Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/31898

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCUEVAS, Claudio-
dc.contributor.authorBERNARDO, Felix Ferreira-
dc.date.accessioned2019-08-16T20:34:22Z-
dc.date.available2019-08-16T20:34:22Z-
dc.date.issued2018-08-15-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/31898-
dc.description.abstractNesta tese investigamos a limitação ℓᵖ, o comportamento assintótico, a estrutura topológica (fecho e compacidade) do conjunto solução, a ergodicidade e a periodicidade assintótica das soluções de equações funcionais em diferenças de Volterra com núcleo de convolução definidas num espaço de fase axiomático do tipo Hale-Kato-Murakami. Obtivemos diversos resultados de regularidade, alguns novos e outros complementares de trabalhos anteriores desenvolvidos pelo grupo de Equações de Evolução da UFPE. Introduzimos novas classes de periodicidade e ergodicidade, as classes m e a classe 1, e estudamos as condições para obter resultados de regularidade maximal nestas novas classes. Os resultados teóricos são complementados com um conjunto de exemplos e aplicações. Como abstração do nosso método, usando um operador linear em vez do parâmetro original, modelamos, com uma equação integro-em diferenças, a propagação da bactéria Wolbachia em populações da Drosophila simulans. Para desenvolvimento de futuras aplicações estudamos modelos abstratos de dinâmica populacional. Apresentamos diversas vias para novas investigações na conclusão da tese.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAnálise matemáticapt_BR
dc.subjectEquações diferenciaispt_BR
dc.titleTeoria qualitativa de equações em diferenças de tipo Volterrapt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/4788115447473719pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/1543451677863790pt_BR
dc.publisher.programPrograma de Pos Graduacao em Matematicapt_BR
dc.description.abstractxIn this thesis we investigated the ℓᵖ boundedness, the asymptotic behavior, the topological structure (closure and compactness) of the solution set, the ergodicity and the asymptotic periodicity of the solutions of Volterra functional difference equations with convolution kernel, defined in an axiomatic phase space of Hale-Kato-Murakami type. We obtained several results of regularity, some new and others complementary of previous works developed by the UFPE Evolution Equations Group. We introduced new classes of periodicity and ergodicity, classes m and class 1, and we studied the conditions to obtain results of maximal regularity in these new classes. The theoretical results have been complemented with a set of examples and applications. As an abstraction of our method, using a linear operator instead of the original parameter, we modeled, with an integrodifference equation, the propagation of the Wolbachia bacterium in Drosophila simulans populations. For the development of future applications we studied abstract models of population dynamics. Several pathways were presented for further investigations at the conclusion of the thesis.pt_BR
Aparece nas coleções:Teses de Doutorado - Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Felix Ferreira Bernardo.pdf1,05 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons