraction.

5.3.1 Problem formulation: sharp interface equations

Consider an initially nearly circular actin-based lameflfagment surrounded by a non-
active viscous fluid. The flow of both fluids takes place at deatively two-dimensional
geometry similar to a Hele-Shaw cell. Within this framewdte lubrication approximation is
valid and inertial terms are negligible. The effective wisities (or flow permeability) of the
fluids are denoted gsj, wherej =1 (j = 2) labels the inner (outer) fluid. Also, the fluids in
consideration are immiscible, and there exists a surfat@dro between them. In addition,
gravity effects happen to be along the transversal direatighich is neglected.

In this confined environment the flow is governed by Darcys [a7]

Hjvj = —0pj, (5.15)

wherep; denotes the pressure.
The inner lamellar fluid (fluid 1) is consumed due to actin dgmerization, which is mod-

eled into constant areal negative divergenggwhile the outer fluid (fluid 2) is incompressible

O.vy = —k, (5.16)

0-vp =0. (5.17)

Moreover, we assume that actin polymerization takes pladbeainterfacial boundary.
Therefore, fluid 1 is produced at constant velocity ngiealong the normal direction of the

interface. This assumption is specified by the following ffied boundary condition

(V2—V1)-n=—Vp, (5.18)
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wheren is the unitary normal vector to the interface and points isalt is worth noting that
usual continuity of the velocities’ normal component is;egred by setting the polymerization
velocity termv,, to zero.

The problem is completely stated in terms of the velocitylBddy deriving a boundary con-
dition for the tangential jump of velocities. This is doneusing Eq. (5.15) plus the pressure
jump condition due to surface tensipn— p, = ok, wherek denotes the in-plane interfacial

curvature. Following this prescription we derive

20

Vo —Vi)-S=
(V2=v1) M1+ H2

OsK +A(Vo+V1) S, (5.19)

wheresis the unitary tangential vector pointing counterclocleyisndA = (L — t2) /(U1 + U2)
represents the viscosity contrast.

Equations (5.16)-(5.19) defines the moving boundary prolwé€our system in which the
normal interface velocity is given by = vy -n—vp=Vvo-n.

It is useful to perform a change of variables in order to nefalate the original problem in
terms of tangentially continuous stream functions. To agaésh this goal we must redefine
a velocity field for the inner region such that Eq. (5.16) brees divergence-free. Moreover,
aiming to obtain normal continuity condition at Eq. (5.18) outer velocity field will also be

redefined. Therefore we introduce the following correspogdtream functions

0 x (lﬂ12> :V]_-l-gl’, (5.20)
0% ($52) = Vo + 09, (5.21)

wherez = s x n is the unitary transversal vector ands the two-dimensional position vector.
The scalar fieldp is defined at the outer region and it is determined by takiegdikiergence
of Eq. (5.21) and imposing continuity of the tangential cemgnts ofy; at the interface.
Therefore

D¢ =0, (5.22)

dnqozvargr-nza, (5.23)
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determinep at the outer region.
Furthermore, taking the curl of Egs. (5.20) and (5.21) ldads

D212 =0. (5.24)

Also, one may rewrite the boundary conditions (5.18) anti9pat the following forms

Osyn = O, (5.25)
On2 — O = Y+ A(Oh 2+ o), (5.26)
where
y_ (1—-A) _(1+A)I_<
5= Bosk + > s > 2r S, (5.27)
and
-9 (5.28)
M1+ H2

Equations (5.24)-(5.26) completely define the moving b@upgbroblem in terms of the
inner and outer stream functiongy and y» respectively, and they resemble Eq. (5.2). The

normal interface velocity is now expressed in terms of tmesefields a¥/y = dsy1 — (k/2) (r -

N) —Vp = OsP2 — On .

5.3.2 Phase-field equations

In order to numerically obtain the fully nonlinear dynamafshe moving boundary prob-
lem described in the last section, it is convenient to useraogous phase-field method to
that described by Egs. (5.5) and (5.7). We will use the aaryilfunction®, that reproduces a
diffuse-interface of thickness to rewrite the equations fap and¢.

Apart from the physical control parameteéksB, k andvy, the dynamics in this model also
depends on the artificial interface thicknesa relaxation time for the stream functiogy, and
arelaxation time’ for the potentialp, which may be taken in general as different for numerical

convenience. In the limit,€,e” — 0 the dynamics is strictly that of Egs. (5.24)-(5.26).
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We are able to write phase-field equations correspondingj$o (5.22) and (5.24) as

_n2
g'dhp=0%+ a(e)%, (5.29)
goy = Dzw-i—AD-(GDw)-l—y(G,(p)(l_92) (5.30)

2/2¢ ’
respectively. These equations are in accordance to thiginar boundary conditions and the

following generalized functions

a(0) :vp+gr-n(6), (5.31)
y(6) _ 1-A_  (A+AKk
5 = s(0)- |BOk(0)+ > Og 55 |-
(5.32)
The time evolving equation for the phase-fiélds given by
€200 = £(0) +£20%0 + £2k(0)|06| — €2V - 00, (5.33)
where
V=0x(y z)—l—<r—vpn(9) (5.34)

2

is the phase-field advective velocity, an(8) = 8(1— 62). The generalized phase-field de-

pendent curvature is given by

K(8)=-0-n(8), (5.35)
where
0e

is the normal unitary vector, and the tangent vector is gben

sS(8) =n(0) x z. (5.37)



We have arbitrarily chosen thel (—1) phase as the inner (outer) one. Accordingly to
this convention, the normal vector (5.36) points inwarts,tngent vector (5.37) points at the

counterclockwise direction, and the curvature (5.35) sifpe for a circle.

5.3.2.1 Dimensionless parameters

Now, we write down the dimensionless versions of our equatid_engths and velocities
are rescaled bRy = 2v,/K, andvp, respectively. Equations (5.29), (5.30) and (5.33) hodirth
original form. On the other hand, Egs. (5.31), (5.32) an@84pare rewritten as

a(6)=1+r-n(0), (5.38)

y(6) _ 5 (1-A) (1+A)
T_5(6)- BOk(0) + > Og 5|
(5.39)
V=0Ox(gz)—r—n(0), (5.40)
respectively, and ,
~ ok
B=———. 5.41
A1+ H2)V3 (5.41)

5.3.2.2 Numerical implementation

We follow [9, 153, 157] and use finite differences in a sempliigit in time scheme to dis-
cretize our dimensionless phase-field equations (5.280)&nd (5.33). In this scenario, we
employ first order forward in time and second order centemezpace differences to approxi-

mate the expressions for the derivatives

ein;i-l _ ein_
30 ~ 'TJ (5.42)
Bi1j—6 1]
00 ~ % (5.43)
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Biy1,j— 26 +6_1
dx2 ’

Oxx0 ~ (5.44)

wherei (j) stands foix (y) discretizationn for time discretizationgx is the mesh size andt

is the time step. For each time step the diffusive and adveettrms in Egs.(5.29), (5.30) and
(5.33) are calculated implicitly, i. e., they are taken atdistemn+ 1. The remaining nonlinear
terms are taken explicitly at time stapFor instance, the curvatukg 0) is calculated explicitly

as in [153, 157]

BB + B,y 0 (0x6)20,xB + 20x00,005,0 + (3y6)23,,0

[(x8)2+ (9,6)2+ 8] /2 (3x8)2+ (3,8)2+ 372 . (5.45)

K=—

whered is a small numerical factor of the order Tintroduced to avoid divergences. The
derivatives ofk in Eqg. (5.39) are calculated using second order centeréereliices such as
B o LKL

At each time iteration, we first calculatg"! by using8" in (5.29), then obtainy™t by
using ™1 and 8" in (5.30), and finally we obtai®"! by usingy"! in (5.33). For each
of these sub steps, the implicit terms are calculated byriimgea (2N + 1)x(2N + 1) sparse
matrix obtained for the extended system composed by all¢ti\falues of the grid, including
the boundary values.

Figure 5.2 shows snapshots of the time evolution for anaitytcircular droplet perturbed
by Fourier modesr = 1 andn = 2 of respective amplitudes; anda,. The upper panels
display the phase-fiel@ at three different timest = 0, t = 385 andt = 87.0, where the
6 = +1 phase (yellow colored) correspond to the cell fragmentthed = —1 phase (black
colored) correspond to an usual viscous fluid. The mid patisislay the stream function
Y at the three respective valuestof The lower panels display the auxiliary functignat
the three respective valuestof We have used the following values for numerical parameter:
£€=0.1,£&=0.01,¢ =0.01, time stepdt = 0.005, a grid of size 150x150 and square mesh
dx=dy= 0.05. The relevant dimensionless physical parameters argishesity contrast
A = 0.95, the dimensionless surface tens®a- 0.08, the polymerization velocity, = 0.5
and depolymerization rate= 1.0.

The initial condition for@ is set asd = tant(R+a; cosp +azcos 2 —r)/(e+/2)], where
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Figure 5.2: Phase-field simulation of an initially pertutttee!l fragment. Upper panels: phase-

field plots in color scale for three different times, whée- +1 (6 = —1) corresponds to the

inner (outer) fluid phase. Mid panels: stream function plotghe correspondent times in the

upper plots. Lower panels: auxiliagyfunction plots for the correspondent times in the upper

plots. Boundary conditions are settas- —1.0, ¢y = 0.0 andg = 0.0.
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(r,¢) are polar coordinates, the initial circular radiufis- 1.0 and the perturbation amplitudes
area; = 0.3 andaz; = 0.2. Here, the mode = 1 is added to the dynamics in order to brake
the symmetry of the problem and introduce a propagatingtiine. Moreover, the auxiliary
function is set agp = 0.0 and them relaxed by (5.29) until it saturates for the fixatain

0, defining thus the initial condition fop displayed at thé = 0.0 lower panel. The same
procedure is done to find the initial condition fgirdisplayed at thé = 0.0 mid panel: it was
relaxed fromy = 0.0 by using 5.30 keepin§ and ¢ fixed. This is done to guarantee that all
the fields satisfy the same conditiong at 0. Boundary conditions at the walls are chosen to
be6 =-1.0, ¢ =0.0 andy = 0.0. They correspond to zero normal velocity for the outer
fluid phase at the borders, and also reflected mass sourtestaiundaries produced by image
charges ofp.

As we can see from Fig. 5.2, the initial perturbation of thedew = 2 tend to increase in
amplitude for early times, which is in agreement with theetin prediction in [36], and then
saturate at very late times due to nonlinear and also boyrdi@cts. The linear analysis also
predicts that the mode = 1, which is responsible for translations of the droplet nwesger,
is marginally stable and therefore could be enhanced by Bneamn coupling. However, this is
not the case in our simulation, since the shape becomes yoraetric with respect to botk
andy axes as time grows, revealing a decreas® in

This is not consistent with the conformal mapping resulthi®problem exposed in [154].
We should expect the droplet to saturate in a much more asymensbape, which would
induce the shape to achieve much larger propagating vielecilso, it was expected a much
less prominent mode = 2, that should not reach the boundaries. These evidencgssitbat
the constant valued boundary conditiais= 0 andg = 0 are introducing spurious effects and
significantly changing the rising viscous fingering shapes.

In order to clarify this issue we have performed a simulatiatih the same parameters of
Fig. 5.2, but this time using periodic boundary conditioos &, ¢y and ¢. However, since
the periodic boundary conditions are difficult to implemanbur semi-implicit code, for this
situation we have only used an explicit time integratioresoh. This resultis shownin Fig. 5.3.

Now in Fig. 5.3, the phase-field time evolution seems to besmaoherent to the conformal
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Figure 5.3: Phase-field simulation of an initially pertutttee!l fragment. Upper panels: phase-
field plots in color scale for three different times, whére- +1 (6 = —1) corresponds to the
inner (outer) fluid phase. Mid panels: stream function plotshe correspondent times in the
upper plots. Lower panels: auxiliagyfunction plots for the correspondent times in the upper

plots. Boundary conditions are taken to be periodic&pg and .
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mapping weakly nonlinear predictions. The droplet is mwesslelongated and pretty more
asymmetric, as we can see in the snapshats-08.25. Moreover, the propagating velocity is
almost three orders of magnitude larger than in Fig. 5.2ydewven larger than the velocities
found in [154]. On the other hand, as the droplet touches thmdary walls we have to stop
the simulation, since the centrifugal term in (5.39) is netlwlefined across the boundaries.
Although we have found travelling shapes in our phase-fieldeh more research is needed
in order to get more quantitative and conclusive resultsiatios specific topic. Other kinds of

boundary conditions must be taken and a direct comparistinthie weakly nonlinear shapes

in [154] is still lacking.
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CHAPTER 6

Conclusions

6.1 Conclusions from Chapter 2

In Chap. 2, we have performed a weakly nonlinear analysiseofdrrofluid peak formation
problem in confined geometry. Our theoretical approach v @ extract useful analyti-
cal information about the morphology of the time-evolvingerfacial patterns, as well as the
stability of resulting steady structures. This is done atdst nonlinear order through a pertur-
bative mode coupling approach. The formation of the statipior propagating peaks can be
qualitatively explained by a mechanism involving the iptay of just two Fourier modes (the
fundamental and its harmonic), and predicted already atnskorder.

In Sec. 2.1, we have considered the normal field instabifity confined ferrofluid in the
presence of a vertical magnetic field. Our analytical resioit the nonlinear interface peaked
morphology, dynamics and statics are in line with the expental findings of Refs. [58, 59],
and also with related steady shapes calculated in [52] ¢irveumuch more convoluted theo-
retical approach.

We note that the fully nonlinear description of this probldmough numerical simulations
would be of great interest, but has not yet been analyzedifedts challenging nature (in part
due to the sharpness of advanced time shapes), such a nainséuidy using the phase-field
technique could be considered as a natural extension ofuotert analytic investigation.

In Sec. 2.2, we investigate the examined the influence of-giaine tilted magnetic field on
the profile shape and propagation velocity of interfaciavéting waves between a ferrofluid
and a nonmagnetic viscous fluid. For a more general consioleraoth fluids are subjected to
a basal parallel flow. We performed a weakly nonlinear amabyfthe system (similar to that of

Sec. 2.1) that provided important analytic information attibe dynamics of the propagating
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structures.

The action of the tilted magnetic field is revealed alreadthatlinear regime: it is shown
that by tilting the field one can sustain wave motion even éabsence of external flow. More-
over, it is found that the velocity of the waves depends ontilliag angle. Our nonlinear
results indicate that the time evolving interfacial wavass tend to approach stationary wave
profiles. In fact, the shape of such stationary wavy patteamsbe manipulated by the tilted
magnetic field, resulting in different nonlinear wave formsgusoidal, vertical peaked struc-
tures separated by wide troughs, and skewed undulatingsfofmally, we found that the the
nonlinear wave velocity is sensitive to variations on thténty angle, a mechanism that can be
used to control its magnitude.

It would be of interest to see our theoretical results vetitiy laboratory experiments.
However, we are not aware of any existing parallel flow expernt with a ferrofluid subject to
a tilted uniform magnetic field. Interestingly, there is eaget example in the literature in which
a theoretical prediction [158] about solitary wave propegain ferrofluids has been realized
experimentally [159]. However, it considered the actioranfazimuthal magnetic field on a
cylindrical ferrofluid surface. In the same spirit, we hope ourrent results could pave the
way for future experimental and theoretical investigadiorio propagating deformations, and

localized waves in Hele-Shaw parallel flow with ferrofluids.

6.2 Conclusions from Chapter 3

The study of Hele-Shaw pattern formation in ferrofluids hesrblargely explored during
the last few decades. These investigations have unveiladrdoer of patterning structures
and interesting dynamic behaviors. However, the same t¢d®esaid about similar studies
for confined magnetorheological fluids. In this chapter weehexamined the emergence of
patterns in a complex magnetic fluid, in which its yield s¢resoperties can be tuned by an
external radial magnetic field.

At Sec. 3.1, we have explored the problem of a MR fluid subgetdea radialy increasing
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external magnetic field. By using linear analysis, modeptiog theory, and a vortex-sheet
formalism we have been able to identify several featuresiae stability and morphology of
the confined MR fluid patterns. At linear stages of the dynamie have found that the yield
stress contributions tend to stabilize the interfaceragsng the number of fingering structures
formed. At the weakly nonlinear level, the yield stress @otmhibit the formation of highly
spiky fingers induced by the applied field. Finally, by assuwgra stationary condition we have
accessed fully nonlinear shapes, which look like swollelygans, whose edges undergo a
morphological transition by varying from convex to concaueictures. Despite their unstable
character, this class of exact solutions shed some light@nnderstanding of some important
fully nonlinear aspects of this complex pattern formingteys

In Sec. 3.2, we have investigated exact stationary solsitamsociated to centrifugally-
driven magnetic fluid patterns subjected to an azimuthalnetgfield in the confined geome-
try of a Hele-Shaw cell. By considering the response of Nevato ferrofluids and yield stress,
magnetorheological fluids, a vortex-sheet formalism hanl@nployed to unveil a variety of
fully nonlinear steady shapes.

We applied a perturbative, second-order mode-couplingrih® access important static
and dynamic aspects of the pattern forming system. Our acallypredictions for stationary
solutions at lowest nonlinear order, and including justva farticipating modes are compared
to the exact solutions of the problem, and a satisfactorgeagent is found. This supports the
idea that the weakly nonlinear approximation provides adgeduced description of the exact
solutions. The weakly nonlinear approach is also used tmaathe stability of the equilib-
rium pattern morphologies. In spite of the stabilizing actof both applied azimuthal magnetic
field and yield stress properties, we have verified that teadst solutions are unstable. Nev-
ertheless, they can help one to understand important mimgical features of corresponding

fully nonlinear time evolving patterns.
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6.3 Conclusions from Chapter 4

In this chapter, we have considered a modified version of #ffe@an-Taylor viscous finger-
ing problem in radial Hele-Shaw geometry. In contrast todbeventional purely Newtonian
situation, we have examined the case in which a fluid of némégyiscosity displaces a viscous
yield stress fluid. Motivated by existing experiments [347]lwe have focused on the regime
in which viscous effects prevail over yield stress. Thegeexents revealed the rising of ram-
ified structures, presenting some tip-splitting events,the predominance of side branching
phenomena.

In order to get some useful analytical hints about the infteeof the yielding direction on
viscous fingering, we have deduced a Darcy-like law [Eq.0}} fbr the gap-averaged problem,
considering that the yield stress acts parallel to the wgldaection. This expression was used
in Ref. [42] as a starting point to study the onset of pattermftion of confined yield stress
fluids in the weak yield stress regime. As a result, Eq. (4r&0¢aled itself to be capable of
reproducing important morphological features observexkperiments, such as side-branching

at the finger tips.

6.4 Conclusions from Chapter 5

We have developed a phase-field model strongly based on theroposed by Ref. [43]
in order to simulate viscous fingering in some kind of comglails, namely magnetic fluids
(Sec. 5.2) and lamellar fragments (Sec. 5.3). The modelistsn@n introducing an auxiliary
function that mimics the flow of two immiscible fluid phasesibtroducing a diffuse interface
between them. As a consequence of that, the original mowngdary problem to the sharp
interface is transformed into a set of partial differen@gliations for the relevant fields and
may be numerically integrated continuously across the sinealinterface.

Preliminary numerical results are in reasonable qualiatigreement with previous sim-

ulations and analytical predictions. On the other handctige still requires computational
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improvement in order to solve some issues due to high cuntedfaces for magnetic fluids,
and also to set more suitable boundary wall conditions fhfiegments.

As future perspectives we shall test the phase-field methadagnetic fluids under other
kinds of applied magnetic field configurations, and also lier¢ase of MR fluids. In the case
of lamellar fragments, we intend to perform some more qtetite comparisons between our
results and those in Ref. [154]. Moreover, the study of thesedifferent branches of viscous
fingering phenomena opens up an intriguing question ab@updssibility of manipulating
actin-based cell motility by magnetic means. Doping cellsuo extracellular medium with
nanometer sized magnetic particles is already a feasilpleriment, and by applying an exter-
nal magnetic field maybe one could conveniently tune cediatimilling. Our weakly nonlinear

analytical approach and numerical phase-field tools mgy ireto elucidate this kind of issue.
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