Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/25077

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorSOUZA, Renata Maria Cardoso Rodrigues de-
dc.contributor.authorBARREIROS, Daniel Bion-
dc.date.accessioned2018-07-17T22:23:26Z-
dc.date.available2018-07-17T22:23:26Z-
dc.date.issued2016-08-24-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/25077-
dc.description.abstractA Análise de Dados Simbólicos (ADS) é uma abordagem da área de inteligência computacional que visa desenvolver métodos para dados descritos por variáveis onde existem conjuntos de categorias, intervalos ou distribuições de probabilidade. O objetivo deste trabalho é estender um método probabilístico de agrupamento clássicos para dados simbólicos intervalares fazendo uso de funções de núcleo. A aplicação de funções de núcleo tem sido utilizada com sucesso no agrupamento para dados clássicos apresentando resultados positivos quando o conjunto de dados apresenta grupos não linearmente separáveis. No entanto, a literatura de ADS precisa de métodos probabilísticos para identificar grupos não linearmente separáveis. Para mostrar a eficácia do método proposto, foram realizados experimentos com conjuntos de dados intervalares reais, e conjuntos sintéticos fazendo uso de simulações Monte Carlo. Também se apresenta um estudo comparando o método proposto com diferentes algoritmos de agrupamento da literatura através de estatísticas que evidenciam o desempenho superior do método proposto em determinados casos.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectInteligência computacionalpt_BR
dc.subjectAnálise de dados simbólicospt_BR
dc.titleAgrupamento de dados intervalares usando uma abordagem não linearpt_BR
dc.typemasterThesispt_BR
dc.contributor.advisor-coDOMINGUES, Marco Antonio de Oliveira-
dc.contributor.authorLatteshttp://lattes.cnpq.br/8430763946507684pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/9289080285504453pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxSymbolic Data Analysis (SDA) is a domain in the computational intelligence area that aims to provide suitable methods for data described through multi-valued variables, where there are sets of categories, intervals, histograms, or weight (probability) distributions. This work aims to extend a probabilistic clustering method of classic data to symbolic interval data making use of kernel functions. The kernel functions application have been successfully used in classic data clustering showing positive results when the data set has non linearly separable groups. However, SDA literature needs more probabilistic methods to identify non linearly separable groups. To show the effectiveness of the proposed method, experiments were performed with real interval data sets, and synthetic interval data sets using Monte Carlo simulations. It is also presented a study comparing the proposed method with different clustering algorithms of the literature through statistics that demonstrate the superior performance of the proposed method in certain cases.pt_BR
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Daniel Bion Barreiros.pdf527,13 kBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons