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To the future that I long and to the past that I miss,

I hope we can keep living on the present.
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Resumo

Espalhamento de campos ao redor de buracos negros é uma importante problema tanto na drea
de astrofisica, na detec¢do de ondas gravitacionais, como em aplicagdes tedricas, por exemplo,
em AdS/CFT e gravidade quantica. Nesta tese, estudamos aspectos tedricos do espalhamento
de campos em torno de buracos negros Kerr-NUT-(A)dS em 4 dimensdes (buraco negro girante,
com carga topoldgica tipo NUT e imerso em um espaco-tempo de curvatura escalar constante).
Ap6s separacao da equacdo de Klein-Gordon, reduzimos o problema a um espalhamento uni-
dimensional na varidvel radial. Em particular, estudamos o espalhamento de um campo escalar
conformemente acoplado ao espaco-tempo (£ = %), pois nesse caso o nimero de pontos singu-
lares reduz de 5 para 4. A equacdo resultante € Fuchsiana do tipo Heun, equacao mais geral do
que a hipergeométrica, com 4 pontos singulares regulares, e suas solucdes ndo existem em ter-
mos de funcdes elementares. A maior parte dos estudos nessa drea de espalhamento sdo aprox-
imados ou puramente numéricos. Encontramos, entdo, uma expressao analitica para os coefi-
cientes de espalhamento em termos da monodromias das solucdes. Estes coeficientes depen-
dem de tragos de monodromias compostas. Usamos a teoria de deformacdes isomonodromicas
para encontrar esses coeficientes através das solugdes assintdticas da equacdo de Painlevé VI
Em particular, estudamos o espalhamento no caso Kerr-dS em detalhe. Além disso, discuti-
mos certos resultados interessantes no contexto da descri¢do dual dos estados de um buraco
negro em termos de uma teoria de campos conforme, a chamada dualidade Kerr/CFT. Modos
conformemente acoplados em Kerr-AdS extremal sugerem uma descricao em termos de uma
teoria de campo conforme para a frequéncia no limite superradiante, além da regidao préxima

do horizonte.

Palavras-chave: Espalhamento de Campos. Buracos Negros. Painlevé VI. Deformacdes

Isomonodromicas. Simetrias Escondidas. Kerr-NUT-(A)dS.



Abstract

Scattering of fields around black holes is an important problem in astrophysics - in the detection
of gravitationals waves - as well in purely theoretical applications, for example, in AdS/CFT
and quantum gravity. In this thesis, we study the scattering of scalar fields around Kerr-NUT-
(A)dS black holes in 4 dimensions (a rotating black hole, with topological NUT charge and
embedded in a spacetime with constant scalar curvature). After separation of variables in the
Klein-Gordon equation, we simplify the problem to a 1-dimensional scattering by an effective
potential in the radial direction. In particular, we study conformally coupled modes in this
background (¢ = %) because, in this case, the number of singular points decreases from 5 to
4. The resulting Fuchsian equation belong to the Heun class, more general than the hyperge-
ometric equation, and it is well-known that their solutions are not generically expressible in
terms of elementary functions. Most studies in scattering theory are approximate or purely
numerical. Here we find an analytic expression for the scattering coefficients in terms of the
monodromies of the solutions. We show how it is possible to find the scattering coefficients
using monodromies of the differential equation without having the explicit solution. These
coeflicients depend on composite traces of monodromies. Thus, we use the theory of isomon-
odromic deformations to find these coefficients via Painlevé VI asymptotics. In particular, we
study Kerr-dS scattering in some detail. Furthermore, we discuss certain interesting results for
the dual conformal field theory description of black hole states, the so-called Kerr/CFT duality.
Conformally coupled modes of extremal Kerr-AdS black hole suggest a CFT description for

frequency at the superradiant bound, beyond the near-horizon region.

Keywords: Black Holes. Scattering Theory. Isomonodromic Deformations. Painlevé VI.
Hidden Symmetries. Kerr-NUT-(A)dS.
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CHAPTER 1

Introduction

"You cannot pass! I am a servant of the Secret Fire, wielder of the Flame of
Anor. The dark fire will not avail you, Flame of Udun! Go back to the

shadow. You shall not pass!"

—GANDALF

Black holes are compact, localized, gravitational systems which have several interesting
physical properties [1, 2]. Their defining property is the existence of a definite region where no
causal physical excitation can escape. This special region is called the event horizon. From the
point of view of an external observer, a black hole is very much like a star as its gravitational
field pulls every light and matter around it towards its center. However, because of the event
horizon, no light can classically escape the inner region so that is why we call this compact
object black. As both theory and experiment overwhelmingly suggest that it is not possible
for two physical systems interact through faster than light signals, the region beyond the event
horizon is believed to be completely inaccesible to an external observer.

Of course we can try to safely study black holes from some distance, for example, by throw-
ing a light ray towards it and seeing how much light is reflected by its gravitational potential.
The results obtained are neatly described by the generalization of classical scattering theory to
curved spacetimes [3, 4]. This classical picture is what one usually has in mind when search-
ing in the sky for astrophysical objects which ought to be described by a black hole. Direct
detection of these elusive objects has not been achieved yet because actual black holes are very
“dirty” objects. However, astronomers can infer the existence of black holes via indirect ways,
like gravitational waves or electromagnetic signals produced by these objects. Typical candi-
dates for black hole detection are binary systems, formed by a black hole and a companion
infalling star, and black holes in the center of galaxies. Binary systems present rapid accretion

of mass of the inbound star, producing powerful X-ray signals like in Cygnus X-1, a binary
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CHAPTER 1 INTRODUCTION 16

which is widely believed to have a black hole with around 10 M !. In the center of galaxies
we expect to encounter supermassive black holes with 10° — 1014M and may also be detected
through indirect ways. Finally, there has always been speculation about the existence of pri-
mordial black holes permeating the universe since very early times, being formed by evolution
of inhomogeneities after the big bang. There is even a suggestion that those could explain the
abundance of dark matter in the universe. However, there are several constraints on their ex-
istence today, like black hole evaporation, for those very small, and gravitational lensing, for
those very large, so even if they exist, their detection would be extremely hard [5].

Another possibility to probe the structure of a black hole is to throw into it a measuring
apparatus which sends periodic signals to an outside observer. The problem with this approach
is that the signals will take longer and longer to reach the external observer because of the
gravitational redshift as the apparatus approaches the event horizon. For the external observer,
the device will take an infinite amount of time to reach the event horizon, despite the finite
amount of proper time necessary for the infalling device to reach and cross the horizon.

The fate of an infalling observer following a geodesic into a typical black hole is a more
delicate matter. The classical answer is that nothing unusual will happen because there is no
curvature singularity at the event horizon. Of course, depending on the size of the black hole,
the dragging force might be too large and destroy completely the infalling device or astronaut,
but the standard point of view is that there is no classical experiment one may do to discover
if it has crossed the event horizon. However, there has been some dispute about this classical
argument which is typically referred to as the firewall paradox. Almheiri et al [6] argue that if
we consider two entangled states, one falling into and another going away from a black hole,
to preserve unitary evolution of these states, as demanded by quantum mechanics, the infalling
state will suffer a “burning” fate while trying to cross the event horizon corresponding to, so
much as one says that it will have to cross a “firewall” to reach the black hole interior. Burning
here means that the infalling observer will detect modes with arbitrarily high frequencies while
crossing the horizon.

The considerations above suggest that, although we have a good classical understanding of
these gravitational systems, we have a hard time understanding its quantum structure. However,
there has been a lot of progress during the last 50 years about the quantum nature of a black hole.
The first thing one can do is study semiclassical processes where we have a classical black hole

metric coupled to a quantum field [7]. Several things can be learnt with this approach, one of

Mg = 1.98 x 10% kg is the solar mass.
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the most important ones is that black holes spontaneously emit thermal radiation - the Hawking
radiation. In particular, black holes can lose energy in this process and therefore evaporate,
shrinking until there is nothing left. At least, that is what one can conclude from a first view.
However, as the black hole shrinks in size, quantum gravity effects become important in the
approach of the singularity, so the safe answer is that we do not know what is the final fate of
these objects. If the black hole completely evaporates, it raises several questions about unitarity
and entropy. The fact that these objects emit radiation implies that they are thermodynamical
systems and thus possess entropy along with their temperature. We shall comment more about
this below.

Finally, there has been very important advances and applications of black holes in recent
years. Most notably, we comment about two of the most important ones: microcanonical en-
tropy calculations and gauge/gravity duality. The entropy of a black hole is proportional to
the event horizon area, differently from what we expect from conventional thermodynamical
systems. This made some authors suggest that the “information” of the black hole interior
is holographically encoded on the horizon surface, making contact with the related topic of
holographic dualities [8, 9]. Strominger and Vafa made an impressive calculation matching
the black hole entropy, counting the number of states of a system of D-branes in string the-
ory with conserved charges equal to those of the black hole [10]. This particular calculation
corresponded to the entropy of an extremal black hole in supergravity, but soon followed other
examples in less symmetric backgrounds (see, for example, the works of Ashoke Sen and col-
laborators [11, 12, 13, 14]). Therefore, string theory seems to be the best candidate up to now
to describe black holes microstates.

AdS/CFT? related dualities have been abundantly’ studied today since the seminal paper
of Maldacena [15] with applications in several areas like studies on the Quark-Gluon Plasma
(QGP) [16, 17, 18], holographic superconductors and condensed matter systems (also called
AdS/CMT) [19, 20]. There is also suggestions for atomic physics as well [21]. For general
reviews see [22, 23, 24, 25]. In its most general form, it states that a D-dimensional conformal
gauge theory with a large number of fields at strong coupling (no gravity) should be better
described by a gravitational theory at weak coupling in (D+1)-dimensions. So it is usually
referred as weak-strong holographic duality. 1t is truly amazing because it relates the non-
perturbative sector of a non-gravitational theory with another one with gravitational states at

perturbative level! This means that classical gravity can solve several questions about these

2 Anti-de Sitter / Conformal Field Theory
3In INSPIRE HEP database, this paper already has 9946 citations!
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dual theories which were very hard to probe before. So it is not a surprise that it draw so much
attention from the physics community. Furthermore, if we reverse the duality, we can also try
to assess non-perturbative properties of gravity itself. As we are most interested in black holes
here, we would like to use the duality in this other direction to try to understand better our
objects of study non-perturbatively. For a review on what AdS/CFT can say about black holes,
see [26, 27, 28, 29].

The closest this duality has reached to describing a physical system in the lab, as far as
we know, 1s in the case of AdS/QCD and the quark-gluon plasma (QGP). There are models in
the literature describing quark confinement and chiral symmetry breaking mechanisms which
are important in this context. Also, seen as a macroscopic plasma, transport properties for the
QGP have also been calculated. The most well-known calculation is that of the viscosity-to-
entropy ratio, which in the simplest holographic models is given by an universal factor 1/4x
[30, 31]. Violations of this bound have been discovered theoretically for models with higher-
order curvature corrections and suggestions have been made when this could happen [32].

AdS/CFT has also inspired another formulation of the correspondence with respect to black
holes in purely geometrical terms, the Kerr/CFT correspondence [33]. This proposal tries to
find the dual CFT theory of a black hole by understanding better the hidden symmetries in
black holes solutions in the near-horizon and extremal limits of these metrics. We review this
correspondence in details in chapter 4 of this thesis, as it will be important for our applications.

The applications related to QGP and condensed-matter systems typically have a black hole
in the center of AdS spacetime and the temperature of the horizon is directly related to thermal
states of the dual theory. Another important ingredient for understanding thermalization pro-
cesses in these systems is the calculation of quasinormal modes, which correspond to the poles
of the retarded Green’s functions in the dual theory. In terms of the black holes, quasinormal
modes are certain special resonances in the spectrum in which the transmission amplitude of
the mode diverges and the reflection amplitude is zero. Those are also related to questions
about stability of the background itself [34, 35, 36, 37]. Therefore, the understanding of black
holes and its scattering properties is very important for AAS/CFT applications and probably for

a more fundamental understanding of the duality itself.
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1.1 Summary of Thesis Chapters

After this bird’s eye view on the black hole literature, we now come back to the main matter
of this thesis: scattering theory of fields around black holes. The study of scattering of fields
around black holes is very important for astrophysical applications, stability criteria of gravita-
tional solutions, AdS/CFT applications as well and to gain insight on the quantum description
of a black hole. Therefore, it is interesting to gain more analytical control about the structure
of scattering amplitudes in this context.

In this thesis, we present our original work [38] in this direction with respect to the math-
ematical physics of this problem and the physical implications thereof. Inspired by the recent
work of Castro, Maloney, Lapan and Rodriguez [39, 40] on D = 4 Kerr black hole scattering
from monodromy, we generalize this proposal by applying it to D =4 Kerr-NUT-(A)dS black
holes. We discover that this approach is much more natural in this context and, in the particular
case of a conformally coupled scalar field, we reduce the main problem to the study of a Heun
equation, a Fuchsian equation with 4 regular singular points. This is done in chapter 2. We
also discuss (A)dS spheroidal harmonics in this chapter, elucidating the equation structure and
presenting partial numerical results for its eigenvalues.

To understand the monodromy group of Heun equation, we delve into full mathematical
discourse in chapter 3. There we present the current understanding of monodromy representa-
tions, its symplectic and algebraic structure, as well as its connection with recent developments
in 2D conformal field theory. Further, we present the main tool of our trade here: the theory of
isomonodromic deformations and Painlevé transcendents, which are non-linear equivalents of
classical special functions. Here we see how the scattering problem can be seen as integrable,
at least in principle. However, numerical work must be done to reach a quantitative answer and
we present a numerical result on the integration of Painlevé VI equation.

In chapter 4, we present the main results of this thesis, in particular, the generic structure
of scattering amplitudes between two regular singular points with ingoing/outgoing boundary
conditions. We further propose that this structure must be valid in any dimension and the same
idea of our method can be implemented. We briefly discuss the physical case of scattering
in Kerr-dS spacetime, considering superradiance and scattering between different asymptotic
regions. We also propose a connection of isomonodromic deformations of our system with
the hidden symmetry encountered in the Kerr/CFT correspondence. Finally, we show that

the extremal limit of a conformally coupled wave equation in Kerr-(A)dS spacetime gives a
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hypergeometric equation in two cases: (i) in the superradiant limit and (ii) when the rotation
parameter is equal to the AdS radius (only for the AdS case).

After the presentation of all the main material, we discuss and review our results in chap-
ter 5, also proposing new directions and perspectives for our work: generalization to higher

dimensions, structure of quasinormal modes and recovery of previous results via confluence.

1.1.1 Summary of Original Results

e Section 2.2.1 of scattering on (A)dS» x S 2 spacetimes using monodromies is an original

presentation of this subject.

e Section 2.3 presents our work on the setup for the scattering analysis of massless con-
formally coupled scalar field in Kerr-NUT-(A)dS background. We show that r = oo is a
removable singularity in this case, reducing the radial part of Klein-Gordon equation to
a Heun equation. This result is equivalent to the one in [41] for zero spin in the Teukol-
sky equation, although here we do for arbitrary non-minimal coupling and show that this
removability only happens when & = 1/6. This clarifies the origin of this removability in
the solution space. We also present an unpublished analysis on (A)dS scalar spheroidal
harmonics and some numerical results for its eigenvalues C, using Leaver’s continued-

fraction method [42].

e The numerical results for Painlevé VI integration in section 3.4 are original and still

unpublished.

e The whole of chapter 4, except the review on Kerr/CFT correspondence in section 4.2,
consists of original results, most of it still unpublished. The structure of generic scatter-
ing and scattering through the interior of a black hole has been discussed in [38]. The
specifics of Kerr-dS scattering and the relation between Kerr/CFT correspondence is still

unpublished.

Now we turn to a brief introduction on the main properties of black holes and its thermo-

dynamics as a warm-up for our thesis.
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1.2 Classical Description of Black Holes

An astrophysical black hole spacetime can be nicely illustrated by the conformal diagram of
matter collapsing to form a black hole. The grey area in figure 1.1 corresponds to a collapsing
star. In the process, an event horizon is formed at radius r = 2M, a region of no escape even for
light. This causal diagram (also called conformal diagram or Penrose diagram) describes the
global and causal structure of the spacetime. It is conformal as it preserves angles and every
light ray travels at 45 degrees. The most important thing about those diagrams is that they
give a way to draw an infinite spacetime into a finite piece of paper. The whole spacetime fits
in a finite picture because we compactify coordinates by making a transformation of the type
x — tan~!(x). To understand how to draw a Penrose diagram, check appendix A.

The exterior part of Figure 1.1, the region outside the black hole, has a casual structure
similar to Minkowski spacetime, as seen in appendix A. The main difference now is that light
rays inside the interior region r < 2M, beyond the dashed line, never reach i*. This means that
the black hole is outside of causal contact with the exterior universe. Furthermore, the wiggling

line corresponds to the black hole singularity at r = 0.

Figure 1.1: Matter collapsing into a black hole. Adapted from [43].
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In principle, the event horizon has nothing special locally; the problem really lies at the
singularity. What happens there, apart from having a very high spacetime curvature nearby, no-
body knows. The resolution of the singularity is one of the biggest problems related to quantum
gravity. But we notice that the problem is not with the singularity itself, as electrodynamics
have also singularities called point charges. In a nutshell, quantum electrodynamics solves this
problem with renormalization, whereas general relativity does not allow this procedure. This is
due to the intrinsic nonlinearity of the theory, as gravitons scatters gravitons. But not just that,
as quantum chromodynamics is also non-linear although renormalizable. It is also a matter of
the strength of its perturbative interactions. The natural scale of quantum gravity is the Planck
mass Mf,l = hic/8nG ~ 10'® GeV, with G being Newton’s gravitational constant. To finish this
quantum digression, we mention that non-renormalizable theories just stop to make sense at its

natural UV scale, because only there perturbation theory breaks down.

1.2.1 Schwarzschild Metric and Classical Trajectories

Let us focus on a particular black hole, the Schwarzschild black hole, which is the unique4
asymptotically flat, spherically symmetric solution of general relativity outside a source of mass
Mpp. This solution also describes the exterior region of non-rotating spherical astrophysical

bodies. The Schwarzschild metric in coordinates (z,r,6,¢) is given by

2 v M\ o dr? 20102 1 i a2
ds® = g,dx'dx :—(1—7)411‘ +m+r (dO” +sin“ 0dp*), (1.1)
r
where M = GMpy/ ¢ and Mgy is the black hole mass. In the following, we use natural units
where G = ¢ = i = 1, which thus implies that M = Mpy. Here and in the following we use
signature (—,+,+,+) for the metric g,, and Einstein’s summation convention - two equal in-
dices, one above, other below, means summation over all values of the index. The metric (1.1)
describes how we measure distances in this particular static frame outside the black hole. How-
ever, there is no collapsing matter here, so we call this an eternal black hole. Further, when
r — oo, we recover the usual Minkowski metric, so this is an asymptotically flat spacetime.
This is a very important statement, as it is not generally true in general relativity, and because
we have a good notion of observables and conserved quantities at infinity. So we can think of it
as a spherical body lying inside Minkowski spacetime. Thus, it is easier, for example, to define

thermodynamic variables for this system. Finally, notice that there is a coordinate singularity at

4If we consider the cosmological constant A # 0, there are other possibilities. See, for example, [44, 45].
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r = 2M; this corresponds to the event horizon mentioned above. To explain why this is a point
of no return, we have to talk about geodesics.

Geodesics are paths extremizing spacetime distance. In general relativity, test masses fol-
low geodesics in the absence of any external force, which in our earthbound beings context is
equivalent to saying that inertial observers are those in free fall (the equivalence principle). So

if we choose coordinates x* = (¢, r,0,¢) and extremize the action

S = de N, = fdr V=G XY, (1.2)
we obtain the geodesic equation

>+ " dx’ dx* 3

— t ;- — Y 1.3
dr2 " "dr dr (1.3)
where the Christoffel symbol is given by
1
Flafp = Eglw(avgpa + a,ogva - aagvp)- (1.4)

The geodesics norm i, is equal to -1 for timelike geodesics, +1 for spacelike and O for null
geodesics. In terms of abstract tensor notation® [1], if u® is the generator of orbits x*(7), the
geodesic equation is equivalent to u’V,u® = 0, corresponding to the parallel transport of the
vector along its own direction. The symbol V,, is the covariant derivative, and we can take the
geodesic equation as a definition of it.

The easiest way to understand the necessity of a covariant derivative is the following:
consider a vector u = u“e, tangent to some trajectory and written in some basis e,. If we
try to take a partial derivative of u, we get d,u = da(ulep) = dguley, + ubd,ep. By supposi-
tion, the derivative of the basis vector must also be a vector in the same vector space, so it
must be a linear combination of the basis vectors and we define d,¢, = CZ' e So we define

Oaut = Vuley = (0,u’ + CP.u)ep, that is,
Vi’ = 8l + Couc. (1.5)

In particular, we get the Christoffel connection above if we choose the compatibility condition

Vagpe = 0. A consequence of this is that the norm of a geodesic vector is preserved along its
own geodesics. Finally, if we choose a particular coordinate system, we have that u* = % and

we get the geodesic equation (1.3) above.

5 An abstract tensor is written with latin indices, Typ_., if we do not specify a basis. We write with greek

indices Ty, , the tensor components in a specific basis.
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Figure 1.2: Typical form of effective potential for Schwarzschild null geodesics. The crossing

point is r = 2M and there is an unstable bounded orbit at r = 3M.

To study classical trajectories in this spacetime, we also have to consider conserved quan-
tities, in this case, energy E and angular momentum L, to define initial conditions. In general
relativity, we express conserved quantities in terms of Killing vectors, that is, generators of
isometries of the metric. Mathematically, we say that if £ is a Killing vector if the Lie deriva-
tive of the metric vanishes, i.e., if Legap = Viép + Vi€, = 0. In this case, the quantity P = u,&9 is
conserved along u“ geodesics. For Schwarzschild metric, we have two Killing vectors, 4 = 0¢
and ¢ = dg, and we define “u, = —E and ¢“u, = L. Instead of using the geodesic equations, we
can use x“x, = 0 to find null geodesics in the Schwarzschild case. If we restrict to the equatorial

plane 6 = 7r/2 in the coordinates above we get

1, 12 ML*> 1
Er +ﬁ_ 3 :EE, (16)

which is the conservation of energy for a test particle of unit mass in a effective potential

> MIL?

V(r) = — —
) 2r2 3

) 1.7)

consisting of a centrifugal barrier and a gravitational term. There is no Newtonian term as we
are considering trajectories of light rays so the gravitational term only appears as a general
relativity effect.

The effective potential V(r) is zero at r = 2M and has an unstable bounding orbit at r = 3M,

where the potential has a maximum (see figure 1.2). So we can ask what happens if we send an
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@

Figure 1.3: Light trajectories near a Schwarzschild black hole with different impact parameters

as a function of r/M. The photon orbit is a circular closed orbit at r = 3M. Inside this orbit,
every axially thrown light ray falls into the black hole. The innermost circle is the event horizon.

Retrieved from [4].

astronaut falling into the black hole sending light signs in the positive ¢-direction, as shown in
Figure 1.3. As ¢ = L/r?, we have that

dg _ 1 [1 . 1(1 . 2_M)]/ 08

dr r2|b* r? r ’ '
with r(¢) a solution of (1.6) and b = L/E the apparent impact parameter as measured from
infinity. If we draw these orbits for several values of the impact parameters, we get figure 1.3.
What we see first is the bending of light rays near a compact object, one of the first experimental
tests that confirmed general relativity as a consistent theory of gravity. We see the photon orbit
at r = 3M and that every light ray inside this orbit never reaches spatial infinity again. Another
interesting thing is that if the astronaut turns on its rockets staying stationary nearby the event
horizon and continues to throw light rays changing its direction, we have that almost all light
rays are going to fall into the black hole (see figure 1.4). At r = 2M there is no way a light ray
can escape anymore and it stays at most orbiting at this radius.

Of course, as light rays are the fastest things in the universe, massive particles are also
completely lost after crossing the event horizon. If an observer tries to follow a stationary
trajectory at a fixed radius, its geodesic vector u“ is proportional to d; and we now see that its
norm becomes zero exactly at the event horizon. No massive particle can follow this trajectory.

In fact, as 0, is a Killing vector, we have that the event horizon is generated by the orbits of this
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T

r=2I1M

r=2M

Figure 1.4: Light trajectories at r = 2.1M thrown at different angles. Retrieved from [4].

vector, so we also call it a Killing horizon. This concept will be important below.

To finish our conceptual introduction about black holes, we can ask some questions about
the fate of a massive observer falling into the black hole. We argued that there is no geodesic
trajectory in which those observers remain stationary at the event horizon, but can they follow a
non-geodesic path and remain stationary? This means being accelerated with respect to station-
ary paths at infinity, which gives our standard of a straight path. If £ is the stationary Killing
vector, we want to follow trajectories of u® = £%/V with V = v=&,£9, such that u,u® = —1. The
local acceleration necessary to stay on this path is a” = u¢V.u? = V?In V. This diverges at the
event horizon, as V — 0 there. So it seems not possible either. However, if we tie the observer
to a rope and slowly lower him down from infinity, we can ask what is the necessary force to
keep him stationary with respect to an equally stationary spaceship holding him from infinity.
One can thus show that the necessary force at infinity F, = VF is actually finite because the

redshift factor V regularizes it. Therefore, we define
k= lim (Va) (1.9)
r—2M

as the surface gravity at the horizon, in analogy to the local gravitational acceleration g on the
Earth’s surface.

But can we actually see the observer reaching the horizon from a standpoint far away the
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t = constant

I = constant

Figure 1.5: Conformal diagram of the maximal extension of the Schwarzschild black hole.
Adapted from [43].

event horizon? Unfortunately, as we saw earlier, light rays become more and more trapped as
the observer falls into the black hole and its light rays take more and more time to reach out
an outside observer in the process, so we actually never see the last light signal. The observer
becomes “frozen” from our perspective. That is what is usually called the gravitational redshift.

From an infalling observer point of view, nothing unusual seems to happen when crossing
the horizon in this classical description. The singularity in the horizon is just a coordinate one;
we can actually redefine our coordinates and extend the metric inside the horizon. That is one
of the main lessons of general relativity: the physics we see depends on the reference frame
we are. The only point where coordinates always fail is the r = O singularity, consisting in a
true curvature singularity. The conformal diagram of the maximally extended Schwarzschild
spacetime is shown in figure 1.5 for comparison with the case of gravitational collapse in figure
1.1.

1.2.2 Kerr Metric and Energy Extraction from Black Holes

Are there more general black holes in general relativity? The answer is yes. As stated in [2] and
proved by Hawking [46], every stationary black hole obeying vacuum or eletrovac Einstein’s
equations have a Killing horizon. Therefore, it might happen that the timelike Killing vector
& fails to be null at the horizon, so we have to add another Killing vector in order to obtain

the Killing horizon generator. The most general asymptotically flat 4-dimensional black hole is
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the Kerr-Newman black hole, which is a generalization of (1.1) with angular momentum J and
electric charge Q. Therefore, we can also have a rotating contribution to the Killing horizon
generator and thus we define

X =&+ Quy, (1.10)

where the constant Qg is interpreted as the horizon angular velocity as we typically choose
coordinates that £ = 9; and = d.

In fact, there are also other charges we can add to a black hole, as for example a NUT
charge, but its addition brings strange behaviour, like closed timelike curves, so we do not
usually mention it. For an extensive review of exact solutions of general relativity, see [47]. On
the other hand, these metrics have applications in AdS/CFT, as the NUT charge corresponds
to particular rotating plasmas [48]. As a matter of fact, in this thesis we are going to focus
on Kerr-NUT-(A)dS metrics [49], corresponding to rotating black holes with a NUT charge in
asymptotically (A)dS spacetime. We shall discuss these in the next chapter.

Roy Kerr [50] found the most general vacuum rotating black hole in 4 dimensions with
mass M and angular momentum J = Ma, with its metric in Boyer-Lindquist coordinates given
by

A * o, sin’d
ds* = —=(dt - asin’ 0dg)* + derz + %((r2 +a*)d—adt)’ +pde” (L.11)
ol P
where
A=r2—2Mr+d, 0> =1’ +a’cos? . (1.12)

This black hole has two horizons given by the roots of A = (r —ry)(r—r-) = 0, that is,
re =M+ VM? —a? (1.13)

and when a = 0 we recover the Schwarzschild metric corresponding to a non-rotating black
hole, as we have studied above. The larger root r; - the outer horizon - is an event horizon,
while the smaller root r_ - the inner horizon - is a Cauchy horizon (as it does not correspond
to a conformal boundary of spacetime). Those two are coordinate singularities, just like the
Schwarzschild case. The inner horizon is actually unstable under small perturbations [51], so
we do not expect it to exist in physically realistic gravitational collapse, only for some finite
period of time while the collapse is still occurring. Nevertheless, we expect that this type of

black hole approximately describes the exterior region of astrophysical black holes.
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Figure 1.6: Penrose diagram of maximally extended Kerr black hole along the symmetry axis
6 = 0. The yellow dashed lines correspond to the black hole singularity » = 0. The diagram

repeats itself indefinitely both in the upward and downward directions.

The curvature singularity of the Kerr metric actually lies at p = 0, which implies in r =0
and @ = /2. It has a ring-like topology when the metric is written in Kerr-Schild form [1].
Because of that, it is possible to pass through the singularity, avoiding the ring, and reach an-
other asymptotically flat region with boundary at r = —co. This can be seen in the conformal
diagram of the maximally extended Kerr solution for # = 0 in Figure 1.6. In the bottom of
the Kerr diagram, we have two asymptotically flat regions, I and III. Observers can start their
trajectories at region I, enter the black hole region II and then reach the singularity located at
one of the yellow dashed lines in regions IV or V. However, in contrast with the Schwarzschild
case, there are two ways an observer can avoid the singularity. One way was mentioned above,
by crossing the ring-like singularity, an observer can reach regions IV’ or V’. Another possi-
bility is the observer to come out of the black hole passing through region VI and reaching an
asymptotically flat region VII or VIII different from the starting one. So it is possible to escape

from the a black hole interior but only in an alternative universe! Of course, this shall not be



1.2 CLASSICAL DESCRIPTION OF BLACK HOLES 30

taken so seriously, as we mentioned earlier, this intricate interior structure is unstable to small
perturbations. However, it might be interesting to study scattering between different asymptotic
regions in other theoretical context, as we do in subsection 4.1.2 of this thesis.

There are several physical properties in the Kerr black hole worth investigating from a
fundamental point of view. First, an observer trying to stay in a non-rotating stationary frame
has a hard time as it is dragged along with the horizon rotation even before it reaches the
horizon! This is called the dragging of inertial frames. The explanation for this is that the

Killing vector £ becomes spacelike inside the ergosphere, defined as the region
ry <r<M+(M*-d*cos? )"/ (1.14)

A stationary observer with tangent vector u¢ = V¢/N, with N?> = V¢V, always has a zero

angular momentum as L = ¢“u, = 0 but necessarily has a non-zero angular velocity given by

Q:d_‘p:_gﬁ: a(r*+a%-A) . (1.15)

dt Jdoo (2 +a2)? —Ad2sin?6
Those are the natural stationary observers in the Kerr metric, which rotate everywhere with
respect to infinity. There is no need of torque to start this rotation, as it is a property of the
spacetime, so that is why the angular momentum is conserved. This is related to the fact that
(1.10) represents the Killing vector of a rotating horizon. In particular, we define the horizon

angular velocity as (1.15) calculated at r = r,, giving

a

Qp = (1.16)

How faster can this black hole rotate? From (1.13), we see that at most a = M and the two
horizons coalesce, ry = r— = M, rotating with Qg = 1/2M. If we calculate the linear velocity
associated to its angular velocity, we get vy = a/ry = 1, corresponding to the light speed and
the maximal velocity the horizon can rotate. The Kerr solution thus degenerates to an extremal
Kerr black hole and we will study more about this solution in section 4.2 below.

Another important thing about the Kerr black hole is that it is actually possible to extract
energy from it in a classical situation by a so-called Penrose process. This relies on the fact that
the effective potential of Kerr geodesics has a region where modes with negative energy can
exist lying inside the ergoregion (1.14), particularly between ry and r = 2M in the equatorial
plane [4]. In the context of general relativity, as every matter and energy couples with gravity,
negative energy has a definite meaning of retrieving energy from the black hole. This can be

accomplished by throwing a particle with some definite energy and momentum which explodes
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inside this particular region, with one of the pieces with negative energy. The other piece can
have enough energy to climb back the gravitational potential and come out the ergoregion with
additional energy. Two important commentaries follow this process.

First, the energy extracted from the black hole lowers its angular momentum J and its mass
M, but there is a limit for the maximum energy which one can retrieve. As the process depends
on the ergoregion, it stops when the angular momentum reaches zero and, at this point, the mass
is given by Christodoulou’s irreducible mass Mizrr = %(M 2+ (M*—J*12). 1t happens to be the
case that the area of the event horizon is proportional to this mass, Ay = 47(r2 +a*) = 16nMizrr.
As the variation M., > 0, this suggests that Ay > 0 in a Penrose process. This result is
actually a confirmation of Hawking’s area theorem, stating that the area of a black hole event
horizon must always increase in a classical process, given certain reasonable energy conditions
[46, 1].

Second, although it might seem that we should be building energy extraction machines
around every rotating black hole we find, it has been shown that this is not very practical [1].
This is because the actual break up of the particle thrown into the black hole must be very
precise and at relativistic velocities, so we do not hope to be using this in the coming future.

Finally, there is a wave analog of the Penrose process called superradiant scattering. As
in the case of particles, we can send an incoming wave towards a black hole which scatters
with a higher amplitude than its incident flux. This happens if the wave has a frequency in
the range 0 < w < mQpy. One can show that in this case there will be a negative energy flux
into the horizon, resulting in energy extraction from the black hole and increased amplitude
of the outgoing wave. We shall discuss more about this in chapter 4 for Kerr-dS black holes.
In particular, we notice that this phenomenon happens for scalar, vector and tensor fields, but
actually does not happens for fermions, as the energy flux is always positive definite in this
case [1].

One might wonder if there is a deeper connection between thermodynamical processes like
Penrose’s one with geometrical quantities of the black hole. For sure there is, as we will see in
the following. However, before finishing this section, we present our main object of study in

this thesis, the Kerr-(A)dS black hole metric
A 2 Ay 2 do* dr?
ds* = ——— (dt —asin®0d¢) + —— (adt — (r* + a*)d¢ +p2(—+ )
02 ( ) 02 ( ) Ay A,

where y? = 1 +a?/L?, with the dS radius L? = 3/A, and

(1.17)

2 2
Ag=1+ %cosze, A =P +a?) (1 —%)—2Mr, 02 = 1% +a?cos2 . (1.18)
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We have chosen the dS radius, but one can write in terms of the AdS radius just by a Wick
rotation in the radius L — iL. We can recover the Kerr metric but making L — oo. The coor-
dinate singularities of this metric are now given by the root of a 4th order polynomial A, = 0.
For a certain range of black hole parameters, we can find 4 real roots in the dS case, which
we call (r__,r_,r,,rc), and 2 real roots in the AdS case, called (r_,7,,,/). Again we have an
inner and outer horizon in both cases, r_ and r,. In the AdS case, the other two roots are not
physical, living in the complex plane. In the dS case, one of the remaining roots is not physical,
r__ is a negative number, but r¢ is what we call a cosmological event horizon [52]. To clarify
the causal structure, we show the Penrose diagram of Kerr-dS for 6 = 0 in figure 1.7. Now this

diagram continues indefinitely in all directions. The yellow dashed line again represents the

Figure 1.7: Causal diagram of maximally extended Kerr-dS black hole for 6 = 0.

black hole singularity, which can be crossed into an alternate universe. The matter of scattering
between different initial regions is even worse now, as there are even more regions in which a
wave can scatter to. In fact, we are actually interested in the scattering between the cosmologi-
cal horizon r¢ and the black hole event horizon r,.. We postpone a more detailed discussion of

the Kerr-(A)dS metric to chapter 4.
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1.3 Black Holes as Thermal Systems

To finish this chapter, we give a brief review of black hole thermodynamics. The discussion
above has shown that black holes carry mass, angular momentum and other types of charges.
The no-hair theorem of general relativity [1] actually states that every black hole in vacuum
Einstein-Maxwell theory is the same except for its global charges® (M, J, Q). These seem like
good thermodynamical variables as they are well-defined at infinity. We have also seen that
there are some classical processes in which energy can be extracted from these systems. What
is left to have a thermodynamical description? Temperature and entropy, of course.

The final fate of every classical gravitational system after a long time should always be a
black hole, as proved by several singularity theorems in the 1960s [46, 1]. Thus they are natural
stationary states of general relativity. Stationary black holes should always present a Killing
horizon K and the physical reason was already discussed: light rays are trapped on them so
they must generate the horizon. For a generic rotating black hole, we have null generators y“ of
the type (1.10). Null vectors are both tangent and normal to the null surface they generate, as
their norm is zero. So we expect that the gradient of its norm is also tangent to the null surface,
ie.,

V“xa) = 26", (1.19)
where this equation is valid only at K. One can actually show using this equation, Frobenius
theorem and some algebra that, on the horizon,

k= lim (Va), (1.20)

r—ry

which is exactly the equation for the surface gravity (1.9) in a more general context. Here, a“
corresponds to the acceleration of y¢ orbits and a = (aa.)!/?. Finally, by doing some more
work and using Einstein’s equation, one can show that « is actually constant over the whole
Killing horizon K. So we have found a quantity to represent our zeroth law of black hole
thermodynamics, the constancy of temperature at equilibrium. Therefore, we propose that the
temperature of the black hole horizon (which is the part we have access to from the outside)
must be proportional to «.

To prove a first law of thermodynamics, we start with a Gauss-like definition of mass in the

®We might also include a fixed cosmological constant A here too. For considering A as a variable thermody-

namical quantity, see [53]. For stationary black holes with hair, see [54]
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vacuum case (no matter outside)
1 c &d
M=-— €abcdV € (L.21)
8 H

where H represents the 2-sphere at the intersection of two Killing horizons. M is thus the
conserved charge associated to the timelike Killing vector £. By explicit calculation, one can
show that [1]

M= %TKAH+2QHJH, (1.22)

which can be interpreted below as a generalized Gibbs-Duhem relation of thermodynamics.
This actually suggests that M must be a homogeneous function of Ay and Jy. Finally, by some
more amount of work, we can calculate the actual variation of the energy M and obtain the first

law of black hole thermodynamics
1
oM = 8—K(5AH+.Q.H(5JH. (123)
V4

As we saw that « is the black hole temperature, Ay must be related to the black hole entropy.
This matches very well with the aforementioned Hawking’s area theorem, in which 6Ag > 0
in classical processes, corresponding to the second law of thermodynamics. The third law of
thermodynamics, stating that S — 0 as 7 — 0 is not respected by black holes, as extremal ones
have zero temperature in this sense but non-zero entropy. However, this indicates a degenerate
ground state of the theory, as it also happens in ordinary quantum systems [2].

Summarizing, we got the following table representing the laws of black hole thermody-

Law Context

Zeroth k =0 over horizon of stationary black hole
First dE = SindA +QpdJ

Second 0A > 0 in any classical process

Third | Impossible to achieve « = 0 by physical process

namics. We can also state a third law by noticing that it must be impossible to achieve Ty = 0
by a classical process. This classical thermodynamical picture was first proposed by [55, 56].
However, up to this point, it seems just a mathematical analogy, although we have seen that we
can actually respect these laws in energy extraction processes. The most mysterious quantities
are the black hole temperature and entropy. A classical black hole does not radiate so how

come a black hole thermalizes with other systems? Furthermore, if we have an entropy, why is
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it proportional to the black hole area and not to its volume’? Finally, as we seek a microscopic
description of a black hole, what are the microscopic degrees of freedom being counted by this
entropy, if there are any?

The best way to convince ourselves that black holes really are “conventional” thermody-
namical systems is by turning on a quantum field outside the black hole. The result of this
experiment is that black holes actually thermally radiate at a temperature kzTy = 7% - the

2rc¢

Hawking radiation [57]. For a Schwarzschild black hole, we have that xk = 1/4M and thus
M
T z6><10‘8(—®) K, 1.24
H v (124)

so for a typical black hole of a few orders of magnitude of the solar mass, this temperature is
still lower that the cosmic microwave background temperature of Tcyp = 2.7 K, hindering its
direct detection.

In conclusion, curiously, black holes radiate exactly as a blackbody (or as a greybody, if
we consider the transmitted amplitude). There are several equivalent ways to show this, as for
example by canonically quantizing the field and studying its density matrix in the region outside
the black hole. If we trace out modes outside this region, we obtain a thermal distribution with
temperature 7. Another way is to go to the Euclidean QFT and study the definition of KMS?®
states in terms of Euclidean time periodicity of the Green’s function [7]. A related way to
this one is also to study the removal of conical singularities in the near-horizon metric [1].
Finally, there is a much easier way suggested by [39] using monodromies and Euclidean time
periodicity, which we shall show in chapter 4 of this thesis.

On the other hand, while these procedures seem well-defined at first sight, there is a more
complicated problem on how to define a regular vacuum for the quantum field. What happens
is that the Fock space in curved spacetimes cannot be univocally defined, as the particle content
of the state depends intrinsically on which basis we have chosen to expand the operators. In
curved space, there is a whole class of unitarily inequivalent options [7]. In the case of a
Schwarzschild black hole, we have typically three physically reasonable vacua: the Unruh
vacuum, the Hartle-Hawking vacuum and the Boulware vacuum. The first one is appropriate
to describe the spherical collapse where there is a time-asymmetric thermal flux from the hole.
This also happens to be the appropriate vacuum to study in scattering problems, as it describes
flux of quanta through the horizon. The Hartle-Hawking vacuum is the one describing a thermal

bath of particles in equilibrium with the black hole temperature, so it is a steady state. Finally,

7One reason is that the black hole volume is not even well-defined because of the singularity.
8Kubo-Martin-Schwinger.
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the Boulware vacuum coincides with Minkowski vacuum at /* and thus corresponds to the
vacuum around a static star, as it detects no particles around it.

In this chapter, we have seen the richness of black holes discussing their classical and
semiclassical properties. This sets up the pace and spirit of our work, as we want to understand
as much as we can about these mysterious and exciting physical systems. Now, we go beyond

the geometric optics approximation and start our endeavour in black hole scattering theory.



CHAPTER 2

Black Hole Scattering Theory

"The main of life is composed ... of meteorous pleasures which dance

before us and are dissipated".

—SAMUEL JOHNSON

Our main interest in this thesis is to obtain analytic scattering data of waves impinging
a rotating black hole in (A)dS spacetime. We thus start this chapter with a brief discussion
of classical scattering theory of waves around asymptotically flat black holes. Throughout
this work, we are going to focus mostly on the scattering of scalar waves for simplicity. The
discussion of higher spin fields does not changes qualitatively from spin zero case, as can be
seen in the Teukolsky formalism of gravitational perturbations [58].

The success of the standard formalism to treat wave scattering is limited by the inability to
find exact solutions in terms of elementary functions. As we will see later, the Klein-Gordon
equation for Kerr-NUT-(A)dS black holes, after separation of variables, falls into a class of
ODEs whose solutions are transcendental functions more general than the hypergeometric
function. This makes the analysis of the scattering problem much more difficult. In section
2.2, we introduce the monodromy technique discussed in [39] to obtain scattering coefficients
for asymptotically flat black holes, paving the path to applying this technique to more general
Kerr-NUT-(A)dS black holes.

There are two kinds of scattering data we are typically interested in black hole physics:
classical and semiclassical data. Classical wave scattering is conventionally described by an
incoming plane-wave from spatial infinity which is scattered by the black hole [3, 4]. The
transmission coefficient, T (w), denotes how much of the incoming radiation was absorbed by
the black hole, and the reflection coefficient, R(w), is how much radiation is reflected back
to spatial infinity. Semiclassical scattering appears when we consider radiative effects due to
vacuum fluctuations of a field outside the black hole. As discussed in the introduction, black

holes emit blackbody radiation with Hawking temperature 7y depending on the black hole

37
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thermodynamical variables. This scattering has different boundary conditions with respect to
the classical case. We have outgoing waves at the horizon which are scattered by the gravita-
tional potential around the black hole, so R(w) refers to radiation reflected back to the horizon
and 7 (w) is how much radiation is transmitted to the region outside the black hole. Therefore,
one can show that the mean number of particles (n(w)) emitted via Hawking radiation is given

by
Y(w)
ew/Tn + 1’

(n(w)) = (2.1

where we have minus (plus) sign if the particle is a boson (fermion). The coeflicient y(w) =
|7 (w)|? is called the greybody factor, which is just the probability for an outgoing wave to reach
infinity [59]. One of our main aims in this work is to obtain exact results for the greybody factor
in asymptotically (A)dS cases. Results valid for some particular ranges of w have been obtained
for d-dimensional static black holes in [59]. For asymptotic analysis and quasinormal modes for
asymptotically flat rotating black holes, see [60]. There are few papers addressing scattering
by Kerr-(A)dS black holes [61, 41, 62, 63, 36], in comparison with what is done on static
backgrounds. However, there is an extensive literature about the near-horizon extremal Kerr
metric, including the (A)dS case, in relation with the Kerr/CFT correspondence [64, 65, 66, 67].

In the asymptotically flat case, we might also be interested in the absorption cross-section
r(w) = y()¥P,

where |¥|? is the projection of an incoming plane wave into the asymptotic spherical wave. In
asymptotically (A)dS cases, there is no accepted definition of cross-section because there are
no plane-waves or well-defined one particle states at spatial infinity. Actually, AdS spacetimes
have a timelike boundary at r = co and good observables at the infinity boundary are the corre-
lation functions of the dual CFT, according to the AdS/CFT duality. In the global dS case, the
asymptotic regions are in the past and future of the spacetime, so there is no notion of spatial
infinity. However, in dS static patch, we can use the cosmological horizon as an equivalent
notion for spatial infinity but, then again, asymptotics are different from those in the flat case.
Therefore, the notion of cross-sections only comes about in asymptotically flat cases and so we

shall not discuss this subject in the following.
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2.1 Classical Wave Scattering by Black Holes

We want to study small perturbations of a D = 4 black hole spacetime with respect to field dis-
turbances. In principle, spin s field perturbations d¢ are coupled with metric perturbations 6gp
through Einstein’s equation. The most general and clean formalism to treat linear perturbations
of the gravitational field is the Teukolsky formalism [58, 51]. For higher dimensions, there is
no general formalism for gravitational perturbations. For spherically symmetric solutions, the
most used formalism is the gauge invariant Kodama-Ishibashi formalism [68].

To set the stage for our work, we start with Einstein-Hilbert action coupled to some matter
Lagrangian £,,(®,V®) in a D-dimensional spacetime (M, g,p)

1
S =
167G

f dPx\=g (R-2A) + f dPx =g L, (2.2)
M M

where A is the cosmological constant and G is Newton’s gravitational constant. In the follow-
ing, we shall always stick to natural units G = ¢ = i = 1, unless strictly necessary. In principle,
the matter field ® represent a field, or a set of fields, of any spin. Varying the action (2.2) with

respect to the metric g, we get Einstein’s equation
1
Rap = 5(R=2A)gap = 87T ap, (2.3)

where T, is the energy-momentum tensor associated to @, defined by
2 6Snm
A= g 6gab ’

One of the most important things of general relativity is invariance under diffeomorphisms and

T = (2.4)

this necessarily implies local conservation of the stress tensor [1]
V. T =0.

Now, we perturb the fields by g, = gbe +hgp, and @ = ®BC 1 ¢, where BG denotes the back-
ground state in which we are perturbing. In general, after substitution of these expansions into
(2.3), we will have a set of coupled partial differential equations for the perturbations (4, )
depending on the background solutions. For D = 4, generic perturbations decouple for any spin
s, which is the main result of the Teukolsky formalism [58]. For general D, there is no general
formalism and research is still under progress [69, 70].

For the special case of scalar perturbations in a vacuum D-dimensional spacetime, one can

show that gravitational perturbations decouple from scalar ones and we can thus safely discard
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backreaction! from small disturbances. Therefore, now and in the rest of this thesis, we will

study simply Klein-Gordon equation for scalar perturbations ¢ in some fixed metric background

BG
gab

1
0¢ = g**V,Vpp = v—__gacx V=99“°dp¢) = 0. (2.5)

For a generic background spacetime, we have no hope of solving this partial differential equa-
tion (PDE), as space and time can be interwoven in complicated ways. However, as we shall
see later, there is a very general class of spacetimes which allow separable solutions of (2.5).
In those separable cases, our job is to find solutions for ordinary differential equations (ODEs)
and impose boundary conditions for the scattering problem of interest. Typically, we have a
radial equation and an angular equation after separation of variables. We are thus left only with
an equivalent one-dimensional scattering problem for some effective potential V(r) in the radial
equation. In those simple cases, solving the scattering problem amounts to finding how much
of an incident wave flux towards the black hole horizon was transmitted inside the black hole
and how much was reflected back. Given the transmission and reflection coefficients 7 (w) and
R(w), we can thus calculate an associate absorption cross-section o(w) when appropriate.
Summarizing, we can always choose a radial coordinate r such that the resulting ordinary

differential equation for the radial perturbation ¢,,(r) is written in self-adjoint form

0r(P(r)0,¢.) — Q(Ndew =0 (2.6)
By a coordinate transformation dr* = dr/P(r), we can put (2.6) into a Schrodinger-like form

d*,

e (W? = V(")py =0, 2.7)

where w is complex in general®. Thus our problem reduces to a one-dimensional scattering of
an incoming wave from r* — oo (which may correspond to spatial infinity or another horizon,
depending on the case). Typical potentials V(r*) for d = 4 Schwarzschild black hole are shown
in figure 2.1. From the figure it is clear that V(r) — O for r* — +oco. Thus, in the classical

scattering, we have an IN mode if we impose ingoing boundary conditions at the horizon [59],

{uN ~ e I _Qoiwr , N +00,
IN —iwr* * (2.8)
o ~Te , rT— —oo,

"From a QFT point of view, backreaction means loop corrections on the metric fluctuations due to fluctuations

of the matter field.
2In the Kerr case, the potential V also depends on w.
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— 1=0
|=1
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— 1=3

-10 -5 5 10 r'/M

Figure 2.1: Typical potentials in the d=4 Schwarzschild scalar field scattering for different

values of angular momentum number /.

A linearly independent solution is obtained by making w — —w, that is, ¢_,,, which obeys

¢I_IZ) - eia)r* _Qe—i(ur*’ F — +oo,
L 2.9
IN ~ Jelor, r* — —co.
To assess the amount of scattered waves, we introduce the flux of radiation per unit area
1 do., do—,
W:=—|o_ - , 2.10
2i (¢ Y dr bo dr* (2.10)

which is essentially the Wronskian between the two solutions. As is well known from quantum
mechanics (and we will show below), this current is conserved in different constant »* surfaces.
At the horizon, Wj,, = —w7 7, representing the flux entering the black hole. In the asymptotic
region, Wy = Wiy —Woy = —w — (—wRR) = w(RR - 1). Because the flux is conserved, Wasy =
Wior and thus

RR+TT = 1. (2.11)

The greybody factor is defined to be the ratio between the horizon flux and the incoming flux

Vx‘” =T (w)T (w). (2.12)

m

Y(w) =
If w € R, then we have ¢V = (¢!V)*, implying that R = R*, 7 = 7*. Therefore, we have that

RP+1717=1 and y(w)=|T ()’ (2.13)
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Figure 2.2: Conformal diagrams of IN modes (left) and UP modes (right).

The semiclassical scattering has an outgoing mode at the horizon, called the UP (or OUT)

mode,

N L r* — +oo,
. - (2.14)
Ul ~ T _ R pmiwr , 7 — —o0,
and the mode ¢;, obeys
Ul ~ F7 i r — +oo,
o (2.15)
v ~ e lOrT _ R T ’ r* = —o0.

Since the space of solutions has dimension 2, we can express each solution in terms of two

others. Using (2.8) and (2.9), we find that
R IN
T ( ;"N] (2.16)
7 )\

s

representing the change of basis matrix between ingoing and outgoing solutions for the different

SEI

types of scattering problems. We notice that

R=-LR T'=T, R=-lR T =T 2.17)
T T

which implies that 7/7” = 79 and, therefore, the greybody factor y(w) is the same for both

scattering problems.

An equivalent way to treat scattering problems is to use IN and UP modes with a different

normalization [4]

IN _
w

- (2.18)
—lwr

Ai(@)e " + Apu(@)e”,  F o +oo,
e , r* — —oo.
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and
iwr* *

— 400
uP _ e, r +

—w

(2.19)

Bou(@)e” + Bip(w)e ™", r* — —c0.
These modes are illustrated in the conformal diagram of an asymptotically flat region in figure

2.2. Using the conserved current (2.10), we obtain the greybody factor as

_ Avur(W)A gy (—w)
Ain(W)Ajp(—w) ’

y(w) =1

and for real frequencies we have just

Apur(w) 2

Ajp(w)

Y(w)=1-

)

2.2 Monodromies and Scattering Data

In the previous section, we have seen the standard way to treat scattering data in curved space-
times. Even in the simple Schwarzschild case, although separable, the radial equation is solved
neither in terms of elementary functions nor in terms of hypergeometric functions. Actually,
it is a confluent Heun equation with 2 regular singular points at » = 0 and » = 2M, and one
irregular singular point at r = co. This irregularity complicates the scattering analysis because
of Stokes phenomena in the asymptotic expansions at infinity. Despite good results for small
frequency and asymptotic imaginary frequencies using the matching technique [59], we want
to have more analytic control of the scattering data in these problems. For that matter, we
introduce in this section the more powerful monodromy technique for scattering problems pre-
sented in [40, 39]. This approach sheds new light into the generic structure of scattering in
curved spacetimes and will allow us to obtain more information about the scattering data of
Kerr-NUT-(A)dS black holes.

Monodromies associated to singular points of ODEs have been used in the literature to
calculate greybody factors at large imaginary frequencies and quasinormal modes [71, 72, 60,
59]. The recent work of Castro et al [40, 39] has shown how to obtain the scattering matrix
of a scalar field in the Kerr black hole background using monodromies. The method relies on
the monodromies obtained around singular points of the radial part of (2.5). In the following,
we review the monodromy technique as presented in [40, 39]. For a review of the standard
Frobenius analysis of ODEs, we refer the reader to appendix B.

Given a self-adjoint radial equation extended to the complex plane

(U@ (2)) - V(@y(z) =0, (2.20)



2.2 MONODROMIES AND SCATTERING DATA 44

we can rewrite it in terms of a SL(2,C) gauge potential A = A(z)dz

U—l
, ®=
0

where @ is the fundamental matrix formed by two linearly independent solutions of (2.20),
g = (‘P(li) ,‘P(Zi))T, i=1,2. We recover (2.20) by setting ¥; = and ¥, = Ud.y. We can study

the behaviour of @ around singular points of (2.20) by writing the formal solution around a

gD g2
1 1
(1) g2

\PZ \PZ

b

(0:-A@)P(2) =0, A2)= 3

counterclockwise loop y
D,(z)= Pexp(ggA) O(z) =: ()M, ,
Y

where # means path-ordering and M,, is called the monodromy matrix associated to y with
base point z. Given that A is meromorphic, the branch points of ® are related to the poles of A
and these points are always represented on a conjugacy class of the monodromy group, which
are in turn related to the singular points of (2.20). Let {z;}, i = 1,...,n, be the set of all branch
points of @ and M, be the corresponding monodromy matrix of a fundamental loop enclosing z;.
The connection A has thus a pole on z; and it is always possible to write A(z) = (z—z;) %1 Al(z)
in a particular gauge, where A!(z) is regular at the pole and R; € Ny is called the Poincaré Rank
of z;. We have to make sure that this pole does not correspond to a removable singularity,
otherwise, the pole may be removed by an appropriate gauge transformation. A wise move
is to put (2.20) in an irreducible canonical form, by means of convenient homographic and
homotopic transformations, in which only non-removable singularities appear [73]. See also
appendix C for an explicit example of these transformations.

If the pole z; has R; = 0, then it is a regular singular point, while if R; > 0 it is an irregular

singular point. For a regular singular point, the conjugacy class of M, is given by

e—27ra',- 0 ]

0 o (2.21)

Mi ~ eXp (Z_Zi)—lAi(Z) — eZﬂiAl(Zi) ~ (
Yi

where the last matrix is in a convenient parametrization for the self-adjoint gauge TrA = 0.

Notice that, in general, a; € C. In a generic gauge, we have that

eZm'pi1 0 ] ) ) 3
M; ~ 0 eZm'pé = exp(mpo) 1 +exp(-inbio”), (2.22)

where p’i , correspond to the Frobenius coefficients associated to the singular point z;,

phy=p|+p5. 6= ph—pl, (2.23)
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and o denotes the Pauli matrices. In the following, we will interchangeably refer to «; and 6
as the monodromy coefficients associated to z;. In the self-adjoint gauge, 6; = —2iq;.

An irregular singular point will also belong to an equivalence class like (2.21) but its mon-
odromy is just part of the true monodromy. In general, one has to account also for Stokes
phenomena on irregular singular points [39], which is akin to the asymptotic sectors appearing
in the discussion of Airy equation. We will explain more about irregular singular points when
we talk about scattering by Kerr black holes below.

A special case is when the monodromy eigenvalues are equal, that is, when ¢*™® = 1. In this
case we have a resonant singularity and one of the solutions of (2.20) may have a logarithmic
branch cut (cf. appendix B). The exception is when we have an apparent singularity, in which
the logarithm term is not present [73]. An apparent singularity may also be removable, i.e. no
more poles existing in the ODE, but not necessarily. The role of apparent singularities will be
very important in what follows and will be addressed in more details in the next chapter.

One important property of the monodromy matrices is that the monodromy of a loop en-

closing all singular points, including the point at infinity, must be trivial
M\M,.. M, =1. (2.24)

We will use this property in the folowing to find the scattering matrix. Our goal is to find an

appropriate SL(2, C) representation of the monodromy group respecting the above relation.
The choice of basis of ® is not unique and ® — ®g with g € GL(2,C) generates a solution

in another basis®. Let ¢/ » be an arbitrary basis of solutions of (2.20) with fundamental matrix

® and let 1//5"/ %! be a basis of purely ingoing/outgoing states such that
U@ = @-2)(1+0e-2) . ¥'@=@E-z2)""(1+0G-z)). (225

The definition of in and out basis for complex w and « and the physical interpretation will
depend on the sign of Re(wa;). A general solution can be written as a linear combination of the

in/out basis. Therefore, the fundamental matrix @ can be written as

(z—2z)" 0

D(2) = D;(z) g = (@) + Oz —z7)) 0 (=2

gis (2.26)

where CDé) is a constant invertible matrix and g; € GL(2,C) connects the in/out basis with another

basis. In the ®@; basis, the monodromy is diagonal. This can be easily seen by making (z—z;) —

3Notice that a general gauge transformation is a left action: ® — g(z)® with A — g~'Ag—g~'d.g. For more

details, see appendix C.
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(z - z;)e?™ representing the new branch after following a loop around z;. The monodromy M;

on a generic basis is thus in the equivalence class
e—27rai 0

0 )gi =:g; ' Digi, (2.27)

M,~=g;1(

where D; = 6_2”“"‘73 and, of course, the matrix g; € GL(2,C) diagonalizes the monodromy. This

means that, if v; are left eigenvectors of M;, we have

viMig;' = vig;' D; (2.28)
Ai(igi ") = (g7 HD; (2.29)

Therefore, we have that (v,-gl.‘l) = (1 0) and the rows of g; are given by the left eigenvectors of
M;.
The connection matrix between two singular points is defined as the change of basis matrix

between the local solutions at these points
Misj=0;'0; = gig; " (2.30)

where we used that ® = ®;g; = ®;g; in the last equality. To relate this matrix with conven-
tional scattering problems like (2.16), we have to define a standard normalization. This can be
achieved by the Klein-Gordon inner product
W12 Uz)
2iw 2iw
where W(y1,¥2) is the Wronskian between two solutions of (2.20). Notice that this gives a

W1,y2) = (0.0, —v,0.07), (2.31)

well-defined inner product only when the ODE is real because then y* is also a solution. The

norm of a solution ¥ is thus IIwII2 := (¥, ¥). We can also show that W is independent of z because

W(1,¥2) = det D(z)

= detexp(fZA)det(D(zO) = exp(fZTrA)detd)(zO)

= detd(zp),

because TrA = 0 in the self-adjoint gauge*. Finally, we parametrize the connection matrix as

L R
MHJ-:[; T] RE+ITP=1. (2.32)
T T

41t will also be invariant in the ODE normal form, but not in the canonical form.
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Compare this with the discussion we have made to reach (2.16). Our main object of study in
the following is thus the connection matrix (2.32).

In the case of real frequencies, (2.20) is real, and if all ; are real, we have a well-defined
norm and (2.32) is defined up to phases. Despite of that, the greybody factor is uniquely
defined, as the phases cancel. In the more general case w € C, which happens in the study
of quasinormal modes [34], the connection matrix is not so simple and it is defined up to

normalization rescaling of the solutions’

b

Missj=("a,) (")) (2.33)

S

1

7

According to Castro et al [39], these extra terms play an important role in studying the analyt-
ical structure of the connection matrix with respect to quasinormal modes of Kerr black holes.
Their importance is also related to the appearance of an irregular singularity and plane-wave
asymptotics in the asymptotically flat case. On the other hand, for asymptotically (A)dS spaces
this ambiguity seems immaterial because all singular points are regular. In any case, we will
leave the discussion about quasinormal modes for future work and they will not be addressed
in this thesis.

When we have only two regular singular points, the monodromy matrices are inverse of
each other and, therefore, the scattering matrix (2.32) is equal to identity. However, if one
of the two singular points is irregular, we can still have non-trivial scattering, in parallel with
what happens in Coulomb scattering. A simple case where the scattering coefficients can be
obtained directly from monodromy data is when we have 3 regular singular points, i.e., in the
hypergeometric class of ODEs. In the self-adjoint gauge, the monodromy matrices are SL(2,C)

matrices, i.e.,
det(M;) =1, tr(M;) = 2cosh(2ra;), M;#1, for i=1,2,3, (2.34)

and one possible choice of basis is [40, 39, 74]

0 -1 2cosh(2ray) €2
M = , M, = S ; (2.35)
1 2cosh(2ray) —e 73 0
627m3 0
M; = . (2.36)
2(e727 cosh(2rmary) — cosh(2ras)) ™27

STf we make Y@ — ;¥ or ® — ddiag(cy,cy), with ¢; two arbitrary constants, we still have the same two
solutions of the ODE.
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According to (2.30), we then have, for example,

sinhm(a; —ap —a3) sinhm(ag +as +a@3) (ds
d4)

Mooy = (1) 2.37)

sinhm(a) + a2 —a3) sinha(a; —az +a3)

We then choose the d; to fix the same normalization as (2.32) and the transmission coeflicient

is thus given by®

| |2 3 sinh(27ra1) sinh(2ray) (2.38)
 sinhz(—a; + @ + @3)sinh (@) — s +@3) ’

This formula can be checked to be correct for scalar scattering on BTZ black hole [75] and
(A)dS > x S? spacetime. We will detail the latter case as an example below. This will make

explicit the relation between monodromies and boundary conditions.

2.2.1 Scattering on (A)dS, x S? spacetimes

The metric of a comoving patch of (A)dS, X S? spacetime is given by
ds* = —f(p)dt* + f~ N (p)dp* + L*dQ3, (2.39)

with f(p) =1- ’z—i and [? = % is the (A)dS curvature radius. We redefine p to absorb the
curvature radius by making p — Lp. In the following we shall focus on the dS case’. The

radial part of Klein-Gordon equation for a non-minimally coupled scalar field is then given by

d 2 dutg s
1— ) 1)— =0 2.40
dp(( p)dp)+(ﬁ(ﬁ+) el L (2.40)
where
u=zivw, B=-1/2+i4, (2.41)

A=++J(l+1/2)2+d, d=4-1)2. (2.42)

The ODE (2.40) has 3 regular singular points at p = =1 and p = oo and its solutions, uy,,, are
Legendre functions, which belong to the hypergeometric class.

Let ug;:) be a basis of solutions such that

. +1) /2 as p— —1,
(i) _ {(p p (2.43)

" A - )T A -1y as p L.

%Note that we need to take care of the signs to obtain a positive definite transmission coefficient.
"To get rid of L, we also make # — Lt and L is then just a constant scale factor in the metric. The AdS case

may be recovered by letting L — iL.
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This basis represents the scattering between p = =1, with an ingoing condition at p = —1. Ac-
cording to the asymptotic behaviour of the Legendre functions, we have (see, for example,
[76])

(in) _ I'(l—-iwl(-iw) Alou) _ 'l —iw)I(iw) _ sinh(ing) (2.44)
m T +B—iw)(-B—iw)’ ~m [(1+B)I(-B) sinh(rw) '
The greybody factor for real frequencies is
(out) |2
yiw)=1-|2-| = 1-|R? =T, (2.45)
A

where R,7 are the reflection and transmission coefficients, respectively. Using (2.44) and

properties of the Gamma function, it is straightforward to see that

sinh?(7rw)
coshm(d—w)coshm(A+w)

yi(w) = (2.46)

This result appears even more clearly if we use the monodromy technique. The monodromy

coefficients are given by

w i
+ =%, w=—z+A4, 2.47
s > o > ( )
and, choosing the monodromy matrices (2.35) to represent the scattering between p = +1, we
have that
0 -1 2cosh(2ra_) ¥
M, = , M_ = (2.48)
1 2cosh(2ray) —e 2 0

Therefore, the transmission coefficient is given by (2.38)

sinh(2ra ) sinh(2ra_)
sinhm(—a, + @_ + @) Sinh (v, — - + @)
—sinh?(2na)

sinhm(@e — 24 ) sinh 12 s + @oo)

vi(w)

—sinh?(7w)
sinh[7(A - w) — i3] sinh[7(1 + w) — 7]
sinh?(7w)
coshn(d —w)coshm(1+w) ’

which is exactly the same result as (2.46).
‘We can understand better the calculation above if we write
0 i )
D= ) , . (2.49)
(1=p)31(0) (1 =Pyt (p)
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‘We know that,
W (o) =T(1-pPs(=p) . 4l (o) =T(1 - pPy(p) . (2.50)

where Pg(p) is the Legendre function, so, near p = —1, we have that

2iw/2A§:)nut) 2iw/2A§i£)] ((1 +p)—iw/2 0 ][1 I/Ag,(;ut))

—iw 2012 gy 27012 0 (1+p)«’? {1 0

O~ 2.51)

and, if we write ® = ®_g_, we obtain

1 1 / A(out) 1 s_inh({rw) eZﬂ(w/Z) 0
g = [ im _ sinh(inf3) - M. = . (2.52)

1 0 1 0 2sinh(nae) e 2 @/2)

The same thing can be done near p = +1

0 1 0 1 e @2 2 sinh(Tae)
gi = = = M,= . (2.53)
/AR 1)\ S 1 0 er@/?)

Note that this basis is different from (2.48). Calculating the connection matrix as M__,; =

g_g3', we obtain that

sinh? Tw
sinh? 7w — sinhz(inﬁ)

sinh? rw

Yi(w) =

sinh? 7w + coshz(ml)

_ sinh?(7rw) | 2.54
cosh (A — w)coshm(A+ w)

This result shows that the hypergeometric class, with 3 singular points, has all its representa-
tions parameterized by the local monodromy coefficients. We shall see in the next chapter what

happens in more general cases.

2.2.2 Kerr and Schwarzschild Black Holes

Castro et al have shown how to calculate scattering coefficients for Kerr and Schwarzschild
black holes [39] and also the importance of these results to the Kerr/CFT correspondence [40].
The main motivation of our work is to extend their results to (A)dS asymptotics. Here we

briefly review the results of [39] as a starting point to our considerations.
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The Kerr metric in Boyer-Lindquist coordinates is given by

sin%6

A 2 X 2
ds* = —E’ (dt —asin®6dg) + A—dr2 +3d6* + —~ (adt - (2 + a®)dg)",
r

(2.55)

where
Ar=r?=2Mr+a®=(r-r)(r—r2), I=r"+a’cos’e. (2.56)

When a = 0, we recover the standard Schwarzschild metric (1.1). For a minimally coupled
massless scalar field ¢, we use separation of variables

W(t,1,0,0) = e @™ S (O)R(r) (2.57)

in the KG equation (2.5). After a convenient redefinition of the separation constant C; —

C¢ + a’w? — 2maw, the angular equation reduces to

2

1
—— 0y (sinBdy) + a*w? cos? - n
sinf in20

]S(G) =-C¢S(0) . (2.58)
sin

Its solutions are usually called scalar spheroidal harmonics, as they are the natural general-

ization of spherical harmonics. Its eigenvalues C, can be calculated perturbatively for low

frequencies or numerically [77, 39]. On the other hand, the radial equation is given by

(a)(r2 +a) - am)2

Or(AD)) + 2maw — a*w* + x

R(r) = C¢R(r). (2.59)

Using that 2 + a> = A, + 2Mr and the residue theorem to expand terms into partial fractions,

we can arrive at the radial equation given in [39]

QCMriw—-am)* QMr_w-am)?

r=r)(re—r_)  (r—r)(re—r_)

[a,(A,a,) + +(rPP+2M(r + 2M))w2] R(r) = C;R(r) . (2.60)

Both angular and radial equations are of confluent Heun type because both have 2 regular
singular points and 1 irregular point [78, 73]. The radial equation, for example, has two regular
points at r = r, and an irregular one at r = co. The Frobenius coefficients can be found by
substitution of

R(r) ~ (r=—re)®[1+O0(r—rs)] (2.61)

into (2.59) or (2.60), giving

ai:w(r%_r+a2)—am:iZMria)—am. (2.62)
Al(rs) ry—r_
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Irregular singular points do not have convergent series representations because the recur-
rence relations cannot be solved in terms of an initial seed. This irregularity now complicates
the direct application of the monodromy technique as we did above in the (A)dS, x S? case.

Instead of a Taylor expansion, we have to content ourselves with a Laurent expansion at r = oo

r_iairr 0
. (2.63)

0 ria/irr

The monodromy of this solution is ¢, but now we cannot calculate a;, just by inserting
the expansion above in the ODE. However, there are formal asymptotic expansions, also called
Thomé solutions [73], which can be used as WKB approximations near the irregular point (see
Appendix B). In the Kerr case, r = oo is a rank-1 irregular point [73], thus the asymptotic
expansion is given by

R(r) ~ e PP 1+ 007 ), (2.64)

with A = 2Mw, obtained again after substitution into the radial equation (2.60). The fundamen-

tal matrix in this plane-wave basis is thus

(Dpw = (Z r_”(DEW)

n=0

e—iwrr—i/l—l 0
(2.65)

elwr rz/l—l

The coeflicient A does not represent the frue monodromy of r = co because, as we remarked
before, (2.65) does not truly represent the solution at this point; we have now the complication
of Stokes phenomena, similarly to what happens in the Airy equation [76, 79]. This means that
(2.65) is only valid on a wedge® around r = co bounded by two Stokes rays with fixed arg(z).
Crossing one Stokes ray gives a different asymptotic expansion, which is related to (2.65) by
a Stokes matrix. Thus if ¢*™0 represent the monodromy matrix of the asymptotic expansion
(2.65) and M., represent the true monodromy associated to (2.63), it is possible to show that
for a rank-1 irregular point

Mo = eS8 1S, (2.66)

where S ; represent Stokes matrices

1 O 1 Cy
S_1= , So= , (2.67)
c, 1 0 1

8 For a rank R > 0 irregular point, we have 2R wedges dividing the asymptotic region.
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and the C; are called Stokes multipliers. For more details, see [39]. From the trace of (2.66),
we have that .
e = 5~ cosh™! [cosh(27d) + > CoC-1 /2] (2.68)
JT

In other words, we have at first two options to calculate the true monodromy «;: perturbatively
in aw for low-frequencies or numerically by calculating the Stokes multipliers C;. These two
approaches are pursued in the appendices of [39].

At this point, we emphasize that when we have irregular points, series expansions are typi-
cally not good representations of analytic functions. If we had an integral representation for the
confluent Heun equation, as we have for hypergeometric functions, the monodromy could be
obtained directly from it! Unfortunately, there are no known integral representations in terms
of elementary functions for non-trivial Heun functions. The common belief in the literature
is that it is not possible to obtain simple representations in the general case for these special
functions. Another approach to obtain good representations of irregular functions is summation
of the asymptotic expansion, i.e., to find another function which matches the true function in
some non-zero radius around the irregular point. The theory of multisummability actually can
obtain holomorphic summations of asymptotic formal series which solve any ODE [80]. Albeit
being a very interesting subject, we shall not delve into these matters as, in this thesis, we are
avoiding irregular points by the introduction of a cosmological constant. On the other hand,
one of our important conclusions here is that, in several cases, we might avoid completely to
deal with irregular points and asymptotic expansions by confluence procedures to obtain the
less general results. This means that we expect to recover the correct scattering coefficients
when we take A — 0 below”.

The Schwarzschild case is obtained by making a = 0 in the formulas above. The radial
equation is still of confluent Heun type with regular singular points at » = 0 and r = 2M and
one irregular at infinity. The monodromy coefficients are @y = 2Mw and a_ = 0. This latter
case thus implies that r = 0 is a resonant singular point and a logarithm term must appear in the
series expansion around it. Furthermore, while 4 = 2Mw as in the Kerr case, «; is different
and must also be numerically calculated using Stokes multipliers.

The monodromy analysis reviewed here can be applied to higher spin cases using the
Teukolsky formalism [39], but for a matter of simplicity we shall not address this here. Notice

that this has not been done yet in the literature using the monodromy approach.

This is a work in progress with prof. Bruno Cunha.
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2.3 Kerr-NUT-(A)dS Black Holes

The monodromy approach has proved very useful to obtain analytical information about black
hole scattering data. We may wonder how much generalization of this approach can we make?
What do we get for black holes in (A)dS spacetimes and higher-dimensional black holes?

An important property which simplified considerably the scattering analysis was the sepa-
rability of KG equation into a radial and angular part. In the following, we review results from
Frolov and Kubiznak [81, 82] showing that any D-dimensional spacetime possessing a prin-
cipal conformal Killing-Yano tensor has a separable KG equation. In particular, spacetimes
presenting this algebraic structure, for a convenient choice of coordinates, have a Kerr-NUT-
(A)dS metric, which is the most general higher-dimensional black hole metric with spherical
topology. Oota and Yasui have also shown that Dirac and gravitational perturbations are also
separable for this class of spacetimes [83, 84].

In the following, we apply the monodromy approach to scattering of scalar massless fields
by rotating black holes in (A)dS spacetimes, specifically to D =4 Kerr-NUT-(A)dS black holes.
We will find an important complication for the direct use of this technique with respect to the
monodromy group which appears in this case. To overcome this difficulty, we will use the
theory of isomonodromic perturbations and Painlevé VI asymptotics, presented only in the
next chapter. This section consists mostly of our original work!'® on the aforementioned subject
presented in [38] and also some unpublished results on the numerical computation of (A)dS

spheroidal harmonics eigenvalues.

2.3.1 Killing-Yano Tensors and Separability

In D = 4 spacetime dimensions, Teukolsky [58] has shown, using the Newman-Penrose for-
malism, that Kerr field equations are separable for any spin s < 2 perturbations. This important
property comes about because of the existence of a hidden Killing tensor, that is, an object
which does not comes about naturally from the isometries of the Kerr metric. Furthermore, this
Killing tensor can be shown to be the square of a Killing-Yano tensor.

For the reader’s sake, we remind that if a D-dimensional spacetime has a Killing vector

&4, then the metric gy, is invariant under isometries generated by this vector field, i.e., the Lie

10We notice that our approach is very similar to the one in [41] for the spin zero case, but just slightly more
general as we calculate with non-minimal coupling with the metric and also allow for a NUT charge. Electric and

magnetic charges could also be included in the scalar case.
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derivative of the metric is zero!!, Legap = 2V uépy = 0. Moreover, for a geodesic field u, the
quantity P = &,u is conserved along geodesics generated by u?. A symmetric generalization

of a Killing vector is a Killing tensor K,;,, which, given that
Pk = Kapu“u” (2.69)
is a conserved quantity on geodesics, we can show using the geodesic equation that
VcKap) = 0. (2.70)

A Killing-Yano tensor (KY) fu, on the other hand, is an antisymmetric generalization of a
Killing vector'?. If P, = f,,u” is parallel propagated along the u® geodesic, that is, if uV.P, =
0, then we can show that

Viefap = 0. (2.71)

The interesting thing about KY tensors is that we can always construct a Killing tensor from it

Kap = fouef - (2.72)

It is also interesting to us study conformal Killing vectors &, generators of conformal sym-
metries Legap = Q(X)gap, 1.€., 2V(4ép) = Qgqp. Taking the trace of this equation shows that
Q =V,£4/D. In this case, P = £,u” is conserved only for null geodesics. We can thus define a

conformal Killing tensor K p, if it Obeys
~ - 2 ( . 1 ) ( )
;(cKab) = g(caKb), Ky = D+2 v Kap 2 ;bK > 2.73

where (2.69) is conserved only for null geodesics. Finally, a conformal Killing-Yano tensor
(CKY) is an antisymmetric A, satisfying
1
V(ahb)c =dablc —YGc(allb)ys MNa = ﬁvbhab' (2.74)
Of course, Ky = h,h¢, is a conformal Killing tensor in this case. All tensorial definitions
above admit higher order versions [85].
A 2-form hgy, is a principal conformal Killing-Yano tensor (PCKY) if it is a closed and non-

degenerate conformal Killing-Yano tensor (CKY). Consider a spacetime (M,g) with D =2n+¢

UFor a tensor of any order, we use parenthesis to denote indices symmetrization, i.e., Ap) = %(Aab + Apa),
and brackets to denote antisymmetrization, i.e., Ajgp] = %(Aab — Apa), Where we always divide by the number of

permutations of the indices.
12This means that f is a totally antisymmetric tensor.
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dimensions allowing a PCKY, where € = 0, 1, to distinguish between even and odd dimensions.
The existence of such structure results into a tower of n— 1 Killing-Yano tensors, which implies
n Killing tensors if we include the metric tensor. Those Killing tensors can then be used to
construct n + & commuting Killing vectors. Thus a spacetime with a PCKY has D =2n+¢
conserved quantities. This is sufficient for integration of the geodesic equation (1.3), but it is
also enough for complete separability of Klein-Gordon, Dirac and gravitational perturbation
equations [81, 85].

Following [81], we can choose canonical coordinates {¢;,x,}, where Y, k=1,....n—1+€
correspond to Killing vector affine parameters and x,,, u = 1,...,n are the PCKY eigenvalues.
For us, ¢y is the time coordinate, i are azimuthal coordinates and x;, stand for radial and
latitude coordinates. In such coordinates, the generic metric of (M, g) which allows for a PCKY

can be written as

n dx2 n—1
2 N | *) k)
ds” = Zl[ 0, + 0Oy [ZA dyi ) o) (ZA d:,bk] (2.75)
ﬂ:
where
X ; .
O, = 7#, A/(]) = Z x%l ...x%j, AW = Z x%l ...xgj, (2.76)
M y1<...<yj V1<"'<Vj
ViFM
< €c
Uu=[|2-xD). Xu=) cd-2p,x+= (2.77)
VEU k=€ Xu

The polynomial X, is obtained by substituting the metric (2.75) into the D-dimensional Einstein
equations. The metric with proper signature is recovered when we set r = —ix,, and the mass
parameter M = (—=i)'*€b,,. This metric is one of the possible forms of the Kerr-NUT-(A)dS
metric described in [49].

As we mentioned above, one of the most interesting properties of the Kerr-NUT-(A)dS

metric is separability of field equations. Consider the massive Klein-Gordon equation
(0-m*H)® = 0. (2.78)

Its solution can be decomposed as

n n+e—1 .
O = [Rutxn) [ ] ™ (2.79)
p=1 k=0
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and substitution in (2.78) gives

AN XIJ ’ lezl
(XuR)) +65Rﬂ+ V#—X—u R, =0, (2.80)
where
n+e—1 n+e—1
W, = Z N CE A Ca R Z ke(—x2)" 17 (2.81)
k=0 k=0

and «; and W}, are separation constants. For more details, see, for example, [85].

‘We shall focus in the D = 4 case for the rest of the thesis. In this case, we choose coordinates
(x1,X2,¥0,¥1), where x*, u = 1,2, represent the PCKY eigenvalues and y;, i = 0,1, are the
Killing parameters of the 2 associated Killing vectors. Now if we set (x1, x2,%0,¥1) = (p,ir,t,¢),

the metric (2.75) is written as

Q( r) 2 +p’ P(p) 22 PP o
ds* = - (dt+ de* + —Lar + (dt - r*d¢)* + ———dp?*, (2.82)
7 Doy e T gy P
where P(p) and Q(r) are 4™ order polynomials given by [86]
A
P(p) = —§p4 —ep2 +2np +k, (2.83a)
Ay
Oo@r) = ——r +er’ —=2Mr+k, (2.83b)
2 2 A 2 32 2 2 2 A
e=1—-(a"+6b )g, k=@ -b)Y1-b°AN), n=b|l+(a"—4b )§ . (2.83¢)

The parameters are the black hole mass M, angular momentum to mass ratio a, cosmological
constant A, and the NUT parameter b. To make contact with the physically meaningful Kerr-
NUT-(A)dS metric, we set

p=b+acost, x*=1+Ad*/3, (2.84)

and make the substitution ¢ — ¢/ay? and t — (1 — %(/)) /x?, in this order. If we set b =0
after this, we have the usual Kerr-(A)dS metric in Chambers-Moss coordinates [61, 86]. If we
further set A = 0, we obtain the Kerr metric in Boyer-Lindquist coordinates (2.55).

After these changes of coordinates, the Kerr-NUT-(A)dS metric can be written as [86]

2
ds® = —£ [dt— (asin 20+ 4bsin® )d¢]2 + p—dr2
P2 0
Psin’g (adt - (7 +(a+ 19)2)d¢)2 + p_2d92 (2.85)
P2 P
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and if we set the dS radius L? = 3/A, we have

~ 4ab 612 2 2 2 2 2
P@O) = 1+FCOSQ+ ECOS 0, p-=r"+(a+b) cos”b. (2.86)

In the rest of this thesis, we are going to dismiss the discussion with a NUT charge and set b =0
in the following. However, here we briefly mention the gravitational interpretation of the NUT

charge.

2.3.2 Physical Interpretation of NUT Charge

As discussed in [87], the Kerr-NUT black hole (A = 0 above) has an intricate global structure.
There are two types of singularities, coordinate singularities and determinant singularities. At
0 =0 or p =0 we have coordinate singularities, and at 6 = 0, 7, the metric determinant vanishes
and we have the other type of singularity. As we have seen before, the roots of Q = 0 are just
apparent singularities and can be removed by change of coordinates. The roots of p = 0 now
have two possibilities: when a® < b?, there is no curvature singularity at this point, while in the
other case, we have two values of 6 which are singular. For b = 0, the determinant singularities
would be the usual chart failure in the poles of a 2-sphere. When b # 0, these correspond to

degeneracies of spherical coordinates in a 3-sphere. This imposes the identification
(¢,1) = (p+ (n1 +n2)2m, t+ (ny —np)dnb), (n1,n) € Z. (2.87)

In the region r > r,, the time periodicity implies the existence of closed timelike curves. This
also happens for Kerr-NUT-(A)dS metrics for radii larger than the larger root of Q [88].

We did not find a more detailed analysis of the global structure of Kerr-NUT-(A)dS metrics
as done in [87]. For example, in the interior region of Kerr-NUT spacetime, r— < r < ry, there
are well-defined timelike orbits and people give a name to this region of its own, the Kerr-Taub
space. The Kerr-Taub space can be interpreted as a closed, inhomogeneous electromagnetic-
gravitational wave undergoing gravitational collapse [87]. Another interesting thing mentioned
in [87] is that there is another possible identification of coordinates, due to Bonnor [89], which
avoids closed timelike curves in the exterior region. In this identification, the Kerr-NUT space-
time is seen as a superposition of a Kerr black hole and a massless source of angular momentum
located at @ = m. This suggests that the dual CFT interpretation of the NUT charge is related
to some type of rotation of the dual plasma [48]. For more details about the NUT charge and
recent applications, see [90, 91, 92].
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2.3.3 (A)dS Spheroidal Harmonics

As before, the KG equation is separated into an angular and a radial part. First, we shall address
the angular equation, which is obtained via (2.80) setting u = 1. For Kerr-NUT-(A)dS metric in
Chambers-Moss coordinates, we have

_ (Yop>-¥1)°

B 2
dp(P(p)dpS (p)) + ( 4AEp P)

)S(p) =-CiS(p),
(2.88)

Yo = w/\(z, Y = (a)(a +b)2 —am))(2 .

Our interest in this equation is to obtain its eigenvalues Cy, which are critical in the determi-
nation of the monodromy group of the radial equation, as we shall see below. As there is no
analytical approach available, here we obtain the eigenvalues numerically for several values of
(w,m). Giammatteo and Moss [37] have also noticed that Padé approximants give a very good
approximation for Cy as a function of w in the Kerr-AdS case, but this approach also relies on
numerics.

Now let us specialize to the Kerr-(A)dS case (b=0). In this case, n = 0, thus
P(p) = (@® = p)(1 =L 2p") = L2 (p* —a)(p* - L), (2.89)
where L? = —=3/A is the (A)dS radius. The resulting angular equation is

X
P(p)

where y? = (1 —a?/L?). Equation (2.90) has 5 regular singular points at p = {+a, +L,co} and

0,(P(p)8,S) + (—4A§p2 - (@ - pPw —ma]z)S =-C,S, (2.90)

the local coefficients are given by
Org =Fm, 6. = w_LL(a))(z +maL_2) (2.91)

and
Ooo = /9 —48¢. (2.92)

The first important thing to notice about (2.90) is that its coeflicients are all even functions of
p. This suggests a reduction of singular points using the quadratic change of variables x = p?,

resulting in

12 1 1
PS +| =+ +—— 0,5+
* ( x  x—a? x—Lz) !

4

! X 2 2\
+4xP(x) (—4A§x+Cg—%[(a —x)w—ma] )S =0, (2.93)
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with P(x) = a?(x —a?®)(x— L?). Now (2.93) has only 4 regular singular points at x = {0,a?,?

,00}. The point x = 0 has 6y = 1/2 and we know that x = p> = 0 is actually a regular point of
S(p), as it is not a singular point of (2.90). This singularity appears because of the branching
structure of the square root and is usually called an elementary singularity as it can always
be removed by a quadratic transformation [93, 73]. A quadratic transformation cuts the local

coeflicients by half, therefore .
Oco = 3 V9 —48¢, (2.94)

and, if £ = 1/6, we also have 6., = 1/2. This allows for a further reduction of (2.90) to a
Magnus-Winkler-Ince equation (see Appendix C.3). However, this is not very useful for our
purposes.

There is a more interesting reduction of (2.90) which makes it possible to connect with

other spheroidal wave equations. First, we set p = acosf and obtain
P(0) = a®sin® 0(x? + (1 —x*)sin?6). (2.95)

After redefining Cy — Cy¢+ x*(a*w? — 2maw) in (2.90), we arrive at the following angular equa-

tion
1
——Bp[sinO(? + (1 — x*) sin® 6)dS ()]
sinf
+[12£(1 = x¥?) cos? 0+ a®w’x (x> cos® 0+ (1 — x*) sin 6)

m2 X4
sin? 0(x? + (1 — x2) sin> 6)

—2mawy*(1 —x*)sin’ 6 — )S(e) =—C/S(). (2.96)

Note that the limit y> — 1 corresponds to the Kerr angular equation (2.58). Now if we make
u = cosf, we arrive at a simplified form of (2.96)

m2(1 _ &2)2
(1 -u?)(1-a2%u?)

8,1 —u>)(1 = a2u?)d,S (u) + (Au2 +B+Cp— )S(u) =0, (2.97)

A = 12¢0° + (aw)*(1 - a*)(1 = 28%) + 2mawd*(1 - &),
B = aw(aw - 2m)a*(1 - a%),

where a = a/L is the rotation parameter in units of the AdS radius. This equation has 5 reg-
ular singular points at u = +1,u = +a~! and u = co. We call solutions of (2.97) scalar (A)dS
spheroidal harmonics. This is appropriate because we recover the scalar spheroidal harmonics

equation by making @ = 0 in (2.97). The dS case is obtained just by making L — iL.
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In order to study scattering coeflicients in Kerr-(A)dS, we need the eigenvalues Cy coming
from regularity conditions on solutions of (2.97). Here we restrict to the case & = 1/6 because
it is more interesting to us. A very simple and direct way to calculate the eigenvalues is to use
Leaver’s continued-fraction method [77, 42]. First, we reduce the number of singularities to 4

by a quadratic transformation z = u?. If we also let
S@ = (2= D)"*z-a""8 ), (2.98)

we put the angular equation into a Heun form

&S +(%+ 1;’;1 +:2f‘z)az§ %+i—zl+zf§_2]§ -0, (2.99)
with
A = %[(&2_ 1)(m*—a*(m+c)?)—m(a® + 1)+Cg],
Ay = m [c2 (a*- 1)2+m(m+ 1) (a*a+3)- 1)+2&2+Cg],
Ay = m[cz(&z—1)3+2€&2<&2—1)2m+&2((&—2)(&+1)2m(m&+1)—Cg—2)],

where ¢ = aw and Z?ZIA,- = 0. If we take @ — 0 in (2.99), we get a reduced confluent Heun

equation
~ (172 1+ ~ [B1 By,
928 +(—/ + m)0ZS+ 2 ]S =0, (2.100)
z  z—1 z z—1
with
1 1
Bi=4[Co-mm+ 1)l By=—7[Cr—m(m+1)+c%] (2.101)

This equation is a reduction obtained from the Kerr angular equation doing a similar quadratic
and a homotopic transformation as above. The eigenvalues of (2.100) can be obtained by
Leaver’s method so we can use these as seeds for (2.99), in the same way as spherical harmonics
eigenvalues are used as seeds for the Kerr case. In fact, the eigenvalues of (2.100) are equivalent
to the Kerr angular equation in oblate spheroidal harmonics form, as we can see in the plot
below of C; as a function of ¢ = aw. Compare with the values obtained in [77].

Given a Heun equation in canonical form

17 Y 9 € ) ’ ¥ a-72—¢qg
+|l-+—+— +—y =0, 2.102
y (z z—1 z-t Y z(z—l)(z—t)y ( )
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Figure 2.3: Kerr angular eigenvalues for £ = m = 0 obtained from eq. (2.100)

the three-term recurrence relation resulting from substitution of y(z) = 3}, gn2" is given by

—(Qo +q)go + Rog1 =0, (2.103a)
Ppgn-1=(Qn+@)gn + Rugn+1 =0, (n>0) (2.103b)
with
Po=n—-1+a)(n—-1+a-),
On=n(t+1)(n—-1+y)+té+¢), (2.104)
R,=tn+1)(n+y).
This is justified because we want augmented convergence at z = 1 and the series at z = 0 has

convergence radius one.

For (2.99) we have that
y=1/2, 6=1+m, e=1l+ma, t=a>2,

q= —d_ZAI, ara_ = Ay +a %A,

and, using Fuchs relation y + 6 + € = a4+ + a— + 1 and the expressions above, we have

a —l §+(1+d)m +l g+(1+a’)m2—4(14 +&_2A) (2.105)
*7 212 “2\\2 2 3 ‘

We notice that (2.103) diverges if we make simply a — 0. However, if we multiply (2.103) by

a%, we have a well-defined confluence to the (2.100) recurrence relations. We made a Mathe-
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10

Figure 2.4: Kerr-AdS angular eigenvalues / = m = 0 as a function of aw for a = 0 (blue), a = 0.3

(magenta) and a = 0.8 (yellow).

matica notebook'? to numerically calculate angular eigenvalues for = m = 0. In figure 2.5, we

see the behaviour of C; as a function of @ € (0, 1), as we increase aw.

2.3.4 Kerr-NUT-(A)dS case

Let y(t,p,r,0) = e '™ R(r)S () be a solution of the Klein-Gordon equation for D = 4 Kerr-
NUT-(A)dS in Chambers-Moss coordinates. The radial equation resulting from this solution

is

2
0,(Q(r)0,R(r)) + (Vr(r) + W, )R(r) =0, (2.106)
o)
where
Aa, 2
o(r) = -3 e - 2Mr+k, (2.107a)
e=1-(a* +6b2)%, k= (a> - b>)(1 -b*A), (2.107b)

30ur algorithm is still not working very well for values of [ # m.
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Figure 2.5: Kerr-AdS angular eigenvalues [ = m = 0 as a function of & as we increase aw (first

blue line near the axis) from zero up to aw = 5 (purple line starting at C; = —16).

and
V. =kor? +k1, W,=%¥or’+¥, (2.108a)
Ko = —4AE, Kk =-C), (2.108b)
Ad? b)? Ad?
‘PO:Q)(1+TG), ‘Plza(w(a+ ) —m)(1+7“). (2.108¢)
a

The parameter £ is the coupling constant between the scalar field and the Ricci scalar. Typical
values of the parameter ¢ are minimal coupling € = 0 and conformal coupling ¢ = 1/6. The
separation constant between the angular and radial equations is Cy. The angular equation has
essentially the same form as the radial one, associated to the problem of finding the eigen-
values of a second order differential operator with four regular singular points, in which case
correspond to unphysical values for the latitude coordinates.

In the following, we assume that all roots of Q(r) are distinct and there are two real roots
at least. When A — 0, two of those roots match the Kerr horizons (r,,7_) and the other two
diverge, leaving us with an irregular singular point of index 1 at infinity (and, therefore, a con-
fluent Heun equation [39]). The characteristic coefficients — solutions for the indicial equations

— of the finite singularities r; are

. [(Yorr+¥y _
pl-_:il W , 1=1,...,4 (2109)
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and for r = co we have
. _3+1
poo_2—2

These coefficients give the local asymptotic behaviour of waves approaching any of the singular

9—48¢ (2.110)

points, for example, one of the black hole horizons.

In this form, equation (2.106) has 5 regular singular points, including the point at infinity. It
is possible to show that the point at infinity is actually an apparent singularity when £ = 1/6 and
can be further removed by a gauge transformation. In that case, (2.106) can be cast into a Heun
type equation with 4 regular singular points given by the roots of Q(r) = —% ?zl(r— r;). This is
done in the following. An equivalent result has been reported by [41] for massless perturbations
31,3,
for Kerr-Newman-(A)dS. One can show that Teukolsky master equation reduces to conformally

of spin s =0 2 for Kerr-(A)dS (the so-called Teukolsky master equation) and for s =0, %
coupled Klein-Gordon equation for scalar perturbations, being those perturbations of the Weyl
tensor. Our computation below show this for the spin zero case, because of the explicit non-
minimal coupling, and can be straightforwardly extended for higher spin cases as done in [41].
In conclusion, our result is not new, but our approach shows that the conformal coupling is the
origin of the triviality of r = co. The reduction to Heun has also been shown true for s = % 1,2

perturbations of all type-D metrics with cosmological constant!4 [94].

2.3.5 Heun equation for Conformally Coupled Kerr-NUT-(A)dS

For & = 1/6, it is possible to transform (2.106) with 5 regular singular points into a Heun
equation with only 4 regular points. This is because r = oo in (2.106) becomes a removable sin-
gularity. In this section, we apply the transformations used in [94] for a scalar field, adapting
the notation for our purposes'>, and we also calculate the difference between characteristic ex-
ponents, 6, for each canonical form we obtain. As it turns out, these exponents are more useful
for us because they are invariant under translations z — az + b and homotopic transformations
[73], which preserve the monodromy properties of a ODE, as will be seen in section 4.

By making the homographic transformation

r—rirp—rya

= : (2.111)
r—r4ry—ri

“Notice that [94] does not refer explicitly to the scalar case in their paper. However, our eq. (2.106) with

& =1/6 can be obtained just by setting s = 0 in eq. (11) of [94], so their result is also equivalent to ours.
Bwith respect to the parameters of [94], we must set a = 0 and, in a non-trivial change, their term 2g4w2 must

be equated to —4A&r? to obtain the non-minimally coupled case.
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we map the singular points as

(r1,r2,1r3,14,00) > (0,1,19,00,2c0) (2.112)
with
to= 2 =BT 2.113)
rm—r r3—r4

Typically we set the relevant points for the scattering problem to z =0 and z = 1, but we can
consistently choose any two points to study. We note at this point that, for the de Sitter case,
to is a real number, which can be taken to be between 1 and oo, whereas for the anti-de Sitter

case, it is a pure phase |fg| = 1. Now, we define

o:(r)=Yor+¥, (2.114)
f() =4EAP+Cy, (2.115)
and X
1 A Q' ()
d'=—=| |- = : 2.116
k 3 D(rk rJ) rk—r4 ( )
Jj#k
Then, eq. (2.106) transforms to
d°R dR
— — R =0, 2.117
02 +p(2) iz +4(2) ( a)
1 2

1 1
p@)=—-+ + - ;
z z—-1 z—-t 2Z—Zc

(2.117b)
Fi F F3 126 E, E» E3 Eo
q@)=—+ 5+ 5+ s+ — + + ,
= (z=1)F (z—1)* (2—2) z =1 z-1) Z-Zw
where
do (DY (Vo2 +¥, )
k 0 1
Fo=|—F%| =| = : (2.118)
Tk =714 Q' ()
12¢ 3
Ew=———|) rn—r4|, 2.118b
Zoo(l’4—r1) [k; k 4) ( )

2

= — f(r)—% % U(rz)a(rz)ir-—%a li[r- (2.118c¢)
ka_Zoo k 3rk_,,4+k -Ug J kU - J . :

j#k Jj#k
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The 6y for the finite singularities zx = {0, 1,7} can be obtained by plugging R(z) ~ (z — zx)%/?
into (2.117)

\P()r]% +‘P1
O =2-Fp=2i| ———|, (k=1,2,3) (2.119)
Q' (re)
and for the singularity at z = co,
3 92
Ooo = 2i 4| 126+ Ey + 10E3 + 2o Eoo = ) —F . (2.120)
=4

It is possible to show that 6, does not depend on C. Finally, for z = z., we have

0. = \/9—48¢&. (2.121)

When the difference of any two characteristic exponents is an integer, we have a resonant
singularity. This happens in (2.121) for € = {0,5/48,1/6,3/16}. Thus, we have a logarithmic
behaviour near z.,, except for & = 1/6 because, in this case, it is also a removable singularity, as
will be seen briefly. The property of being removable only happens if €, is an integer different
from zero. If 6, = 0, we always have a logarithmic singularity. For more on this subject, see
[74, 73, 95].

To finish this section, we now show that (2.117) can be transformed into a Heun equation

when & = 1/6. First, we make the homotopic transformation
R(z) =702 (z= 1) 2z = 1) /% (2 = 200 Py (2). (2.122)

The transformed ODE is now given by

d?y dy
@ + 4y =0, 2.123
122 p(z) iz 42y ( )
where
1-6, 1-6, 1-6, 28-2
poy=—, 120 120 B2 (2.124)
z z—=1 z—-t) Z—Zc
E, E E Eo Feo
4= =+ 4+ 4 + : (2.125)
2 z=1 z—t) Z—Ze (2—2c0)?
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with
3
R d O+60;, (1 -
L= —% f(rk)+z K+ Ad=PB (2.126a)
%k — Zoo P 2(zj—z1) Zk — Zoo
12¢ (< S 01 =)+
Eoo:zoo(m—rl)[zrk_m)_ =20 (2:1260)
k=1 k=1
Fo=p2-38+12¢. (2.126¢)

Note that £ = 0 is the indicial polynomial associated with the expansion at z = ze,. Thus it
is natural to choose 3 to be one of the characteristic exponents setting Fo, = 0. However, to
completely remove 7 = zo, from (2.123), we need that 8 = 1 in (2.124). This further constraints
& =1/6 because of (2.126¢). Now, we still need to check that E. can be set to zero. The

coefficients £ above are simplified by noticing that

2 2 6i%,
Zek:o, ZGkrk: - (2.127)
k=1 k=1
3
O +0; di \(¥ P
Z#:—zi( k )( 0Tk * 1), (k=1,2,3) (2.128)
2(zj— k) Zk — Zoo Tk — T4

Jj#k
where we used the residue theorem to show these identities. This implies that, for 8 = 1 and

£=1/6,

. d ¥, Wy 1
By=—* [f(rk)—Zi( 0Tk 1) + : (2.129)
Lk — Zoo Fk—Tr4 Lk — 2o
1 4
) S — (2.130)
(7'4—7”1)200 ; k

The polynomial (2.83b) has no third-order term, so this means that the sum of all of its roots
is zero. Therefore, E., = 0 generically if 8 = 1. This completes our proof that (2.123) is a
Fuchsian equation with 4 regular singular points, also called Heun equation.

Summing up, the radial equation of conformally coupled scalar perturbations of Kerr-NUT-

(A)dS black hole can be cast as a Heun equation in canonical form

, (1-6 1-6; 1_0t0) , ( K1K2 to(to — 1)Ko
. N N N _ —0, 2.131
y ( z =1 z-19 2(z=1) z(z—D(z—19) Y ( )



2.3 KERR-NUT-(A)DS BLACK HOLES 69

with coefficients

.[‘P()}’I%+LP1

O =2i|l ———|, k=1,2,3,4 (2.132)
¢ 0'(ro) ]

A r3—riyrp—r4
Ko = —E3, fo =

(2.133)

r3—rarr—r]
where we make the correspondence k € {1,2,3,4} ~ {0, 1,1y, c0}.

The values of 6 obey Fuchs relation, fixing «1 via 6y +61 +6;, + k1 +k2 =2 and ko — k| =
0. Also, in terms of (2.129) we have that ik = E + tgE3 = 1 +64. These follow from the
regularity condition at infinity, 2?21 E,- = 0. The set of 7 parameters (6o,01,6y,,k1,k2;10, Ko)
define the Heun equation and its fundamental solutions. By Fuchs relation, we see that the
minimal defining set has 6 parameters. For more details about Heun equation, we refer to
[78, 73].

In the Kerr-NUT-(A)dS case, we note the importance of K indexing the solutions because
the only dependence on C; comes from it. As mentioned before, the local Frobenius behaviour
of the solutions do not depend on Cy, but this dependence will come about in the parametriza-
tion of the monodromy group done below.

The appearance of the extra singularity 7 in (2.131) makes things more complicated than
the hypergeometric case. First, the coeflicients of the series solution obey a three-term recur-
rence relation [78], which is not easily tractable to find explicit solutions [96]. Second, there
is no known integral representation of Heun functions in terms of elementary functions, which
hinders a direct treatment of the monodromies. Therefore, we need to look for an alternative
approach to solve the connection problem of Heun equation. In the next chapter, we will see

how the isomonodromic deformation theory [97, 98, 99] can shed light on this problem.



CHAPTER 3

Differential Equations, Isomonodromy and

Painlevé Transcendents

There is no scientific discoverer, no poet, no painter, no musician, who will
not tell you that he found ready made his discovery or poem or picture —
that it came to him from outside, and that he did not consciously create it

from within.

—WILLIAM KINGDON CLIFFORD

We now know that the problem of finding scattering coefficients for a scalar field confor-
mally coupled to a Kerr-NUT-(A)dS black hole reduces to finding monodromy representations
for the Heun equation. Mathematically, we want to solve Heun’s connection problem - how
to connect two fundamental solutions - using monodromy representations of Heun functions.
This problem has no general solution in the literature and it becomes even worse for 5 or more
singular points. This resides on the fact that Heun functions are still not very well understood
compared to what is known about hypergeometric functions [78, 73].

As suggested by the study of hypergeometric functions, the most general way to define a
so-called special function is via its singularity structure. This is the point of view defended,
for example, in [73] and has a long history passing through the works of Riemann, Poincaré,
Fuchs, Painlevé, Ince and several others. In fact, from this point of view, we can say we know a
function if we know its local expansions (which can be asymptotic) near its singular points and
how to connect these expansions with each other. Said in another way, the global behaviour of
a function is simply obtained by “gluing” local expansions converging up to the next singular
point. That is the essence of the connection problem we mentioned before. As discussed in

section 2.2, this problem is intrinsically related to the direct monodromy problem:

70
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Given a differential equation with n singular points, find an SL(2,C) monodromy
representation associated to its singular points. If there are irregular points, also

find the Stokes matrices.

Therefore, if we solve the monodromy problem of Heun equation, we can find the scattering
data. However, this problem has no explicit solution in the literature because, unlike the hy-
pergeometric case, the monodromy group of the 4-punctured sphere depends on global data
not accesible by local Frobenius expansions. As we shall see, the monodromy matrices also

depend on composite traces

m;;j =TrM;M; :Tr?’exp(gg A(z)dz), (3.1
Yij

where ;; is a path enclosing both singular points z; and z;. These traces are not as easy to
compute as the single traces and in fact have no simple expression in the Heun case. Because
of our limitation with calculating these traces, we need to look into another direction.

The issue of finding monodromy representations of Fuchsian differential equations is deeply
related to the classical Riemann-Hilbert problem in the theory of ordinary differential equations,

also called the inverse monodromy problem:

Given an irreducible SL(2,C) representation p of the fundamental group of the n-
punctured Riemann sphere, find a Fuchsian differential equation which has p as its

monodromy representation.

It is well-known that this problem has a negative solution in general. Poincaré calculated that,
given a set of n singular points S = {z1,22,...,2,}, the dimension M(S) of the space of irreducible
monodromy representations of the n-punctured sphere is larger than the dimension E(S) of the
space of irreducible Fuchsian equations with » singular points in S. Specifically, as we show
below, for second order ODEs, we have that M(S)— E(S) = n—3. Therefore, only for the hyper-
geometric case, n = 3, the number of parameters match and we have a unique correspondence
between representations of the monodromy group and the Fuchsian ODE.

The Riemann-Hilbert problem has a long story, back from Riemann, Hilbert and Poincaré,
passing through partial answers by Plemelj [100] and Rohrl [101], and, finally, reaching the
most general answer given 20 years ago by Bolibruch (see, for example, the book [102]). By
the time Hilbert proposed this problem as the 21st of his famous list, he probably had a feeling
that the theory of ordinary differential equations was almost complete, with only this problem

left for closure. The classical Riemann-Hilbert problem has since then been expanded to a
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more general Riemann-Hilbert approach and a lot of cross-fertilization between different areas
has occurred, specially in integrable systems [103]. The Riemann-Hilbert approach has also
been successfully applied to the isomonodromic deformation theory, developed mainly by the
Japanese school in the seminal series of papers by Miwa, Jimbo and Ueno [97, 98, 99]. One of
the main results of these works is to show that the monodromy problem of Fuchsian systems
is related to the connection problem of Painlevé VI solutions. An important corollary of Jimbo
and collaborators’ work is that Painlevé VI equation is integrable in the sense that its integration
constants are directly related to the monodromy data of a 4-point Fuchsian system [104]. In the
following, we shall review the isomonodromic deformation theory and show how its results are
useful in order to obtain the scattering coefficients in black hole scattering.

The essential point is the connection between Painlevé VI asymptotics and monodromy
data. This has been known since Jimbo’s work [104], but, as far as we know, has not been
put into practice to solve the monodromy problem of the Heun equation until recently in the
context of 2-dimensional conformal field theories by Litvinov ef al [105]. Also there has been
several advances in ¢ = 1 Liouville theory related to Painlevé VI connection formulas [106,
107, 108, 109]. These works in CFT and Liouville theory give some hints on how to generalize
our approach to higher-dimensions and how to obtain more analytical information about the
composite traces we are interested to organize the monodromy data. We shall explore these
lines of inquire in the conclusions of this thesis. But now, let us talk about the monodromy

group of Heun equation.

3.1 Monodromy Group of Heun Equation

Here we study the monodromy group of the 4-punctured sphere in more mathematical detail.
First, let us review some definitions for the Riemann sphere with n holes. Given a set S =
{z1,22,...,2n} Of n points, we define the n-punctured Riemann sphere as D = CP'\S. Here D
represents the domain of a Fuchsian ODE in the complex plane. Given a point b € D, we want
to study the set of loops L(D, b) with base point b. Given any two loops y1,v> € CP!, we say that
v1 1s homotopically equivalent to y;, that is, y| =y, if and only if one loop can be continuously
deformed to match the other!. A consequence of this equivalence is that a loop not enclosing
a singular point is homotopic to a point. The singular set S promotes topological obstructions

to continuous deformations of loops to a point. The set of all equivalence classes of loops in

I'The operation of continuously deforming a path (or a loop) is called a homotopy.
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Figure 3.1: Bouquet of 4 loops defining the 4-punctured monodromy group with base point b.

L(D,b) forms a group m1(D,b) and is called the fundamental group2 of D. Thus, we write the
fundamental group as the quotient space m1(D,b) = L(D,b)/ ~. For more details, see [74].

The monodromy group is defined by the group homomorphism
o :m(D,b) —» GL(2,C) (3.2)

where, in our context, the GL(2,C) matrices act on the space of fundamental solutions ® of
a Fuchsian ODE. This defines a GL(2,C) representation of the homotopy group and we refer
to this representation as the monodromy group M(D) of the n-punctured sphere®. Therefore,
given a representative loop y € m1(D,b), the analytic continuation of ® around vy is given by
®, = ®M,, where M, € GL(2,C) is the monodromy matrix, as we have seen in section 2.2.
In fact, the GL(2,C) determinant is just a gauge artifact, and in the following we restrict to
SL(2,C) representations of the fundamental group.

The set of all representations of the monodromy group modulo overall conjugation
Ry = Hom(r((D,b),SL(2,C))/SL(2,C) (3.3)

is called the moduli space4 of SL(2,C) representations of M(D). This space can be parame-

terized by trace invariants constructed from the monodromy generators [110, 111, 112]. We

2 Also known as the first homotopy group, because loops are 1-dimensional objects. The second homotopy

group is about equivalence classes of 2-spheres and so on.
3We can also study other types of topological spaces with non-trivial genus, boundaries and cross-caps, as the

1-torus or the Klein bottle.
“The moduli space here is essentially the parameter space of all equivalence classes of a set under some

equivalence relation.
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shall describe this construction below. The moduli space Ry is also called in the literature the
character variety of the n-punctured sphere. This concept has important applications in hyper-
bolic geometry and in the theory of deformations of hyperbolic structures [111]. We can also
define the relative character variety, which represents the moduli space Ry with fixed elemen-
tary monodromies, R, (. This restricted moduli space is isomorphic to the moduli space of flat
SL(2,C) connections A, over the n-punctured sphere. Atiyah and Bott [113] have shown that

the latter space has a natural symplectic structure, the Atiyah-Bott symplectic form

1
Q= —_fTr((SA/\dA), (3.4)
2ri Js

showing an important relation of the monodromy group with gauge theories and symplectic
geometry (see also [114, 110, 112]). This will give us further insights below but, for now, let

us focus on the algebraic properties of the monodromy group and its moduli space.

3.1.1 Moduli Space of Monodromy Representations

The monodromy group can be defined as a free group® G, = (M{, ..., M,,_1) with n— 1 generators
M;. The matrix M,, can be obtained by the identity (2.24). Each M, represent the monodromy
of elementary loops enclosing a singular point z;. We want to obtain, if possible, an explicit
parameterization of M(D) in terms of invariant characters. This is not a simple task in general,
although there are some hints on how to obtain such parameterization explicitly in the litera-
ture [109, 111]. In fact, the most direct way to parametrize G, is in terms of its trace invariants.
How many trace invariants do we need to characterize G,? We have n—1 SL(2,C) generators
with 3(n — 1) complex parameters. Monodromy representations are equivalent by conjugation
of a SL(2,C) matrix which has 3 free parameters. Therefore, the number of inequivalent rep-
resentations of G, is given by the dimension of the quotient space SL(2, C)y*1/SL(2,C), that
is dimG, =3(n—1)—-3 =3n—-6. If we fix n elementary traces m; = Tr M;, we have that the
dimension of the relative moduli space is 2(n — 3). This counting will be important below.

The classification of 2-dimensional representations of a free group with 2 generators G is
well-known and given, for example, in [74]. The parameterization there presented is equiva-

lent to the one presented in the final paragraph of section 2.2. All representations of G, are

SA free group is formed by the set of all words constructed by concatenation of its generators modulo conju-

gation.
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characterized by the eigenvalues of M;, which can be recast in terms of the traces

m; =TrM; =2cos(n8;), i=1,2,

(3.5)
myy = Tr(M{ My) = 2cos(noy2), o012 €C
and those are further constrained by the identity [111, 112]
W3(ﬂ11,l’l’lz,m12) = m% +m% + m?z —mymoymip —K— 2=0, (3.6)

where k = Tr(MleMl_lMZ_ 1). This identity follows directly from the trace properties and
the basic identity Tr(g) Tr(h) = Tr(gh) + Tr(gh_l), a consequence of the Cayley-Hamilton the-
orem for SL(2,C) matrices [111]. Now we see that, fixed the monodromies m;, the composite
trace m1; is determined by relation (3.6). Therefore, the moduli space of the hypergeometric
monodromy group with fixed monodromies has no extra parameters. In other words, the local
Frobenius expansions completely determine the monodromy group.

In the case of interest, we want to study the monodromy group of Heun equation, a free

group with 3 generators G3 = (M1, M, M3), parameterized by the trace parameters

m; =TrM; =2cos(n6;), i=1,2,3, 3.7)
myg = TI‘M4 = TI‘(M] M2M3) = 2COS(7T94), (3.8)

with the second equality following from the monodromy identity (2.24), and composite traces
coordinates
m;j = Tr(M;M) = 2cos(noj), i,j=1,2,3, (3.9)

where m;; = mj; and i # j. These traces obey the Fricke-Jimbo relation

Wa(my,my, m3,my3,mo3,mya,my) =
2 2 2
m3mo3min + myy +myy +mi, —myz(momy + myms) —mpz(mymy + myms)

—mypa(mamg +mimy) +m% +m% +m% +mg1 +mymomszmg—4 =0. (3.10)

Therefore, fixed the monodromies m;, the relative moduli space R}, | is parameterized® only
by 2 coordinates m;;, as one of the composite traces is fixed by (3.10). Now we see that the
knowledge of just the local monodromies m; is not sufficient to determine a representation of

the 4-point monodromy group.

®Geometrically, (3.10) defines a 6-dimensional hypersurface on the character variety, isomorphic to C’, and a

2-dimensional hypersurface on the relative moduli space, which is isomorphic to C3 [111].
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We now can ask what is the most general parameterization of the 4-point monodromy
group? A natural attempt is to remember that, in the irreducible case, each monodromy gener-

ator is diagonalizable
M;=g;'e™ g, (i=1,23) (3.11)

and as the g; € SL(2,C), we can parametrize them as
gi = exp(i:pi(f3 /2)exp(iqSiO'l/2)exp(igol~0'3/2), (3.12)

where (i, ¢;, ;) are taken as complex parameters. Plugging this into (3.11) shows that ¢; can
be set to zero. Therefore, each matrix depends on 2 parameters (y;,¢;), giving a total of 6

parameters. Furthermore, by simple matrix multiplication we get that

m;j =2cos(6;/2)cos(0;/2) +2sin(6;/2)sin(0;/2)
x (cos(@i/2) cos(¢;/2) +sin(gi/2) sin(¢;/2) cos(Wi—¥))/2)), (3.13)

so there is an extra redundancy ¥; — ¥; + a, where a is a constant, allowing us to set one of the
¥ to zero. One usually uses the extra gauge freedom to make M, diagonal, making the trace
coordinates explicit in the generators M;. Given this SL(2,C) parameterization of each M;, we
could try to relate the 6 parameters (¢;,y;) with six independent traces (6;,07;;), but the relations
are somewhat complicated for a simple approach.

Following [104], we now address a clever way to express the general parameterization of
irreducible representations of the monodromy group in terms of trace coordinates. We notice
that Jimbo’s parameterization has been revised by Boalch [115] making a very small correction
in eq. (1.8) of Jimbo’s paper and also giving an explicit derivation of that formula. Here, we
follow Jimbo to write the monodromy parameterization below. En passant, we notice that the
construction found in [110] is a more sofisticate and detailed description of Jimbo’s parame-
terization and gives further insight into its algebro-geometric construction. There is possible to
find a derivation of the following result.

We start by defining the monodromy matrices My with k = 0, 1,¢, 00, representing the 4

singular points on the Riemann sphere fixed by a homographic transformation, obeying
Mo MMMy = 1. (3.14)

Here we choose a basis where M, is diagonal. Let o := o, represent one of the composite

traces. Restricting to irreducible representations, we suppose that

o6, +0, Op+0;F0, O+x01+0, 0O.+01F0 (3.15)
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are not equal to even integers’. Therefore,

1 cos(nor)—e~ 70 cos(n)) —2¢ 00 gip 7 (0o +01+07) 8in 5 (oo +61—07)
1=——_. . , (3.16a)
1SIN(7T0oo) \ 267 sin 5 (Beo 0, +07) $in § (B0 —01 —07) —cos(na)+e™ cos(nby)
1 €™ cos(nfy)—cos(nb;) 2ssin 5 (0p+0;—0) sin & (6y—0;+0)
CMyC™'= ———— ’ PO O (3.16b)
isin(ro) \ =257 'sin 2 (60+6;+07)sin 5 (8y—6;—0) —e "7 cos(nbfy)+cos(nb;)
CMC = 1 | €7 cos(nby)—cos(nby) —2se™ im0 si.n 2(80+6,—0) sin Z(80—0,+0)
isin(ro) \ 25 le™ sin Z(Bo+6,+0)sin (6o —6,—0) —e7 "9 cos(nf;)+cos(nby)
(3.16¢)
where
SiNZ (0o —01 —0) sSinZ (0o +01 +0
C= . 2( 1 ) . 2( 1 ) (3.17)
Sin 7 (0o — 601 +0)  sinF(foo + 61 —0)

is a change of basis matrix which diagonalize MyM,. Jimbo’s parametrization also depend on

the parameter s given by

4ssing(00 +0;—0)sin 3(90 —0;+0)sin %T(Hoo +0] —0)sin g(Goo —-01+0)

= isin(mwo) cos(mop1) + cos(ml;) cos(ml;) + cos(mbs, ) cos(mby)+

€™ (i sin(ror) cos(mo ;) — cos(0;) cos(mhe ) — cos(18p) cos(nh))).  (3.18)

We now see that the parametrization of the Heun monodromy group is much more compli-
cated than the hypergeometric case. The generators depend not only on the local monodromies
6; but also on composite monodromies o;;. As we have seen before, it is easy to find the 6;
directly from the ODE but the parameters o;; are still elusive to us. The question that remains

is: how are the composite traces m;; related to the parameters of Heun equation?

3.1.2 Symplectic Structure of Moduli Space

Going back to the starting discussion above, we see that the monodromy matrices depend both
on the loop and on the chosen basis of solutions ®. Changing the base point b of the loops
implies a change of basis on the monodromy representation. If we change the basis by some
SL(2,C) matrix, ®, = ®1g12, we have that M, = gIZIMIglz.

sentations are conjugate by some g € SL(2,C), we have that the conjugacy class of the mon-

As every two monodromy repre-

odromy representation is uniquely determined by the ODE parameters. This means that, fixed

"For reducible cases, the parametrization needs to be slightly modified [104].
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the monodromy coefficients 6;, the moduli space of a Fuchsian ODE with fixed monodromy is
isomorphic to the relative moduli space of monodromy representations of the same ODE. Let
us be more explicit about this.

Given a generic Fuchsian ODE with » finite singular points, we can always transform it to

its normal form (see Appendix B), that is

W@+ T@W(E) =0, T(Z)=Z( - "’fz), (3.19)

“\(z-z2)* -z

n n n
Dai=0, Yl(cz+8)=0, ) (ci?+207)=0, (3.19b)
i=1 i=1 i=1

where (3.19b) are the necessary and sufficient conditions for z = co to be a regular point. Be-
cause of (3.19b), there are only n — 3 independent c¢;, and we can also fix 3 of the z; to be
0,1 and oo, by a homographic transformation. The monodromy parameters are defined by
0;=(1- 01.2)/ 4, thus, if we fix these, we can parametrize Fuchsian equations by 2(n — 3) com-
plex numbers (c;,z;). We have that §; and z; are local parameters, depending only on the local
behaviour of the solutions of (3.19a), and the c;, called accessory parameters, have global
properties not probed locally. The accessory parameters are usually related to spectral param-
eters of differential equations [78, 73]. The angular eigenvalue C, dependence appears exactly
in the accessory parameter of Heun equation (2.131), and that is why it did not appear in the
Frobenius coefficients 6;. The ¢; are related to elementary monodromies, so the remaining pa-
rameters c;,z; must be non-trivially related to the composite monodromies (3.9). In fact, (c;,z;)
form canonical coordinates on the moduli space of flat SL(2,C) connections A, mentioned

before, serving as Darboux coordinates to express the Atiyah-Bott symplectic form
n=3
Q= deindz. (3.20)
i=1
A, is isomorphic to the moduli space of monodromy representations with fixed 6;, thus we
expect there must be some canonical transformation relating (c;, z;) to the composite traces pa-
rameters o;;. Nekrasov et al [112] have found such transformation and, recently, Litvinov et
al [105] have shown how the parameters of the Heun equation are related to the monodromy
parameters. This relationship was thus used in [105] to find an equivalent way to address the
monodromy problem in terms of classical conformal blocks of 2-dimensional CFTs. Their ap-
proach can be understood both in terms of symplectic geometry as well as in terms of isomon-
odromic deformation theory, which will be our next topic of discussion. To end this section, we

briefly show how to construct canonical coordinates directly related to the monodromy traces.
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Figure 3.2: Composite loops associated to accessory parameters. Retrieved from [105].

First, let us consider the monodromy group of n singular points and n— 1 generators M.
For each loop y12. x enclosing k singular points, we address a monodromy matrix My x =

M(y12..1) (see Figure 3.2). Litvinov et al [105] thus define the non-trivial composite traces
Tr(M12) = —cos(nvy), Tr(Mi23) = —2cos(nvy), ... Te(M12. n-2) = =2cos(nvy-3), (3.21)

which fixes the conjugacy classes of those monodromy matrices. However, we notice that to fix
the whole monodromy group we still need n — 3 other traces. Nekrasov et al [112] have shown
that canonically conjugate coordinates uj, ..., 4,—3 can be found in a geometric construction of

an n-gon in SL(2,C) such that
n-3

Q= ) dvindy; (3.22)
i=1
is the symplectic structure of the moduli space. Moreover, there is a generating function W(v, z)
connecting both sets of canonical coordinates
ow ow
= 8_1/,-’ G = a—zi,
where W(v,z) = Wo(v) + f,(2), Wo(v) is related to the classical limit of the 3-point structure
functions and f,(z) represents the classical conformal blocks of 2D CFT [105].

Hi (3.23)

The connection between differential equations and classical conformal blocks arise because
general conformal blocks of chiral vertex operators obey certain special differential equations
representing null-vector conditions in the moduli space of the n-sphere [105]. In the classical
limit, the resulting equation is a Fuchsian ODE with n singular points equivalent to (3.19a)
where the accessory parameters c; relate with the classical conformal blocks as above. There-
fore, in the Heun case n = 4, knowing the accessory parameter c¢ fixes the composite mon-

odromy parameter v in terms of z = ¢ through the knowledge of the classical conformal block
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(). Expansions of classical conformal blocks are well-known [116, 117] and can be used to
connect v with c. This suggests a way to obtain analytical results for v and thus our scattering
problem. However, the relationship between these parameters is not very trivial and we leave
this discussion for further work.

Summarizing, to fully describe the monodromy group of Heun equation, we need to obtain
two composite traces from the three possibilities mg;, mi; and mg;, because one of them is
constrained by Fricke-Jimbo relation (3.10). Analytical results are still out of reach, so we
need another approach. The theory of isomonodromic deformations comes to our aid and will
give further insight into this problem. But before introducing this theory, we present Painlevé

transcendents in the next section, as they will be useful later.

3.2 Painlevé Transcendents

Painlevé VI equation is the most general rational second-order nonlinear equation whose solu-
tion has no movable branch points - the Painlevé property - and no movable essential singular-
ities. It emerged as an attempt of the mathematician Paul Painlevé to extend the definition of
special functions to the non-linear realm. The ability to be extended over the whole punctured
complex plane by knowledge of local information is an important property of special functions.
This property is a direct consequence of Painlevé transcendents, the solutions of Painlevé equa-
tions, having only movable poles. A simple example of an ODE whose solution has a movable
branch point is

my'y" =1, meN. (3.24)

The solution of this equation is y(¢) = (¢t — o)l/m

, where c is an arbitrary complex constant de-
pending on the initial condition, having an algebraic branch point at # = c¢. That is why Painlevé
was actually interested in the Painlevé property in the first place, to find the nonlinear equiv-
alent of special functions being defined by connection formulas. This can only be achieved if
we can define the transcendental function only from information of the ODE itself, which is
not the case when we have movable branch points.

In the beginning of the 20th century, Painlevé [118] studied equations of the type

d*y dy
— =R|t,y,— |, 3.25
dr? ( i dt) (3:25)

with R meromorphic in y and rational in ‘é—"[’. He discovered that there are actually 50 equations
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obeying the Painlevé property but only 6 of them, usually called Py, J =1,11,...,VI, are not
integrable by quadrature or reducible to some linear equation. In fact, Painlevé had found only
the first three simplest types because of errors in his calculations, but his student, B. Gambier,
later found the other three [74].

Painlevé transcendents have important applications in several areas of mathematics and
physics. As we can imagine, the literature on Painlevé equations is very extensive, being more
than 100 years old. Painlevé equations appear as ODE reductions of several nonlinear partial
differential equations (PDEs) like Kortweg-de Vries (KdV) equation (P and Pj;), of nonlinear
Schrédinger equation (Pjy), of Ernst equation (Py;) and Sine-Gordon equation (Pyjy). In par-
ticular, all Painlevé equations can be obtained as one-dimensional reductions of SL(2,C) anti-
self-dual Yang-Mills equations in 4 complex dimensions, restricted by the so-called Painlevé
subgroups of the conformal group [119]. There are also very interesting applications in sta-
tistical physics and quantum field theory, and some of the most important are cited in [120]:
The two-point correlation functions for the two-dimensional Ising model [121], for the one-
dimensional impenetrable Bose-gas at zero temperature [122], and for the one-dimensional
isotropic XY-model [123]. Applications in topological field theory can be found in [124], and
also on the partition function of 2D quantum gravity models [125, 126]. This last application
is connected to random matrix theory and orthogonal polynomials, the Tracy-Widom distri-
bution of eigenvalues (which has important relations with percolation and growth processes)
and Fredholm and Toeplitz determinants [127, 128, 129]. For example, Fredholm determinants
can be calculated in terms of the solution of the sigma-form of Py. The usage of Painlevé
in fluid dynamics, particularly in the study of time-evolving surfaces in Hele-shaw flow with
surface tension, can be found in [130]. Finally, there is also a very interesting application in
number theory: there is analytical and numerical evidence that the distribution of zeros of the
{-function on the line Rez = % follows the same behaviour as the distribution of eigenvalues
of the Gaussian Unitary Ensemble in random matrix theory [131]. For a review of Painlevé
transcendents and its modern approaches, see, for example, [132, 120].

As we mentioned above, Painlevé transcendents are best understood in terms of the theory
of isomonodromic deformations, as its connection problem can be solved in terms of the mon-
odromy data of an associated Fuchsian system. In the next subsections, we briefly review some
properties of Painlevé transcendents and the theory of isomonodromic deformations based on
the presentation of [74]. For the reader interested in learning about these subjects more thor-

oughly, we suggest to start reading the accessible book by Iwasaki et al [74] and then the more
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extensive treatise by Novokshenov er al [120], which will introduce the reader to the more

advanced literature.

3.2.1 Painlevé Equations

We start this section by listing the 6 Painlevé equations mentioned in the introduction:

dy __,
O (3.262)
d2
Pt =3 =2 +iy+a, (3.26b)
d’y dy 1dy )
p. .3y _1 _lay o 3.26
1 ap (dt) rar Yt (ay NARCE o200
d’y 1 (dy ﬁ 2,33
Py : i % (E) —+2(t —a)y +4ty” +5y°, (3.26d)
) 2
py: Y (L, L \(d) 1y
da? \2y y-1)\dt t dt
—1)? 1
L= y+é st (3.26¢)
2
Pv1:ﬂ:ll _1 L - L+L dy
a?  2\y y-1 y- ¢ =1 y-tjdt
Dy - -1 -1
W—Xy)( Lyl (49 i ’), (3.26f)
2(1—1)? -1 y-17?

where «,,y,6 are complex constants. By an appropriate rescaling of y and ¢, we can reduce
the number of parameters of Pj;; by two and Py by one, so those have 2 and 3 independent
parameters, respectively. The Py; equation has a non-standard notation here, following [74],
which can be obtained from the standard one by taking 8 — —f and 6 — % —-0.

For generic parameters, the solutions of (3.26) have critical points at = 0,1,00. We also
have singular behaviour when y(#y) = 0, 1,79, co for ¢ € CPl\{O, 1,00}, and we say these points
are regular if the coeflicients of the right-hand side of (3.26) have a simple pole at these points.
In Pyy, all critical points are regular, but in the other cases we have one irregular point at y = co.

Solutions of Painlevé equations are transcendental functions expressible not even in terms
of integrals of hypergeometric functions, for example. This means that there is no simple clas-

sical representation of these functions. Although they do not share this property with respect
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to classical special functions, Painlevé functions can be defined in terms of its connection for-
mulas, similar to the discussion we made in the previous chapter. This remarkable result was
first presented in the 1980’s by Jimbo [104], using the theory of isomonodromic deformations
of [97, 98, 99]. The complete table of connection formulas for the Py; equation were obtained
rather recently [133, 134]. For more details on the Painlevé connection problem and its exten-
sive literature, see [120]. We shall discuss more about connection formulas when we introduce

isomonodromic deformations.

3.2.2 Confluence Limits

An important thing to remember about Painlevé equations is that we can obtain all P; (J =
I,...,V) by certain limiting processes on Py;. These limits are obtained by confluence of sin-
gular points and scaling transformations on the Py; parameters, and can be found in [74]. In

the the diagram below, each arrow indicates a possible Painlevé reduction. Below each P;

(Bessel)

Pyr— Py Prp—> P
(Gauss) (Kummer) / (Airy) (None)

(Hermite-Weber)

Figure 3.3: Diagram of Painlevé reductions and the corresponding restrictions to hypergeomet-

ric cases.

type, except for Py, we show that this diagram also works for confluent reductions of Gauss’s
hypergeometric equation. There are two ways to relate Painlevé solutions with hypergeomet-
ric solutions. The first one, described in [74], is that, for certain restrictions on the Painlevé

parameters («,,y,0), we have that the P; have solutions y;(t) of the form

d
ys(0) = fi (0= loglgs(Duy @), J=11....VI (3.27)

where f;(t),g,(t) are simple rational functions, and u;(#) is a solution of an equation of hyper-

geometric class. This matches with the relations shown in Figure 3.3. The other way to make
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contact with the hypergeometric class is by linearization of some Painlevé equations with 8= 0.

By linearization we mean that, given a P; equation

y" (0 = Fy.y' 0|y, (3.28)

we take only the linear part of the right-hand side

0F|g=0

dF|g-0
Foy' Dpey ~ =5, —

oy’

y'. (3.29)
y=0,y’=0

y=0.y'=0

The following linearizations are obtained in this way [73]

e Py; — Gauss hypergeometric equation;

Py — Confluent hypergeometric equation ~ Kummer;

Py| s=0,y=—2 — Reduced confluent hypergeometric equation ~ Bessel;

Py — Biconfluent hypergeometric equation ~ Hermite;

P;; — Reduced Biconfluent hypergeometric equation ~ Airy.

Only Py and P; do not enter in such correspondence.

3.2.3 Symmetries

Discrete symmetries of Painlevé equations have been studied by Painlevé [118] and, more
recently, by Okamoto [135]. These symmetries naturally act on the space of parameters V =
(,B,7,0) € C*. So, for example, in the case of Pyj, if we change the variables (t,y) — (1 —
t,1 —y), we have that (,8,y,0) — (a,y,5,0). Therefore, a symmetry of Py; is given by a
birational transformation T : (t,y) — (t1,y1) and an affine transformation ¢ : V — V which is
just a permutation of V. If we consider an element of the group G of symmetries as a pair

o = (T,{), we can show that G has 3 generators o; = (T;,{;) given by

Thviy—-1l-y, t—-1-1 i (a@,B,7,9) = (@,7.8,0),
1 1

Iy:y——, t= - b :(a,B,y,0) = (B,a,y,0),
y
y—t t

T3 : .I/ - - R l3 : (a,ﬁ”y’5) - (a75’yaﬁ)'
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By the action of /; on the parameter space, we see that G is isomorphic to the symmetric group
S 4. Also notice that G leaves the set of critical points {0, 1,¢, oo} invariant.

Okamoto has also discovered that there are Bdcklund transformations on the variables
(g,p;@,B,y,0) keeping the Painlevé Hamiltonian structure invariant [135]. This symmetry
generates an infinite number of new solutions of Painlevé Hamiltonian system, and can be
understood as canonical transformations on the phase space. These transformations can also be

understood in geometrical terms [110]. Now let us talk about Painlevé Hamiltonian structure.

3.2.4 Hamiltonian Structure

Painlevé equations have a Hamiltonian structure and we can rewrite each P; as a Hamiltonian
system H; of canonically conjugate variables (¢(t), p(f)) and Hamiltonian H;. This can be
explicitly proved by analyzing series expansions around the critical points ¢ = 0,1, c0. In fact,
suppose we give an initial condition to Py; at the point 7y € CPI\{O, 1,00} such that y(ty) = ¢,
with £ € {0, 1, 00,1y}. This is a singular initial value problem, because Py equation is singular at
those points. Notice that this kind of behaviour does not appear in linear differential equations.
For generic Py; parameters, one can show that there are two 1-parameter families of solutions
which are analytic at 7 satisfying y(tp) = {. Using those series expansions, one can do a kind
of resummation of the series derivative to obtain the canonically conjugate variable and, thus,
the Hamiltonian system valid around #y for some chosen . This can be done for each of the
four ¢ values and, after “gluing” the 4 solutions, we have the complete Hamiltonian system for
all possible singular initial conditions. This has to be done because, although the solution is
analytic for a certain choice of y(#y) = ¢, the series expansion converges only up to the next
singular point. This entails a somewhat complicate construction, outlined in [74]. From the
theory of isomonodromic deformations, this Hamiltonian structure appears more naturally, as
we shall see later.

There is an even easier way to obtain Painlevé Hamiltonians discovered by Slavyanov [136,

137], which is summarized by this simple statement:
FPainlevé equations are the classical analogues of Heun equations.

This means that for Heun equation and each of its confluent reductions we have an associated
Painlevé equation. Here, we mention only the case of Py; because all other cases can be ob-

tained from it by confluence. Considering the Heun equation (2.131) as a Schrédinger equation,
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we can make ¢ = z and p = id, to obtain its associated Hamiltonian®

K(g,p.)) = |ata—1)a—Dp*~(6og— 1)g—1)

t(t—1) (3.30)
+019(g -0+ (6~ Dglg—1))p+xiKk2(q—1)|-

The Hamiltonian system Hq; generated by K is thus given by

dg 0K 1
—=——= 29(q—1)(g-t)p—(6o(g—1)(g—1)+619(q -
ar - ap t(t_l)[q(q )g—1p—(6o(g—1)g—1)+619(g—1) 331

+(6—glg- 1)},

dp 0K 1 )
= -1 —1D(g - —
7 9 - -1 [(q(q )+(g=1(g-1)+q(g—0)p (3:31b)

— ((Bo+01)(g—1)+ (00 +6; — 1)(g— 1)+ (01 +6; — Dg)p + k1K2].

After combining both equations, one can show that g(#) obeys Py; equation (3.26f) with
=302, B=365, y=301. o=16. (3.32)

Another way is to make a Legendre transformation on K(q, p,t) to obtain the Lagrangian and
then find the Euler-Lagrange equations of motion, corresponding to the classical equations
of motion of this Hamiltonian system. The Hamiltonian systems of the other P; can also be
obtained by taking appropriate confluent limits of Hy;, analogously to the diagram in Figure 3.3
[74].

3.3 Isomonodromic Deformations of Fuchsian Systems

In this section, we review the theory of isomonodromic deformations and its relation with
Painlevé’s connection problem. The theory of isomonodromic deformations has been fully
developed in the early 80’s by Jimbo, Miwa and Ueno [97, 98, 99] and it has been a very fruitful
tool in mathematical physics, with applications in gauge theory and integrability. However, the
seeds of this theory come from a long time ago since the pioneer work of Fuchs, along with
the contributions of Garnier [138] and Schlesinger [139]. Essentially, this theory is about how
to deform certain parameters of Fuchsian systems such that its monodromy data is preserved.

Jimbo and collaborators have found a way to construct such deformations of meromorphic

8We rescale and redefine Heun’s parameters to conveniently match with Py; equation.
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linear systems with n singular points, generalizing earlier works in less generic settings. For a
review on this subject, we refer to [74, 120].

As it must be clear by now, we want to address here Fuchsian systems with n = 4 singular
points. It happens that isomonodromic deformation equations in this case can be recast as the

Painlevé VI equation [74]. How this comes about will be discussed below.

3.3.1 Fuchsian Systems, Apparent Singularities and Isomonodromy

We have seen in section 3.1 that the number of parameters defining a second-order Fuchsian
ODE is equal to the number of parameters defining a monodromy representation of the ODE’s
singular points. In the n = 4 case, we have that the ODE paramaters & = {c,#;6;} map to the
trace coordinates M = {o7;;;6;} and we have 6 irreducible parameters on both sides. In general,
the space of irreducible Fuchsian equations & has 3n — 6 parameters, as we have seen in section
3.1.2, matching the dimension of M, the moduli space of SL(2, C) representations of the n-point
monodromy group, explained in section 3.1.1.

Let us do the parameter counting now in another way. Consider a Fuchsian ODE with n

finite singular points {z;}, given by
Py + PRy + 0@y = 0. (3.33)

Being a Fuchsian ODE implies that there is a gauge such that

n

=Y A (3.34a)

_ .,
i1 <L

Z B, C;
0(z) = Z ((z—zi)z + z—z,-)’ (3.34b)

i=1

with 3n complex parameters (A4;, B;,C;) and
n n n n
DA=2 ) Ci=0, Y @Ci+B)=0, Y @GCi+zB)=0, (3.3
i=1 i=1 i=1 i=1

are the 4 conditions implying that z = co is a regular point. Therefore, we have 3n —4 complex
parameters parametrizing (3.33) with fixed z;. However, we can also introduce the singular
points into our counting, giving 4n —4 parameters. These can be reduced by 3 homographic
transformations, fixing 3 singular points to {0, 1,0}, and n — 1 homotopic transformations, one
for each finite z; (see appendix C). Therefore, we are left with 4n—4 —(n+2) = 3n—6 irreducible

parameters.
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As we have seen in section 2.2, Fuchsian systems have a more natural relation with mon-
odromies by means of a flat connection. So it is interesting also to count the number of param-
eters of these systems. Consider thus a Fuchsian system of differential equations

A;
b
-2z

YD) =AY,  AQ)=)) (3.36)
i=1

where Y(z) = (y1(z) yz(z))T and the GL(2,C) matrices A; obeying the regularity condition
n
> Ai=o0. (3.37)
i=1

In general, this system has 4n —4 parameters, without considering the z;, and if we also quotient
out an SL(2,C) conjugation, we are left with 4n —7 parameters. Comparing with our discussion
above, we have n — 3 extra parameters than in the Fuchsian ODE with 3n —4. Now what is the
interpretation of these parameters in terms of (3.33)?

Let us write

A1) Az
A = 11(z) A12(2) . (3.38)
A21(2) An(2)
It is easy to verify that y(z) obeys the differential equation (3.33) with
P(z) = -0;logA1» - TrA(z), (3.39a)
0(z) =detA(z) —0,A11 +A110;logA1s. (3.39b)

The choice of TrA and A, mostly determine which ODE gauge we are considering. However,
there is an additional interesting thing about A;; its zeros correspond to apparent singularities
of the ODE in an appropriate gauge. For the sake of the reader, we remember that apparent
singularities are the ones having trivial monodromy although appearing as poles in (3.33). Now,
this definition becomes clear if we make a one-to-one correspondence between the Fuchsian
ODE with the Fuchsian system (3.36), because zeros of Aj> do not contribute to residues of
A(2).

It is simpler if we restrict to SL(2,C) monodromy representations, obtainable by taking
TrA = 0, which implies that

A(z) = (3.40)

B(z) C(2)
D) -BR)
and in terms of the partial fraction decomposition in (3.36), we have that TrA; = 0. The mon-

odromy matrices are thus given by

A ] —inb; 0
Mi ~ eXp(%V : dZ) = ezﬂlA,' ~ ¢ o | (341)
}/i Z_Zl 0 elﬂ- !
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similarly to our definition in section 2.2. Thus the constant matrices A; are 2 X 2 traceless
matrices with detA; = —01.2 /4. This gauge choice thus correspond to a self-adjoint form of
(3.33).
We now consider z = oo a singular point and we define Ao, = — Z?:] A;. Under an SL(2,C)
conjugation we choose a gauge in which this point has diagonal monodromy, that is A4 =
- b 53, This gauge choice thus implies that C(z) and D(z) in (3.40) decay as 1 /2% as z — oo, 80

both have the form
Pn— 3(2)

M= - z)

where p,_3(z) is a polynomial of order n—3. So if this polynomial has n — 3 simples zeros, those

(3.42)

will correspond to apparent singularities of (3.33). However, we notice that this is no trivial
assumption, because there is some amount of work to deductively show this to be the case for
the corresponding Fuchsian ODE. For a complete demonstration of the statements made here
in the generic n-point case, we refer to [74].

It is easier to understand the relation between Fuchsian systems and ODEs if we start by
making some assumptions about the ODE. Let us focus on the n = 4 case for simplicity. We
want to study deformations of our Fuchsian ODE which preserve the monodromies ;. With

this goal in mind, we introduce an apparent singularity at z = A in its Riemann scheme

7=z z=o00 z=4
a 0 |, (3.43)
0; a+ 60 2

with z; =0, 1,¢ for i = 0, 1,¢. Fuchs relation implies that

3
1
a:—z[;“eiwm—l]. (3.44)

The Riemann scheme above also implies that (3.33) is in a natural canonical form. This can
be explicitly shown by imposing this Riemann scheme in (3.34a). Therefore, we can write the
Fuchsian ODE in terms of (6;; A, u, K) as

- 1
P(3) = Z; T (3.452)
B tt— 1K A=
o) = z(z ) 2z-1)z-1) " 2z—1D(z-2)’ (3.45b)

where K and u are new ODE parameters. We say that an ODE with the above form is of Garnier

type [138, 74]. For our purposes, we may also call it a deformed Heun equation, because it is
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essentially a Heun equation with one extra apparent singularity. Notice that this equation is
similar to what we have encountered in the Kerr-NUT-(A)dS radial equation, starting with 5
singular points and removing an apparent singularity when & = 1/6. However, here we have a
singularity with local coefficients (0,2) and in the radial equation we had a singularity of type
(0, 1), so what follows concerns a different type of apparent singularity as a deformation of the
Heun equation (2.131).

The point z = A will be an apparent singularity if K is a specific rational function of A, u
and . This means that (3.33) with coefficients (3.45) has a regular series solution at z = A if and
only if

K(A,p,1) = t(t+1)[/l(/l— (A= t)u* = {8o(A— 1)(A - 1)
+ 01 A=)+ (0, — DA - D}u+k(1-1)]. (3.46)

This is explicitly shown in appendix B. For a Garnier ODE with n + 3 singular points and n
apparent singularities similar formulas also follow and we refer to [74] for this general case.
We notice that K(4,u,t) above corresponds exactly to the Py; Hamiltonian (3.30). There-
fore, we can think of the Hamiltonian flow (A(#),u(¢)) generated by K(A,u,t) to correspond to
an isomonodromic deformation of the Garnier ODE, and we say these form a Garnier system
G1. This evolution is isomonodromic because the local Frobenius coeflicients of z = 0,1, do
not depend on A, and K, so we can change them as long as z = A still remains an apparent
singularity. Summarizing, we are left with a 3-parameter family of ODEs Ey(4, i, ) with fixed
monodromy, parametrized by ¢ and the initial conditions (A(#g),u(tp)). So the extended phase

space of the Garnier system has a symplectic structure given by
O*'Q=dundl—dK Adt, (3.47)

where @* represents the pullback of the Atiyah-Bott symplectic form to the extended phase
space (u, 4, K, t).

Now, for completeness, we want to find a flat connection

3 . .
A. Al Al
AR =) -, A,-:[ I }2] (3.48)
=1 Ay Ay

corresponding to the Garnier ODE above such that z = A have trivial monodromies. In this case,

it is convenient to choose a gauge where TrA; = 6;. Comparing (3.45) with (3.39), we find that
7—

A12(Z) = km,

keC, (3.49)
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and, thus, the apparent singularity correspond to a simple zero of A1y, as we expected. By the
partial fraction expansion (3.48) and (3.39), we see that a pole at z = A only comes from Ay,

therefore

3 i
A1) Al
:R :R = . .
H=Res 0(2) =Res —— zl] pp (3:50)

In a similar fashion, we can show that
K=- Rets 0(2)
Z:
0 1
_ A’11 s A“ +A’11 — 000, +A11 +At“ - 0,0,

1 1
+ ;TTA()At + t—lTI'A]At.

This shows the explicit relation between the Garnier ODE and the Fuchsian system. Thus, in
principle, we can also study isomonodromic deformations of an associated Fuchsian system
and connect with Garnier systems [74]. The deformation equations of a Fuchsian system form
what is typically called a Schlesinger system. This system is also integrable and its hamiltonian
structure is connected to the Garnier system by a canonical transformation. Therefore, both
systems are equivalent from this point of view. The Schlesinger system is important for the
study of the generic n-point system and, as we will discuss below, is also important for the
generic scattering in d dimensions because there we have more than 4 singular points. In
this case, solutions of the Garnier system do not have the Painlevé property, in contrast with
solutions of the Schlesinger system.

The whole point of discussing isomonodromic flows was to use this method to find the
monodromy parameters of Heun equation. The Garnier ODE with (3.45) can be related to our
Heun equation by taking A = #y at ¢t = tp. This gives an initial condition for our hamiltonian
flow.

Now let us relate the coeflicients of the Garnier ODE with Heun equation (2.131). First,

consider the Garnier ODE written as

82y +

Z

1-6p 1-6; 1-6; 1
Z +z—1+z—t_z—/l)azy
+( kK H(t=DK . A(A— 1D
2z=1) zZz—=D@E-0 z2z—-D(E-4)

So if we set A(fy) = o with 7y # 0, 1,00, we have that 6; = 6;) — 1 and

)y =0. (3.52)

K(A =19,u0,t0) —po = —po0: =Ko = po= (3.53)
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So by using the specific values of Ky and 6;, we have an initial condition for the isomonodromic

flow.

3.4 Schlesinger System Asymptotics and Painlevé VI

Now that we know how to connect Heun equation with isomonodromic deformations, we need
to understand how to recover the trace parameter o~ from Painlevé asymptotics. In this section,
we review Jimbo’s work [104] solving Painlevé VI connection problem by means of the mon-
odromy data of a Fuchsian system with 4 singular points. A full tabulation of Py; connection
formulas in terms of monodromy data has been given in [133], completing Jimbo’s results. A
review on several Py properties is given in [134].

First, consider a Fuchsian system

Ap(2) +A1(f) +Ar(f)
z z—=1 z-t’

0ZY(Z’ t) = A(Za t)Y(Za t)’ A(Z’ t) = (354)

with 4 singular points at z = 0,1,7,00 and Y(z,7) a fundamental matrix of this system. We
explicitly suppose that the system depends on ¢ as a deformation parameter. A Fuchsian system
of this type is called a Schlesinger system [139]. We choose a gauge where TrA, = 0 and
TrAft = —Qﬁ /4, u=0,1,t,00. The behaviour at infinity is fixed by
oo
A = —(Ag+A1 +A;) = —703, (3.55)
and we suppose that 6, 1 = 0, 1,1,c0 are not integers”. We introduce a new differential system

with respect to the deformation parameter

0:Y(z,1) = Az, DY (z,1), (3.56)
atY(Z7 t) = B(Z, t)Y(Z7 t) (357)

These two equations form a Lax pair and the system is Frobenius integrable'” if and only if
0:A—-0,B+[A,B] =0. (3.58)

Suppose that the Schlesinger system admits isomonodromic solutions, i.e., solutions whose
monodromy matrices do not depend on ¢. Therefore, one can show that [74]

Be.ty = ~ A0 (3.59)

9For comparison with our convention for the Garnier system, it is convenient to take o, — 0 — 1.
10That is, it obeys 8,0.Y = 8,0,Y.
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In this case, the Schlesinger equations of (3.56), obtained by plugging (3.59) into (3.58) are
given by
dAo _ [Ar,Ao] dar _ [AnA1] dA; _ [Ao.Ad | [ALA/]

dt r dt -1 dt -1

These equations also present a hamiltonian structure [114] and we thus say they form a Schlesinger

(3.60)

system S [74]. As we have seen above, if we let the component A, to be in the form (3.49),

then A(¢) obeys Py; equation with
a=1%62, B=16;, v=3i67, 6=36;. (3.61)

This result can also be obtainable from Schlesinger equations, but it is not so straightforward to
reach directly [98, 74]. A more convenient way to do this is by relating the Schlesinger system
with the Garnier system. We change to the canonical gauge where TrA; = 0 and detA; = —Hl.z /4.
This is obtained simply by doing A; — A; + %l, which corresponds to a gauge transformation
with U(z) = T(z)1 and T(z) = H?Zl(z —7z)%12 (see appendix C). In this new gauge, we already
found a relation between the connection A(z) and the Garnier system in the last section.

We want to study Schlesinger system asymptotics to obtain the asymptotics of A(7). If we
obtain the asymptotic expansions of A;(¢) at the critical points # = 0, 1,00, we can relate those
with A12(#) and find the asymptotics of A(f). We need to study only the ¢ = 0 asymptotics,
because the other cases can be obtained by homographic transformations. In the following, we
review the work of Jimbo in [104].

Let the monodromy group be parametrized as in (3.16). The matrices C; diagonalizing each

M; are the connection matrices of the Riemann-Hilbert problem

Y(z0 = (Go(r) + 0(2)) 207 2 C, (z—0) (3.62)
= (GO +0z-1)) 72, (2> 1) (3.63)
=GO +0G-0) "¢, (z-D) (3.64)
= (1+0(z™")) 77012 (z > o). (3.65)

We find the connection matrices, for example, by diagonalizing the monodromies (3.16). How-
ever, how did we find the monodromy parametrization (3.16)? We shall see in the following.

In the  — 0 approximation, Schlesinger equations (3.60) reduce to

dA A A dA dA Ag,A
o _ A 0], 1 e | ot t]+0(t0). (3.66)

X

- [A,A], &
dt t dt [An Al dt

This means that, near t = 0, A; and A¢ have a logarithmic divergence

Ag~t"AN™,  and A, ~MAMTD | where A = AD + A, (3.67)
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whereas A; has a continuous limit as # — 0. In terms of the fundamental matrix Y(z,7) in
(3.54) the system splits into an equation for Yy(z) = lim;—0 Y(z,#) and another for Y;(z) =
lim o1~ Y (12, 1)

dy, (A A ay,  (AY A0
— ==+ —|Y, — ==+
dz z z-1 dz z z—1

JYl. (3.68)

This is necessary because Yy addresses the smooth part of the connection, while Y; repre-
sents the singular parts. Each problem gives a hypergeometric connection whose solution is
described in Appendix D. Assuming the general case where there is no integer difference be-

tween the exponents, the solutions are

Yo=Y (50— 01 =), =30 +01 +0), 1 =0 2) 7P e - 1) "2, (3.69)

Y1 =GY (=300 +0,+0). 500 +0,— ). 1-6p: 2) 170z 1)™4/2, (3.70)

where Y(a, b;c;z) represents a hypergeometric fundamental solution (see Appendix D) and

10 10 ) .0
o et G|y e |Can (3.71)

I(1-0) T (300 +6;+0)+ DI (3 (~bp + 6, + o) + 1)
X
T(1+0) (300 +6,— o)+ DTG (~bp +6;,— ) + 1)

G =G")

abc

with

§=

(3.72)

T(3(0o + 61 +0) + DI(A(—000 + 01 + ) +1)

S,
T(3(Bo +61 =) + DI (A (~000 + 61 =) + 1)
and the parameter s is given by (3.18).
Now, each A? and A are traceless SL(2,C) matrices
o |ai bi
AY = (3.73)
c; —da;

constrained by detA? = —61.2 /4, det A = —o2/4 and (3.55). This is enough to determine the A?
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up to two parameters o and s. Using this procedure, we arrive at

1 1 [(=0—61+0)(0 — 01 — —00o —01 +0) (0 + 01 +
A+—0'1:—( 1+0)( 1—0) ( 1+o)( 1 0'); (3.742)
2 4000 | (Boo—01 +0) (O =01 =)  (Boo—01 + ) (0o + 61 +0)
1 1 (B =01 +0% (B +6))*—0?
A4 tgn- L ( D +o” ( )" -0 : (3.74b)
2 4000 | —(Boo — 61)> + 02 (B0 +61)* -0
1 1 [(Bp—6;+0)(6y+6;+ 0o —6;+0)(—60y —6; +
A0+ lgn=c, (Bo—0:+0)bp+6,+0) (6o—0;+0)(—6)—6+0) G, (3.740)
2 40\ (60— 6 — )0 +6;+0) (60— 6; — )(—bp — 6; + )
1 1 (O +0)P -6y —(6,—0)+62
A0+ tgr=g L|@ro) —b ~O=0) 0lG7. (3.74d)
2 4\ +0) -0 —(0,— ) +6;
To obtain the monodromy parameterization (3.16), we have to notice that
(6
M; = exp(2riB;) = cos(in6;) + 2B; Sm(g” 2 (3.75)
i

where B; is a traceless SL(2,C) matrix with Tr Bl.2 = 6’1.2 /4. The B; are not exactly the A; because
of (3.41). Using the constraints of the monodromy group and some amount of algebra we can
arrive at (3.16). However, the most straightforward way to arrive at (3.16) is by following the
steps in [110].
For the asymptotics as ¢t — 1, one just need to change 6y — 01, A(t) = A(t)—1 and 0 = 071;.
Finally, the asymptotic formula for the Painlevé transcendent itself, as in [133], is
6: =01 +0)0:;+01+0) (00 + 6y +0)

_pl-o o -0
402(0eo + 60— 0)$ (=77 (1+00", 1)), (3.76)

A =1+

assuming, as always, 0 < Reo < 1.

Summarizing, the asymptotic behaviour of Py; near its critical points is given by

aot' =7 (1 + 0(1%)), It <7,
AN =3 1+a; (-1 +0((1-0%, |t=1|<r, (3.77)
Aot (1 + O(£7°)), 11/t < r,

where ¢ is a small positive number, r > 0 is a sufficiently small radius, a; # 0 are functions of
monodromy data and 0 < Reo;; < 1. In the particular case Reo = 0, there are three leading
terms in the asymptotic expansions. At ¢t = 0, we have, for example,

1-0 4A2 1+0 2
Alt) =apt 7"+ —1 70 + Br+ O(t°), (3.78)
ao
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with A and B being specific functions of monodromy data. If we set oo; = 2ivo, v € R, this

formula can be rewritten as

A(r) = t(Asin(2vlogt + ¢) + B) + O(£%), ap = %e"", (3.79)
still showing an oscillatory behaviour near the critical point.

Depending on the scattering problem we are interested, we can try to numerically obtain o
by interpolation of Py; solution near its critical points. In the next page, we show two example
plots of the behaviour of Py near ¢ = 1 for initial values obtained from Heun equation for the
Kerr-dS case. By interpolation of this behaviour, with Py; asymptotics above, we can obtain
a value for o;. If we want to plot the greybody factor as a function of aw, we need to obtain
this monodromy parameter for each value by interpolation. That is our proposal to obtain the

scattering coeflicients via isomonodromy.
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Figure 3.4: Behaviour of Py; for a particular initial condition obtained from Kerr-dS Heun

equation.

6.x10-29 -
4.x10729

2.x10729 |

-2.x1072°

Figure 3.5: A zoom-in of the asymptotic region very close to z =0 from fig. 3.4. This behaviour

suggests a linear decaying oscillation and thus Im o, = 0. The fit must be done using (3.79)



CHAPTER 4

Scattering Theory and Hidden Symmetries

Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a

wonderful problem, because it doesn’t look so easy.

—RICHARD FEYNMAN

After a long discussion about the relation between the monodromy group of Heun equation,
isomonodromic deformations and Painlevé transcendents, we can finally propose a solution for
the scattering problem we have set up. In this chapter, we show the explicit scattering matrix
for a conformally coupled scalar field on a Kerr-(A)dS background. To obtain the scattering
coeflicients, we need to do some numerical work to find the (A)dS angular eigenvalues, as
discussed in section 2.3.3, and to find the composite trace parameter o- by numerical integration
of Py, as discussed in 3.4. In the other hand, the plots obtained in the previous chapter for Py;
depend on the angular eigenvalue because the initial conditions depend on the parameters of
Heun equation. As our numerical procedure still needs improvement with respect to this part,
we postpone accurate numerical results for future work. So here we limit ourselves to discuss
theoretical details of our proposal.

The NUT charge physically changes some properties of the black hole solution, but just
slightly with respect to the black hole scattering problem, so, for a matter of simplicity, we set
the NUT charge to zero in the following discussion. Of course, in AdS/CFT applications with
a NUT charge, quasinormal modes and superradiant scattering will depend on the NUT charge.
For more on the relation of NUT charge and AdS/CFT, see [48, 140, 141, 142, 90, 91, 92].

The scattering problem for Kerr-NUT-(A)dS black holes also presents a hidden symme-
try which has not been noticed before in this context. The isomonodromic flow connects a
I-parameter family of Fuchsian equations with the same monodromy; thus, with the same scat-
tering data. In particular, at the critical points of the flow, the differential equation becomes

a hypergeometric equation, a fact essential in Jimbo’s work revised in the last chapter. This

98
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allows us to relate the scattering of an arbitrary Kerr-NUT-(A)dS black hole with an extremal
black hole solution in two special cases. We conjecture that this might explain some facts
about the so-called Kerr/CFT correspondence, which we shall review in the end of this chapter
[143, 33, 67].

4.1 Kerr-(A)dS Scattering

In this section, we discuss how to obtain scattering coefficients from monodromies for waves
scattering on Kerr-(A)dS black holes. For convenience, we repeat here the relevant equations.

The Kerr-(A)dS metric in Chambers-Moss coordinates is given by

ds* =

A1) ( @)

3 M(Ch_(ﬂmz)
(r*+ p*)x* a

2
d
(r?2+ p?)* a ¢)
2 2 2 2
Nl G i
Ap(p) An(r)

where y? = 1+ Aa?/3 = 1 +a?/L?, with the dS radius given by L? = A/3, and

2
d¢) +

drr (4.1)

A
Ay(p) = —§p4 —ep*+d°, (4.2a)
A
A(r) = —§r4 +er —2Mr+d, (4.2b)
2 2
a“A\ a
621_721_E’ (4.2¢)

We have changed the notation here to match the usual notation in the literature for (4.2) (see,
for example, [36]). The Kerr-AdS metric can be more appropriately written if we make L — iL
and we change the expressions below conveniently when necessary. The 4 roots of A, =0
correspond to the singular points of the metric. In the Kerr-dS case, we are interested when
there are 4 real roots (r—,ry,rc,—ry —r— —rc) and, in the Kerr-AdS case, we always have at
least two complex roots and two real horizons (rg,rc,,0).

For each horizon, we define the Killing vectors £y .c = 0; + Q(rg,c)dys such that they are
null at each respective horizon. This entails to the constants Qg c = Q(rg,c) being the angular
velocities of each horizon. In particular, as discussed in the intro for the Kerr metric, this
induces a frame-dragging effect near the event horizon, as no observer can stay stationary with
respect to d; and is forced to co-rotate with the horizon. The angular velocity and temperatures

of the event and cosmological horizons for an observer following &g ¢ orbits are given by
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a AL(re)

Al(re)
Qpcec=——, Ty=¢+—-"—"-"— L
e 2 " 47T)(2(I"%{ +a?)

_ 4.3
470(2(1% +a?) 43)

TC:¢

2’
rH’C+a

in which we choose the sign of Ty ¢ to both be positive temperatures, which depends on the
sign of A. Notice, however, that these quantities are not the appropriate thermodynamic vari-
ables, because this frame is rotating at infinity and at the cosmological horizon. So there is no
notion of asymptotic timelike observer to define stationary quantities as in flat spacetime and
we cannot write a proper first law of thermodynamics for these variables [144].

For asymptotically AdS spacetimes, we can go to a non-rotating frame at infinity and define
the thermodynamical variables with respect to this frame [145, 144, 36]. As shown by Gibbons

et al in [144], the proper thermodynamical variables are
Q= x*Qp + Li’ Th=x"Th, (4.4)

corresponding to a non-rotating frame at spatial infinity. Asymptotically dS spacetimes have an
asymptotic SO(1,4) isometry which allows us to define a invariant vacuum under its isometries.
In fact, one can show that there is a timelike Killing vector inside the cosmological horizon,
and thus we can define our thermodynamical variables with respect to the orbits of this vector
[52, 146].

Now we go back to the scattering problem. The radial equation of interest from section
2.3.51s

, [(1-60 1-6 1—9;0) , (1+900 to(to— 1)Ko )

+ + + + —_ :0, 4.5
Y ( z z—=1  z-1 2(z=1) z(z—l)(z—to)y )

where
:r3—r1r2—r4’ oo:rz—r4 4.6)

r3—r4ry—ri r—ri
and
w(r? +a®)—am i (w—Qm
O = 2iy* | —* = —[—==|, k=0,1,1,00, 4.7
‘ ’X( N0 ) 2:r( Ty ) o @
1 r3=rsf 2 , _za)(r3r4+a2)—am

K = — 1+ _— +C _2 . 48
0 t—zw[ A;<r3>( AR ) (48

Here we notice that, to numerically obtain Cy it is convenient to make C;, — C¢ + )(z(azcu2 -
2maw) and put the angular equation in the (A)dS spheroidal harmonic form.

We want explicit expressions for the scattering coefficients between two regular singular
points. The monodromy parametrization found by Jimbo was important to understand the struc-

ture of irreducible representations of the 4-point monodromy group. However, if we want to
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obtain scattering coeflicients between two regular singular points from monodromy, we can use
a simpler parametrization. First, for a regular singular point z;, we know that M; = gi‘lei”ei‘73 Jis
where

gi = exp(ifio3/2)exp(¢io1/2) exp(ipio3/2), (4.9)

is a parametrization of SL(2,C). We may set ¢; = 0 because they are immaterial for the mon-
odromy matrices'. We want to solve a scattering problem which is purely ingoing or outgoing
at one of the singular points. This means that one of the monodromies is in diagonal form.

Therefore, the scattering matrix in this case is given by

(4.10)

i cosh(¢i/2)  ie"1/?sinh(¢;/ 2)] [ 7 R/ T]
Mi—)j =9gi= - '

—ie®i/2ginh(¢;/2) e ¥il2cosh(;/2).) \R' /T 1/T7
In our approach, we obtain the composite traces m;; = TrM;M; = 2cosno;; via Painlevé VI

asymptotics. It is easy to check that, in the case of interest where M is diagonal, we have that
m;j = 2cosnf;cosnfj —2sinnb;sinnf;coshg;, “4.11)
which can be used to find

e cosh_2(¢-/2) B 2sinn6; sinmd
= i/2) =

. 4.12)
cosm(0; — ;) — cos o

Notice that using the identity cos(a) —cos(b) = 2sin(b + a)/2sin(b — a)/2, we can rewrite the

above formula as ] )
T sinzrf; sinm6;

- ; , (4.13)
SlH%(O‘,‘j+9i—Qj)SIDg(O'U—Qi+9j)

In this interesting form, we recover the hypergeometric case (2.38) if we notice that o;; = 6
for k # i, j, following from the monodromy group identity.

The formula (4.13) will correspond to the classical transmission coeflicient (greybody fac-
tor) when the parameters are purely real or imaginary, such that we have the interpretation
of normalized fluxes of particles across some tunneling barrier. This parametrization will be
enough for the Kerr-dS case, because we are typically interested in the scattering between the
outer black hole horizon r and the cosmological horizon r¢. In this case the 6; are all purely
imaginary. We also notice that there is no restriction on the number of singular points of the ra-
dial ODE for this greybody factor be derived. Therefore, in principle, this formula should work
for higher dimensional (A)dS black holes for scattering between two regular singular points

with ingoing/outgoing conditions.

"However, we notice that these might appear as overall constants in the fundamental matrix ® = ®;g;.
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In the other hand, as discussed in chapter 2, spatial infinity, r = co in the original coordinates
of Klein-Gordon equation (2.106), is a removable singularity in the conformally coupled case
and then is not a singular point of our Heun equation. The parametrization thus seems not
convenient for Kerr-AdS scattering because we want scattering coefficients between the black
hole outer horizon ry and spatial infinity r = co. Spatial infinity is mapped to the point z = 7o
so the fundamental matrix is given by ® = ®,g; = ®,_g, . But z is just a regular point of our
solution and ® has a Taylor expansion around it in any basis. This implies that g, is just a
matter of gauge and we can set it to unit. Therefore, (4.10) is also valid for Kerr-AdS, but in this
case the boundary conditions are not so clear. We could start with a generic parametrization of
the 5-point monodromy group with M,-., diagonal and then specialize to the case where M,-q
is trivial. However, a general parametrization of the 5-point monodromy group is not available

in the literature right know, so this problem is still open.

4.1.1 Greybody Factor for Kerr-dS

Here we restrict the discussion about our scattering formula for the Kerr-dS black hole. This
black hole exists only when its outer horizon temperature 7y > 0 and a/L < 1, where [?=3/A
is the de Sitter radius and a is the rotation parameter. This puts restrictions for the values of
(A, M,a) in which there is a regular black hole solution [61]. These conditions correspond to
the case where Q(r) has 4 real roots (r__,r_,rg,rc), where r__ = —r_ —rg —rc. From (4.3) we
have that Ty = Ky(rc —ru) and Tc = Kc(rc — ru), with Ky c > 0 for r¢ > rg > r—. Therefore,
we have that the extremality condition Ty = 0 is equivalent to T¢ = 0 if ry = r¢ and the extremal
solution is actually an equilibrium solution, as the horizon temperatures are equal. For nonzero
temperatures of both horizons, we always expect some heat flow in semiclassical processes.

These statements are graphically understood in Figure 4.1 showing A,(r) for the particular
case L=15,a=0.5 and M = 0.8. The negative root is not shown in the plot, thus the smallest
root is r— and the other two correspond to ry and rc. Looking at the plot, we see that the
condition for A/.(rg) = 0 can correspond to the merging of both singular points rg and r¢. Of
course, the same can happen if we merge ry and r_, which is another type of extremality. For
more on Kerr-dS thermodynamics, see, for example, the pioneer work of Gibbons and Hawking
[52].

We want to study the scattering between the black hole horizon rg and the cosmological
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Figure 4.1: A plot of A,(r) showing the singular points of the metric. The derivative A/.(r) gives

the behaviour of horizon temperatures.

horizon r¢. The Frobenius coefficients at these points are

i (a)—QH,Cm)

Oc = +— 4.14
H,C Tre (4.14)

"2
We choose opposite signs to 8y and 6¢ because while one of the waves is ingoing, the other

is outgoing, and we have a radiation flow between both horizons. The transmission coefficient

(4.12) is thus given by

sinh(4574%) sinh( 257" )

s 11 (w=Qym | w-Qcm ) l(w—QHm w—Qcm _ )’
smh2( 57y T ar. - tVHC sinh 5 Ty T e VHC

ye(w,m) =|T* = (4.15)

where we redefined mogyc(w,€,m) = ivgc(w, €,m). This is one of our main results in this thesis
as we suggest that this structure must be the same even for higher-dimensional cases of scatter-
ing between two regular singular points. All the nontrivial information of the greybody factor
in this form is coming from vy, as its behaviour will strongly depend on global properties of
the solutions. We believe for now that is as good as it gets with respect to having an explicit
formula for the transmission coefficient.

For the greybody factor to be real and positive, we need to ensure several constraints. First,
vgc must be real for y, to be real. So physically we expect Reo e = 0 and the corresponding

asymptotic behaviour for Py; is given in the previous chapter?. Further, as Qg > Qc¢, for the

2We hope this can be checked in the future by perturbative expansions.
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numerator to be positive we need either w > Qym or w < Q.m. For the intermediate case,
Qpm > w > Qcm, we expect that the greybody factor is going to be negative, an indication of
superradiant scattering. Of course, this depends also on the sign of the denominator of (4.15).

Let
w—Qgm N w—Qcm

2Ty 2T ¢
It is best to write the denominator as coshA — coshvgc. The denominator is positive if |A| >

Alw,m) =

(4.16)

[vuc|. We cannot guarantee this is always true inside the range Qgym > w > Qcm without proper
knowledge of vyc. By analysing the flux of radiation on both horizons, the authors of [147]
support the suggested superradiant regime. However, as A necessarily becomes negative inside
this regime, if vyc is real, we actually expect a divergence when |A| = |vyc| in the greybody
factor for a real frequency! This is technically not a quasinormal mode, as the frequency is real.
However, we notice that this equality actually corresponds to a reducible case of monodromy
representations, so this limit has to be analysed more carefully with respect to the discussion in
[104].

So we cannot prove superradiance occurs for the whole range Qpm > w > Qcm and this
deserve a more detailed analysis in the future. Two possibilities to obtain more information
about the behaviour of oyc are to study perturbative expansions for w near the superradiant
boundaries or to perturbatively calculate ogc via Pyy asymptotics. In the following, we stick
to the superradiant regime suggested above based on the evidences of [147].

What about the asymptotic behaviour of our expression? For low frequencies w — 0, vy,

goes to a constant if we neglect the w dependence on vgc and A(0,m) > vyc. If vge — (%}’—Z -

Qcm
2T¢

but this does not seem physically reasonable. Those seem to be the easy guesses. Thus it

), we have that y, — 1. If vgc — A, the greybody factor diverges, as discussed above,

seems reasonable to expect that y, tends to a constant for small frequency when m # 0. This
would correspond to a fully delocalized wave with finite angular momentum and with a nonzero
probability to tunnel between the horizons.

In the m = 0 case, we might expect to obtain the familiar result of the Schwarzschild case
where y, — 0 for low frequencies, as the Compton length of the radiation is much larger than
the black hole radius and the black hole becomes transparent to the radiation. However, in
Schwarzschild-dS case, a curious behaviour happens with the greybody factor of a massless
minimally coupled scalar field when [ =m =0: as w — 0, yg goes to a constant [148, 149, 150].
The authors of [149] suggest an explanation: a zero energy mode is fully delocalized between

both horizons and thus there is a finite probability for this mode tunnel between the horizons,
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as we suggested above. This can also be obtained by this expression if vyc goes to zero in
this limit in an appropriate way, as (4.15) should also work for the minimally coupled case. In
the conformally coupled case though, we expect that vy goes to zero for small frequency and
m=0.

For arbitrarily high frequencies, w — oo, we expect that y; — 1, as this limit corresponds to
zero impact parameter and very small wavelength, so all radiation must be absorbed. For very

large frequency, we have

ewThe 1 1

if vgc grows slower than a power of w.
Our scattering expression is very interesting because shows explicitly that the transmission
coeflicient is zero in the superradiant case w = Qgm, corresponding to a pole in the scattering

matrix. In fact, the poles of the scattering matrix are the complex zeros of (4.15)
w=Qycm+2ninTy c, (4.18)

for n an integer, in agreement with [151, 61]. For radiation with frequencies in the superradiant
regime, the black hole can actually transfer part of its angular momentum to the wave, which
scatters back to infinity with more energy than it initially had. If one puts a “mirror” surround-
ing the black hole, one can actually create what is called a black hole bomb [152, 153, 154].
The pressure of the radiation can increase without bound inside this contraption, thus the bomb
alias. In fact, the scalar field mass can act similarly as a mirror because of its interaction with
the gravitational potential of the black hole.
Summarizing, we expect the following regimes for the greybody factor (4.15)
w>Qym or Qcm>w Normal scattering
(4.19)
Qpm > w > Qcm Superradiant scattering
These conditions can be related to the impact parameter classically given by b = L/E ~ {/w,
with £ and & the total angular momentum and energy of the incoming radiation. In fact, we
have that
— ===~ == (4.20)

which is of order 1/b for an axisymmetric incoming wave. If b is very small, the radiation
will be absorbed with high probability while if b is very large we expect no absorption. For a

fine-tuned impact parameter, we expect superradiant scattering.
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Finally, quasinormal modes correspond to complex frequencies such that y; diverges, that
is, at the poles of (4.15). Taking a look at (4.12), we see that the poles are obtained from

ofc = 0y —6c + 2n, corresponding to the transcendental equation
vac(w,t,m) = A(w,m) + 2xin, nez. 4.21)

This is similar in structure with known results about quasinormal modes [34].

4.1.2 Scattering Through the Black Hole Interior

To finish this section, we comment on one of our speculations in [38] about scattering inside
eternal black holes. Up to this point, we have studied the external patch of Kerr-(A)dS black
holes in Chambers-Moss rotating coordinates. As in the Schwarzschild and Kerr case, we can
study what is the global structure of Kerr-(A)dS spacetimes by analytic continuation of our
coordinates to its maximally extended spacetime [151, 61]. The result is that these eternal
black holes have an infinite number of asymptotically distinct regions, as shown in figure 4.2
for the Kerr-AdS black hole’. We have been studying region I up to now and the hyperbolic
lines shown there correspond to trajectories of constant radius. An external observer in this
region can never reach the black hole unless it gives up being in constant r paths. Transversing
the outer horizon r, implies change to appropriate Kruskal-like coordinates. We are then in
region II and again we can go through the inner horizon to reach region IIl. This is a quite
curious statement but has no useful application in everyday life, as astrophysical black holes
have not this kind of infinite global structure (see introduction). However, if we are interested to
understand what is the CFT dual of an eternal black hole and try to use this duality to describe
physical systems in the lab, this might be an important point. If we have infinite different
asymptotic regions, which one shall we choose to define our dual CFT? Or should we have
an infinite number of CFT vacua? These kind of questions often do not appear because the
literature usually considers Schwarzschild and extremal black holes, both having a finite casual
diagram.

In terms of monodromies, we can start with a ingoing/outgoing state @, at r = co and
follow the closed path y shown in figure 4.3, enclosing both inner and outer horizon. Avoiding

the discussion of the location of the branch cuts, we expect the result of following this path is

Doy = P M M-, (4.22)

3The Kerr-dS black hole global structure is a little bit more complicated, infinite also horizontally. For mor on
that, see [52, 61, 155].
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Figure 4.2: Causal diagram for the maximally extended Kerr-AdS black hole for 6 = /2. For

each different asymptotic region we assign a different Hilbert space.

so the connection matrix in this case is exactly the composition of two monodromy matrices.
If repeat this n times, the connection matrix will be the n-th power of this process.

How does AdS/CFT cope with this is a very interesting question which we do not have
a precise answer yet*. For a related discussion about this, see [29]. One speculation we can
make is the following. Consider that each asymptotic region I has an associated Hilbert space
H;. If we study only local propagation in one of those Hilbert space at low energies, it seems
safe to discard the contributions from the scattering from other regions. However, low energy
means larger spreading in the wave function so one might wonder if those infinite Hilbert

spaces should contribute to the S-matrix. Classically, the contributions from these regions

“This question has actually been indirectly suggested by Prof. Jorge Zanelli in the IFT Quantum Gravity school
last year, in which this author was present. Prof. Zanelli asked Prof. Juan Maldacena about this and received no

definitive answer.
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Figure 4.3: The schematics of scattering. On the left hand side, the constrain that the solution
is “purely ingoing” at r = r;.. On the right-hand side, the monodromy associated with a solution

that emerges at a different region 1.

should interfere destructively in the path-integral, but if we consider quantum corrections, those
might become important. This also touches the delicate matter of unitary evolution in quantum

gravity, which is also a tricky subject as the firewall diatribe suggests [6].

4.2 Kerr/CFT Correspondence and Hidden Symmetries

The Kerr/CFT correspondence is a proposal put forward by [33] as an attempt to describe
the CFT dual theory of an extremal Kerr black hole, without relying to string theory. Extremal
black holes are well-known for their nice properties, as its hidden conformal symmetry near the
horizon, related to the fact that extremal black holes are defined as zero temperature, Ty = 0,
black objects. These are also BPS states in supergravity theories so they play an important role
as supersymmetric vacua. Thus, it seems a very good place to start looking for a CFT dual of a
black hole. The Kerr/CFT correspondence relies on this hidden conformal structure of extremal
black holes to connect with an appropriate CFT description allow us to organize the spectrum
of excitations of these black holes. Below, we review this subject as presented in [143]. For an
extensive review, see [156].

We start by recalling the Kerr black hole metric

22sin2022A 2., 270
Zdr +—2((? +a”)dd — adi)” +p~do” , (4.23)
0

A )
ds? =~ (di - asin® 6dp)* + 7
0
with

A=/ -2Mp+d*, p* =1 +acos?b, (4.24)

where M is the black hole mass, J its angular momentum and a = J/M is their ratio. In the



4.2 KERR/CFT CORRESPONDENCE AND HIDDEN SYMMETRIES 109

extremal limit, we make a = M and therefore

re=a=M, S =27TM2=27TJ,
1
Typ=0, Qp=—.
H H= 507
where S is the black hole entropy. The extremal angular velocity actually corresponds to a
horizon rotating at the speed of light. Therefore, we expect that the dual CFT must be chiral.
It is very curious that these black holes have finite entropy while having zero temperature,
indicating that they are degenerate vacua. The Near-Horizon Extremal Kerr metric (NHEK)
[157] is obtained by changing the coordinates to

F—M Af . f

s t:_’ =Q0—
AM 2M $=¢ 2M

=

in the Kerr metric and, taking 4 — 0, we obtain the NHEK metric

d 2
ds? = 20%] | 5 +d6? — Pdi® + N (d + rd)? |
I

Q2 - 1 +00520, Ao 2sin6 '
2 1 +cos?0

This metric represents, for each fixed 6, a deformed AdS 3 spacetime, corresponding more pre-
cisely to a Hopf fibration AdS, =S I, Thus the SL(2,R); X SL(2,R)g isometry of AdS 3 breaks
down to SL(2,R) = U(1) isometry. The symbol x represents a semi-direct product, meaning
that only the right hand set is a normal subgroup. This means that a ¢ rotation represents a pure
isometry but the other isometries mix rotations with SL(2,R) transformations. So we can say
the extremal Kerr metric has a hidden conformal symmetry in its near-horizon limit.

General Relativity is a diffeomorphism invariant theory: diffeomorphisms are seen as gauge
transformations. However, solutions of Einstein’s equations can have symmetries which are
not “pure gauge” in this context. Let us suppose that these symmetries preserve the asymptotic
boundary conditions of the solution. We define the Asymptotic Symmetry Group (ASG) as
the quotient of Allowed Diffeomorphisms over Trivial Diffeomorphisms. Representatives of
this group are diffeomorphisms preserving the asymptotic conditions but changing the bulk
structure. This has been studied by Brown and Henneaux [158] in the context of AdS3 and is
a very important paper in general relativity as it shows that not every diffeomorphism is a pure
gauge transformation in this theory. This has been acknowledged by Dirac a long time ago

[159]. Every attempt to canonically quantize gravity should pass through this point.
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For each diffeomorphism £, we associate a conserved charge Q; via L;® = {Q;, D}, where
{.,.} represents Dirac brackets. ASG diffeomorphisms preserve the boundary conditions and
have finite boundary charges. Trivial diffeomorphisms have null charges at the boundary. In

general, the asymptotic charges algebra can present a central charge [160]

{Qr, Oy} = Q1o + s (4.25)
where .
ey =g j; ) Ky[L:g,9] (4.26)

with gup = gap + hap being the metric expansion in background plus its asymptotic part, 0% is

the boundary of a spacelike hypersurface and the 2-form is given by

1 1
K((h.g) = =7 €opunedx” dxP| L' D h= Do + L D" + ShD ¢
1
+5h7 (D' Ly = Do), (4.27)

where D, is the covariant derivative restricted to . The full details and formulas of this con-
nection between symmetries and asymptotic charges can be seen in [161, 162].
In the NHEK geometry, we suppose that g, = gap + hap, and we choose the following

asymptotic boundary conditions

hie = OGP, heg = hgy = O(1),
her = hoo = hoy = hg = O(™Y),
hyr = OG3),  hy=hg,=002).

These boundary conditions where introduced ad hoc in [33] but has been physically justified by
a renormalization group flow reasoning given by Cunha and Queiroz [163]. The most general

diffeomorphism ¢ preserving the above conditions, via Lsgap = hap, 1S given by
{(€) = e()dy — €' ($)0: .
If we choose a Fourier representation ¢, = {(—e~""%), we obtain the Witt algebra
[$nsEm] = i(n—m)nim -
Using these diffeomorphisms, we can calculate an expression for the central charge using (4.26)

c{n{m = _l‘](m3 + 2m)6n+m’
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and, defining the adimensional operators
3J

th = an + 75,1,

the algebra (4.25) of the asymptotic charges O, results in a copy of the Virasoro algebra [164,
165]
J
(L L] = (1= 1)Ly + 2 (m* = D

From this algebra, we see that the central charge of the dual CFT is
cp=12J/h.

In the following, we make 7 = 1.
Now suppose there exists a quantum field in thermal equilibrium with the black hole with

Boltzmann weight exp (——(“’_%H ’”))

. The Frolov-Thorne vacuum [166] is an attempt at general-
izing this state in thermal equilibrium for Kerr (up to the speed of light surface). However, it
is shown in [167, 168] that the Frolov-Thorne vacuum is not well-defined for bosons due to an
infrared divergence. On the other hand, for fermions this vacuum is well-defined [169].

The extremal limit Ty — O of this weight seems to diverge, but one has to notice that, in

near-horizon coordinates,

pioiind _ gingttin ZM“’T"" (4.28)
and we can rewrite
exp (—%) = exp(—;—i - ;—I;) , (4.29)
with M - M
Ty = m k=5 (4.30)

In the extremal limit . = M = a, we have that Tg = 0 and 77 = 1/2n. This temperature can
be associated to the action of a U(1) symmetry generated by dy4 and relates to the chiral sector.
Notice that this limit only makes sense for modes in superradiant limit w = Qgm.

Now, the most important consequence of this whole discussion. Suppose that we have a 2D
chiral thermal CFT at temperature 77, = 1/27 and central charge ¢y = 12J. According to Cardy
formula [170], the CFT entropy is

2
Scrr = ?CLTL =2nJ =S pH,
corresponding exactly to the Kerr black hole entropy! That is an important indication that we

can organize the spectrum of states of a black hole using a 2D CFT description. As a caveat,
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this formula is valid if 77 > Ag, where A is the CFT lightest energy gap, but in general it is
expected that black holes should have such mass gap [171].

Despite the apparently incidental correspondence between S crr and S py from this geo-
metrical point of view, the Kerr extremal scattering amplitudes of a spin zero probe field also
match with the correlation functions of a chiral CFT, suggesting that the correspondence holds
even semiclassically [143]. That is one of the reasons why we discussed the AdS, X S2 case
in section 2.2.1, as a related but simpler case of this underlying structure of near-horizon limits
of extremal black holes. In fact, one can show that this near-horizon structure appears even for
higher-dimensional black holes [172, 173, 174].

Being the correspondence purely geometric, it is not known if this construction is main-

tained in the full quantum theory. Some challenges in this area are:
1. Find the dual CFT in the extremal and non-extremal case (Ty # 0);
2. Exhibit specific models of the duality in String Theory (ST);
3. Show that the duality is maintained even non-perturbatively;
4. Extend the results to more general gravitational cases;

The case for the validity of item 1 has been made mostly on the analysis of scattering fields
around the non-extremal Kerr geometry, which was shown to present two copies of S L(2,R)
consistent with the presence of a Virasoro algebra [175, 176, 66, 177]. However, the asymp-
totic symmetry group techniques do not work in this non-extremal case. There has been some
progress on the construction of string theory realizations of the NHEK geometry, but the result-
ing CFTs, called dipole CFTs, are non-relativistic and show non-local properties making them
hard to analyze [178, 179]. The item 3 above stands about the question of quantum integrability
of the conjectured duality, if it goes beyond low energy, weakly coupled states, but in principle
one needs more information about item 2 to understand this.

Our work can shed some light on the CFT structure of scattering coefficients, as discussed
in [40]. There, the authors have shown that the scattering amplitude (2.38) for a minimally

coupled massless scalar field in the Kerr metric can be rewritten as

7T = sinh 27(wy, + wg) sinh(2raiyr)
 sinhz(wy, — i) sinhw(wg + Qigr)

(4.31)

where w; = a4 — - and wg = a4+ + @—, so we have a similar interpretation of left and right

moving modes as in the discussion above for a non-extremal black hole. First, let us pick an
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eigenfunction v, ,,(r) of the scalar wave equation. If we take (r—rgy) — €2 (r — rg) around the
horizon, we know that this solution picks a monodromy e~ 2 with ay = (w—Qum)/4nTy.
However, if consider the full wave function e‘i“"+im¢tpw,m(r), we see that it is monodromy-
invariant if we make the identification ¢t ~ ¢ +i/Ty and ¢ ~ ¢ +iQy /Ty and we encircle the
horizon twice. This is exactly the kind of periodicity we expect to have a thermal Green func-
tion, defining a KMS state in the theory. Therefore we see that the black hole temperature
is also justifiable thermodynamically in this way via monodromies. But what about the left
and right modes? If we choose conjugate variables as #7,1g, the identification we made above

corresponds to (f7,tg) ~ (t1,tg) + 2mi(1, 1) and the corresponding temperatures are

+7_ —r_
T="00 =T (4.32)
4ma dra

which simplify to the Kerr/CFT case in the extremal limit ry =r_ = a.

So (4.31) seems to indicate a thermal state of a 2D CFT with a left- and right-moving sectors
with energies wy g and temperatures 77 g. The irregular monodromy a;;r should correspond
to the conformal weight of the CFT operator dual to the scalar mode. However, as noticed by
[40], this CFT description is only valid for low energies because only then aj;, is approximately
constant. In general, as we know, this coefficient depends on w and m, which implies a non-
trivial coupling between the two CFT sectors, complicating its description. This suggests that
we should expect a CFT dual only for the low-energy limit.

On the other hand, as we described above, the scattering amplitude SL(2,C) structure is
pervasive for stationary black holes in any dimension, because it is a result of the group proper-
ties of the monodromy group and connection formulas. In particular, we have derived equation
(4.15) for the first time for the Kerr-dS black hole, whose isometry group is not the same as in
the AdS case. This indicates two opposite points of view. Maybe the SL(2, C) structure appear-
ing in scattering theory of black holes is just a coincidence and there is no deep CFT connection
in general. Those are just two different theories with a similar group structure. However, the
extremal case of this conjectured duality is a lot more compelling that just a mathematical co-
incidence because this structure also appears geometrically in the asymptotic symmetry group.
This suggests that small deformations of this picture should be valid for near-extremal black
holes. In any case, extremal black holes are well described by D-branes systems in string
theory.

Now we present another kind of symmetry which is surprisingly related to the hidden sym-

metry we just discussed above in the context of isomonodromic deformations.
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4.2.1 Isomonodromic Flows and Hidden Symmetry

In the previous chapter, we studied how the theory of isomonodromic flows allow us to solve the
monodromy problem of differential equations via Painlevé asymptotics. An important ingredi-
ent that makes Jimbo’s derivation work is that the isomonodromic flow of a 4-point Fuchsian
system has a fixed point at a 3-point system belonging to the hypergeometric class. This sug-
gests another hidden symmetry for black hole scattering which might be related to the Kerr/CFT
correspondence [38]. This happens because the hypergeometric limit of the isomonodromic
flow is actually correspondent to an extremal limit of the original black hole metric.
Consider the Garnier type ODE

1-6p 1-6; 1-6 1

z -+ z—ll ’ z—tt_z—/l

52y +

Z

)8Zy+

( K tt-DK . A=
2(z=1) zZz—=D@E-0 z2z—-D(Ez-4)

We want to check the limit # — 1 considering the critical behaviour of isomonodromic variables

y=0. (4.33)

(A(1), u(t)). These variables are solutions of the Garnier system
di dK du dK
—_— = —=—— 4.34
dt du dt da ( )
Assuming that 0 < Reo < 1, we can plug the critical behaviour 4 — 1+ A(o,¥)(r — '~ into

(4.34) to discover the critical behaviour of . We thus get the leading behaviour (see (3.31))

) — 24 61 +6,—)(t— 1)1, (4.35)

2 2A(0)
Note that o = 071, in both formulas. With these asymptotic formulas, we can calculate the t — 1

limit of (4.33), which is given by

1-6o 1—91—@) ( K L )
62 + + Oy + + = (), 4.36
Y z z—1 Y 2(z=1)  z(z—-1)? y (4.36)

with
L= }in}[/l(/l— Du—t(t—1K]. (4.37)

Careful calculation of the above formula using the asymptotics of 4 and u gives
1 ~ ~
L= Z(Gl +6,—0)O01+6;,—0+2)

1
= 1(91+9t_0'_1)(91+9t_0'+1)

1
= Z[(91+91—0')2—1],
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where we used that §, = 6, — 1 to match Heun equation. This limit is unique up to different
boundary conditions on A(f). We notice that for Reo = 0, this derivation is slightly different
because other terms become relevant in the asymptotic expansion.

Now we compare this isomonodromic limit with the extremal limit of a Kerr-AdS black
hole for definiteness. Consider the radial equation of conformally coupled scalar massless
perturbations of the Kerr-AdS metric in Heun form

Lo, 16 120 « e-Dh )
' i )Z (Z(Z_l)_Z(Z—l)(z—t) y=0. (4.38)

%y +
Y z =1 z-t

We shall take (r1 = £, = ry,r3 =r_,r4 =), (z =0,z = 1,7 = t,z = o) which then implies
that

B o G s N (o vt s RN (O () 439

(rs=O0r-=0)’ (rs=O0r-=9)’ ROl

In this convention ¢ is a pure phase. We also have that

6iy>  w(*+a*)—am
G = — _ 4.40
TR @@= (440

6iy>  w(r?+a*)—am
0 =— - , 4.40b
R N P Y o Y (4:406)

0 = 61')(2 w(r% +a®)—am (4.400)
TN =00 =D -1 '

and

tt—1) - 3(t—ze0) f(ry)
1= Zeo A(t=Dlry = ¢

Note also that 6 = —6) for w,m real.

tt—1h=

|
~3 [(z=1)(60 +6;) +1(61 +6,)] (4.41)

If we take the extremal limit ry — r_ = ry, we have that t — 1 and 61,6; and & diverge.
In fact, we have that 6; = —0;/(t— 1) and 6, = 6;/(t — 1). Although the @’s diverge separately,
their sum 6 + 6; — 0, implying that (4.38) converges. Moreover, #(t — 1)h has a finite limit,
as one can check in (4.41). To properly calculate the confluence limit, we multiply (4.38) by
z2(z—1)(z—1) and let t — 1. This entails to

1-6p 2 8, Li-xo L
02 + + + oy + + =0. 4.42
Y z z—1 (z—l)z) Y (Z(Z—l) (Z—l)z)y (42
with
6 w(*+a®)—am . 6i(r7, +a%)

1
—, 6= 2w-Qum), ko=-[00-2)>-6%], (4.43
N Crar =D T R ¥ @R o= gl el (49
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and

3f(ry)  6i(r3 +a*)Im¢
+
Alrg —¢? Alrg = *

This is a confluent Heun equation in non-canonical form and corresponds to the wave equation

Ly = limu(— Dh = X(w—Qpm). (4.44)
-

of a conformally coupled scalar field in the extremal Kerr-AdS background. More generally,
the Teukolsky master equation for this metric should also reduce to a confluent Heun in the
extremal case. However, this still is not a hypergeometric equation. We need to constraint
6, = 0 in order to make z = 1 a regular singular point. This can happen in at least two cases: (i)
in the superradiant limit w = Qym, and (i1) in the rotation limit a = L, in which )(2 = 0. Case
(1) corresponds to the A # 0 generalization of a reduction first noticed in [180]. As discussed
above, the modes in the near-horizon region correspond exactly to the original superradiant
modes of the full metric.

Case (ii) is also intriguing because it is an upper bound in the rotation parameter a. In the
coordinates we are using, this corresponds to the Einstein universe in the boundary of Kerr-AdS
rotating at the speed of light. This is a degenerate limit of the Kerr-AdS metric and, according
to [181, 182], it can also be studied in a conformal field theory in a rotating Einstein universe.
This is similar to a extremal limit because the horizon is also rotating at the speed of light in
that case. However, [181] argue that this cannot be made finite by a scaling limit as in the
extremal case.

As far as we know, those particular extremal limits have not been acknowledged in the
literature [183], although there are some works in the near-horizon extremal case, most notably
[67]. This is probably the case because, if we take the extremal limit of the original radial
equation with 5 points (2.123), we get an equation with 4 singular points in the Heun class. It
seems that the work by Suzuki ef al [41, 62, 63] has not been widely acknowledged, as they
show that one of the singular points is actually removable and thus we get a hypergeometric
equation. Summing up, the connection problem can thus be explicitly solved in the same
terms as before. This suggests that conformal scalar excitations of a Kerr-(A)dS black hole
can also be described by a CFT, along the lines of the Kerr/CFT correspondence, as we have a
hypergeometric connection.

The new hidden symmetry we mentioned in the beginning is slightly different but may be
also related to the Kerr/CFT correspondence. The extremal limit taken above is not isomon-
odromic, as the 6; change. But if we see this limit as the result of an isomonodromic flow,
we have the curious result that a whole 1-parameter class of black holes have the scattering

properties equivalent to a particular extremal case. This confluence symmetry of scattering
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to (adS case)

to (dS case)

N

Figure 4.4: The physical space of Kerr-(A)dS isomonodromic flow. The solid lines describe a

family of solutions with the same monodromy and thus with same scattering amplitudes.

amplitudes is depicted in 4.4.



CHAPTER 5

Conclusions and Perspectives

“The young man knows that he is irretrievably lost. This is no town of cats,
he finally realizes. It is the place where he is meant to be lost. It is another
world, which has been prepared especially for him. And never again, for
all eternity, will the train stop at this station to take him back to the world

he came from.”

—HARUKI MURAKAMI, 1Q84

Black holes are very interesting systems with applications ranging from astrophysics to
dual descriptions of conformal field theories, as in the ubiquitous AdS/CFT correspondence.
First relegated to just mathematical curiosities, they have changed from being exotic theoretical
constructs to be abundantly used (and abused) in several areas of modern physics. However,
both observationally and theoretically, these systems still withhold a lot of mysteries, both in
the sense of being black (no light come out of it) and of being holes (everything falling there
is irretrievably lost). The biggest mystery is definitely the one of quantum gravity. Not just
the singularities, but the intrinsic nonlinearity and fundamental nature of gravity and spacetime
play key roles in the non-renormalizable aspect of general relativity, hindering the advances
in the canonical quantization program. String theoretical advances have increased a lot our
understanding of gravity, specially in the case of black holes. Vafa and Strominger [10] have
calculated the entropy of a supersymmetric black hole by counting the number of microscopic
configurations with same charges for a particular system of D-branes and obtained the hori-
zon area proportionality in the geometrical limit. Several calculations along these lines have
appeared confirming this counting for other types of black holes with less supersymmetry, as
in the works of Ashoke Sen and collaborators [11, 12, 13, 14]. Most and foremost, AdS/CFT
calculations have improved dramatically how to characterize a gravitational system in terms
of a gauge dual. In this framework, black holes appear as duals of thermal plasmas on the

gauge side. However, this correspondence is highly entangled and nonlocal, so questions about
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unitary evolution and the fate of a infalling observer, which require a geometrical and local
interpretation, still need a better understanding [6].

All this advancements are sometimes blocked by the lack of a more thorough understanding
of general relativity itself, its symmetries and solutions. Sometimes there is no consensus what
is the correct physical picture of certain situations involving a gravitational system, as in the
case of the fate of an infalling apparatus or the final state of black hole evaporation. However,
some other times the lack of understanding is due to our limited knowledge of the mathematical
physics involved. That is exactly the case this thesis revolves, in which we explored a general
method for finding scattering coefficients in the very general class of Kerr-NUT-(A)dS black
holes in 4 dimensions, as developed in our paper [38]. We have shown in chapter 2 what we
believe to be the best way to describe scattering in this case, using the monodromy technique
of Castro et al [39]. This technique allowed us to represent transmission coefficients for the
wave equation radial part in terms of only monodromy data: local Frobenius coefficients and
Stokes coefficients. In fact, without regarding to approximations, this is the only way we know
how to obtain a closed expression for these scattering amplitudes. In essence, we substitute
the problem of finding an explicit solution of the ODE in question (generically transcendental,
thus the approximations) to a simpler set up we can actually control better than other analytical
methods. We have shown that in the conformally coupled case, the radial wave equation has a
removable singularity and thus reduces to the special case of a Heun equation with 4 regular
singular points. This lacks the complication of an irregular singular point, as in Kerr scattering,
but the Heun monodromy group has a richer structure, demanding more effort to understand
than the hypergeometric case. Finally, we have also described in more details the angular equa-
tion, the (A)dS spheroidal harmonics, being a natural generalization of spheroidal harmonics.
We have shown that this can also be reduced to a Heun equation, valid for any value of the
scalar coupling. Incidentally, the resulting equation has also been named Magnus-Winkler-Ince
equation, which is a Hill type equation with important applications in the literature of periodic
systems [184].

Although we can always find explicit SL(2,C) representations of the n-point monodromy
group, it is not that easy to understand its general structure. Castro et al have mentioned the
Kerr-AdS case in appendix B of [40] as not being possible to tackle using only monodromies.
In chapter 3, we tried to convince the reader that this is actually possible. We have described re-
cent developments in the understanding of generic SL(2,C) monodromy group representations,
as described in [110, 112], deeply related to the works of Fricke and Klein [111] and Jimbo
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[104]. We have shown how to parametrize the monodromy representations in terms of trace
coordinates. In particular, monodromy groups with n > 3 depend explicitly on the composite
traces m;; = Tr M;M ; = 2cosho;; and there lies the core of our problem. The symplectic struc-
ture of the monodromy group has also been presented in relation to the space of flat SL(2,C)
connections, which has important applications in 2D conformal field theory, in particular in the
calculation of classical conformal blocks expansions [105] and the relation of ¢ = 1 correlation
functions and tau functions [107, 106, 109]. These developments are related to the recently
discovered AGT relation [185] where instanton partition functions of certain N = 2 gauge the-
ories were are related to Liouville conformal blocks. It is one of our plans to continue this line
of study with the experience got in this thesis. In particular, we hope to address the problem of
irregular conformal blocks, in relation to irregular singular points of Fuchsian systems [186].

The most important work to us enlightening the 4-point monodromy group structure is
due to Jimbo [104], which connects Fuchsian systems with 4 singular points with Painlevé
transcendents via the theory of monodromy preserving deformations, developed by the same
author, Miwa and Ueno in a series of very important papers [97, 98, 99]. This theory was fur-
ther worked out to be applicable to the more general n-point case, so-called Schlesinger flows.
The addition of more singular points does not changes very much the conceptual picture of
isomonodromic flows and thus we focused on the particular n = 4 case. This is the natural
place to start the study of these kind of flows, the related Fuchsian system presents one extra
parameter, corresponding to an apparent singularity in the Fuchsian ODE, serving as a defor-
mation function A(¢). It turns out that the integrability conditions for the deformed Fuchsian
system is exactly Py; equation for A(z).

We have also discussed important properties of Painlevé transcendents, as its symmetries,
hamiltonian structure and confluences. An important fact appeared here: Painlevé functions are
the classical equations of motion of Heun hamiltonians. Both special functions are also related
to hypergeometric functions by some special limits and confluences, forming a very powerful
triad in mathematical physics. In particular, via confluence, we can obtain every P; equation,
each directly related to a confluent reduction of Heun equation.

Finally, we presented how Schlesinger system asymptotics solve the Py; connection prob-
lem in terms of the Fuchsian system monodromies. Painlevé asymptotics depend explicitly on
the composite monodromy parameter o, paving the way to a solution of our original scattering
problem. The solution depends on the initial condition of Py; flow, which is given by our Heun

equation of interest. In particular, we presented a plot of Py near one of its critical points by
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inputing initial conditions from Kerr-dS scattering. Although this numerical computation relies
on the numerical evaluation of angular eigenvalues C¢, the behaviour seemed very robust in the
examples we tried. We computed the eigenvalues of (A)dS spheroidal harmonics via Leaver’s
continued fraction method [42] with partial success, obtaining confident results only for the
[ = m case. We plan to tackle this problem as soon as possible and obtain trustable numerical
results for applications.

After the complete discussion of the mathematical physics involved in the scattering prob-
lem, we turned to theoretical applications. In chapter 4, we presented a general formula for
the scattering amplitude between two regular singular points of an ODE with n singular points.
This equation follows from the monodromy technique: scattering problems typically impose
ingoing/outgoing boundary conditions at some singular point, implying a diagonalizable mon-
odromy, and by the monodromy group structure, we can find an explicit parametrization for
scattering amplitudes in terms of monodromy data. However, the typical scattering problem
in asymptotically flat spacetimes usually imposes plane-wave boundary conditions at spatial
infinity, and in this case our expression is just part of the solution. Plane-wave scattering is
allowed when we have asymptotic plane-wave expansions, which occur when there is an ir-
regular singular point. In the (A)dS cases, there is no irregular singular point and, thus, no
plane-wave asymptotics.

A caveat resulting from having r = co removed from our wave equation is that its mon-
odromy becomes trivial and the singular point becomes regular. Therefore, the parameteriza-
tion for this case is not so clear and we do not have a solution for this problem yet. Although
the Kerr-AdS case should be also solved along the same lines, we postpone this case for the
future when this matter becomes settled in our minds. Luckily, the Kerr-dS scattering happens
between two singular points, the event horizon r; and the cosmological horizon r¢c. We thus
presented a very concise and interesting formula for the Kerr-dS scattering amplitude in (4.15).
This equation suggests two boundaries for superradiant scattering, w = mQpg and w = mQc,
however this still remains to be checked numerically. We also discussed several constraints
we expect the scattering amplitude should follow. For high frequencies, we expect that the
amplitude goes always to 1 and for low frequencies, we expect it can go to constant or to zero,
depending on m. The zeros of the scattering amplitude also match results in the literature.
Finally, we presented a transcendental equation for the quasinormal modes of Kerr-dS black
holes. This should definitely be a matter of future digression, as quasinormal modes have an

important role in the AdS/CFT correspondence and the stability analysis of black holes. In
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particular, most applications of gauge/gravity duality use static backgrounds and we need more
understanding of rotating plasmas. For more about this, see [48, 141, 140, 36]. Other even less
explored aspect is what is the gauge dual of NUT charge? There has been some studies about
this in [142, 90, 91, 92].

We have also made prospective speculations about semiclassical descriptions of black holes.
First we addressed some comments about scattering between different asymptotic regions in the
Kerr-(A)dS maximally extended spacetime. Timelike trajectories exist in which radiation can
transverse the black hole interior and reach the other side. Classically it seems justifiable to
trace out the contributions of the infinite asymptotic regions, but we suggest these should be
relevant for quantum regimes. This is also a problem for the precise definition of the asymptotic
region in AdS/CFT in rotating backgrounds. Which asymptotic region shall we choose and
what is the meaning of the others? These questions can also be relevant to the dual description
of the black hole interior, as those are more smooth in these rotating backgrounds, and shed
more light on matters of unitary evolution and final fate of evaporating black holes.

The Kerr/CFT correspondence is a very interesting suggestion for a CFT description of
the near-horizon region of an extremal rotating black hole [33]. This correspondence relies
on a hidden conformal symmetry, emerging in the near-horizon limit, suggesting a way to
organize the spectrum of low-energy excitations of black holes. This conjecture is supported
by scattering computations in the NHEK metric and for low-energy modes of non-extremal
Kerr black hole. For higher frequencies, one does not expect such simple description, as the
left and right-moving sector of the CFT should couple non-trivially. For the Kerr-AdS metric,
we derived its extremal limit for a conformally coupled scalar field and we have shown that the
radial equation reduces to a hypergeometric equation in two special limits (i) in the superradiant
limit w = Qgm and (i1) in the rotation limit a = L. The first case must be related to the near-
horizon extremal limit taken in [67]. This also suggests a CFT description for these black holes
and definitely deserves a careful investigation in the near future.

Another kind of symmetry related to the Kerr/CFT correspondence appears in isomon-
odromic flows. The Schlesinger flow has a hypergeometric fixed point when we let t — 0, 1, co.
As the monodromy data is preserved by the flow, a whole class of different backgrounds having
scattering amplitudes equivalent to the ones of an extremal case. Of course, this seems just an-
other way of explaining the meaning of isomonodromic flows, but we imagine this observation
can have interesting applications. However, up to now, we do not see how this could simplify

even more what we have already discussed in this context.



CHAPTER 5 CONCLUSIONS AND PERSPECTIVES 123

Last, but not least, we suggested in the text that our scattering formula should work also
for higher dimensional cases. The difference between Kerr-NUT-(A)dS black holes in higher
dimensions lies in the polynomials A, and A, which have higher orders and thus more roots.
Therefore, our radial ODE will have more singular points and that is it. So we can still address
scattering as we did in this thesis. However, the main difficulty is how to calculate the composite
monodromy in this case. For a system with n > 3 points, there are actually n — 3 apparent
singularities and thus n — 3 different isomonodromic flows. This is described in [74]. There it
is shown that solutions of the Schlesinger system have the Painlevé property for any number of
singular points. Therefore we should expect a related asymptotic structure. We do not know if
this has been addressed in the literature so this seems a very interesting issue to be discussed
later.

Another point, as we mentioned in the discussion about Painlevé VI equation, is that the
other P; equations can be obtained by certain confluence limits from Py;. Those are directly
related to Heun functions as each Painlevé equation correspond to a certain confluent form of
Heun equation. Therefore, the singularity structure with respect to the regular singular points
is essentially the same for both equations. This allow us to obtain results also about the Kerr
black hole, whose Klein-Gordon equation is a confluent Heun equation, allowing us to extend
the results of [39] via isomonodromic deformations of Py. The asymptotics of Py and Pj;
have also been worked out by Jimbo in his inspiring paper [104]. This latter case is actually
related to the doubly confluent Heun equation, corresponding the extremal Kerr case.

In this thesis, we believe to have opened a whole avenue to treat very old problems with a
new perspective from the theory of isomonodromic deformations. This mathematical insight
is very effective to treat scattering problems in general and have also applications in several
other areas of physics and mathematical physics. In particular to us, the application for wave
scattering in black hole backgrounds suggests a new understanding of the underlying hidden
symmetry of these important systems. We expect to have contributed to the quest of understand-
ing more about general relativity and quantum gravity and we hope our work can be fruitfully

enjoyed by other researchers in several areas.
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APPENDIX A

How to draw a spacetime on a finite piece of paper?

To understand how to draw a Penrose diagram, we present the simplest example: flat spacetime
in 4 dimensions. The metric, which is the mathematical object used to measure spacetime

distances, is given in cartesian coordinates (¢, x,y, z) by
ds* = —di* +dx* +dy® + dz°. (A.1)

There is no easy way to draw this four-dimensional spacetime in a cartesian way, as our paper
has only two dimensions. One thing we can do to simplify the task is to write this metric in

terms of spherical coordinates (z,r,6, ¢)
ds* = —d? +dr* + r*dQ?, (A.2)

where dQ? = d6? + sin® dy? is the metric of the 2-sphere. Now, we can draw flat space with
only two coordinates (¢,7) and say that each point corresponds to a 2-sphere of radius r. Of
course, we are missing the angular “action” which could happen to a particle, but that is okay
for our purposes. Now we have two important details. First, r = 0 is not a sphere, so it is just
a plain old point, or, as time passes by, it forms a straight line - a wordline. Second, and most
importantly, we have a hard time to draw when either of the (#,r) coordinates go to infinity.
Said in another way, how can we draw infinity? That is just a matter of perspective, as we shall
see below.

A clever way to deal with this, is to think about spacetime in a causal and conformal way.
The causal way comes about by introducing light-cone coordinates u = ¢ —r and v = ¢+ r, with
the domain —oo < u,v < oo (see figure A.1). The figure depicts only a half-plane because r > 0
(or u < v). In these coordinates, the ¢ —r part of (A.2) becomes ds®> = —dudv. Light rays
follow lines of constant u# or v and those divide spacetime into regions which are connected
by signals moving slower than light speed (timelike) and faster than light speed (spacelike).
Physical propagation must happen inside the light cone Now comes the conformal part. We
want to bring the points at infinity to a finite region of spacetime preserving light rays. Every

conformal transformation preserve light rays and we can achieve the desired transformation by
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‘A

u = constant

>
r

v = constant

Figure A.1: Minkowski spacetime represented in the ¢ — r plane. Light rays are shown in light-

cone coordinates (u,v). Adapted from [187].

choosing, for example, U = arctanu and V = arctanv, implying that -5 < U,V <3 with U < V.

The metric can finally be written as

ds? (-=4dUdV +sin*(V — U)dQ?), (A.3)

= 4cos? Ucos2V

and we see these coordinates fail exactly at the boundaries of the spacetime (see figure A.3).
Finally, we define U = (T —R)/2 and V = (T + R)/2 to obtain a metric which is conformal to an
Einstein space

ds®> = w X (T,R)(~dT? + dR? + sin’> RdQ?), (A.4)

with w(T,R) =cosT +cosR,0 <R <nmand |T|+R < 7.

Now that we have achieved our goal to fit the whole of Minkowski spacetime into a finite
piece of paper, we can interpret the boundary of the spacetime. First, T = —r, R = 0 corresponds
to a set of points at t = —co. We call it past timelike infinity, or i~, and every massive particle
starts its history there. Similarly, 7 = x,R = 0 is future timelike infinity, or i*, and all massive
particles end up here. The lines U = —x/2 and V = /2 are respectively past null infinity, J —,
and future null infinity, J*. Every light ray starts somewhere at J ~ and ends at J*. Finally, the
meeting point of these two lines is spatial infinity, i, and corresponds to r = co. All spacelike

surfaces end up at i,
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T
A
-
7T
V=3
>
T R
v=-=2
2
—7T

Figure A.2: Minkowski spacetime in compactified coordinates U = tanhu and V = tanhv. The
region depicted is —1 < U,V <1 with U < V.

it t = constant
\fj
—1

Figure A.3: Conformal diagram of Minkowski in the T-R plane.



APPENDIX B

Frobenius Analysis of Ordinary Differential

Equations

In this appendix, we review the Frobenius analysis of Fuchsian equations and the classification
of these in terms of its singular points. For more details, see Slavyanov and Lay’s book on
special functions [73], focusing on second order ODEs, and Iwasaki et al’s book [74], which
presents results for n-th order ODEs. Here we focus on second order ODE:s, for simplicity.

Consider a linear, second order, ordinary differential equation (ODE) given by

Ly(z) = Po(@)y" () + P1(2)y’ (2) + P2(2)y(2) = 0, (B.1)

where Py(z) are polynomials of order ny in z € C. Suppose there are no common factors depend-
ing on z between the polynomials Py. To include the point z = oo in the analysis, we define the
ODE domain to be the Riemann sphere, D = CP!. The ODE is of second order so admits two
linearly independent solutions and the most general solution is a linear combination of those.
Every point zp in some neighborhood of D having a well-defined initial value problem with

regular initial conditions

y(20) =yo. Y (20) =y (B.2)

is called an ordinary point of the ODE. The point at z = co can be studied by making z=1/¢
and focusing on ¢ = 0. In the neighborhood of ordinary points, the solutions are holomorphic.

The zeros of Py(z), denoted by z; (i = 1,...,n), are called singular points of (B.1). At these
points, there is no well-defined initial value problem. However, although not holomorphic, the
solutions might admit series expansions around the singular points. This is the main theme of
Frobenius analysis of ODEs, stating the conditions (B.1) must satisfy such that admits series
solutions around its singular points. In general, the solutions have Laurent series expansions
around the singular points. We distinguish singular points that admit finitely many negative
power terms in its Laurent expansion by saying those are regular singular points. Otherwise,
we say it is a irregular singular point.

In the other hand, one can ask what are the conditions the polynomials Pi(z) must obey
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such that (B.1) admits series solutions around z = z; of the type
¥ =(@-2)" ) anz-z)", seC, (B.3)
j=0

where s is called the characteristic exponent or Frobenius exponent of the solution. According
to Frobenius theorem, the conditions are

Piz) A

Po(z) z-z

Pz B N Ci
Po(2) (z-z)? z-z

that is, P has at most a first order pole at z; and Q has at most a second order pole at z;.

P(z) =

(B.4a)

, (B.4b)

0@z) =

A singular point obeying (B.4) is called a Fuchsian singularity. Equation (B.1) is called a
Fuchsian equation, if each of its singular points are Fuchsian. Therefore, Frobenius theorem

states that
A singular point z; of (B.1) is regular if and only if it is Fuchsian.

So the knowledge of the ODE behaviour at its singular points allows to have important infor-
mation about its solutions.
If z = z; is a regular singular point of this ODE, then the characteristic exponent s can be

obtained, after substitution of (B.3) into (B.1), by the indicial equation

s(s=D+pjs+q;=0, (B.5)
where
pj:Reszzzj%, qj:Reszzzj(z—zj)%. (B.6)
At z = oo, we have the indicial equation
S(s+ 1)+ poosS+@geo =0, (B.7)
where
Poo = —Reszzmllz(l)—g, oo = Reszzoozlljz—g. (B.8)

These indicial equations can be easily obtained by studying the Euler form of (B.1). First, we
make z — z+ z;, such that the singular point of interest is now at z = 0. Further, we divide (B.1)

by Po(z) and multiply it by z?

2y +z2p@y +q@y =0, (B.9)
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where p(z) = zP(z) and g(z) = 220(z) are regular at z = 0 and, therefore,

p(2) = Z pm?",  q(2) = Z qmz". (B.10)
m=0 m=0
If we define the scale invariant derivative 8 = zd,, the ODE above becomes

6%y + (p(z) — DOy +q(2)y = 0. (B.11)

Notice that 67" = nz". Now we plug a Frobenius series y = z* 3, a,z™ into (B.11) and we

get, after a few manipulations,

0o m—1
D [t )+ 5= D)+ pom+ ) +q0)am + ) (Pm-s(k+9)+ gm-)ax|2" =0, (B.12)
m:o k=0

and, for m = 0, we get exactly (B.5). Therefore, we have a series solutions if and only if

fm+s)a,+R, =0, Ym>0, (B.13)
where Ry = 0 and
f(s)=s(s—1)+ pos+qo, (B.14)
m—1
Ron(@in1, s 005 8) = D Pkl + ) + Gt . (B.15)
k=0

We also take ag = 1 for simplicity.

From this discussion, we see that the indicial equation has at most two distinct roots s1 2,
distinguishing both linearly independent Frobenius solutions at z = z;. When the difference
s1 — s2 1s either equal to a positive integer N or equal to zero, we have a resonant singularity.
This type of singularities are degenerate in the sense they typically present a logarithm term,
as we show below. In the other hand, we have an analytic solution for s = s if Ry = 0. In this
case, we say that z; is an apparent singularity.

However, if Ry # 0, we cannot solve for (B.13). In both resonant cases above, let us consider
the equation

Lyy(s;z) = 2" f(s), (B.16)

and its derivative with respect to s calculated at s

L @ =" f'(s1). (B.17)

Z
05 ls=s,
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If 51 = 5o, we have that f/(s1) = 0 and so

oy

o =y(s1;z)logz+ 7" Za;n(sl)zm (B.18)

m=0

S=51

is a solution of the ODE. In this case, one might think that the monodromy is trivial, M ~ el

but by inspection, with a proper normalization, we have that

m~|! ] (B.19)
o 1) '

Now, if 51 —s2 = N, with N > 0, and R,, # 0, we take

o0

y =22 ) and", (B.20)

m=0

where only ay is not determined by (B.13). In fact, we have

Ly* = Ry(s2)z"*™. (B.21)
As 51 = 5o+ N, we can take
o dy
y2 = f(s1)y _RN(SZ)a_ (B.22)
N 5=51

as the linearly independent solution in this case. In both cases discussed above, one of the

solutions present a logarithm term, as we mentioned before, and its monodromy is equivalent
to (B.19).

B.1 Apparent Singularity of Garnier System

In section 3.3.1, we have seen that a Garnier type ODE has an apparent singularity at z = A
if and only if the function K(4,u,1) is in a specific form. Here we show this result. First, we
remember that, for the Garnier ODE,

3

-6 1

P@) = L (B.23a)
;Z—Zi 72— A

0(z) = —~ M-DK | Ad-Dp (B.23b)

z-1) 2z-DE-0 z2z-DE-2A)
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First, we make z — z+ A, such that we have (B.13) all over again. Now, we have that pg = —1,
qo = 0 and ¢g; = u. The indicial equation is thus s(s —2) = 0 and, if we pick s, = 0, equation
(B.13) for m =1 gives a; = q; = u. Now, for m = 2, we have that f(2) = 0 and thus R>(0) =
2+ piu+qr = 0. Given that

3
1-6;
p1=Res z72p(z) =Res 7 'P(z+ 1) = ) (B.24)
z=0 z=0 = /7.—Zi
_ . (-DK  21-1
= Res 7%¢(z) =Res 7' Q(z+ 1) = ——— - - : B.25
g2 =Res 27g@) =Res 2 0@+ D) = " oDy Ad-1" (B.25)

the constraint 1% + p1u+¢> = 0 gives us exactly the formula (3.46) we were looking for K.

B.2 Gauge Transformations of Fuchsian Equations

Consider a general Fuchsian equation with n singular points z = {z1,22,...,2n},
L:y(2) = D2y(z) + P(2)Dy(z) + Q@)y(z) = 0, (B.26)

where D, = d/dz and P, Q are rational functions with poles at z = z;. Fuchsian equations are

preserved by general homographic transformations of the z coordinate

Z Z:Z a,b,c,deC, (B.27)
and also by s-homotopic transformations
n
y@ =| |@-zru@, piec. (B.28)
i=1

We applied both of these transformations on (2.106) in order to transform it into a canonical
form with 5 singular points and, then, into a Heun equation with 4 singular points in the special
case £ =1/6. If weset T(z) = Hfl:l(z —z;)1, then the application of a s-homotopic transforma-
tion in (B.26) gives

L(T@Qu@) =T@)Lu), (B.29)

where
L, =D2+(P+24)D,+(Q+A*+PA-B) (B.30)

with

n
Pi Pi
A= s B= . B.31
ZZ—Zi l;(z—zi)z (531

i=1
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In the discussion above, we can see that the Heun differential operator in canonical form

can be written as

3

Di D+ abz—q

, ={0,1,1}. (B.32)
,‘:]Z_Zi ) H?z](z—Zi)

Wz[plapZ’p&a,bJ;Q] =

The application of (B.29) into Heun equation thus gives

D>+

(B.33)

Pip, sz —l+p) > pilpj+p)) N abz—q .
ot o @-z) A G-wk-z) [1L,Gc-2)
i#]

Note that this is not in canonical form anymore. To obtain a canonical form again, we must set
to either values p; = {0, 1 — p;} = {0, —2ia;}. This of course changes the local coefficients of the
solutions but, consists into a symmetry of Fuchsian equations and, moreover, of the connection
matrices between singular points.

There are two other special forms of Heun equation which will be useful later. We can put
Heun equation into self-adjoint form by choosing p; = (1 — p;)/2 = —ia;. Another useful form is
the Liouville normal form, which is obtained by cancelling the first-order derivative term. This

can be achieved by setting p; = —p;/2, which gives

3 (02— 3 D4 bz —
_ D2 pi(2 pl)/4_ plpl/ avz—q
Z+Z -z (Z—Zi)(Z—Zj)+ [, (z-2z)

afz—q
=D+ B.34
Z (z— z,)2 Wz—1D(z—1) (B.34)
where 6; = (1 +4al.2)/4 and
aff =ab—(pip2+pip3+p2p3)/2, 4 =q+(p1p2t+p1p3)/2. (B.35)
We can rewrite (B.34) in terms of partial fractions using the definitions (2.126a)
N, =D*+ ( G ) B.36
Z (z— zz)2 -2z (B.36)

where

E——Z p’pf ici:O. (B.37)

J#L i=1
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Interesting relations between coeflicients can be obtained by Heun normal form with 4 finite

singular points, that is

Ci
(w wz)2 w—wj

M#

')+ Nwyw)=0,  Nw)= , (B.38a)

3 3 3
D=0, > (cwi+8)=0, > (cawf+26uw;)=0, (B.38b)

i=1 i=1 i=1
where (B.38b) are the necessary conditions for w = co be a regular point. Applying a ho-
mographic transformation to (B.38) such that (wy,wz, w3, w4, 00;w) +— (0, 1,%,00,z0;2) and then

letting ¥ — (2 —ze0)” "1, We obtain

3 _
’” v y 0; Ci
V'@Q+NU@) =0,  N@=y ( ot Z_’Z,) , (B.39)
=1 !
such that ) \
Ciwy. — 20;W4;
it il >e=o0, (B.40)
W14Zc0 =1
Note that
Zsl —20;w4; 52 +1C3 N t(t—1)c;3 (B.41)
C2z-1) z2z-DE-D '

= Zi
Analyzing the behaviour of (B.39) at infinity, we may rewrite ¢, +£¢3 as 04 — (01 + 02 + 93).



AppenDIX C

Gauge Transformations of First Order Systems

C.1 From Self-Adjoint to Canonical Natural Form

A faster route to obtain Heun canonical form above from (2.106) is to work directly with the

correspondent linear system. Consider again the equation

0 (U)o (r)) = V(ry(r) =0, (C.1)
rewritten as

@y — A(P)P(r) = 0 a=|° v yo| Y
' v oo )T \vaw

Suppose that U and V are rational functions and (C.1) has n regular singular points {r;}, i =

1,...,n, with r, = co. What happens with this system after a homographic transformation and a

s-homotopic transformation? First, let us apply the homographic transformation

ar+b ad - bc
= 8= ———0,:= F '(no,.
¢ cr+d : (cr+d)? ¢ ()0

This implies a new gauge connection

|0 o'l (o ruUl!
v o) |\Fv o

with ¥ = (¥(2), U(2)0.¢(2))T. Now, let us apply a s-homotopic transformation in the field

(C.2)

v=G@ = [c-2""F = 04 =Goy+0.Gy=G0.+By,
i=1

where

B::—anpi/z. (C.3)

Thus,
¥ (T§, TO,+BW)" = [ ~T O]‘f’ =U(2)?,
UTB T
0, ¥ — U@Z‘P+6ZU‘P,
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and the new gauge potential is A’ = U!AU — U~19,U. Calculating all terms, we have that

0 U-!

A=|_ . 5
V-U(B*+0.B)-3,UB -2B

i (C4)

This can be further simplified by writing the linear system in terms of ¥ = (¥, d;¥), removing
U from its definition. Removing the tildes and commas for a more clean notation, we are left

with a system in the form

0 1
0¥ =AY, A=|__ . | (C.5)
VU~ —(B?>+0,B-Bo.loglU) —2B-0.logU
which implies in the following ODE for ¢
02y + P00 + Q2 = 0, (C.6a)
P(z) =0.logU+2B, Q(z) = B*+3.B+Bd.loglU-VU™. (C.6b)

C.2 Rederivation of Heun Canonical Form

In the following, we rederive (2.131) applying the result above to the case n = 5 with appropriate
functions and restricting to € = 1/6.

Let the homographic transformation (ry,r3,r3,r4,00) — (0, 1,19, 00,7+) be given by

I —r4r—ri r—ri

= = Zoo ,
rp—rir—ry rF—ry

where Zoo = 124/121, 10 = Zeo(r31/734) and r;j := r; —rj. The inverse transformation will also be

useful below

r4a7—ri1z r4i7+riz .
= — == = F—rj=— % i=1,...4 (C.7)
Z_Zoo Z_Zoo

This further implies on

.o 4% o _(Z_Zoo)za S Pl = _(Z_Zoo)z.
T r=r)? ¢ F41Ze0 41200
In our case,
4
A A, f(2)
U=—=| |r—ri) === r)m42r4320) ———
3 !:1[ i 3 41742743 (Z—Zoo)4
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where f(z) = z(z— 1)(z—1), such that

. B A (2)
0@ = F QU@ = 2 (rroras)—L 5. (C.8)
3 (2= Z00)
Also, given V = FV, we have
- WW@AE ) (W(P,¥))\
yi-1 = p W@AL 1)_( (Fo 1)) ’ (9)
U U
where W(C,D) :=C r2 + D, where C, D are constants.
Setting (C.3) as
3
/2
B(z) = - pilz | P (C.10)
-7 I 2o
and using (C.8) in (C.6), we have
3
1—p;, 28-2
PR =Yy P4 p-2 (C.11)
cd 7—7i Z—Zco

i=1

The other term of (C.6) requires a little more work. First, note that Q(z) can be written as

5o ) (B0 2+ B+2B - Dpil zies)
_ L ji Wi j)I<ij i1/ <ico
Q(Z)_(;Z—Zi) +; z—z
3 2(B—1)pil/zic 2 _ o~
_ZilB 2B Doilfaie B3 e (C.12)
2= Zoo (2= Zoo)?
We now expand the terms in (C.9) into partial fractions by using that
wED)  C raZ=riZeo D
@ _z(z—l)(z—t)( 2= Zoo ) +Z(Z—1)(Z—f). (€15
The first term above is expanded as
9(2) S @l G e, 9]l
= , C.14
22— D(Ez—1)(z—200)? Z -7 ¥ 72— Zoo ’ (2—2Ze0)? (19

i=1
where we used the residue theorem to obtain the expansion coefficients. Using (C.7), (C.13)
and (C.14), we obtain the first term of (C.9)

P W(4/§§, A _
U
3 (AAER? + )r1azee /(2 U (1)) .\ 126(37 ri—14)/ (F142o0) . 12¢
-7 7= Zeo (2= Z00)?

(C.15)
i=1
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The second term of (C.9) does not have z., as a pole, so

(Yor7 +¥1)/U’(ri)
g >

=3

[Zj: ) (C.16)

i=1

if we choose

iy = 2| TV C.17
—la’l—lw. ( )

Plugging (C.15) and (C.16) into (C.12), we finally obtain

30 2_38412
0= 3 L, Qe B3 12

2tz et T (C.18a)
3 2
(pi+p)/2 B-B-1Dpi 1142 4Af”i+ﬂl}
i~ - , C.18b
© ; G e zl.%x,[ 0'(r) (C.18b)
Qs == {Z;(ﬁ <B—1>p,)<r4—rl>+12§(Zr,—r4)} (C.18¢)

Looking at (C.11) and (C.18a), we see that z = 7z, is removable if =1 and £ = 1/6 as we
already know, remembering also that Z?zl r; = 0 implies QO = 0. Therefore, the final form we

look for (C.6) is
3

Lo+ & y-o, (C.19)

=1 <%

;

with

i+ 1 o [2A77/3+ 2
0 2Zp p’+——”4z( i/ l) (C.20)

i Zji Zico leoo Q' (ri)
It is easy to check that Z?zl Q; =0, as it needs to be so that z = oo is also a regular singular

point.

C.3 Reduction of Angular Equation for Kerr-(A)dS

As far as we know, it has not been noticed in the literature that Kerr-(A)dS angular equation
(2.88) can be reduced to a confluent Heun equation when & = 1/6, which is an even further
reduction than in the radial equation. This comes about because the angular equation has two

elementary singularities, which are regular and have § = 1/2. These special singularities can



C.3 REDUCTION OF ANGULAR EQUATION FOR KERR-(A)DS 153

be removed from the equation by a certain Schwarz-Christoffel transformation [93]. To prove
this result, we first need to make a quadratic transformation in p, put the resulting equation in
canonical form with p = oo at a finite point, revert the quadratic transformation and finally use
a Schwarz-Christoffel transformation to remove two elementary singularities and result into a
confluent Heun equation with 3 singular points. The trade off is that in the end the singular point
at infinity will turn become irregular. However, from our perspective, this form is more useful
because the 3 point monodromy group is known apart from the monodromy of the irregular
singular point, which depends on Stokes data [39, 73].

So now let us specialize to the Kerr-AdS case. In this case, n = 0, thus

P(p) = (@ = p*)(1-a’p®) = P (p* ~a*)(p* ~a ™), (C21)
where o> = —A /3. The resulting angular equation is
4
0p(P(p)0,S)+ ( ANEP* + ;- ﬁ [(a —-pPHw-— ma] )S =0, (C.22)

where y? = (1 — @?a?). Equation (C.22) has 5 regular singular points at p = {+a, o', o} and

the local coefficients are given by

Ora =Fm, O,,1=xa" (w)(z +maa2) (C.23)

and
= \O—48¢. (C.24)

The first important thing to notice about (C.22) is that its coeflicients are all even functions of
p. This suggests a reduction of singular points using the quadratic change of variables x = p?,

resulting in

1 2 1 1
12 +

S + 5
X x—a X—Qq

4
( ~4Aéx+ A~ 2 (@® ~ 9w mal )S ~0, (C.25)

+
4xP(x) P(x)

with P(x) = @?(x—a?)(x—a~?). Now (C.25) has only 4 regular singular points at x = {0, a%,a 2, o)

and x = 0 is a elementary singularity with 6y = 1/2. Further, we know that x = p? = 0 is actually
aregular point of S (x), because of (C.22). A quadratic transformation cuts the local coefficients

by half, therefore

Ooo = % \O—48¢, (C.26)
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and, if £ = 1/6, we also have 6., = 1/2. Let us restrict to this case for now on.
We want to simultaneously get rid of both elementary singularities so it is useful to take

X = oo into a finite point. With this in mind, we make another coordinate transformation
X , a*d®-1 x°

=t , ©= = , C.27
T a2 aa®  y2-1 (©.27)

which takes (0, a2, 00,a72) - (0, 1,12, c0) and transforms (2.93) to

/2 1 1/2
6§S+(L+—— / )6 S+

z z—-1 z-¢2
m? /4 1/2 By By B3
- + +—+—+ S =0, (C28
[ (z-12 (- z z-1 z-t ] (€-28)
with
1 A
B =—- [(wa—m)z/\/2 - —l] , (C.29a)
4 Y2
1[2Ad?
B, = é_l[ a —/ll+m(2wa—m)/\/2], (C.29b)
1[2A4*> (1
By = —L|2Aa =X )/1 + a2 (C.29¢)
41 3 x2

It is easy to check that Z?:l B; = 0 and thus z = oo is a regular singularity. Now we put (C.28)

into canonical form making S (z) = (z— D2z *)V28(7),

1/2 1- 12\, [B1 B By a4
s+ 2 om0 B B B sy,
7 z-1 7—12 z Tz-1" -7
N m 1—-x?

By =Bi+— )2(

4 4y (C.30)

2 2
my- m n l1=x
By=B—- 2 — (1) + —2,
2=B- -7 (1-x)+ =
2 2
A m w 1=x= 1-x
By=B3+—(1-yH)- - :
3=Bs+(1-x7) 12 >

and, of course, 2?21 Bi =0.

To finish our demonstration, we make an inverse quadratic transformation z = £ 2 in (C.30)

2

201-m)¢
2-1

A

42
1+4B3§ — )S =0, (C.31)

28+ € 10.6 + (4B, +aB, -5
4 42 _ l‘2 é«
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which now has 5 regular singular points again at { = {+1,+f,c0}. However, now { = +¢ are

elementary and, therefore, may be removed by the Schwarz-Christoffel transformation

4 du
_ _ _ -1
resulting in
525 + (2(1 —m) Zinhxcoshx)ax§ .
cosh® x — 172
. . sinh®xcosh’x . .
+ 472 By sinh? x+ By 22 YO X Bocosh®x|$ = 0. (C.33)
cosh? x— 12

The second line above can be simplified using that Z?:l B; = 0 giving

. 2(1 —m)sinh h . N inh? A
a%S + ( ( m) S;n (x) COS (X))axS + 4(32 Slzn—(x) + tzB?’)S — 0. (C34)
cosh®(x) — 2 cosh?(x) — 2

Notice that, when x — oo, we have
028 +2(1-m)d,S +4(By+B3)S =0, (C.35)

implying that infinity is actually an irregular singular point. We can go even one step further

by noticing that, if we make x = i6 and simplify the coeflicients of (C.35), we find that

Bsin20 ~ C+Dcos?20 A

928 S =0, C.36
6>+ 1+Acos20 oo+ 1+Acos20 ( )
with
2 2
t X
— — , B=2A(m-1), C.37
ik (m—1) (C37)
C =4A[(*-2)Bs—B,], D =4A(B,+1By). (C.38)

This is called by Arscott [78] the Magnus-Winkler-Ince equation [184] and it has character-
istics of a Hill-type equation, which is an important equation in the study of periodic forced
oscillations. The equation (C.36) is of particular relevance because it is the most general linear
second-order equation with periodic coeflicients that can be solved by a trigonometric series
with a three-term recursion relation [78]. Special cases of (C.36) are Mathieu equation and

Lamé’s equation.



APPENDIX D

Hypergeometric Connection Formulas

Here we review the connection formulas and fundamental matrix solution of a Hypergeomet-
ric differential system, as given in [104]. For more details on the derivation, see [74]. The

Hypergeometric system in canonical form is given by

‘%:(%+ZL_—11)Y D.1)

with local behaviour given by
Y(2)=Go(1+0@)*  (z—0) (D.2)
=Gi(1+0Gz-D))iz-D" (-1 (D.3)
=(1+0 Nz, (> ), (D.4)

where G; are constant matrices, and the matrices L; have detl; =0 and TrLy=1-7, TrL| =

y—a—-LB-1. Also we fix

)
Loo =—(Lo+1L)) = . (D.5)
0 g

With these conditions, the connection is explicitly given by
Lo L [feB=y+D BE-y+D) 1 [ele=y+D) —BE-y+D
B-a|-a@-y+1) Bla-y+1)) B-al\a@-y+1) —BB-y+1)

These expressions follow either from direct relation with the hypergeometric differential equa-

(D.6)

tion or by an appropriate parameterization of the monodromy group.

The hypergeometric fundamental solution of this system is

a0
Y(@.B;7:2) = [Y“ Y”){(O 5) (D.7)

Y21 Yo
and 1 .
Yii=2F(a,a—y+ 1;a—,8;2), Yoo =2F1(B,f—y+ l;ﬁ—a;g),

__BB-y+D 1 _ A 1
le_(ﬁ—a)(ﬁ—a+1)z2F1(ﬁ+1”8 v+2;6 a+2,Z), (D.8)
ala—y+1) 1

1
Y21 —2F1(01+1,01—y+2;a/—ﬁ+2;—).
Z

T (@-Pa-B+1)z
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The constants «,8 and y are given by
1 1

The asymptotics of the hypergeometrics are

-y 0
) 0)
Gaﬁy(1+0(z))z( 0 O)Caﬁy, z—0,
y—a—p-10
Y(@.p.yiz) = Gggy(1+0(z—1))(z—l)( 0 O)Cg)y, z— 1,
Y
(1+0@ "2\ 0 A/, 72— o,
where
G(O) _ 1 IB—’)/+1 ﬁ G(]) _ 1 1 ﬁ(ﬁ_Y)
WY B-ala-y+1 «a WY B-a|l a(@-v)

and the connection matrices are

o~ mila=—y+1) I'y-DI'(a—p+1) e~ TiB-Y+1) I'y-DI'3—a+l)

O _ T-B@) Ty-a)l ()
o>y —ia L=yl (@=p+1) _ B LU=pl(B=a+1)
T(A-B)(a—y+1) T(I—a)(B—y+1)
_ at+B—y+DI(a—B+1) Ia+p-y+DI'(B-a+1)
C(l) _ T(a—y+DI(a) L@B—y+DIB)
afy

L(1-prey-p I'(l-a)l'(y-a)

_emiy—a—p-HLy—e—p-Dl@—p+) = —ri(y~a—p-1)Ly—a—f-DI(B-a+1) )
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(D.9)

(D.10)

(D.11D)

(D.12)
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