Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/35854

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorCUNHA, Daniel Carvalho da-
dc.contributor.authorHARADA, Lucas Minoru Ferreira-
dc.date.accessioned2019-12-18T17:01:39Z-
dc.date.available2019-12-18T17:01:39Z-
dc.date.issued2017-02-17-
dc.identifier.citationHARADA, Lucas Minoru Ferreira Proposta de um Mecanismo Dinâmico de Seleção de Interface de Rede de Dispositivos Móveis Utilizando Aprendizagem de Máquina. 2017. Dissertação (Mestrado em Ciência da computação) – Universidade Federal de Pernambuco, Recife, 2017.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/35854-
dc.description.abstractNas últimas décadas, as comunicações móveis evoluíram de um patamar de tecnologia cara utilizada por alguns poucos indivíduos para a condição de sistemas ubíquos usados pela maioria da população mundial. Diante desse cenário, as tecnologias presentes nos dispositivos móveis (hardware, software, comunicações e bateria) precisam evoluir para suprir as novas funcionalidades (altas taxas de dados e conectividade ininterrupta, por exemplo) que cada vez mais demandam um maior consumo de energia e, consequentemente, implicam na diminuição da autonomia dos smartphones. Sabendo que a tecnologia de transmissão sem fio contribui significativamente para o aumento do consumo de energia dos dispositivos móveis e considerando o crescimento exorbitante de tráfego de dados dos últimos anos, esforços têm sido realizados para se buscar soluções que estendam a autonomia das baterias. Um exemplo é a integração de diferentes tipos de redes sem fio (3G e Wi-Fi, por exemplo) que permitam ao dispositivo móvel selecionar a interface de rede com base em algum critério de otimização, como, por exemplo, a minimização do custo energético por cada byte transferido. Atualmente, em smartphones Android, sempre que redes Wi-Fi estão disponíveis, a interface de rede Wi-Fi do dispositivo móvel é naturalmente escolhida, muito provavelmente por questões financeiras. No entanto, tal escolha não garante que o consumo de energia associado será otimizado. Face ao exposto, o objetivo deste trabalho é a proposição de um mecanismo dinâmico de seleção de interface de rede focado em minimizar o consumo de energia do dispositivo móvel, permitindo um aumento da autonomia da bateria. Para isso, diversas técnicas de Aprendizagem de Máquina são empregadas no intuito de prever o custo energético por byte transferido de cada tipo de interface de rede disponível. Por fim, uma comparação dos custos energéticos (para cada interface de rede) obtidos por cada técnica de Aprendizagem de Máquina é realizada para indicar qual a melhor alternativa dentre as técnicas selecionadas. Dessa forma, é possível comparar as estimativas dos custos energéticos de cada interface e escolher aquela que diminui o consumo.pt_BR
dc.description.sponsorshipCNPqpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectComunicações Móveispt_BR
dc.subjectDispositivos Móveispt_BR
dc.subjectConsumo de Energiapt_BR
dc.subjectSeleção Dinâmica de Interface de Redept_BR
dc.titleProposta de um mecanismo dinâmico de seleção de interface de rede de dispositivos móveis utilizando aprendizagem de máquinapt_BR
dc.typemasterThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/9273531455465801pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/8971986984647323pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxOn the last decades, mobile communications rose from a costly technology which few people could use to a ubiquitous systems used by most of people. On this, the technologies found on mobile devices (such as hardware, software, communications and battery) need to evolve to supply the new features (high data rate and continuous connectivity, for example) that demands a higher energy consumption and, consequently, imply on reduction of the smartphone's battery duration. Knowing that the wireless communication contribute fairly to the energy consumption of mobile devices and considering the huge increase of network traffic on the last years, efforts have been made to find solutions to extend battery duration. One example is the integration between different wireless networks types (e.g. 3G and Wi-Fi) that allows the device to select which network interface should be used based on some optimization criteria, like the minimization of the energy cost for each transferred byte. Currently, on Android smartphones, the Wi-Fi network is chosen every time it is available, probably because of monetary issue. However, this choice doesn't guarantee that the energy consumption will be minimized. Against the above, the objective of this dissertation is the proposition of a network interface dynamic selection mechanism focused on minimizing the mobile device's energy consumption, increasing the battery duration. To that, several Machine Learning techniques are applied to predict the energy cost for each transferred byte of each available network interface. Lastly, a comparison between all predicted energy costs (of each network interface) is performed to define which technique delivers the best performance. That way, it is possible to compare the energy cost estimates for each network interface and select the one that decreases the energy consumption.pt_BR
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Lucas Monoru Ferreira Harada.pdf2,6 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons