Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/2786

Share on

Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJosé Guerra Barreto de Queiroz, Ruy pt_BR
dc.contributor.authorVaz Alves, Gleiferpt_BR
dc.date.accessioned2014-06-12T16:01:12Z-
dc.date.available2014-06-12T16:01:12Z-
dc.date.issued2005pt_BR
dc.identifier.citationVaz Alves, Gleifer; José Guerra Barreto de Queiroz, Ruy. Normalização para os N-Grafos. 2005. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/2786-
dc.description.abstractOs principais métodos da teoria da prova geral são: eliminação-do-corte e normalização. Na teoria da prova há muitos trabalhos voltados ao teorema da eliminação-do-corte para o cálculo de seqüentes clássico. Por outro lado, encontram-se relativamente poucas investigações direcionadas à normalização para a dedução natural clássica. Essa distinção é acentuada quando se tem a normalização para a lógica clássica através de uma estrutura de prova com mais de uma conclusão. Mencionem-se dois autores que apresentam normalização para uma estrutura com mais de uma conclusão, e.g. Ungar e Cellucci. Todavia, nenhuma investigação apresenta um tratamento direcionado às questões inerentes da definição de um procedimento de normalização dentro de uma estrutura de prova com mais de uma conclusão, onde as derivações sejam, de fato, representadas como grafos-de-prova. Portanto, o objetivo central deste trabalho é a definição do procedimento de normalização para os N-Grafos. Os N-Grafos foram definidos por de Oliveira e compõem um sistema de provas simétrico para a dedução natural, onde as regras lógicas e estruturais são apresentadas em uma estrutura de prova com múltipla conclusão e as derivações são representadas como digrafos. Para a definição da normalização dos N-Grafos, foram construídos cinco conjuntos de reduções: lógicas, estruturais, com ciclos, com seqüências de repetição de links e com permutação do enfraquecimento. Essas reduções foram baseadas nos trabalhos de Prawitz, Ungar e Cellucci, bem como, inspiradas pela própria estrutura de grafos-de-prova dos N-Grafos. Ademais, foram definidos o teorema e a prova da normalização, sendo que a prova foi construída de forma direta, em contrapartida à prova indireta de Ungar. Posteriormente, foram estabelecidas as propriedades da terminação e da confluência (fraca) para a normalização dos N-Grafos. Através da construção da normalização para os N-Grafos é possível destacar algumas propostas de trabalhos futuros como, por exemplo, a relação entre provas formais, e processos concorrentes e a investigação da correspondência entre a normalização e a identidade de provaspt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectGrafos-de-provapt_BR
dc.subjectTeoria da Provapt_BR
dc.subjectNormalizaçãopt_BR
dc.titleNormalização para os N-Grafospt_BR
dc.typemasterThesispt_BR
Appears in Collections:Dissertações de Mestrado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
arquivo7176_1.pdf958.85 kBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons