Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/11840
Title: Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
Authors: Silva, Styve Stallone da
Keywords: Segmentação;Textura;Redes neurais;Resilient propagation;Modelos de misturas gaussianas
Issue Date: 28-Feb-2014
Publisher: Universidade Federal de Pernambuco
Abstract: A segmentação de imagens tem por objetivo separar os objetos de interesse de determinado estudo em uma imagem. A segmentação da imagem deve parar quando os objetos procurados tiverem sido isolados. Por exemplo, na segmentação de uma imagem de transito, onde se deseja identificar as placas dos carros, é necessário segmentar a imagem separando todos os carros do restante da imagem, e ainda separar as placas dos carros para realizar o processo de identificação de cada placa. O processo de segmentação de imagens tem grande importância na análise e descrição de imagens, pois essa divisão, realizada na imagem, é responsável pelo sucesso de outras técnicas como detecção de pessoas e reconhecimento de faces. Atualmente, métodos de segmentação do campo de jogo em vídeos de futebol têm sido bastante explorados. O interesse em analisar e classificar eventos em vídeos, além das dificuldades atreladas às variações de clima e iluminação que se refletem na segmentação de campo, tem gerado grande interesse em desenvolver métodos que consigam realizar a segmentação mesmo com os problemas anteriormente citados. A segmentação do campo é o passo fundamental para a análise de diversos tipos de eventos em um vídeo de jogo de futebol, que podem ser detectados e classificados automaticamente, como gols, faltas e escanteios. Muitos métodos de segmentação de campo têm utilizado apenas as características das cores do gramado, porém as tonalidades dessas cores variam, evidenciando fraquezes desses métodos. O trabalho apresentado propõe um método de segmentação baseado em combinação de misturas gaussianas e rede neural, utilizando características de cores e também características de texturas da imagem. O referido método é composto pelas etapas de extração de características, agrupamento dos dados, segmentação, classificação e pósprocessamento. Como métricas de comparação de resultados são utilizadas curvas receiver operating characteristic (ROC) e taxas de verdadeiros e falsos positivos. Os resultados do modelo proposto são comparados a modelos gaussianos únicos, algoritmo k-Nearest Neighbor (k-NN) e ao algoritmo Fuzzy C-means (FCM), apresentando resultado de 94,25% de acerto para testes com diversas variações climáticas e de iluminação. O resultado foi superior aos outros algoritmos analisados.
URI: https://repositorio.ufpe.br/handle/123456789/11840
Appears in Collections:Dissertações de Mestrado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
DISSERTAÇÃO Styve Stallone da Silva.pdfDissertação de mestrado3.65 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons