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If the brain were simple enough for us to understand it, weld/be too
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Resumo

Sincronizacao antecipada (AS, do inglés "anticipated laymization™) € uma forma de sin-
cronizacdo que ocorre quando uma influéncia unidirecioealv@ada de um transmissor para
um receptor, mas o receptor lidera o transmissor no temga.sifecronizacao contra-intuitiva
pode ser uma solucdo estavel entre dois sistemas dinantiepkdos em uma configuracao
mestre-escravo quando o escravo recebe uma retroalifherafrgsada e negativa. Diversos
exemplos de AS foram encontrados em diferentes sistemasytanto, faltam evidéncias ex-
perimentais de AS no cérebro. Nessa tese, nds investigamastancia de AS em uma rede
neuronal do tipo mestre-escravo quando a retroalimentag@sada e negativa é substituida por
um circuito inibitorio dindmico mediado por sinapses qu@si No nivel neuronal, mostramos
a existéncia de AS em um microcircuito de 3 neurdnios e em uBrpdpulacées neuronais nos
quais a retroalimentacéo é proporcionada ou por um intednguou por uma subpopulacao
de neurobnios inibitérios. Uma transicdo suave de sincagdia atrasada (DS, do inglés "de-
layed synchronization™) para AS ocorre quando a conduigsicaptica inibitoria € aumentada.
Mostramos que o fendmeno € robusto quando variamos os pasdndes modelos dentro de
um intervalo fisiolégico aceitavel. Os efeitos da plastci€e sinaptica dependente do tempo
nas transicdes DS-AS também foram investigados. Os rdsgliabtidos a partir dos nossos
modelos sdo comparaveis a dados obtidos experimentalemmi@anto macacos realizam cer-
tas atividades cognitivas. Em alguns casos, uma influémsdirecional dominante de uma
regido cortical para outra pode vir acompanhada de um temm@rdso tanto positivo como
negativo. Apresentamos um modelo para AS entre duas reggdelsrais e comparamos estes
resultados com os dados experimentais, obtendo excelemterclancia.

Palavras-chave: Sincronizacdo Antecipada. Modelos Neuronais. Retroaliaggio In-
ibitoria. Curva de Resposta de Fase. Plasticidade Sisapgpendente do Tempo. Causal-
idade. Analise de Dados.



Abstract

Anticipated Synchronization (AS) is a form of synchroniaatthat occurs when a unidirec-
tional influence is transmitted from an emitter to a receibet the receiver system leads the
emitter in time. This counterintuitive phenomenon can bé&hls solution of two dynamical
systems coupled in a master-slave configuration when thie Eaubject to a negative delayed
self-feedback. Many examples of AS dynamics have been foudifferent systems, however,
theoretical and experimental evidence for it in the brais b@en lacking. In this thesis work
we investigate the existence of AS in neuronal circuits wiendelayed feedback is replaced
by an inhibitory loop mediated by chemical synapses. At #agronal level, we show the ex-
istence of AS in 3-neuron or 3-neuron-populations micgts, where the self-feedback is
provided either by an interneuron or by a subpopulation bikittory neurons. A smooth tran-
sition from delayed synchronization (DS) to AS typicallycacs when the inhibitory synaptic
conductance is increased. The phenomenon is shown to bst ol wide range of model
parameters within a physiological range. The role of spikeng-dependent plasticity in DS-
AS transitions is also investigated. The results obtaimethfthe model are compared with
those obtained experimentally in monkeys performing aertagnitive tasks. In some cases
a dominant directional influence from one cortical area totlaer is accompanied by either a
negative or a positive time delay. We present a model for At#/den two brain regions and
compare its results to the experimental data, obtainingceellent agreement.

Keywords: Anticipated Synchronization. Neuronal models. Inhitéeedback. Phase
Response Curve. Spike-timing Dependent Plasticity. Giyidaata Analysis.



Resumen

La sincronizacién anticipada (SA) es una forma de sincemidn que se produce cuando una
influencia unidireccional se transmite desde un emisor a&ceptor, pero el sistema receptor
adelanta al emisor en el tiempo. Este fendmeno, contrasiaduicion, puede ser una solucion
estable de dos sistemas dinAmicos acoplados en una cooitgungaestro - esclavo cuando el
esclavo esta sujeto a una retroalimentacion negativadestar Hay muchos ejemplos de SA
gue se han encontrado en diferentes sistemas, sin embarngxiste evidencia ni tedrica ni ex-
perimental de que ocurra en el cerebro. En este trabajo idestemvestiga la existencia la SA
en circuitos neuronales cuando la realimentacion retardadgustituye por un bucle inhibitorio
mediado por sinapsis quimicas. A nivel neuronal, se mukstiagistencia de SA en circuitos
de 3 neuronas o 3 poblaciones de neuronas, donde la reteoddioidn la proporciona una
interneurona o una subpoblacién de neuronas inhibitotibea transicién de sincronizacién
retrasada (SR) a SA se produce suavemente cuando se intadmeonductancia sinaptica
inhibitoria. Se encuentra que el fendmeno es robusto parannplio espectro de parametros
del modelo dentro del rango fisiologico. También se investigpapel de la plasticidad neu-
ronal en la transicion SR-SA. Los resultados obtenidosté plat modelo se comparan con los
obtenidos experimentalmente en monos cuando realizaagi@reas cognitivas. En algunos
casos, unainfluencia direccional dominante de un areaabatbtra se acompafa de un retardo
gue puede ser negativo o positivo. Se presenta un modeltagardaciones entre dos regiones
corticales del cerebro y se compararan los resultados mosémon los datos experimentales,
obteniendo un excelente acuerdo.

Palabras clave: Sincronizacién Anticipada. Modelos Neuronales. Retmalitacion in-
hibitoria. Curva de Respuesta de Fase. Plasticidad Saaapgpendiente del Tiempo. Causal-
idad. Analisis de Datos.



1

Contents

Introduction
1.1 What is Anticipated Synchronization?
1.1.1 Physical systems
1.1.2 Biological systems
1.1.2.1 The inhibitory feedback loop
1.2 Brief computational neuroscience overview
1.2.1 Neuronal level
1.2.2 Chemical synapses
1.2.3 Neuronal populations
1.2.4 Synchronization in the brain
1.3 Experimental considerations

Anticipated synchronization in microcircuits

2.1 Master-Slave-Interneuron: the 3-neuron motif
2.1.1 Neuron model
2.1.2 Synaptic coupling

2.2 Three dynamical regimes

2.2.1 Phase-locking: delayed and anticipated synchrbaiza

2.2.2 Phase drift
2.3 Scanning parameter space
2.4 The effect of a common Driver
2.5 Neuronal chain networks
2.6 Proposed experiment
2.6.1 The hybrid patch clamp setup
2.6.2 Modified Hodgkin-Huxley model
2.6.3 AS inthe presence of noise
2.7 Other motifs
2.7.1 Bidirectional coupling
2.7.2 An extraslave
2.7.3 Motor circuit in the spinal cord

Phase response curve
3.1 Whatis it and why is it useful?

3.2 Master-Slave: two unidirectionally coupled oscillato

3.2.1 Poincaré phase map

13
13
14
15

16

17
20
21
21
22

24

25
26
27
27
28
30
33
34
36
36
37
40
40
40
44
45

49
49
52
52

17

24



3.3 Slave-Interneuron: bidirectional coupling
3.3.1 Stability analysis

3.4 Master-Slave-Interneuron coupling
3.4.1 Particular case
3.4.2 Stability Analysis
3.4.3 Phase model

3.5 Numerical results

Neuronal populations
4.1 Modeling collective oscillations in large-scale sysse
4.1.1 Cortico-cortical network
4.1.2 Defining time delay in the model
4.2 How to characterize AS?
4.2.1 LFP scale
4.2.2 Neuronal scale
4.3 Robustness in parameter space
4.4 Modified motifs
4.4.1 Slave-Interneuron as one cortical population
4.4.2 Bidirectional coupling
4.5 Changing neuronal variability of the Slave
4.6 A toy model for the thalamus
4.7 Stability analysis of phase-locking regimes
4.8 Discussion
4.8.1 Neuronal populations can exhibit AS
4.8.2 Different synchronization regimes within the samatamical connec-
tivity
Cortical data analysis
5.1 More realistic features
5.2 Data acquisition
5.3 Granger causality
5.3.1 Causality measures in neuroscience
5.4 Spectral Analysis of LFP and simulation data.
5.5 Comparing data and model
5.5.1 Model reproduces experimental coherence and GCrapect
5.6 Discussion
5.6.1 Relative time delay is a poor indicator of directiomluence
5.6.2 Correspondence between dynamical synchronizagime and func-
tional brain state
5.6.3 Effective connections and functional significance

The interplay between spike-timing dependent plasticityand anticipated synchro-
nization in the organization of neuronal networks
6.1 Synaptic plasticity

52
54
54
56
56
57
58

61
61
62
63
65
66
68
69
70
70

71

72
73

77
80

80

80

82
83
85
85
86
87

88
89
91

91

91
92

93
93



6.1.1 Spike-timing-dependent plasticity (STDP) 94

6.2 AS and STDP synergetically organize the network dynamic 96
6.3 STDP in the 3-neuron motif 96
6.4 STDP between neuronal populations 100
6.4.1 AS inthe presence of STPD: an emergent property 100
6.4.2 Hybrid STDP and AS stabilize synaptic weight disttido 102
6.4.3 Other STDP rules 102
7 Concluding remarks and further perspectives 105

References 108



CHAPTER 1

Introduction

The desire to understand nature is the moving force that smdience advance. The ability
to make models about the world and use them to predict factsaahon them is not just
intrinsically related to our daily researches, but also w0 everyday life. This is the very
evidence that one of the specialties of our brain is to makdetso In an extreme view, our
brain is the machine that constructs the (models of) reflity

What mechanisms allow us to model and predict facts are ortleeofireat questions in
neuroscience. In Buzsaki’'s words, “brains are foreteltiegices and their predictive powers
emerge from the various rhythms they perpetually genef@ie” Exposing the mechanisms
that allow complex things to happen in a coordinated way enlifain has produced some of
the most spectacular discoveries in the field. These synaed activities in the brain are
the subject of this Thesis. In particular, we are interestethe time differences between
synchronized components.

1.1 Whatis Anticipated Synchronization?

Synchronization is an astonishing universal collectiveqmenon. It has been reported
in a striking variety of physical and biological systemsaisping from the subatomic to the
astronomical scales. The history of synchronized osoiltajoes back to Huygens’ work with
two weakly coupled pendulum clocks. In a classical consgichronization means adjustment
of rhythms of self-sustained periodic oscillators due teirthweak interaction. In the past
decades an increased interest in the topic of synchroaoizafichaotic systems has arisen [3].
It was in the context of coupled chaotic units that the coho¢@nticipated synchronization
was discovered [4, 5, 6].

Two identical autonomous dynamical systems coupled in adinectional configuration
(that we call master-slave) can be described by the follgwiuations:

x = f(x(1)), (1.1)
y = flyt) +Kx(t) -yt —tq)],

if the second system (the slave) is subjected to a negatiagatkself-feedbacks andy € R"
are dynamical variables representing the master and the, §(&) is a vector function which
defines the autonomous dynamical systkng a matrix representing a coupling parameter and
ty IS a positive constant delay time.

The presence of the feedback, or the “memory term”, enabkes:tistence of a trivial so-
lutiony(t) = X(t +tq), which can be easily verified by direct substitution in theteyn above.
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The striking aspect of this solution is its meaning: theestdtthe driven system anticipates
the driver’s state. In other words, the slave predicts the master. This counteitive syn-
chronization manifold, called “anticipated synchroniaat (AS) was discovered in 2000, by
Voss [4]. The existence of AS is even more remarkable whedyhamics of the master sys-
temx is “intrinsically unpredictable” as in chaotic systems®45]. Along these years, AS has
been shown to be stable in a plenty of scenarios, includiagrétical and experimental works.

Voss also proposed another coupling scheme that could iexfib[4]. The “complete
replacement” was described by:

X = —ax(t)+f(x(t—tg)), (1.2)
y = —ay(t)+fx()).

The manifoldy(t) = X(t +tq) is also a solution of this system. In this situation, theapéition
time can be arbitrarily large, while the stability of AS iretformer case (Eq. 1.1, called “delay
coupling”) requires some constraints on the constant diag 7 and couplingk [4, 6, 5].
Despite this fact, the delay coupling scheme is more intieggsince we can maintain the
master’s dynamics unperturbed and change just the slavgjdings. In this Thesis we will
deal with the former case.

1.1.1 Physical systems

When Voss introduced the concept of AS, he proposed thatutdwvepen new avenues in
the study, prediction and control of chaotic systems [4]6lreleed, one of the first numerical
verification of AS was done by Masoller [7] in the followingare She numerically found
anticipated synchronization regime in a model of two clasdimiconductor lasers with optical
feedback when a small amount of the intensity of master laasrinjected coherently into the
slave laser.

AS was also observed between delayed-coupled chaotic rBapspsoller and Zanette
analytically studied the stability properties of the syrmhized states. Since time delays in
maps are discrete, the dimensionality of the problem resfaiite, whereas ordinary differen-
tial equations with finite time delays mathematically c@nge an infinite-dimensional system.
Depending on the parameters, the maps may present AS oedelggchronization (the usual
retarded or lag synchronization). Hernandez-Garcia g9hbktudied two types of coupled
chaotic maps, 1D Bernoulli-like maps and 2D Baker maps, irckwan analytic treatment of
the stability of the AS regime was possible. They also shotvatithe numerical simulations
were in good agreement with the analytic predictions.

The first experimental observations of AS was done by Sikagsam et al. [10]. They
handled two diode lasers as transmitter and receiver. Tls¢emlaser was rendered chaotic by
the application of an optical feedback from an externakltgav his experimental verification
of anticipating chaotic synchronization unveiled gregpanunities for application in optical
communications, information processing, and in coninglldelay induced instabilities in a
wide class of nonlinear systems.

Other experiments with unidirectionally coupled lasengoréed anticipated and delayed
synchronization (DS) regimes, depending on the differdreteveen the transmission time and
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the feedback delay time [11, 12]. The two regimes were olesktiw have the same stability of
the synchronization manifold in the presence of small pbetions due to noise or parameter
mismatches [12].

AS was also verified in experiments with electronic circyit8, 14, 15, 16]. The electronic
circuits allow for a real-time anticipation of even stropgiregular signals. It was found that
synchronization of the driven circuit with chaotic fututates of the driving circuit is insensi-
tive to signal and system perturbations. [13, 14]. Morepaéransition from AS to DS through
zero-lag synchronization with excitatory and inhibitopuplings, as a function of the coupling
delay, was reported in [17, 18].

A simple linear analysis was employed by Calvo et al. [19]Hovs the minimal require-
ments necessary to reproduce AS. Numerically, AS was obdemtwo dissipative determin-
istic ratchets driven externally by a common periodic fdi2@], in unidirectionally coupled
ring and linear arrays of chaotic systems [21, 22], in a gsglktem having two different time
delays (the feedback and coupling delay [23]), and in a naypliog scheme with varying time
delay [24]. Moreover, AS has been used as a mechanism toagetihre parameters of chaotic
systems [25], to predict [26] and to control chaotic trapeiets [27, 28].

An algorithm of coupling design for a long-term anticipatibme was proposed by [29]
Its efficacy was demonstrated for the Rossler system, thbleageroll Chua circuit, and the
Lorenz system. The algorithm is based on phase-lag comp@mgathe time-delay feedback
term of the slave system. The maximum prediction time atthwvith this algorithm is larger
than that obtained with the diagonal coupling usually useti¢ literature.

A new method for achieving AS without the time delay in ungédiionally coupled chaotic
oscillators was proposed in 2005 [30]. The method uses afgpearameter mismatch between
the drive and response that is a first-order approximatiomu® time delay coupling. The
stability analysis, numerical results and an experimeolelervation of the effect in radio-
frequency electronic oscillators was presented [30].

1.1.2 Biological systems

After several works in physical systems, a reasonable gureatises whether AS can ap-
pear in natural (not man-made) systems. In his first papeutah8, Voss already proposed
the investigation of physiological systems: “Since theanhdng mechanisms are so simple, it
should be worth searching for synchronization in physimalsystems, where delayed feed-
back dynamics seem to play a crucial role [31]. In particldenays of phase-locked oscillators
are suspected to be important for an understanding of nalirdormation processing, and the
introduction of a physiologically motivated time delay mayprove such models [32].”

The first attempt to find AS in biological inspired systems wage by Ciszak et al. [33].
They studied two unidirectionally coupled FitzHugh-Naguneuron models in the presence of
negative delayed self-feedback in the slave (see Fig. THgy showed that AS occurs in this
non-autonomous dynamical system, driven by white noise38335]. In such models, even
when the neurons were tuned to the excitable regime, the skawron was able to anticipate
the spikes of the master neuron, working as a predictor [14].

In 2013 Pyragiené and Pyragas [36] investigated AS in naiici chaotic neuronal mod-
els unidirectionally coupled in a master-slave configoratwithout a time delay feedback.
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Figure 1.1: Schematic representation of two model neuroopled in a master-slave config-
uration, with a negative delayed self-feedback loop (attar&zed by the delay timg = 7 in
Eq. 1.1) in the slave neuron. Reproduced from Ciszak et 3J. [3

Based on the modified scheme proposed in [30], they repldeefeedback ternK (x(t) —
y(t—tq)) in Eq. 1.1 by the simpler coupling without a time del&/(x(t) —y(t)). They showed
that if the parameters of chaotic master and slave systeensiamatched in such a way that
the mean frequency of a free slave system is greater than éam fnequency of a master
system, then both the AS and DS regimes can be achieved. tirttiacslave neuron antici-
pates the chaotic spikes of the master neuron for coupledl&dsystems as well as for two
different neuron models: the Hindmarsh-Rose and the adgapkiponential integrate-and-fire
neurons [36].

1.1.2.1 The inhibitory feedback loop

Though potentially interesting for neuroscience, it is tidiial to compare these theoret-
ical results with real neuronal data. The main difficultyslia requiring that the membrane
potentials of the involved neurons be diffusively coupl@thile a master-slave coupling of the
membrane potentials could in principle be conceived by medrlectrical synapses (via gap
junctions) [37] or ephaptic interactions [38], no bioplggimechanism has been proposed to
account for the delayed inhibitory self-coupling of thevelanembrane potential employed by
Ciszak et al. [33, 34, 14].

In the brain, the vast majority of neurons are coupled viaribal synapses, which can
be excitatory or inhibitory. In both cases, the coupling iiectional and highly nonlinear,
typically requiring a suprathreshold activation (e.g. #&aspof the pre-synaptic neuron to
trigger the release of neurotransmitters. These neusatrdiers then need to diffuse through
the synaptic cleft and bind to receptors in the membraneeptst-synaptic neuron. Binding
leads to the opening of specific channels, allowing ionicanis to change the post-synaptic
membrane potential [37]. This means that not only the mengptentials are not directly
coupled, but the synapses themselves are dynamical systems

We proposed to bridge this gap investigating whether AS caniroin biophysically plau-
sible model neurons coupled via chemical synapses. Moeeeisting, we replaced the self-
feedback loop by a dynamical inhibitory loop mediated byrgarneuron [39]. Such inhibitory
feedback loop is one of the most canonical neuronal motifeerbrain [40, 41]. It was found
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to play several important roles, for instance, in the spooatl [42], thalamus [43, 44], cortex,
etc. Furthermore, we extend our results to population nsoielvhich the inhibitory loop is
mediated by a pool of interneurons. The existence of AS nedliby a dynamical inhibition
unveils several possibilities in the investigation of ASther biological systems.

1.2 Brief computational neuroscience overview

The brain is a complex system whose components create ratimat continually gen-
erate complex patterns. These brain networks span oveipheumporal and spatial scales.
The notion that the brain can be fully reduced to the opeanationeurons or, in the opposite
view, that cognition can be understood without making e=iee to its biological substrates
are exaggerated simplifications [45]. Although severairbregions show significant special-
ization, higher functions such as cross-modal informatiotegration, abstract reasoning and
conscious awareness are viewed as emerging from intemacticross distributed functional
networks. Indeed, most brain functions are thought to relyth® interrelationship between
segregation and integration. The coexistence of these tiwoiples is considered the origin of
neural complexity [45]

Once the cellular machinery for generating impulses andr&msmitting them rapidly be-
tween cells had evolved, connectivity became a way by whélrans could generate diverse
patterns of response and mutual statistical dependencmeCtivity allows neurons to act both
independently and collectively. In this sense, the braicfion is fundamentally integrative; it
requires that components and elementary processes wathergiving rise to complex pat-
terns. Connectivity is essential for integrating the awiof (segregated) individual neurons
and thus for enabling cognitive processes such as perogpti@ntion, and memory. Connec-
tivity translates unitary events at the cellular scale Iatge scale patterns.

1.2.1 Neuronal level

Neurons fire spikes and their main behaviors are describ#uEyaction potentials. There-
fore, neurons can be classified by their firing patterns,Xan®le, regular spiking (RS), intrin-
sically bursting (IB), chattering (CH), fast-spiking (F®)w-threshold spiking (LTS), thalamo-
cortical (TC) or resonator (RZ) Typical responses of eadhede classes to an external applied
currentl (t) are shown in Fig. 1.2.

The most simple models representing a minimal biophysintatpretation for an excitable
neuron are the conductance-based models. The first modplkifig neurons was proposed
by Alan Lloyd Hodgkin and Andrew Huxley in 1952 [46]. It dedms the ionic mechanisms
underlying the initiation and propagation of the actiongmtials in the squid giant axon. The
precise mathematical description of the axon was possiléetd two main features. First,
this axon has a large length and diameter, which permittectrelphysiological intracellular
recordings. Second, it has mainly two types of voltage gated¢hannels. Since ion channels
are selective to particular ionic species, such as sodiyno@ssium, they give rise to specific
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Figure 1.2: Examples of different firing patterns that n@sroan exhibit. Electronic version of
the figure and reproduction permissions are freely avalabivww.izhikevich.org.

ionic currents. The capacitive current is equal to the suallabnic currents:

dv
Cma = Z lion (1.3)

whereC, is the membrane capacitance of the cell and the ionic cuasstciated to iox
follows the Ohm’s law:ly = Gx(Ex — V). Ey is the reversal potential of the ion ay is the
channel conductance. It is proportional to the maximum ootahceGy and the dynamical
variables describing the activation or inactivation of thannels.

Therefore, the complete model consists of four coupledharrgidifferential equations asso-
ciated to the membrane potentiaband the ionic currents flowing across the axonal membrane
corresponding to the Na K™ and leakage currents. The gating variables for sodiurh arel
m and for potassium ig:

dv

Crgy = Gnah(Ena—V) 4+ Gyn*(Ex — V)
+Gm(Viest—V) +1 + Z Isyn (1.4)
o~ a0 -BVx, (L5)

wherex € {h,m n}. The voltage dependent rateg and 3« were fitted experimentally in the
seminal work of Hodgkin and Huxley [46].

In its simplest version, the Hodgkin-Huxley (HH) model repents a neuron by a sin-
gle isopotential electrical compartment, neglects ion emeents between subcellular compart-
ments, and represents only ion movements between the iasiieutside of the cell. There
are several more detailed models, called multi-compartahemodels [47, 48, 49], which take
into account, for example, neuronal morphology and spdisatibution of ion channels. In the
opposite direction, several reduced models [50, 51, 52headable in order to describe with
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Figure 1.3: Comparing biological plausibility and implems&ion cost among different neuron
models. Figure extracted from Izhikevich’s paper [53].

minimal ingredients specific dynamical features of realraps. In particular, these simplified
model are useful in analytical studies and large-scale coatipns.

The choice of the best model depends on the questions onteissted to answer. This
choice is also restricted by the available computationalgyo Izhikevich tried to answer this
guestion and to show why his own model is useful in a papetleatihich model to use for
cortical spiking neurons?” [53]. In his work, he showed aailetl comparison of the neuro-
computational properties of spiking and bursting modelbe Tain results are summarized
in Fig. 1.3. Along this Thesis we use conductance-based hsodé as HH and also simpli-
fied models, for example, the Izhikevich [51], Morris-Le¢a#] and Integrate-and-Fire [55]
models. Each employed model is described in detail whenssacg
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Figure 1.4: Standard model of chemical synaptic transiomsig4]. (a) A presynaptic action
potential propagates down the axon and reaches the nemm#&tr (b) Depolarization of the
nerve terminal activates de voltage-gatedCahannels in the presynaptic membrane. The
increasing of the intracellular concentration ofCaromotes the neurotransmitter release. (c)
The neurotransmitters in the synaptic cleft activate ldygates ions channels on the postsy-
naptic membrane, permitting the entry of the specific ions"(k this example) and leading
to an excitatory postsynaptic potential. Reproduced fressdll and Kandel [56].

1.2.2 Chemical synapses

Spikes are generally not directly transmitted between Camaoation between neurons re-
quires the exchange of electrical or chemical signals. &leesnections, called synapses, are
the dynamical links of our neuronal networks. Dependinglnttansmission mechanisms,
they can be divided in chemical or electrical synapses.datgtal synapses the membranes of
the two communicating neurons come extremely close at thapse and are actually linked
together by an intercellular specialization called a gagiion [57]. In chemical synapses,
the electrical activity in the presynaptic neuron inducasa the activation of voltage-gated
calcium channels) the release of neurotransmitters thdstio receptors located in the postsy-
naptic cell. The neurotransmitter may initiate an eleeatriesponse (postsynaptic potential) or
a secondary messenger pathway that may either excite dititine postsynaptic neuron (see
Fig. 1.4). Here we will use mainly chemical synapses.

In the brain, synaptic transmission is usually mediatedwytatory (depolarize) and in-
hibitory (hyperpolarize) amino acid neurotransmittelgt@mate and GABA, respectively. Glu-
tamate activates AMPA/kainate receptors associated ttréasmission, and NMDA receptors
associated to slow transmission and synaptic plasticitis worth mentioning that there is a
plethora of physiological subtypes within a given receptass. In addition, its properties are
known to vary depending on the particular subunits that naakeceptor. Typically an exci-
tatory (inhibitory) synaptic current facilitates (hamgkthe firing of the postsynaptic neuron.
Moreover, one specific neuron can only excite or inhibit ttreecs, not both. Hence, neurons
can also be labeled as excitatory or inhibitory neurons.[58]
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The macroscopic behavior of synaptic currents can be desthy kinetic models. It means
the synaptic current is described by Ohm’s law:

|(|) :glr(|)(v_El>7 (16)

whereV is the postsynaptic potentiat, the maximal conductanck; the reversal potential, and
the fractionr) (i =AMPA,NMDA,GABA a,GABAg) of bound synaptic receptors is modeled
by a first-order kinetic dynamics:

|

d(;—(t) = ai[T] (1 —rD)y—gr). (1.7)

[T] is the neurotransmitter concentration in the synaptica eletl the values of the rate con-
stantsaa, Ba, ac, andBg are known to depend on a number of different factors and vary
significantly [59, 60, 61]. Simple kinetic models may not qdately simulate the fine details
of synaptic currents, but they provide a good approximatiiosome features such as rise, de-
cay, voltage dependence and summation of currents. Theysafel for describing general
behavior of small microcircuits. Also important, they maim computational efficiency in
simulations of larger neuronal networks.

1.2.3 Neuronal populations

Neuronal networks exhibit complex spatial and temporaigpas even in the absence of
external input. Specific cognitive tasks require the atiwaof different brain regions and
patterns. Therefore, neuronal population models shoutdrapass two main aspects. First,
capture the large-scale interareal behavior at multiphepteral scales as well as neuronal
scale features. Second, relate the activity patterns glutiffierent situations to the underly-
ing anatomical connectivity of the brain.

In a neuronal population model we know the structural cotiviee (i.e. anatomical) and
we can explore the functional and effective connectivigldied to correlation and direction
of the information flux respectively) under distinct comgtits [62]. This can provide useful
insights to the reversal problem. Typically we can extractctional and effective relations
between distinct brain regions from experimental data,vireitdo not know the anatomical
connectivity.

Usually, biophysically plausible populations models agénorks of spiking neurons mod-
els linked via chemical synapses. Cortical-like modelddsity consider the proportion of
excitatory and inhibitory neurons as 80% to 20% in the coatek sparse connectivity between
neurons [45]. In addition, experimental data suggest thdioal regions exhibit small-worlds
properties, which is hypothesized to promote economy aficiezfcy during the information
transmission. Nevertheless, several studies proposzelitftopologies to brain networks, such
as randomly, hierarchical, all-to-all connections, or atomie of them.

1.2.4 Synchronization in the brain

It is widely recognized that the brain’s ability to generatel sense temporal information is
a prerequisite for both action and cognition. Synchronbythms represent a core mechanism
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for temporal coordination of neuronal activity. In the ldstades, theoretical and experimental
studies have made significant advances to comprehend tlidaceand circuit basis of these
oscillations [63]. A major breakthrough was the realizattbat synaptic inhibition plays a
fundamental role in the rhythmogenesis. Itis importantdt@rthat neuronal correlation implies
synchronization in some time scale, which can occur with dhout oscillations. However,
abnormal neural synchronization is tightly related to raédtsorders like schizophrenia and
autism [64]. Altogether, it is not well known if synchrontzan emerges as an epiphenomenon
or what is its functional significance.

How information from distinct neuronal regions is exchashggea major question underly-
ing the binding problem. In other words, how objects, cqleminds, background and abstract
or emotional features are combined into a single experfericethe absence of a coordinat-
ing center, the binding by synchrony hypothesis [65] wasagi(but not completely accepted)
within the scientific community. It suggests that synchzation works as a coordinator to
select and route signals and bind together spatially satgdgegions.

More recently, another hypothesis gained several endgride communication-through-
coherence [66]. Fries proposed that activated neurondlaism and rhythmic excitability
fluctuations produce temporal windows for communicatiomly@oherently oscillating neu-
ronal groups can interact effectively, because their comoation windows for input and for
output are open at the same times. Thus, a flexible patterolwrence defines a flexible
communication structure, which subserves our cognitiveldikty.

1.3 Experimental considerations

In neuroscience, electrophysiology is the study of thetatad properties of neurons and
tissues. It involves measurements of voltage changes anttielcurrents on a wide variety of
scales, from single ion channel proteins to large-scatgratesignals in the nervous system. In-
tracellular recording involves measuring voltage andiorent across the neuronal membrane,
whereas extracellular field potentials recordings aretedl#o local current sinks or sources
that are generated by the collective activity of many céle.describe below some techniques
that could facilitate the investigation of anticipated slyronization in neuronal networks.

Dynamic clamp is an electrophysiological method that usesaktime interface between
one or several living cells and a computer to simulate dyngmbcesses such as membrane
potential or synaptic currents. Each living cell is impalsdone or more sharp or patch mi-
cropipette electrodes and its membrane potential is amlegnd fed into the dynamic clamp
machine. The dynamic clamp system contains a model of thelraara or synaptic conduc-
tance to be inserted in the living cells. It computes the enis generated by the modeled
conductances and outputs it in real-time. That currentjectad into the living cell, which
therefore receives the same current as if it contained thabrane or synaptic conductance
modeled with the dynamic clamp [67]. A hybrid patch clampupd68], similar to this, is de-
scribed in Chapter 2 in a proposed experiment to investi§dteetween a master and a slave
neuron in the presence of an inhibitory feedback loop.

The hypothesis that neural assemblies form the basic furadtiunit of operation of the
mammalian central nervous system was originally proposeddnald Hebb [69] more than
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60 years ago. Since then, several neurophysiologists t@veed to design electrophysiolog-
ical methods capable of testing the principles governimgaberation of dynamic distributed
neural systems. In this sense, the development of multirelde recordings was the major
breakthrough in the field. In particular, the local field putal (LFP) refers to the electric po-
tential in the extracellular space around neurons, whichbearecorded using multi-electrode
arrays. It consists in an invasive technique, recorded pthdom within the cortical tissue
or other deep brain structures, in alert or anesthetizepesigh Since LFPs are generated by
synchronized synaptic currents arising on cortical nesirtirey represent one of the best type
of signals to investigate time differences between syntkea cortical regions. In fact, in
Chapter 5, we propose that some counter intuitive phenomnegroated in LFP data [70, 71] are
evidences of anticipated synchronization in the cortex.

Less direct observations of electrical brain activity ilwethe recording of electromagnetic
potentials generated by combined electrical currentsrgélaeuronal populations. Electroen-
cephalography (EEG) and magnetoencephalography (ME&)igpees are noninvasive record-
ings, made through groups of sensors placed on, or neaytiaes of the head. EEG and MEG
directly record signals generated directly from neurowrévdy and consequently have a high
temporal resolution. Although the spatial resolution ispoompared to the LFP, intracellular
recordings from cortical neurons exhibit a close corregipoce between EEG/LFP activity
and synaptic potentials [72]. Therefore, we expect thagKigtence of AS in the brain can also
be verified through EEG measures. Indeed this would open pssilgilities in the study of AS
in humans.

Since AS has not been reported in any biological system apdritncular in any neuronal
systems, we investigate the existence of AS in several ggpally inspired models that could
be potentially tested. Our main concern was to employ biolily plausible features in order
to be able to propose experimental setups in which AS couletbied. We investigated AS in
two scales: neuronal level and large-scale populatiomstl¥iintracellular recordings such as
dynamic clamp, which allows the measure of spike timing ofrexted single cells, could be
useful to verify the results presented in Chapter 2 and 3daronal microcircuits. Secondly,
multi-electrode arrays recordings provide data that cacdnepared to the results of neuronal
populations model described in Chapter 4. Therefore, inp@&heb we analyze cortical data
from LFP recordings and compare them to our models. Finall¢hapter 6 we show results
of spike-timing dependent plasticity in neuronal netwowksich exhibits AS that could be
experimentally tested in both neuronal and populatioralesc
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CHAPTER 2

Anticipated synchronization in microcircuits

Small networks that can be represented by low dimensioséésys have attracted a lot of
attention from neuroscientists along decades. Synchaaizproperties of a few coupled neu-
rons have been exhaustively studied analytically, nuralyiand experimentally. Despite the
abundant literature on synchronization of neuronal mgtifs first attempt to find anticipated
synchronization in a biologically plausible model [39] whican be experimentally tested is,
as far as we know, the one we describe in this chapter. Sina®menodels are good candi-
dates to represent the master and slave systems, AS mettigethiave (postsynaptic) neuron
could fire a spike right before the master (presynaptic) oredoes [33]. However, the delayed
self-feedback on the slave, suggested by Voss to attainsA8)realistic in neuronal circuitry.
Therefore, we propose to bridge this gap by replacing thayeel self-feedback term by an
inhibitory feedback loop mediated by chemical synapsesaaridterneuron [39].

2.1 Master-Slave-Interneuron: the 3-neuron motif

We start by mimicking the original master-slave circuitgdebed by egs. (1.1)) with a
unidirectional excitatory chemical synapse M> S in Fig. 2.1(a)). In a scenario with standard
biophysical models, the inhibitory feedback we proposeévemgby an interneuron (I) driven by
the slave neuron, which projects back an inhibitory chehsgaapse to the slave neuron (see
Fig. 2.1(a)). So the time-delayed negative feedback istatdea for by a chemical inhibition
which impinges on the slave neuron some time after it hasedpigimply because synapses
have characteristic time scales. Such inhibitory feedbback is one of the most canonical
neuronal microcircuits found in the nervous system, asrstance, in the spinal cord [42],
cortex [42], thalamus [43, 44] and nuclei involved with sgrgduction in the bird brain [73].
For simplicity, we will henceforth refer to the 3-neuron 1fiof40, 41] of Fig. 2.1(a) as a
Master-Slave-Interneuron (MSI) system.

As we will show below, whether or not the MSI circuit can exb&S depends, among other
factors, on the excitability of the three neurons. In the MBis is controlled by a constant
applied current (see section 2.1). To test the robustnefseafesults (and at the same time
improve the realism and complexity of the model), in secBaghwe study the four-neuron motif
depicted in Fig. 2.1(b), where the excitability of the MStwerk is chemically modulated via
synapses projected from a global drivey)( From now on, we refer to the 4-neuron motif as a
Driver-Master-Slave-Interneuron (DMSI) microcircuit.
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Figure 2.1: (a) Three neurons coupled by chemical synapsiimaster-slave-interneuron
(MSI) configuration : excitatory AMPA synapses (with maxireanductancegs) couple mas-
ter (M) to slave (S) and slave to interneuron (1), whereasaibitory GABA, synapse (with
maximal conductancgg) couples interneuron to slave. (b) Same as (a), except liithree
neurons of the MSI circuit receive excitatory (NMDA) synapg$rom a driver neuron (D).

2.1.1 Neuron model

In the above networks, each node is described by a Hodgkktep(HH) model neu-
ron [46], consisting of four coupled ordinary differentegjuations associated to the membrane
potentialV and the ionic currents flowing across the axonal membramesmonding to the
Na, K™ and leakage currents. The gating variables for sodiunh aredm and for the potas-
sium isn. The equations read [54]:

dv — _
Crge = GnamPh(Ena—V) +Gkn*(Ex — V)
+Gm(Viest—V) +1 + Z Isyn (2.1)
dx
G = V0 —BV)x, 22)

wherex € {h,m,n}, Cy, = 971 uF is the membrane capacitance of a380x 1T um? equipoten-
tial patch of membrane [54],is a constant current which sets the neuron excitabilityghg,
accounts for the interaction with other neurons. The ral@atentials ar&y, =115 mV,Ex =
—12 mV andV,est = 10.6 mV, which correspond to maximal conductanGag, = 1080mmS,
Gk = 324mmS andGy, = 2.7mmS, respectively. The voltage dependent activation argtiina
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vation rates in the Hodgkin-Huxley model have the form:

10—V

an(V) = 100(e/10-V)/10 _ 1)’ (2.3)

Bn(V) = 0.125¢ /80 (2.4)
25—V

am(V) = 10(8(2&\/)/10—1), (25)

Bn(V) = 4eV/18 (2.6)

an(V) = 0.07e /20, (2.7)
1

Bh(v) = (e(go_v)/lo_l_l)' (28)

Note that all voltages are expressed relative to the reptbgntial of the model dt= 0 [54].

According to Rinzel and Miller [74], in the absence of synagurrents the only attractor
of the system of equations 2.1-2.8 fof 177.13 pAis a stable fixed point, which loses stability
via a subcritical Hopf bifurcation dt~ 27651 pA. For 17713 pA<| < 27651 pA, the stable
fixed point coexists with a stable limit cycle.

2.1.2 Synaptic coupling

AMPA (A) and GABAx (G) are the fast excitatory and inhibitory synapses in oud@ého
[see Fig. 2.1(a)]. Following Destexhe et al [58], the franti(!) (i = A, G) of bound (i.e. open)
synaptic receptors is modeled by a first-order kinetic dyioam

(i) . .

o =T 1) - B0, (29)
wherea; andf; are rate constants aiil] is the neurotransmitter concentration in the synaptic
cleft. For simplicity, we assum@ | to be an instantaneous function of the presynaptic potentia
Vpre: T

. max

[T](Vpre> - 1+ e[—(vpre—vp)/Kp] 9 (210)
where Tmax= 1 mM~1 is the maximal value ofT], Kp = 5 mV gives the steepness of the
sigmoid andvp, = 62 mV sets the value at which the function is half-activate8].\We use
fourth-order Runge-Kutta method for numerical integnatigth a time step of @1 ms.

The synaptic current at each synapse is given by

10 =grl(v-g), (2.11)

whereV is the postsynaptic potentiaj, the maximal conductance aiglthe reversal potential.
We useEp = 60 mV andeEg = —20 mV.

The values of the rate constarttg, Ba, 0g, and g are known to depend on a number
of different factors and significantly vary [59, 60, 61]. Teeenplify some of our results, we
initially fix some parameters, which are set to the valuesatfl@ 2.1 unless otherwise stated
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MSI | DMSI

apn(MMIms ) [ 1.1 | 11
Ba (ms™?) 0.19| 0.19

ac(MM~Ims 1) | 50 | 50
Bs (ms™) 0.30| 0.60

an (mMM~Ims ) | — [ 0.072
By (ms D) — 1 0.0066
ga (nS) 10 10
| (pA) 280 | 160

Table 2.1: Standard values employed in the model. See tegefails.

(section 2.2). Then we allow these parameters (as well asythaptic conductances) to vary
within physiological range when exploring different synmhization regimes (see sections 2.3
and 2.4).

The slow excitatory synapse is NMDA (N) and its synaptic eatris given by:

1N = gnB(V)riM(v —Ey), (2.12)

where Ey = 60 mV. The dynamics of the variabkN) is similar to eq. (2.9) withay =
0.072 mMImst and By = 0.0066 mst. The magnesium block of the NMDA receptor
channel can be modeled as a function of postsynaptic voltage

1

B(V) = 1+ e(—0.062/)[Mg?*]o/3.57’

(2.13)

where[Mg?*], = 1 mM is the physiological extracellular magnesium concaiun.

In what follows, we will drop the neurotransmitter supeingtsrA, G andN from the synap-
tic variablesr andl. Instead we use double subscripts to denote the referrecpdepostsy-
naptic neurons. For instance, the synaptic current in teesheuron due to the interneuron
(the only inhibitory synapse in our models) will be denotsdg and so forth.

2.2 Three dynamical regimes

2.2.1 Phase-locking: delayed and anticipated synchronigan

Initially, we describe results for the scenario where alino@s receive a constant current
| > 280 pA. This corresponds to a situation in which the fixed {mare unstable and, when
isolated, all neurons spike periodically. All other par&enge are as in Table 2.1. For different
sets of the inhibitory conductanagg; our system can exhibit three different behaviors. To
characterize them, we defitfé as the time the membrane potential of the master neuron is at
its maximum value in theth cycle (i.e. it3-th spike time), andjS as the spike time of the slave
neuron which is nearest tY.
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The delayr; is defined as the difference (see Fig. 2.2):
T = tiS— tiM . (214)

Initial conditions were randomly chosen for each computeeé series. Whem; converges to a
constant value, a phase-locked regime is reached [75]r i O (“master neuron spikes first”)
we say that the system exhibits delayed synchronizatior) (Bi§. 2.2(a)]. If T < 0 (“slave
neuron spikes first”), we say that anticipated synchrommnafAS) occurs [Fig. 2.2(b)]. Ift
does not converge to a fixed value, the system is in a phas€RIDj regime [75]. The extent
to which the AS regime can be legitimately considered “@péited” in a periodic system will
be discussed below.

(AS) 1
I.:tF_EM .

— M
120 T=tI M s S|4 o | =S (S M

V (mV)

1 1 1 1 1 1 1
49960 49970 49980 499! 49960 49970 49980

t (ms) t (ms)

Figure 2.2: Membrane potentisll as a function of time for an external currdnt 280 pA
in the master (M), slave (S), and interneuron (I) neurons flbt illustrates two regimes: (a)
g = 20 nS leads to delayed synchronization (DS), where0, and (b)gs = 40 nS leads to
anticipated synchronization (AS), where< 0. Other parameters as in Table 2.1.

In Figure 2.3 we show examples of time series in the threermifft regimes (DS, AS and
PD). The different panels correspond to the membrane patefraction of activated recep-
tors for each synapse, and synaptic current in the slaveoneufor a relatively small value
of the inhibitory coupling §c = 20 nS, Fig. 2.3(a)] the slave neuron lags behind the master,
characterizing DS. In Fig. 2.3(b), we observe that by insirggthe value of the inhibitory cou-
pling (gc = 40 nS) we reach an AS regime. Finally, for strong enough itibib[gg = 60 nS,

Fig. 2.3(c)] the PD regime ensues.

2.2.2 Phase drift

In the DS and AS regimes the master and slave neurons spike same frequency. How-
ever, when the system reaches the PD regime the mean firangfrtte slave neuron becomes
higher than that of the master. The counterintuitive reslitiwn in Fig. 2.4(a) emerges: the
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Figure 2.3: Time series of the membrane potentidls bound receptorsr] and synaptic

currents [), with model parameters as in Table 2.1 for the MSI motif. dibtat the system is

periodic in the DS and AS regimes [(a) and (b) respectivedwever, in the PD regime (c)

the slave and interneuron exhibit a larger frequency thamtaster.
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Figure 2.4: (a) The mean firing rate of the slakg) (coincides with the mean firing rate of the
master By) for DS and AS regimes, but it is larger for PD. (b) In PD, theure map of the
interspike interval of the slave is consistent with a quasiodic system (the pink star shows
the return map of the master).

mean firing rate of the slave neurmtreasesvhile increasing the conductance of thaibitory
synapse projected from the interneuron. For the parti@darbination of parameters used in
Fig. 2.4(a), the transition turns out to be reentrant, the, system returns to the DS regime
for sufficiently strong inhibition (a more detailed explbom of parameter space is presented
below). Figure 2.4(b) shows the return map of the interspiterval (ISI) of the slave, which
forms a closed curve (touching the trivial single-pointratmap of the master). This is con-
sistent with a quasi-periodic phase-drift regime.

2.3 Scanning parameter space

Note that in this simple scenanyg plays an analogous role to thatkoin Eq. 1.1, for which
AS is stable only wheiK > K¢ (eventually with reentrances) [76]. Moreover, the behiawio
the synaptic current in the slave neuron is particularlgadng: in the DS regime [Fig. 2.3(a)],
it has a positive peak prior to the slave spike, which drivesfiring in the slave neuron. In
the AS regime [Fig. 2.3(b)], however, there is no significasulting current, except when the
slave neuron is already suprathreshold. In this case, tlierdgthas essentially no effect upon
the slave dynamics. This situation is similar to the stablecgpated solution of Eq. 1.1, when
the coupling term vanishes.

The dependence of the time delayn gg is shown in Fig. 2.5 for different values of the
external current and maximal excitatory conductangg. Several features in those curves
are worth emphasizing. First, unlike previous studies onwsere the anticipation time was
hardwired via the delay parametgfsee eq.(1.1)], in our case the anticipation time a result
of the dynamics. Note thag; (the parameter varied in Fig. 2.5) does not change the tialesc
of the synaptic dynamical variableg,(only the synaptic strength.
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Secondly,t varies smoothly withgg. This continuity allows us to interprat < 0 as a
legitimately anticipated regime. The reasoning is as ¥adlo Forge = 0, we simply have a
master-slave configuration in which the two neurons spikegeally. Due to the excitatory
coupling, the slave’s spike is always closer to the massgike which precedes it than to the
master’s spike which succeeds it [as in e.g. Fig. (2.2)(®)dreover, the time difference is
approximately 15 ms, which is comparable to the characteristic times of yimagse. In that
case, despite the formal ambiguity implicit in the periggiof the time series, the dynami-
cal regime is usually understood as “delayed synchromizate interpret it in the following
sense: the system is phase-locked at a phase differenca wéh defined sign [75]. Increasing
Ja, the time difference between the master’s and the slavikespventually changes sign [as
in e.g. Fig. (2.2)(b)]. Even though the ambiguity in pririeipemains, there is no reason why
we should not call this regime “anticipated synchronizati@gain a phase-locked regime, but
with a phase difference of opposite sign). In fact, we havefoond any parameter change
which would take the model from the situation in Fig. (2.2}@that of Fig. (2.2)(b) by grad-
ually increasingthe lag of the slave spike until it approached the next magtige. If that ever
happenedr would change discontinuously (by its definition). Therefdhe term “anticipated
synchronization” by no means implies violation of caugyadibd should just be interpreted with
caution. As we will discuss later, the relative timing betneore- and postsynaptic neurons
turns out to be extremely relevant for real neurons.

Third, it is interesting to note that the largest anticipattime can be longer (up to 3 ms,
i.e. about 20% of the interspike interval) than the largesetfor the delayed synchronization
(=~ 1.5 ms). If one increaseg; further in an attempt to obtain even larger values,dfowever,
the system undergoes a bifurcation to a regime with phase(dhich marks the end of the
curves in Fig. 2.5).

T T T T T T T T T T T~ 1T 17
o 1=280pA |
Y aneeaan, a 1=300pA
a H:E:;A L 4 1=320pA T
0 BN
» (AS)
Eqf :
[
2+ -
3 -
,=1nS ,=5nS ,=10nS
4

'0 5 101520253035404550 55 606
gs (NS)

Figure 2.5: Dependence of the time delayith the maximal conductanags for different
values of the applied currehtandga. The end of each curve (stars) marks the critical value of
Ja, above which the system changes from AS to PD.

The number of parameters in our model is very large. The nummibaynamical regimes

which a system of coupled nonlinear oscillators can presealso very large. Notablp/g-
subharmonic locking structured in Arnold tongues usuattgus [77]. These occur in our
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Figure 2.6: Time delay (right bar) in the(ga,gc) projection of parameter space: DS (blue,
right), AS (red, middle) and PD (white, left — meaning that stationary value ofr was
found).

model as well, but not in the parameter region we are consigleln this context, an attempt to
map all the dynamical possibilities in parameter space @vbelextremely difficult and, most
important, improductive for our purposes. We thereforaifoon addressing the main question
of this work, which is whether or not AS can be stable in a bygptally plausible model.

In Fig. 2.6 we display a two-dimensional projection of thegd diagram of our model. We
employ the values in Table 2.1, except &, which is varied along the horizontal axis. Note
that each black curve with circles in Fig. 2.5 corresponds ddferent vertical cut of Fig. 2.6,
along whichgg changes. We observe that the three different regimes arébdied in large
continuous regions, having a clear transition between thdoreover the transition from the
DS to the AS phase can be well approximated by a linear relgiigga ~ 3.5 in a large portion
of the diagram.

Linearity, however, breaks down as parameters are furtheed. This can be seen e.g.
in Fig. 2.7, which displays the same projection as Fig. 216fdr different combinations g8g
andfa. We observe that AS remains stable in a finite region of tharpater space, and this
region increases as excitatory synapses become faster.

Figure 2.5 suggests that larger values of the input cutrenentually lead to a transition
from AS to DS. This effect is better depicted in Fig. 2.8, wehéne DS region increases in
size ad (and therefore the firing rate) increases. Figures 2.&{pal6o show that the system
can exhibit reentrant transitions gg is varied. Most importantly, however, it can be seen in
Figs. 2.7 and 2.8 that there is always an AS region in pararaptee, as synaptic and intrinsic
parameters are varied.

As we will discuss later, the possibility of controlling thensition between AS and DS
is in principle extremely appealing to the study of plas$ich neuroscience. However, in a
biological network, the input current would not be exactyistant, but rather be modulated by
other neurons. In the following, we test the robustness ofrAthis more involved scenario,
therefore moving one step ahead in biological plausibility
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Figure 2.7: Time delay (right bar) in the(ga,dc) projection of parameter space for different
combinations of3p and 3g. From left to right we have respectively PD, AS and DS regimes
as in Fig. 2.6.

2.4 The effect of a common Driver

Let us consider the MSI circuit under a constant input curren160 pA. This is below the
Hopf bifurcation [74], i.e. none of the three neurons spit@scally. Their activity will now
be controlled by the driver neuron (D), which projects eadtity synapses onto the MSI circuit
[see Fig. 2.1(b)]. We chose to replace the constant inpueéntiby a slowly varying current, so
that the synapses projecting from the driver neuron areeoNtDA type. The driver neuron
receives a currerlp = 280 pA, so it spikes tonically. All remaining parameters asan the
second column of Table 2.1. The interest in this case is tibywahether AS holds when the
excitability of the MSI circuit is modulated by a non-statéry current.

As shown in Fig. 2.9 and 2.10, we found in this new scenariorala route from DS to
AS, and then the PD regime (compare with Fig. 2.3 and 2.7)e Nt the characteristic time
(Bn = 6.6 s 1) for the unbinding of the NMDA receptors is about ten timagéa than the
interspike interval (ISI) of the driver neuron (which spskat~ 67 Hz). As a consequence,
rom, 'ps, ol are kept at nearly constant values (with variations~0£0% around a mean
value see Fig. 2.9(b)). The variations in the NMDA synaptioent are also small, which in
principle should make the system behave in an apparentlyasimay to the previous MSI
circuit. However, these small variations are importantugoto increase the AS domain in
parameter space, in some cases even eliminating the PDhrégge e.g. Fig. 2.10 fqBs =
0.30 ms™1). Therefore, at least in this case, the use of more bioldgiptausible parameters
does not destroy AS, but rather enhances it.

In fact, the three regions in the MSI diagrams seem to retasr imain features in the
DMSI circuit. When PD occurs, for example, the slave agaikespfaster than the master
(see Fig. 2.11(a)), like in the MSI circuit (compare with Fig4(a)). Another signature of the
robustness of the PD regime against the replacement of acty a slowly-varying synaptic
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Figure 2.8: Time delay (right bar) in the(ga, dc) projection of parameter space for different
values ofl. PD, AS and DS regimes as in Fig. 2.6.

current appears in the return map shown in Fig. 2.11(b). rthm seen that it has the same
structure of its three-neuron counterpart shown in Fig(9.4

2.5 Neuronal chain networks

The brain exhibits well defined sequences of neuronal pseseduring complex behav-
iors, such as cognitive tasks, motor sequences executbmeaognition. One well known
model that reproduces multiple observations of precisghgating firing patterns is the synfire-
chain [78, 79]. However, a lot of other networks can produeeige firing patterns and gener-
ate sequences. For example, the execution and recognitamtions can be achieved through
the propagation of activity bursts along a biologicallygimed neuronal chain [80], a chain
network can propagate stable activity with temporal prenign songbirds [81] and a chain of
chaotic slaves can exhibit AS [26].

We wondered if it is possible to control the temporal presidbetween spikes of different
neurons in a chain of slaves and interneurons (see Fig..2B&Y}icularly, we are interested
to know whether this chain can exhibit AS. It is shown in Figl®2that a chain of coupled
standard HH neurons driven by a constant current can premidechanism for obtaining larger
anticipation and delay times between the first master ankhgslave than the 3-neuron motif.
Furthermore, the chain network motif has precise time difiees among the spikes that depend
on the synaptic conductances and the external current.
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Figure 2.10: DMSI circuit (see Fig. 2.1(b)). Delay(right bar) in the(ga,9c) projection
of parameter space for different combinationg3afand fz. PD, AS and DS regimes as in
Fig. 2.6.

2.6 Proposed experiment

2.6.1 The hybrid patch clamp setup

The 3-neuron motif shown in Fig. 2.1 can be experimentalyyoduced in a hybrid patch
clamp setup. It means that AS could be testedlitro. The required setup consists in three
steps. First, it is necessary to patch a real neuron (thaldAmiour slave). Second, through
a dynamic clamp procedure, one excitatory and one inhipggnapses are generated (from
simulated master and interneuron respectively). Thesergted synaptic currents are injected
through the intracellular recording pipette. Finally, gieulated interneuron receives, in real-
time, excitatory synapses that were generated by each gpike slave.

Such setup has been used by Le Masson et al. [68] to study himiiaitory feedback loop
controls spike transfer in thalamic circuits. They havefiet that, depending on the value
of the inhibition, the slave and the interneuron exhibit@@mt oscillations. This coherent
behavior was characterized by a peak in the cross-cowglétinction, which is defined by
comparing the activity profiles of the two neurons acrosedbht time delays [82]. The peakin
the cross-correlation is a measure of the level of synchbatyeen the two neurons, whereas
the time delay in which the peak occurs is the time lag of theckyonized regime, i.e. the
equivalent oft in our model.

Le Masson et al. [68] have reported that the positive caitgigpeak decreases for large
inhibition. However, they have not verified any increasenmnegative correlation between the
master and the slave. One possibility for the absence of §1ee§ime is due to the fact that the
simulated retina cell activity (master) and the patchedhthacortical neuron (slave) present
very different dynamics.

We suggest that the AS regime could be verified in the hybtigpsiéthe simulated master
cell have similar dynamical properties as the biologicatped neuron. To test this hypoth-
esis it is necessary to make our previous 3-neuron motif evare realistic. In this section,
we use a single-compartment modified Hodgkin-Huxley neunailel designed according to
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Figure 2.11: DMSI circuit (see Fig. 2.1(b)). (a) The meamfrrate of the slave) coincides
with the mean firing rate of the masté#/) for DS and AS regimes, but it is larger for PD. (b)
In PD, the return map of the interspike interval of the sla/ednsistent with a quasi-periodic
system.

Figure 2.12: Chain of master (M), slaves (S) and internesi(nAll parameters as in Table 2.1
for the MSI circuit.

Pospischil et al. [83] which is based on previous thalamticadrmodels [84, 85]. This model
was obtained from ModelDB [86]. It is well suited for simufag motifs in which the effect of
neuromodulators or pharmacological agents on identifiedgctances can be tested.

2.6.2 Modified Hodgkin-Huxley model

Each neuron is now described by:

Cn— = Gnamh(Ena—V)+Gkn*(Ex —V)+Gup*(Ex —V) (2.15)
+Gm(Viest—V) +1 + Z lsyn

where Gna = 50 mS/cnd, Gk = 5 mS/cnt, Gy = 0.07 mS/cm, Gy = 0.1 mS/cnt Ena =
50 mV, Ex = —100 mV. The three voltage-dependent currents are the soashpotassium
currents that generate action potentials and the extrayddtrectifier’ K+ current (repre-
sented by the teri®y p*(Ex — V) in Eq. 2.16). This slovK+ current is responsible for spike-
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Figure 2.13: Membrane potential of each numbered neurowrsio Fig. 2.12. The chain
exhibits (a) DS for weak inhibitory synaptic conductanggs= 20 nS and (b) AS for stronger
inhibition gis = 40 nS. Note that the largest anticipation (and delay) tinteeteveen neurons 1
and 5.

frequency adaptation firing rate and the afterhyperpaéion (AHP) of cortical pyramidal
cells. The gating variables= m,n, h are described as before:
dx
4 = (V)13 = BV). (2.16)

The steady-state activation and the time constant aregetgely, given byx., = ay/(ax+ Bx)
andtx = 1/(ax+ Bx), where:

—0.32(V — Vi —13)

Om = e V- \Vr-13/4_q

0.28(V -V —40)
Pm = eV-Vr—40)/5 _ 1
an = 0128 (V-Vi-17)/18

4

B = 1+e V-Vr-40/5

~ —0.032V -Vt —15)
On = e (V-Vr—15/5 1
B, = 0.5e (V-Vr—10/40_7 (2.17)

We usevr =55 mV.
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Figure 2.14: Characterizing the modified HH model. (a) Exkngb the membrane potential
of each neuron in the AS regime. The spiking frequency is lemiddan in the standard HH. (b)
Excitatory and inhibitory post synaptic potential EPSP HPEP generated by the AMPA and
the GABAx synapses employed in our model. (c) Time detayn each cycle, characterizing
DS (blue), AS (red) and PD (cyan) regimes. tds a function ofjg. Similar to what happens
in the standard HH, here there is a smooth and continuousitianfrom DS to AS.

The gating variablg obeys the following equations:

dp
P (V) p) V)
1
Po(V) = 1+ e V139710
(V) = fmax (2.18)

3.3e(V+35)/20 _ g~ (V+35)/20°

wheretmax=1s. We can also take into account the effect of temperatureCelsius) dividing
Tmaxby 2.3(T=38//10 byt here we considdr = 36 °C.

The model described by Eq. 2.16 can reproduce differentogleysiological results from
the rat somatosensory cortex and thalanmusitro [83]. It is also good to represent both
excitatory and inhibitory cortex cells (see an example efrrean membrane potential of M,
S and | in Fig 2.14(a)). Depending on the parameters it fifeminht neuron types as regular
spiking fast spiking, low-threshold spikes. Adding two maurrents to Eq. 2.16 (one for high
and other for low threshold &4&) it can also generate bursts. By far the largest cell class in
neocortex is the so-called regular-spiking (RS) neuronc¢kvis in general excitatory and most
often correlates with a spiny pyramidal-cell morphologheTypical response of RS cells to
depolarizing current pulses are trains of spikes with satap.
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The model claims to represent one of the many possible canmipes between simplicity
and biological realism. It is is more complex than nonlineéegrate-and-fire models [87, 53,
88], but it is also more realistic because the ionic currangsidentified and can be adjusted
to physiological measurements such as voltage-clamp tlageded. In order to mimic real
synapses it is also important to obtain realistic excitatorhibitory) post synaptic potentials
EPSP (IPSP). Both EPSP and IPS of our model are shown in FH8).1The synapses are
AMPA and GABA, as described in section 2.1.

In this section we use this modified HH model to built-in thelM®tif illustrated in Fig. 2.1
and to look for anticipated synchronization. Once againtradling the synaptic conductances
we can find DS, AS and PD regimes. These regimes can be ch@edtby the sign of the
curvert;(#cycle) in Fig 2.14(c). Like in previous sections, the time delaytia transition from
DS to AS is a continuous and smooth function of the inhibiteyymaptic conductance (see
Fig 2.14(d)).

2.6.3 AS inthe presence of noise

Here, we use experimental data from a patched netitoimprove our model and explore
the parameters in which the 3-neurons model of modified HEeres AS. The real cell patched
during the experiments fires spikes due to the injection obigyncurrent, as we can see in
Fig. 2.15 To mimic the membrane potential shown in this figueshave added noise to the
constant external current in our model. Then, the inteespikerval is not constant, as can
be observed in Fig. 2.16(a). The time delapetween the master and the slave also varies in
each cycle. However, maintains a well defined sign, as shown in Fig. 2.16(b) andyiséem
presents both DS and AS regimes depending on the stregigtbkthe inhibitory synapse (see
Fig. 2.17). The mean value ofis a well behaved function @js (as in the case without noise).

2.7 Other motifs

2.7.1 Bidirectional coupling

One practical application of anticipated synchronizaisoio use the prediction of the slave
to prevent or stimulate a certain response in the mastertificial intelligence an intelligent
system should be able to predict and act consequently. ihgribat if a system which exhibits
anticipated synchronization has an internal control sgsiecould, in principle, act before a
specific event and avoid undesired behaviors.

Here we are interested in studying the biologically plalesdmunterpart of two dynamical
systems coupled as follows:

X = F(x(t)+hx(t),y(t—t2), (2.19)
y o= ) KX -yt —tg)].

LExperiments were performed by Dr. Marylka Yoe UusisaarihatTheoretical and Experimental Neurobiol-
ogy Unit in the Okinawa Institute of Science and Technoldgpan.
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Figure 2.15: Experimental data from a patch clamp recordihgells in sliced tissues. (a)
and (b) Injected current in each recording. (c) and (d) Mememotential of the same cell in
two different trials (corresponding to the two colors in leazaph) repeating the same noise
(respectively (a) and (b)). (e) and (f) Example of an actioteptial zoomed in from (c) and
(d). Data were kindly provided by Dr. Marylka Yoe UusisaardaDr. Klaus Stiefel (Okinawa
Institute of Science and Technology, Japan).
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Figure 2.16: Characterizing DS and AS regimes in the presehnoise. (a) With colored
noise added to the input current, spiking is not periodig. bder noisy dynamics, the time
delayt in each cycle fluctuates around a mean with a well-defined @$ayrthe DS and AS

regimes) (c) and (d) Zoom of two different time serigg, controls the relative timing of the
master and slave spikes, leading to DS or AS.
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-
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Figure 2.17: Time delay in each period for different valuésnbibitory conductancesgg
increases from top to bottongs = 0,10, 15,20,30,40 nS.

whereh(x(t),y(t —t2)) is an arbitrary coupling function of and/or y. In physical systems,
typical couplings are the direch = y(t —tp) and the diffusive:h = y(t —t) — x(t). In our
biologically inspired model we propose to add an excitatdrgmical synapse from the slave
to the master to mimiti(x(t),y(t —tz)). Compared to Eq. 1.1 the extra term in Eq. 2.19 is
an attempt to study the effect of an internal control systéforeover, in neuroscience the
reciprocal connection is of great importance and abundutite brain. Indeed, bidirectional
connections are more than two times as frequent than peeldigt chance [89].

Therefore, we investigate the existence of AS regime in thdified 3-neuron motif shown
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Figure 2.18: Modified MSI motif. We incorporate the effectaobmall excitatory feedback
from the slave to the master. How does the system go from areaigbnal to a bidirectional
coupling?

in Fig. 2.18, which has an extra excitatory synapse fromldgageeseuron to the master. We use
the standard HH model and chemical synapses with time desaysTable 2.1. Each neuron
receives an external constant currént 200 pA, which implies the coexistence of a stable
fixed point and a stable limit cycle. In order to mimic the mpisach neuron also receives a
square pulsed current. The pulses obeys a Poisson digirilwith rate parametd® = 200 Hz.
Each pulse has 1 ms width and 200 pA height. Moreover, theenastiron receives an extra
Poisson input witltR = 50 Hz. Fig. 2.19 shows that the time series from the masterttzand
slave are different, as well as their interspike intervé®)( Like before, we define the time
delayt as the mean value of the time delay in each period.

Aiming to understand the effect of the excitatory feedbaokfthe slave to the master, we
have fixed the conductances constituting the inhibitorpl@s; = gis = 10 nS). We start from
Ovs = 10 nS andysp = 0 nS, i.e. a unidirectional coupling. Similar to previousuks for this
canonical master-slave configuration, depending on thibitehy conductance the system can
present both DSy s = 10 nS) or AS ;s = 80 nS) regime. Then we increase the conductances
of the reciprocal couplinggius andgsy). We have attached the value gyfis with thegsu in
the following way:gms = gs| + gsm, Which ensures thajys is always larger thagg.

The effect of the reciprocal coupling in the AS and DS regimseshown in Fig. 2.20 by
the red and blue dots respectively. If we start in the DS reggrs = 10 nS), the time delay
almost does not change with the excitatory feedlggk (T ~ 0.8 ms). On the other hand, if
we start in the AS regimay(s = 80 nS, represented by the red dots in Fig. 2.20), the timeg/dela
persists almost unchanged for small valuegj (T ~ —0.4 ms). If we increasgsy by more
than 10% ofgys, T increases and the system moves to the DS regime (red dotg with in
Fig. 2.20).

It is worth to mention that in this modified motif, both the rtexsand the slave neurons
are senders and receivers.fgf =~ gus there is no reason to define DS and AS regimes, as
well master and a slave neurons. The general question is li@whe time delay between
bidirected coupling neurons depends on the inhibitory ldopfact, Fig. 2.20 shows that for
great values 0§ s the sign oft may change depending gay. However, it does not happend
for small values ofy;s. This two different behaviors, for large and small inhibitj is related
to the existence of the AS regime in the limit @y — 0. Whengsy decreases the system
approaches the unidirectional motif. Thus, for large valokg,s we can study how the AS
regime emerges.

43



120 T T T
80~
40t

oW
1 V‘ 1 0

10400 10500 10600 0 5000 1000¢
(Ch t (ms) cycle

(&)
C80

V (mV)

(8]

= 60
3

O 40
o
5 20
:.:t 0 i | iiinAn Bnoa| g Al mimanih. I . @ 1.0 an

10 15 20 25 30

Figure 2.19: Characterizing the standard HH model in thegree of a Poisson input. (a)
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Figure 2.20: Time delay as a function of the excitatory conductarmg, from the slave to
the master. Fogis = 10 nS (blue dotsy is almost constant and the system exhibits only DS
(t > 0). Forg,s = 80 nS (red dots) the system exhibits both AS<(0 for gsm < 10 nS) and
DS (r > 0 forgsm > 10 nS).

2.7.2 An extra slave

It is also possible to find other motifs, with more neuronaf ttan also exhibit AS. For ex-
ample, the presence of a second slave as shown in Fig. 2rRdfegnlarge the set of parameters
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Figure 2.21: Example of a master-slave-slave-interne(M85I) motif. (a) Schematic repre-
sentation of MSSI. (b) and (@) as a function ofy;s = gg for both MSSI and MSI motifs. (b)
The excitatory conductance ajg = gus = gss= 0is = 6.5 nS, other parameters as in Table 2.1.
(€) ga = Ous = Oss= Ois = 20 nS and the synaptic time decays Bke= Bg = 0.6 ms L.

in which AS occurs. We call this motif master-slave-slaneineuron (MSSI). The excitatory
synapses are mediated by AMPA while the inhibitory is medidty GABA,. In Fig. 2.21(b)
and (c) we compare versusthe inhibitory conductancg,s for the MSI (shown in Fig. 2.1)
and the MSSI motifs. In the MSSI configuration the time detagiefined as the time difference
between the first slave and the master. The inhibitory symggss from the interneuron to
the first slave. In Fig. 2.21(b) the synaptic conductancegarE= gus = gss= gis = 6.5 nS
whereas in Fig. 2.21(cYa = gus = gss= Ois = 20 nS and the synaptic time decays are
Ba = Bs = 0.6 msL. All other parameters are in the first column of Table 2.1. i B.21(b)
the extra slave prevents the system to go to the PD regimel(zitag the phase-locking), while
in Fig. 2.21(c) the extra slave increases the anticipatioe {i.e. increases the modulus of the
time delay| 7).

2.7.3 Motor circuit in the spinal cord

Motor behavior can be considered as the ultimate outputeohdrvous system and is me-
diated by local spinal circuits [90]. The spinal cord hagémajor functions: as a conduit for
motor information, which travels down the spinal cord; a®aduit for sensory information in
the reverse direction; and finally as a center for indepethgleantrol numerous reflexes and
central pattern generators. The interplay between motmoms and interneurons results in the
appropriate sequence of muscle contractions. Renshasv[8&ll 91] are inhibitory interneu-
rons found in the gray matter of the spinal cord, and are @ssakin two ways with an alpha
motor neuron (see Fig. 2.22). (i) They receive an excitatotiateral from the alpha neuron’s
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axon as they emerge from the motor root, and are thus "kemptm@d" of how vigorously that
neuron is firing. (i) They send an inhibitory synapse to alpfotor neuron of the same motor
pool. In this way, Renshaw cell inhibition represents a tiegdeedback mechanism.

Since we are interested in inhibitory feedbacks, we siredlatvery simple motif to repre-
sent the motor circuit in the spinal cord shown in Fig. 2.2aclElabel in Fig. 2.23, represents
a neuron or types of neurons: (1) agonist alpha motor ne&)rRRenshaw cell, (3) agonist
muscle spindles (sensory receptors), (4) la inhibitoryrareresponsible for inhibiting an-
tagonist motor neuron and activated by la spindle affeyefisantagonist motor neuron, (6)
antagonist muscle spindles (sensory receptors), (7)neteon activated by antagonist muscle
spindles which inhibits 1a inhibitory neuron. The synagtieiductancey s of this inhibitory
synapse is our control parameter.

Each cell was described by a modified Morris-Lecar neuronehedhich allows arbitrarily
small frequencies [54]:

dv — _
Cma - GCarnoo(V)(ECa—V> +GKW(EK —V)
+Gm(Viest—V) + 1 + Z Isyn (2.20)
dw  We(V)-—w,
rra 7%0(\/) ; (2.21)

whereCy = 1 uF/cn?, Geg = 1 mS/cn?, Gk = 2 mS/cn?, Gy, = 0.5 mS/cnm?,Eca = 100 mV,
Ex = —70 mV,Viest = —50 mV and

Weo (V) = O.5<1+tanh<vm_1o))

14.5
Tw(V)

W3

cosh(sz_glo) ' (222

Synapses were mediated by AMPA and GAB#s described previously. All conductances are
fixed atg = 10 nS excepy;s which may vary from 5 to 40 nS. The period of each neuron is
T ~ 16 ms.

Depending on the values gfs, the mean time delay between the agonist and antagonist
muscle spindles (neurons 3 and 6 in Fig. 2.23(a)) can beip®sit negative. Differently
from previous sectiont; = ti6 —ti3 in each cycle oscillates periodically around its mean value
(see Fig. 2.23(b)). In this case, AS could be a mechanismcibtéde the activation of the
antagonist muscle spindle before the agonist. Since wedatidetount for conduction delays
in this model, the existence of AS regime in this simple ditoacould at least decrease time
delays between spikes in presence of real conduction delays
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Figure 2.22: lllustration of the motor circuit. There areotimhibitory loops in this circuit. The
agonist motor neurorNeurona motora agonisjaends an excitatory synapse to the Renshaw
cell (Célula de Renshawwhich sends back an inhibitory synapse. The antagonistchau
spindle Huso muscular antagonistaxcites an interneuron, which inhibits the 1a inhibitory
neuron [nterneurona inhinidora 1a The latter inhibits the antagonist motor neurble(@rona
motora antagonistga which excites the antagonist muscle spindle closing rthéitory loop.
Moreover the 1la inhibitory neuron receives an excitatonapge from the agonist muscle spin-
dles Huso muscular agonisjand an inhibitory synapse from the Renshaw cell. Repratiuce
from Kandel et al. [92].
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Figure 2.23: Muscle circuit (a) Schematic representatidhecircui

2200

t shown in Fig. 2.22. Red

(green) arrows represent excitatory (inhibitory) synap¢le) Time delayr; between neurons 3
and 6 (the agonist and antagonist muscle spindles) in eaté. cyoscillates, but fog;s=5nS
itis always positive indicating a DS regime, whereasjigr= 40 nS,1; < 0 which characterizes

an AS regime.
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CHAPTER 3

Phase response curve

3.1 Whatis it and why is it useful?

Self-sustained oscillatory patterns are well spread ihogioal systems. The rhythmic
activity of populations of fireflies, cardiac pacemark celt&l neuronal circuits are just a few
examples. All these biological oscillations can be desdimathematically by limit cycle
attractors which are responsible for periodicity in dyneethsystems. However, the complete
understanding of the mechanistic bases of synchronizesteourrent challenge in the interface
of physics and biology [93].

Here we are interested in the relation between the synctatan of a few coupled neurons
and their intrinsic dynamics [94]. Phase response curvBEEp are one the main tools to
characterize the effects of a perturbation applied to leyitles and may predict qualitative
features of a particular oscillation subjected to perttidos. Therefore, it is useful for linking
the response of individual neurons to perturbations anddyfmamics of the entire neuronal
network.

Lettp be an arbitrary point on a periodic orbit of a nonlinear systeéhen any other point
on the periodic orbit can be characterized by the tighe,since the last passing &f. The
variable@ is called phase of oscillation, and it is bounded by the pkaboscillationT [95]

. The phase response of a periodically spiking neuron (wetiog T) represents the change
in its phase due to a perturbation in a specific momeiihe magnitude of the phase shift in
the spike train depends on the shape and the exact tinofghe stimulus. We numerically
calculate the PRC sending the same stimulus at differemistimnd measuring the shift on the
phase of oscillatiofPRC(t). Typically we plot the PRC due to a square pulse current which
arrives in a moment and evokes a phase response RR@(the next spike. For simplicity,
unless otherwise stated, we convert the phase shifts todatays and measure the PRC in
seconds (not in radians). We arbitrarily choggse: 0 to correspond to the peak of each spike.

In Fig. 3.1(a) we show a qualitative example of an applied®el current (t) and its effect
in the mean membrane potential of a neuron (dashed linesemi®the undisturbed or free-
running trajectory). We define PRG = t] e — tdistubed (see Fig. 3.1(a)), wherd e is the
spike timing of the free-running neuron a@gtk‘grbedis the spike timing of the disturbed neuron.
By our convention, PR@E) > 0 if the next spike is advanced. It means that the disturbacbme
fires before it would do in the absence of the stimulus. On therchand, PR@) < O if the
next spike is delayed. In Fig. 3.1(b) we show the PRC of an KidgHuxley neuron due to a
small current pulse: with heigit = 1 nA and widthL = 0.01 ms. Exactly the same curve is
obtained for a different small pulse with the same aka: 10 nA andL = 0.001 ms.
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Figure 3.1: Definition of phase response curve (PRC) (a) pfarof an applied external
currentl (t) and its effect in the mean membrane potential of a neuronh&hkne represents

the free-running trajectory (in the absence (@f). We define PRQ@) = t;;?fe— tggsitkgrbedas the
effect ofl (t) in the next spike of the neuron. In this example, the stimulas applied at a time
t = 2 ms after the spike. The subsequent spike of the perturhgdomevas delayed by.4 ms,
in comparison with the free-running neuron, heR&G2 msg = —4.7 ms< 0. (b) PRC as a

function of the time in which an infinitesimal square pulse curré(t) was applied.

We also define PR{t) as the phase shift in the first spike after the perturbatioitewh
PRG(t) is the phase shift in the second spike. It is also possiblefioe the PRg(t) and so
on. If the perturbation is sufficient small, one expects amdfies that PREt) = PRG(t) =
PRQt). It is worth to mention that the PRC can be calculated for ditrary stimulus, not
necessarily weak or brief. The only condition to do it cotiers to wait enough time to ensure
that PRG(t) = PRG_1(t). However, this become a limiting factor when we use PRC tdystu
synchronization of periodic coupled oscillators as we dallin the following sections.

There are two main types of neurons in respect to the sigreaf BRC. When small depo-
larizations produced by excitatory postsynaptic poténtaly produce advances in the phase
of the neuron, the phase response is a non-negative curveedll it a Type-1 neuron. In
Type-ll neurons both positive or negative PRC can be pragiwepending upon the timing of
the excitatory stimulus (as shown in Fig. 3.1(b)). For inéeimal perturbations this classifi-
cation of PRC [96] is closely related to the classificatiomxéitable membranes in respect to
the applied depolarizing currents. However, it is more aieate to relate the type of the PRC
to the existence of subthreshold oscillations [97].

Class-I excitable membranes can fire arbitrarily slowlyrrtba onset of firing (may os-
cillate with arbitrarily small frequency), whereas Cldksxcitable membranes have an abrupt
onset of repetitive firing at a threshold frequency, and oabe induced to fire at any frequency
below the threshold frequency. Class-I membrane excitaisltypically exhibited by models
near a saddle-node on invariant circle bifurcation, and€lanear an Andronov-Hopf bifur-
cation [98] (which is the case of the HH model). Then, Ermautt{96] has concluded that
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Figure 3.2: Two types of neurons based on membrane exdyadnild PRC. In (a),(c) and (e)
we show an example of a Type-I neuron, whereas in (b),(d) Bne(show an example of a
Type-ll neuron. Figure adapted from Sterratt et al. [99] @adavier [97].

Type-l1 PRC is associated with Class-I excitability and HpeRC with Class-II excitability.
For example, this relation is valid for the HH model, whichaiSype 1l PRC and a Class-II
excitability. In Fig. 3.2 we show examples of Class-I andddieability and Type-I and Type-II
PRC.

However, more recently, an abrupt onset of firing (Class«titability) may also be ob-
served in the case of a saddle-node bifurcation away fronlirtine cycle [94]. Therefore,
Izhikevich has proposed to classify the neurons accorditmlboth bifurcation and resting
state. By his definition, a neuron is a resonator if exhihitgtlsreshold oscillations and as inte-
grator if there are no subthreshold oscillations. All reons are Class-Il, but the integrators
can be both Class-I or Class-Il. In this sense, it was verifiatiType-1 PRC is better associated
to an integrator and Type-Il PRC with a resonator [97].

In the theory of weakly coupled oscillators the BRQenerated by an infinitesimal stim-
ulus is called linear response function, infinitesimal PR&nel, or Green’s function. This
function can be convolved with the actual input received dgheoscillator (usually a synaptic
conductancé(t)) in order to compute the total PR() of the oscillator received over one cycle
of the network oscillation:

PRG (t / PRGns (7)1 (t + T)dT (3.1)

It is also possible to measure the spike time response c8MeQC) as the PRCs generated
by an action potential to drive the change in postsynapticiaotance . In all cases we can just
refer the function as PRC but it is necessary to specify whkithulus has generated it.
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3.2 Master-Slave: two unidirectionally coupled oscillatos

3.2.1 Poincaré phase map

Several mathematical formulations allow the time evolutid coupled oscillators to be
described by a map from one cycle to the next. For examplel#ss of pulse coupled meth-
ods [100] and weak coupling methods [95, 101, 102] make uded?RC to calculate Poincaré
phase maps. While in the weak coupling method we convolvetanpation with PRG¢, in
the pulse coupled method we simply use the perturbatiolfiitsgenerate the PRC (or STRC).
If the coupling is not sufficiently weak but is pulsatile intnee, the method of pulse coupled
oscillators should be utilized. Although the PRC can bewdated for any input, both methods
require that the timing of each spike is affected by only yneptic spikes within one period.
In other words, it is necessary that there is no second oehigitler effects of the PRC.

These ideas have been employed to study the response ofanrtewa periodic stimulus
such as synaptic inputs from a periodic pre-synaptic neutorparticular, we are interested
in the synchronization between two unidirectionally cagpheurons: the master and the slave
(MS motif). Once we know the PRC of the slave due to the synaitnulus and the time delay
between the two neurons in one cycle, we can predict the teteydn the following cycle.
Fig. 3.3(a) illustrates spikes of the master and its effgeb(gh the synapse) in the spikes of
the slave according to the PRC. The time since the first sgitteeslave until the second spike
of the master can be geometrically obtained by two diffesemnts (see Fig. 3.3(a)), which give
us the following relation:

6o+ Tv = Ts— PRQ6p) + 6. (3.2
Generalizing it for any period, we find the Poincaré phase fa4p

where6, is the time between the— th spike of the slave and the—th spike of the mastefy
andTs are the periods of the master and the slave.

If the system goes to a phase-locking regime, the time dedwd®en consecutive spikes of
the master and the slave will be the same in each period. 8hus= 6, = 8* and consequently
PRC(0*) = Ts— Tm. We sayf* is a fixed point that could be stable or unstable depending on
the slope of the curve as a function &f. In the particular case dfs = Ty, PRQ6*) = 0,
which means that the synapse from the master always arrthe islave membrane potential in
the exactly time in which it causes no effect in the next spieis stable if|1+ PRC(6*)| <
1, which ensures that a positive slope indicates unstabédel fpoint. By no means we are
limiting the coupling to be excitatory. If the synaptic cemt is too large, the first order of the
phase response, PRGs very different from higher orders of the PRC and Eq. 3.8ldde
inappropriate to describe the synchronization of a meadtate system.

3.3 Slave-Interneuron: bidirectional coupling

The next level of complexity is two reciprocally coupled nens. Mirollo and Strogatz [103]
formulated the general map for any two coupled oscillatorshich the state variable (i.e. the
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membrane potential V) is a smooth monotonically increaamdjconcave down function of the
time, (for example the leaky integrator). For identicalitbators in which the coupling term is
zero at a phase of both 0 aiid synchrony with zero lag is always a solution. However, pbthe
solutions are possible. For systems in which the PRC doedisappear at 0 antl synchrony
may not be a solution. Therefore criteria are required fdhlexistence and stability, as we
will show [100].

() (b)

Figure 3.3: lllustration of the temporal trace of a neurod #re effect of the synaptic current
between coupled neurons on their following spikes. Diffidgefrom Fig. 3.1, the solid line
represents the free-running trajectory and the dashedHespike due to the presynaptic cur-
rents in that cycle. (a) Two neurons coupled in a masterestanfiguration (MS, unidirectional
coupling). Each spike of the slave (S) is perturbed by thagira current from the master (M).
By definition, the perturbation is theRCt) (b) Two neurons coupled in a slave-interneuron
configuration (SI, bidirectional coupling). Each spikelud slave (S) is perturbed by the synap-
tic current from the interneuron (1), whereas each spikénefihterneuron is perturbed by the
synaptic current from the slave.

First we defings, as the time difference between the th consecutive spikes of the slave
t> and the interneurot), and the opposite order far, we have:
Vo = to—t) (3.4)
an - t|!1 - tl’?—l
Then, the map based on the PRCs for two pulse coupled osddllistgenerated as follows. By

Fig. 3.3(b) it is possible to geometrically defiog as a function of and PRQy), whereyy
is a function ofag and PRGyn(ap) and generalize the relation to each penind

Yo = —0n—PRGu(on)+Ts (3.5)
Oni1 = —Yo—PRQW)+T. (3.6)

Therefore, it is possible to represent this map by just onaton:
Ont1 = On+PRGnn(an) —PRCW) + T — Ts. (3.7)
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This result is in agreement to the one obtained for pulse ledupscillators [100]. In our
particular case of the SI motif, in the phase-locking regape; = an, T) = Tsanda™* =T — y*.
Then, the map can be reduced to the following condition:

PRGun(T —y") = PRQY), (3.8)

whereT is the period of the phase-locking, which can be equdktandT, or not.

3.3.1 Stability analysis

Linearizing around the fixed poirtt*:

PRC6,) = PRQO")+PRC(6)A6, (3.9)
NG, = 6,— 6 (3.10)

wheref = a or y, in Eq. 3.7, we obtain the following approximated map in teeghborhood
of the stationary solution:

Adni1 = [(PRGyy(a) + 1) (PRC(y) + 1)) Aan. (3.11)

If |(PRG,,(a*)+1)(PRC(y*)+1)| < 1, thenAan,1 goes to zero and the locking @, y) is
stable.

It is important to notice thaPRG,»(a) does not necessarily comes from an inhibitory
pulse. We use this notation just because we are interestedniparing our results to the
Slave-Interneuron motif. The results obtained here ar@cgeritly general to describe any
kind of bidirectional coupling between two neurons (mutiakcitatory, mutually inhibitory,
excitatory-inhibitory...) and it does not requires that tscillators are equal. However, like in
the previous section, this map is correct only if the firstasrBRC is sufficiently greater than
the others. Moreover, the cells should alternate in firin@ (S -1-S-1...).

3.4 Master-Slave-Interneuron coupling

To the best of our knowledge, the Poincaré map of this magr@sented in Fig. 2.1(a)) has
not been reported. Similar to what we did before, we can dé¢fieg¢ime differences between
neurons as:

B = o —t3 (3.12)
Yn = tl’?_tr|1
an = t—t3,

and define the return map based on geometrical featuresul&@ahg the time difference be-
tween the second spike of the master and the first spike ofahe:s

Bo+Tm = Ts+ (=PRQBo) — PRGnn(a0)) + B1. (3.13)
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Figure 3.4: Three coupled neurons in a master-slave-ieteam configuration (MSI). Each
spike of the slave (S) is perturbed by the synaptic currembfthe master (M) and the interneu-
ron (I), whereas each spike of the interneuron is perturbyethé synaptic current from the
slave. The Poincaré map of this configuration provides the tiifferences between the three
neurons in the phase-locking regime.

Measuring the time since the first spike of the slave untdésond spike and looking justto S
and | we find:
o+ Yo = Ts+ (—PRCBo) — PRGnn(a10)). (3.14)

The time between the first and second spike of the internegives us:
Ti+(=PRQW)) = Yo+ 01, (3.15)

where yp = Ts — PRC(Bp) — PRGnh(0o) — ap. Generalizing the three equations above and
rewriting the terms we obtain the desired map:

Bri1 = Bn+PROBH) +PRGh(an) +Tm—Ts (3.16)
¥a = —an—PRQOBn) —PRGh(on) +Ts (3.17)
Ony1 = An+PROBn) +PRGun(an) —PROW) + T —Ts. (3.18)

Since according to Eq. 3.16 and 3.1§, = yn(an, Bn), this is in fact a two-dimensional map,
which means that one of the equations can be suppressedyveipwes is a more didactic way
to represent it.

Two important assumptions were done here [93]. First, warassd that the effect of two
different stimulus is the sum of each one separately. Seoceadconsidered that the three
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neurons fire in each cycle. The order of the fire does not m@terS - 1; S-1-M;o0rS-M -
), but it should not change along the numerical calculatiurthermorePRC ) andPRQy)
are independent functions.

3.4.1 Particular case

In the special case in which the slave and the interneurodeseribed by the same equa-
tions and the excitatory synapses MS and Sl are equal, we have

PRCB) =PRQy), VB=Yy. (3.19)

Moreover, if the free-running period of the three neuromsthe same, thefiy =Ts=T, =T.
In the stationary situatiofi, 1 = Bn = * and Eqs. 3.16, 3.17 and 3.18 reduce to:

PRQ3*) + PRGm(a*) = 0 (3.20)
PRC(3*) + PRGh(a*) —PRQYy*) = 0. (3.21)

In the phase-locking regime:
vw = YV =PRQy)=0 (3.22)
PROB*) = —PRGu(T-Y"). (3.23)

By our own definition of the time delay in the previous chapfEr=tM —tS= —1 mod(T).

In other words, in AS we havgi* = —1 whereas in DS we hav@d, = T — 1. Then we expect
small B* in the AS regime, and largg8* for DS regimes. This analysis, together with the
shapes of the PRC for the HH, gives us a good intuition ab@ubétessary conditions for the
existence of AS.

For example, since we know that in all examples of AS and DSrttezneuron fires right
after the Slave, we expegt > T /2 (see e.g. Fig. 2.2). SBRCy*) should cross the axis
with negative slope in the second half of the period, like ig. B.5(a) and (c). Moreover,
y'>T/2=a*<T/2. If PRCB) = PRAY) = —PRGn(a), VB, a andy, thenp* = a*.
That meang8* < T/2, which impliest < 0 and hence that AS is a solution. In addition, the
Interneuron and the Master fire at the same moment.

3.4.2 Stability Analysis

Similarly to what we did in the stability analysis for the SIse, we write:

PRO6,) = PRQ6*)+PRC(6%)A6, (3.24)

wheref = a, 3, or y. Using the equations aboveé,= a* + y*, and the following relations:

Ts— PRQB*)—PRQa*) = T —PROY)=T (3.26)
(3.27)
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in the maps 3.16- 3.18, we find:

Adni1 = Aan+PRC(a *)Aan+PRC’( B*)ABy — PRC(y")Ayh (3.28)
Ay = —Aan—PRG(a*)Aan—PRC(B*)AB (3.29)
ABnir = ABn+PRC(B*)ABy+ PRC, (o)A, (3.30)

Then, the stability condition can be written as follows:

Adni1 = [1+PRC,(a*)+PRC(y*)PRG,,(a*)PRC(y*)]Adn
+ [PRC(B* )+PRC’(B )PRC (v*)]ABy (3.31)
ABri1 = [PRC.(a%)]Adn+ [1+PRC(B*)]AB (3.32)

This relation can be written in a matrix representation as:

(a6 )~ (o) (a8)

ABn+l CD ABn

where A,B,C,D are the terms between square brackets in Egk.a®d 3.32. The stability
condition requires that the eigenvalues of the square m@trandA, € (—1,1) .

3.4.3 Phase model

Coupled oscillators interact via mutual adjustment of tfanplitudes and phases. For
weak couplings, amplitudes are relatively constant andrtezactions could be described by
phase models [52, 95]. In such approach our MSI motif wouldésxribed by the following
differential equations:

QM = W\
6s = ws+f(6w—0s)+9(6 - 6)
6 = ws+h(6s—8). (3.33)

Redefining the variables as:

¢ Bs— Bu

we can reduce our problem to two ODE'’s:

¢ = ws—om+f(-¢)+9(-y)
¢ = ws—w—h(Y)+f(-¢)+9(-y). (3.35)
These equations are related to the map in Egs. 3.16- 3.1&ciegl) by —3, ¢ by a, f,g
andh by PR B),PRGnn(a) andPRCy)) respectively. The phase model is often employed in

analytical calculations. Particularly when the PRC canpgp@eximated by simple functions as
sines, cosines or piecewise-like functions.
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Figure 3.5: Phase response curve of a quadratic currerd patls width L and height H. (a)
H = 30 pA and different values df. (b) FixedL = 2 ms and varyindd. (c) the same plot as
in (a) with a zoom in the region close to the fixed pdRCt*) = 0. (d) The effect of negative
H = —30 pA in the quadratic pulse simplification, which is the agalus of an inhibitory
synaptic current.

3.5 Numerical results

The phase responses curves of a Type-ll neuron generatetfdrgmt pulses are shown in
Fig. 3.5. We choose the PRC produced by a pulse with héight30 pA and widthL =2 ms
as the standard curve (black lines) and compare it to PRQdegidy different heights and
widths. Firstly, in Fig. 3.5(a) we fixeH and changed. Fig. 3.5(c) exhibits the same plot with
a zoom in the region close to the fixed poRRCt*) = 0. Secondly, we fixed. and varyH,
which is shown in Fig. 3.5(b). Finally, we compared the dffefca negative pulse on the PRC,
which is the equivalent of an inhibitory coupling in our silifipd model of quadratic synaptic
pulse (see Fig. 3.5(d)). We emphasize that, for these HHonsueven in this simple approach
excitation and inhibition araot simply the reflection of one another around the &8&C= 0.

Using quadratic pulses as the synaptic current from theen#stthe slave, we compare
the time delayr between the two neurons obtained from two different methdeisst we
simulate the MS motif of HH neuron as we did in Chapter 2, reipigdthe chemical synapses
by quadratic pulsed with heighi = 30 pA. The black dots in Fig. 3.6(a) represanas a
function of the widthL of the synapse. It is worth mentioning thmalmost does not change
with H. Second, for each value &fwe numerically calculate the respective PRC and use the

58



map represented by Eq. 3.3 to calcul@te Then we obtairr using the following relations: if
8>T/2=1=T -0, otherwiser = —6 (see orange dots in Fig. 3.6(a)). Both results are in
a good agreement, which indicates that weak coupling assomrip valid in this situation.
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Figure 3.6: Comparison of the time delay between neurongyubie Poincaré map (orange)
and the simulations results for two motifs. (a) The unidieally coupled master-slave motif.
(b) The 3-neuron motif MSI.

Therefore, we have repeated the same procedure in ordentpare both methods for the
MSI motif. In the simulation of the 3-neuron circuit, the ibliory synapse haldjs = —30 pA,
the excitatory synapses haMg s = Hs; = 30 pA and we vary the width of the three synapses
togetherLys=Ls = Lis=L (from 1 to 7 ms). The time difference between the master aad th
slave as a function df is represented by the black dots in Fig. 3.6(b). Then, weutatied the
numericalPRC3) andPR(y) using a quadratic pulse &f = 30 pA, and thd®RG,x(y) using
a quadratic pulse dfi = —30 pA. Finally, we use the phase response functions in th& &£§.
to calculate8* anda* for each set of widths. These results are represented byadng® dots
in Fig. 3.6(b). The two methods provide coincident valueg'of=t' —tS. It means we are able
to predict the time difference between the slave and thenateon using the Poincaré map.
The two methods also provide the same sigiT,0but not coincident values. It suggests the
synaptic interactions are too large compared to the penddle assumption of weak coupling
may not apply here.

One possibility to achieve the weak coupling requiremerdrater to reconcile the values
of T obtained from the simulations and from the PRC map is to userateuron models that
can present larger periods. For example, we can try the nraddifH presented in Sec. 2.6 (see
Eq. 2.16). Fig. 3.7(a) shows the PRC of this model for a quadpailse withL = 2 ms and
H = 30 pA (black circles) antH = —30 pA (orange circles). Preliminary results suggest that
the weak coupling approximation is more appropriate fag thodified HH model than for the
standard HH model. The possible gain of analytical insigtd the mechanisms underlying
AS is worth pursuing and remains under investigation.

Another possibility is to use a different stimulus. For exden the spike time response
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curve STRGupa for the standard HH neuron produced by the first order AMPAagge used
in Chapter 2 (instead of a quadratic pulse) is shown in Fig(b3. If we use the Eg. 3.3 and
the fact that this curve crosses the axig ia T with negative slope we would expect that
two undirected coupled neuron with AMPA synapse synchenmiith zero lag. However, we
have shown in Chapter 2 that they synchronize with 1.5 ms (see Fig. 2.5). It suggests that
chemical synapses are too large comparable to the peridiedfiH model to use even the
simplest map of two unidirectionally coupled neurons. kulen Fig. 3.7(b) we compare the
STRGuwpa With the PRC generated by a quadratic pulsélef 30 pA andL = 2 ms. and the
STRGwpa is almost 6 times larger than the PRC.

To sum up, the Poincaré map together with the phase respangesdas been applied in
small neuronal networks to predict phase-locking regirf8s104]. They have also connected
plasticity rules with the maps for two mutually coupled initory neurons [104]. In this chap-
ter, two novel contributions have been reported. First weltkerived the map of the 3-neuron
motif. Second we have proposed to use the map and the PRC diffetent stimuli and neu-
ron models to predict AS regimes. For this purpose it isgétiessary to find a model in which
the weak coupling assuption is valid. We also expect to testiethod for the others motifs
shown in Chapter 2, deriving their Poincaré maps.
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Figure 3.7: Other phase response curves. (a) feiRe€for the modified HH neuron model
due to a quadratic pulse stimulus as befoke= 2 ms andH = 30 pA (black circles) and
H = —30 pA (orange circles). (b) Comparing the effect of two difat stimulus in the same
standard HH neuron model. The black line represents the,RR@ue to a quadratic pulse of
H = 30 pA andL = 2 ms. The blue dots represent the spike time repose curve flfRAue
to an AMPA synaptic stimulus witgys= 10 nS.

60



CHAPTER 4

Neuronal populations

Synchronization by neural oscillation has been extengistldied along the years. It has
been hypothesized to be relevant to issues such as the dpipdiblem [65], temporal cod-
ing [105], deployment of spatial attention [106], highegodive functions [63], and many
others (for a recent review, see [107]). Particularly, ceheoscillations are also useful to infer
the functional connection between different areas in timeegauring multisensory integration,
sensorymotor decision-making, and top-down visual atiarji08].

A canonical mechanism to generate oscillatory activity émnonal networks with chem-
ical synapses is the feedback loop through excitatorybitdry connections [63]. We were
wondering if the inhibitory feedback loop can regulate thgetdelay between the oscillations
leading the system to an anticipated synchronization regimother words, is it possible that a
model of synchronized neuronal population exhibits AS? tAeeresults from 3-neuron motifs
extensible to much larger neuronal networks? In order toesddhese questions we investigate
in silico the emergence of AS between neuronal populations.

We take into account realistic brain features, such as tbpgotion of excitatory and in-
hibitory neurons, variability in the neuronal dynamicsikspg, bursting etc), noise, baseline
firing rates and global topological motifs, with parametgiesen so as to mimic cortical sub-
networks. To simplify the modeling of the asymmetry necessa previous studies of AS
and the delayed feedback, our model focuses on corticazabcouplings in a Master-Slave-
Interneuron (MSI) configuration. As shown in Fig. 4.1, eackdais a population of neurons:
the Master population (M), the Slave population (S) and titerheuron population (1). By con-
struction the S neuronal population exerts no influence o&twe will show, however, the
inhibitory loop mediated by the interneurons in | can suftcenake M lag behind S, indicating
the existence of an AS regime. All the links in Fig. 4.1 aredingictional chemical synapses.

4.1 Modeling collective oscillations in large-scale systes

Our populations are composed of Izhikevich neurons [51] sehparameters are chosen
randomly from a predefined ranged and then kept constanighout the simulations. The
parameters of the model are chosen so as to reproduce tjipieglpatterns observed in dif-
ferent types of neuron in the cortex. Each excitatory negambelong to one of the follow-
ing classes: regular spikes, bursting or chattering, witbe-defined probability. Similarly,
inhibitory neurons can be fast-spiking or low-thresholiks. Altogether the neuronal popu-
lation described here reproduces eletrophysiologicaillt®both at the neuronal scale and for
large-scale networks [94].
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Figure 4.1: Three large-scale networks coupled in a M&f@re-Interneuron (MSI) configu-

ration. Excitatory (inhibitory) neurons represented by (green) units. Two of the networks
are coupled in a master-slave configuration, with an inbrgifeedback loop mediated by the
interneuron network. Besides the excitatory synapses frearons belonging to the Master
(M) population, the neurons from the Slave (S) populati@o akceive an inhibitory synapses
from the neurons in the interneuron population (1). All sgses are unidirectional.

Each neuron receives an independent Poisson train of exgifaost-synaptic currents to
mimic the activity of all other neurons in the brain that we aot modeling. Excitatory (in-
hibitory) neurons send excitatory (inhibitory) synapsesdiated by AMPA (GABA)), both
modeled by first-order kinetics [58]. In each populationrileerons are synaptically connected
with 10% of randomly selected neurons of the same populésiparse connectivity).

4.1.1 Cortico-cortical network

In order to investigate the synchronization properties/ben populations representing cor-
tical regions we build 3 populations composed of hundredsafons described by the follow-
ing equations [51]:

dv
a5 = O.O4v2-|—5v+140—u+ZIx, (4.1)
du
i a(bv—u), (4.2)

wherev is the membrane potential amdthe recovery variable which accounts for activation
(inactivation) of K™ (Nat) ionic currents.ly are the currents provided by the interaction with
other neurons and external inputs.vi® 30 mV, thenv is reset toc andu to u+d. For each
excitatory neuron the dimensionless parameters(are) = (0.02,0.2) and(c,d) = (—65,8) +
(15,—6)a?. Similarly for each inhibitory neurona, b) = (0.02,0.25) + (0.08, —0.05)c¢ and
(c,d) = (—65,2), whereo is a random variable uniformly distributed on the inten@l].

The connections between neurons are assumed to be fagegtimhal excitatory and in-
hibitory chemical synapses mediated by AMPA (A) and GAB&G). The synaptic currents
are given by

Ix = Oxrx(V—Ex), (4.3)

wherex = A, G, Epo = 0 mV, Eg = —65 mV andry is the fraction of bound synaptic receptors
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whose dynamics is given by:

dry

gy = —Ix+ Z Ot —ty), (4.4)

where the summation ovkistands for presynaptic spikes at tilhgdMoreover, the time decays
aretp = 5.26 ms,7g = 5.6 ms [109]. Each neuron is subject to an independent noikg $@in
described by a Poisson distribution with ré&e The input mimics excitatory synapses (each
with conductancge = 0.5 nS) fromn pre synaptic neurons external to the population, each
spiking with a Poisson ratR which, together with a constant external currkptdetermines
the main frequency of mean membrane potential of each populanless otherwise stated,
we have employe® = 2400 Hz and. = 0. We use Euler’'s method for numerical integration
with a time step of M5 ms.

The Master population is composed of 500 neurons (80% e&njte?0% inhibitory), each
one receiving 50 synapses (sparse connectivity) from rahgdselected neighbors in the same
population. The mean membrane potenfid] (mV) of this population oscillates with a mean
periodTy ~ 130 ms which strongly depends on the Poisson Ratéh order to obtain higher
oscillations frequency we increase the Poisson rate.

The Slave population is composed of 400 excitatory neueat) one receiving 40 synapses
from neighbor neurons belonging to the same population,yp@ses from excitatory neu-
rons from the Master population (which characterizes thetemasslave configuration) and 10
synapses from the interneurons in the third populationgtvpiay the role of the delayed self-
feedback responsible for AS). To close the inhibitory |aiye, Interneuron population has 100
inhibitory neurons, each one receiving 10 synapses fromarauty selected inhibitory neurons
from | and 40 excitatory synapses from randomly selectedamsubelonging to S.

Our main control parameters will be the following maximahaptic conductancesus
in the excitatory M-S coupling ang;s in the inhibitory I-S coupling (see Fig. 4.1). Unless
otherwise stated, all other synaptic couplings remain f(see Table 4.1 for details).

We can regard the Slave and Interneuron populations asspomeing either to well sep-
arated regions (see Fig. 4.1) or to sub-populations of atangtwork that is very similar to
the Master population. To stress this possibility, in thedified motif shown in Fig. 4.9(a),
described in the Section 4.4 everything remains as befor@dth neuron in the Interneu-
ron population receives synapses from 10 randomly selesteitatory neurons in the Master
population. To mimic the Slave-Interneuron population) € a cortical region driven by the
Master population, the conductance of the synapses fromongin M to both excitatory and
inhibitory neurons in Sl are the sarggs. The results obtained with both motifs are qualitative
similar and the later motif will be useful to compare our miodigh experimental data in the
next chapter.

4.1.2 Defining time delay in the model

Since the mean membrane poten{id) is significantly noisy in time, it is hard to precisely
determine its maximum value in each cycle. In order to solue issue, we use a sliding
window (typically At = 5 ms) to calculatéV) from (V) (see Fig. 4.3). It makes the signal
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parameters cortico-cortical range varied
nl 500 (80% exc. / 20% inh. -
n2 400 (100% excitatory) -
n3 100 (100% inhibitory) -
ams 0.5 0-3
s 0.5 -
dis 4(AS) / 8(DS) 0-25
OsMm 0.0 0-1
internalgampa 0.5 -
internalgcapa, 4 7.5
external nois@ampa 0.5 -
Poisson rate (HZR 2400 2000 - 4800
# internal connectioni! 50 -
# internal connectionS 40 -
# internal connectionk 10 -
# external connectiondS 20 5-20
# external connectiorSl 40 -
# external connection$ 10 -
# external connectiorSM 0 20

Table 4.1: The model parameters. Standard values employbd MSI motif.

smooth enough that we can determine in each period thetfimavhich (VX) has a maximum
value k=M, S, | indexes the population amthe period). Since each neuron is subjected to an
independent Poisson input, the oscillation period of eagufation is not constant. Now we
can define the period of a given population in each cycle:

Tix = tiﬁ-l_tix' (45)

For sufficiently long time series we calculate the mean efipand its standard deviation.
The frequency of oscillatiorf can be calculated either by the inversion of the mean period o
by the Fourier transform dfV*). In a similar way we calculate the time delay in each cycle

T = tis — tiM . (46)

Then we calculate as the mean value af ando; as its standard deviation. It is also possible
to plot the return mag; versusti_1 (see Fig. 4.5). In all those calculations we discard the
transient time. IfTyy & Ts and thert is independent of the initial conditions, the system is in
a phase-locking regime. Another way to characterize themegs by the cross-correlation
function between the LFP of the M and S populations, showngn4=6(a), which is calculated

as. . _ . _
(IVin—Vm) (T V& —Vg)

C(Vm, Vs t) = ——— ——
V3 (Vi —Vha)23 (V- Ve)?

4.7)
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Figure 4.2: Raster plots of each population in delayed symihation (DS) and anticipated
synchronization (AS) regimes. The horizontal axis is timd the vertical axis is the index of
the neurons in the Master (upper), Slave (middle) and Ietaon (lower) populations. Each
point represents an action potential. The only differenevben the two simulations is the
maximal conductancgs of the (inhibitory) synapses from the Interneuron popolatio the
Slave populationg;s = 8 nS [(a) and (c)] andjs = 4 nS [(b) and (d)]. All neurons in the |
population are inhibitory, as well as the last 100 neuronth&M population (index 400 to
499). All others are excitatory. (c) and (d) Zoom-in versiaf (a) and (b), displaying the
difference in the firing patterns of individual neurons ie S and AS regimes.

4.2 How to characterize AS?

The raster plots in Figs. 4.2 show that the majority of spikemach population happens in
preferred time intervals. The recurrence of these timawate (darker regions) is an evidence
of the typical oscillatory behavior of the 3 coupled popiuadias. Even though the inhibitory neu-
rons individually fire with higher frequency than the extotg ones, collectively they maintain
the typical oscillatory pattern in which the density of sgsks larger in the preferred time inter-
vals. Note that the darker region in the Interneuron popmnadlways occurs shortly after the
one in the Slave population. Figures 4.2(c) and (d) show tespite the collective oscillatory
behavior, each neuron in a population can fire quite irrefyula

The set of parameters used in Fig. 4.2 are the typical onegjrsim Table 4.1, except that
in Fig. 4.2(a) and (cyis = 8 nS while in Fig. 4.2(b) and (d);s = 4 nS. The main observable
difference between the two situations is that the darkeionsgof the M population occur
before (after) the ones in the S population in Fig. 4.2(a).(&i2(b)). It means that in one case
(Fig. 4.2(a)) almost all spikes in the S population occuhntigfter almost all synaptic currents
from the M population have arrived. This often leads to thee8rans spiking in a narrow
interval, as shown in Fig. 4.2(c). As the inhibitagys coupling is decreased (Fig. 4.2(b)), the
S neurons mostly fire before the M neurons (and, as shown irdE2¢d), the deviation of the
mean in the S firing is larger). In particular, each neuromfid and S may fire more than
once in each collective oscillatory cycle, which occurs enaften for neurons from S in the AS
regime (see Fig. 4.2(d)). Altogether, the data providesdiigtive evidence of the existence
of both DS and AS regimes in this system.
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Figure 4.3: Mean membrane potentd)) of the Master (black) and the Slave (red) populations
in the DS (top) and AS (bottom) regimes. Gray lines are theréli mean membrane potentials
(Vx). Their local maximal values determim& x =M,S used to calculate the time delayin
thei—th cycle.

421 LFP scale

In order to characterize the DS and AS regimes we need to ifpém relative spiking
times of the M and S populations along a large time series ifgrdnt parameter sets. A
reasonable way to start this analysis is to plot the m&anof the membrane potential of all
neurons in each population as a function of tifM) can be thought of as a crude approxima-
tion of a local field potential (LFP) signal. As expected frirme raster plots)V) oscillates and
has sharp peaks, as shown in Fig. 4.3.

Using the previous definition of the time delayand the mean perio#, we will focus on
the wide regions of parameter space where the M and S pomsatiave the same average
period Ty ~ Tg). In this case, the time delay fluctuates around a mean \radei€r;), which
characterizes a phase-locking regime between the M and @aimms. By definition, ift >0
the system is in the DS regime (see Fig. 4.3(a)), whereas«ifO the system is in the AS
regime (see Fig. 4.3(b))r turns out to be a well behaved and often non-monotonic fancti
of the inhibitory synaptic conductanggs, as shown in Fig. 4.4(a) and (b), as well as of the
excitatory synaptic conductanggs, as shown in Fig. 4.4(c) and (d). The transition from DS
to AS is smooth and continuous. When we reduce the numbeterirat links from the Master
to the Slave population (for example from 20 per neuron to &plserve qualitatively similar
results but the interval of inhibitory conductances in Wi#S occurs decreases.

Moreover, we can use the return mapversust;_1 to characterize different regimes.
Fig. 4.5 shows that besides the DS and AS regimes, for smaksaf synaptic conductances
the system may exhibits two other regimes. As in the 3-necase there is a phase-drift (PD)
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Figure 4.5: Return map versust;_;. Four different regimes: AS, DS, phase drift (PD) and
bistable regime (for small values of inhibitory conductesic The system alternates between
AS and DS with a well defined value of

region in which it is senseless to determine the mean tinmeyd# this regimely # Ts. Since
Ovs = Ois = 0, the Slave population is totally isolated and there is rwbition acting on it.
Differently from what happens in the 3-neuron motif, fgg = O the Master and the Slave
are not identical. Besides, in the large-scale networkyéetn the phase-drift and the phase-
locking regimes there is a bistable regime. The bistahsitgharacterized by the coexistence
of well characterized DS and AS regimes which alternate ftiame to time (see Fig. 4.5). Sev-
eral studies have suggested that multi-stability are vapoirtant in neural dynamics. It might
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Figure 4.6: Characterizing AS in large and small scales.Cfass-correlation between the
mean membrane potenti@l') of the Master and the Slave populations for different regime
The time at which the cross-correlation function attaissitaximum value is approximately
the mean time delay between the M and S populations. (b) Histogram of the timaydgf'S
between the spikes of all coupled pairs whose presynaptione are in the M population and
postsynaptic neurons are in the S population. ¢) and d) &ypjaking activity of a presynaptic
neuron from the M population (black) and a postsynaptic medirom the S population (red)
in two different regimes: DS (c) and AS (d).

underlie the switching between different perceptions draveors [110, 111, 112, 113, 114].
Transitions between many possible attractors of the neumalits may occur, for example,
under the influence of a cognitive driving [115, 116, 117]wéwer, from now on we will deal

just with the regime where either AS or DS is stable.

Still at the LFP scale, another characterization of bothpéeodicity of oscillations and
the existence of DS and AS can be made via the cross-coorlatnction between the mean
membrane potentials of the M and S populations, respegtiv&i(t)) and(Vs(t)). The corre-
lation curves shown in Fig. 4.6(a) corroborate the resuitaioed by the direct measurement
of 1, displaying a peak with positive time delay in the DS regimd aegative time delay in
the AS regime. The cross-correlations were calculatecyusm 4.7.

4.2.2 Neuronal scale

Although the phase-locking is a collective phenomenon[dBeand AS regimes are also
evident at the neuronal scale. The histograms in Fig. 4 &fbyv the probability density of
spike time intervalsMS between a spike from neuron in S and its respective presigrapkes
from neurons in M. Both the peak and the mean of the distiiputiave positive values in the
DS regime, and negative values in the AS regime. Interdgtitige majority of pairs of spikes
happend in the post-pre order in the AS regime. Moreoverséttend peak of the histogram
is comparatively smaller than the first. It means that in theaptic scale, AS is a local and
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Figure 4.7: Mean time delay (right bar) in the (g,0vs) parameter space. The blue region
corresponds to the DS regime and the red one to the AS. (a) dised? rate iR = 2400 Hz
and the population firing rate, ~ fs~ 7.7 Hz. (b) The Poisson rate BR= 4800 Hz and
fm ~ fs~ 14.7 Hz. The horizontal (vertical) dashed lines in (a) corresjsoto thd versus g
(gms) curves shown in Fig. 4.4(a) and (b) (Fig. 4.4(c) and (d)).

non-periodic phenomenon.

Figures 4.6(c) and (d) show examples of spiking activity efimons from the M and S
populations. In both cases, we chose two neurons which are-pgst synaptic pair. In both
DS and AS regimes, pairs of coupled neurons do not maintairsaime time delay between
their spikes in every cycle. Even though the order of theespdan change (pre-post to post-pre
spikes), on average there are more pre-post spikes in DS arelpust-pre spikes in AS. That
is what allows us to characterize the AS and DS regimes |gpkirthe peak of the histogram
in Fig. 4.6(b).

4.3 Robustness in parameter space

Since we showed that the different ways to characterize theaAd DS are essentially
equivalent, in the following we choose to employas our standard measure. To explore the
parameter space, we used the values given in the first col@ifalote 4.1, except fog,s and
Owms, Which in Fig. 4.7 are varied along the horizontal and vettaxes respectively.

In Fig. 4.7(a) we display a two-dimensional projection af garameter space of our model.
The two different regimes (DS in blue and AS in red) are disttied in large contiguous re-
gions of parameters. The transitions AS-DS are smooth. Tnedntal (vertical) dashed
lines in Fig. 4.7(a) corresponds to threvs gis (gms) curves shown in Fig. 4.4(a) and (b)
(Fig. 4.4(c) and (d)). For the chosen parameters, the pbpntacollective oscillate at an
average frequency ~ 7.7 Hz (Ty =~ 130 ms).

The results are also robust with respect to the baseling frate of the neurons. In
Fig. 4.7(b) we show the results for a higher input Poissoa fat= 4800 Hz) , which leads
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Figure 4.8: T is robust against noise. We choose an AS regime with all thenpeters given in
Table 4.1 (excepy s = 5 nS) and varied the Poisson r&eAs a consequence, the mean period
(and frequency) of the Master also varied. We plot the samef gmints in five different ways:
(a) T as a function of the mean period of the Maskgrand (b) its mean frequendyy = 1/Tu.

(c) T normalized tdly as a functioMy and (d) as a function of the Poisson rRtge) Measured
mean frequency for each chosen Poisson rate.

to higher network oscillation frequenciebx 14.7 Hz (Tyy ~ 68 ms). For this higher Poisson
rate, the inhibitory conductances inside each populatemua to be greater (interrngdapa, >
6.5 nS). The phase diagram in Fig. 4.7(b) is qualitatively trasas in Fig. 4.7(a) batasa, =
7.5 nS. Since the period of the collective oscillations is srdior Fig. 4.7(b), so it is the max-
imum absolute value of the anticipation tim¢compare the color-coded valuesf

Fig. 4.8 shows the time delay and its normalized value/Ty as the Poisson rate is
varied. Beginning from the AS regimgys = 0.5 andg,s = 5 nS in Fig. 4.7(a))Ris increased
from 2000 Hz to 4400 Hz. All other parameters are in Table #i%.worth mentioning that it is
possible to find an AS regime fét > 2800 Hz (an example is shown in Fig. 4.7(b)). However,
it is necessary to change other parameters such as intgnagitec conductances.

4.4 Modified motifs

4.4.1 Slave-Interneuron as one cortical population

Our results are also robust with respect to changes in theldgp of the system. In
Fig. 4.9(a) we show a modified version of the MSI motif of Figl,Avhere the M population
also projects its excitatory synapses onto the | populathguably, this could better mimic
an asymmetrical mesoscale interaction between two cbpaaulations as the ones assessed
in experiments with macaque-monkeys [70, 118] (more deitailhe next chapter). In the case
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Figure 4.9: A modified MSI motif also exhibits DS and AS. a) 8anto the motif in Fig. 4.1
but with extra excitatory connections from neuron in the Mpplations to neurons in the |
population. b) Mean time delay(right bar) in the (g,gvs) parameter space. The Poisson rate
is R= 2400 Hz and the population firing rates dfg~ fs~ 7.7 Hz.

of Fig. 4.9(a), the S and | populations can be consideredesxbitatory and inhibitory sub-
population of a larger Slave-Interneuron (SlI) populatiwet is very similar to M. Figure 4.9(b)
shows a phase diagram for this situation which is similahtsé of the preceding figures. The
time delay in each cycle is defined as=t>' —tM, wheret™' is the peak in the mean membrane
potential of all neurons in the Sl population.

4.4.2 Bidirectional coupling

Although the structural (i.e. anatomical) connectivityvoeen cortical areas is often bidi-
rectional [118], brain functions typically require the ¢ of inter-areal interactions on time-
scales faster than synaptic changes. Particularly, fmatiind effective connectivity [62] must
be reconfigurable even when the underlying structural cctiviy is fixed. First, different
tasks require the activation of different pathways. Secwamllive in a changing environment.
However, a complete understanding of how interareal phaiserence can be flexibly regulated
at the circuit level is still unknown [110].

To ensure that the AS regime is not specific to cortical engesnkith unidirectional con-
nections, we show its robustness in the presence of exgitsyaaptic feedback from the Slave
to the Master population. In this subsection, each neurtimeii population receives synapses
from 20 randomly chosen excitatory neurons of the S| poprat Fig. 4.10(a) shows this
schematic configuration. All other parameters are in Tableafdgys = 4 nS to ensure that
for gsm = 0 nS the system is in the AS regime. For small values of thetaxey feedback
conductancegsm < gvs/2, the AS regime persists (see Fig. 4.10(b)). The time de&y b
tween the two population increases Wik, and the system eventually goes to a near zero-lag
regime [109]. Moreover, the cross-correlation in Fig. 4c)@orroborates the existence of two
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Figure 4.10: Effect of the synapses from the Slave populdtidhe Master. (a) as a function
of the excitatory feedback as we varied the synaptic comaheetgsy, for a fixed value of
guvs = 0.5 nS. (b) Cross-correlation between the mean membranet@dteiiM and Sl.

different regimes.

4.5 Changing neuronal variability of the Slave

Neuronal synchronization, which might play an importanérno the neural coding, pro-
vides a potential spike-based code (i.e. depending on-$jpikeg differences) that putatively
coexists with a rate code (i.e. based on the neuronal firite f05]. We suggest that AS can
open a new and unexplored avenue to improve the computhponeer of spike-based code.
Particularly, Brette [105] has proposed that heteroggnegssential for the efficiency of com-
puting with neural synchrony. He showed that in a heterogesi@eural population model,
synchrony receptive field could be used as an additionatnmdtion for computation. There-
fore, we show that in our model, the AS regime is not only rolagsinst neuronal variability
but it is also a smooth function of the proportion of differéypes of neurons.

Depending on the parametex,d, c andd in the I1zhikevich model (see Eq. 4.1) each neuron
in the populations respond differently to a constant curréfe characterize the type of neuron
by its response. In Fig. 4.11 there is a detailed descrigfdhe kinds of neurons covered by
the Izhikevich model that we use here. In the absence of aauinsurrent in our model, but in
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Figure 4.11: The parameters of the Izhikevich neuron mod&rdhines the different firing
patterns of the neurons (shown in Fig. 1.2). For fimed 0.02 andb = 0.2 the response of the
neuron to an applied constant current depend on the valueamdd. For(c,d) = (—65,8)
the neuron is a regular spiking (RS), far,d) = (—55,4) it is an intrinsically bursting (IB),
for (c,d) = (—50,2) it is a chattering (CH). Electronic version of the figure apgroduction
permissions are freely available at www.izhikevich.org.

the presence of synaptic currents, the behavior of a regalaon for example, may be slightly
different in each cycle. The oscillatory activity of a poatibn may change depending on the
proportion of each kind of neuron.

By Voss’s definition of AS the two dynamical systems need todeatical (see Eq. 1.1).
Here we aim at verifying if small changes in the Slave popoihastill leads to AS regimes.
Furthermore, in Fig. 4.12 we show that continuous changekdarvariability of the neurons
from the Slave population produce continuous changes itirthe delay. Particularly, if we
want to simulate cortico-thalamical interactions we woliké the Slave (thalamus) to have
more bursting neurons than the Master (cortex).

In this section we redefine the parameteendd from Eq. 4.1 as:

c = —55-x+(5+x)07 — (10— x)07 (4.8)
d = 4+y—(2+y)0?+(4—y)02.

Both 01 and o, are random variables uniformly distributed in the intef@al]. If we simul-
taneously vary andy, keeping the relatioy = 2x/5, the maximum values af andd vary
along the lined = —6¢/15— 18 which passes through RS, IB and CH in the plot at the right of
Fig. 4.11. It means that, as before, there are all kind oforeaim each simulation. However,
the distribution of the different types of neurons changéh w For example, when = —55
(and consequentlgt = 4) the majority of the neurons in the S population are 1B nesydut
there are also RS and CH neurons in S. On the other hand, evhen65 andd = 8 there are
more RS than IB neuron in S and more IB than CH neurons. Theteafféhese changes in the
time delay is shown in Fig. 4.12. It seems that the existehogooe RS neurons facilitates AS.
However, further investigation are necessary to distisiguhether changes inare due to the
amount of IB and CH neurons or due to the differences betweand/S populations.

4.6 A toy model for the thalamus

The thalamus is a structure of the central nervous systen$j@at could play an impor-
tant role in the synchronization of cortical regions [11%]is considered as the gateway to
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Figure 4.12: Neuronal variability. The time delay is a sniofanction of the proportion of
different kinds of neurons in the Slave.

the neocortex, since all sensory signals, except for trectafy inputs, reach the neocortex
only after passing through a specific thalamic nuclei. Tiaatimus is believed to both process
sensory information as well as relay it to the cerebral coeach of the primary sensory relay
areas receives strong “back projections” from the cereteex. Moreover, in the thalamus

there are many inhibitory feedback loops due to reticulalatmic neurons (RTN) and thalamic

interneurons [42]. Although the bidirectional connedgipattern between thalamus and cor-
tex [120, 121], here we investigated only the effects of aadional synapses from the cortex
to the thalamus (the “back projections”). Since it is stdkgible to observe anticipatory oscil-

lations in the presence of synapses from the Slave to theg¥jastr model can also be adapted
to include the thalamic dynamical relaying [109, 119, 122].

In this section, we consider a similar motif to the one showhig. 4.1, but the neurons in
the Slave population are described by a different model@h#urons in M. The Master popu-
lation is described as before (cortical like, see Sectid), 4ut the Slave population mimics a
thalamic region and is composed of 500 hundred neurons (&@#atory 20% inhibitory).
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Figure 4.13: Time series for the Master cortical populatiod the Slave thalamic population
for different values ofjys. The AS regime is characterized by two peaks in the mean rreerebr
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Figure 4.14: Time delay as a function gfis. In the presence of two peaks in the Slave, we
define the time delay using the first peak.

[ht!]
parameters thalamocortical range varied

nl 500 (80% exc. / 20% inh. -
n2 500 (80% exc. / 20% inh. -
n3 100 (100% inhibitory) -

avs 20 (DS) /100 (AS) 5-150
Jsi 50 -
Jdis 50 -
Jsm 0 -
internalgampa M 0.5 -
internalgampa S 5 -
internalgcaga, M 2 -
internalgcapa, S and | 20 -
external nois@anpa M 0.5 -
external noisgampa S and | 0.5 -
Poisson rate (HZR 2000 -
# internal connectioni! 50 -
# internal connectionS 50 -
# internal connectionk 10 -
# external connectiondS 40 -
# external connectiorSl 50 -
# external connection$§ 10 -
# external connectionrSM 0 -
external constant curretgin M 0 -
external constant curreidin S (exc) 42 -
external constant curreidin S (inh) 50 -
external constant currefiin | 50 -

Table 4.2: Parameters employed in the thalamocortical mode
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The 400 excitatory neurons are described as the thalanadiC) relay neurons [94]:

200/ = 1.6(v+60)(v+50)—u+Y I
0 = 0.01(b(v+65)—u), (4.9)

whereb = 15 if v < —65 andb = 0 otherwise. Wherw > 35+ 0.1u mV, thenv is reset to
—60—0.1u andu to u+10. The 100 interneurons in the Slave population obey thartia
interneurons equations:

20v = 0.5(v+60)(v+50) —u+} Ix
u = 0.057(v+60) —u). (4.10)

Whenv > 20— 0.08u mV, thenv is reset to—65+ 0.08u andu to the minimum betweea+ 50
and 530. The Interneuron population still has 100 inhiiteeurons but mimics the reticular
thalamic nucleus (RTN) neurons:

40V = 0.25(v+ 65)(v+45) —u+ ¥ I
(= 0.015(b(v+ 65) — u), (4.11)

whereb =10 if v < —65 andb = 2 otherwise. When > 0 mV, thenv is reset to—55 andu to
u-+50.

Each neuron receives an external constant cutregmid a Poisson input. The current ap-
plied to the excitatory neurons in the thalamuk is 42 pA, whereas in the thalamic inhibitory
neurons and in the RTN = 50 pA. All parameters are shown in Table 4.2.

Since our model has two separated pools of inhibitory nesjrivins simpler to us@ys as
the control parameter. The time series of M and S are showigiEL3 for different values
of gus. The mean period and the mean time delay are calculatedasiynib the previous
sections. However, the existence of a second peak in the meambrane potential of the
thalamic population (see Fig. 4.13) is not considered ireotd calculater. Then, the time
delayt is the difference between the time of the peak (or the firskpéahere are two) in
mean membrane potential of S and the time of the closest melk Using this definition,
the model exhibits both ASt(< 0) and DS ¢ > 0) regimes. Fig. 4.14 shows the relation
betweent and gys which is qualitatively similar to that obtained with the tioo-cortical
models (compare with Fig. 4.4(c) and (d)). Although thidah@ocortical model would be more
realistic in the presence of bidirectional connections,dkistence of AS between two distinct
M and S populations could play an important role in our un@deding of the mechanisms
underlying AS in oscillatory systems. However, furtherastigation is necessary to establish
such mechanisms.

4.7 Stability analysis of phase-locking regimes

In this section we simulate a different population modeblfded in a a master-slave con-
figuration, see Fig. 4.15(a)) to study the stability of thagdlocking regimes using a locking
theorem proved in 1996 by Gerstner, Hemmen and Cowan [12.3T&B time differencedys)
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between the oscillation of the two populations is typicalfunction of the strength of the ex-
citatory synapseslf,) from the Master to the Slave and also of the internal inbilgisynapses
in the Slave population).

We perform the stability analysis of these phase-lockirggmes by using Integrate-and-
Fire (IF) neuron models coupled via synapses describedilyg) = (s/12)exp(—s/T). The
membrane potential of each neuron is given by:

Znt—t +2J.,Z t—t )+ lo[1—exp(—t/T)], (4.12)

wheree(t) = [{ a(s)exp(—(t —s)/T)ds lllustrative examples of the synaptic current(()),
the neuronal response(f)), and the derivative of the neuronal responsét{, which needs
to be calculated in order to use the locking theorem) are shiowig. 4.15(b). The locking
theorem can be applied if these functions vanish beforenteéthe period.

The locking theorem ensures that if

<ZJ.JZ t—t +|0[1—exp(—t/r)]> =1 >0, (4.13)

the oscillatory regime (of period) is stable [123]. In addition, if the left side of Eq. 4.13 is
negative or zero the phase-locking regime is unstable.

Unlike the previous sections, in the motif shown in Fig. 4a)5each neuron in the Slave
population receives excitatory (inhibitory) synapsesrfrall other excitatory (inhibitory) neu-
rons in the same population, which leads}tpJij = (J+Jj) (in the simplest case). It also
receives the excitatory synapses from the excitatory meurothe Master populatiory Jij =
Jm). Using these expressions and calculating the derivaitives. 4.13 our stability condition
becomes:

Z((J +J)(T —KT)(2t — (T —KT))exp(—(T —KT) /1) +

Im(dus—KT) (2T — (3qus—KT)) exp(— (s —KT)/T) + 2loT2exp(—T /1)) > 0. (4.14)

The only condition for stable oscillations in the Master plgpion is|Jinn| > Jexe Fig. 4.16(c)
shows the stability map for fixed values of all parameterepkdys andJ;. Different values
of J; lead to continuous and finite intervals &jis in which the phase-locking regime is stable.

Since the anti-phase synchronizatiang = T/2) is an unstable solution, and in order
to match this results with our previous ones of anticipatgttBronization between neuronal
population, we separate the stable regiond\g < T /2 (Delayed Synchronization - DS) and
dous > T/2 (Anticipated Synchronization - AS). Examples of both aftons are shown in
Fig. 4.16(a) and (b).

It is also possible to obtain stable phase-locking betwherMaster and the Slave popu-
lations if the excitatory and inhibitory neurons in the Sgwopulation oscillate with a phase
differenceds). In such case they can be considered as two different pogusagiving rise to
two stability conditions: one for the excitatory subpopiga of the Slave and other for the
inhibitory subpopulation (data not shown).
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Figure 4.16: Both Anticipated Synchronization (AS) andd@eld Synchronization (DS) are
stable for a wide range of parameters. (a)-(b) Examples a$@thocking. The only difference
between AS and DS is that (&ys > T/2 in AS and (b)dus < T /2. (c) Stability map of the
phase-differencéys for different values ofl;. Note that the anti-phase regime is unstable.

79



4.8 Discussion

4.8.1 Neuronal populations can exhibit AS

Although Voss [4] has suggested that AS could explain phemansuch as the delayed
induced transition in visually guided movements [31], te iest of our knowledge there are no
explicit reports of AS in neuronal populations. With rareeptions [36], previous observations
of AS in theoretical, physical, and biological systems weased on the original framework,
which included a somehow artificial negative delayed sstidback [4, 29, 8, 20, 33, 10, 12,
14]. Our simple model requires very few ingredients for tieegence of AS in physiologically
plausible models. We have shown that substituting the negdelayed self-feedback by a
dynamical inhibition, AS can be observed in a model of codpmertical populations. This
would open new perspectives to investigate the existent®oAS regime in other biological
systems.

In particular, we have addressed the emergence of AS in ptipas of neurons represent-
ing certain cortical areas and studied its robustness sigexternal noise, heterogeneity and
synaptic characteristics. Similarly to what occurs in aeBions motif [39], here the antici-
pation time emerges from the system dynamics, instead afyiplicitly hard-wired in the
dynamical equations [4] (see Eg. 1.1). Since the time de&pedds on the strength of the
synapses, AS could be tuned by neuromodulation.

Comparing structural and functional connectivity matsioémacaque monkey cortex from
the CoCoMac database [118, 124] we can emphasize two inmp@spects. First, both the
structural and functional connectivity matrices are nohsyetrical, what indicates that there is
a moderate amount of preferential coupling direction aséhaster-slave configuration. As
an example we mention the connectivity matrices of areas#lang to the somatomotor and
visual cluster from the CoCoMac database [124]. Secondegmairs of regions have opposite
directionality in the structural and in the functional cections. This can be verified in the
matrices cited above, for example between areas OC and OAlsodetween OB and PEp,
TA and TF. The names of the areas follow the scheme of Fellaandrvan Essen [125] (for
more details see Stephan et al. [124]). This can result framrtfluence of all other areas on
these two regions, but could also be AS regimes that were elbtharacterized.

The robustness and stability of our model indicate that A8lte can probably be extended
beyond cortical areas (or even beyond the brain). For exathel brainstem and central pat-
terns generators in the spinal cord are driven by tonic atary brainstem input [126]. Due to
biophysical similarities between brainstem spinal cord aeorcortical circuits [126] and the
fact that inhibition together with excitation dynamicatBgulate oscillations, these regions can
be modeled as master-slave systems with feedback inmbiflee MSI motif in Fig 4.1 is also
similar to a simplification of the circuit involving the re and the lateral geniculate nucleus
in the thalamus [65, 68], as well as to the olfactory epitireland the olfactory bulb [127].

4.8.2 Different synchronization regimes within the same aatomical connectivity

Neuronal synchronization is a widespread type of activtyich occurs from sensory sys-
tems to higher cortical areas. Due to the communicatioodtiin-coherence hypothesis [66] it
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is very important that the same structural motif can geeeatdterent coherent regimes of oscil-
lations. Flexible patterns of coherence in the same stralctootifs facilitate flexible commu-
nication. Moreover, different working regimes within thense anatomical connectivity [110]
are necessary during changes in behavioral aspects withtshe-scales. Our model provides
different patterns of coherence within the same anatontigahections. Therefore, flexible
communication is one of the possible functional signifieenef the AS regime and the transi-
tions to DS mediated by inhibition.

Several LFP measures in the brain exhibit synchronizatitimphase difference [128, 108,
129], for example the theta phase synchronization betwggrobampus and medial prefrontal
cortex inrats [130, 131], the gamma band synchronizatitwésen the frontal eye field and area
V4 in monkeys [132] and the beta band synchronization betwedical areas in monkeys [70,
133, 134, 71]. Typically, these phase differences are &galcto the synaptic delay between
distant regions. However, one needs not be a direct consegue the other [128]. As we
have shown in this chapter, the pool of inhibitory neuror85[1136] in the cortex can regulate
the time delay between the oscillations. It means that thibition may annihilate the effect
of synaptic delays, providing shorter phase differencad{ding negative values).
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CHAPTER 5

Cortical data analysis

Phase synchronization is an ubiquitous phenomenon in tigly &f complex systems that
may underlie a variety of neurocognitive processes [137rti€ularly, it has been related
to large-scale integration [129], efficiency of informatiexchange [66],as well as working
and long-term memory [128]. Correlation measures are thet maely employed tools for
measuring phase synchronization and it is typically useifer interactions between brain
areas [108, 138]. However, correlation alone cannot reeainfluences that are exerted by
neurons in one area on those in the other by axonal trangmiasd synaptic effect. One ap-
proach to detecting directional influence in the brain hanlte infer it from relative phase
measures [139, 140, 141, 142, 132] of neuroelectric indmesh as the electroencephalogram
(EEG). The assumption here is that the timing differencelioitgn relative phase reflects
the transmission time of neural activity. By contrast, ottieasures of directional influence,
such as Granger Causality (GC), have emerged in recent geans alternative approach that
is grounded in the theoretical framework of statisticaldictability between stochastic pro-
cesses [143, 144].

A dominant value for directional influence from one braineaf®) to another (B) indicates
that the activity of neurons in area A exerts an effect on ity of those in area B. It is
often assumed that such a directional influence should mguanied by a positive time delay
(relative phase lead of the activity in area A before thatregaaB), indicating that A's activity
temporally precedes that of B. However, this assumed oglsitiip is not theoretically justified.
Furthermore, it has been empirically observed that a domid&ectional influence between
areas of sensorimotor cortex may be accompanied by eithegative or a positive time de-
lay [70]. Brovelli et al. showed that steady contractionsuwh and hand muscles by macaque
monkeys performing a visual pattern discrimination task @companied by phase synchro-
nization of beta-band (14-30 Hz) Local Field PotentialsRklrecorded from somatosensory
and motor cortical areas [70]. Directional influence amdmuse areas, as assessed by GC,
showed that interareal functional relations are usualjyrasetrical. Importantly, the interareal
relative phase showed no obvious relation to the direclityrdetermined by the dominant di-
rection of causal influence. Thus, for example, even whenr@iicated that area A exerted a
stronger influence on area B than in the reverse directigggesting an asymmetric functional
relation dominated by the influence from A to B, it was oftea tlase that area A lagged behind
area B in time [70].

A similar incongruence between phase difference and GCdeetWreFrontal Cortex (PFC)
and Posterior Parietal Cortex (PPC) in monkeys performimgpeking memory task was re-
ported by Salazar et al. [71]. They observed a dominant taditie-frontal beta-band GC in-
fluence that was opposite to the direction of influence inadhie the 24 — 6.5 ms time lead of
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PFC before PPC derived from relative phase. The dominargtphto-frontal direction of GC
influence was supported by spike-field coherence analygas auggesting that relative phase
is not a reliable indicator of directional influence.

Despite efforts to join concepts of anticipatory behaviod &S dynamics [145, 146], bi-
ological models of AS, and experimental evidence for it i@ brain, have been lacking. As
shown in the previous chapters, anticipated synchrowzaiccurs when a unidirectional influ-
ence from a generator dynamical system (A) to a receivermdigad system (B) is accompanied
by a negative phase difference between A and B [4, 5, 6]. Thediffierence between the defi-
nition of AS and the reported paradox, is that the causalenffe measured in the experiments
can not ensure a structural unidirectionality. Therefoere we propose that the existence of
AS in the cortical model presented in Chapter 4 could explanapparent paradox reported
by Broveli [70] et al. and Salazar et al. [71]. We show that madel reproduces delay times,
as well as coherence and GC spectra, from the cortical datafir@ings provide a theoretical
basis for the observed cortical dynamics, while suggedtiagthe primate cortex operates in
the AS dynamical regime during cognitive function. The nddeher suggests that the local
inhibitory interactions in a receiving neuronal populatia the cortex will determine whether
that population will anticipate or lag behind sending pepioins.

5.1 More realistic features

To simplify the modeling of the asymmetry observed in ther@ex causal influences be-
tween pairs of areas, we simulated two unidirectionallypded cortical-like neuronal popula-
tions similar to the modified MSI motif described in the praws chapter. The cortical regions
and the motif studied along this chapter are illustratedig b.1(c). Connectivity within
the M population randomly targets 10% of the neurons, wittitatory conductances set at
g¥ = 0.5 nS and inhibitory conductances segilt= 4 nS. The S population is also composed
of 400 excitatory and 100 inhibitory neurons, forming eatty slave (ES) and inhibitory
slave (IS) subpopulations (Fig. 5.1C). Neurons in the ESepblation receive 40 synapses
(gE = 0.5 nS) from other neurons of the ES subpopulation, and 10 sgsapvith conductance
gls) from neurons of the IS subpopulation. Neurons in the IS epbfation receive 40 synapses
(gE = 0.5 nS) from neurons of the ES subpopulation and 10 synag§e54 nS) from neurons
of the IS subpopulation (Fig. 5.1C). Note that neurons ofi§supopulation project synapses
with different synaptic conductances to neurons in the siaunlnspopulation§i|S =4 nS) and
to neurons in the ES subpopulatiogFX. Subpopulation IS accounts for the inhibitory loop
previously reported to be essential for the emergence of 3% [The M and S populations
are connected as follows: 20 synapses (with conduc@gﬂ%)efrom each excitatory neuron of
the population projects on the S population. Unless otlsstated, each neuron receives a
Poisson inpuR = 2400 Hz and no external curreigt= 0.
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Figure 5.1: (A) Location of recording sites in monkey GE (@om the four electrodes ana-
lyzed). (B) Sites 1 and 2 are in the primary motor cortex anch@ary somatosensory cortex
respectively. Sites 3 and 4 are in the parietal cortex. Asrowdicate the direction of influ-
ence between each pair (Granger causality) and their wréthetdated to the peak of Granger
causality shown in Table 5.1. Colors indicate the sign oktidelay between pairs, relative
to the influence direction. Blue arrows indicate the sendexrster) leads the receiver (slave).
Red arrows indicate the receiver leads the sender. (C) Satiterapresentation of two cortical
areas coupled in a master-slave configuration. In the mbdedtructural connectivity ensures
the direction of influence from the master to the slave. Thec&f’e connectivity may also be
accessed by Granger causality measures (see Fig. 5.2).
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Site Pairs  Peak Coherence Peak Granger Causality Phase Time delay
M — S [Magnitude  fpeak(HZ)M — S fpeak(Hz) S—M fpeak (Hz)|Difference (rad) 1 (ms)
2—1 0.3051 24 10.1944 25 — - -1.3166 -8.73  (AS

— )
2—3 0.4029 24 10.1547 26 0.0892 25 -2.1316 -14.14 (AS)
2—4 0.2552 24 10.1086 24 0.0265 26 -1.6706 -11.08 (AS)
3—1 0.2546 24 10.1610 24 — —+ 0.4637 3.08 (DS)
3—4 0.7186 24 10.4203 26 0.0859 28 0.3799 2.52 (DS)
4—1 0.2072 24 10.0644 26 — —+ -0.4313 -2.86 (AS)

Table 5.1: Peak of coherence, Granger causality and tinagy dedtween all 6 pairs of sites
shown in Fig. 5.1. In each pair, the site which exerts a larg&rence on the other is called the
master. The other site, which receives the larger influesdbag slave. Positive values of time
delay indicates the master leads the slave (DS), while ivegadlue indicates the master lags
behind the slave (AS). A dashk-| indicates that no peak was observed in the Granger Causalit
spectrum.

5.2 Data acquisition

LFP data was recorded via up to 15 microelectrodesyBildiameter, 2.5-mm separation)
from the sensorymotor cortex (right hemisphere) of an adale rhesus macaque monkey, as
described in Brovelli et al. [70] (Fig. 5.1A) Data was acquired while the monkey performed
a GO/NO-GO visual pattern discrimination task which reediit to release (on GO trials) a
previously depressed hand lever. Our analysis focuses @rtriéls of the 90-ms period (18
points, 200-Hz sample rate) ending with the visual stimolset (wait window). Only correct
trials (both GO and NO-GO) were analyzed. Considering thelevbask, each trial lasts for
500 ms.

We also tested our model against results from a differenéex@nt, where monkeys per-
formed a working memory task while LFP activity from two doal regions (PFC and PPC)
were recorded. In that case, results were directly extdoten Salazar et al. [71].

5.3 Granger causality

Granger causality is a statistical concept of causality ihhased on prediction [147]. In
Granger’s words: "The topic of how to define causality had plpgosophers busy for over two
thousand years and has yet to be resolved. It is a deep coest@juestion with many possible
answers which do not satisfy everyone, and yet it remainsmesmportance.”

The basic idea behind the definition of the Granger causaliyuite simple:x Granger
causey if the past ofx helps to predicly better than the past gf In a more general way:
suppose we have three time serigd), y(t), andw(t). First, we realize an attempt to forecast
the value ofx(t 4+ 1) using past terms of(t) andw(t). Second, we repeat the process using,
besides the past termsxit) andw(t), the past terms of(t). If the second prediction is found

IData from these experiments was kindly provided by Profvétéressler (Florida Atlantic University).
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to be more successful, according to standard cost functtbes the past of(t) appears to
contain information helping in forecastingt + 1) that is not in the past(t) or w(t) . In this
case we say(t) "Granger causesX{t + 1) if two conditions are satisfied: (j)t) occurs before
X(t+1); and (ii) it contains information useful in forecasting + 1) that is not found in a
group of other appropriate variables. This multivariatéeagion (number of variablas >
2), sometimes referred to as conditional Granger cauqa 8], is extremely useful because
repeated pairwise analyses among multiple variables qaetsmes give misleading results.
In the simplest case of= 2 we can write:

p p
Xt) = 3 Awxt—])+ Y Augjy(t— ) +Ex(t) (5.1)
j=1 =1

p p
yt) = > Aorjx(t—j)+ > Acajy(t—j) +Ey(t),
=1 =

wherep is the maximum number of previous observations to take intmant in the model
(the model order), the matrix A contains the coefficientdefrinodel (i.e., the contributions of
each lagged observation to the predicted valuegtofandy(t)), andEy andEy are residuals
(prediction errors) for each time series. If the variancE,ofor Ey) is reduced by the inclusion
of they(t — 1) (or x(t — 1)) terms in the first (or second) equation, then it is said yiat- 1)
(or x(t — 1)) Granger causest) (or y(t)). In other wordsy(t — 1) Granger causex(t) if the
coefficients inAp2 are jointly significantly different from zero.

For data consisting of multiple trials, each trial can besidered as a separate realization of
a single underlying stochastic process. Moreover, thdicaits in the multivariate regressive
model can be interpreted in the frequency domains, allowagal interactions to be analyzed
by frequency [148]. In this spectral Granger causality,stagistical significance of our results
were estimated by constructing surrogate data.

The main limitation of the mathematical formulation givertihe Eq 5.1 is that it only ac-
counts for linear information transfer. It is a problem imgaex systems (such as the brain)
because lots of information is also transferred non-liye&iore complex extensions to non-
linear cases exist, however these extensions are oftendifficalt to apply in practice [147].
Another problem is that Granger causality cannot distigsigbietween actual straight causality
from the interaction via a third process which is not incldidi@o the analysis. Moreover, the
choice of the factors, for example the model orgein Eq. 5.1, may influence on the final
result. Then, Granger causality should not be directlyrpreted as physical causality.

5.3.1 Causality measures in neuroscience

Despite the limitations, Granger causality is emerging psoaising and pragmatic mea-
sure of information flow in neuroscience [144]. Besides theaaly mentioned applications
of Granger causality to study cortical interactions [70], There are several other works us-
ing this method to infer effective connection in data acedifrom different techniques [147].
For example, Liang et al. [149] employed it to differentitgedforward, feedback, and lateral
dynamical influences in monkey ventral visual cortex dupattern discrimination. Kaminski
et al. [150] noted increasing anterior to posterior causéiliénces during the transition from
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waking to sleep by analysis of EEG signals. In the domain oRfMRoebroeck et al. [151]
applied it to data acquired during a complex visuomotor,tadiereas Sato et al. [152] used a
wavelet variation of G-causality to identify time-varyingusal influences, and Liao et al. [153]
aimed to reveal the network architecture of the directedi@mfte brain network on resting-
state. Granger causality has also been applied to simulatadl systems in order to probe the
relationship between neuroanatomy, network dynamicspahdvior [154, 155].

Although there are many new methods to infer information fi@yond Granger causality,
there is no unanimity as to what is the best method to use sf@aantropy and directed trans-
fer function are among the most employed methods withinorealrdata. In particular, several
other methods employed the idea of phase to infer conngctphase slope index [156], phase
locking value [157], imaginary part of coherency [158], glgied phase lag index [159], pair-
wise phase consistency [160], At least one of them, the pdlape index [156], clearly claims
to be useful to estimate causality.

An advantage of information theoretic measures (mutuarimétion and transfer entropy),
as compared to standard Granger causality, is that theyeasitige to nonlinear signal prop-
erties [147]. A limitation of transfer entropy, as compatedGranger method, is that it is
currently restricted to bivariate situations. Also, infation theoretic measures often require
substantially more data than regression methods such ay&raausality [161]. Particularly
in the analyzed data here, there are only 18 points in eaahwthich turns out to be too few
points to use transfer entropy.

5.4 Spectral Analysis of LFP and simulation data.

Coherence, Granger causality and phase difference shantlysis were calculated fol-
lowing the methodology reported in Brovelli et al. [70] ugithe GCCA Matlab toolbox [162].
The autoregressive modeling method (MVAR) employed in REf62, 70] to estimate the
spectral analysis from the LFP time series requires theneligeof single-trial time series to be
treated as produced from a zero-mean stochastic processefdire, we have preprocessed the
LFP time series by including detrending (subtraction otdigsng line), demeaning (subtrac-
tion of the ensemble mean) and normalization (division leytdmporal standard deviation) of
each trial.

It was also necessary to determine an optimal order for thARIModel. For this purpose
we obtained the minimum of the Akaike Information CriterighiC) [163] as a function of
model order. The AIC dropped monotonically with increasingdel order up to the number
of points in a trial minus one. We consider that the model oaodel0 (50 ms) used in [70]
is sufficient to provide good spectral resolution and avoidrparameterization. In fact, we
verified the consistency of the results using model ordeBsasfd 15.

For each pair of sited, k) we calculated the spectral matrix elem&gt f) [70, 164], from
which the coherence spectr@®u(f) = |Sk|?/[Si (f)S«(f)] and the phase spectrugk(f) =
tan1[Im(Sk)/Re(Sk)] were calculated. A peak @y(f) indicated synchronized oscillatory
activity at the peak frequenchpea With a time delayny = @x(fpear/(27fpeay). Directional
influence from sité to sitek was assessed via the Granger causality spedtryf) [70, 164]
(arrows in Fig. 5.1B are in agreement with Table 5.1).
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Figure 5.2: Comparison between data from sites 1 and 2 (titp)tie results of our model
in the AS regime (bottom). (A) Measured and simulated LFRetsrries. (B) Both in data
and model the sites are synchronized with main frequency2¢klak of the coherence). (C)
In data, site 2 Granger causes site 1 (as if site 2 were theemast site 1 were the slave).
However, site 2 lags behind site 1€ —8.7 ms as shown in Table 5.1). Similarly, in the model
the master Granger causes the slave, but lags behimd=t{8.2 ms). (D) Phase difference
between pairs of site as a function of the frequency in whimecence reaches its maximum
value (fpear. fpeak= 24 Hz, comparable with Ref. [70]fpeax= 17 Hz, comparable with
Ref. [71]. In this work, posterior parietal cortex Grangauses prefrontal cortex, but prefrontal
cortex leads the former (varies from—2.45 ms to—6.53 ms)

5.5 Comparing data and model

From the experimental data, we have selected four pairsestredes for which the two
following criteria were satisfied: strongly asymmetric ighce inferred by Granger causality
and strong coherence. In these cases, both the coherenGramgker causality peaks were at
similar frequencies. Those results are represented irbFigand Fig. 5.2 and summarized in
Table 5.1. In all cases the pairs were synchronized in theelimatd (around 24 Hz).

Whenever a sité strongly and asymmetrically Granger caukewe refer tol as a master
(M) site andk as a slave (S) site. Intuitively, in these cases one woul@é&xjl to lead S
(i.e. ik > 0), but the counterintuitive result revealed by Table 5.thé there is no consistent
relation between GC and[70, 71]. Given the complexity of the cortical interactiossveral
mechanisms could account for this phenomenon. Here we peopaoninimal model that ex-
plains how asymmetrically coupled neuronal populatiomssyamchronize with either positive
or negative time delay.

The asymmetry between M and S neuronal populations is atallyt built-in in the simu-
lations (Fig. 5.1C). Despite the noise and heterogenéigynrtean membrane potential of the M
and S populations can synchronize with the same main fregu&epending on the synaptic
conductances, the system can exhibit delayed synchramz@&s), witht > 0, or anticipated
synchronization (AS), witlt < O.
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Figure 5.3: Time delay as a function of the inhibitory condince, corresponding to black
dots in Fig. 5.2(d) in the following frequencies: Bkak= 17 Hz b) fpeak= 24 Hz. Like in the
previous chapters, the transitions from AS to DS are smaadhcantinuous.

5.5.1 Model reproduces experimental coherence and GC speat

We have adapted the model to fit the data coherence peak freg(#4 Hz in Fig. 5.2), by
adding a constant current to every neurba-(9 pA) and adjusting the synaptic conductances
(M = §° = 3.2 nS,gM5 = 0.5 nS andg® = 12.6 nS). This modification also produced noisier
time series that better mimic measured LFPs (Fig. 5.2A)aHair comparison with data, sim-
ulated LFPs took both the ES and IS subpopulations into deraiion. We have downsampled
the model time series to the same rate employed for the da@aH2), after which simulated
data was analyzed exactly like experimental data.

In Fig. 5.2 we compare simulation results with experimedtdh from sites 1 and 2 (pri-
mary motor and somatosensory cortices respectively, £8.EB), which showed a clear uni-
directional influence (from 2 to 1) and negative time delayndd to AS, the model yielded a
coherence spectrum similar to that of the data (Fig. 5.2&8Y}iqularly in its sharpness around
the measured peak frequency. Not surprisingly, the aleseohities of the peak coherence for
the simulations is larger than for the data, probably rafigahe fact that, differently from our
simple model, in the brain one region is also influenced byyhwdher regions.

The model also successfully reproduced the main featurdeedC spectrum of the data
(Fig. 5.2C). A sharp peak was obtained in one direction{Ms in the model), whereas the
reverse direction showed a weak and flat spectrum. The fatthle peak frequency of the
GC spectra approximately coincides with the peak frequeridire coherence suggests that
causality is mediated by the coherence oscillations ar@dridz [70].

Results by Brovelli et al. showed positive as well as negaiime delays, given an asym-
metrical GC between two sites [70]. By changing the inhityitoonductancgls’, the model
managed to reproduce both regimes (Fig. 5.2D), which cporeged to what we refer to as DS
and AS, respectively.

In the second dataset, the peak frequencies were around BhdHthe average relative
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Site Pairs  Coherence Peak of Granger Causality Phase Time delay
M — S |[Peak  fpeak(HZ)M — S fpeak(Hz) S—M fpeak (Hz)|Difference (rad) 1 (ms)
2—1 |0.1065 250.0429 25 — —+ -1.1380 -7.24 (A3
2 — 3 |0.4506 240.2092 26 0.1205 26 -2.8485 -18.89 (AS)
2—4 10.1892 24 0.1207 26 — — -2.5775 -17.09 (AS)
3—1 (0.1295 240.1074 24 — —  1.4714 9.76 (DS)
3—4 |0.5804 25 0.3029 25 — — 0.4554 2.90 (DS)
4—1 |0.1027 250.0507 27 — — 0.7236 461 (DS

Table 5.2: Peak of coherence, Granger causality and tinay dedtween all 6 pairs of sites
shown in Fig. 5.1. Positive values of time delay indicatesrttaster leads the slave (DS), while
negative value indicates the master lags behind the sla8¢ &Aom 300 ms to 400 ms after
the stimulus onset during a NO-GO task the oscillatory belmappears again. Comparing to
the wait window, shown in Table 5.1, all the directions of gaity relations are maintained.
The sign of the time delay changes only between sites 1 and 4.

phase between PPC and PFC was negative [71]. Our simple Iyiettetd similar results with
changes in parameterg{® = 1.0 nS,gM = §°> = 7.5 nS, g’ from 6 to 20 nS and a Poisson
rate equal to 6000 Hz). In Fig. 5.2D we summarize the compatietween phase differences
observed in the model and in the data.

The time delayr as a function of the inhibitory conductan(gfsis shownin Fig. 5.3 for both
sets of parameters ((Brak= 17 Hz and (bfpeak= 24 Hz). Similarly to what was observed
in previous chapters, the transition from DS to AS is smoatth @ontinuous. It means that
the same model may represent different pairs of sites ing-ig.since they are modulated by
different amounts of inhibition. In particular, sites 1 addrom the data have a time delay
T = —8.7 ms which is quite close to the minimum time delay obtainethwur model,r =
—8.2 ms forgP = 12.6 nS.

Hitherto all results are for the wait period of the task (90 magore the stimulus onset).
Nonetheless, we also analyzed the whole task, which corapd=h600 ms in each trial. After
the stimulus, the synchronized activity decreases andsezprently, the peak in the coherence
between pairs of sites also decreases. However, during RQaSks, which requires to the
monkey to maintain the hand lever depressed, the synclewmiztivity reappear before the
end of the trial. This result was reported by Zhang et al. [185 Table 5.2 we repeated
the same analysis shown in Table 5.1, but for a differentwatgfrom 300 to 400 ms after the
stimulus onset) and only for NO-GO tasks. Results are quaigly the same between all pairs,
except for 1 and 4. It means almost all pairs that exhibits &%3)S) during the wait period,
show the same regime in the end of the task (a result which waeseported by Brovelli et
al. [70] neither by Zhang et al. [165]).
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5.6 Discussion

5.6.1 Relative time delay is a poor indicator of directionainfluence

It is well known that the correlation between two variablegslnot necessarily imply that
one causes the other. However, there is a tendency in thatlite to use the relative phase
between synchronized populations to infer which one is tiveedregion [166]. As we have
shown, in our model the leading population does not necigsdaives the lagging population.
By definition, in a master-slave configuration the directadninformation flow is from the
master to the slave. It means the master drives the slavehrd®and DS regimes. As there is
no violation of causality, the existence of an AS regime ichssystems reveals that the relative
time delay does not always indicate the direction of caudation.

In prior analysis of cortical LFP data [70], an apparent caxittion was found between
the time lag and the GC direction for some pairs of sites (sel5.1). A similar paradox was
also reported by Salazar et al. for different cortical regif71]. The apparent contradiction is
caused by the assumption that the direction of informatmm ftom one process (A) to another
(B) must result in process B following process A in time. Heoee our model of AS not
only proves that this intuition fails but also sets a frameia which an AS regime naturally
emerges, reconciling causality with a negative phase laghd best of our knowledge, this is
the first model to exhibits AS between cortical populations.

It is important to mention that LFPs are highly sensitivet® depth of the recording, which
can lead to phase reversal as a function of electrode deptH{€7, 168, 169]). Although this
could shift all phase delays by radians and possibly confound AS with DS and vice versa,
that would not eliminate the apparent contradiction betwgease lag and causality. In pairs
of brain regions in which DS occurs (as e.g. regions 3 and hbiel5.1), causality and phase
lag would not match and would still require an explanation.

5.6.2 Correspondence between dynamical synchronizatiorgime and functional brain
state

In light of the hypothesis that synchronization plays anant@nt role in neural processing
and coding [105, 66], different dynamical synchronizatiegimes may be required for flexible
communication to occur within a given structural networ&mtiecture. For instance, changes
in dynamical synchronization state may be necessary fat-$&ion changes in functional brain
state related to cognitive processing [110, 170], or lergatchanges related to learning. AS
may represent such a dynamical state of synchronizatiarthars may be able to open new and
unexplored perspectives for understanding this type oingpdOur model suggests that even
populations with a strongly unidirectional connectivigncexhibit dynamical flexibility. Sim-
ply by small changes in the relative weights of excitatorgt arnibitory synaptic conductances,
a range of synchronization patterns, displaying positivedgative time lags, can be achieved
for the same anatomical structure. In fact, recent neursiplogical evidence [171] suggests
that top-down attentional influences act to affect the badanf excitation and inhibition in
visual cortical area V4.
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5.6.3 Effective connections and functional significance

In order to characterize the interaction between distaaintareas, correlated oscillations
used to be analyzed [108]. However, cross-correlationtfans as well as coherence measures
are not always sufficient to indicate neither the structcwahection nor the direction of the flux
of information of the network [110]. The motifs explored éare examples of such a situation,
since the time in which the peak of the cross-correlatiorction occurs can be positive or
negative. A step further in the analysis of brain connetstiduring specific tasks is to infer
the effective connection (i.e. to infer directional inflees, besides correlations) [62]. For this
purpose, one should calculate the flux of information usiogexample Granger, causality or
transfer entropy.

It is worth to mention that if the analyzed data is too smalhas low resolution, in an
anticipatory situation causal measures such as transtespgnor Granger causality would
state that the information flux is from the slave to the driyeaster) [172]. In these situations
the sign of the time delay would seem to agree with the app#tenof information. Such an
effective connectivity calculated in the wrong way would nepresent real causal flux neither
the structural connectivity.

Since the model presented here predicts that the AS-DSticamis mediated by synaptic
changes, a related question is whether the functionalfgignce of AS and DS regimes (if
any) could be unveiled by monitoring causality and phasellagng the process of learning a
new task. On the conservative side, given the central deyeedof phase lag on inhibition in
the slave population, the observation of AS between prirsargatosensory and motor areas
could be just an epiphenomenon, reflecting strong inhibiibthe primary motor cortex in
order to prevent movement, as required by the task [70]. radiigvely, the precise timing in
the coordination among areas might subserve additionatifurs, possibly in connection with
attention and perceptual coordination.
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CHAPTER 6

The interplay between spike-timing dependent
plasticity and anticipated synchronization in the
organization of neuronal networks

How learning and memory is achieved in the brain is a centiaktion in neuroscience.
Since antiquity, philosophers have been thinking abow finoblem. It was Aristotle who
proposed the notion of the mind as a tabula rasa, or a blate Jlhis idea is exactly opposite
to that of Plato, who defended that the human mind was créateeé heavens, pre-formed and
ready. Since then, there is a long-standing discussiontaitether we are primarily a product
of nature or of nurture [173].

6.1 Synaptic plasticity

The most accepted idea nowadays is that the storage of iafmmin our brain is mediated
by changes in the synaptic efficiency, a phenomenon callegxic plasticity. This assumption
emerged after the demonstration by Ramén y Cajal that nksxadmneurons are not in cytoplas-
matic continuity but communicate with each other via sgead junctions called synapses. In
1949, Donald Hebb [69] conjectured that if input from neukoaften contributes to the firing
of neuron B, the synapse from A to B should be strengthenedtlisliown words: “When an
axon of cell A is near enough to excite a cell B and repeatedlyersistently takes part in
firing it, some growth process or metabolic change takeseplaone or both cells such that
As efficiency, as one of the cells firing B, is increased” [L78lis ideas are known by the
popular slogan: “cells that fire together, wire together'owsver, strictly speaking, Hebb’s
rule is directional: cell A helps fire cell B.

The strengthening of connections between co-active casbecome known as Hebbian
plasticity. The resulting groups of cells joined togetherotigh this form of plasticity are
called Hebbian assemblies. Hebb also propose that thelirasia of the thought process are
the chains of assemblies that create specific sequences.of fie same cells can participate
of several different chains (or percepts) depending on bedls are active at the same time
and on the sequence of activation. Then, distinct sequemegsrepresent distinct thought
processes [173].

Along the last decades, several experimental works in a euwitbrain regions including
the hippocampus, neocortex, and cerebellum, have revaatadty-dependent processes that
can produce changes in the efficacies of synapses thattgersiarying amounts of time. Bliss
and Lgomo’s study [174] was the first to demonstrate thatftlets could last for a long period.
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Their work was the first verification of synaptic plasticitythe mammalian brain, particularly
in the excitatory synapses of the hippocampus, a regionhwpacticipates in learning and
formation of memory in humans. They showed that brief trairfsgh-frequency stimulation to
monosynaptic excitatory pathways in the hippocampus cansdrupt and sustained increase
in the efficiency of synaptic transmission.

Lynch et al. [175] reported that while high-frequency stiation induced potentiation of
the activated pathway, the inactive pathway may sufferekspon. This was in agreement with
Hebb’s idea of a slow “synaptic decay” for unused connestidven tough he did not propose
an active mechanism to weaken synapses, long-lastingsipnavas also found to occur at the
activated pathway when the activation frequency was low[138ynaptic increase or decrease
that persists for tens of minutes or longer are generallgd&bng-term potentiation (LTP) and
long-term depression (LTD), respectively.

Despite plenty of plasticity models based on correlatiohpre- and postsynaptic firing
(known as rate-based rules), in more recent years a novekeporn cellular learning has
emerged, where temporal order of pre- and post-synaptiespinstead of frequency is em-
phasized. This new learning paradigm, known as spike-grdiependent plasticity (STDP),
has rapidly gained interest because of its combinatiomopkcity, biological plausibility, and
computational power. [173]

6.1.1 Spike-timing-dependent plasticity (STDP)

Markram and Sakmann reported a breakthrough study on thertemze of precise relative
timing of spikes emitted by the pre and post- synaptic nesinothe neocortex [177]. They re-
vealed that LTP occurs when the time difference betweenréegmd the postsynaptic neurons
is around 10 ms and the presynaptic neuron spikes first. Oothiee hand, LTD was shown to
happen due to acausal pre-after-postsynaptic spike tsnevwgn when they employed the same
stimulation frequency to generate pre-post and post-pkesp

In 1998, Bi and Poo [178, 179] mapped essentially the enflileFSwindow. First, they
evoked spikes in both pre and postsynaptic neurons withcagerme difference/t). Second,
they measured changes in the excitatory postsynaptic fait@aPSP) as an indirect measure
of the strength of the synapse (see Fig. 6.1). A posfiiveneans that the presynaptic neuron
fires spike before the post synaptic neuron, which has beamrsto induce LTP. A negative
At is associated with the opposite order (a post-pre spike)gemeérates a decrease in the
amplitude of the EPSPs, which characterizes LTD. Then, tiyegated the process in a roughly
40-ms-long coincidence window. More interestingly, theparted a rapid 1-ms transition
between LTP and LTD for near-perfect coincidence betweerapd postsynaptic cell activity.
This sudden transition between LTP and LTD is in biologieaits essentially instantaneous.
Despite quite surprising, it was later reproduced in thecodgex [180] and is now considered
one of several hallmark features of STDP [173].

To mathematically describe the relation shown in Fig. 6. hdditive STDP rule has typi-
cally been used:

g:{g+A+exp(—t/r+), ift>0 (6.1)

g—A_exp(t/t-), ift<O
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Figure 6.1: Spike-timing-dependent plasticity (STDP)ifi@tion in paired recordings in dis-

sociated neuronal cultures. Changes in the strength ofranttnal excitatory synapses due
to different time differences between the spikes from pré post synaptic neurons. Figure
reproduced from Bi and Poo [178].

whereg is the synaptic conductance (or weight) d@ned tPoSt—tP'® js the time difference be-
tween pre and post synaptic spikés., A_, 7. andt_ are the parameters to fit the data. In our
notation along this thesis, in a unidirectional configumatithe postsynaptic neuron is the slave
and the presynaptic neuron is the master. The experimeggesuthatr, varies in a range of
tens of milliseconds [181].

Over the past decades, STDP has been found in a range of spexie insects to hu-
mans [182]. Specially, STDP has been demonstrated in thampnimary motor cortex [183].
Pairing electrical stimulation of somatosensory affererve with transcranial magnetic stim-
ulation (TMS) leads to long-lasting changes in the motarkexd potentials (MEPS) elicited by
TMS.

It is worth mentioning that inhibitory synapses can als@ldig plasticity, but just in the last
years this was thoroughly investigated both experimgntaitl theoretically [184]. Moreover,
different experiments reported completely different tenapwindows [182]. Therefore, along
this chapter we will not apply STDP rules to the inhibitoryapses.
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6.2 AS and STDP synergetically organize the network dynamg

The interplay between STDP and Anticipated Synchroniraten have a major influence
over the structural organization of neuronal networks. BTBlies on relative spike timing
to induce modifications on the connectivity of neuronal res, trough the potentiation or
depression of synaptic strengths. On the other hand, théioaiobn of the synaptic strengths
can induce transitions between AS and DS synchronizatigimes. However when the net-
work synchronization regime changes from DS to AS, theik@atpiking time between pre and
post-synaptic neurons is inverted, leading to a inversfahe@STDP (e.g. from potentiation to
depression).

One problem in applying STDP rules in neuronal networks ésdtability. In numerical
simulations of unidirectional couplings, it is usually egsary to set an arbitrary upper bound-
ary to the synaptic weights [181]. Itis also necessary taceat the plasticity rule changes the
signal of the conductance, because it should not turn ategary synapses into an inhibitory
one. Moreover, according to experimental data, synaptighte should fulfill the following
key properties [185, 186]: (i) The weight distribution skibbe stable. Unchanged patterns
during a synchronized regime would allow the informatiorrie@ through the connections to
be consistently interpreted; (ii) Synaptic weights shquiigsent diversity. This is the opposite
to all weights having the same value or binary weights. Honetly, a graded set of connec-
tions can perform a richer set of computations [187, 188); \(Weights should be limited. It
means that due to the finite number of neuromodulators, hgsdietc, the synaptic weights
should not grow to biophysically unrealistic values. Itcabs/oids amplification of neuronal
activity to pathological levels.

We started by extending the 3-neuron model presented int€ho the presence of STDP
in the synapse from the master to the slave (excitatory taagcy neuron). Then we studied
the neuronal population model presented in Chapter 3 intg8TDP rules between synapses
from neurons in the master population to neurons in the glapelation. First, we verified that
AS exists and can be stable in the presence of STDP rulesn&eeae proposed that STDP
could facilitate a self-organized near zero-lag syncheation. More interestingly, we showed
that the interplay between AS and STDP rules gives stablegimweight distributions that
are comparable to experiments in the cortex [186] .

6.3 STDP in the 3-neuron motif

To initiate the study of the effects of STDP rules in a systieat €xhibits a smooth transition
from AS to DS, we chose the 3-neuron motif modeled by HH nesi@inChapter 2. The
microcircuit is represented in Fig. 6.2(a). Synaptic ptist was applied in the excitatory
synapses from the Master to the Slaygs. Unless otherwise stated, all parameters are as in
Table 2.1.

For fixedg;s = gs) = 40 nS, the time delay between the Master and the Slave is a smooth
function ofgys (i.e. in the absence of STDP). This relation is shown in Fig. &imilarly to
what is described in Chapter 2, the motif in Fig. 6.2(a) pnése: two phase-lockings regimes:
DS (blue) and AS (red), and a phase-drift (PD) regime. It ipantant to mention that in
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Figure 6.2: MSI motifs in the presence of STDP rules. (a) €meurons coupled by chemical
synapses in the master-slave-interneuron (MSI) configuraExcitatory AMPA synapse from
the Master to the Slavgys under STDP rules. (b) Master and Slave-Interneuron chiilea
populations. Each synapses from M to Sl has a different actadaegy s which can change
due to STDP.

Master Slave-Interneurc

Chapter 2 we varied the two excitatory synapgesmediated by AMPA, at the same time,
which meangys = gis, whereas in this chapter we fixggs = 40 nS.

Considering the results shown in Fig. 6.3 we expected thakiswitched on the STDP
rules, in an AS regime the synaptic conductagge decreases by LTD, while in a DS regime,
Ovs increases by LTP (see arrows in Fig. 6.3). To verify this ligpeis, we applied the addi-
tive rule described in Eq. 6.1 with, = 7 = 10 ms andA; = A_ = 1 nS for the excitatory
conductanc@ps.

We studied three different situations: initial value of dantancegys =40 nS (DS)gus =
20 nS (AS) andgys = 2 nS (PD). In Fig. 6.4 we show how the conductance changeg alon
the time in each case. As mentioned above, to avoid infinleelye or negative values of
conductances itis necessary to choose an ugper= 300 nS) and a lowegfys = 0) boundary
for the conductance. Fox 600 ms the system is in a well defined regime, then the STDB rule
are turned on and there is a transient time until the new regénmeached. Together with the
boundariesdy® = 300 nS andy3%e" = 0), the three initial conditions allow the following
transitions: DS»DS, AS—PD, and PB+PD. In Fig. 6.5 we illustrate the membrane potential
of the Master (black), the Slave with no STDP rules (red) d®dSlave after the STDP rules
are applied and the system reached the new regime (dasbletiiies).

Moreover, if we use another lower boundary, for exampie Gus < 32 nS, it is possible
to end in an AS regime (data not shown). Although distinctgeral windows for STDP
between excitatory-inhibitory synapses have been praphateve apply the additive STDP
rules of Eq. 6.1 on the synapse from the slave to the inteomegg, simply goes to the upper
boundary. Since the order of pre-post spikes between S andd dot change either in AS
or DS, the time differencé —tS is always positive and the conductargg always increases
through LTP. We employed a fixed value of conductagge= 40 nS, but we verified that the
results are qualitatively similar for other valuesgej.
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Figure 6.3: Time delay as a function of the excitatory conancegys for fixed values of
Osi = gis = 40 nS and no plasticity rules. If we turn on STDP, the DS reg@s > 32 nS
should lead to LTP whereas the AS regiof s < 32 nS should lead to LTD. F@iys < 6 nS
the system presents a phase-drift (PD) regimeraddes not converge to a fixed value.
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Figure 6.4: The synaptic weights as functions of time foeghdifferent situations. Initial
values ofgus are: gus = 40 nS in the top (starting from a DS regimgjys = 20 nS in the
middle (starting from AS) andus = 2 nS in the bottom (PD). STDP rules were switched on

att = 600 ms (vertical arrow).
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Figure 6.5: The effect of STDP rules in the 3-neuron motif fiee three cases shown in
Fig 6.4. Membrane potential of the Master (black), the Staitrout STDP (red) and the Slave
(dashed violet) with STDP rules acting on thgs. () Initial value ofgys = 40 nS, final value
OueC = 300 nS (upper boundary arbitrarily chosen). The systemniseigi the DS regime
and remains there. (b) Initial value gfyjs = 20 nS. The system starts in the AS regime, then
Owus decreases until values smaller than 6 nS and the systemesete PDgy s periodically

oscillates between € gys < 3. (c) Initial valgg ofgms = 2 nS. Lower boundarygQ¥e" = 0.



6.4 STDP between neuronal populations

In this section, we are interested in comparing the convigceffects of the interplay be-
tween AS and STDP in a model to experimental data from thexoiherefore, we applied
STDP rules to the synapses between two neuronal popula@ibupted in a master-slave config-
uration. In particular, we used the modified MSI motif delsed in Chapters 4 and 5 in which
the Slave and Interneuron (S) are together as a single abréigion (see Fig. 6.2). Without
plasticity, all excitatory synapse&gms have the same value, and the time detag a function
of bothgys andg;s as shown in Fig. 4.9. A positive value ofindicates DS (blue), whereas
T < 0 characterizes AS (red).

In the additive rule described in Eg. 6.1 both the amountotémtiation and depression do
not depend on the previous values of the weights. This is d goadel to describe situations
in which the relative potentiation in strong synapses is liesense than in weak synapses.
However, it does not always hold for synaptic depressio®].1& these cases a hybrid rule
has been proposed as an improved model for the STDP rule:

_ Jo+A exp(-t/ty), ift>0 (additive LTP) 6.2)
9= g—A_gexp(t/1_), ift<0 (multiplicative LTD) '

wheret_ = 17, =5 ms,A_ = 1.0 and typicallyA, = 0.5 nS, but it can be varied from®to
3.5 nS. We will show that this hybrid rule together with AS prd&imore realistic results.

6.4.1 AS inthe presence of STPD: an emergent property

For simplicity, we fixed all the intra-population synapses @applied STDP rules only in
the synapsegwus between M and S populations. Unless otherwise stated, alhpeters are
given by Table 4.1. When we turned on the STDP rules, egpghsynapse were modified
according to Eq. 6.2 and consequently the mean of the timeydeleach period(= (1;))
changed. After a transient time, the system reached a symizled regime in which the two
populations oscillate with a well defined value of The time delay could be either positive
(DS) or negative (AS). The mean membrane potential of the MSupopulations as well as
the time delay are illustrated in Fig. 6.6 for an example of &8l DS, both in the presence
of STDP. Results are robust independently of when we turrherptasticity rules (i.e. in the
beginning of the simulation or after the system reaches alsgnized regime).

In the cortical-like networks explored in this chaptersipiossible to start in an AS regime
and go to DS via STDP (changing the parametpssandA,), or to go in the opposite way:
DS — AS (differently from what happens in the 3-neuron microgitc This is an emergent
property that arises from the synergetic interplay betw8&€BDP and AS in modifying to
generate changes gys and vice versa. In Fig. 6.7(a) we show the relation betweandg;s.
Comparing the two curves with and without plasticity in Fég7(a), we can see, for example,
that forgis = 7.5 nS the effect of STDP is to take the system from DS to AS.

Furthermore, in Fig. 6.7(b) one can seas a function of the dimensionless paraméter
for fixed gis = 4 nS. In the absence of STDP ag@ = 4 nS the system is in AS. Thus, this

plot shows that foA, < 2.2 the system can start on AS and stay in the same regime, vgherea
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close, the DS regime can be considered a near zero-lag re@jaad (d) Time delay; in each
cycle. The mean time delay(orange dashed line) is positive in the AS regime and negativ
DS.
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Figure 6.7: Smooth transition from AD to DS (a) Time delay daraction of inhibitory con-
ductances. Comparing the case with no plasticity and thedh§gI DP rule withA, = 0.5 and
A_ =1.0. Plasticity brings the system to near zero lag synchrdioiza (b) Time delay as a
function of A, For fixedgis = 4.0 nS andA_ = 1.0. There is AS even fol . higher tharA _.

for for A, > 2.2 the system can go from AS to DS. Indeed, the two regimes angdhsible
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transitions from one to the other are spread in large regbtige parameter space. Altogether,
AS and DS are stable and robust against STDP.

6.4.2 Hybrid STDP and AS stabilize synaptic weight distribdion

There have been several attempts to link weight distribstemd synaptic plasticity rules;
in particular, STDP rules have received most of the atterji86, 181]. Typically, the additive
rule in Eq. 6.1 produces a bimodal distribution [24,26] msynaptic strengths clustering both
around zero and at the imposed maximum synaptic weight. Mexv8arbour et al. argued
that “the bimodal distribution resulting from an additivée appears to be in conflict with
existing data, in which no such bimodality can be detectd®6]. Fig. 6.8 shows examples
of experimental synaptic weight distributions in diffetdmain regions and types of cells re-
ported in the literature. All the distributions shown haimaitar shapes (but different scales): a
monotonic decay with maximum probability near zero [186]addition, plenty of studies (in
the cortex, hippocampus, and cerebellum) strongly sudgesxistence of a large majority of
undetectable (silent or potential) synapses with aimast eeight.

The most amazing result in our model is related to the syoapight distribution when
the system reaches an AS regime via STDP. The mentioneddsatbout experimental shape
of the weight distributions (monotonic decay with maximurokgability near zero) are repro-
duced by our MSI motif in the AS regime (see Fig. 6.9(a)). Mwer, the distribution ofus
obeys the three key properties explained in Sec. 6.2 as # ofghe dynamical interaction
between AS and STDP: (i) the distribution is stable, (ii)atae and (iii) limited. More interest-
ingly, the synaptic weight distributions are limited witltdhe necessity of arbitrarily chosen
boundaries. Even considering that each synapse indilydisathanging along the time, the
distribution of all synaptic weights maintains the samagratand the system remains in the
same synchronized regime.

On the other hand, for a DS regime, the third property is notetely satisfied. Eventu-
ally it is necessary to arbitrarily choose an upper bounftaryhe weights, otherwise some of
them grow beyond biophysical limits. In the bottom of Fige@), in the absence of a bound-
ary, we see that there is probability of finding large valuegygs in the DS regime, whereas
that does not happen for AS. The choice of the maximum valgggfcan lead to a bimodal
distribution for DS (data not shown). However, stabilitydadiversity are present.

Differently from the 3-neuron motif studied in Section 6r8sults here do not depend on
the initial values ofgys. Each synapse has a different behavior but all synapsetharggive
similar weight distributions along the time. In Fig. 6.9(k¢ see the evolution in time of four
randomly chosen synapses from each different initial doodin the AS (top) and DS (bottom)
examples. In DS there is a probability of extremely fast gn@gawhich results in large values
of conductance as mentioned before. In AS all weights cgevery small values, no matter its
initial values.

6.4.3 Other STDP rules

In order to compare the different possible cases, besiagds/brid rule we tested our model
against two other rules that can also describe the data simd#g. 6.1. Firstly, the multiplica-
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Figure 6.8: Experimental synaptic weight distributionhe tortex. All data have similar fea-
tures: a monotonic decay with maximum probability near zeab distinct scales. Reproduced
from Ref. [186].
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Figure 6.9: Synaptic weight distributions in the presenichybrid STDP rules. (a) and (b)
AS, withgis=4nS. (c) and (d) D§;s= 16 nS.A, =0.5andA_ = 1.0 are kept fixed. (a) and
(c) Histogram of thegys values. In the inset of (a) AS gives limited weight distribateven
without choosing an arbitrary upper boundary. Howeveh@DS regime some synapses grow
unlimited. (c) and (d) Independence of the initial synaptinductances. Each color represents
a different simulation in which all initial synaptic condaaces were the sanggs = 0.5 nS
(black),gms = 1.0 nS (red)gus = 3.0 nS (blue)gus = 5.0 nS (orange). For each simulation
we show 4 randomly chosen synaptic conductances evolvitiman In the AS regime (top),
the conductancegys vary in a limited interval. In the DS regime (bottom), sinbe beginning

of the simulation, there is a tendency for some synapsesto grore than others.

tive STDP model:
+ exp(—t/1.), ift>0
. {g A, gexp(—t/1.) 6.3

g—A_gexp(t/t-), ift<O.

This rule requires an upper boundat{PP¢" for both DS and AS and provides no diversity in the
weight distribution. Virtually all weights end up in the nmmum gys = 0 or in the maximum
valuegys = g"PPe",

Secondly, we employed the additive rule in Eq. 6.1 with nortaries. The distribution
is a Gaussian centering in zero for the AS case and centeriagpositive number for DS.
However, it allows negative conductances, which is not lnspcally plausible. If we choose
the lower boundary to be zero, in order to avoid the negatees of conductances, the weight
distribution for AS is similar to the hybrid case. Neverdésd, in the DS regime the stability is
compromised, and is non-stationary (i.e. its mean and variance change aveti

The 3-neuron results are qualitatively the same for theet&EDP rules. The results with
this microcircuits should be more interesting in the preseaof plasticity in the inhibitory
synapses. Although inhibitory plasticity was reported toyde completely opposite STDP
window in certain experiments, which cannot be describedryyof the rules employed in this
chapter, this could be potentially enlightening for theerptay between AS and STDP.
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CHAPTER 7

Concluding remarks and further perspectives

Understanding the brain is a challenge that is attractinger@asing number of scientists
from many different fields, what makes neuroscience perttemost remarkable example of
interdisciplinarity. In particular, computational neaoience aims to use theoretical approaches
from physics, mathematics, computer science and enginggriintegrate experimental obser-
vation, data analysis and theoretical modeling. In thisitheve studied the relation between
structure and dynamics in distinct biophysical models afraes and brain regions. We pre-
sented a detailed analysis of anticipated synchronizé&iSnhin biologically plausible neuronal
network models within different scales and proposed exrpantal setups to test our hypothesis.
Moreover, we proposed that the mismatch between diredtinfiaence and phase difference
in cortical experiments reported by Brovelli et al. [70],o#® data we also analyzed here, can
be the first verification of AS in the brain.

As explained in the scope of this Thesis, AS is a form of syoetzation that occurs when a
unidirectional influence is transmitted from a generataa teceiver, but the receiver precedes
the generator in time. This counterintuitive synchronaategime can be a stable solution
of two dynamical systems coupled in a master-slave configuravhen the slave receives a
negative delayed self-feedback. In this thesis, we shohaidat master-slave system can also
exhibit AS when this negative delayed self-feedback isaegd by a dynamical inhibitory loop
mediated by chemical synapses. This replacement opensveswes in the study of AS in
biophysical systems.

In Chapter 2, we showed that a canonical neuronal micrativath standard chemical
synapses, and where the delayed inhibition is provided byptemeuron, may exhibit AS. It
means that, when a master neuron sends an excitatory sywapskave neuron, which excites
an interneuron and receives an inhibitory synapses baak ifrdhe slave is able to fire spikes
before the master. Moreover, the time detdyetween consecutive spikes of the master and the
slave is shown to be a continuous and smooth function of thibitory synaptic conductance.
Therefore, this 3-neuron motif presents a smooth tramsftiom the delayed synchronization
(DS, when the master spikes before the slave) to AS medigtsgraptic conductances.

The phenomenon is shown to be robust in the 3-neuron motihwinedel parameters are
varied within a physiological range. The AS regime and thagition AS-DS is also exhibited
when different setups are included in our motif: in the pneseof a common driver neuron
that simultaneously excites all three neurons; when theistseexternal noise; in modified
neuron models; in a chain of slaves and interneurons; inrégepce of an excitatory feedback
from the slave to the master; and in a simple model for the mmtouit of the spinal cord.
Moreover, results in this chapter could be tested in a hybaitth clamp setup, in which the
inhibitory synaptic conductance can be simulated in readti
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In Chapter 3, the 3-neuron motif was analytically invedieglausing the theory of phase
response curves (PRCs) for phase-locking regimes. We gegbkbe approximation of weak
coupling oscillators, to calculate the Poincaré phase mafhé difference between spike tim-
ing of the neurons. The stability conditions were calcudas a function of the PRCs of the
master, the slave and the interneuron. This approach caailitdte the investigation of AS,
reducing the problem to the analysis of a set of conditioasghould be satisfied by the PRC of
the involved neurons. These results still need to be coretbd by further numerical simula-
tions. As a matter of fact, we cannot use the standard Hoeglixiey neuron model employed
in chapter 1 for this task, because it was not able to satisfynecessary weak coupling ap-
proximation, and the choice of a better model remains unolesideration.

In Chapter 4, we presented a model of two brain regions cdupjea well-defined direc-
tional influence (master M and slave S populations), thdtaditst model of neuronal popula-
tion to displays AS. Each population is composed of hundaéaseurons with the necessary
ingredients to mimic cortical-like sub-networks. We enyad realistic brain features, such
as the proportion of excitatory and inhibitory neurons,iafaitity in the neuronal dynamics,
noise, baseline firing rates and global topological mogisilarly to the 3-neuron motif case,
the system exhibits an AS regime and a smooth AS-DS transiwbich could be mediated
by several parameters: synaptic conductances, Poissgrpraportion of different classes of
neurons in S, etc. Since the anticipation time emerges fl@asystem dynamics, instead of
being explicitly hard-wired in the dynamical equations(gée Eq. 1.1), AS could be tuned by
neuromodulation.

Despite of the several existing studies of AS in physicateays, a verification on AS
in the brain has not been reported. Therefore, in Chapter praeosed that our neuronal
population model can be comparednivo experimental results and explain counter-intuitive
results reported in cortical data. Brovelli et al. [70] obvsal that, in monkeys engaged in
processing a cognitive task, a dominant directional infbeéeinom one cortical area to another
may be accompanied by either a negative or a positive timeydeHere we compared our
populational model’s dynamics in the AS regime to the experital results of Brovelli et al.
By reproducing delay times and coherence spectra, ourtsgauvide a theoretical basis for
observed neurocognitive dynamics, and suggest that theafgicortex may operate in the AS
dynamical regime as part of normal neurocognitive functidime existence of AS between
cortical regions in non-humans primates unveil new pobsés for the investigation of AS in
humans.

Since the DS-AS transition amounts to an inversion in thégyof the pre- and postsynap-
tic spikes, in Chapter 6 we investigated the effects of sfifkéng-dependent plasticity (STDP)
in our neuronal-scale models and in our large-scale netwakle showed that AS is robust and
stable in neuronal populational models in the presence BIFSThe interplay between STDP
and AS regulates the distribution of synaptic weights, Wwhdan be compared to experimen-
tal weights distribution from the cortex. Moreover, it stedes the unlimited growth of some
synaptic conductances in the absence of arbitrary chogser ijpundary to them.

Improvements in our study can be accomplished in severattitins. In the theoretical
point of view, our models can be modified in a plethora of wdgghe following, we suggest
several situations in which further investigations on oeat AS regimes may be relevant:
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on the existence of AS between bursting neuron models asawetl chaotic neuron models;
on the relation between Type-I and Type-lIl PRCs and the exe¢&t of AS; on the effect that
the inclusion of delays in synaptic conductance may haveSreAd in the AS-DS transition.
In addition, one could investigate existence of AS in a neurass model [190], which is
a mesoscale model that employs few differential equatiateszribe entire cortical columns.
All the distinct neuron mass models present internal inlmbiwhich can mediate the inhibitory
loop required for AS.

Other biophysical models should be proposed to relate ASpirethomena such as the
delayed induced transition in visually guided movement$ § suggested by Voss [4]. More-
over, the inversion in the order of pre-post and post-preesptould also be useful as a mecha-
nism to facilitate unsupervised learning. A more realistidel for the motor neurons in spinal
cord could, in principle, relate AS regimes and our reactiore. Another relevant step would
be the investigation of an AS regime beyond brain modelspasXample, in gene regulation
dynamical models that exhibit inhibitory loops [191].

Our work is a step further towards a better insight on thetigeiabetween concepts of
anticipatory behavior and AS dynamics [145, 146]. Howetlaate are still countless questions
that should be answered in order to understand the mechanisderlying our capacity of
predict and act based on our models of the world. In the exygrial point of view, we expect
that the analysis of EEG data will be able to reveal the sansenatich between causality and
phase lag which was reported in LFP measures. Since the EE@ois-invasive technique, AS
could be verified in humans.

Doubtless, more experiments should be performed in ordangswer several questions
about the existence and functionality of AS in the brain. Whkahe role of the time delay
(specially in the AS regime) during learning tasks and/ahmperformance of a specific task.
Is AS specially related to the working memory task reportgdhlazar et al. [71], or to the
premovement period of the GO/NO-GO task reported by Broeglal. [70]? Is AS just an
epiphenomenon? Which are the advantages of patterns afcaewith different time delays?
Investigation of these questions could enlighten the fonel significance of the AS regime
on the cognitive process. Altogether, we hope that this iBhasuld stimulate the research in
this new and interesting field of anticipated synchronaatn biological systems.
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