Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/27117

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorLEANDRO, Eduardo Shirlippe Góes-
dc.contributor.authorCABRAL, Thiago Fiel da Costa-
dc.date.accessioned2018-09-28T20:41:34Z-
dc.date.available2018-09-28T20:41:34Z-
dc.date.issued2016-07-28-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/27117-
dc.description.abstractSejam R = k[x₁, ..., xd] ou R = k[[x₁, ..., xd]] um anel de polinômios ou um anel de séries de potências formais em um número finito de variáveis sobre um corpo k de característica positiva p > 0 e Dʀ|ₖ o anel de operadores diferenciais k-lineares de R. Nesta dissertação será provado que, se f é um elemento não-nulo de R, então Rf , o anel de frações obtido de R por inverter f, é gerado como um Dʀ|ₖ-módulo por ⅟f. Esse resultado é impressionante, considerando que em característica zero é falso. Será provado também um resultado análogo para uma vasta classe de anéis R e Dʀ|ₖ-módulos, com o auxílio da teoria de R[F]-módulos unitários e da Descida de Frobenius. E por último, mostraremos que os módulos de cohomologia local de um R-módulo finitamente gerado tem comprimento finito na categoria de Dʀ|ₖ-módulos, para essa vasta classe de anéis R, utilizando complexos de Čech, uma ferramenta bastante útil em álgebra homológica.pt_BR
dc.description.sponsorshipCNPqpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectMatemáticapt_BR
dc.subjectOperador diferencialpt_BR
dc.titleGeradores de D-módulos em característica positivapt_BR
dc.typemasterThesispt_BR
dc.contributor.advisor-coCARO MONTOYA, Jorge Nicolás-
dc.contributor.authorLatteshttp://lattes.cnpq.br/6928955373251872pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/0559184209749319pt_BR
dc.publisher.programPrograma de Pos Graduacao em Matematicapt_BR
dc.description.abstractxLet R = k[x₁, ..., xd] or R = k[[x₁, ..., xd]] be either a polynomial or formal power series ring in a finite number of variables over a field k of positive characteristic p > 0 and let Dʀ|ₖ be the ring of k-linear differential operators of R. In this dissertation will be proved that if f is a non-zero element of R then Rf , the ring of fractions obtained from R by inverting f , is generated as a Dʀ|ₖ-module by ⅟f. This is an amazing fact considering that the corresponding characteristic zero statement is false. Will be proved an analog of this result for a considerably widerclas sofrings R and a considerably wider class of Dʀ|ₖ-modules, with the support of the unit R[F]-modules theory and of the Frobenius Descent. Finally, we will show that the local cohomology modules of a R-module finitely generated have finite length in the category of Dʀ|ₖ-modules, for this considerably wider class of rings, using Čech complexes, A very useful tool in homological algebra.pt_BR
Aparece nas coleções:Dissertações de Mestrado - Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Thiago Fiel da Costa Cabral.pdf758,63 kBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons