Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/18659

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorARAÚJO, Cid Bartolomeu de-
dc.contributor.authorALMEIDA, Euclides Cesar Lins-
dc.date.accessioned2017-04-27T13:00:02Z-
dc.date.available2017-04-27T13:00:02Z-
dc.date.issued2012-07-30-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/18659-
dc.description.abstractO principal objetivo deste trabalho foi investigar fenômenos ópticos ultrarrápidos em sistemas nanoestruturados empregando diferentes técnicas espectroscópicas não lineares, tanto no domínio do tempo quanto no domínio da frequência. Para fornecer uma base adequada que permita entender os experimentos feitos nessa tese, os princípios físicos das espectroscopias ópticas não lineares são apresentados. Inicialmente é apresentada uma descrição da função resposta não linear no domínio do tempo. A evolução temporal da polarização óptica, que gera o sinal espectroscópico, é descrita em detalhes usando uma teoria de perturbação diagramática. Técnicas ópticas não lineares são apresentadas, tais como eco de fótons, bombeamento-e-sonda e hole burning, assim como o comportamento dinâmico de um material pode ser interpretado a partir do sinal gerado. A técnica de mistura degenerada de quatro ondas com luz incoerente foi usada para investigar, pela primeira vez, o defasamento ultrarrápido de éxcitons em uma vitrocerâmica contendo nanocristais de niobato de sódio. O tempo de defasamento medido (T2 = 20 fs) indica qu empregada para investigar processos de transferência de carga em colóides com nanopartículas de TiO2 e rodamina 6G. O comportamento do sinal de depleção transiente é comparado com o observado para a rodamina livre suspensa em etanol. A análise dos resultados permitiu atribuir o comportamento de depleção à transferência de carga de estados excitados termalizados das moléculas de corante para a banda de condução do semicondutor e a transferência no sentido inverso do semicondutor para as moléculas.pt_BR
dc.description.sponsorshipCNPQpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectFenômenos ultrarrápidospt_BR
dc.subjectEspectroscopias ópticas não linearespt_BR
dc.subjectNanoestruturaspt_BR
dc.subjectÉxcitonspt_BR
dc.subjectEstados de armadilhapt_BR
dc.subjectPlásmons de superfície localizadospt_BR
dc.subjectTransferência de cargapt_BR
dc.subjectUltrafast phenomenapt_BR
dc.subjectnonlinear optical spectroscopiespt_BR
dc.subjectnanostructurespt_BR
dc.subjectexcitonspt_BR
dc.subjecttrap statespt_BR
dc.subjectlocalized surface plasmonspt_BR
dc.subjectcharge transferpt_BR
dc.titleUltrafast dynamics of nanoscale systems: NaNbO3 nanocrystals, colloidal silver nanoparticles and dye functionalized TiO2 nanoparticlespt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/6175506847446605pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/7109489698613515pt_BR
dc.publisher.programPrograma de Pos Graduacao em Fisicapt_BR
dc.description.abstractxThe main objective of this work was the investigation of ultrafast optical phenomena in selected nanostructured systems employing different nonlinear spectroscopic techniques, either in the time or the frequency domain. To provide an appropriate background to understand the performed experiments the principles of nonlinear optical spectroscopies are presented. Initially a description of the nonlinear optical response function in the time domain is given. The time evolution of the optical polarization, that gives rise to the spectroscopic signal, is described in detail using a diagrammatic perturbation theory. Nonlinear optical techniques are discussed such as photon echoes, pump-and-probe and hole-burning, as well as how the dynamical behavior of a material can be interpreted from the generated signals. The degenerate four-wave mixing technique with incoherent light was used to investigate for the first time the ultrafast dephasing of excitons in a glass-ceramic containing sodium niobate nanocrystals. The short dephasing time measured (T2 = 20 fs) indicates that different dephasing channels contribute for the excitonic dephasing, namely: electron-electron scattering, electron-phonon coupling and fast trapping of electrons in defects on the nanocrystals interface. Low-temperature luminescence experiments were also performed to measure excitonic and trap states lifetimes. The persistent spectral holeburning technique was applied to measure localized surface plasmons dephasing times in colloidal silver nanoparticles capped with different stabilizing molecules. The dependence of T2 with three different stabilizers was demonstrated and theoretically analyzed. The results show that the dephasing times are shorter than the theoretically calculated T2 using the bulk dielectric functions of the metal. This discrepancy is attributed to changes in the electronic density of states at the nanoparticles interface caused by the presence of the stabilizers. Ab-initio calculations based on the Density Functional Theory were performed to further understand the interaction between the nanoparticles and stabilizing agents. The femtosecond transient absorption technique was employed to study the ultrafast dynamics of in-gap states in a glassceramics containing sodium niobate nanocrystals. Two main temporal components were found for the excited state absorption signal: a fast component, with decay time of ≈ 1 ps, and a slower component which is attributed to deep trap states. This slower component is responsible for the excited state absorption contribution in optical limiting experiments previously reported in the literature. The dynamics of the optical limiting in this sample was also studied, in the millisecond range, exciting the sample with a train of femtosecond pulses. The optical limiting behavior reflects the dynamics of population in the excited and trap states and this dynamics was modeled using rate equations for the electronic states’ populations. Finally, the pump-andprobe transient absorption technique was employed to investigate charge-transfer processes in colloids with rhodamine 6G and TiO2 nanoparticles. The transient bleaching signal behavior is compared with the one observed for unlinked rhodamine 6G dissolved in ethanol. The analysis of the results allowed the attribution of the bleaching behavior to charge-transfer from thermalized excited states of the dye molecules to the semiconductor conduction band and to the back charge-transfer from the semiconductor to the molecules.pt_BR
Aparece nas coleções:Teses de Doutorado - Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese_Euclides_Almeida_Fisica.pdf5,77 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons