Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/11617
Título: Método Computacional Baseado em Técnicas Tradicionais e Propriedades Matemáticas para Segmentação de Imagens Pulmonares
Autor(es): França Filho, Cleunio Bezerra de
Palavras-chave: Pulmão; Segmentação Pulmonar; Tomografia Computadorizada
Data do documento: 21-Ago-2013
Editor: Universidade Federal de Pernambuco
Citação: FRANÇA FILHO, Cleunio Bezerra de. Método computacional baseado em técnicas tradicionais e propriedades matemáticas para segmentação de imagens pulmonares . Recife, 2013. 89 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.
Resumo: A segmentação de imagens é uma tarefa de fundamental importância para o desenvolvimento de soluções baseadas em diagnóstico assistido por computador, com diversas aplicações na análise de imagens médicas. Mais especificamente, estudos que envolvem o processamento de imagens de pulmão têm crescido rapidamente motivados pelo interesse na redução da elevada mortalidade provocada pelas doenças malignas deste órgão. Para aperfeiçoar o desempenho nestas aplicações é importante por um lado realizar medições e mapear adequadamente as caracterizações dos pulmões e de suas anomalias, além de desenvolver técnicas automáticas de processamento das imagens que consigam lidar com restrições de tempo e que eliminem o esforço de radiologistas na segmentação manual das imagens. Diversas abordagens são utilizadas para a segmentação pulmonar, cada uma com vantagens e também deficiências. Este trabalho, em particular, apresenta um algoritmo voltado para a segmentação automática de imagens do pulmão baseado na combinação de técnicas de processamento de imagens coletadas de Tomografia Computadorizada por raio-x com propriedades matemáticas extraídas das imagens de pulmão, as quais servem de base para a estrutura do algoritmo. O trabalho investiga duas técnicas típicas para segmentação de imagens e, a partir da observação do comportamento e desempenho apresentado, é desenvolvido um novo método para a segmentação pulmonar que procura minimizar as deficiências encontradas nos algoritmos investigados. Os experimentos realizados avaliam o desempenho do novo algoritmo, bem como os valores das propriedades matemáticas e dos parâmetros estruturais utilizados ao longo do desenvolvimento do algoritmo, e comparam os resultados dos métodos em relação à sensibilidade, especificidade, acurácia, precisão, f-escore, coeficiente Dice, tempo de processamento e área-perímetro-solidez da região pulmonar segmentada, com o padrão referencial segmentado por um especialista. Os métodos são testados com 1173 imagens reais coletadas de 22 pacientes de um grande hospital e os resultados demonstraram que a combinação de técnicas de processamento de imagens tradicionais com propriedades matemáticas apresenta um desempenho satisfatório para a segmentação pulmonar.
URI: https://repositorio.ufpe.br/handle/123456789/11617
Aparece na(s) coleção(ções):Dissertações de Mestrado - Ciência da Computação

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
Dissertaçao Cleunio de França Filho.pdf2,29 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons