Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/41427
Comparte esta pagina
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | AQUINO, Ronaldo Ribeiro Barbosa de | - |
dc.contributor.author | SILVA, Jeydson Lopes da | - |
dc.date.accessioned | 2021-10-25T19:36:49Z | - |
dc.date.available | 2021-10-25T19:36:49Z | - |
dc.date.issued | 2021-04-12 | - |
dc.identifier.citation | SILVA, Jeydson Lopes da. Desenvolvimento de controlador baseado em aprendizado emocional profundo. 2021. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Pernambuco, Recife, 2021. | pt_BR |
dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/41427 | - |
dc.description.abstract | Os controladores biologicamente inspirados demonstram grande êxito em diversas aplicações, principalmente em situações que apresentam perturbações e incertezas nas dinâmicas do sistema. Nos últimos tempos, surgiram diversos trabalhos concernentes à área do aprendizado do cérebro humano, permitindo assim o surgimento de novas teorias e aplicações na engenharia de controle. Nesse âmbito, controladores baseados no aprendizado emocional que ocorre no cérebro humano são capazes de oferecer novos recursos e resultados satisfatórios em termos da dinâmica de resposta de controle. Este tipo de controlador é associado a capacidade de reação dos seres humanos aos estímulos sensoriais externos e ao consequente dilema entre a decisão baseada na emoção ou razão. Todavia, a concepção e o comissionamento deste tipo de controlador ainda representam um grande desafio para os pesquisadores, uma vez que é necessário a determinação de alguns sinais característicos a este sistema (estímulos), os quais podem variar de aplicação para aplicação. Portanto, a utilização de novas ferramentas matemáticas e computacionais podem oferecer os recursos necessários para a melhora de desempenho deste seguimento de controlador. Nesse sentido, o presente trabalho propõe a utilização de algoritmos baseados em aprendizado por reforço, associados aos recentes avanços na área do aprendizado profundo das redes neurais, tendo por objetivo a elaboração de novas arquiteturas que permitam a este controlador atingir uma maior generalização em sua aplicação, bem como fornecer uma alternativa viável aos modelos tradicionais em uso. Além disso, é proposta uma metodologia para o desenvolvimento, comissionamento e uso final desta nova proposta de controlador emocional, destacando-se as ferramentas e recursos necessários a esta tarefa. Por fim, a partir de diversos resultados de simulações experimentais, bem como aplicação real, busca-se demonstrar a eficácia da proposta da união do controlador emocional e os recursos advindos da teoria do aprendizado por reforço profundo. | pt_BR |
dc.description.sponsorship | CAPES | pt_BR |
dc.language.iso | por | pt_BR |
dc.publisher | Universidade Federal de Pernambuco | pt_BR |
dc.rights | openAccess | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.subject | Engenharia Elétrica | pt_BR |
dc.subject | Aprendizado por reforço | pt_BR |
dc.subject | Aprendizado profundo | pt_BR |
dc.subject | Aprendizado emocional | pt_BR |
dc.subject | Controlador emocional | pt_BR |
dc.title | Desenvolvimento de controlador baseado em aprendizado emocional profundo | pt_BR |
dc.type | doctoralThesis | pt_BR |
dc.contributor.advisor-co | FERREIRA, Aida Araújo | - |
dc.contributor.authorLattes | http://lattes.cnpq.br/5905080677240054 | pt_BR |
dc.publisher.initials | UFPE | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.degree.level | doutorado | pt_BR |
dc.contributor.advisorLattes | http://lattes.cnpq.br/0731639653204720 | pt_BR |
dc.publisher.program | Programa de Pos Graduacao em Engenharia Eletrica | pt_BR |
dc.description.abstractx | Biologically inspired controllers demonstrate great success in several applications, mainly in situations that present disturbances and uncertainties in the system dynamics. In recent times, several works have appeared in the area of learning the human brain thus allowing the emergence of new theories and applications in control engineering. In this context, controllers based on the emotional learning that takes place in the human brain are able to offer new resources and satisfactory results in terms of the control response dynamics. This type of controller is associated with the ability of human beings to react to external sensory stimuli and the consequent dilemma between the decision based on emotion or reason. However, the design and commissioning of this type of controller still represents a great challenge for researchers, since it is necessary to determine some characteristic signals to this system (stimuli), which can vary from application to application. Therefore, new mathematical and computational tools can offer the necessary resources to improve the performance of this controller segment. In this case, present work proposes the use of reinforcement learning-based algorithms, associated with recent advances in the area of deep learning of neural networks, aiming at the development of new architectures that allow this controller to achieve greater generalization in its application, as well as providing a viable alternative to traditional models in use. In addition, a methodology is proposed for the development, commissioning and end use of this new proposal for an emotional controller, highlighting the tools and resources needed for this task. Finally, from various results of experimental simulations, as well as real application, we seek to demonstrate the effectiveness of the proposal of the union of the emotional controller and the resources derived from the theory of learning by deep reinforcement. | pt_BR |
dc.contributor.advisor-coLattes | http://lattes.cnpq.br/8515798754882166 | pt_BR |
Aparece en las colecciones: | Teses de Doutorado - Engenharia Elétrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TESE Jeydson Lopes da Silva.pdf | 3,99 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons