Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/17639

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorREN, Tsang Ing
dc.contributor.authorFLORÊNCIO, João Carlos Procópio
dc.date.accessioned2016-08-08T12:41:40Z
dc.date.available2016-08-08T12:41:40Z
dc.date.issued2016-02-29
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/17639
dc.description.abstractPrever o sucesso de um filme e, por consequência, seu sucesso nas bilheterias tem uma grande importância na indústria cinematográfica, desde a fase de pré-produção do filme, quando os investidores querem saber quais serão os filmes mais promissores, até nas semanas seguintes ao seu lançamento, quando se deseja prever as bilheterias das semanas restantes de exibição. Por conta disso, essa área tem sido alvo de muitos estudos que tem usado diferentes abordagens de predição, seja na seleção das características dos filmes como nas técnicas de aprendizagem, para atingir uma maior capacidade de prever o sucesso dos filmes. Neste trabalho de mestrado, foi feita uma investigação sobre o comportamento das principais características dos filmes (gênero, classificação etária, orçamento de produção, etc), com maior foco nos resultados das bilheterias e sua relação com as características dos filmes, de forma a obter uma visão mais clara de como as caracaterísticas dos filmes podem influenciar no seu sucesso, seja ele interpretado como lucro ou volume de bilheterias. Em seguida, em posse de uma base de filmes extraída do Box-Office Mojo e do IMDb, foi proposto um novo modelo de predição de box office utilizando os dados disponíveis dessa base, que é composta de: meta-dados dos filmes, palavras-chaves, e dados de bilheterias. Algumas dessas características são hibridizadas com o objetivo evidenciar as combinações de características mais importantes. É aplicado também um processo de seleção de características para excluir aquelas que não são relevantes ao modelo. O modelo utiliza Random Forest como máquina de aprendizagem. Os resultados obtidos com a técnica proposta sugerem, além de uma maior simplificação do modelo em relação a estudos anteriores, que o método consegue obter taxas de acerto superior 90% quando a classificação é medida com a métrica 1-away (quando a amostra é classificada com até 1 classe de distância), e consegue melhorar a qualidade da predição em relação a estudos anteriores quando testado com os dados da base disponível.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectPredição de bilheteriapt_BR
dc.subjectRecomendaçãopt_BR
dc.subjectBox-Officept_BR
dc.subjectFilmespt_BR
dc.subjectRandom Forestpt_BR
dc.subjectBox Office Predictionpt_BR
dc.subjectRecommendationpt_BR
dc.subjectBox-Officept_BR
dc.subjectMoviespt_BR
dc.subjectRandom Forestpt_BR
dc.titleAnálise e predição de bilheterias de filmespt_BR
dc.typemasterThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/2924309235638442pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/3084134533707587pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxPredicting the success of a movie and, consequently, its box office success, has a huge importance in the motion pictures industry. Its importance comes since from the pre-production period, when the investors want to know the most promising movies to invest, until the first few weeks after release, when exhibitors want to predict the box office of the remaining weeks of exhibition. As result, this area has been subject of many studies which have used different prediction approaches, in both feature selection and learning methods, to achieve better capacity to predict movies’ success. In this mastership work, a deep research about the movie’s main features (genre, MPAA, production budget, etc) has been done, with more focus on the results of box offices and its relation with the movie’s features in order to get a clearer view of the organization of information and how variables can influence the success of a film, whether this success be interpreted as profit or revenue volumes at the box office. Then, in possession of a movie database extracted from Box-Office Mojo and IMDb, it was proposed a new box office prediction model based on available data from the database composed of: movie meta-data, key-words and box office data. Some of these features are hybridized aiming to emphasize the most important features’ combinations. A features’ selection process is also applied to exclude irrelevant features. The obtained results with the proposed method suggests, besides a further simplification of the model compared to previous studies, that the method can get hit rate of more than 90% when classification is measured with the metric 1-away (when the sample is classified within 1 class of distance from the right class), and achieve a improvement in the prediction quality when compared to previous studies using the available database.pt_BR
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
dissertacao-mestrado-jcpf.pdf6,36 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons