Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/1825

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMeira, Silvio Romero de Lemos
dc.contributor.authorOliveira, Adriano Lorena Inácio dept_BR
dc.date.accessioned2014-06-12T15:52:37Z
dc.date.available2014-06-12T15:52:37Z
dc.date.issued2011-01-31pt_BR
dc.identifier.citationLorena Inácio de Oliveira, Adriano; Romero de Lemos Meira, Silvio. Neural networks forecasting and classification-based techniques for novelty detection in time series. 2011. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/1825
dc.description.abstractO problema da detecção de novidades pode ser definido como a identificação de dados novos ou desconhecidos aos quais um sistema de aprendizagem de máquina não teve acesso durante o treinamento. Os algoritmos para detecção de novidades são projetados para classificar um dado padrão de entrada como normal ou novidade. Esses algoritmos são usados em diversas areas, como visão computacional, detecçãao de falhas em máquinas, segurança de redes de computadores e detecção de fraudes. Um grande número de sistemas pode ter seu comportamento modelado por séries temporais. Recentemente o pro oblema de detecção de novidades em séries temporais tem recebido considerável atenção. Várias técnicas foram propostas, incluindo téecnicas baseadas em previsão de séries temporais com redes neurais artificiais e em classificação de janelas das s´eries temporais. As t´ecnicas de detec¸c ao de novidades em s´eries temporais atrav´es de previs ao t em sido criticadas devido a seu desempenho considerado insatisfat´orio. Em muitos problemas pr´aticos, a quantidade de dados dispon´ıveis nas s´eries ´e bastante pequena tornando a previs ao um problema ainda mais complexo. Este ´e o caso de alguns problemas importantes de auditoria, como auditoria cont´abil e auditoria de folhas de pagamento. Como alternativa aos m´etodos baseados em previs ao, alguns m´etodos baseados em classificação foram recentemente propostos para detecção de novidades em séries temporais, incluindo m´etodos baseados em sistemas imunol´ogicos artificiais, wavelets e m´aquinas de vetor de suporte com uma ´unica classe. Esta tese prop oe um conjunto de m´etodos baseados em redes neurais artificiais para detecção de novidades em séries temporais. Os métodos propostos foram projetados especificamente para detec¸c ao de fraudes decorrentes de desvios relativamente pequenos, que s ao bastante importantes em aplica¸c oes de detec¸c ao de fraudes em sistemas financeiros. O primeiro m´etodo foi proposto para melhorar o desempenho de detec¸c ao de novidades baseada em previs ao. Este m´etodo ´e baseado em intervalos de confian¸ca robustos, que s ao usados para definir valores adequados para os limiares a serem usados para detec¸c ao de novidades. O m´etodo proposto foi aplicado a diversas s´eries temporais financeiras e obteve resultados bem melhores que m´etodos anteriores baseados em previs ao. Esta tese tamb´em prop oe dois diferentes m´etodos baseados em classifica¸c ao para detec ¸c ao de novidades em s´eries temporais. O primeiro m´etodo ´e baseado em amostras negativas, enquanto que o segundo m´etodo ´e baseado em redes neurais artificiais RBFDDA e n ao usa amostras negativas na fase de treinamento. Resultados de simula¸c ao usando diversas s´eries temporais extra´ıdas de aplica¸c oes reais mostraram que o segundo m´etodo obt´em melhor desempenho que o primeiro. Al´em disso, o desempenho do segundo m´etodo n ao depende do tamanho do conjunto de teste, ao contr´ario do que acontece com o primeiro m´etodo. Al´em dos m´etodos para detec¸c ao de novidades em s´eries temporais, esta tese prop oe e investiga quatro diferentes m´etodos para melhorar o desempenho de redes neurais RBF-DDA. Os m´etodos propostos foram avaliados usando seis conjuntos de dados do reposit´orio UCI e os resultados mostraram que eles melhoram consideravelmente o desempenho de redes RBF-DDA e tamb´em que eles obt em melhor desempenho que redes MLP e que o m´etodo AdaBoost. Al´em disso, mostramos que os m´etodos propostos obt em resultados similares a k-NN. Os m´etodos propostos para melhorar RBF-DDA foram tamb´em usados em conjunto com o m´etodo proposto nesta tese para detec¸c ao de novidades em s´eries temporais baseado em amostras negativas. Os resultados de diversos experimentos mostraram que esses m´etodos tamb´em melhoram bastante o desempenho da detec¸c ao de fraudes em s´eries temporais, que ´e o foco principal desta tese.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectDetecção de fraudpt_BR
dc.subjectDetecção de novidades em séries temporaispt_BR
dc.titleNeural networks forecasting and classification-based techniques for novelty detection in time seriespt_BR
dc.typedoctoralThesispt_BR
Aparece en las colecciones: Teses de Doutorado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
arquivo4525_1.pdf1,62 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons