Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/15256

Share on

Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOSPINA, Patrícia Leone Espinheira-
dc.contributor.authorSILVA, Alisson de Oliveira-
dc.date.accessioned2016-02-19T18:18:56Z-
dc.date.available2016-02-19T18:18:56Z-
dc.date.issued2015-02-25-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/15256-
dc.description.abstractEm diversas situações práticas, sejam experimentais ou observacionais, há o interesse em investigar como um conjunto de variáveis se relaciona com percentagens, taxas ou razões. Dados restritos ao intervalo contínuo (0,1), em geral, exibem assimetria e possuem um padrão específico de heteroscedasticidade, tornando o modelo normal linear inadequado. Nesse sentido, uma classe de modelos de regressão beta foi proposta por Ferrari e Cribari–Neto (2004), em que a média da variável resposta está relacionada com um preditor linear, através de uma função de ligação, e o preditor linear envolve covariáveis e parâmetros desconhecidos. Uma alternativa competitiva à distribuição beta é o modelo simplex proposto por Barndorff–Nielsen e Jorgensen (1991). A distribuição simplex faz parte dos modelos de dispersão definidos por Jorgensen (1997) que estendem os modelos lineares generalizados. Nesta dissertação, propomos uma extensão do modelo de regressão simplex (Miyashiro, 2008), em que tanto a média da variável resposta quanto o parâmetro de precisão estão relacionados às covariáveis por meio de preditores não lineares. Apresentamos expressões em forma fechada para o vetor escore, matriz de informação de Fisher e sua inversa. Desenvolvemos técnicas de diagnósticos para o modelo de regressão simplex não linear baseadas no método de influência local (Cook, 1986), sob cinco esquemas de perturbação. Além disso, propomos um resíduo para o modelo através do processo iterativo escore de Fisher, e obtemos uma expressão matricial para a alavanca generalizada com base na definição geral apresentada por Wei et al. (1998). Aplicações a dados reais e dados simulados são apresentadas para ilustrar a teoria desenvolvida.pt_BR
dc.description.sponsorshipCMPQpt_BR
dc.language.isoporpt_BR
dc.publisherUNIVERSIDADE FEDERAL DE PERNAMBUCOpt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectEstatística aplicadapt_BR
dc.subjectAnálise de regressãopt_BR
dc.titleRegressão simplex não linear: inferência e diagnósticopt_BR
dc.typemasterThesispt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.publisher.programPrograma de Pos Graduacao em Estatisticapt_BR
dc.description.abstractxIn many practical situations, whether experimental or observational, there is interest in investigating how a set of variables relates to percentages, rates or fractions. Restricted data to continuous interval (0.1), in general, exhibit asymmetry and have a specific pattern of heteroscedasticity, making the normal linear model inappropriate. In this sense, a class of beta regression models was proposed by Ferrari and Cribari–Neto (2004), in which the mean response is related to a linear predictor through a link function, and the linear predictor includes regressors and regression parameters. A useful alternative to the beta distribution is the simplex model proposed by Barndorff–Nielsen and Jorgensen (1991). Simplex distribution is part of the dispersion models defined by Jorgensen (1997) that extend generalized linear models. In this paper, we propose an extension of the simplex regression model (Miyashiro, 2008), in which both the mean response as the precision are related to covariates via non-linear predictors. We provide closed-form expressions for the score function, for Fisher’s information matrix and its inverse. Some diagnostic measures are introduced. We propose a new residual obtained using Fisher’s scoring iterative scheme for the estimation of the parameters that index the regression non-linear predictor to the mean response and numerically evaluate its behaviour. We also derive the appropriate matrices for assessing local influence on the parameter estimates under diferent perturbation schemes and provide closed-form to generalized leverage matrix proposed by Wei, Hu and Fung (1998). Finally, applications using real and simulated data are presented and discussed.pt_BR
Appears in Collections:Dissertações de Mestrado - Estatística

Files in This Item:
File Description SizeFormat 
DISSERTAÇÃO Alisson de Oliveira Silva.pdf1.5 MBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons