Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/27117
Compartilhe esta página
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | LEANDRO, Eduardo Shirlippe Góes | - |
dc.contributor.author | CABRAL, Thiago Fiel da Costa | - |
dc.date.accessioned | 2018-09-28T20:41:34Z | - |
dc.date.available | 2018-09-28T20:41:34Z | - |
dc.date.issued | 2016-07-28 | - |
dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/27117 | - |
dc.description.abstract | Sejam R = k[x₁, ..., xd] ou R = k[[x₁, ..., xd]] um anel de polinômios ou um anel de séries de potências formais em um número finito de variáveis sobre um corpo k de característica positiva p > 0 e Dʀ|ₖ o anel de operadores diferenciais k-lineares de R. Nesta dissertação será provado que, se f é um elemento não-nulo de R, então Rf , o anel de frações obtido de R por inverter f, é gerado como um Dʀ|ₖ-módulo por ⅟f. Esse resultado é impressionante, considerando que em característica zero é falso. Será provado também um resultado análogo para uma vasta classe de anéis R e Dʀ|ₖ-módulos, com o auxílio da teoria de R[F]-módulos unitários e da Descida de Frobenius. E por último, mostraremos que os módulos de cohomologia local de um R-módulo finitamente gerado tem comprimento finito na categoria de Dʀ|ₖ-módulos, para essa vasta classe de anéis R, utilizando complexos de Čech, uma ferramenta bastante útil em álgebra homológica. | pt_BR |
dc.description.sponsorship | CNPq | pt_BR |
dc.language.iso | por | pt_BR |
dc.publisher | Universidade Federal de Pernambuco | pt_BR |
dc.rights | openAccess | pt_BR |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.subject | Matemática | pt_BR |
dc.subject | Operador diferencial | pt_BR |
dc.title | Geradores de D-módulos em característica positiva | pt_BR |
dc.type | masterThesis | pt_BR |
dc.contributor.advisor-co | CARO MONTOYA, Jorge Nicolás | - |
dc.contributor.authorLattes | http://lattes.cnpq.br/6928955373251872 | pt_BR |
dc.publisher.initials | UFPE | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.degree.level | mestrado | pt_BR |
dc.contributor.advisorLattes | http://lattes.cnpq.br/0559184209749319 | pt_BR |
dc.publisher.program | Programa de Pos Graduacao em Matematica | pt_BR |
dc.description.abstractx | Let R = k[x₁, ..., xd] or R = k[[x₁, ..., xd]] be either a polynomial or formal power series ring in a finite number of variables over a field k of positive characteristic p > 0 and let Dʀ|ₖ be the ring of k-linear differential operators of R. In this dissertation will be proved that if f is a non-zero element of R then Rf , the ring of fractions obtained from R by inverting f , is generated as a Dʀ|ₖ-module by ⅟f. This is an amazing fact considering that the corresponding characteristic zero statement is false. Will be proved an analog of this result for a considerably widerclas sofrings R and a considerably wider class of Dʀ|ₖ-modules, with the support of the unit R[F]-modules theory and of the Frobenius Descent. Finally, we will show that the local cohomology modules of a R-module finitely generated have finite length in the category of Dʀ|ₖ-modules, for this considerably wider class of rings, using Čech complexes, A very useful tool in homological algebra. | pt_BR |
Aparece nas coleções: | Dissertações de Mestrado - Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Thiago Fiel da Costa Cabral.pdf | 758,63 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons