Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/17330
Title: COMOVI: um framework para transformação de dados em aplicações de credit behavior scoring baseado no desenvolvimento dirigido por modelos
Authors: OlLIVEIRA NETO, Rosalvo Ferreira de
Keywords: Mineração de dados; Proposicionalização; Mineração de dados Relacional; Credit Behavior Scoring; Desenvolvimento Dirigido por Modelos; Data Mining.; Propositionalization; Relational Data Mining; Credit Behavior Scoring; Model-Driven Development
Issue Date: 11-Dec-2015
Publisher: Universidade Federal de Pernambuco
Abstract: A etapa de pré-processamento em um projeto de descoberta do conhecimento é custosa, em geral, consome cerca de 50 a 80% do tempo total de um projeto. É nesta etapa que um banco de dados relacional é transformado para aplicação de um algoritmo de mineração de dados. A transformação dos dados nesta etapa é uma tarefa complexa, uma vez que exige uma forte integração entre projetistas de banco de dados e especialistas do domínio da aplicação. Os frameworks que buscam sistematizar a etapa de transformação dos dados encontrados na literatura apresentam limitações significativas quando aplicados a soluções comportamentais, como Credit Behavior Scoring. Estas soluções visam a auxiliar as instituições financeiras a decidirem sobre a concessão de crédito aos consumidores com base no risco das solicitações. Este trabalho propõe um framework baseado no Desenvolvimento Dirigido por Modelos para sistematizar esta etapa em soluções de Credit Behavior Scoring. Ele é composto por um meta-modelo que mapeia os conceitos do domínio e um conjunto de regras de transformações. As três principais contribuições do framework proposto são: 1) aumentar o poder discriminatório da solução, através da construção de novas variáveis que maximizam o conteúdo estatístico da informação do domínio; 2) reduzir o tempo da transformação dos dados através da geração automática de código e 3) permitir que profissionais e pesquisadores de Inteligência Artificial e Estatística realizem a transformação dos dados sem o auxílio de especialistas de Banco de Dados. Para validar o framework proposto, dois estudos comparativos foram realizados. Primeiro, um estudo comparando o desempenho entre os principais frameworks existentes na literatura e o framework proposto foi realizado em duas bases de dados. Uma base de dados de um conhecido benchmark de uma competição internacional organizada pela PKDD, e outra obtida de uma das maiores empresas de varejo do Brasil, que possui seu próprio cartão de crédito. Os frameworks RelAggs e Validação de Múltiplas Visões Baseado em Correção foram escolhidos como representantes das abordagens proposicional e mineração de dados relacional, respectivamente. A comparação foi realizada através do processo de validação cruzada estratificada, para definir os intervalos de confiança para a avaliação de desempenho. Os resultados mostram que o framework proposto proporciona um desempenho equivalente ou superior aos principais framework existentes, medido pela área sob a curva ROC, utilizando uma rede neural MultiLayer Perceptron, K vizinho mais próximos e Random Forest como classificadores, com um nível de confiança de 95%. O segundo estudo verificou a redução de tempo proporcionada pelo framework durante a transformação dos dados. Para isso, sete times compostos por estudantes de uma universidade brasileira mensuraram o tempo desta atividade com e sem o framework proposto. O teste pareado Wilcoxon Signed-Rank mostrou que o framework proposto reduz o tempo de transformação com um nível de confiança de 95%.
URI: https://repositorio.ufpe.br/handle/123456789/17330
Appears in Collections:Teses de Doutorado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
Tese_Rosalvo_Neto_CIN_2015.pdf7.49 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons