Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/2436

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorCavalcanti, George Darmiton da Cunhapt_BR
dc.contributor.authorOliveira e Cruz, Rafael Menelaupt_BR
dc.date.accessioned2014-06-12T15:58:13Z
dc.date.available2014-06-12T15:58:13Z
dc.date.issued2011-01-31pt_BR
dc.identifier.citationMenelau Oliveira e Cruz, Rafael; Darmiton da Cunha Cavalcanti, George. Methods for dynamic selection and fusion of ensemble of classifiers. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/2436
dc.description.abstractEnsemble of Classifiers (EoC) é uma nova alternative para alcançar altas taxas de reconhecimento em sistemas de reconhecimento de padrões. O uso de ensemble é motivado pelo fato de que classificadores diferentes conseguem reconhecer padrões diferentes, portanto, eles são complementares. Neste trabalho, as metodologias de EoC são exploradas com o intuito de melhorar a taxa de reconhecimento em diferentes problemas. Primeiramente o problema do reconhecimento de caracteres é abordado. Este trabalho propõe uma nova metodologia que utiliza múltiplas técnicas de extração de características, cada uma utilizando uma abordagem diferente (bordas, gradiente, projeções). Cada técnica é vista como um sub-problema possuindo seu próprio classificador. As saídas deste classificador são utilizadas como entrada para um novo classificador que é treinado para fazer a combinação (fusão) dos resultados. Experimentos realizados demonstram que a proposta apresentou o melhor resultado na literatura pra problemas tanto de reconhecimento de dígitos como para o reconhecimento de letras. A segunda parte da dissertação trata da seleção dinâmica de classificadores (DCS). Esta estratégia é motivada pelo fato que nem todo classificador pertencente ao ensemble é um especialista para todo padrão de teste. A seleção dinâmica tenta selecionar apenas os classificadores que possuem melhor desempenho em uma dada região próxima ao padrão de entrada para classificar o padrão de entrada. É feito um estudo sobre o comportamento das técnicas de DCS demonstrando que elas são limitadas pela qualidade da região em volta do padrão de entrada. Baseada nesta análise, duas técnicas para seleção dinâmica de classificadores são propostas. A primeira utiliza filtros para redução de ruídos próximos do padrão de testes. A segunda é uma nova proposta que visa extrair diferentes tipos de informação, a partir do comportamento dos classificadores, e utiliza estas informações para decidir se um classificador deve ser selecionado ou não. Experimentos conduzidos em diversos problemas de reconhecimento de padrões demonstram que as técnicas propostas apresentam um aumento de performance significantept_BR
dc.description.sponsorshipFaculdade de Amparo à Ciência e Tecnologia do Estado de Pernambucopt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectHandwritten Recognitionpt_BR
dc.subjectFeature Extractionpt_BR
dc.subjectEnsemble of Classifierpt_BR
dc.subjectDynamic Ensemble Selectionpt_BR
dc.subjectRegions of Competencept_BR
dc.subjectNeural Networkspt_BR
dc.titleMethods for dynamic selection and fusion of ensemble of classifierspt_BR
dc.typemasterThesispt_BR
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
arquivo3310_1.pdf7,96 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons