Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/39222
Comparte esta pagina
Título : | Usando convolução separável em profundidade na otimização da arquitetura SqueezeNet |
Autor : | SOUZA, Camila Oliveira de |
Palabras clave : | Inteligência computacional; Aprendizagem de máquina |
Fecha de publicación : | 14-feb-2020 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | SOUZA, Camila Oliveira de. Usando convolução separável em profundidade na otimização da arquitetura SqueezeNet. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020. |
Resumen : | Grandes avanços vêm sendo realizados em modelos baseados em Redes Neurais Convolucionais. Considerando problemas de processamento de imagens, esses modelos já possuem desempenho que em alguns casos superam o humano. Apesar dos excelentes resultados neste aspecto, modelos com taxas de acurácia extremamente altas são, em geral, muito grandes, chegando a possuir centenas de milhões de parâmetros, o que os torna inviáveis para diversas aplicações do mundo real, onde o poder computacional disponível normalmente é bastante limitado. Neste contexto, investigamos a possível redução do número de parâmetros da rede SqueezeNet, a qual se propõe a ser uma arquitetura com tamanho reduzido e boa taxa de acerto, a partir da substituição de suas convoluções tradicionais por Convoluções Separáveis em Profundidade (DSC), assim como o impacto desta substituição em outras métricas de análise do modelo. As métricas analisadas são a acurácia, o número de parâmetros, o tamanho de armazenamento e o tempo de inferência de um único exemplo de teste. A rede resultante, denominada SqueezeNet-DSC é então aplicada ao problema de classificação de imagens, e sua performance comparada com outras redes que são referência na área, como a MobileNet, a AlexNet e a VGG19. A SqueezeNet-DSC apresentou uma redução considerável no espaço de armazenamento, chegando a 37% do espaço de armazenamento da SqueezeNet original, com uma perda de acurácia de 1,07% na base CIFAR-10 e de 3,06% na base de dados CIFAR-100. |
URI : | https://repositorio.ufpe.br/handle/123456789/39222 |
Aparece en las colecciones: | Dissertações de Mestrado - Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Camila Oliveira de Souza.pdf | 2,4 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons