Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/37699

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCRUZ, Felipe Wergete-
dc.contributor.authorNOVAIS, Michele Mendes-
dc.date.accessioned2020-08-20T18:53:23Z-
dc.date.available2020-08-20T18:53:23Z-
dc.date.issued2020-02-07-
dc.identifier.citationNOVAIS, Michele Mendes. Fluidos magneto-micropolares: existência global de solução forte e decaimento na norma L² para soluções fracas. 2020. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2020.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/37699-
dc.description.abstractEstudamos o problema de Cauchy para o sistema de equações que modelam o movimento de um fluido magneto-micropolar incompressível 3D. Tais equações representam uma generalização do clássico modelo de Navier-Stokes e descrevem o comportamento de fluidos commicropartículas levando-se em consideração a presença de um campo magnético. Elas descrevem fenômenos vindo de vários fluidos, tais como sangue humano e de animais, suspensões poleméricas, cristais líquidos, librificantes, ferrofluidos, entre outros. Neste trabalho, em um primeiro momento, através de estimativas de energia, obtivemos a existência e unicidade de uma solução forte local do problema em questão. Em seguida, impondo uma condição de pequenez sobre os dados iniciais, mostramos que a solução forte existe globalmente. Em um segundo momento, obtivemos, via o método de decomposição de Fourier (Fourier splitting method), taxas de decaimento temporal para as soluções fracas deste sistema. Por fim, através de um argumento mais direto (método da representação integral ou princípio de Duhamel), melhoramos a taxa de decaimento para a velocidade micro-rotacional.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAnálise matemáticapt_BR
dc.subjectEquações diferencias parciaispt_BR
dc.titleFluidos magneto-micropolares : existência global de solução forte e decaimento na norma L² para soluções fracaspt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/1649828499306546pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/8921970020058025pt_BR
dc.publisher.programPrograma de Pos Graduacao em Matematicapt_BR
dc.description.abstractxWe study the Cauchy problem for the system of equations that model the motion of a 3D incompressible magneto-micropolar fluid. Such equations represent a generalization of the classic Navier-Stokes model and describe the behavior of fluids with microparticles taking into account the presence of a magnetic field. They describe phenomena coming from various fluids, such as human and animal blood, polymeric suspensions, liquid crystals, lubricants, ferrofluids, among others. In this work, initially, using energy estimates, we obtained the existence and uniqueness of a local strong solution of the problem in question. Next, by imposing a smallness condition on the initial data, we prove that the strong solution exists globally. In a second moment, using the Fourier splitting method, we obtained temporal decay rates for weak solutions of this system. Finally, using a more direct argument (integral representation method or Duhamel’s principle), we improved the decay rate to the micro-rotational velocity.pt_BR
Aparece nas coleções:Teses de Doutorado - Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Michele Mendes Novais.pdf1,52 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons