Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/2538

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorde Assis Tenório Carvalho, Francisco pt_BR
dc.contributor.authorGesteira Costa Filho, Ivanpt_BR
dc.date.accessioned2014-06-12T15:59:06Z-
dc.date.available2014-06-12T15:59:06Z-
dc.date.issued2003pt_BR
dc.identifier.citationGesteira Costa Filho, Ivan; de Assis Tenório Carvalho, Francisco. Comparative analysis of clustering methods for gene expresion data. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2003.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/2538-
dc.description.abstractLarge scale approaches, namely proteomics and transcriptomics, will play the most important role of the so-called post-genomics. These approaches allow experiments to measure the expression of thousands of genes from a cell in distinct time points. The analysis of this data can allow the the understanding of gene function and gene regulatory networks (Eisen et al., 1998). There has been a great deal of work on the computational analysis of gene expression time series, in which distinct data sets of gene expression, clustering techniques and proximity indices are used. However, the focus of most of these works are on biological results. Cluster validation has been applied in few works, but emphasis was given on the evaluation of the proposed validation methodologies (Azuaje, 2002; Lubovac et al., 2001; Yeung et al., 2001; Zhu & Zhang, 2000). As a result, there are few guidelines obtained by validity studies on which clustering methods or proximity indices are more suitable for the analysis of data from gene expression time series. Thus, this work performs a data driven comparative study of clustering methods and proximity indices used in the analysis of gene expression time series (or time courses). Five clustering methods encountered in the literature of gene expression analysis are compared: agglomerative hierarchical clustering, CLICK, dynamical clustering, k-means and self-organizing maps. In terms of proximity indices, versions of three indices are analysed: Euclidean distance, angular separation and Pearson correlation. In order to evaluate the methods, a k-fold cross-validation procedure adapted to unsupervised methods is applied. The accuracy of the results is assessed by the comparison of the partitions obtained in these experiments with gene annotation, such as protein function and series classificationpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectValidação de agrupamentospt_BR
dc.subjectGene expressionpt_BR
dc.subjectValidation groupspt_BR
dc.subjectExpressão gênicapt_BR
dc.titleComparative analysis of clustering methods for gene expresion datapt_BR
dc.typemasterThesispt_BR
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivo4839_1.pdf1,35 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons