
Universidade Federal de Pernambuco
Centro de Ciências Exatas e da Natureza

Programa de Pós-Graduação em Matemática
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Abstract

The theme of this thesis is the theory of homaloidal determinants. The focus is on the homo-
logical properties of the determinant of a generic Hankel matrix and of one of its degenerations
as a method of studying their homaloidal behavior. In characteristic zero we show that the first
has nonvanishing Hessian (hence its polar map defines a dominant rational map) but it is non-
homaloidal. The case of the degenerate determinant has been proved to be homaloidal in [3]);
we determine the ideal theoretic and numerical invariants of the corresponding gradient (polar)
ideal, as well as its homological nature. These can in turn be used to simplify a few passages in
the proofs of [3]. All results draw on some nontrivial underlying commutative algebra and the
nature of its use is one of the assets of this thesis.

Keywords: Hankel matrix. Homaloidal polinomials. Polar map. Gradient ideal. Hessian.
Linear syzygies. Symmetric algebra. Rees algebra. Plücker relations.

Resumo

Os resultados desta tese se enquadram na teoria dos polinômios homaloidais, com ênfase no
caso de determinantes. O objetivo principal é o estudo das propriedades homológicas do determi-
nante da matriz genérica de Hankel e de uma de suas degenerações, como um método de abordar
o seu comportamento de natureza homalóide. No caso da matriz de Hankel genérica, em carac-
teŕıstica zero, concluimos que o Hessiano do determinante é não nulo (equivalentemente, o mapa
polar associado é dominante), mas o determinante não é homalóide. No caso degenerado, sabe-
se que o determinante é homalóide (provado por Cilibert-Russo-Simis [3]); aqui, determinamos
os invariantes numéricos e homológicos do respectivo ideal gradiente (polar), esses podendo ser
usados para simplificar algumas passagens no argumento de [3]. Os principais resultados da
tese são baseados em ferramentas não triviais da álgebra comutativa e a natureza do uso dessas
ferramentas é um dos recursos importantes desta tese.

Palavras-chave: Matriz de Hankel. Polinômio homalóide. Mapa polar. Ideal gradiente.
Hessiano. Sizigias lineares. Álgebra simétrica. Álgebra de Rees. Equações de Plücker.



Contents

1 Introduction 7

2 Ideal theoretic methods of birational maps 10
2.1 Recap of basic homological tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ideal theoretic tools in birational maps . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Hankel Matrices 17
3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The 3× 3 Hankel matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Hankel matrix of arbitrary size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 A fundamental primary component of J . . . . . . . . . . . . . . . . . . 22
3.3.2 The linear rank of the Hankel gradient Ideal . . . . . . . . . . . . . . . . . 23
3.3.3 The radical of the Hankel gradient ideal . . . . . . . . . . . . . . . . . . . 29
3.3.4 The Hessian of the Hankel determinant . . . . . . . . . . . . . . . . . . . 31

4 Degeneration of a Hankel Matrix 33
4.1 Sub-Hankel Matrices: the gradient ideal . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 The minimal free resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 The associated primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 The linear type property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Appendix 42
5.1 The Eagon-Northcott Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Chapter 1

Introduction

The subject of Cremona transformations is a classical chapter of algebraic geometry. However,
the classification of such maps in projective space Pn is well understood only for n ≤ 2. In
higher dimension the structure of the Cremona group is far from being fully understood, and
classification is poorly known. An important class of Cremona maps of Pn consists of the so-
called polar maps, i.e., rational maps ∇f : Pn 99K Pn defined by the partial derivatives of a form
f ∈ R := k[x] = k[x0, . . . , xn] over a field of characteristic zero. The hypersurface V (f) is called
a homaloidal hypersurface if ∇f is a Cremona transformation of Pn, in which case, by extension,
f is also dubbed a homaloidal polynomial.

One measure of the complexity of a hypersurface V (f) can be read off ∇f . Thus, e.g., the
hypersurface with vanishing Hessian is considered as the simplest, and a homaloidal hypersur-
face simplest among those for which the Hessian is not identically zero – recall that ∇f being
dominant (equivalently, in characateristic zero, the Hessian of f not vanishing) is a necessary
condition for homaloidness.

The simplest example of a homaloidal hypersurface V (f) is a smooth quadric: in this case
the polar map ∇f is an invertible linear map. This is also the only case of a reduced homaloidal
polynomial if n = 1.

The plane case of homaloidal hypersurfaces has been settled by Dolgachev in [5]:

Theorem. A reduced homaloidal curve V (f) ⊂ P2 has degree ≤ 3.

From this it is fairly easy to show that the curve is one of the following:

(i) A smooth conic;

(ii) The union of three distinct non-concurrent lines;

(iii) The union of a smooth conic with one of its tangent lines.

This result motivated experts to ask whether an analogue would hold for higher dimensions.
This question has been negatively settled in [3, Theorem 3.13], by showing that for any n ≥ 3
and any d ≥ 2n−3 there exist irreducible homaloidal hypersurfaces of degree d. These examples
are dual hypersurfaces to fairly elaborated projections of scrolls, which leads one to ask whether
for certain special structured classes of homaloidal hypersurfaces it is reasonable to expect that
the degree stays beneath the number of variables.

Clearly, the notion of “structured” is quite foggy. One would need some sort of anchor on
the Dolgachev result. For example, in all cases of plane reduced homaloidal curves the minimal

7
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generating syzygies of the gradient ideal are linear. This kind of restriction might have an impact
in higher dimension, but it is not clear which exactly.

One sort of modified question is open as far as we know:

Question 1.0.1. Let M denote a square matrix over k[x] = k[x0, . . . , xn] whose entries are
forms of equal degrees and such that f := det(M) is an irreducible homaloidal polynomial. Is
deg(f) ≤ n+ 1?

It looks like the question is wide open even if the entries are linear. In [3, Section 4] a class of
examples has been studied in which the answer to the last question is affirmative. Unfortunately,
there are scarcely any general methods for studying, much less recognizing, such polynomials.

The main motivation of this work is the hope to shed additional light into this facet of the
theory. One goal of this thesis is to consider “sufficiently” structured matrices of linear forms.
Even for those there seems to be no comprehensive study of the homaloidal behavior of the
corresponding determinants. Still, one advantage of dealing with these matrices is that they are
often 1-generic in the sense of [9, Definition-Proposition 1.1]. An important case study is the
class of generic catalectic matrices; these have been shown to be 1-generic (see [21, Proposition
2.1]). Their study from the homaloidal point of view is included in [18].

A major underlying problem in this context is to understand the properties of the so-called
gradient ideal (or singular ideal) of the polynomial f , that is, the ideal J = J(f) ⊂ R generated
by the partial derivatives of f . Regardless of whether f is homaloidal, a particular question
asks when J has an irrelevant primary component, i.e., when it is not saturated. Of course,
if ProjR/(f) is smooth its gradient ideal will itself be an irrelevant primary ideal (in addition,
f will not be homaloidal unless deg(f) ≤ 2). One can easily cook up families of irreducible
plane curves whose gradient ideals have an irrelevant component. It is much harder to exhibit
an irreducible polynomial in f ∈ k[x0, x1, x2] such that its gradient ideal has no irrelevant
component (i.e., such that its gradient ideal is perfect of codimension 2).

Here is a brief description of the contents of the thesis.

Chapter 2 is about preliminaries: we review a few basic notions about homogeneous ide-
als, with emphasis on their homological features on one hand, such as syzygies and the main
associated algebras, and on the other hand, on their role in birational map theory.

Chapters 3 and 4 contain the core of the results and are each subdivided in several sections.

Chapter 3 deals with the homological information on the generic square Hankel matrix of
arbitrary size. Thus, let Hn stand for the generic n × n Hankel matrix and let P ⊂ R denote
its ideal of submaximal minors (i.e., (n− 1)-minors). We prove that P is the minimal primary
component of the gradient ideal J = J(f) ⊂ R of f := detHn. We have used quite a bit of
arguments, ranging from multiplicities to initial ideals to Plücker relations (straightening laws)
of Hankel maximal minors via the Gruson–Peskine change of matrix trick. The only remain-
ing associated (necessarily embedded) prime of R/J is the obvious candidate Q := In−2(Hn) –
defining the singular locus of the determinantal variety V (P ). This guess is equivalent to the
expected equality J : P = Q. For a conjecture about Hankel determinantal ideals and their
reductions see [18, conjecture 3.15]. If this conjecture proves to be affirmative then one can con-
clude that the Hankel determinant is not homaloidal via the criterion stated in Proposition 2.2.3
and the result proved in the thesis to the effect that the linear syzygy rank of J is 3 < 2n − 2
for n ≥ 3.
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In the case where n = 3 we are able to solve this conjecture in the affirmative, see 3.2.1.
The most laborious is the one about the linear type property which, for this value of n, allows
to apply some well established criteria.

In Chapter 4 we focus on a certain degeneration of the generic square Hankel matrix in which
some entries are replaced by zeros in strategic places. One of the features of this degeneration
is to get the partial derivatives to be as close as possible to the submaximal minors. This was
originally introduced in [3, Section 4.1] under the designation sub-Hankel matrix. The basic
equations governing the homological side of the corresponding gradient ideal were developed,
putting in evidence a kind of telescopic structure, with subideals being codimension 2 perfect
ideals. Here we complete the homological information on the gradient ideal. We have a theorem
which shows that the gradient ideal is of linear type. By some propositions and techniques we
resolve the minimal free resolution, the associated primes, multiplicity of gradient ideal and so
forth.

In the Appendix we give a resumé of circulant matrices, showing that the determinant of
a circulant matrix is a reduced homaloidal polynomial. This matrix is a classical object much
studied from various viewpoints (see [25]). Over a field containing the roots of unity of the
right degree the circulant determinant is the reduced product of linear factors, thus retrieving
the usual reciprocal involution. Other than this, the Appendix includes some material used in
the results. Some of this is routine, but there is a section on matrices whose entries are either
variables or zeros which is not very well-known. This result has been obtained during the thesis
work unaware of a previous proof given in [10].



Chapter 2

Ideal theoretic methods of birational
maps

The aim of this chapter is to introduce the algebraic tool required throughout. Though the
overall objective is to detect homaloidal determinants and their properties, there is a richness
of notions from commutative algebra that has lately been used in birational maps (see [6], [22],
[23], [20], [21], [19]). Often these notions are useful for the geometric result.

2.1 Recap of basic homological tools

Let I be an ideal in a ring R. The symmetric algebra of I is defined to be the tensor algebra of I
modulo symmetrization. It is naturally N-graded as an R-algebra, denoted S(I) =

⊕
j≥0 Sj(I),

where Sj(I) stands for the jth symmetric power of I. The Rees algebra is the N-graded R-algebra
R(I) :=

⊕
j≥0 I

j ' R[It] ⊂ R[t]. Clearly, there is a natural surjective R-algebra homomorphism

α : S(I)→ R(I). (2.1)

A more concrete way of looking at S(I) arises from a free module presentation of I, as follows.
Given such a presentation 0 → Z → Rn → I → 0, we derive from the universal property of
symmetrization the following algebra presentation

S(I) ' S(Rn)

L
' R[T1, · · · , Tn]

L
,

where L is the ideal generated by the linear forms r1jT1 + · · · + rnjTn corresponding to the
generators (syzygies) z = (r1j , · · · , rnj)t ∈ Z of I with respect to the chosen set of generators.

The Rees algebra has a similar algebra presentation

R(I) ' R[T1, · · · , Tn]

J
,

where J is defined to be the kernel of the R-algebra surjection R[T] := R[T1, · · · , Tn]� R[It],
with Ti 7→ fit. Thus, J is generated by all forms F (T1, · · · , Tn) ∈ R[T] such that F (f1, · · · , fn) =
0. Note that J is a homogenous ideal in the standard grading of R[T].

10
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If R = k[x] is a standard graded ring over a field k then J is a bihomogeneous ideal in the
standard bigraded k-algebra k[x,T]. One has, namely

J =
⊕
(i,j)

J(i,j) ⊃ (
⊕
i

J(∗,1)) = L.

Going back to the natural map (2.1), the ideal I is said to be of linear type if α is an
isomorphism. The terminology itself was introduced by L. Robbiano and G. Valla, but the
earliest example of an ideal of linear type is found in [17]. Every ideal generated by a regular
sequence has this property (see [13]) for further details).

An ideal I ⊂ R of linear type satisfies the Artin–Nagata condition G∞ stating that the
minimal number of generators of I locally at any prime p ∈ Spec (R/I) is at most the height of
p. This was first observed in the work of Herzog–Simis–Vasconcelos (see, e.g., [14, Proposition
2.4]). It is known that this condition is equivalent to a condition in terms of a free presentation

Rm
ϕ−→ Rn+1 −→ I −→ 0

of I and the Fitting ideals of I, namely:

ht (It(ϕ)) ≥ rank(ϕ)− t+ 2, for 1 ≤ t ≤ rank(ϕ), (2.2)

where It(ϕ) denotes the ideal generated by the t×t minors of a representative matrix of ϕ and ht
denotes the height of an ideal (see, e.g., [14, Lemma 8.2], [24, §1.3]). Because of its formulation
in terms of Fitting ideals, the condition has been dubbed as (F1).

Suppose that R is a standard graded ring and that I is generated by forms f = f0, · · · , fn of
a fixed degree s. In this case, I is more precisely given by means of a free graded presentation

R(−(s+ 1))` ⊕
∑
j≥2

R(−(s+ j))
ϕ−→ R(−s)n+1 → I → 0

for suitable shifts −(s + j) and rank ` ≥ 0. Of much interest in this work is the value of `,
so let us state in which form. We call the image of R(−(s + 1))` by ϕ the linear part of ϕ
– often denoted ϕ1 – and say that ϕ has maximal linear rank if its linear part has rank n
(= rank(ϕ)). Clearly, the latter condition is trivially satisfied if the two coincide, in which case
I is said to have linear presentation (or is linearly presented).

A quite notable fact, whenever R = k[x] = k[x0, . . . , xn] is a standard graded polynomial
ring over an infinite field k, is the case where I happens to be of linear type and generated by
n + 1 forms of the same degree. Then I has maximal analytic spread and hence (k infinite) is
generated by analytically independent forms (with respect to the irrelevant maximal ideal) of
the same degree. Then these forms are algebraically independent elements over k, hence define
a dominant rational map Pn 99K Pn. This will be a cornerstone of many an argument to follow.

A useful technique to get information about an ideal is its initial ideal. The following theorem
summarizes some of its basic properties.

Theorem 2.1.1. [12, Theorem 3.3.4.] Let I ⊂ R be a homogeneous ideal and < a graded
monomial order on R. Then

(a) dimR/I = dimR/in<(I);



CHAPTER 2. IDEAL THEORETIC METHODS OF BIRATIONAL MAPS 12

(b) depthR/I ≥ depth R/in<(I).

(c) regR/I ≤ regR/in<(I);

Among the most important numerical invariants of a homogeneous ideal is its multiplicity.
A close notion is the multiplicity of an m-primary ideal in a Noetherian local ring (R,m). We
recall some basics related to these notions which are used in the subsequent chapters.

Definition 2.1.2. Let M be a graded R-module whose graded components Mn have finite
length for all n. The numerical function

H(M,−) : Z→ Z

H(M,n) = `(Mn)

for all n ∈ Z is the Hilbert Function of M , and

HM (t) :=
∑
n∈Z

H(M,n)tn

is the Hilbert series of M .

The Hilbert series of a graded module can be expressed in terms of its graded free resolution.

Lemma 2.1.3. [1, Lemma 4.1.13] Let M be a finite graded R−module of finite projective di-
mension, and let

0→
⊕
j

R(−j)βpj → · · · →
⊕
j

R(−j)β0j →M → 0

be a graded free resolution of M . Then

HM (t) = SM (t)HR(t)

where SM (t) =
∑

i,j(−1)iβijt
j . In particular, if R = k[x1, · · · , xn] is the polynomial ring over

the field k, then
HM (t) = SM (t)/(1− t)n.

Corollary 2.1.4. [1, Corollary 4.1.14] Let R = k[x1, · · · , xn] be a polynomial ring over a field
k, and M be a finite graded R−module of dimension d. Then

S
(n−d+i)
M (1) = (−1)n−d(n− d+ i)!ei.

If I ⊂ R is a homogeneous ideal, one says that R/I has a pure resolution of type (d1, · · · , dp)
if its graded free minimal resolution has the form

0→ R(−dp)βp → · · · → R(−d1)β1 → R→ R/I → 0.

Note that d1 < d2 < · · · < dp.

Theorem 2.1.5. [1, Theorem 4.1.15] Suppose R/I is Cohen-Macaulay and has a pure resolution
of type (d1, · · · , dp). Then

e(R/I) =
1

p!

p∏
i=1

di.
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We now record the basics on the “local” Hilbert-Samuel function.

Let (R,m) be a Noetherian local ring and let M be a finitely generated R-module. The
Hilbert-Samuel function of M is

χM (n) : n 7→ `(M/mn+1M),

which is given by a polynomial:

χM (n) =
e(M)

d!
nd + lower order terms,

for n >> 0.

One has d = dim(M), while the integer e(M) is called the multiplicity of M . This will be
mainly applied in the case where M = R, in which case one also says that e(R) is the multiplicity
of m on R. We note that there is a generalization of this notion for m-primary ideals I (instead
of m). In such a generalization, the analogous integer obtained is called the multiplicity of I on
R (or M , for a module).

Proposition 2.1.6. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of finite R-modules of
the same dimension then e(M) = e(M ′) + e(M ′′).

Proposition 2.1.7. (Associativity formula) Let {P1, · · · , Pt} denote the set of minimal prime
ideals of the R-module M such that dim(R/P ) = dimM . Then

e(M) =

t∑
i=1

e(R/Pi)`(MPi),

where `(MPi) stands for the length of MPi over RPi.

2.2 Ideal theoretic tools in birational maps

Let k be an arbitrary field . For the purpose of the full geometric picture we may have to assume
k to be algebraically closed. Later we may have to assume that char(k) = 0, but for the present k
may have arbitrary characteristic. We denote by Pn = Pnk the nth projective space. Let X ⊂ Pn
be a projective subvariety, which will be assumed to be integral (i.e., reduced and irreducible or,
equivalently, its largest defining ideal I(X) ⊂ k[x] = k[x0, . . . , xn] is prime). Thus, X admits
a function field k(X) and one has the main dimension theorem of these preliminaries, namely,
dimX = tr.deg.kk(X), where dimX is a combinatorial-like dimension defined in terms of lengths
of chains of subvarieties.

Let Pm be yet another projective space. We wish to consider rational maps with “domain”
X and target Pm. The quotation marks indicate that there will be some difficulties as to what
will be exactly the domain of these maps. Of course the terminology comes from having these
maps defined in terms of rational functions on the domain, i.e., fractions of polynomial functions
thereof. As is known, there are two different fields around in the theory of projective varieties:
the “big” field of fractions of the homogeneous coordinate ring k[X] = k[x]/I(X) of X and the
“small” field of fractions of an affine piece of X. While the first gives perfectly defined regular
functions on the structural affine cone over X, it is the latter that is called the function field of
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X because it makes sense to say for its elements that they induce locally well-defined functions
on X - while the elements of k[X] do not.

The basic notion is that of an m-rational datum on X, i.e, a collection of fractions

f1/f0, . . . , fm/f0 ∈ k(X),

where f0, f1, . . . , fm ∈ k[X] are forms of the same degree, with f0 6= 0. In a slightly imprecise
way, the above datum induces a map with target Am ⊂ Pm and domain a certain subset of closed
points of X, namely, given p = (a0 : · · · : an) ∈ X, such that f0(p) = f(a0, · · · , an)) 6= 0, the
image of p is the point with affine coordinates (f1(p)/f0(p), . . . , fm(p)/f0(p)) ∈ Amk . If one thinks
of points in an older language, P = (x̄0 : · · · : x̄n) can be thought of as being the generic point
of X, where x̄i denotes the residue of the variable xi in k[X]. In this version, the image of the
generic point is the “affine point” (f1(P )/f0(P ), . . . , fm(P )/f0(P )) = (f1/f0, . . . , fm/f0). Thus
the coordinates of the image of the generic point of X generate a k-subfield of k(X) and can be
thought of as the generic point of a subvariety whose affine coordinate ring is k[f1/f0, . . . , fm/f0].

The map thus obtained is called a rational map – hence the usage of the notation F : X 99K
Pm to indicate such a map, where the dotted tail of the arrow reminds us of the partial domain
of the map.

We next highlight the main features of the concept.

• The finitely generated k-domain k[f1/f0, . . . , fm/f0] ⊂ k(f1/f0, . . . , fm/f0) ⊂ k(X) is the
affine coordinate ring of a uniquely defined subvariety of Am ⊂ Pm. The closure of the
latter Y ⊂ Pm is called the image of the rational map F . By abuse, we also say that the
rational map F is defined by the homogeneous datum f0, f1, . . . , fm and frequently use
the notation F = (f0 : f1 : . . . : fm) which as we will indicate below conveys the lack of
uniqueness of choosing these forms.

• We emphasize en passant that the image of a rational map on an integral projective
subvariety is an integral projective subvariety of the target. As such, its homogeneous
coordinate ring is isomorphic to the subring k[f0, . . . , fm] ⊂ k[X] as graded k-algebras
- we say that one obtains the first from the second by a degree renormalization. Thus,
although the dealing with rational maps is rather subtle, the image of such maps is a
rather easily understood object in algebraic terms.

• One says that F is birational onto its image if there exists a rational map G : Y 99K Pn
whose image is X such that F and G are inverses to each other as field maps, i.e., if they
define a k-isomorphism of fields k(X) ' k(Y ) and its inverse.

• One can also express the latter behavior at the level of the homogeneous data, namely, if
F = (f0 : f1 : . . . : fm) and G = (g0 : g1 : . . . : gn) then F is birational onto its image with
inverse map G if and only if the following relations are satisfied:

(f0(g0, g1, . . . , gn) : . . . : fm(g0, g1, . . . , gn)) = (ȳ0 : . . . : ȳm)

and
(g0(f0, f1, . . . , fm) : . . . : gn(f0, f1, . . . , fm)) ≡ (x̄0 : . . . : x̄n)

as tuples of homogeneous coordinates in PmK(Y ) (resp. PnK(X)) where K(Y ) is the field of

fractions of k[Y ] (resp. of k[X]).
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• If d is the common degree of f0, f1, . . . , fm, it is not difficult to see that this is the case
if and only if the integral domains k[f0, f1, . . . , fm] ⊂ k[k[X]d] = k[(x)d]/I(X)d have the
same field of fractions.

• There is nothing unique about the choice of f0, f1, . . . , fm, as one learns quite early in a
first course. Nevertheless, any other choice of such a representative of the map F , say,
f ′0, f

′
1, . . . , f

′
m, necessarily satisfies the condition that the 2× 2 minors of the matrix(

f0 f1 . . . fm
f ′0 f ′1 . . . f ′m

)
vanish (as elements of the homogeneous coordinate ring k[X] of X). Trivial remark as it
is it represents a notable clarification in the theory.

• Note that the latter condition also means that the above matrix has rank 1 over the field
of fractions K(X) of k[X], i.e., the two row vectors are proportional over this field. This
justifies the previous notation F = (f0 : · · · : fm) (rigorously, an element of PmK(X)).

• When considering the base locus of a rational map there is a potential confusion as to
whether one is looking at the projective scheme defined by the forms f or more accurately
at the homogeneous ideal generated by these forms. In the present approach we will need
to be fairly precise about the ideal of defining equations of the associated Rees algebra of
the ideal version. Moreover, the subalgebra k[f0, . . . , fm] which should be left intact as it
defines the image of the given map. Also we will be using the subalgebra and the defining
ring of the blowup on the same foot, hence one had better keep the Rees algebra intact as
well.

Quite a bit of the nature of the statements and their proofs appeal to the syzygies of an ideal
representative of F , however the very format of the conditions do not directly involve them. This
is because the condition for birationality rather requires dwelling on the “hidden side” of the
defining forms of the map, i.e., on the generators of the Rees algebra. Namely, the theory hinges
on the existence of sufficiently many defining Rees equations of bidegree (1, s), for s ≥ 1 and the
corresponding Jacobian matrix with respect to the x-variables - a so-called weak Jacobian dual
matrix - hence there will be no restriction on the field characteristic, a non-negligible point in
birational geometry as is well-known.

In terms of this matrix Ψ, a criterion has undergone various successive formulations and
improvement ([22], [23], [6]). In its most general form it states:

Theorem 2.2.1. [6, theorem 2.18] Let F : X 99K Pn be a rational map, where X ⊂ Pm is
non-degenerated. The following are equivalent:

(a) F is birational onto the image.

(b) rank (Ψ) = m.

Moreover, when these conditions hold then the coordinates of the inverse to F are the (ordered,
signed) m-minors of an arbitrary m× (m+ 1) submatrix rank m of a weak Jacobian dual matrix
of F .
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Though flexible and computationally effective, the criterion depends on being able to com-
pute generators of the defining ideal of a Rees algebra. Fortunately, one can often trade the full
information about these generators for certain sufficient conditions directly related to the base
ideal of the rational map.

Theorem 2.2.2. [6, Theorem 3.2] Let F : Pm 99K Pn be a rational map, given by n + 1 forms
f = {f0, · · · , fn} of a fixed degree. If dim(k[f ]) = m+ 1 and the linear rank of the base ideal (f)
is m (maximal possible) then F is birational onto its image.

When the defining forms fis of the map generate an ideal of linear type, then they are
algebraically independent and, in particular, m = n. Consequently dim(k[f ]) = trdeg (k[f ]) =
m+ 1. Applying in the case where I is the base ideal of a polar map, one gets:

Proposition 2.2.3. [6, Proposition 3.4] Let f ∈ k[x] denote a square-free homogeneous poly-
nomial of degree d ≥ 3, let I ⊂ k[x] stand for its gradient ideal. If I is of linear type then the
following conditions are equivalent:

(a) f is homaloidal

(b) I has maximal linear rank.

Moreover, if these conditions take place, the inverse map F−1 has degree ≤ m.

Note that the ideal I has codimension at least two since f is assumed to be squarefree. In
particular, the partial derivatives give the unique representative of codimension ≥ 2 of the polar
map.



Chapter 3

Hankel Matrices

A Hankel matrix is a special case of the so-called catalecticant. As such it inherits many of the
features of the latter and, in addition, it profits from the fact that it is a symmetric matrix (a
property no other catalecticant has).

Sitting on the junction of these classes of matrices, no wonder it features many special
properties. To get a grip of this junction, let us start with the form of the catalecticant,

Let m ≥ 2 and 1 ≤ r ≤ m be given integers. Let R = k[X0, . . . , Xn] be a polynomial ring
with n+ 1 = (m− 1)(r+ 1) + 1 variables. The r-leap m×m generic catalecticant is the matrix

X0 X1 X2 . . . Xm−1

Xr Xr+1 Xr+2 . . . Xm+r−1

X2r X2r+1 X2r+2 . . . Xm+2r−1
...

...
...

. . .
...

X(m−1)r X(m−1)r+1 X(m−1)r+2 . . . X(m−1)r+(m−1)


The extreme values r = 1 and r = m yield, respectively, the ordinary Hankel matrix and
the generic matrix. Note that the corresponding determinant will have low degree (= m) as
compared to the dimension of the ring and still involve all variables.

A fundamental result proved in [9] tells us that the generic Hankel matrix is 1-generic.
As a consequence, the determinant of a square such matrix is irreducible and so is any of its
subdeterminants. A much stronger result for the Hankel matrix is that its ideals of minors of
arbitrary size are prime ideals, All these results and more are proved in [9]; the last result is [9,
Proposition 4.3].

3.1 Basics

Consider the n× n Hankel matrix:

H = H(n) :=


x0 x1 x2 . . . xn−2 xn−1

x1 x2 x3 . . . xn−1 xn
...

...
... ...

...
...

xn−1 xn xn+1 . . . x2n−3 x2n−2


Let J ⊂ R = k[x0, . . . , x2n−2] be the gradient ideal of det(H), i.e., the ideal generated by the

partial derivatives fi := ∂ det(H)/∂xi of det(H).

17
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The first obvious question is about the codimension of J . By Proposition 5.3.1, we know
that J ⊂ In−1(H), the ideal generated by all minors of H of the size n− 1. On the hand, by the
trick in ([11, Lemme 2.3]), the latter ideal of minors coincide with the ideal of maximal minors
of an (n− 1)× (n+ 1) Hankel matrix. Since the latter is a specialization of the (n− 1)× (n+ 1)
generic matrix, the codimension of Jn−1(H) is 3. Therefore, the codimension of J is at most 3.

The following result shows that it is exactly 3, with an extra precision.

Lemma 3.1.1. Let H denote the generic n × n Hankel matrix and let J denote the gradient
ideal of det(H). Then J is a codimension 3 ideal contained in P := In−1(H).

Proof. By Proposition 5.3.1 J , J ⊂ P , hence J has codimension at most 3. We consider the
initial ideal of J in the reverse lexicographic order. Once more, using Proposition 5.3.1 with
M = H and R = k[x0, . . . , x2n−2], direct inspection shows that in(f0) = xn−1

n , in(f2n−2) =
xn−1
n−2, in(fn−1) = nxn−1

n−1. Clearly then in(J) has codimension at least 3. Therefore, J has
codimension at least 3 as well.

Remark 3.1.2. Observe that {f0, f2n−2, fn−1} is itself a regular sequence. This follows from
Lemma 2.1.1 since in(f0, f2n−2, fn−1) ⊃ (in(f0), in(f2n−2), in(fn−1)), thus implying that the ideal
(f0, f2n−2, fn−1) has codimension 3 and therefore {f0, f2n−2, fn−1} is a regular sequence as we
are in a graded case.

3.2 The 3× 3 Hankel matrix

In this part we focus on the size m = 3. The reason to do this will become clear later.
Let

H = H3 =

 x0 x1 x2

x1 x2 x3

x2 x3 x4


Proposition 3.2.1. (characteristic zero) Let H denote the generic 3× 3 Hankel matrix in the
variables x0, . . . , x4 and let J ⊂ R := k[x0, . . . , x4] denote the gradient ideal of detH.

(a) Let P := I2(H) ⊂ R ; then P and m := (x0, . . . , x4) are the only associated primes of R/J
and P is the minimal primary component of J .

(b) J is an ideal of of linear type and the syzygy matrix of J has linear rank 3; in particular,
detH is not homaloidal.

Proof. By the principle ([11, Lemme 2.3]) mentioned earlier, in the Hankel case the ideal P
generated by the 2 × 2 minors of H coincides with the ideal generated by the maximal minors
of the Hankel matrix (

x0 x1 x2 x3

x1 x2 x3 x4

)
, (3.1)

which is the defining prime ideal of the normal quartic curve in P4.
(a) The contents of this item are that the gradient ideal of det(H) defines the same projective

scheme as the normal quartic. However, we still need the algebraic details to show this. Set
f := detH, and fi := ∂f/∂xi. Note that these are

{f4 = ∆12, f3 = −1/2∆13, f2 = ∆14 + 3∆23, f1 = −1/2∆24, f0 = ∆34}, (3.2)
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where ∆ij is the 2-minor of (3.1) with ith and jth columns (i < j). Clearly, P is a minimal
prime of R/J since J has codimension 3 by Proposition 3.1.1.

We need the following result:

Claim: mP ⊂ J .

It suffices to show that, for i = 0, . . . , 4, either xi∆23 ∈ J or xi∆14 ∈ J . The following
relations take care of this:

x0∆23 = −x2f4 − 1/2x1f3

x1∆23 = −x3f4 + 1/2x2f3

x2∆14 = x0f0 − 1/2x3f3

x3∆23 = 1/2x3f2 + 1/4x4f3 − 1/4x2f1

x4∆14 = x4f2 + 3x2f0 + 3/2x3f1

Now, from the claim follows that m is an associated prime of R/J and, furthermore, that
P ⊂ J : m ⊂ J : m∞. But since P is a minimal prime of R/J of maximal dimension, it follows
that P = J : m∞. This means that the primary decomposition of J away from m is P , so we
are done for this item.

(b) To show the linear type property we use the criterion of [14, Theorem 9.1], informally
known as the “(F1) + sliding depth” criterion. Now, (F1) (also known as (G∞) is the following:

Claim: µ(JQ) ≤ htQ, for every prime ideal Q.

To prove this assertion we have to drill quite a bit through the syzygies of the generators
of J . Since P has the expected codimension (= 3), its presentation matrix is linear, as a piece
of the Eagon–Northcott complex. Noting that the syzygies derive from the Laplace relations
coming from the four 2× 3 submatrices of (3.1), and ordering the minors to adjust to the order
in which they appear along the partials as in (3.2), one obtains the following matrix:

S =



x2 x3 x3 x4 0 0 0 0
−x1 −x2 0 0 x3 x4 0 0

0 0 −x1 −x2 −x2 −x3 0 0
x0 x1 0 0 0 0 x3 x4

0 0 x0 x1 0 0 −x2 −x3

0 0 0 0 x0 x1 x1 x2

 .

Let Sj (1 ≤ j ≤ 8) denote the jth column of this matrix. By this preliminaries we can see:

(
∆12 ∆13 ∆14 ∆23 ∆24 ∆34

)


x2 x3 x3 x4 0 0 0 0
−x1 −x2 0 0 x3 x4 0 0

0 0 −x1 −x2 −x2 −x3 0 0
x0 x1 0 0 0 0 x3 x4

0 0 x0 x1 0 0 −x2 −x3

0 0 0 0 x0 x1 x1 x2

 = 0.

Suppose that
(
a0 a1 a2 a3 a4

)
is a syzygy of J = (f0, f1, f2, f3, f4). Therefore a0f0 +a1f1 +

a2f2 + a3f3 + a4f4 = 0. So that

a0∆34 + a1(−1/2∆24) + a2(3∆23 + ∆14) + a3(−1/2∆13) + a4∆12 = 0.
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Therefore
(
a4 −1/2a3 a2 3a2 −1/2a1 a0

)
is a syzygy of J then it must be K-linear com-

bination of columns of S. Conversely any K−linear combination of the columns of S such that
the entry in the fourth coordinate is 3 times the entry in the third one gives a syzygy of J .

As one can see a4, a3, a1 and a0 can be considered independently from each-other but for
choosing a2 we have to be careful. (The critical point is ∆14 + 3∆23 = f2.) Hence in the 3th
and 4th rows of S we have to choose columns with the same variable. Therefore we just have
these combinations:

−S6 + 3S7, 3S2 − S3,S5 − S4.

We can go further and explicitly derive the linear syzygies.

3S2 − S3 = 3x3∆12 − 3x2∆13 + 3x1∆23 − x3∆12 + x1∆14 − x0∆24

= 2x3∆12 − 3x2∆13 + x1(3∆23 + ∆14)− x0∆24 = 0

Now by replacing ∆ij by the correspondent partial derivative we will have :

2x3f4 + 3/2x2f3 + x1f2 + 1/2x0f1 = 0

That is
4x3f4 + 3x2f3 + 2x1f2 + x0f1 = 0.

Consequently we get linear syzygy(
0 x0 2x1 3x2 4x3

)
.

Similarly another linear syzygies is:

−S4 + S5 = 2x0f0 + x1f1 − x3f3 − 2x4f4 = 0

or in the other words is (
2x0 x1 0 −x3 −2x4

)
and

−S6 + 3S7 = 4x1f0 + 3x2f1 + 2x3f2 + x4f3 = 0

or (
4x1 3x2 2x3 x4 0

)
.

In this way one gets that the following linear syzygies
0 −2x0 4x1

x0 −x1 3x2

2x1 0 2x3

3x2 x3 x4

4x3 2x4 0


generate the linear part of the entire module of syzygies of (3.2). The rank of this matrix is
clearly 3, hence this is the value of the linear rank of J . We now contend that, together with
the Koszul syzygies, they suffice to check the stated property of J . For this, we note that this
property is equivalent to a property of the Fitting ideals of J , and can be stated as follows:

ht It(ϕ) ≥ rank (ϕ)− t+ 2 = 4− t+ 2 = 6− t, for 1 ≤ t ≤ 4.
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Obviously, it suffices to show these estimates for the above submatrix ψ. For t = 1, 2 the linear
syzygies so far described immediately give the required inequalities. For t = 3, 4, we use the
matrix of Koszul syzygies where one knows that the codimension of any of its Fitting ideals is
≥ ht (J) = 3. So much for the property (F1).

The sliding depth condition reads as

Claim: depth (Hi)Q ≥ ht (Q)−µ(JQ)+i, for every primeQ ⊃ J with 0 ≤ i ≤ µ(JQ)−ht (JQ).

Here Hi denotes the ith Koszul homology module on the generators of J

Note that if Q ⊃ J then necessarily Q ⊃ P . We first assume that Q = m, in which case
µ(Jm) = µ(J) = 5, ht (Jm) = ht (J) = 3, hence µ(Jm)− ht (Jm) ≤ 2. In this case, our range for i
is 0 ≤ i ≤ 2. For i = 2 the inequality is automatic since H2 is Cohen–Macaulay and it is trivial
if i = 0. For i = 1 we need to show that H1 has depth at least 1. For this it suffices to show that
J is a syzygetic ideal since we then have an exact sequence 0→ H1 −→ (R/J)5 −→ J/J2 → 0,
proving that H1 has homological dimension at most 3 over R and hence, depth at least 1. The
syzygetic calculation is equivalent to showing that any syzygy of J with entries in J belongs to
the module of Koszul syzygies of J . This computation has been carried out with Macaulay (still
simpler than carrying out the computation of the entire Rees ideal.)

Next assume that Q ( m, hence µ(JQ) ≤ ht (Q) ≤ 4 (by (a)). Clearly, ht (JQ) = ht (PQ) = 3.
By part (a), we know that JQ = PQ. Therefore, µ(JQ)− ht (JQ) = µ(PQ)− ht (PQ) = 3− 3 = 0
since R/P is an isolated singularity. Then i = 0 is the only case. One has depth (H0)Q =
depth (RQ/PQ) = 2 = ht (Q)− µ(JQ) + 0.

Thus, J is an ideal of linear type.

Since we have also proved above that the linear rank of the syzygies of J is ≤ 3, we are done
for the supplementary assertion by Proposition 2.2.3.

Remark 3.2.2. We will prove later that in arbitrary size the generic Hankel matrix has linear
rank 3.

3.3 Hankel matrix of arbitrary size

The generic Hankel matrix of size n× n is the symmetric matrix

H :=


x0 x1 . . . xn−1

x1 x2 . . . xn
...

... ...
...

xn−1 xn . . . x2n−2


One expects results analogous to those of Proposition 3.2.1, but there will be some differences.

For example, if m ≥ 4 the ring R/J will no longer have depth zero. However, the main bulk of
the properties in the case n = 3 will hold true.

For the proofs we will use the following preliminaries. We emphasize that throughout the
following discussion, R = k[x0, . . . , x2n−2].
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3.3.1 A fundamental primary component of J

We will use the following result, possibly well-known.

Lemma 3.3.1. Set P := In−1(H). Then P is a prime ideal and the multiplicity of R/P is

e(R/P ) =
1

3!
(n− 1)n(n+ 1).

Proof. By [9, Proposition 4.3], the ideal P is prime and has maximal possible height. On the
other hand, by the same principle of [11, Lemme 2.3], P is the ideal of the maximal minors of
the Hankel matrix 

x0 x1 . . . xn
x1 x2 . . . xn+1
...

... ...
...

xn−2 xn−1 . . . x2n−2


Therefore, this ideal has height n−(n−2)+1 = 3. It follows that the Eagon–Northcott complex
resolves R/P ; since this complex is well-known to be a pure (n − 1)-resolution one can apply
Theorem 2.1.5 to get the desired expression.

Lemma 3.3.2. Letting in(J) ⊂ R denote the initial ideal of J in the revlex monomial order and
writing J ′ ⊂ in(J) for the subideal generated by the elements {in(f0), . . . , in(f2n−2)}, one has an
inequality e(R/J ′) < 2e(R/P ).

Proof. Let us compute e(R/J ′) in a direct way. One can see that J ′ is generated by the
monomials

G = (xn−1
n−2, x

n−2
n−2xn−1, . . . , x

n−1
n−1, x

n−2
n−1xn, . . . , x

n−1
n ). (3.3)

Writing J ′′ for the ideal of S := k[xn−2, xn−1, xn] generated by these monomials, one has
J ′ = J ′′R, hence e(R/J ′) = e(S/J ′′).

Since J ′′ is a m−primary ideal in S, one has e(S/J ′′) = dimk(S/J
′′). Set x = xn−2, y =

xn−1, z = xn for easier reading. We partition the k-vector basis of (S/J ′′) into disjoint sets
according to powers of y. Namely, let Ai denote the set of basis elements whose y-degree is
i− 1, for 1 ≤ i ≤ n− 1. One can easily seen that Ai the set of all monomiala xαyβzγ such that
β = i − 1, α < n − i and γ < n − i; to see this note that if α ≥ n − i then the monomial has
degree ≥ i− 1 + n− i = n− 1, implying it is an element of G in (3.3). Explicitly:

Ai = {yi−1, yi−1z, . . . , yi−1zn−i−1, yi−1x, yi−1xz, . . . , yi−1xzn−i−1, . . . , yi−1xn−i−1, yi−1xn−i−1z,

. . . , yi−1xn−i−1zn−i−1}.

Summing up over 1 ≤ i ≤ n − 1, one gets: dimk(S/J
′) =

∑n−1
i=1 |Ai| =

∑n−1
i=1 (n − i)2 =

(n− 1)2 + (n− 2)2 + · · ·+ 1. Therefore, the multiplicity of J ′ is
∑n−1

i=1 i
2 = (n−1)n(2n−1)

6 .
Consequently one has;

e(R/J ′) =
1

6
(n− 1)n(2n− 1) <

1

3
(n− 1)n(n+ 1) = 2e(R/P ),

as required.

Proposition 3.3.3. P is the P -primary part of J .
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Proof. Let P ⊂ R denote the P -primary part of J . Since P is the contraction of PP to R, it
suffices to show that JP = PP , i.e., that `(JP ) = `(PP ).

By the associativity formula for multiplicities, one has e(R/J) ≥ e(R/P )`(RP /JP ), where
` denotes length. Since J ′ = (in(f0), . . . , in(f2n−2)) ⊂ in(J) also has codimension 3, using
Lemma 3.3.2 yields:

e(R/P )`(RP /JP ) ≤ e(R/J) = e(R/in(J)) ≤ e(R/J ′) < 2e(R/P ).

Clearly this is only the case if `(RP /JP ) = 1; since in the short exact sequence

0→ PP /JP → RP /JP → RP /PP → 0

the rightmost module is nonzero, we must have `(PP /JP ) = 0, as stated.

3.3.2 The linear rank of the Hankel gradient Ideal

.
The goal of this part is to establish the linear rank of the Hankel gradient ideal in arbitrary

dimension. For convenience we use the notation H instead of H for the generic Hankel matrix,
and also use n instead of m.

Let

H =


x0 x1 . . . xn−1

x1 x2 . . . xn
...

... ...
...

xn−1 xn . . . x2n−2


By Proposition 5.3.1 we have the following relation:

fi :=
∂(det(H))

∂xi
=

∑
k+l=i+2

∆k
l , 0 ≤ i ≤ 2n− 2, (3.4)

where ∆k
l is the determinant of the minor of H obtained by deleting the lth row and kth column.

By the symmetry of matrix H we have ∆k
l = ∆l

k – this will often be used to simplify the work.
We now consider the Hankel matrix of size (n− 1)× (n+ 1):

GP =


x0 x1 . . . xn
x1 x2 . . . xn+1
...

... ...
...

xn−2 xn−1 . . . x2n−2


A maximal minor of GP is denoted, as usual, by (n − 1)-tuple of the indices of its columns.
We next express the partial derivatives in terms of the maximal minors of GP. For this one
resorts to both [11, Lemme 2.3] and [4, Corollary 2.2(a)], where the latter contains the details
of a generalization of the Gruson–Peskine trick.

Lemma 3.3.4. The following holds, for 0 ≤ j ≤ 2n− 2:

fj =


∑j/2

i=0(j + 1− 2i)[1, · · · , (̂i+ 1), · · · , ̂(j + 2− i), · · · , n+ 1] j < n,

∑n−j/2
i=1 (2n+ 1− j − 2i)[1, · · · , ̂(i+ 1 + j − n), · · · , ̂(n+ 2− i), · · · , n+ 1] j ≥ n.

(3.5)
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Proof. In the proof of [4, Corollary 2.2(a)] one has to replace the parameters h, t and k with
r, n− 1 and n− r, respectively, and observe that (s− (i+ 1) + n+ 1− (r + s− i)) = n− r and
(s − (i + s + r − 1 − n) + n + 1 − (n + 2 − i)) = n − r. Then, in that argument, in each case
one is to choose all possible e(I) = e1, ..., en−1 such that ei = 1 if i ∈ I and ei = 0 if i /∈ I and
I ⊆ {1, ..., n− 1}, | I |= n− r.

Then one has

∆s
r =

r−1∑
i=0

[1, · · · , (̂i+ 1), · · · , s, · · · , ̂(r + s− i), · · · , n+ 1] (3.6)

if s− 2 < n− r, and

∆s
r =

n−s+1∑
i=1

[1, · · · , ̂(i+ s+ r − 1− n), · · · , s, · · · , ̂(n+ 2− i), · · · , n+ 1] (3.7)

if s− 2 ≥ n− r. The result now follows easily from these formulas.

As a consequence any linear syzygy L of the partial derivatives induces a linear syzygy of the
maximal minor of GP, whose coordinates can be read off Lemma 3.3.4) as k-linear combinations
of the coordinates of L. The idea is to revert somehow this situation, by establishing a system of
linear equations which is to be conveniently solved. Thus, one needs the structure of the linear
syzygies of the maximal minors of GP. As one knows, the ideal of maximal minors of GP is
linearly presented and, in fact, has a linear resolution given by the classical Eagon–Northcott
complex ([7]). This complex is better visualized as a symmetrization of the Koszul complex:

0→
n+1∧

Rn+1⊗RSym
2(Rn−1)∗ →

n∧
Rn+1⊗RSym

1(Rn−1)∗
EN→

n−1∧
Rn+1⊗RR→ In−1(GP)→ 0 (3.8)

For our convenience, we will introduce the following convention: for 0 ≤ i ≤ n, write b(xi) :=
(xi xi+1 . . . xn−2+i). Thinking of b(xi) as a symbol, the presentation of In−1(GP) can be
thought of as the nth differential of the Koszul complex K•(b(x0), · · · , b(xn);R).

To explain this, one refers to (3.8). Let ∂nj be the nth differential in the Koszul complex
K•(xj−1, · · · , xj−1+n), then EN = (∂n1 | · · · |∂nn−1) as a multi-function. EN is represented by

a matrix with (n − 1)(n + 1) columns and
(
n+1
n−1

)
rows. The shape of all matrices ∂ni s is the

same except possibly by a shift in the indices. That is, By adding 1 to the indices of the
first column of ∂n1 we obtain the first column of ∂n2 and so on. Therefore if we rearrange the
presentation of EN such that for all i all of the ith columns of ∂n1 ,...,∂nn−1 are put together, then
EN = nth differential of the Kozul complex K•(b(x0), · · · , b(xn);R), as claimed.

Next, a partial derivative fi individualizes a certain subset of maximal minors of GP accord-
ing to (3.5). Denote by Li the corresponding subset of rows in the presentation matrix, which
can now be written in the following way:
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

−b(xn−1) −b(xn)

b(xn−2) b(0) −b(xn)

−b(xn−3) b(0) b(0) −b(xn)
b(0) b(xn−2) b(xn−1)

...

−b(x1) −b(xn) b(0)
b(x2) b(xn−1) b(0) b(0)

−b(x3) −b(xn−2) b(0) b(0) b(0)

. . . . .
.

b(xn/2) b(x3n/2+1)

b(x0) −b(xn)
b(0) −b(x1) b(xn−1) b(0)
b(0) b(0) b(x2) −b(xn−2) b(0) b(0)

. . . . .
.

b(xn/2−1) b(0) b(xn/2+1)

b(0) b(x0) b(xn−1)
b(0) b(0) −b(x1) −b(xn−2) b(0)
b(0) b(0) b(0) b(x2) b(xn−3) b(0) b(0)

. . . . .
.

b(xn/2−1) b(xn/2)

...

b(x0) b(0) b(0) b(x3)
−b(x1) −b(x2) b(0)

b(x0) b(0) −b(x2)

b(x0) b(x1)


where the blocks correspond to the descending sequence

L2n−2, L2n−3, L2n−4, . . . , Ln, Ln−1, Ln−2, . . . , L2, L1, L0.

The blank spaces are blocks of zeros – in some places we write b(0) to emphasize such a
block.

For example, in the case n = 4, L0 ↔ {[3, 4, 5]}, L1 ↔ {[2, 4, 5]}, L2 ↔ {[2, 3, 5], [1, 4, 5]},
L3 ↔ {[2, 3, 4], [1, 3, 5]}, L4 ↔ {[1, 3, 4], [1, 2, 5]}, L5 ↔ {[1, 2, 4]}, L6 ↔ {[1, 2, 3]}.

A useful fact is that the number of rows of the block corresponding to Li is given by

]Li = ]L2n−2−i = b(i+ 2)/2c and ]Ln−1 = b(n+ 1)/2c,

for i = 0, · · · , n− 2.

After these preliminaries, we are ready to state the main result of this part.

Theorem 3.3.5. For any n, the linear rank of J is 3.
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Proof. Let (a0 a1 . . . a2n−2)t denote a linear syzygy of J = (f0, f1, ..., f2n−2). Lemma 3.3.4
allows to replace each fi with its expression in terms of maximal minors of GP. Introduce a
notation for the field coefficients in those expressions:

lij :=

{
2n+ 1− j − 2i j ≥ n, 1 ≤ i ≤ n− j/2,
j + 1− 2i 0 ≤ j < n, 0 ≤ i ≤ j/2 (3.9)

Then the column matrix (lijaj)0≤j<n, 0≤i≤j/2
j≥n, 1≤i≤n−j/2

is a syzygy of the maximal minors of GP.

Note that EN has (n+1)(n−1) columns consisting of (n+1) blocks, each of these containing
of (n− 1) columns. Let Ctk denote the ((t− 1)(n− 1) + k)-th column of EN, for 1 ≤ t ≤ n+ 1
and 1 ≤ k ≤ n− 1. Write

(lijaj) =
∑
∀(t,k)

ctkC
t
k, (3.10)

for certain base field elements ctk. Similarly, let the kth row of the block corresponding to Lt be
denoted by Rtk. Then, for 0 ≤ m ≤ 2n− 2), we have a system of linear equations derived from
(3.10):

Sm :=


l1mam =

∑
(t,k) c

t
k(R

m
1 ∩ Ctk),

...
li′mam =

∑
(t,k) c

t
k(R

m
i′ ∩ Ctk)

(3.11)

where i′ = bn− (m/2)c if m ≥ n and i′ = b(m+ 2)/2c otherwise.

Since Rm1 ∩ Ctk is either zero or some variable, all coefficients above are base field elements.

Next write

am = am,0x0 + · · ·+ am,2n−2x2n−2, 0 ≤ m ≤ 2n− 2,

where the coefficients are base field elements.

Substituting in (3.11) and taking in account that on any equation of Sm the coefficient of
xi on the left must be the same as the coefficient of xi on the right we are led to the following
systems of equations, one for each i = 0, · · · , 2n− 2:

l1,mam,ixi =
∑
ctkxi, (t, k) is such that Rm1 ∩ Ctk = xi

...
li′,mam,ixi =

∑
(t,k) c

t
kxi (t, k) is such that Rmi′ ∩ Ctk = xi

The driving idea is that if we find the coefficients ctk we will know the am’s as well. We next
establish several relations among these coefficients that will shorten the work.

Claim 1. cij = 0 for all i, j with i+ j ≤ n− 1 and, by an argument of symmetry, cij = 0 for
all i, j with i+ j ≥ n+ 3.

First notice that in Sn−i we have l2,n−ian−i,0x0 = 0 since ∀(t, k) x0 6∈ Rn−i2 ∩Ctk. Therefore
an−i,0 = 0 and l1,n−ian−i,0x0 = 0 = ci1x0. Hence ci1 = 0 for 1 ≤ i ≤ n− 2.

Now we show that if ctk = 0 and t+ k ≤ n− 1 then ct−1
k+1 = 0. By the system Sn−t+1 we have

l2,n−t+1an−t+1,kxk = ctkxk = 0,therefore an−t+1 = 0. Hence l1,n−t+1an−t+1,kxk = ct−1
k+1xk = 0
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and, consequently, ct−1
k+1 = 0. We thus obtain

cn−2
1 = cn−3

2 = · · · = c1
n−2 = 0

cn−3
1 = cn−4

2 = · · · = c1
n−3 = 0

...
c1

1 = 0

Claim 2. We show that either cij = 0 for all i + j = n or else cij 6= 0 for i + j = n and are
uniquely determined.

By the system Sn−1 we have l1,n−1an−1,n−2xn−2 = c1
n−1xn−2 and l2,n−1an−1,n−2xn−2 =

c2
n−2xn−2, therefore we have c1

n−1 =
l1,n−1

l2,n−1
c2
n−2. Hence by the same method in the systems Sn−2,

Sn−3, . . . ,S2 we have the following: 
c1
n−1 =

l1,n−1

l2,n−1
c2
n−2

c2
n−2 =

l1,n−2

l2,n−2
c3
n−3

...

cn−2
2 =

l1,2
l2,2
cn−1

1

As one can see cij for i + j = n are either zero or are uniquely determined. By symmetry,

the same result holds for i+ j = n+ 2, i.e either all cij for i+ j = n+ 2.

Claim 3. One can see that either all cij for i+j = n+1 must be zeros or all cij for i+j = n+1
are non-zero and uniquely determined.

By the system of equation Sn−1 we have l1,n−1an−1,n−1xn−1 = 0, since x−n− 1 6= R1
n−1∩Ctk

for any (t, k). Consequently, an−1,n−1 = 0. By the system of equations in Sn−1 we have
lk,n−1an−1,n−1xn−1 = (−ckn−k+1 + cn−k+2

k−1 )xn−1 = 0 for 1 < k ≤ b(n+ 1)/2c . Therefore we have:
c2
n−1 = cn1

c3
n−2 = cn−1

2
...

c
b(n+1)/2c
b(n+1)/2c+1 = c

b(n+1)/2c+2
b(n+1)/2c−1

(3.12)

By the system of equations in Sn−2 one has:

c2
n−1 =

l1,n−2

l2,n−2
(c3
n−2 + cn1 )

c2
n−1 =

l1,n−2

l3,n−2
(c4
n−3 + cn−1

2 )
...

c2
n−1 =

l1,n−2

lt−1,n−2
(ctk + ck+2

t−2 )

c2
n−1 =

l1,n−2

lt,n−2
(ct+1
k + ck+1

t−1 )
...

c2
n−1 =

l1,n−2

lb(n+1)/2c,n−2
(c
b(n+1)/2c+1
b(n+1)/2c + c

b(n+1)/2c+2
b(n+1)/2c−1)

(3.13)

Hence by (3.12) and (3.13) one can see if c2
n−1 6= 0 then all cij for i+ j = n+ 1 are non-zero

and are uniquely determined.
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Now we show that if ctk = 0 for one (t, k) such that t+ k = n+ 1 then all cij for i+ j = n+ 1
are zero.

Suppose that t ≤ k and ctk = 0. By the system of equations in Sn−t we have:{
l1,n−tan−t,n−txn−t = ctkxn−t = 0

l2,n−tan−t,n−txn−t = (ct+1
k−1 + ck+1

t−1 )xn−t
(3.14)

From these equations we have an−t,n−t = 0, therefore ct+1
k−1 + ck+1

t−1 must be zero. Since by

(3.12) ctk = ck+1
t−1 = 0 hence ct+1

k−1 = 0. By (3.13) c2
n−1 = 0, thus all cij for i+ j = n+ 1 are zero.

So much for the structure of the coefficients ctk. We now apply these findings to derive the
linear syzygies of J .

We start from claim 2. Suppose that c1
n−1 6= 0. Without loss of generality we may assume

that c1
n−1 = 1, since this does not affect the degree of a syzygy. As seen above, every coefficient

cij with i + j = n is uniquely determined in terms of c1
n−1. From Sm, for 1 ≤ m ≤ 2n − 2 we

have:

am =
1

l1,m

∑
i+j=n

cij(R
m
1 ∩ Cij) =

1

l1,m

∑
i+j=n

cijxm−1 = αmxm−1

where

αm =
1

l1,m

∑
i+j=n

cij is an element of the base field,

and a0 = 0. This affords the linear syzygy

(0 α1x0 α2x1 · · · α2n−2x2n−3).

Still by claim 2, a similar argument holds in case i+ j = n+ 2. This entails the following linear
syzygy:

(β0x1 β1x2 · · · β2n−3x2n−2 0),

for uniquely determined βi ∈ k.
These two syzygies are clearly independent, i.e., they give a linear submatrix of rank 2 of

the entire linear syzygies.
Now consider claim 3. Suppose that c1

n 6= 0. Again without loss of generality one can assume
that c1

n = 1. All cij where i + j = n + 1 are uniquely determined in terms of c1
n by (3.12) and

(3.13). In the system of equation Sm, for 0 ≤ m ≤ 2n− 2 we have:

am =
1

l1,m

∑
i+j=n+1

cij(R
m
1 ∩ Cij) =

1

l1,m

∑
i+j=n+1

cijxm = γmxm

where

γm =
1

l1,m

∑
i+j=n+1

cij is an element of the base field .

Therefore we conclude that the only additional linear syzygy is the following:

(γ0x0 γ1x1 · · · γ2n−2x2n−2).

This implies that the linear rank of J is at most 3. Actually, an additional little effort establishes
that the three syzygies give rank 3.
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Sufficient computational evidence motivates the following

Conjecture 3.3.6. The gradient ideal of the generic Hankel determinant is of linear type.

If the conjecture is affirmative, it would follow from the previous theorem and the criterion
of Proposition 2.2.3 that det(H) is not homaloidal.

3.3.3 The radical of the Hankel gradient ideal

In the previous subsection we have seen that a partial derivative fi corresponds to a set of
maximal minors of the (n− 1)× (n+ 1) Hankel matrix GP. The set of maximal minors of GP is
endowed with the usual partial order, by which [i1, ..., in−1] ≤ [j1, ..., jn−1]⇔ i1 ≤ j1, ..., in−1 ≤
jn−1. For example, for n = 4 we have:

[123]

[124]

[125] [134]

[135] [234]

[145] [235]

[245]

[345]

In this diagram minors on the same horizontal line are not comparable. For more details
see [2, chapter 4]. The maximal minors corresponding to fj – i.e., those that are summands
with nonzero coefficient in (3.5) – are incomparable with respect to the partial order defined
above and coincide with the incomparable minors along one of the horizontal lines of the above
diagram.

The main result of this part will use the theory of Plücker relations (see the Appendix for a
brief resumé) in order to produce suitable equations of integral dependence.

Proposition 3.3.7. Let P = In−1(H) then P =
√
J .

Proof. By Proposition 3.3.3, P is the P−primary component of J , hence
√
J ⊆ P . It is enough

to show the generators of P belong to
√
J .

Since P = In−1(H) = In−1(GP), we can partition the elements of P into subsets, each
associated to a partial derivative fj for j = 0, · · · , 2n− 2, as explained above. By a descending
recursion on j = 2n−2, · · · , n we show that all minors in this range belong to

√
J . A symmetric

argument will complete the proof for j = 0, · · · , n− 1.
The first step holds since f2n−2 = [1, 2, ..., n− 1] and f2n−3 = 2[1, 2, ..., n− 2, n] are already

in J . We explain the next inductive step to make clear the procedure. The next row of minors
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in the diagram are the one corresponding to f2n−4. Consider the following Plücker relation
associated to the product [1, ..., n− 3, n− 1, n][1, ..., n− 2, n+ 1]:

[1, ..., n− 3, n− 1, n][1, ..., n− 2, n+ 1] = 1/2[1, ..., n− 3, n− 1, n+ 1]f2n−3

− f2n−2[1, ..., n− 3, n, n+ 1].
(3.15)

We derive that the following equation is satisfied by [1, ..., n− 3, n− 1, n]:

X2−1/3X(3[1, ..., n−3, n−1, n]+[1, ..., n−2, n+1])+1/3[1, ..., n−3, n−1, n][1, ..., n−2, n+1] = 0. (3.16)

By (3.5) f2n−4 = 3[1, ..., n−3, n−1, n]+[1, ..., n−2, n+1] and by (3.15) the constant coefficient
of (3.16) is in J . Hence [1, ..., n− 3, n− 1, n] ∈

√
J .

Now suppose that j < 2n−4 and that, for j < t ≤ 2n−2, any minor associated to ft belongs
to
√
J . Let [1, ..., ̂i+ 1 + j − n, ..., ̂n+ 2− i, ..., n+1] be a minor associated to fj , where 1 ≤ i ≤

[n− j/2] and j ≥ n. We are going to show that [1, ..., ̂i+ 1 + j − n, ..., ̂n+ 2− i, ..., n+1] ∈
√
J .

Clearly this minor satisfies the following equation:

X2 − 1

2n+ 1− j − 2i
Xfj +

1

2n+ 1− j − 2i
g = 0,

where

g =

[n−j/2]∑
i 6=l=1

[1, ..., ̂i+ 1 + j − n, ..., ̂n+ 2− i, ..., n+ 1][1, ..., ̂l + 1 + j − n, ..., ̂n+ 2− l, ..., n+ 1].

For any i, l such that 1 ≤ i < l ≤ [n− j/2], consider the following Plücker relation:

[1, ..., ̂i+ 1 + j − n, ..., n+ 2− l, ..., ̂n+ 2− i, ..., n+ 1][1, ..., i+ 1 + j − n, ..., ̂l + 1 + j − n, ..., ̂n+ 2− l, ..., n+ 1]

−[1, ..., i+ 1 + j − n, ..., ̂n+ 2− l, ..., ̂n+ 2− i, ..., n+ 1][1, ..., ̂i+ 1 + j − n, ..., ̂l + 1 + j − n, ..., n+ 2− l, ..., n+ 1]+

[1, ..., ̂i+ 1 + j − n, ..., ̂n+ 2− l, ..., n+ 2− i, ..., n+1][1, ..., i+ 1 + j − n, ..., ̂l + 1 + j − n, ..., n+ 2− l, ..., ̂n+ 2− i, ..., n+ 1]

= 0.

In the above equation the red minors are less than the [1, ..., ̂i+ 1 + j − n, ..., ̂n+ 2− i, ..., n+
1] and belong to ft for some t > j, hence by the hypotheses of induction they belong to

√
J .

Therefore g ∈
√
J . The result now follows by induction.

Corollary 3.3.8. P = In−1(H) is the minimal component of the gradient ideal of det(H).

Proof. This follows from the previous proposition and from Proposition 3.3.3.

Corollary 3.3.9. e(R/J) = e(R/P ) = 1/6(n− 1)n(n+ 1).

Proof. By 3.3.7 P is the only minimal prime of J , therefore by associativity formula e(R/J) =
e(R/P )l(RP /JP ). As l(RP /JP ) = 1 we are done.

Corollary 3.3.10. ht(J : P ) ≥ 4.

Proof. Consider the following short exact sequence

0→ P

J
→ R

J
→ R

P
→ 0.

Since e(R/J) = e(R/P ) and they have the same dimension, dim(P/J) < 2n − 1 − 3 which
implies the result.
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3.3.4 The Hessian of the Hankel determinant

In this section we show that the polar map defined by the determinant of Hankel matrix is
dominant. Since we are in characteristic zero, this assertion is equivalent to the following one:

Proposition 3.3.11. The determinant of the Hankel matrix has non-vanishing Hessian.

Proof. It suffices to show that, upon evaluating the variables at suitable base field elements, the
Hessian determinant does not vanish. We will show that a suitable such specialization of the
Hessian determinant is a pure power of xn−1 with nonzero coefficient.

Recall that the partial derivatives of f are sums of (n−1)-minors of H (3.4). For the second
partial derivatives ∂2f/∂xi∂xj we have an analogous expression in terms of the (n− 2)-minors,
namely, ∂2f/∂xi∂xj is the sum of minors obtained by omitting rows and columns containing xi
and xj . Noting that deg(∂2f/∂xi∂xj) = n− 2, one sees that a pure power of xn−1 in an entry
of the Hessian matrix has exponent n− 2.

Now, in the Hankel matrix the entries along the main anti-diagonal are the variable xn−1

repeated; for convenience of the next argument denote by ai (= xn−1) this entry on the ith
row, 0 ≤ i ≤ n − 1. Clearly, saying that an (n − 2)-minor effectively involves the term xn−2

n−1 is
tantamount to involving n− 2 of the ais.

Consider the minor corresponding to a given choice

a0, · · · , âi, · · · , âj , · · · , an−1

where i < j, with ai and aj omitted:

x0 x1 . . . . . . . . . xn−1

x1 x2 . . . . . . . . . . . . xn

...
... ... . . . . . . . . .

...
xi . . . xα . . . xn−1 . . . xn−1+i

...
... . . . ... . . .

...
xj . . . xn−1 . . . xβ . . . xn−1+j

... . . .
... ...

...
xn−1 xn . . . . . . . . . x2n−2




(3.17)

= (−1)n+1(n− 1)xn−2
n−1 + terms of smaller degree in xn−1

Note that (3.17) is a term of fαβ = ∂2f/∂xα∂xβ, and of f(n−1)(n−1) as well. Now, if fαβ
has a term which is a pure power of xn−1 then upon choosing α, the index β will be uniquely
determined, and vice versa. Therefore by (3.4) we have

fαβ =
∑
α

(−1)n+1(n− 1)xn−2
n−1 + terms of smaller degree in xn−1

= (α+ 1)(−1)n+1(n− 1)xn−2
n−1 + terms of smaller degree in xn−1

= cαβx
n−2
n−1 + terms of smaller degree in xn−1,
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with cαβ 6= 0.
Ready inspection of (3.17) yields that the only values of α and β such that fαβ has a term

which is a pure power of xn−1 for this choice of ai, aj are such that:

j − i = n− 1− α = 1− n+ β, for j − i = 1, · · · , n− 1.

Equivalently, α+ β = 2n− 2. The corresponding second partial derivatives fαβ are exactly the
entries along the main anti-diagonal of the Hessian matrix, and no other entries on the Hessian
matrix involves pure powers of xn−1:

Hess = det


. . . f0,(2n−2)

. . . f1,(2n−3)

. . . f2,(2n−4)
...

... ...
...

f(2n−2),0 . . .


2n−1×2n−1

Evaluating at (0, 0, · · · , 0, xn−1, 0, · · · , 0) yields:

Hess(0, 0, · · · , 0, xn−1, 0, · · · , 0) =

 ∏
α+β=2n−2

cαβ

x
(n−2)(2n−1)
n−1 6= 0,

since every cαβ 6= 0.



Chapter 4

Degeneration of a Hankel Matrix

In this section we deal with the determinant of a so-called sub-Hankel matrix, considered in
[3, Section 4]. This matrix is a certain degeneration of the generic Hankel matrix where some
entries are replaced by zeros. For consistency and appropriate referencing, we will keep the same
notation as in [3].

4.1 Sub-Hankel Matrices: the gradient ideal

Let x0, . . . , xn be variables over a field k and set

M (n) = M (n)(x0, . . . , xn) =



x0 x1 x2 . . . xn−2 xn−1

x1 x2 x3 . . . xn−1 xn
x2 x3 x4 . . . xn 0
...

...
... ...

...
...

xn−2 xn−1 xn . . . 0 0
xn−1 xn 0 . . . 0 0


Note that the matrix has two tags: the upper index (n) indicates the size of the matrix, while the
variables enclosed in parentheses are the total set of variables used in the matrix. This detailed
notation was introduced in [3] as several of these matrices were considered with variable tags
throughout. However, here we omit the list of variables if they are sufficiently clear from the
context.

This matrix will be called a generic sub–Hankel matrix; more precisely, M (n) is the
generic sub–Hankel matrix of order n on the variables x0, . . . , xn.

Throughout we fix a polynomial ring R = k[x] = k[x0, . . . , xn] and will assume that k is a field
of characteristic zero. We will denote by f (n)(x0, . . . , xn) the determinant of M (n)(x0, . . . , xn)
for any r ≥ 1, and we set f (0) = 1.

In [3, Section 4] the main objective was to prove that this determinant is homaloidal and
explain the geometric contents of the corresponding polar map. Here we turn ourselves to the
algebraic-homological behavior of the ideal J ⊂ R generated by its partial derivatives.

A common feature between the two approaches is a systematic use of a recurrence using the
subideal Ji ⊂ J generated by the first i+1 partial derivatives further divided by the gcd of these
derivatives. We need the following results drawn upon [3]. Throughout we set f := f (n).

33
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Lemma 4.1.1. ([3, Lemma 4.2]) If n ≥ 2, then

(i) For 0 ≤ i ≤ n− 1, one has

∂f

∂x0
, . . . ,

∂f

∂xi
∈ k [xn−i, . . . , xn] (4.1)

and the g.c.d. of these partial derivatives is xn−i−1
n

(ii) For any i in the range 1 ≤ i ≤ n− 1, the following holds:

xn
∂f

∂xi
= −

i−1∑
k=0

2i− k
i

xr−i+k
∂f

∂xk
. (4.2)

Moreover,

xn
∂f

∂xn
= (n− 1)x0

∂f

∂x0
+ (n− 2)x1

∂f

∂x1
+ · · ·+ xn−2

∂f

∂xn−2
(4.3)

Proposition 4.1.2. ([3, Proposition 4.3 and its proof]) For every 1 ≤ i ≤ n− 1, the ideal Ji is
perfect and linearly presented with recurrent Hilbert–Burch matrix of the form

ϕ(Ji) =



2xn−i
2i−1
i xn−i+1

... ϕ(Ji−1)
i+1
i xn−1

xn 0


We next prove a few additional results not obtained in [3].

Lemma 4.1.3. Keeping the above notation, set further P = (xn−1, xn) ⊂ R = k[x]. Then

(i) P is the radical of J and all the ideals Ji, 1 ≤ i ≤ n− 1 are P -primary ;

(ii) The RP -module RP /(Ji)P has length
(
i+1
2

)
;

(iii) The ideal of RP /(Jn−1)P generated by the forms xn, x
n−1
n−1 has length

(
n−1

2

)
.

Proof. (i) This is clear from the form of these ideals: any prime ideal containing any of these
has to contain P , which is clearly the unique minimal prime thereof. By Proposition 4.1.2, each
Ji is perfect, hence R/Ji is Cohen–Macaulay, thus implying that that P is the only associated
prime of Ji.

(ii) By the primary case of the associativity formula for the multiplicities, one has

e(R/Ji) = `(RP /(Ji)P ) e(R/P ) = `(RP /(Ji)P ),

since P is generated by linear forms. On the other hand, from Proposition 4.1.2 one has the
graded free resolution

0→ R(−(i+ 1))i → R(−i)i+1 → R→ R/Ji → 0 (4.4)
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Applying the multiplicity formula for Cohen–Macaulay rings with pure resolution ([15]), one
derives in this case e(k[x]/Ji) =

(
i+1

2

)
, as required.

(iii) As pointed out previously, one has (xn, Jn−1) = (xn, x
n−1
n−1). On the other hand,

(xn, Jn−1)/Jn−1 ' (xn)/(xn) ∩ Jn−1 ' (R/(Jn−1 : xn)) (1) (4.5)

= (R/Jn−2) (1), (4.6)

where the equality (Jn−1 : xn) = Jn−2 follows from Proposition 4.1.2. Therefore

`
(
(xn, x

n−1
n−1)P /(Jn−1)P

)
= `(R/Jn−2)P =

(
n− 1

2

)
,

by part (ii).

4.2 The minimal free resolution

Minimal graded free resolutions are useful tools for studying graded modules as they determine
the Hilbert series, the Castelnuovo-Mumford regularity and other invariants of the module. In
this part we obtain the minimal graded free resolution of the gradient ideal J .

We start with the following auxiliary isomorphism:

Lemma 4.2.1. With the previous notation, one has

J/Jn−1 '
R

(xn, x
n−1
n−1)

(−(n− 1)).

Proof. The following isomorphisms of R-graded modules are immediate:

J

Jn−1
=

(
Jn−1,

∂f
∂xn

)
Jn−1

'

(
∂f
∂xn

)
Jn−1

⋂( ∂f
∂xn

) ' R(
Jn−1 : ∂f

∂xn

) (n− 1) . (4.7)

We claim that
(
Jn−1 : ∂f

∂xn

)
= (xn, Jn−1). Once this is proved, we will have

(
Jn−1 : ∂f

∂xn

)
=

(xn, x
n−1
n−1) because it follows easily from the structure of f and its derivatives that (xn, Jn−1) =

(xn, x
n−1
n−1).

Now, by (4.3), (xn, Jn−1) ⊂
(
Jn−1 : ∂f

∂xn

)
as trivially Jn−1 ⊂

(
Jn−1 : ∂f

∂xn

)
.

For the reverse inclusion, we proceed as follows.

Let r ∈ (Jn−1 : ∂f/∂xn) and write P := (xn−1, xn). Since Jn−1 is a P -primary ideal and
∂f/∂xn 6∈ Jn−1 then r ∈ P = (xn, xn−1). Next rewrite r = r(x0, ..., xn) as

r = xnh(x0, ..., xn) + r′(x0, ..., xn−1) ∈ P,

where xn divides no term on the second summand. Then r′(x0, ..., xn−1) ∈ (xn−1), so let l ∈ N
be such that r′(x0, ..., xn−1) = xln−1r

′′(x0, ..., xn−1) and xn−1 does not divide r′′(x0, ..., xn−1). It
follows that r′′(x0, ..., xn−1) 6∈ P .
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Recall that (xn, Jn−1) = (xn, x
n−1
n−1). Since Jn−1 is P–primary and r′′xln−1∂f/∂xn ∈ Jn−1

then xln−1∂f/∂xn ∈ Jn−1. Thus, for the required reverse inclusion it is enough to show that
l ≥ n− 1. Write

xln−1

∂f

∂xn
=

n−1∑
i=0

ri
∂f

∂xi
, (4.8)

where ri ∈ R.
Writing ri = xngi(x0, ..., xn) + g′i(x0, ..., xn−1) and drawing upon (4.2) yields

xln−1∂f/∂xn =
n−1∑
i=0

ri∂f/∂xi =
n−1∑
i=0

(xngi(x0, ..., xn) + g′i(x0, ..., xn−1))∂f/∂xi

=

n−1∑
i=0

gi(x0, ..., xn)(−
i−1∑
k=0

2i− k
i

xn−i+k
∂f

∂xk
) +

n−1∑
i=0

g′i(x0, ..., xn−1)∂f/∂xi.

By repeating this process for gi and so forth, after finitly many steps we may suppose that the
coefficients of ∂f/∂xi in (4.8) do not involve xn.

Multiplying both sides of (4.8) by xn and using (4.3) yields a syzygy of the ideal Jn−1:

((n− 1)xln−1x0 − xnr0)
∂f

∂x0
+ · · ·+ (xn−2x

l
n−1 − xnrn−2)

∂

∂xn−2
− xnrn−1

∂f

∂xn−1
= 0. (4.9)

Thinking of this syzygy as a column vector K, we can write

K = α1C1 + · · ·+ αn−1Cn−1 (4.10)

for suitable αi ∈ k[x0, · · · , xn], where Ci denotes the ith column of the syzygy matrix of Jn−1

as in Proposition 4.1.2:

2x1 2x2 2x3 . . . 2xn−1
2n−3
n−1 x2

2n−5
n−2 x3

2n−7
n−3 x4 . . . xn

...
...

... . . .
...

n+2
n−1xn−3

n
n−2xn−2

n−2
n−3xn−1 . . . 0

n+1
n−1xn−2

n−1
n−2xn−1 xn . . . 0

n
n−1xn−1 xn 0 . . . 0

xn 0 0 . . . 0


n×(n−1)

This affords the following relations by looking at the last two rows:

xn−2x
l
n−1 − xnrn−2 = −rn−1

n

n− 1
xn−1 + α2xn and α1 = −rn−1.

Since we already assumed ri ∈ k[x0, ..., xn−1] for all i, then α2 = −rn−2. Therefore

−rn−1
n

n− 1
xn−1 = xn−2x

l
n−1.

In particular l ≥ 1 and hence rn−1 = −n−1
n xn−2x

l−1
n−1.
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Inspecting the (n− 2)’th row yields:

2xln−1xn−3 − xnrn−3 = −n+ 1

n− 1
rn−1xn−2 −

n− 1

n− 2
rn−2xn−1 + α3xn.

Since rn−1, rn−2 ∈ k[x0, ..., xn−1] then α3 = −rn−3. Substituting for rn−1 obtains

2xln−1xn−3 = −n+ 1

n− 1
rn−1xn−2 −

n− 1

n− 2
rn−2xn−1

=
n+ 1

n
x2
n−2x

l−1
n−1 −

n− 1

n− 2
rn−2xn−1

Then necessarily l ≥ 2 and furthermore

rn−2 =
n− 2

n− 1
(−2xl−1

n−1xn−3 +
n+ 1

n
x2
n−2x

l−2
n−1) = xl−2

n−1sn−2, (4.11)

for some sn−i ∈ k[x0, ..., xn−1].
Since xn appears exactly once on each row of the syzygy matrix below the first one, the

argument inducts yielding that for every 1 ≤ i ≤ n−2 one has αi = −rn−i and rn−i = xl−in−1sn−i
with sn−i ∈ k[x0, ..., xn−1] and l ≥ i. In particular, l ≥ n− 2 and r2 = xl−n+2

n−1 s2.

Finally, from the first row of K, we have:

(n− 1)x0x
l
n−1 − xnr0 = −2x1rn−1 − 2x2rn−2 − ...− 2xn−2r2 − 2xn−1r1.

Hence r0 = 0. Rearranging yields

−2x1rn−1 − 2x2rn−2 − ...− 2xn−1r1 − (n− 1)x0x
l
n−1 = 2xn−2r2 = 2xn−2x

l−n+2
n−1 s2. (4.12)

Since the left hand side is divisible by xn−1 so is the right hand side. Thus l − n + 2 > 0. In
other words, l ≥ n− 1, as desired.

Theorem 4.2.2. The minimal graded resolution of R/J has the form

0→ R(−(2n− 1))→ R(−n)n ⊕R(−2(n− 1))
ϕ→ Rn+1(−(n− 1))→ R.

In particular, R/J is almost Cohen–Macaulay, but not Cohen–Macaulay.

Proof. By Lemma 4.2.1 we have a free minimal resolution

C : 0→ R(−(2n− 1))→ R(−n)⊕R(−2(n− 1))→ R(−(n− 1))→ J/Jn−1 → 0,

On the other hand, (4.4) gives a resolution

Jn−1 : 0→ R(−n)n−1 → R(−(n− 1))n → R→ R/Jn−1 → 0

Since the inclusion J/Jn−1 ⊂ R/Jn−1 induces a map of complexes C → Jn−1, the resulting
mapping cone is a resolution of R/J ([8, Exercise A3.30]):

0→ R(−(2n− 1))→ R(−n)n ⊕R(−2(n− 1))
ϕ→ Rn+1(−(n− 1))→ R→ R/J → 0, (4.13)

(where the right end tail R ⊕ J/Jn−1 → R/Jn−1 → 0 has been replaced by R → R/J → 0).
Moreover, since for every relevant index i, the shifts of (Jn−1)i are strictly smaller than those
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of (C)i, it follows by [loc. cit.] that (4.13) is minimal. In particular, one reads from it that the
linear part ϕ1 has rank n, hence maximal.

Let us dwell a little more on the details of the mapping cone in the previous proof. It is of
the form

0 −−−−→ Rn−1 ϕn−1−−−−→ Rn
( ∂f
∂x0

,..., ∂f
∂xn−1

)

−−−−−−−−−−→ R −−−−→ R
Jn−1

−−−−→ 0

g4

x g3

x g2

x g1

x
0 −−−−→ R

(xn−1
n−1,−xn)t

−−−−−−−−→ R2
(xn,x

n−1
n−1)

−−−−−−→ R −−−−→ J/Jn− 1 −−−−→ 0

Note that g2 is multiplication by ∂f/∂xn and the induced map g3 is given by the following
n× 2 matrix:

g3 =


(n− 1)x0 r0

(n− 2)x1 r1
...

xn−2 rn−2

0 rn−1

 .

We next find out the entries of g4. By the commutativity of the mapping cone diagram, we
have

ϕn−1 ◦ g4 = g3 ◦
(
xn−1
n−1

−xn

)
=


(n− 1)x0 r0

(n− 2)x1 r1
...

xn−2 rn−2

0 rn−1


(
xn−1
n−1

−xn

)
=


(n− 1)xn−1

n−1x0 − xnr0

(n− 2)xn−1
n−1x1 − xnr1

...

xn−2x
n−1
n−1 − xnrn−2

−xnrn−1


where the rightmost matrix is the syzygy K in (4.9), viewed as a column vector, where l =
n − 1. By reasoning as in the argument that ensues (4.10), one gets that the ith entry of g4

is −rn−i, 1 ≤ i ≤ n − 1. As a result, the leftmost map in (4.13) is ψ := (xn−1
n−1,−xn, gt4) =

(xn−1
n−1,−xn,−rn−1, ...,−r1).

Corollary 4.2.3. With the above notation we have:

(i) The Hilbert function of the R/J is

H(t) = S(t)/(1− t)n+1

where
S(t) = 1− (n+ 1)tn−1 + ntn + t2n−2 − t2n−1.

(ii) The multiplicity of R/J is
e0 = (n− 1)(n− 2)/2.

(iii) reg(R/J) = 2n− 4.

These invariants are computed easily from the resolution of R/J by the usual methods.
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4.3 The associated primes

Lemma 4.3.1. Q = (xn, xn−1, xn−2) ∈ Ass(R/J).

Proof. ht(Q) = 3. by [8, corrolary20.14(a)] it is enough to show that Q ⊇ I(ψ) where I(ψ) =
Irank(ψ)(ψ) = I1(ψ) which is equal to the ideal generated by entries of ψ, which are

xn−1
n−1, xn,−rn−1, ...,−r1.

Recall from the proof of Proposition 4.2.1 that rn−i = xn−i−1
n−1 sn−i where sn−i ∈ k[x0, ..., xn−1]

for all 1 ≤ i ≤ n− 1. Therefore ri ∈ (xn−1) ⊆ Q for 2 ≤ i ≤ n− 1. It just remains to show that
r1 ∈ Q. By manipulating equation (4.12), where l = n− 1, we have

xn−1r1 = −x1x
l−1
n−1sn−1 − x2x

l−2
n−1sn−2 − ...− xn−3x

2
n−1s3 −

n− 1

2
x0x

l
n−1 − xn−2xn−1s2,

then

r1 = −x1x
l−2
n−1sn−1 − x2x

l−3
n−1sn−2 − ...− xn−3xn−1s3 −

n− 1

2
x0x

l−1
n−1 − xn−2s2

As one can see, except the last term which is divided by xn−2 the others terms have factor xn−1.
Thus r1 ∈ (xn−1, xn−2). Consequently Q ⊇ I(ψ), as desired.

Proposition 4.3.2. Ass(R/J) = {P,Q}.

Proof. Suppose that q ∈ Ass(RJ ). Since pd(R/J)q is finite, then the Auslander-Buchsbaum
theorem says that

depthRq = pd((
R

J
)q) + depth (qq, (

R

J
)q).

In this formula depth (qq, (
R
J )q) = 0, for q ∈ Ass(RJ ), and pd((RJ )q) ≤ 3 by the resolution of R/J .

Therefore depthRq ≤ 3. Since R is a Cohen Macaulay ring the latter is equal to ht(q).
Consequently if q ∈ Ass(RJ ) then ht(q) ≤ 3. As rad(J) = P = (xn, xn−1) the only prime

divisor of height 2 of J is P ; while, by [8, corrolary20.14(a)], an associated prime of height 3 of
R/J must contain I(ψ) = (xn−1

n−1, xn,−rn−1, ...,−r1).

Recall from the proof of Proposition 4.2.1 that rn−i = xn−i−1
n−1 sn−i where sn−i ∈ k[x0, ..., xn−1]

for all 1 ≤ i ≤ n − 1. As an extra piece of information, we look at the inductive structure of
si in the proof of Proposition 4.2.1 and Equation (4.11). One can prove inductively that for
1 ≤ i ≤ n− 2, sn−i = xn−1tn−i + xin−i where tn−i ∈ k[x0, ..., xn−1] .

Therefore a prime ideal q of height 3 belongs to Ass(R/J) if and only if q ⊇ (xn, xn−1, xn−2s2).
The latter is equal to (xn, xn−1, xn−2(xn−1t2 + xn−2

n−2)) = (xn, xn−1, x
n−1
n−2). It then follows that

q = (xn, xn−1, xn−2) = Q.

Corollary 4.3.3. Set P :=
√
J = (xn−1, xn). Then the P -primary component of J is Jn−2.

Proof. Since Jn−2 is a P -primary ideal (Proposition 4.1.3 (i)), it is equivalent to show the
equality JP = (Jn−2)P . Since J ⊂ Jn−2 we will be done by showing the equality of lengths
l(RP
JP

) = l( RP
(Jn−2)P

).

Now, with the present data, by the associativity formula one has l(RP
JP

) = e(R/J) – the

multiplicity of R/J . By 4.2.3 we have e(R/J) = (n − 1)(n − 2)/2 =
(
n−1

2

)
. But the latter

coincides with l(RP /(Jn−2)P ) by Lemma 4.1.3 (ii).
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4.4 The linear type property

Theorem 4.4.1. J is of linear type.

Proof. By definition, we have to show that the natural surjective R-homomorphism SR(J)�
RR(J) from the symmetric algebra of J to its Rees algebra is injective. One knows that this is
the case if and only if SR(J) is a domain.

Set SR(J) ' R[y0, · · · , yn]/L, where L is the ideal generated by the 1-forms coming from
the syzygies of J . We will argue as follows: since xn belongs to the radical of J , Jxn is the unit
ideal in Rxn . Now, suppose one shows that xn is a non zero-divisor modulo L. Then Lxn is the
defining ideal of the symmetric algebra of Jxn = Rxn , hence it is the zero ideal in a polynomial
ring over a domain. In particular, it is a prime ideal, hence so must be L. Therefore SR(J) is a
domain, thus the structural homomorphism is injective as observed.

By a quirk, it will be easier to show first that yn is non-zero divisor modulo L and then that
(yn, xn) is a regular sequence modulo L. In this case, since SR(J) is a positively graded ring any
permutation of a regular sequence is a regular sequence, hence (xn, yn) is a regular sequence as
well, in particular xn is a non-zero divisor over SR(J).

Step 1. yn is non-zero divisor modulo L.

Let h = h(x,y) ∈ R[y0, . . . , yn] be such that ynh(x,y) ∈ L. Say,

ynh =

n+1∑
i=1

higi,

for suitable hi = hi(x,y) ∈ R[y0, . . . , yn], where

gi = 2xn−iy0 +
2i− 1

i
xn−i+1y1 + · · ·+ xnyi (1 ≤ i ≤ n− 1)

and

gn = (n− 1)x0y0 + (n− 2)x1y1 + · · ·+ xnyn, gn+1 =

n−1∑
j=1

rjyj + xn−1
n−1yn

generate L (from (4.13)), with ri being as in (4.9).

Decompose further hi = h′i + ynh
′′
i , with h′i ∈ R[y0, ..., yn−1]. Then

ynh(x,y) = yn

n−1∑
i=1

h′′i gi + ynh
′′
ngn + h′nxnyn + ynh

′′
n+1gn+1 + h′n+1x

n−1
n−1yn.

Since in the right hand side the terms not divisible by yn must vanish, we get

h =

(n−1∑
i=1

h′′i gi + h′′ngn + h′′n+1gn+1

)
+ h′nxn + h′n+1x

n−1
n−1.

To show that h ∈ L it is then enough to check that

h′nxn + h′n+1x
n−1
n−1 ∈ L.
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Now a form in L must vanish when evaluated at yi 7→ ∂f/∂xi – the generators of J . Letting
∂f denote these partial derivatives we have ∂f

∂xn
h(x, ∂f) = 0, hence h(x, ∂f) = 0. Retrieving in

terms of the expression of h implies that

h′n(x, ∂f)xn + h′n+1(x, ∂f)xn−1
n−1 = 0.

Since h′n, h
′
n+1 ∈ R[y0, ..., yn−1], the form h′nxn + h′n+1x

n−1
n−1 belongs to the defining ideal of

RR(Jn−1). By [3, Proposition 4.3], Jn−1 is of linear type, hence h′nxn + h′n+1x
n−1
n−1 belongs to

the defining ideal of SR(Jn−1), which is a subideal of L by the general theory developed in [3].
This shows the contention.

Step 2. xn is non-zero divisor modulo (L, yn).

One has (L, yn) = (g1, . . . , gn−1, g, h, yn), where g = (n−1)x0y0 +(n−2)x1y1 + ...+xn−2yn−2

and h =
∑n−1

j=1 rjyj . Then

R[y0, . . . , yn]

(L, yn)
' R[y0, . . . , yn−1]

(g1, . . . , gn−1, g, h)

hence we are to show that xn is a nonzerodivisor on the rightmost ring. Let then κ = κ(x,y\yn)
be a form in R[y0, . . . , yn−1] such that xnκ ∈ (g1, . . . , gn−1, g, h). Write xnκ =

∑n−1
j=1 µjgj +

µg + νh, for suitable forms µj , µ, ν ∈ R[y0, . . . , yn−1]. Evaluating yi 7→ fxi := ∂f/∂xi for
i = 0, · · · , n− 1, and taking in account the shape of g and h, we have

xnκ(x, fx0 , . . . , fxn−1) = µ(x, fx0 , . . . , fxn−1)g(x, fx0 , . . . , fxn−1)

+ ν(x, fx0 , . . . , fxn−1)h(x, fx0 , . . . , fxn−1)

= −µ(x, fx0 , . . . , fxn−1)xn fxn − ν(x, fx0 , . . . , fxn−1)xn−1
n−1 fxn .

On the other hand, by the shape of fxn , one has gcd(xn, fxn) = 1. It follows that

κ(x, fx0 , . . . , fxn−1) = δ fxn ,

for some δ ∈ R. Pulling back to the y-variables tells us that κ − δ yn vanishes on the partial
derivatives, and hence it belongs to affine ideal J̃ of all polynomials vanishing on the partial
derivatives. This ideal is prime because we can consider ∂f := (fx0 , . . . , fxn) as a point in Kn+1,
where K denotes the field of fractions of R and consider the ideal of K[y] vanishing on ∂f and
then contract to R[y]. We note that the Rees ideal J is the largest homogeneous ideal contained
in J̃ .

Now, multiplying κ−δ yn by xn and using that xnκ ∈ L ⊂ J ⊂ J̃ , it follows that xn δ yn ∈ J̃ .
Since this element is (trivially) homogeneous in y, it must belong to the Rees ideal, hence δ = 0.
Therefore, κ ∈ J̃ . But, since κ is assumed to be homogeneous, it belongs to the Rees ideal.
Thus, we have κ ∈ J ∩ R[y0, . . . , yn−1]. But this means that κ belongs to the Rees ideal J ′ of
Jn−1. Since the latter is of linear type by we conclude as above that κ ∈ L, as was to be shown.
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Appendix

5.1 The Eagon-Northcott Complex

The complex associated with a matrix
Consider a matrix

A =


a11 a12 · · · a1r

a21 a22 · · · a2r
...

... · · ·
...

as1 as2 · · · asr

 (s ≤ r),

where the elements aij belong to R. The subdeterminants of A of order s will generate an
ideal. This ideal will be denoted by Is(A).

Let K be the exterior algebra generated by X1, X2, · · · , Xr, then the kth row of A determines
a differentiation ∆k on K; in fact

∆k(Xi1Xi2 · · ·Xin) =

n∑
p=1

(−1)p+1akipXi1 · · · X̂ip · · ·Xin .

Furthermore, one easily verifies that

∆k∆h + ∆h∆k = 0 (h 6= k). (5.1)

Next let Y1, Y2, · · · , Ys be s new symbols and, in the polynomial ring R[Y1, Y2, · · · , Ys], denote
by Φn theR-module consisting of all forms of degree n. We are now ready to describe the complex
CA. It has component modules CA0 , C

A
1 , · · · , CAr−s+1, where{

CAq+1 = Ks+q ⊗R Φq (q = 0, 1, · · · , r − s)
CA0 = R

and therefore, as a complex, it has the form

· · · → 0→ CAr−s+1
d−→ CAr−s → · · · → CA1

d−→ CA0 → 0→ · · · .

In order to explain how the differentiation homomorphism d works, we observe that if q ≥ 0,
then CAq+1 has an R-base consisting of the elements

42
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Xi1 · · ·Xis+q ⊗ Y
ν1

1 · · ·Y
νs
s (1 ≤ i1 < · · · < is+q ≤ r; ν1 + · · ·+ νs = q).

When q > 0 the result of operating with d on a member of such a basis is given by the
formula

d(Xi1 · · ·Xis+q ⊗ Y
ν1

1 · · ·Y
νs
s ) =

∑
j∗

∆j(Xi1 · · ·Xis+q)⊗ Y ν1
1 · · ·Y

νj−1
j · · ·Y νs

s ,

where the asterisk attached to the summation sign means that we sum only over those values
of j for which νj > 0. For q = 0 the formula

d(Xi1 · · ·Xis ⊗ 1) = det


a1i1 a1i2 · · · a1is

a2i1 a2i2 · · · a2is
...

... · · ·
...

asi1 asi2 · · · asis


is to be employed. With the use of (5.1), it is a straightforward matter to verify that d2 = 0.

CA is a free complex and

d(CA1 ) = Is(A).

When s = 1, that is when the matrix consists of a single row, CAq (q ≥ 1) has the products

Xi1 · · ·Xiq ⊗ Y
q−1

1 (i1 < i2 < · · · < iq)

as an R-base and the differentiation becomes

d(Xi1 · · ·Xiq ⊗ Y
q−1

1 ) = ∆1(Xi1 · · ·Xiq)⊗ Y q−2
1

for q > 1, while d(Xi1 ⊗ 1) = a1i1 . This shows that, when the matrix has only a single row,
CA is essentially the Koszul complex generated by the row.

After these preliminaries, let M be an R-module and put

CM
A

= CA ⊗M,

where ⊗ without any subscript denotes a tensor product over R. CM
A

is a complex

· · · → 0→ CM
A

r−s+1
d−→ CM

A

r−s → · · · → CM
A

1
d−→ CM

A

0 → 0→ · · · .

Corollary 5.1.1. [7] Let R be a Noetherian ring and M a finitely generated R−module for
which Is(A)M 6= M . If now gr(Is(A),M) = r − s+ 1, then

0→ CM
A

r−s+1
d−→ CM

A

r−s → · · · → CM
A

1
d−→M →M/Is(A)M → 0

is an exact sequence.
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5.2 Plücker Relations

The following essentials are extracted from [16, Section 2].

A linear space L in Pn is defined as the set of points P = (p(0), · · · , p(n)) of Pn whose
coordinates p(j) satisfy a system of linear equations

∑n
j=0 bαjp(j) = 0 with α = 1, · · · , (n−d).We

say that L has dimension d if these (n−d) equations are independent, that is if the (n−d)×(n+1)
matrix of coefficients (bαj) has a nonzero (n− d)× (n− d)-minor. By linear algebra, there are
then (d + 1) points Pi = (pi(0), · · · , pi(n)) in L with i = 0, · · · , d which span L. Of course, we
call L a line if d = 1, a plane if d = 2 and a hyperplane if d = (n− 1). Following common usage,
we call a d-dimensional linear space a d-plane for short.

For convenience, let us make the following convention. For any (d + 1) × (n + 1)-matrix
(pi(j)) with i = 0, · · · , d and j = 0, · · · , n, and any sequence of d + 1 integers j0 · · · jd with
0 ≤ jβ ≤ n, let us denote by p(j0 · · · jd) the determinant of the (d+ 1)× (d+ 1)-matrix (pi(jβ))
with i, β = 0, · · · , d.

Fix a d-plane L in Pn. Pick (d+1) points Pi = (pi(0), · · · , pi(n)) with i = 0, · · · , d which span
L, and form the (d+1)×(n+1)-matrix (pi(j)). At least one of the (N+1) determinants p(j0 · · · jd)

with 0 ≤ j0 < · · · < jd ≤ n must be nonzero, where N =

(
n+ 1

d+ 1

)
− 1. So, when ordered

lexicographically, these determinants define a point (· · · , p(j0 · · · jd), · · · ) of PN . Therefore L
canonically gives rise to a point of PN . The coordinates p(j0 · · · jd) of this point are called the
Plücker coordinates of L.

Suppose that p(j0...jd) is a Plücker coordinate of a d−plane L in Pn. Therefore the following
quadratic relations hold, see [16]:

d+1∑
l=0

(−1)lp(j0...jd−1kl)p(k0...k̂l...kd+1) = 0, (5.2)

where j0...jd−1 and k0...kd+1 are any sequences of integers with 0 ≤ jt,ki ≤ n. Here k̂l means
that the integer kl has been removed from the sequence.

In this work, we specifically need to compute Plücker equations for (n− 2)-planes.

5.3 Matrices whose entries are variables

The following result has been obtained during the preparation of this thesis, without knowledge
that it had a previous history in [10]. We give the statement and our independent proof.

Proposition 5.3.1. Let M denote a square matrix over R = k[x0, . . . , xn] satisfying the fol-
lowing requirements:

• Every entry of M is either 0 or xi, for some i = 0, . . . , n

• Any variable xi or 0 appears at most once on every row or column.

Let f := det(M) ∈ R. Then, for each i = 0, . . . , n, the partial derivative fi of f with respect to
xi is the sum of the (signed) cofactors of the entry xi in all of its appearances on M.
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Proof. By the Leibnitz formula for the determinant of an l × l matrix M , we have

det(M) =
∑
σ∈Sl

sgn(σ)
l∏

i=1

miσi .

Here the sum is computed over all permutations σ of the set {1, 2, ..., l} and σi := σ(i). Note
that miσi is the entry at positions (i, σi), where i ranges from 1 to l. We divide Sl into the
following disjoint sets:

S0
l : all l-permutations such that mjσj is not xi for any j = 1, · · · , l.
S1
l : all l-permutations such that mjσj = xi for one and only one j.

...

Sll : the l-permutations which mjσj = xi for all j ranges from 1 to l.
Notice that some of the σk may be empty.
By rewriting determinant of M we have:

f = det(M) =
∑
σ0∈S0

l

sgn(σ0)

l∏
j=1

mjσ0
j

+
∑
σ1∈S1

l

sgn(σ1)

l∏
j=1

mjσ1
j

+
∑
σ2∈S2

l

sgn(σ2)

l∏
j=1

mjσ2
j

(5.3)

+ · · ·+
∑
σl∈Sl

l

sgn(σl)

l∏
j=1

mjσl
j
. (5.4)

We now introduce a new notation. Let 0 ≤ k ≤ l and σk ∈ Skl such that mjtσk
jt

= xi for

t = 1, · · · , k. For any t we set λt(σk) to be the restriction of σk to {1, · · · , ĵt, · · · , l}. Thus λt(σk)

is a bijection from {1, · · · , ĵt, · · · , l} to {1, · · · , σ̂kjt , · · · , l}. In other words, if we consider the

submatrix obtained from removing the jt-th row and σkjt-th column and renumbering the rows

and columns, then λt(σk) is a (l− 1)-permutation which is applied to define the determinant of
this submatrix.

For any positive integer k set Λk = {λt(σk) : σk ∈ Skl and t = 1, · · · , k}.
Now we compute the partial derivative ∂f/∂xi from both sides of (5.3) we have:

∂f/∂xi = 0 +
∑
λ1∈Λ1

sgn(λ1)
1−1∏
j=1

mjλ1j
+ 2

∑
λ2∈Λ2

sgn(λ2)
1−1∏
j=1

mjλ2j
+ 3

∑
λ3∈Λ3

sgn(λ3)
1−1∏
j=1

mjλ3j

+ · · ·+ l
∑
λl∈Λl

sgn(λl)

l−1∏
j=1

mjλlj
. (5.5)

Now we want to compute summation of all cofactors with respect to the coordinates of xi
in matrix M . By the definition of cofactor, we know that such a cofactor is the determinant
of (l − 1)× (l − 1) submatrix of M obtained by removing row and column which identified the
position of xi. Recall that we have at most one xi in each column. Consider Cij to be the
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coordinate of the variable xi in the jth column. We know that maybe there is no Cij because
it can be happened that there is no xi in the column j. We denote ∆Ci

j
to be the cofactor

corresponded to Cij .
Again, we introduce a new notation here for denoting (l − 1)-permutations of the cofactor

∆Ci
j

where j ranges between 1 and l.

Let jΥ0 be the notation for all (l−1)-permutations corresponded to ∆Ci
j

such that the entry

with respect to the position (k, jΥ0
k) is not xi for any k = 1, · · · , l − 1.

jΥ1 is the notation for all (l− 1)-permutations corresponded to ∆Ci
j

such that one and only

one of the entry with respect to the position (k, jΥ1
k) is xi for any k = 1, · · · , l − 1.

...
jΥl−1 is the notation for the (l− 1)-permutations corresponded to ∆Ci

j
such that all entries

with respect to the position (k, jΥl−1
k ) is xi for any k = 1, · · · , l − 1.

By the definition of determinant we have :

∆Ci
j

=
∑
Υ

sgn(Υ)
∏
k

mkΥk
.

To avoid the complexity of notation, we just denote the correspondent entry in the coordinate
(k, jΥi

k) by mjik.
Now one can rewrite ∆Ci

1
, ∆Ci

2
, · · · , ∆Ci

l
to the following distinct summation. We have:

∆Ci
1

=
∑
1Υ0

sgn( 1Υ0)
∏
k

m10k +
∑
1Υ1

sgn( 1Υ1)
∏

m11k + · · ·+
∑

1Υl−1

sgn( 1Υl−1)
∏
k

m1(l−1)k.

∆Ci
2

=
∑
2Υ0

sgn( 2Υ0)
∏
k

m20k +
∑
2Υ1

sgn( 2Υ1)
∏

m21k + · · ·+
∑

2Υl−1

sgn( 2Υl−1)
∏
k

m2(l−1)k.

...

∆Ci
l

=
∑
lΥ0

sgn( lΥ0)
∏
k

ml0k +
∑
lΥ1

sgn( lΥ1)
∏

ml1k + · · ·+
∑
lΥl−1

sgn( lΥl−1)
∏
k

ml(l−1)k.

Now we want to consider the summation of all ∆Ci
1

, ∆Ci
2
, · · · , ∆Ci

l
. To this end, we sum

up the above lines in vertical groups, that is:

∑
j

∆Ci
j

=
∑
1Υ0

sgn( 1Υ0)
∏
k

m10k +
∑
2Υ0

sgn( 2Υ0)
∏
k

m20k + · · ·+
∑
lΥ0

sgn( lΥ0)
∏
k

ml0k

+
∑
1Υ1

sgn( 1Υ1)
∏

m11k +
∑
2Υ1

sgn( 2Υ1)
∏

m21k + · · ·+
∑
lΥ1

sgn( lΥ1)
∏

ml1k

+ · · ·
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+
∑

1Υl−1

sgn( 1Υl−1)
∏
k

m1(l−1)k+
∑

2Υl−1

sgn( 2Υl−1)
∏
k

m2(l−1)k+· · ·+
∑
lΥl−1

sgn( lΥl−1)
∏
k

ml(l−1)k.

Since the ring R is a commutative ring, order in the multiplication is not important. Hence
when we consider jΥ2 which is the notation for all (l − 1)-permutations corresponded to ∆Ci

j

such that two and only two of the entries with respect to the position (k, jΥ2
k) are xi for all

k = 1, · · · , l− 1, By changing j between 1 and l , all permutations which contain exactly two xi
are counted twice and for the case that we have exactly three xi, all permutations that contain
exactly three xi are counted three times and so on. Therefore One can see:

∑
λ1∈Λ1

sgn(λ1)

1−1∏
j=1

mjλ1j
=
∑
1Υ0

sgn( 1Υ0)
∏
k

m10k+
∑
2Υ0

sgn( 2Υ0)
∏
k

m20k+· · ·+
∑
lΥ0

sgn( lΥ0)
∏
k

ml0k

2
∑
λ2∈Λ2

sgn(λ2)
1−1∏
j=1

mjλ2j
=
∑
1Υ1

sgn( 1Υ1)
∏

m11k+
∑
2Υ1

sgn( 2Υ1)
∏

m21k+· · ·+
∑
lΥ1

sgn( lΥ1)
∏

ml1k

...

l
∑
λl∈Λl

sgn(λl)
l−1∏
j=1

mjλlj
=

∑
1Υl−1

sgn( 1Υl−1)
∏
k

m1(l−1)k +
∑

2Υl−1

sgn( 2Υl−1)
∏
k

m2(l−1)k

+ · · ·+
∑
lΥl−1

sgn( lΥl−1)
∏
k

ml(l−1)k.

Therefore

∂f/∂xi =
∑
j

∆Ci
j
,

as was to be shown.

5.4 Circulants

Circulant matrices are a classical subject with applications in many fields ([25]). A circulant
can be looked at as a degeneration of a Hankel matrix.

Let R be the polynomial ring k[x0, . . . , xn] over a field k. The n× n generic circulant is the
matrix

C =


x0 x1 . . . xn−1 xn
x1 x2 . . . xn x0
...

... ...
...

...
xn−1 xn . . . xn−3 xn−2

xn x0 . . . xn−2 xn−1


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Lemma 5.4.1. For every i = 0, . . . , n−1, all (signed) cofactors of C with respect to xi coincide.

Proof. First note that in the circulant every variable entry repeats itself along the subdiagonal
where it appears. Therefore, it suffices to prove the equalities ∆j

0 = ∆n
j+1 and ∆j

i = ∆j−1
i+1 for

any 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, where ∆j
i denotes the (signed) cofactor obtained deleting

the ith row and the jth column. Let Ekl (respectively, Ckl )denote the elementary operation that
permutes the lth and kth rows (respectively, columns).

Step 1. ∆j
i = ∆j−1

i+1 .

∆j−1
i+1  E1

0  E2
1  · · · En−1

n−2  C0
n−1  C1

n−1  · · · Cn−2
n−1 = ∆j

i .

On each step the cofactor gets multiplied by −1; since the number of steps is even, the final sign
does not change.

Step 2. ∆j
0 = ∆n

j+1.

(∆n
j+1)t  C1

0  C2
1  · · · Cn−1

n−2 = ∆j
0.

Note that the sign is preserved since (−1)n−1(−1)j+1+n = (−1)j .

Proposition 5.4.2. detC is homaloidal.

Proof. We show, namely:

(i) For every i = 0, . . . , n− 1, one has fi = (n+ 1)4i
0.

(ii) f is squarefree and the gradient ideal is perfect of codimension 2.

(iii) f is homaloidal.

(i) This follows from Proposition 5.3.1 and Lemma 5.4.1.
(ii) From (i) we have that the gradient ideal of f is generated by the maximal minors of

(any) (n + 1) × n submatrix of the circulant. Since the degrees are just right, the gradient is
(perfect) of codimension 2. In particular, f is squarefree.

(iii) From (i) and (ii), the gradient ideal has linear presentation. Therefore, it suffices to show
that the syzygy matrix ϕ of the gradient ideal satisfies the property (2.2) (see [22, Example 2.4]).

But note again that ϕ can be any submatrix of C of size (n+ 1)×n. Close inspection shows
that the initial ideal of It(ϕ) in the graded reverse lexicographic order contains the pure powers
xt0, x

t
1, . . . , x

t
n−t+1.



Bibliography

[1] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Math-
ematics, Vol. 39 (1993).

[2] W. Bruns, U. Vetter, Determinantal rings, Springer-Verlag Berlin Heidelberg New York
London Paris Tokyo, 1988.

[3] C. Ciliberto, F. Russo and A. Simis, Homaloidal hypersurfaces and hypersurfaces with
vanishing Hessian, Advances in Math., 218 (2008) 1759–1805.

[4] A. Conca, Straightening law and powers of determinantal ideals of Hankel matrices, Adv.
Math. 138 (1998), 263–292

[5] I. Dolgachev, Polar Cremona Transformations, Michigan Math. J. 48 (2000), 191–202.
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