Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/15892

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorSANTOS, André Luís de Medeiros-
dc.contributor.authorVIANA, Daniel Leite-
dc.date.accessioned2016-03-11T14:13:00Z-
dc.date.available2016-03-11T14:13:00Z-
dc.date.issued2015-08-10-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/15892-
dc.description.abstractSistemas baseados em gestos vêm se tornando uma alternativa para o desenvolvimento de aplicações mais intuitivas para os usuários, pois permitem a esses usuários interagirem de forma mais natural. Tais sistemas, em geral, requerem dispositivos de captura junto com alguma técnica de reconhecimento para que os gestos requeridos na interação natural sejam reconhecidos. A ausência de abstrações apropriadas para representação dos gestos dificulta as especificações de novas interações naturais. A representação de um gesto, quase sempre, envolve Aprendizagem de Máquina ou um avançado algoritmo de reconhecimento baseado nos dados da posição tridimensional do corpo humano fornecidos por sensores de profundidade, tal como o Microsoft Kinect. Além disso, as aplicações desenvolvidas tornam-se dependentes das bibliotecas de desenvolvimento dos dispositivos. Dessa forma, se o dispositivo for substituído por outro mais moderno ou de fabricante diferente quase todo o algoritmo de reconhecimento precisa ser reescrito. O principal objetivo desta dissertação é a especificação e implementação da Linguagem para Especificação de Gestos (LEG), uma Domain-Specific Language (DSL) para a especificação e reconhecimento de gestos livres do corpo humano com suporte a diferentes dispositivos de profundidade. A LEG é uma linguagem declarativa, baseada na análise das interfaces gestuais para computador e no estudo das abstrações e representações do movimento humano, a fim de reduzir a complexidade no desenvolvimento de aplicações baseadas em gestos. A implementação da linguagem foi realizada em duas etapas. Primeiro, foi criado um framework (Kinect Gesture) com a lógica para rastrear e identificar gestos descritos na linguagem. Na segunda etapa, foi definida a gramática e o interpretador foi construído. A abordagem adotada foi de DSL externa, sendo sua sintaxe textual e particular. A fim de avaliar a implementação proposta, 15 (quinze) gestos foram especificados em LEG e reconhecidos. Tendo como referência os resultados obtidos, chegou-se a conclusão que a linguagem apresentada neste trabalho diminuiu consideravelmente a complexidade necessária para realizar a especificação e o reconhecimento dos gestos.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectInteração Humano-Computadorpt_BR
dc.subjectInteração Naturalpt_BR
dc.subjectKinectpt_BR
dc.subjectReconhecimento de Gestospt_BR
dc.subjectLinguagens Específicas de Domíniopt_BR
dc.subjectProgramação Declarativapt_BR
dc.subjectHuman-Computer Interactionpt_BR
dc.subjectNatural Interactionpt_BR
dc.subjectGesture Recognitionpt_BR
dc.subjectDomain-Specific Languagespt_BR
dc.subjectDeclarative Programmingpt_BR
dc.titleUma linguagem de domínio específico para descrição e reconhecimento de gestos usando sensores de profundidadept_BR
dc.typemasterThesispt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxSystems Based-gestures are becoming an alternative to the development of more intuitive applications for users, because enable users to interact more naturally. Generally these systems need of capture devices together with some technique for gesture recognition. The lack of appropriate abstractions for the representation of gestures difficult to specifications of new natural interactions. For specify gesture, it is almost always necessary to acquire advanced knowledge in gesture recognition area and skills on chosen device and it is for this reason that the development of gestures is restricted. Often developers are using Machine Learning as support to creating database. Another approach is to create a recognition algorithm based on data from the depth sensor Kinect. Furthermore, due to the nature of the software development kits (SDK) provided by the hardware vendors to build gesture-based applications, the developed applications often become tightly coupled with the SDK. The result is that significant portions of the application need to be rewritten to run it on another device. The main goal of this dissertation is to implement and evaluate GSL (Gesture Specific Language), a Domain-Specific Language for specification and identification of gestures with support to different depth sensors. GSL is a declarative programming language based on the analysis of gestural interfaces for computer and study of abstractions and representations of human movement, in order to reduce the complexity in application development based on gestures. The development was conducted in two phases: the first was implemented a framework (Kinect Gesture) with logic for tracking and identify gestures. In the second phase, we built an grammar and a compiler. We adopted a external DSL approach, with specific and textual syntax. In order to evaluate the proposed implementation, we used GSL for specification and recognition of fifteen gestures. The results obtained show that GSL reduced considerably the complexity on perform the specification and the recognition of gestures.pt_BR
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Dissertacao DANIEL LEITE VIANA.pdf4,2 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons