Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/5003

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorTORRES, Geraldo Leitept_BR
dc.contributor.authorSOUSA, Andréa Araújopt_BR
dc.date.accessioned2014-06-12T17:35:21Z
dc.date.available2014-06-12T17:35:21Z
dc.date.issued2008-01-31pt_BR
dc.identifier.citationAraújo Sousa, Andréa; Leite Torres, Geraldo. Fluxo de Potência Ótimo globalmente convergente utilizando métodos de pontos interiores com estratégias de região de confiança. 2008. Tese (Doutorado). Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Pernambuco, Recife, 2008.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/5003
dc.description.abstractO problema de Fluxo de Potência Ótimo (FPO) vem sendo estudado desde a década de 1960 e vários métodos de resolução são encontrados na literatura. Em particular, os métodos de Pontos-Interiores (PI) vêm tendo um grande destaque devido a sua robustez e eficiência, alcançando convergência com reduzido número de iteraçoes mesmo em problemas com um grande número de variáveis. Apesar do seu bom desempenho computacional no que se refere a número de iterações e tempo de processamento, os métodos de PI não possuem convergência global, que consiste em encontrar uma solução independente da escolha do ponto inicial. Um dos objetivos desta pesquisa é o desenvolvimento de um algoritmo de FPO globalmente convergente, ou seja, capaz de encontrar uma solução sempre que uma existir. Para atingir esse objetivo, o algoritmo proposto associa métodos de Região de Confiança com os eficientes métodos de PI. Algoritmos globalmente convergentes são invariavelmente computacionalmente intensivos, de forma que três abordagens distintas para a resolução dos subproblemas de região de confiança foram estudadas. Quanto à formulação do problema de FPO, foram desenvolvidos modelos que consideram dispositivos FACTS, como o UPFC (Unified Power Flow Controller), e restrições de estabilidade de tensão. Algumas opções de função objetivo, como minimização de perdas, minimização de corte de carga e maximização de carregamento, foram testadas e o desempenho do algoritmo proposto foi avaliado comparando-o ao desempenho de algoritmos de PI já conhecidos.O problema de Fluxo de Potência Ótimo (FPO) vem sendo estudado desde a década de 1960 e vários métodos de resolução são encontrados na literatura. Em particular, os métodos de Pontos-Interiores (PI) vêm tendo um grande destaque devido a sua robustez e eficiência, alcançando convergência com reduzido número de iteraçoes mesmo em problemas com um grande número de variáveis. Apesar do seu bom desempenho computacional no que se refere a número de iterações e tempo de processamento, os métodos de PI não possuem convergência global, que consiste em encontrar uma solução independente da escolha do ponto inicial. Um dos objetivos desta pesquisa é o desenvolvimento de um algoritmo de FPO globalmente convergente, ou seja, capaz de encontrar uma solução sempre que uma existir. Para atingir esse objetivo, o algoritmo proposto associa métodos de Região de Confiança com os eficientes métodos de PI. Algoritmos globalmente convergentes são invariavelmente computacionalmente intensivos, de forma que três abordagens distintas para a resolução dos subproblemas de região de confiança foram estudadas. Quanto à formulação do problema de FPO, foram desenvolvidos modelos que consideram dispositivos FACTS, como o UPFC (Unified Power Flow Controller), e restrições de estabilidade de tensão. Algumas opções de função objetivo, como minimização de perdas, minimização de corte de carga e maximização de carregamento, foram testadas e o desempenho do algoritmo proposto foi avaliado comparando-o ao desempenho de algoritmos de PI já conhecidos.O problema de Fluxo de Potência Ótimo (FPO) vem sendo estudado desde a década de 1960 e vários métodos de resolução são encontrados na literatura. Em particular, os métodos de Pontos-Interiores (PI) vêm tendo um grande destaque devido a sua robustez e eficiência, alcançando convergência com reduzido número de iteraçoes mesmo em problemas com um grande número de variáveis. Apesar do seu bom desempenho computacional no que se refere a número de iterações e tempo de processamento, os métodos de PI não possuem convergência global, que consiste em encontrar uma solução independente da escolha do ponto inicial. Um dos objetivos desta pesquisa é o desenvolvimento de um algoritmo de FPO globalmente convergente, ou seja, capaz de encontrar uma solução sempre que uma existir. Para atingir esse objetivo, o algoritmo proposto associa métodos de Região de Confiança com os eficientes métodos de PI. Algoritmos globalmente convergentes são invariavelmente computacionalmente intensivos, de forma que três abordagens distintas para a resolução dos subproblemas de região de confiança foram estudadas. Quanto à formulação do problema de FPO, foram desenvolvidos modelos que consideram dispositivos FACTS, como o UPFC (Unified Power Flow Controller), e restrições de estabilidade de tensão. Algumas opções de função objetivo, como minimização de perdas, minimização de corte de carga e maximização de carregamento, foram testadas e o desempenho do algoritmo proposto foi avaliado comparando-o ao desempenho de algoritmos de PI já conhecidospt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectOtimização não-linearpt_BR
dc.subjectFluxo de potência ótimopt_BR
dc.titleFluxo de Potência Ótimo globalmente convergente utilizando métodos de pontos interiores com estratégias de região de confiançapt_BR
dc.typedoctoralThesispt_BR
Aparece nas coleções:Teses de Doutorado - Engenharia Elétrica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivo6842_1.pdf901,04 kBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons