‘Centro L
&demform tica

Pos-Graduacdo em Ciéncia da Computacao

“Rabbit: A novel approach to find data-races during
state-space exploration”

By
Joao Paulo dos Santos Oliveira

M.Sc. Dissertation

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

Recife, August/2012

| [

ié Federal University of Pernambuco

- Center for Informatics
5% Graduate in Computer Science

®

Joao Paulo dos Santos Oliveira

“Rabbit: A novel approach to find data-races
during state-space exploration”

A M.Sc. Dissertation presented to the Informatics Center
of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science
in Computer Science.

Advisor: Fernando José Castor de Lima Filho

Co-Advisor: Marcelo Bezerra d’Amorim

Recife, August/2012

Catalogacao na fonte
Bibliotecaria Jane Souto Maior, CRB4-571

Oliveira, Jodo Paulo dos Santos

Rabbit: a novel approach to find data-races during
state-space exploration / Jodo Paulo dos Santos Oliveira. -
Recife: O Autor, 2012.

X, 48 f. . il., fig., tab.

Orientador: Fernando José Castor de Lima Filho.

Dissertacdo (mestrado) - Universidade Federal de
Pernambuco. Cin, Ciéncia da Computagéo, 2012.

Inclui bibliografia.

1. Engenharia de software. 2. Teste de software. 3.
Concorréncia. I. Lima Filho, Fernando José Castor de (orientador).
II. Titulo.

005.1 CDD (23. ed.) MEI2013 — 086

Dissertacdo de Mestrado apresentada por Jodo Paulo dos Santos Oliveira a Pos-
Graduacdo em Ciéncia da Computacdo do Centro de Informética da Universidade Federal
de Pernambuco, sob o titulo “Rabbit: A novel approach to find data-races during
state-space exploration” orientada pelo Prof. Fernando José Castor de Lima Filho e
aprovada pela Banca Examinadora formada pel os professores:

Prof. Alexandre Cabral Mota
Centro de Informética/ UFPE

Profa. Roberta de Souza Coelho
Departamento de Informética e Matematica A plicada/UFRN

Prof. Marcelo BezerraD'Amorim
Centro de Informética / UFPE

Visto e permitida aimpressao.
Recife, 30 de agosto de 2012

Prof. Nelson Souto Rosa
Coordenador da Pds-Graduagdo em Ciéncia da Computacdo do
Centro de Informética da Universidade Federal de Pernambuco.

Resumo

Condicg6es de corrida sdo um importante tipo de erro em programacgdo concorrentes. Software
model checking(SMC) é um abordagem comum para encontrar condi¢cdes de corrida. SMC
explora todo o espaco de estado do programa em analise em busca de erros. Infelizmente, essa
abordagem é impraticavel computacionalmente em cenérios que produzem um espaco de estado
grande. Essa pesquisa apresenta Rabbit, uma nova abordagem para encontrar condic¢des de corrida,
complementando software model checking. Rabbit reporta eficientemente alertas de possiveis
condigcdes de corrida, durante a exploracdo do espaco de estado. Rabbit foi avaliado em 33
diferente cenéarios, e em 23 programas de tamanhos de diferentes. Os resultados mostraram que
Rabbit encontra os erros muito rapidamente em relagdo ao software model checking, sendo que
em 78% dos casos Rabbit encontrou a condi¢do de corrida em menos de 5 segundos, uma fragdo
do tempo levado pelo model checking. Também foi possivel verificar que Rabbit € uma ferramenta
util para guiar a busca do model checking. Os experimentos mostraram que em 74.2% dos casos
Rabbit ajudou 0 model cheking encontrar o erro em menos de < 20s.

Palavras-chaves: Concorréncia, Verificacdo de Software, Model Checking, Condicao de corridas

Abstract

Data-races are an important kind of error in concurrent shared-memory programs. Software model
checking is a popular approach to find them. This research proposes a novel approach to find races
that complements model-checking by efficiently reporting precise warnings during state-space
exploration (SSE): Rabbit. It uses information obtained across different paths explored during SSE
to predict likely racy memory accesses. We evaluated Rabbit on 33 different scenarios of race,
involving a total of 21 distinct application subjects of various sources and sizes. Results indicate
that Rabbit reports race warnings very soon compared to the time the model checker detects the
race (for 84.8% of the cases it reports a true warning of race in <5s) and that the warnings it reports
include very few false alarms. We also observed that the model checker finds the actual race
quickly when it uses a guided-search that builds on Rabbit’s output (for 74.2% of the cases it
reports the race in <20s).

KeyWords: Concorrency, Software Verification, Model Checking, Race conditions

To my father and my mother.

Acknowledgements

This research would not have been possible without the support of many. Firstly,
I would like to thank my coadvisor, Marcelo d’Amorim. I owe Marcelo for his
patience and guidance. 1 started to work with Marcelo in January 2011 after taking
class with him. Marcelo helped to focus on research that leads to this dissertation,
beyond that, Marcelo motivated me in several times when I was discouraged during
this work. I want to thank to my advisor Fernando Castor. Castor is an exceptional
professor and with its enthusiasm I became interested in concurrent programming.
I would also like to thank to all of my friends of the software engineering laboratory
that helped me in my research, especially Benito, Weslley and Elton. Finally, I
want to thank specially the members of my dissertation committee, the professor
Roberta Coelho and Alexandre Mota for accepting the invitation and helping to

improve my work.

vi

List of Figures

List of Tables

1 Introduction

1.1 Contribution

1.2 Dissertation Organization

2 Background

2.1.3

2.2.1

Deadlocks
2.2 Software Model Checking
Java Path Finder

Model Checking with Java PathFinder

State-Explosion Problem
Partial Order Reduction
Choice Generation

Listeners

3 Rabbit Approach

3.1 TIllustrative Example
3.2 Approach

3.2.1
3.2.2
3.2.3

4 Evaluation

4.1 Results for Mode 1

4.1.1
4.1.2

Pseudo-code
Object Ids

JPF implementation

Comparison with JPF

Impact of number of threads

Contents

ix

=TS B e S, ST SRS

vii

4.1.3 Impact of optimizations 34

4.1.4 Number of warnings, 35
4.1.5 Impact of search strategy 35
4.1.6 Subjects with errors removed 35
4.1.7 Impact of search-global object ids 36
4.1.8 Time Overhead, 37
4.1.9 Comparison with FindBugs and JLint 37

4.2 Results for Mode 2o 38
4.2.1 Guided-search oo 38

4.2.2 SWAIID 40
4.2.3 Discussion 41
4.2.4 Threats to validity 42

5 Conclusions 43
5.1 Related Work 43
5.2 Future work 45

Vviil

2.1
2.2

2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4

3.5

4.1

List of Figures

Symmetric threads L 6
Lock example in Java, the keyword synchronized defines a region

that is protected oL 7
Intermediate code generated from a Figure 2.2(a) 8

two threads in deadlock, thread T1 waits resource R1 and owns

resource R2 while thread T2 waits resource T2 and owns resource R1 9

Testing VS Model Checking 11
Model Checking example 12
states of random program 12
depicts threads interleavings in program with N threads 13
SearchListener Methods. 15
VMListener Methods., 17
JPF native listener to find races 18
Example of data race due to improper synchronization. 22
[lustration using one schedule. 23
Rabbit’s pseudo-code. L L 25

Two problems: (a) same object with different ids across distinct
paths, and (b) different objects with same ids across distinct paths. 27
Approximate computation of search-global object Ids. 28

Overhead of Rabbit on state-space exploration. 36

ix

List of Tables

4.1 Experimental subjects 00000 31
4.2 Results for JPF with different search strategies (DFS, BFS, and
MaxPreem), Rabbit (on top of JPF with DFS search), and JPF
using Rabbit-driven search heuristic. The label “*” identifies cases
where all search modes in standard JPF either took more than 5m
to find the error or ran out of memory. 32
4.3 Rabbit swarm results 39

Introduction

Concurrent programming is becoming more important with the increasing demand
for software that runs on highly parallel multi-core machines, which are now more
widespread. Many researchers believe that transitioning to multicore processor is
a no back way, and software engineering should follow this way. Nowadays, all
major processor manufacturers have run out of room with most of their traditional
approaches to boosting CPU performance. Instead of driving clock speeds ever
higher, they are moving processor architecture multicore architecture. Multicore
architectures are used even in mobile phones, which supports the theory that
concurrent programming will reach the mainstream programming soon. Herb Sutter,
a researcher that is highly connected with the industry, says that Concurrency is
the next major revolution in how developers write software [36]. Unfortunately,
concurrency errors are very easy to introduce and difficult to find and reproduce, in
particular, errors related to the undisciplined use of locks in programs that follow
a shared-memory programming model. Even experienced programmers makes
mistakes when developing concurrent programs and they agree that concurrent
program is error prone and much harder than sequential one. Besides that, errors in
concurrent programs are tough to discover reading code and, sometime, even more
tough to discover executing the code! To prevent such errors, new languages and
development methods have been recently proposed [23, 7, 39] and old approaches
regained force [24]. Despite all these advances, it is still important to improve
the existing support for finding concurrency errors in shared-memory programs,
which remains the dominant programming model in practice. A common kind of
concurrency error in shared-memory programs is a data-race (or simply race). The
effect of a race is to modify the program state incorrectly. A race occurs when

execution contains two accesses to the same memory location that are not ordered

1.1. CONTRIBUTION

by the happens-before relation and at least one of the accesses is a write [22]. Similar
to other kinds of concurrency errors, a race typically manifests only in rare thread
interleaving and these interleaving are difficult to reproduce. Programmers prevent
races by protecting potentially conflicting accesses to shared data with at least one
common lock. However, undisciplined use of locks can result in other problems such
as inefficiency and deadlocks. Even though data-race free programs do not imply
correctness (e.g., due to violations of atomicity requirements) and racy programs
do not imply incorrectness (e.g., due to the need for while flags) [26], awareness of
low-level data-races remains important to build correct concurrent programs.
This work proposes a novel approach to find races that complements model-
checking by efficiently reporting precise warnings during state-space exploration
(SSE): Rabbit. It uses information obtained across different paths explored during
SSE to predict likely racy memory accesses. It builds on the observation that,
during state space exploration, memory accesses are covered much sooner than the
actual race occurs. We evaluated Rabbit on 33 different scenarios of race, involving
a total of 21 distinct application subjects of various sources and sizes. Results
indicate that Rabbit reports race warnings very soon compared to the time the
model checker detects the race (for 84.8% of the cases it reports a true warning of
race in <bs) and that the warnings it reports include very few false alarms. We
also observed that the model checker finds the actual race quickly when it uses a
guided-search that builds on Rabbit’s output (for 74.2% of the cases it reports the

race in <20s).

1.1 Contribution

The main contribution of this work is a novel approach to find data races during
model checking state space exploration. This approach is called rabbit. It was
inspired in the uncertain time that a developer needs to wait to receive an output
during model checking. So, we think in a new approach that could give some
feedback to the developer as soon as possible when him start to model checking
his code. The focus of this work is not substitute model checking, instead of it we
propose a technique that complements model checking and is built on top of it.
Our general goal is to enable developers to take action in response to race warnings
before a potentially long search for actual errors finishes. And it is exactly what

our results suggest. We believe that rabbit idea is step in direction to bring model

1.2. DISSERTATION ORGANIZATION

checking usage to nonacademic world.

1.2 Dissertation Organization
This work is organized as follows:

o Chapter 2 provides an overview of the theoretical basis necessary for under-
standing this research, we explain important concepts like concurrency, data

races and details about software model checking and Java Path finder

o Chapter 3 presents the Rabbit Idea and gives detailed information about its

implementation.

o Chapter 4 introduce an evaluation of the results in a set of well know subject

in verification community:.

o Chapter 5 shows our final considerations, related and future works

Background

This chapter presents concepts and terminology to support the discussion of the
remaining chapters. We first illustrate basic concepts in concurrency explaining
its benefits and its hazards. Then we introduce software model checking and Java

PathFinder giving details about how it works.

2.1 Concurrency

In software development, concurrency refers to a property of a system to perform
computations simultaneously. Typically, concurrent computations are executed
sharing time on the same processor or in different core in the same chip. When
concurrent computations of the same system are executed in different processors,
concurrency is called parallelism. But for purposes of this study, the differences
between concurrency and parallelism are not relevant and the word will be used as

synonyms.

2.1.1 Why Concurrency?

In the history of computer hardware, the number of transistors on integrated
circuits double approximately every two years, while pricing keeps the same. It
means that processing speed doubles every two years. So, in theory, a computer
program could be executed twice faster just upgrading the hardware components
in such time period. This observation became famous due to Gordon E. Moore,
who described this trend in his 1965 paper [28]. This empirical observation became
famous as Moore’s law and the trend is approximately right until nowadays, with

one important difference: In newest processor the increased transistor number

2.1. CONCURRENCY

does not lead to increases speed of older programs. Instead of it, this addition
of transistor gives to newer processor the capability to run several of the older
programs at same time! And sometimes, each one of these several programs are
executed slower than previous processors could do. It means that to a new program

take advantage of modern processor, the program must be concurrent!

2.1.2 How Concurrency works?

In modern operating systems, the smallest concurrency unit is a thread[37], threads
exist within a process , which are self-contained execution environment and complete
abstraction of an execution program. Threads are sometimes called lightweight
processes, because both processes and threads provide an execution environment,
but creating a new thread requires fewer resources than creating a new process. A
process can own several threads, but each thread belongs just to one process. In
the scope of this research, the term concurrency refers to a same process (program)
running several threads.

Concurrency can be used in several scenarios to gain performance, to improve
user experience, to provide separation of concerns(as design pattern), to handler
multiples requisitions and so on, but in all cases that concurrency is useful is must
coordinate and/or communicate among the threads. There are two mainstream
communication strategies in concurrent programming. The first one is sharing
memory, in this approach the concurrent components(threads) communicates each
other through writes and reads in a common memory location. This approach
is used in object oriented language as Java and C#. The other communication
mechanism is message passing. In this approach the components communicate by
exchanging messages, functional languages like Scala, Erlang and Haskell use this
concurrent communication mechanism. The exchange of messages may be carried
out asynchronously, or may use a rendezvous style in which the sender blocks until
the message is received. Message-passing concurrency tends to be far easier to
reason about than shared-memory concurrency, and is typically considered a more
robust form of concurrent programming, however the shared memory approach is
used in mainstream programming language, because is faster than message-passing.

This research is focused in shared memory concurrent programs.

© 00 N O Ot W+

I Y = T
=W N = O

2.1. CONCURRENCY

class SymmetricThread {
public static void main(String[] args) {
for (int i = 0; 1 < 50; i++) {
MyThread mt = new MyThread ();
mt.start ();

}

class MyThread extends Thread {
public void run() {
// perform computations
}

Figure 2.1 Symmetric threads

Symmetric threads

In concurrency, a common scenario occurs when different threads are running
similar(Symmetric) computations. In Java concurrent programming an usual
approach that create symmetric threads is creating several instances of a same class
which extends Thread. Figure 2.1 shows a Java code that creates 50 threads of
MyThread class. All of these thread often will have the same behavior(or at least

similar behavior). That is the reason they are called symmetric threads.

2.1.3 Concurrency hazards

Concurrent programming is notorious difficult and harder than sequential pro-
gramming. This hardness is mostly due to communication and synchronization
among different threads or due to nondeterministic. In practice, Nondeterminism
means that the programmer does not know how exactly its code will execute. The
operating system can nondetermistically choose which and when each thread should
run. So a same program does different threads interleaving in different programs
execution, and it could leave to unexpected output results. The programmer can
not reproduce a program execution exactly equal to a previous one, and, sometimes,
can not repeat a previous program output. Obviously, it is a barrier to debug a
program that has a unknown behavior. These are some reasons why is so challenging
produce a proper concurrent code.

Even though, concurrent programs are nondeterminisc, in some scenarios is

2.1. CONCURRENCY

(a)
1 totalRequests = totalRequests + 1;

(b)

1 synchronized(totalRequestsLock) {
2 totalRequests = totalRequests + 1;
3}

Figure 2.2 Lock example in Java, the keyword synchronized defines a region that is
protected

important have guarantees that program’s external behavior appears equal to
sequential one. If a program obeys this condition, it is sequential consistent

program as defined by Leslie Lamport [21]:

A multiprocessor is Sequentially Consistent if the result of any execution
is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor

appear in this sequence in the order specified by its program.

A common built-in mechanism in modern programming languages to allow writing
of sequential consistent code are locks. Using locks is possible to assure that a set
of locked instruction will not be executed by a thread that does not held that lock.
The most common kind of lock goes by many different names. It is sometimes
called a monitor, a mutex, or a binary semaphore, but regardless of the name, it
provides the same basic functionality. The lock provides an scope(or an enter and
exit methods) and once a thread enter in the scope its held a lock, all attempts by
other threads to held this same lock will cause the other threads to block (wait)
until the thread releases the lock.

The Figure 2.2(b) shows a lock usage in the java programming language, ob-
serve that keyword synchronized defines a region protected by a lock. When a
thread holds the lock totalRequestsLock another thread can not get it, until it be
released for the first thread. Two threads can’t access the region inside lock bracket

simultaneously, so it is guaranteed the mutual region [10] in this critical region.

Data Races

Suppose that a program processes requests and has a global counter, totalRequests,
that is incremented after every request is completed. As you can see, the code that

does this for a sequential program is simple as show in Figure 2.2(a)

2.1. CONCURRENCY

To how understand reason that a race occurs, suppose the machine code in
Figure 2.3. For sure, there is no problem in this code if is accessed only for one
thread, however if this code can be reached by multiple threads, when those threads
are updating totalRequests could lead to an unexpected value! Suppose that the

compiler generate the operations to the intermediate code depicted in Figure 2.2(b)

1 MOV EAX, [totalRequests] // load memory for totalRequests into register
INC EAX // update register
3 MOV [totalRequests], EAX // store updated value back to memory

Figure 2.3 Intermediate code generated from a Figure 2.2(a)

Consider what would happen if two threads ran this code simultaneously. Modern
operating systems don’t guarantee threads scheduling order, so it is impossible to
know when a interleaving will happen! So it is possible that a certain thread A loads
the value in the the memory totalRequest to the EAX register after the thread
execute the operation INC EAX and store back the updated value in the memory,
after that an thread B start executing the same operations, so to this thread
interleaving, the final value of totalRequest will be increased by two. However,
suppose a different thread interleaving, as thread A load the value totalRequest to
a processor register, after that the same thread A increases the value of the register,
so the operating system interleaves to thread B and thread B loads the value from
memory position pointed to totalRequest and load to register EAX doing the
register losses the increased value and thread B executes the INC operation, store
the new value the memory and the operating system interleaves back to thread
A, which executes the last store operation. In this second case, the final value of
totalRequest is different from the first interleaving! This is a low level explanation
of a Data Race.

The examples shown could leave to understand that an anatomy of a Race may
seem trivial, but it is not. However, the general structure for the problem is the
same as for more complicated real-life races. There are four conditions needed for
a race to be possible. The first condition is that there are memory locations that
are accessible from more than one thread. Typically, locations are global/static
variables or are heap memory reachable from global/static variables. The second
condition is that there is a property associated with these shared memory locations
that is needed for the program to function correctly. In this case, the property is

that totalRequests accurately represents the total number of times any thread has

2.1. CONCURRENCY

T T2
Ri Rz

Figure 2.4 two threads in deadlock, thread T1 waits resource R1 and owns resource R2
while thread T2 waits resource T2 and owns resource R1

executed any part of the increment statement. Typically, the property needs to
hold true (that is, totalRequests must hold an accurate count) before an update
occurs for the update to be correct. The third condition is that the property does
not hold during some part of the actual update. In this particular case, from the
time totalRequests is fetched until the time it is stored, totalRequests does not
satisfy the invariant. The fourth and final condition that must occur for a race to
happen is that another thread accesses the memory when the invariant is broken,

thereby causing incorrect behavior.

Deadlocks

Deadlock is concurrency hazard caused by a wrong lock usage. It is a situation in
which two or more competing actions are each waiting for the other to finish, and
thus neither ever does. This situation occurs when a thread enters a waiting state
because a resource requested by it is being held by another waiting thread, which
in turn is waiting for another resource. If a thread is unable to change its state
indefinitely because the resources requested by it are being used by other waiting
thread, then the system is said to be in a deadlock

Figure 2.4 A deadlock occurs when two or more tasks permanently block each
other by each task having a lock on a resource which the other tasks are trying to

lock. The following graph presents a high level view of a deadlock state where:

o Thread T1 has a lock on resource R1 (indicated by the arrow from R1 to T1)
and has requested a lock on resource R2 (indicated by the arrow from T1 to
R2)

» Thread T2 has a lock on resource R2 (indicated by the arrow from R2 to T2)

and has requested a lock on resource R1 (indicated by the arrow from T2 to

2.2. SOFTWARE MODEL CHECKING

R1).

Because neither thread can continue until a resource is available and neither resource

can be released until a task continues, a deadlock state exists.

2.2 Software Model Checking

Software verification is a broader discipline of software engineering whose goal is to
assure that software fully satisfies all the expected requirements. For purpose of
this work, Software testing is subset of software verification and in some scenarios
can be simply defined as a controlled execution of a program.

The main difference between verification and testing is that testing can only
detect presence of errors, but almost never detect the lack of them, ie, proof that
the program is correct. This is an even bigger problem in concurrent program due
to its nondeterminisc properties, thus, classical testing approaches like unit test is
not useful to find concurrency. In other hands, software verification is sound and
complete, i.e., given an property(absence of an error) an verification approach can
proof that the property exists or not, in other words, it can show that a program does
not have an error. However, verification approach has typically high computational
or human resources costs. Actually, every test /verification approach has limitations,
the focus of this research is in test based approach that aims in reduce tests
incompleteness and approximates it to model checking approach. So this section
introduces an important verification technique: software model checking(SMC).
SMC inspects if there is a property violation of a given specification(model), if has
a property violation in a model the model checking will find it. Model checking is
supposed to be a rigorous method that exhaustively explores all possible behaviors

of given input program.

2.2.1 Java Path Finder

The JPF is a Virtual Machine (VM) for Java bytecode, which means it is a program
which you give Java programs to execute. It is used to verify some program
properties, so the programmer can specify property to check on a given input
program. JPF virtual machine is implemented in java itself, so it is slower than
typical java virtual machine, but the main purpose of JPF is to instrument and

verify JPF code. JPF supports listener interface that allow instrumentation of

10

2.2. SOFTWARE MODEL CHECKING

(a) (b)

testing: model checking:
based on input set {d} all program state are explored
{d} ;_1 only one path until none left or defect found

executed at a time

nnnnn

Figure 2.5 Testing VS Model Checking

bytecodes, in other words, jpf listeners are little "plugins" that let you closely
monitor all actions taken by JPF, like executing single instructions, creating objects,
reaching a new program state and many more. A typical example of such a listener-
implemented property is a race detector, which identifies nonsynchronized access to

shared variables in concurrent programs.

Model Checking with Java PathFinder

The Figure 2.5(a) depicts how a classical test behaves in subject under test(SUT).
Each test can only cover a single execution path and can’t detect errors in other
execution path, however, in theory, model checking the same subject under test will
explore all possible programs path, as depicted in Figure 2.5(b). In the scope of
this research the model checking refers to program model checking as the technique
described above.

The random example in Figure 2.6 illustrate a java program that does arithmetic
operation in runtime generated random numbers. However, depending on the
generated number the program can throws an ArithmeticException due to a division
by zero. The Figure 2.7 depicts this in state space graph and illustrate the generate
values to program variable a and b that leaves to a program crash.

For sure, the code in Figure 2.6 is trivial and it space state graph contains few
elements, however in real world programs, the space state graph can be really huge.
Model checking a real world program still intractable problem due to time restriction

even using the best machines, this challenge is the state-explosion problem.

11

2.2. SOFTWARE MODEL CHECKING

1 public class Rand {
2 public static void main (String|[] args) {
3 Random random = new Random(42); // (1)
4
5 int a = random.nextInt (2); // (2)
6 System.out.println("a=" + a);
7
8 //... lots of code here
9
10 int b = random.nextInt (3); // (3)
11 System.out.println (", b=" + b);
12
13 int ¢ = a/(bta —2); /) (4)
14 System.out.println (" uc=" + ¢);
15 }
16 }
Figure 2.6 Model Checking example
.. 1 - B8tart
E‘,/ \
a=0 a=1
s 1;"'r\--.,\:-
I.. -_- _.1 '..- ""‘i'-._-‘
‘b=0" | b=1: b=2" b=0 b=1 b=2
R R
oy "o W ¥
c=0 e=0 c=0/0 c=-1 e=1/0 c=1
v v 4

Figure 2.7 states of random program

State-Explosion Problem

With the random example, it is possible at least see the choices in the program.

Assume a concurrent programming example - do you know where the operating

system switches between threads? All we know is that different scheduling sequences

can lead to different program behavior, but there is little we can do in our tests to

force scheduling variation. There are program/test spec combinations which are

"untestable'. Being a virtual machine, JPF does not suffer the same fate - it has

complete control over all threads of our program, and can execute all scheduling

combinations.

12

2.2. SOFTWARE MODEL CHECKING

That is the theory. In reality "all possible" can be a pretty large number - too
large for existing computing resources or our patience. Just assume the number of
different scheduling sequences of a program consisting of N threads P; .. Py that
each has n; atomic instruction sequences. Figure 2.8 illustrates this idea, the left
side of the Figure 2.8 shows the threads and its atomic instructions, which are the
minor unit that can be interleaved. The Right side of the Figure shows possible
thread scheduling with the atomic instructions. The number of thread interleavings
is given in Equation 2.1, where M is the total number of interleavings, N is the

number of threads and n; is the number of atomic instructions in a thread

N
N
[1(n)

=1

M=

Using Equation 2.1, it can be realized that for 2 threads with 2 atomic sections
each this gives us 6 different scheduling combinations. For 8 sections the result is
12870, 16 sections yield 601080390 - that is why it is called state-explosion.

Partial Order Reduction

State-explosion is a key problem in model checking approach, the huge number of
states in typical a nontrivial program does not allows all possible orderings. The
partial order reduction is aimed at reducing the size of the state space that needs to
be searched. Fortunately, for most practical purposes it is not necessary to explore
all possible instruction interleavings for all threads. The number of scheduling

induced states can be significantly reduced by grouping all instruction sequences in

Threads Interleavings

0

=08
U

—

Instructions N

ni n

P
I H
Atomic 2
il

2 M

EniD I

Figure 2.8 depicts threads interleavings in program with N threads

13

2.2. SOFTWARE MODEL CHECKING

a thread that cannot have effects outside this thread itself, collapsing them into a
single transition. According with JPF documentation, the JPF on-the-fly partial
order reduction can typically results in more than 70% reduction of state spaces.
JPF employs an on-the-fly partial order reduction that does not rely on user
instrumentation or static analysis. It automatically determines at runtime which
instructions have to be treated as state transition boundaries. Explain details about
partial order reduction strategies used is beyond the scope of this work, however
the simplest reduction strategy adopted by JPF is instruction based, it benefits
from the fact, due to the stack based nature of the JVM, that only about 10% of
the Java bytecode instructions are scheduling relevant, i.e. can have effects across
thread boundaries. The interesting instructions include direct synchronization
(monitorEnter, monitorexit, invokeX on synchronized methods), field access (putX,
getX), array element access (Xaload, Xastore), and invoke calls of certain Thread
(start(), sleep(), yield(), join()) and Object methods (wait(), notify()). Based on

this approach, JPF states matches scheduling that leaves to equivalent states.

Choice Generation

Software model checking is mainly about doing the right choices during states
exploration, to reach the interesting system states within the resource constraints
of the tool and execution environment. We refer to the mechanism used by JPF to
systematically explore the state space as ChoiceGenerators JPF’s ChoiceGenerator
mechanism guarantees consistently use the same mechanism for scheduling choices.
To understand how choice generator works, it’s important to comprehend three
JPF’s key concepts: state, transition and choice.

State is a snapshot of the current execution status of the application (thread
and heap states), plus the execution history (path) that lead to this state.

Transition is the sequence of instructions that leads from one state to the next.
There is no context switch within a transition, it’s all in the same thread. There
can be multiple transitions leading out of one state (but not necessarily to a new
state).

Choice is what starts a new transition. This can be a different thread (i.e.
scheduling choice), or different "random" data value or any thing that could generate
different program states.

The flexibility of JPF allow to change and configure the way that new transitions

are chosen. It is possible to configure the tool to choose or prioritize a given a

14

U W N =~

10
11
12

2.2. SOFTWARE MODEL CHECKING

thread sequence. Furthermore, it is possible to configure JPF to guide the state
exploration with a given criteria. JPF has default search strategies like deep first
search(DFS) and bread first search(BFS), these search defines the order that states

and transitions are chosen by JPF and reflect directly on the state exploration.

Listeners

Listener are a important extension JPF mechanism. They allow to observe, interact
with and extend JPF execution. They are dynamically configured at runtime, and
do not requires modification in JPF internal mechanism, they work as a plug-in.
There are two basic type of JPF listeners SearchListener and VMListener, both are
interfaces that extend a JPF interface called JPFListener. The first one listen events
related with JPF search during state space exploration, so the SearchListener allow
monitors information about states. Figure 2.9 show all methods of a SearchListener

interface

package gov.nasa.jpf.search;

public interface SearchListener extends JPFListener {
void searchStarted (Search search);
void stateAdvanced (Search search); // got mext state
void stateProcessed (Search search);

// state is fully explored
void stateBacktracked (Search search);

// state was backtracked one step (same path)
void stateStored (Search search);

// somebody stored the state
void stateRestored (Search search);

// previously generated state was restored (any path)
void propertyViolated (Search search);

// JPF encountered a property wviolation

void searchConstraintHit (Search search); // e.g. max search depth

void searchFinished (Search search);

13

Figure 2.9 SearchListener Methods.

The VMListener monitors events related with virtual machine itself, so with
VMListener is possible inspect carefully all action in virtual machine. Figure 2.10
show all methods of a VMListener interface

A important and useful application of JPF listener mechanism is to find race con-

dition during exploration. JPF has a native class to do it, the PreciceRaceDetector

15

2.2. SOFTWARE MODEL CHECKING

class. This class is based on the idea that every time it encounter a new scheduling
point that is due to a field access on a shared object, so the listener check if any of
the other runnable threads is currently accessing the same field on the same object.
If at least one operation is a write, the listener found race. A simplified version of
this listener is presented on Figure 2.11 At every scheduling point(always that can
happens this kind of choice) JPF invoke the listener method choiceGeneratorSet
passing an instance of virtual machine to the method. the code inside refers
to some basic details about JPF internals and java bytecodes, but essentially it
get all threads(ThreadInfo class) that could be chosen in the last choice schedul-
ing(vm.getLastChoiceGenerator () call) and monitor if two of them could access a

same field and one of these access is write.

16

2.2. SOFTWARE MODEL CHECKING

1 package gov.nasa.jpf.jvm;
2 public interface VMListener extends JPFListener {

3 //—— basic bytecode execution

4 void executelnstruction (JVM vm); // JVM is about execute instruction
5 void instructionExecuted (JVM vm); // JVM has executed an instruction
6

7 //—— thread operations (scheduling)

8 void threadStarted (JVM vm); // new Thread entered run()

9 void threadBlocked (JVM vm); // thread waits to acquire a lock
10 void threadWaiting (JVM vm); // thread is waiting for signal

11 void threadNotified (JVM vm); // thread got notified

12 void threadInterrupted (JVM vm); // thread got interrupted

13 void threadTerminated (JVM vm); // Thread exited run()

14 void threadScheduled (JVM vm); // new thread was scheduled by JVM
15

16 //—— class management

17 void classLoaded (JVM vm); // new class was loaded

18

19 //—— object operations

20 void objectCreated (JVM vm); // new object was created

21 void objectReleased (JVM vm); // object was garbage collected

22 void objectLocked (JVM vm); // object lock acquired

23 void objectUnlocked (JVM vm); // object lock released

24 void objectWait (JVM vm); // somebody waits for object lock
25 void objectNotify (JVM vm); // mnotify single waiter for object lock
26 void objectNotifyAll (JVM vm); // motify all waiters for object lock
27

28 void gcBegin (JVM vm); // start garbage collection

29 void gcEnd (JVM vm); // garbage collection finished

30

31 void exceptionThrown (JVM vm); // exception was thrown

32

33 //—— ChoiceGenerator operations

34 void choiceGeneratorSet (JVM vm); // new ChoiceGenerator registered
35 //new choice from current ChoiceGenerator

36 void choiceGeneratorAdvanced (JVM vm);

37 //current ChoiceGenerator processed all choices

38 void choiceGeneratorProcessed (JVM vm);

39 }

Figure 2.10 VMListener Methods.

17

2.2. SOFTWARE MODEL CHECKING

public class PreciseRaceDetector extends PropertyListenerAdapter {
FieldInfo raceField;

public boolean check(Search search, JVM vm) {
return (raceField = null);
}

//—— the VMListener part
public void choiceGeneratorSet (JVM vm) {
ChoiceGenerator<?> cg = vm. getLastChoiceGenerator ();

if (cg instanceof ThreadChoiceFromSet) {
ThreadInfo[] threads = ((ThreadChoiceFromSet)cg).getAllThreadChoices ();
ElementInfo[] eiCandidates = new ElementInfo[threads.length];
FieldInfo [] fiCandidates = new FieldInfo [threads.length];

for (int i=0; i<threads.length; i++) {
ThreadInfo ti = threads[i]; Instruction insn = ti.getPC();

if (insn instanceof FieldInstruction) { // Ok, its a get/putfield
FieldInstruction finsn = (FieldInstruction)insn;
FieldInfo fi = finsn.getFieldInfo ();

if (StringSetMatcher.isMatch(fi.getFullName (), includes, excludes)) {
ElementInfo ei = finsn.peekElementInfo (ti);

// check if we have seen it before from another thread
int idx=-1;
for (int j=0; j<i; j++) {
if ((ei = eiCandidates[j]) && (fi = fiCandidates[j])) {
idx = j; break;

}

if (idx >= 0){ //we have multiple accesses on the same object/field
Instruction otherInsn = threads[idx].getPC();

if (isPutInsn(otherInsn) || isPutlnsn(insn)) {
raceField = ((FieldInstruction)insn). getFieldInfo ();
return;
} else {
eiCandidates[i] = ei; fiCandidates[i] = fi;

public void executelnstruction (JVM jvm) {
if (raceField != null) { // we’re done, report as quickly as possible
ThreadInfo ti = jvm.getLastThreadInfo ();
ti.breakTransition ();

}
}
}

Figure 2.11 JPF native listener to find races

18

Rabbit Approach

This chapter explain Rabbit’s idea to find race conditions, firstly we introduce
Rabbit with an illustrative example and after that presents more details about
Rabbit algoritm.

3.1 Illustrative Example

Figure 3.1(a) shows a fragment of a Java class implementing a bank account that
contains a data race. We illustrate how the JPF model checker in standard mode
performs to find this error and then how JPF in Rabbit mode performs. The class
Account has one field to store the amount available in the account and a method to
transfer money between accounts. The method transfer withdraws money from
the target account object (denoted by reference this) and deposits money into the
account object passed as parameter. Note the use of the modifier synchronized in
the declaration of transfer. It has the effect of setting the target account object
(i.e., this) as the monitor for the method body; hence blocking any thread that
attempts to execute code that is also protected by this monitor [6]. Unfortunately,
the protection used in this example is not sufficient to prevent race. The figure
shows a scenario where two distinct threads make calls to method transfer on
account objects accl and acc2. One thread transfers money from accl to acc2
and the other does the opposite. The problem in this example is that each thread
acquires a different monitor to protect its critical region. The first thread acquires
monitor accl and the second acquires monitor acc2. As such no synchronization is
in effect; any interleaving is possible.

Figure 3.1(b) shows one particular scenario of race. To facilitate illustration, we

use a thread-local artificial variable tmp to store values read from object fields. The

19

3.1. ILLUSTRATIVE EXAMPLE

second thread reads the values of acc2.amount first, then the first thread executes
to completion, and finally the second thread resumes using the value stored in tmp,
which is incorrect as it differs from acc2.amount’s current value. Assuming that
both accounts store 100 in field amount at the beginning of execution, the improper
synchronization will result in an incorrect modification of acc2.amount to 97 instead
of 107. This violates the state assertion in the main method as the sum of the

account balances resulted in 190 instead of 200, as expected.

Java PathFinder (JPF). Software model checkers have been proposed to sys-
tematically explore the space of thread interleavings to find errors like this. Java
PathFinder (JPF) is one explicit-state model checker for Java programs. It imple-
ments a Java Virtual Machine (VM), equipped with state storage and backtracking
capabilities, different search strategies, and listeners for monitoring and influencing
the search. For this example, JPF explores all possible thread interleavings (modulo
its space reduction strategies) reachable from Account’s main method and takes only
~1s to find the error above. Unfortunately, the state-space reachable from the tests
of arbitrary concurrent programs can be significantly larger than this one [14, 19].
To simulate this, we considered a modified version of this main method involving 7
threads and other methods from Account such as deposit and withdraw; for such

modified configuration, JPF took 3m39s to report the same error (see Figure 4.2).

Rabbit. Rabbit reports the corresponding warning in less than 5 seconds for this
larger configuration, involving 7 threads. It reports a total of 3 different but positive
warnings all of which are related to the same problem: the improper synchronization
in method transfer. Rabbit reports 2 additional conflicts involving accesses made
within transfer and other methods of Account that also access the field amount,
namely the withdraw and deposit methods.

Figure 3.2(a) illustrates the Rabbit approach at the conceptual level. The figure
shows with vertical lines two executing threads. The small rectangles over the
line segments denote context switches and the line segments denote straight-line
execution within the individual threads. Rabbit signals the presence of potential
conflicts during the search by relating previously observed and current memory
accesses. This is possible because Rabbit is able to relate identical objects across
the state-space exploration; this is key because there is no guarantee that the id
assigned by the model checker to one new object will be preserved across different
exploration paths (see Section 3.2.2). The note inside the box from Figure 3.2(a)

characterizes the scenario of a potential race. It is important to note that even

20

3.1. ILLUSTRATIVE EXAMPLE

though this scenario shows only one schedule of the program under test, Rabbit
observes and relates memory accesses across multiple schedules. It is also important
to note that reported warnings are not necessarily conflicting as events r; and wy
from Figure 3.2(a) could be causally related. For example, the semantics of the
program could denote that the event w; always follows from ry; therefore, it would
not be possible to construct a scenario where these events compete for the same
resources. However, we conjecture that Rabbit is precise in practice even ignoring
the possibility of general causalities. The precision of Rabbit originates from its
ability to: (i) dynamically relate object ids from potentially distinct schedules, (ii)
detect simple causal relationships, and (iii) detect (and remove) similar warning
reports.

The efficiency of Rabbit originates from the observation that memory accesses
are typically covered much sooner than the actual race. For example, Figure 3.2(b)
illustrates a safe scheduling of two threads that a model checker may explore. For
this particular case, Rabbit needs only one schedule to report a positive warning.
Note that this schedule does not actually manifest a race: when the second thread
reads from acc1.amount the first thread already left its critical region. In this case,
Rabbit predicts that a racy scheduling could be created as the same field from
the same object was accessed (to read and to write) from different threads using
disjoint lock sets {accl} and {acc2}.

Rabbit’s output. Figure 3.1(c) shows a fragment of the output of Rabbit for the
main method from Figure 3.1(a). It indicates that there is a potential race in the
access of field amount through one instance of Account. Note that the output of
Rabbit is per object and per field and appears in tree format to indicate to which
object and field an access is associated. Each line in leaf position shows if the access
was a read or write, the thread that originated the access, the method and line of
the access, and a list of locksets. Each distinct lockset observed across field accesses
appears inside parentheses. For example, the report from Figure 3.1(c) shows that
two different threads access field amount on Account object 415 using inconsistent
locksets (i.e., disjoint sets of locks). While thread “Thread-4” holds locks 408 and
415 when reading field amount, thread “Thread-3” writes to the same field using
the lock 401. This warning is in fact positive and looks similar to the (actual) race

report from JPF.

21

3.1. ILLUSTRATIVE EXAMPLE

class Account {
double amount;
synchronized void
transfer (Account ac, double mn){
this.amount = this.amount — mn;
ac.amount = ac.amount + mn;

}
class TranT () extends Thread {
Account al, a2; double val;
void run() {
al.transfer (a2, val);
13
void main(String [] args) {
Account accl, acc2;...
double total = accl.amount + acc2.amount;
TranT t1 = new TranT (accl, acc2, 10);
TranT t2 = new TranT (acc2, accl, 3);
tl.start (); t2.start ();
Assert.assertEqual(total
accl.amount + acc2.amount);

(a) Fragment of Account subject.

‘accl.transfer(ach, 10)‘ ‘ach.transfer(accl, 3) ‘

tmp = acc2.amount;
tmp = accl.amount;

accl.amount = tmp — 10;
tmp = acc2.amount;
acc2.amount = tmp + 10;
acc2.amount = tmp — 3;

tmp = accl.amount;

accl.amount = tmp + 3;

(b) Racy scheduling.

summary —————
object Account 415
field double amount

write [Thread—3] Account.transfer (Account.java:27)

[(401)]
read [Thread—4] Account.transfer (Account.java:31)
[(408, 415)]
monitors
Account objects [401, 408, 415, ...]

(¢) Rabbit warning (running on top of JPF).

Figure 3.1 Example of data race due to improper synchronization.

22

3.1. ILLUSTRATIVE EXAMPLE

thread—1 thread—2

& rl and wl correspond
. ' | to accesses from two
T 0 | different threads to the
i 4 |same field of the
same object using
T disjoint lock sets.

(a) Conceptual illustration of Rabbit.

‘accl.transfer(ach, 10)‘ ‘ach.transfer(accl, 3) ‘

tmp = accl.amount;
— accl.amount = tmp - 10;
tmp = acc2.amount;
acc2.amount = tmp — 3;

tmp = accl.amount;
accl.amount = tmp + 3;

— {accl} {acc2}

tmp = acc2.amount;
acc2.amount = tmp + 10;

(b) Non-racy scheduling for Account example,
but Rabbit produces a correct warning reported.

Figure 3.2 Illustration using one schedule.

23

3.2. APPROACH

3.2 Approach

Rabbit relates memory accesses observed during state-space exploration to infer
likely races. At conceptual level, Figures 3.2(a) and 3.2(b) illustrate Rabbit’s
approach.

Overview. Rabbit works by monitoring the execution of instructions during state-
space exploration. Let us assume that the tuple (R, o, f,t,ls) denotes a read access
(R for read and W for write) on field o.f from thread ¢ using lockset ls. Consider,
for example, that Rabbit receives notification of such an event during exploration
and that previously it observed, possibly along a different path, a write access of
the form (W, o, f,t',1s'), where t #t' and Is N Is' =)). Rabbit considers that this
pair of accesses reveals a potential conflict: the memory location was the same, the
read and write accesses were realized by different threads, and the locksets used to
protect the data were disjoint. Rabbit reports this threat to the user as a warning
only if it is distinct from previously reported warnings and if it fails a test that
indicates a particular (simple) case of causality (see Section 3.2.1). Even though
the cost of this approach is quadratic on the number of memory accesses, we only

compare accesses to the same memory locations.

3.2.1 Pseudo-code

We implemented Rabbit with a listener of Java bytecodes. The listener receives
notifications prior to the execution of instructions instructions that modify the heap
or the static area. The listener searches for potential races that can be activated
subject to those notifications. Figure 3.3 presents the pseudo-code of Rabbit. It uses
two supporting data-structures to encapsulate analysis data. The class MemAccess
represents a memory access and stores related information such as the instruction
that generated the access (insn), the id of the target object (objref), metadata
about which field of that object was the target of the access (£i), the thread that
generated the access (ti), the locks held by that thread at that moment (1s), and
the set of live threads at that moment (1ive). The class WarningInfo represents a
potential race and stores a pair of MemAccess objects (mal and ma2). The state of
the listener consists of a history of memory accesses (rwset) and a set of warnings
(warnings) that Rabbit has already reported on output. We use the historical data
to relate current with previous memory accesses and use the set of stored warnings to

avoid reporting to the user similar/duplicate warnings that often happens, specially

24

3.2. APPROACH

Map<Integer , Map<FieldInfo , Set<MemoryAccess>>> rwset;

class MemAccess {
Instruction insn; ThreadInfo ti; LockSet lIs;
boolean isSymetric(MemAccess another){
if (insn.equals(another.insn)
&& this.ls.equals(another.ls) && !ti.equals(another. ti)){
return true;

return false;

class PotRacelnfo{
Object objRef; FieldInfo fi; MemAccess mal, ma2; }

void executelnstruction(Instruction insn){
if (!insn.isFieldInstruction ()) return;

ThreadInfo ti = getCurrentThread ();

// peek the object reference from stack
int objRef = ti.peek();

FieldInfo fi = insn.getFieldInfo ();
LockSet ls = ti.getLockSet ()

MemAccess memAccess = new MemAccess(insn, ti, 1s);
checkRace (objRef, fi, memAccess);

updateRWSet (rwset , objRef, fi, memAccess);

}

checkRace(Integer objRef, FieldInfo fi, MemAccess mal){
Set<PotRacelnfo> potentialRaces;

// pass 1: find conflicts
foreach (ma2 in rwset.get(objRef).get(fi)){
if (isRead(currAccess.insn) && isRead(memAccess.insn) {
continue;

if (intersect(currAccess.ls, memAccess.ls).isEmpty()) {
PotRaceInfo potRace =
new PotRacelnfo(objRef, fi, currAccess, ma2);
potentialRaces.add(potRace);

// pass 2: filter symmetric
Set<PotRacelInfo> filteredPotencialRaces;
foreach (potRace in potencialRaces){
if (! potRace . mal.isSymetric(potRace.ma2)){
filteredPotencialRaces .add(potRace);
}
}

// pass 3: find simple causalities

Figure 3.3 Rabbit’s pseudo-code.

for systems with symetric threads. We organized the memory access history as a
nested map so to efficiently retrieve the set of observed accesses on a given field of
a given object at the moment the listener observes a new access.

The method executeInstruction represents Rabbit’s listener. It is called before
the execution of each instruction and returns immediately if the instruction argument
is not an instruction that manipulates a (static or instance) field (PUTFIELD, GETFIELD,
PUTSTATIC, and GETSTATIC). This method accesses the state of the program to obtain
all relevant information necessary to build a memory access object (e.g., object id,

thread id, etc.). It then calls method checkRace passing this object as argument.

25

3.2. APPROACH

This call may result in the addition of a warning to the set of warnings (warnings).
Finally, execution calls the method updateRWSet to add the memory access object
to the access history (rwset). For simplicity, we omit the definition of this method
and methods that access the state of the program under test (get*).

The method checkRace plays a key role in Rabbit. It receives a memory access
as argument and checks, by comparing this access with previous accesses, if it
can lead to a potential race. The method iterates through all previously observed
memory accesses (ma2) that target the same object and field as the current access. If
both are read accesses, then that pair cannot lead to a race and execution continues
to the next access. Otherwise, if the locksets held on each access are disjoint then
execution builds a WarningInfo object denoting a likely race. In the sequence,
execution checks if it is worth reporting this warning to the user. We elaborate

these additional checks in the following.

Optimization 1: Live threads check. Conceptually, we would like Rabbit
to identify whether or not the two events from a warning are causally related.
However, it is not only expensive to obtain such information in the context of
model checking but also challenging to do it precisely when events originate from
multiple exploration paths. We propose a simple heuristic to partially deal with
this problem. We only report a warning if both threads that generated the access
(i.e., mal.ti and ma2.ti) are alive at the moment of each other access (see step
2). This simple check defined with method WarningInfo.areThreadsSpawned can
capture a simple form of causal relationship. For example, without this check Rabbit
reported additional false warnings for the subjects airline, raxExt, twostages, and
wronglock (see Table 4.1). The scenario is manifested when, for example, one thread
t1 constructs an object o1, which is not accessed by t; later, and passes that object
to the constructor of thread to, which is spawned by t1. Thread to later accesses
some field of 01. Note that when t; accesses o1, to is not spawned and when ¢t is

spawned t1 will never access o1 again.

Optimization 2: Handling Symmetric threads. Conceptually, we do not
want to show repeated warnings for the case where the race can be manifested
through different combinations of symmetric threads. To deal with that we check
if the warning is similar to another that has been observed in the past (see step
3). The method MemAccessNo.eqNoThread defines this check. We observed that two
race warnings that involve the same program locations and objects is sometimes

manifested by different pairs of threads. This happens for the cases where the

26

3.2. APPROACH

N, 7

T x =new T(...);

Figure 3.4 Two problems: (a) same object with different ids across distinct paths, and
(b) different objects with same ids across distinct paths.

application contains symmetric threads [9]. All subjects from group 1 (see Table 4.1)

with the exception of weblench contain symmetric threads.

3.2.2 Object Ids

Rabbit is applicable to a popular class of model checkers that manipulate the state
of the program explicitly. Java PathFinder (JPF), for example, uses one array of
integers to represent one object and uses one array of integer arrays to represent
the entire heap. When JPF needs to explore a different path, it needs to backtrack
state and that results in updating such arrays.

The identifiers that the model checker assigns to the objects created during the
state-space exploration, including monitors and threads, are important to Rabbit:
memory accesses are only comparable if they refer to the same memory location.
We do not want Rabbit (a) to report spurious warnings because the model checker
assigned the same id to semantically distinct objects across different exploration
paths. Likewise, we do not want Rabbit (b) to miss a race because the model
checker assigned different ids to the same object across different exploration paths.
Figure 3.4 highlights these problems. A broken line denotes one execution path to
assignment T x = new T(...) and a triangle denotes all subpaths from one of such
paths. Note that the id assigned to one object will remain fixed on all subpaths
(which the triangles denote) from one given execution path, however, the id for the
same object will not necessarily remain fixed across differen paths. For example,
a different number of objects could have been created along the execution path 2
compared to execution path 1. That would result in the assignment of a different
id to the same object stored in variable x. Similarly, the id assigned in path 1 at T
x = ... could be assigned to a different object in path 2.

Figure 3.5 shows the pseudo-code for the algorithm that Rabbit uses to approx-
imately compute search-global object ids. Conceptually, it builds object ids by

observing the context of allocation expressed on the state of the stack at the moment

27

3.2. APPROACH

1Set<Integer> visited;
2executelnstruction (Instrucion insn) {
3 if (linsn.isInit()) return;

4 int oref = getObjectRef();

5 if (visited.contains(oref)) return;

6 Stack stack = getCurrentThread (). getStack ();
7 Heap heap = getHeap ();

8 HashData hdata = new HashData ();

9 foreach (StackFrame sf : stack) {

10 // ignores local wvariables on the stack

11 for (int i = sf.getBase(); i < sf.top(); i++) {
12 int data = sf.slot (i);

13 int tmp = data;

14 // not considering arrays and box classes
15 if (isRef(data)) {

16 ElementInfo ei = heap.get(data);

17 tmp = ei.getOID ();

18 }

19 hdata.add (tmp);

20)

21 1}

22 heap.get(oref).setOID (hdata.getValue ());

23}

Figure 3.5 Approximate computation of search-global object Ids.

of object initialization (i.e., constructor invocation). The algorithm traverses the
program stack adding integer elements denoting program values (both reference
and primitive-type) to a HashData data-structure. This data-structure provides
a getValue() method to compute a hash value from the integer sequence. The
algorithm processes the operand stack of each stack frame it encounters during the
traversal, leaving out local variables which can create noise in the characterization
of objects. Finally, at line 22, the algorithm uses the method set0ID to assign
the computed hash to the abstraction of the object of interest that the model
checker tracks in memory, which the expression heap.get (oref) denotes. Note that
the object ids considered during the stack traversal are computed with this same

algorithm and obtained with method get0ID, as indicated at line 17.

3.2.3 JPF implementation

We implemented Rabbit using the infrastructure of JPF. We implented the code
from Figures 3.3 and 3.5 as listeners of bytecode execution. Important to note that
JPF implements a (precise) race detector based on the Eraser algorithm [34], but

Rabbit does not build on JPF’s race detector. While race detectors consider only

28

3.2. APPROACH

one execution path, Rabbit considers multiple paths using the history of memory

aCCesses.

29

Evaluation

This section presents the evaluation of Rabbit.

Subjects. Figure 4.1 describes the 21 subjects we used to evaluate our approach.
The subjects have different sizes and complexity and have been used in different
related studies [11, 4, 2, 5, 18]. We organized the subjects in 2 groups. Group 1
includes 16 unmodified subjects containing documented races. Group 2 includes 5
subjects with no races documented. We asked 5 volunteers to introduce changes
that could lead to races; we asked them not to use JPF or other tools to guide
what to change. Experience with concurrent programming varied across volunteers.
Column “group” shows the subject group, column “subject” shows subject name,
column “source” indicates the source from where we obtained that subject, column
“#loc” shows the number of lines of code (we used JavaNCSS [20]), and column

“description” explains purpose.

Setup. We evaluated Rabbit by considering two modes in which it can be used:
to report warnings about potential data races and to guide JPF in heuristic-search.
For the first one, we evaluated the quality of the reported warnings and the time it
took for Rabbit to produce them (Mode 1). For the second one, we evaluated the
capability of finding the actual race fast (Mode 2). We present the results of the
evaluation in terms of these two modes of use. Test drivers. Each subject contains
a test driver (i.e., a main function) that sets up the execution environment. We
changed the test drivers of some subjects from group 1 to make the number of threads
a parameter. JPF. We ran each given test driver on JPF until it finds the error or
runs out of memory. We set JPF to use its precise race detector implementation
based on the Eraser algorithm [34] (+1istener=sa.jpf.listener.PreciseRaceDetec tor)

and used default values for all parameters, but disabled logging information as it

30

4.1. RESULTS FOR MODE 1

] group ‘ subject ‘ source ‘ #loc ‘ description ‘
account [11] 66 Bank account
account-pecan | [18§] 148 Bank account
airline [11] 31 Competing passengers
alarmclock [11] 125 Wathdog thread
cachedj-pecan | [18] 3,897 Cache library
jpapa [4] 3,903 Aerial vehicle
lang [11] 990 Hashcode operations
1 log4j [11] 15,744 log framework
montecarlo 2] 3,619 | Monte Carlo Simulation
pool [11] 1,693 Thread pool library
raxext [11] 128 Calendar scheduler
raytracer [18] 1,924 3D raytracing
shop [18] 280 Shopping simulation
twostages [11] 52 2-stage race pattern
weblech [5] 1,309 Web crawler
wronglock [11] 38 Race sample
cache4j [5] 1,096 Cache library
cocome [32] 2,449 Supermarket
2 daisy?2 [32] 880 File system
moldyn 2] 807 Chemical simulation
tsp [5] 465 Travelling Salesman

Table 4.1 Experimental subjects
can significantly affect exploration time (+report.console.property_violation=). We

used an Intel I5 machine, with Ubuntu 11.04, and ran JPF with a maximum of
1GB of memory (default).

4.1 Results for Mode 1

This section elaborates on several experiments with the goal of quantifying the

quality of the warnings reported by Rabbit during state-space exploration.

4.1.1 Comparison with JPF

We evaluated Rabbit’s effectiveness by measuring (a) how fast it reports useful
warnings compared to JPF and (b) how precise are the reported warnings. Figure 4.2
shows the results for this comparison. Column “subject” shows the subject name,
column “err#” shows the identifier of the error, column “#thrs.” shows the
number of threads involved, column “JPF” shows the time required for JPF to
find the error under different search-heuristics: depth-first (DFS), breadth-first

31

RESULTS FOR MODE 1

4.1.

"“AIOWoW JO N0 URI 10 IOLId oY) PUY 0} WG
URY} 9IOUW OO0} IOYIO JJ[PIBPURIS Ul SOPOW [DIROS [[B dIOUM SOSBD SOUIIUOPL .. [9Qe[O], "OIISLINOY [OIeds WOALIP-IIqqey Suisn JJ[
pue ‘(yoress S YNm Jd[Jo doj uo) jqqey ‘(weargXey pue ‘Soq ‘SA() SPISejRI)s YDIedS JUSIPIP YNM JJ[10J SHNSoY g% O[qelL

- i Sg0wWeg AINO | SL0WEE HINO | S9TWE YYHON | « g I dsy
I-TST0W] | 00 ST ST sogwy HINO ¢ 4 ukppou
- I1 ST ST s9zwy HINO I .
- -1 SOWE HINO | SEFWI NO | SF z ¢ gAstep
- 1 spewg gINO | SSGWE HINO | SPEWET % I .
- GG seTwg HINO | 8¢S HINO ST . 4 U055
- 0£-0¢ || SS 8G S00WZEY9 AINO T
- (&3 81 S0 STOWGT ¢ T [poyoed
- I-¢ STOWZ AINO | ST0WE HINO | S6EWTT " 61 z spoBuomm
- 1-¢ STowg HNO | S9eWg HINO | SLOWY " 8T I
- (axd SOpPwWg AINO | S60Wg HINO | SPSWLT % g I UO9[qoM
- I-¢ ST ST sgTwigE ST z —
- I-¢ ST ST STTWLE LT I
- -1 ST ST S00WSOYTE HINO 4 I doys
- 1 ST ST Sgzwge GT 4 Jxoxer
- 1 ST ST sgTwig el I
I-T SGT 0-0 seywg JINO | S¢eWy HINO | G0Wgl " g I 100RI} LRI
- I sgqwg INO | SheWe HINO | STEWg ¢ z (0od
- 1C sgywig HINO | SehwWg HINO | STOWESUE HINO | « I
T-1 S8 0-0 stewy gINO | STSWT HINO | S0 g I O[Ted9juOU .
- I-1 SEC SLG Sy e I [307
- -1 sgowIT 0gw] $,0w0g HINO 01 I Sure|
I-TSTEW] | 00 s90wz AINO | SOPWT HINO | S00WLZUZ HINO | « q1 I eded(
- I soewe HINO | S8eW9 HINO | S9TWREUZ HINO | « 4 | wesod-fyotpen
- 1C sgewg JINO | S9TWS INO | ST 4 I
- (axd ST ST SRPWILT 0% 4 —
- (axd ST ST sgouIg 61 I o
1-C S68WpT | 0-1 seTwg JINQ | SI0Wg AINO | SSgwilg " 6 z spopouLIer
1-C SG0WS | 0T SgPWG IINO | STSW] HINO | STOWL % 8 I
- LA} 58y vy ST¥ 0T ¢ uesad-junoooe
I-1 86 0-0 SP1 Sp1 Sp1 4 T
- e¢ sJ, STG STPWE0UR 8 4 R
- €€ $9 0T Spguig L T
wou [sg WoOIJXBIN | sdd 7 Sdd Lol
Shol 119 oalqns dnoi3
(Sa) Maqey (SAq="1"%g0p) Adr w | # o

32

4.1. RESULTS FOR MODE 1

(BFS), and maximize preemption (MaxPreem). The MaxPreem heuristic prioritizes
the exploration of states that make more context-switches. We also evaluated the
minimize preemption heuristic (analogous to MaxPreem and similar to CHESS [30]),
but did not report results as they were poorer for all cases (i.e., rows). Column “?”
highlights, with a star, cases where all of the searches either ran out of memory
(OME) or took more than 10m to find the race. Column “Rabbit” shows the
results of our approach, subordinate columns “5s” and “next” show respectively the
warnings found in less than 5 seconds and the time required to find the first positive
warning in case one is not found up to 5 seconds. The notation x —y means that of

x warnings, y are positive: the difference indicates the number of false alarms.

o We inspected all cases for which Rabbit reported false alarms and found that
their presence was result of Rabbit’s inability to detect causal dependencies. Note,
however, that the ratios of false alarms was very low. The difference of x and y

(on “x-y” cells) under column “5s” indicates the number of false alarms.

o The effectiveness of JPF varied a lot with the search strategy used. BFS and
MaxPreeem search performed similarly: they raised OME in similar cases and
found the error fast when did not raise OME. In constrast, the DFS search raised

OME less frequently but more often took longer to find the race.

o For 11 of the 33 cases (33.3%) we analyzed from Figure 4.2, all JPF search-
heuristics considered take more than 5m to find the error, runs out of memory,

“*7) When considering each search in

or miss the error (see rows marked with
separate and the time-memory criteria above, DF'S search falls short in 24 cases
(73%) and BFS and MaxPreem search both fall short in the same ratio (48%). As
expected, the effectiveness of any particular search-heuristics depends on a number
of factors and subsumption should not be expected in general [15]. Rabbit reports
true warnings in less than 5s for 28 out of the 33 cases (84.8%); thus improving
predictability as it reports the warning consistently and improving responsiveness

as it reports quality warnings to the user fast.

« For tsp, Rabbit reported a positive warning of error that JPF missed. Across the
exploration, distinct threads access the shared variable denoting the current best
path along the solving of the TSP problem. However, for any particular execution
schedule explored, only one thread writes to that variable. That occurs because,

for the given input and test driver, the first spawned worker thread always finds

33

4.1. RESULTS FOR MODE 1

the best path. JPF misses the error for the given input and test driver. Rabbit
reports a warning as it realizes that threads with different ids access the variable
without the proper protection; it ignores the fact that such accesses do not coexist
in the same run. This scenario is indeed possible for this subject (i.e., multiple
worker threads modifying the best path variable) and could be manifested in JPF
with different inputs to the test driver.

For alarmclock, Rabbit took longer to produce the first positive warning than
in any of the other cases. Also the time difference between Rabbit reporting the
first positive warning and JPF with DFS search finding the error was small. That
happened because it took more time to cover an important memory access that

enabled Rabbit to emit a positive report and JPF quickly find the race after that.

4.1.2 Impact of number of threads

We evaluated the impact of input size, more specifically the impact of the number
of threads involved, in the number and precision of warning reports. For that, we
used some of the subjects from group 1 which are parametric in the number of
threads. For all subjects in that group we varied the number of threads from 15
to 20. For all cases, except alarmclock, the number and precision of the report
remained the same. This results shows that Rabbit scales better overall compared
to JPF, making it specially well suited to analyze parametric concurrent systems.
As discussed before, for the alarmclock subject, Rabbit only detects the race after
the model-checker covers one specific statement of the program and it takes long to

cover that statement as the size of the state-space grows.

4.1.3 Impact of optimizations

We evaluated the use of each optimization in separate. Recall that optimization
1 works to reduce the number of false alarms that stem from the detection of
a particular (but common) kind of causal relationship. We realized that when
disabling this optimization the absolute number of false alarms raised from a total
of 7 to 75, for subjects on group 1. In fact, we observed additional false alarms
in all subjects from this group with this optimization disabled. Subjects raxext
and cocome were the ones that exhibited the largest increase in number of false
alarms; the first one with 20 additional alarms and the other one with 12. The

goal of optimization 2 is to reduce the number of duplicate warnings (false or not).

34

4.1. RESULTS FOR MODE 1

The number of reports increased significantly when disabling this optimization: the
absolute number of alarms increased from a total of 42 to 931, considering both
groups. The subjects raxext and airline were responsible for the largest part of this
amount (73.6%=686/931). As expected, the increase was more localized on subject
with large number of symmetric threads. We observed that this optimization was
effective on all subjects, i.e., Rabbit reported additional warnings without it. For
some cases, the increase was not very significant. For example, for account Rabbit
reported 7 warnings without the optimization and 3 with the optimization activated.

For the case of raxext, Rabbit reported 496 reports with this optimization disabled.

4.1.4 Number of warnings

We evaluated how fast the number of reported warnings grow with the progress of
the state-space exploration. We observed that Rabbit finds most of the errors very
fast and then rarely reports new findings. For example, note from Table 4.2 the
low increase in the number of reports for the cases where Rabbit cannot find the
positive warning in 5s. Also, for the reported cases that Rabbit finds the races in

less than 5s, no other distinct warning is reported after that.

4.1.5 Impact of search strategy

We also evaluated Rabbit with breadth-first search (BFS). As expected, the search
strategy can influence results of Rabbit the same way it influences time and memory
requirements during state-space exploration. We observed that of the 7 cases
from Table 4.2 where Rabbit with depth-first search (DFS) could not find positive
warning in 5s (see column “next”), Rabbit with BF'S reported positive warning
within 5s in 4 cases: alarmclock (both races), jpapa, and moldyn (one of the races).
Of these 4 cases the BF'S search could find the actual race quickly only for moldyn.
Considering all the cases we considered, Rabbit with DFS performed better overall
compared to Rabbit with BFS. For that reason, Table 4.2 only shows results of
Rabbit running with DFS search. But we will use Rabbit with BFS later.

4.1.6 Subjects with errors removed

In a typical scenario of use of a model-checker the user is not aware about the
errors the application may have. It is possible, for example, that the application

does not contain races, other kinds of concurrent errors, or even errors that the

35

4.1. RESULTS FOR MODE 1

MBS ORERETEREERNEREER
'. (I T = 1 Yy ¥ H] Fag]
=z | B Bk f A ki i [
1] |in? I] &] [] Tl []]
a5 | [£ -
EA
B &
E o=
s
A 40| -
n
=
-
2 | -
B A A A A A A
Ty Ty ﬂa""%@“ﬁ%%’b%ﬁ; ﬂg’* ", or, 4 ””@@
. cﬁ_-!' _.5% Y S t’?‘%}
]
[_Anooil JFE Fios Avarags ——

Figure 4.1 Overhead of Rabbit on state-space exploration.

test driver can reach. This experiment evaluated the magnitude of the noise from
Rabbit’s warnings during state-space exploration when the application does not
contain known errors. To evaluate the impact of such scenario, we ran Rabbit on
subjects with errors removed and found that all false positives reported persisted
and no others were added. Note that considering results from Table 4.2 the ratio of

false alarms is already very low.

4.1.7 Impact of search-global object ids

In principle, the same object could receive different ids across different exploration
paths (and conversely) and that could influence our results. To avoid that we
proposed an identity function that approximates a canonical (i.e., search-global)
object identity, valid across different exploration paths (see Section 3.2.2). This
section evaluates the impact of using our proposed search-global object identity
function [297 | as opposed to the one JPF provides. It is important to note that
JPF ids are preserved across portions of the search space. For example, considering
Figure 3.4, JPF preserves the object ids in all sub-paths of the sub-spaces denoted
by triangles 1 and 2. Considering all experimental subjects, the use of Rabbit’s-
provided ids found one true alarm that Rabbit with JPF-provided ids could not
find (cocome-1). Our experimental data also reveals that Rabbit with JPF-provided

36

4.1. RESULTS FOR MODE 1

ids in fact reported relatively more true alarms (but not new) as the number of
distinct JPF ids per unique object is higher. However, optimization 2 removed such
duplicates accurately. To our surprise, the number of false positives and negatives
remained the same overall. One reason for not missing alarms is that JPF could
indeed find the races inside the sub-spaces mentioned above (where JPF ids are
preserved). As for not reporting false positives one key reason was that distinct
objects with identical JPF ids did not expose races because our detection operates
at field-level.

4.1.8 Time Overhead

Figure 4.1 uses stacked bars to show the overhead of using Rabbit using our search-
global ids. We sorted the subjects by alphabetical order of names. We disabled the
seeded errors and ran each experiment for 5 minutes. The smaller bar indicates
the percentage of instructions visited with Rabbit; this measure approximates
the amount of the state-space explored. The bigger bar indicates the number of
instructions that JPF without Rabbit visits for the allotted time. The shaded
region highlights the difference. We ran each experiment for 5 times taking averages.
The horizontal line marks the average time overhead across all cases: 14.69%. This
overhead decreases to ~10% when not using our proposed ids. There is no apparent
correlation between the runtime overhead and the size of the application or the size
of the state-space associated with the subject. Cost is proportional to the number
of memory accesses made throughout the exploration (see Section 3.2.1). Note
that montecarlo is the case with highest overhead but it is not among the largest
applications. The number of field accesses involved in the numerical simulation is
indeed very high, which justifies this behavior. It is very important to not that, in
principle, it is not necessary to run Rabbit during the entire state-space exploration.
As pointed out in Section 4.1.4, running Rabbit during the beginning of the search
is already very beneficial. Sampling field accesses [27] sporadically or based on

some other criteria is also a possible future alternative.

4.1.9 Comparison with FindBugs and JLint

We also compared Rabbit with popular pattern-based bug-finding tools, namely
FindBugs [1] and JLint [3]. These tools look for particular bad practices using

syntactic pattern-matching (not aware of dynamic data-relationships); we focused

37

4.2. RESULTS FOR MODE 2

on the race anti-patterns these tools support. We evaluated precision of reported
warnings on our experimental subjects. It is important to note that these tools
require different inputs from the user. They are typically very efficient and they
do not require test drivers on input as JPF and Rabbit. We observed from the
results that FindBugs reported a true alarm in only 2 cases (account and shop)
and JLint in only 4 cases (airline, tsp, moldyn, cache4j). We also noted that
FindBugs reported a high number of false alarms for tsp and daisy2. Considering
the apparent ineffectiveness of these tools in this context and lack of space, we did

not elaborate results.

4.2 Results for Mode 2

This section describes the results for an alternative mode of use of Rabbit that
looks for actual errors. We first elaborate on the necessary modification to enable
this mode and its results (Section 4.2.1) and then show the result of using a swarm
of short-lived instances of Rabbit in this mode using different parameters (e.g.,

search-mode, and target warnings) (Section 4.2.2).

4.2.1 Guided-search

Rabbit observes events and infers potential problematic future memory accesses
from them. This section discusses the effect of guiding the JPF search to-
wards likely racy schedules so that warnings can be confirmed quickly. To
enable this guidance, we configured JPF to use an existing search strategy
class that we customized for our purposes (parameter set in JPF: +search
.class=gov.nasa.jpf.search.heuristic.PreferThreads). This search takes as input
a set of informed threads and has the effect of making JPF give higher priority to
the schedules involving these threads. In our case, the threads involved in Rabbit’s
warnings.

Note that, with the exception of the case of daisy2, error number 1, JPF with
our custom heuristic-search either finds the actual race in a few seconds (median
time of 2s and a worst case of 18s) or runs out of memory. For daisy2, error
number 1, even though it takes longer to find the race, it is still much faster than
the DFS (both the BFS and MaxPreem produce Out of Memory errors). It runs
out of memory for the same number of times as DF'S search but under a different
set of subject configurations. One reason for reaching memory limits with this

search heuristic is that it can potentially postpone the scheduling of threads that

38

4.2. RESULTS FOR MODE 2

’ group \ subject \ err# H #thrs. \ JPF (default=DFS) \ Rabbit Swarm

account 1 7 3m24s 32s

2 8 4h09m41s 32s

account-pecan 1 2 1ds 25
2 10 41s 55s

alarmclock 1 8 fm0ls 46s
2 9 31m25s 46s

airline 1 19 8m0b5s Os

2 20 17m48s 0s

cachedj-pecan 1 2 Ls 40s
2 2 OME 2h38m16s -

jpapa 1 15 OME 2h27m00s -
lang 1 10 OME 20m07s 36s

1 log4j 1 2 o4s 31s
montecarlo 1 5 20s 29s
pool 1 3 OME 3h59m01s 59

2 2m3ls -

raytracer 1 5) 12m02 -
raxext 1 13 8m16s 7s

2 15 38m23s 7s

shop 1 4 OME 21h05m00s 15s
twostages 1 17 27Tm22s 9s

2 18 33m18s 9s

weblech 1 5 17mb4s -
wronglock 1 18 6mO07s 29s
2 19 12m39s 29s

cache4] 1 3 15m01s 50s
cocome 1 4 OME 6h32m00s -

2 1s 13s

: 1 19m24s 4m27s

2 daisy?2 9 2 1S %
moldyn 1 5 OME 4m26s -

2 OME 4m30s 7

tsp 1 3 NOERR 9m16s -

Table 4.3 Rabbit swarm results

39

4.2. RESULTS FOR MODE 2

contribute to creating intermediate states from where races becomes reachable.
Note that account-pecan was the only case for which the search ran out of memory
when JPF in standard mode did not in at least one search. Overall, this experiment
shows that the Rabbit-guided heuristic-search finds the error very fast for several

cases where JPF takes long to find the race or runs out of memory (see rows with
cc>]<a7)'

4.2.2 Swarm

Overall, results show that Rabbit often reports warnings quickly and most of them
are positive. Also, JPF often finds races very fast when guided by Rabbit’s output.
These observations suggest that it is beneficial to spawn short-lived instances of
Rabbit (see Section 4.1.4) using different search strategies with the goal of finding
race warnings quickly (see Section 4.1.5) and to spawn short-lived instances of JPF
in heuristic-search mode, using the feedback from these multiple runs of Rabbit,
with the goal of finding/confirming the data-races quickly (see Section 4.2.1). Based
on these observations, we developed a tool that integrates these two goals: finding
and confirming warnings. Conceptually, the idea is to improve model-checking
by partitioning the state-space and using the multiple cores available in modern
machines of these days; idea inspired by Verification Swarming [17, 16]. The tool
follows a producer-consumer design, where the elements on the shared buffer are
warnings. The producers of warnings are instances of Rabbit (running different
search strategies) and the consumers are short-lived instances of a model-checker
(JPF) that consume the generated warnings. These instances run in heuristic-search
mode (Section 4.2.1); each one focuses the search on one warning it selects from the
buffer. We implemented this design with 2 instances of Rabbit as producers; one
running DF'S and the other BFS. We spawn consumer instances on-demand based
on the influx of warnings and the termination of previously spawned consumers.
We limit the number of simultaneously running consumer processes running our
guided-search to the number of cores in the machine, in our case 4. For each new
warning, we spawn 2 new threads one with a 30s timeout and the other with a 4m
timeout. The search finishes when each thread executes a new guided search(as
explained 4.2.1) until timeout. Table ?? shows results of Rabbit swarm. The last
column(Rabbit Swarm) shows the maximum time that the swarm approach takes
to find a real race. The symbol - in column means that to that subject Rabbit

swarm could not confirm the race in maximum of 4m after the race was reported

40

4.2. RESULTS FOR MODE 2

by Rabbit. The column JPF (default=DF'S) presents the time the JPF takes to
find the same error. The JPF results was also show in 4.2 and they are here just
to be easy compared with new results. One stack denotes the best-case time for
the JPF search (with BFS or DFS) and the other stack indicates the search time
for swarming. The absence of on stack indicates it ran out of memory. We limit
the y-axis to 800s for better visualization of low values (Table 4.2 shows all values).
The swarming strategy was able to find the error quickly in 6 (in the worst-case in
4m30s) out of the 11 of the marked cases; it misses where the execution already
ran out of memory (see column JPF(mod)+Rabbit on Table 4.2), confirming our
expectation that it is one way to automate the process of generating and confirming

data-race warnings.

4.2.3 Discussion
The list below summarizes the reasons in favor of Rabbit:

o For 84.8% (28/33) of the cases Rabbit responds very fast with positive warnings.
See column “<5s” from Table 4.2. Rabbit is particularly applicable when the
search produces large state-spaces. For these cases, a model-checker can take

long to find the race;

o Results indicate that the amount of warnings reported does not grow unbounded
during state-space exploration. For the cases we considered, the number of

distinct warnings is, on average, low and stabilizes fast;

 In one particular case (tsp), Rabbit inferred a conflict that JPF missed. This

was unexpected and showed utility beyond increased responsiveness;

» Results indicate that Rabbit performs differently with depth-first and breadth-
first search. However, we observed that often when one strategy could not find a

positive warning quickly the other could;

o Results indicate that Rabbit’s output was very effective to guide JPF’s heuristic-
search, enabling JPF to find the race in a few seconds for cases where it would

run out of memory or report the error in hours.
The list below summarizes the reasons against Rabbit:

o It can report false alarms. Rabbit is not aware of general causal relationships

across the concurrent events of the application under test;

41

4.2. RESULTS FOR MODE 2

o It adds overhead to the state-space exploration time.

4.2.4 Threats to validity

One important threat to validity is the possibility of always existing one search-
heuristic that could find the race very fast; hence, to compete with Rabbit, one
could run all of the search-heuristics in parallel for a short period of time. We
understand that even though improved diversity in search-heuristic can be helpful,
it may not be always effective: one particular heuristic invariably makes hard
commitments on which paths to follow [? |, while Rabbit is a path-independent
observer. Another threat is the possibility of another, not considered, race-finding
tool detecting the race more efficiently and precisely than Rabbit. It is important
to note that Rabbit makes progress on improving software model checking (SMC)
for the particular purpose of finding races. It is possible that the subject under test
contains errors that race-finding tools are unable to find but for which software
model checking is still applicable. Shortly put, SMC complements these race-finding
tools and Rabbit complements SMC. Other threats include our selection of subjects,
our selection of search-heuristics, and lack of willingness of model checker users in

inspecting warnings that may not lead to actual errors.

42

Conclusions

This research presents Rabbit, an approach to assist model checker users in finding
data race errors. The general goal of our approach is to increase responsiveness of
model checkers, enabling users to take action before a potentially long search for
actual errors finishes. Rabbit looks for potential races during state-space exploration
that can be inferred from the memory accesses it monitors. Rabbit uses a search-
global identity for objects (and threads) that enables it to relate objects created
across different exploration paths that the software model checker takes. We
analyzed 33 cases involving 21 subjects of various sources and sizes previously used
in the analysis of concurrent systems. Results indicate that the overhead in runtime
compared to a regular state-space exploration is low on average, the number of false
positives is low, and the reports are given most often very fast to the user. The
approach of Rabbit is lightweight as to handle the high volume of data associated
with observed memory accesses and the requirement to not severely affect overall
exploration time (to find actual errors). Even though Rabbit’s primary goal is to
report true warnings quickly, we observed that our approach can be used effectively
to guide a customized heuristic search and confirm the race warnings that Rabbit
reported in a previous stage. To the best of our knowledge, this is the first work
that exploits the synergy between predictive analysis and program model checking.
Our implementation and the subjects we used in our experiments are available from

the link http://pan.cin.ufpe.br/rabbit.

5.1 Related Work

Space reduction techniques. To alleviate the high cost associated with state-

space exploration program model checkers use, often lossy, space reduction tech-

43

http://pan.cin.ufpe.br/rabbit

5.1. RELATED WORK

niques [25, 38, 30]. The opportunity of improvement of Rabbit is directly propor-
tional to such high cost. Musuvathi and Qadeer [30] recently proposed CHESS to
constrain the number of context switches that the model checker performs during
the state-space exploration. They show substantial gain in space reduction without
practical loss in the capability of finding errors. We plan to evaluate Rabbit with
CHESS-like search in the future.

Model checking. A software model checker takes as input a test driver and
explores the state-space of a program, reachable from the test driver, in seek of
errors like races and deadlocks [13, 24, 22]. The approach is sound (i.e., it reports no
false positives), however, the exploration of large state-spaces can be very expensive.
In this context, time efficiency becomes an important requirement: the errors that
a model checker can find are subject to one manually-written test driver and the
runtime cost associated with the exploration of the state-space from that test driver
often can be very high. Heuristic model checking has been investigated under
different contexts in the past [15, 33]. Rungta and Mercer [33], for example, use the
warnings produced by tools such as FindBugs [1] or JLint [3] to drive state-space
exploration. One important difference to our approach is that we do not try to
severely constrain the search space as that could prevent the search from exploring
necessary states to provoke race. More precisely, our heuristic only increases the
priority of selected threads for the purpose of scheduling as opposed to guiding the
search towards specific program statements.

Even though it is possible to build on similar ideas to guide exploration with
the output of Rabbit, this is orthogonal to our current goal. Note that the use of
Rabbit does not interfere in search order and the capability of the model checker in
finding different kinds of errors.

Predictive analysis. Predictive analysis has gained force recently as a dynamic
technique to find concurrency errors [8, 35, 13, 18]. The typical approach uses a
representative schedule of the program (containing, for instance, reads and writes
to memory, lock acquires and releases, etc.) and, from that, infers new schedules
based on some criteria. Different techniques vary in what they use to infer new
schedules (e.g., causal dependencies). Considering that not all of the schedules
inferred are feasible in the program, some techniques, like Penelope [35], execute
the schedule to confirm (or not) the fault. The analysis involves the construction
of a model to represent the space of possible schedules, the analysis of that model

to produce schedules some of which may not be feasible, the instrumentation of

44

5.2. FUTURE WORK

the program to make execution follow a particular schedule, and the execution of
inferred schedules. In contrast to predictive analysis tools that produce and execute
different thread schedules from some approximate model, our approach observes
the feasible schedules that a model checker explores so as to infer potential races.
Our approach is orthogonal to existing predictive analysis tools (even though it was
inspired by them) and complementary to stateful model checking.

Static tools. Several static and dynamic race detection tools have been previously
proposed. Static tools, such as RacerX [12] and Chord [31], are typically fast but
can report many false alarms due the conservative assumptions that accumulate
during the analysis. Static tools based on pattern matching such as FindBugs [1] or
JLint [3] can in addition miss errors due to an incomplete set of supported patterns.
Compared to static tools, dynamic based analyses are often more precises and
reports less false positives. The warnings Rabbit reports are based on dynamic
information and therefore do not suffer from the same sources of imprecision. Our
approach is complementary to static tools; it builds on model checkers that require
different inputs and provide different guarantees.

Language support. To facilitate development of multithreaded software, new
methods [39] and language support [7] have been recently proposed and old languages
regained force [24]. The approach of Rabbit complements these initiatives which
aim at making concurrent software safer. It focuses on improving the support to
the dominant model of concurrent programming to date, which is based on the

shared-memory model.

5.2 Future work

To improve even more this work, theses are some of the next steps that will be done

in the near future,

« evaluate Rabbit on other subjects, to test causality of warnings offline so as

to further improve precision

 evaluate swarming with different parameters(e.g., adding and calibrating

weights of preferred threads)

 investigate the use of the Rabbit approach to find deadlocks.

45

1]
2]

[10]

[11]

[12]

[13]

[14]

Bibliography

FindBugS Webpage. http://findbugs.sourceforge.net/.

Java Grande Forum Multi-Threaded Benchmarks webpage.

http://www2.epcc.ed.ac.uk/computing/research_activities.

JLint Webpage. http://jlint.sourceforge.net/.

JPapa Webpage. http://code.google.com/p/jpapabench/.

Parallel Java Benchmarks webpage. nttp://code.google.con/p/pjbench/.

Ken Arnold, James Gosling, and David Holmes. The Java Programming

Language. Addison-Wesley Longman Publishing Co., Inc., 2000.

Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent
programming with revisions and isolation types. In OOPSLA, pages 691-707,
2010.

Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jPredictor: a predictive
runtime analysis tool for java. In ICSE, pages 221-230, 2008.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, Cambridge, MA, 1999.

E. W. Dijkstra. Solution of a problem in concurrent programming control.
Commun. ACM, 8(9):569—, September 1965.

Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering, 10(4):405-435, 2005.

Dawson Engler and Ken Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. In SOSP, pages 237-252, 2003.

Malay K. Ganai. Scalable and precise symbolic analysis for atomicity violations.
In ASE, pages 123 —132, 2011.

Milos Gligoric, Vilas Jagannath, and Darko Marinov. Mutmut: Efficient
exploration for mutation testing of multithreaded code. In ICST, pages 55 —64,
2010.

46

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[25]

[26]

Alex Groce and Willem Visser. Model checking Java programs using structural
heuristics. In ISSTA, pages 12-21, 2002.

Alex Groce, Chaogiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm
Testing. "To Appear in ISSTA 2012".

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification
techniques. IEEE Trans. Software Eng., 37(6):845-857, 2011.

Jeff Huang and Charles Zhang. Persuasive prediction of concurrency access
anomalies. In ISSTA, pages 144-154, 2011.

Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Change-aware preemption
prioritization. In ISSTA, pages 133-143, 2011.

JavaNCSS website. JavaNCSS - A Source Measurement Suite for Jawva.

http://www.kclee.de/clemens/java/javancss/.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. Computers, IEEE Transactions on, C-28(9):690 —691,
sept. 1979.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21:558-565, July 1978.

James Larus and Christos Kozyrakis. Transactional memory. CACM, 51:80-88,
July 2008.

Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A Framework
for State-Space Exploration of Java-Based Actor Programs. In ASE, pages
468-479, 20009.

Flavio Lerda and Willem Visser. Addressing dynamic issues of program model
checking. In SPIN, pages 80-102, 2001.

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: detecting
atomicity violations via access interleaving invariants. In ASPLOS, pages
37-48, 2006.

Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace:
effective sampling for lightweight data-race detection. In PLDI, pages 134-143,
20009.

47

BIBLIOGRAPHY

28] Gordon E. Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.
Solid-State Circuits Newsletter, IEEE, 11(5):33 =35, sept. 2006.

[29] Madanlal Musuvathi and David L. Dill. An incremental heap canonicalization
algorithm. In Proceedings of the International SPIN Workshop on Model
Checking of Software (SPIN), pages 28-42, 2005.

[30] Madanlal Musuvathi and Shaz Qadeerk. Iterative context bounding for sys-
tematic testing of multithreaded programs. In PLDI, pages 446-455, 2007.

[31] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for
java. In PLDI pages 308-319, 2006.

[32] Pavel Parizek and Ondrej Lhotak. Identifying future field accesses in exhaustive
state space traversal. In ASFE, pages 93-102, 2011.

[33] Neha Rungta and Eric G. Mercer. A meta heuristic for effectively detecting
concurrency errors. In HVC, pages 23-37, 2009.

[34] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: a dynamic data race detector for multithreaded programs.
ACM Transaction on Computer Systems, 15:391-411, 1997.

[35] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. Penelope: weaving

threads to expose atomicity violations. In FSFE, pages 37-46, 2010.

[36] Herb Sutter and James Larus. Software and the concurrency revolution. Queue,
3(7):54-62, September 2005.

[37] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2nd edition, 2001.

[38] Willem Visser, Corina S. Pasareanu, and Radek Pelanek. Test input generation
for red-black trees using abstraction. In ASE, pages 414-417, 2005.

[39] Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. Cooperative reasoning

for preemptive execution. In PPoPP, pages 147-156, 2011.

48

	List of Figures
	List of Tables
	Introduction
	Contribution
	Dissertation Organization

	Background
	Concurrency
	Why Concurrency?
	How Concurrency works?
	Symmetric threads

	Concurrency hazards
	Data Races
	Deadlocks

	Software Model Checking
	Java Path Finder
	Model Checking with Java PathFinder
	State-Explosion Problem
	Partial Order Reduction
	Choice Generation
	Listeners

	Rabbit Approach
	Illustrative Example
	Approach
	Pseudo-code
	Object Ids
	JPF implementation

	Evaluation
	Results for Mode 1
	Comparison with JPF
	Impact of number of threads
	Impact of optimizations
	Number of warnings
	Impact of search strategy
	Subjects with errors removed
	Impact of search-global object ids
	Time Overhead
	Comparison with FindBugs and JLint

	Results for Mode 2
	Guided-search
	Swarm
	Discussion
	Threats to validity

	Conclusions
	Related Work
	Future work

