e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
GRADUACAO EM ENGENHARIA DA COMPUTACAO

Gabriel Silva de Oliveira

Cache Adaptativa para o gRPC usando Teoria de Controle

Recife
2026

Gabriel Silva de Oliveira

Cache Adaptativa para o gRPC usando Teoria de Controle

Monografia apresentada na Graduacdo em Engenha-
ria da Computacdo do Centro de Informatica da Uni-
versidade Federal de Pernambuco, como requisito
parcial para a obtencdo do titulo de Bacharel em
Engenharia da Computacdo.

Orientador (a): Nelson Souto Rosa

Recife
2026

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geracdo automatica do SIB/UFPE

Oliveira, Gabriel Silvade.

Cache Adaptativa para o gRPC usando Teoriade Controle / Gabriel Silvade
Oliveira. - Recife, 2026.

38:il., tab.

Orientador(a): Nelson Souto Rosa
Trabalho de Concluséo de Curso (Graduacéo) - Universidade Federal de
Pernambuco, Centro de Informatica, Engenharia da Computacéo - Bacharelado,
2026.
10.
Inclui referéncias.

1. Memoria Cache. 2. Teoriade Controle. 3. Sistemas Adapatativos. 4.
gRPC. |. Rosa, Nelson Souto. (Orientagdo). 1. Titulo.

000 CDD (22.ed.)

GABRIEL SILVA DE OLIVEIRA

Cache Adaptativa para o gRPC usando Teoria de Controle

Trabalho de Conclusdo de Curso
apresentado ao Curso de Graduagao em
Engenharia da Computacao da
Universidade Federal de Pernambuco,
como requisito parcial para obtengao do
titulo de bacharel em Engenharia da
Computacéo.

Aprovado em: 26/01/2021

BANCA EXAMINADORA

Prof. Dr. Nelson Souto Rosa (Orientadora)

Universidade Federal de Pernambuco

Prof. Dr. Carlos Ferraz (Examinador Interno)

Universidade Federal de Pernambuco

AGRADECIMENTOS

Gostaria de agradecer primeiramente aos meus pais, Simone Rosa da Silva e Vanildo Souza
de Oliveira, por serem meus maiores incentivadores na minha vida, que sempre acreditaram
em mim e me ensinaram o valor da educacdo desde cedo, e como professores sempre foram
exemplo dentro de casa. Agradeco também ao meu irm3o Vinicius Silva de Oliveira que ao
longo dos anos também foi uma grande referéncia e incentivador no campo do estudo.

Gostaria de agradecer também aos meus colegas de turma que me acompanharam durante
a faculdade e partilham dessa conquista, em especial a Pedro Vitor e Rafinha por termos
passado por tantas matérias juntos.

Agradeco Também aos meus professores do centro de informéatica por todo conhecimento
adquirido e oportunidades abertas, e por termos um sistema de ensino superior publico gratuito

e de qualidade que transforma a vida de tantas pessoas.

RESUMO

Memoéria cache é essencial e amplamente utilizada com o intuito de melhorar o desempe-
nho de aplicacdes. Contudo, gerenciar tamanho da cache em ambientes que sofrem variacées
de carga ainda é um desafio. Apesar de existirem diversos algoritmos para melhorar a eficiéncia
da cache, a maioria destes algoritmos sao baseados em configuracGes estaticas ou heuristicas
que n3o conseguem se adaptar rapido o bastante a picos de trafego. Nesse contexto, solucdes
classicas podem levar a desperdicidio de recursos ou instabilidade do sistema por ndo consegui-
rem se ajustar a tempo. Este trabalho propGe uma cache adaptativa, para sistemas distribuidos
que utilizam o gRPC, baseada em Teoria de Controle. A solucdo proposta foi implementada
como um sistema de malha fechada que monitora o erro entre a taxa de acerto da cache e a
meta (setpoint) que se deseja atingir. O ajuste no tamanho da cache é baseado na amplitude
deste erro. Essa abordagem tem como objetivo assegurar a estabilidade do sistema, permitindo
que ele se mantenha eficiente mesmo em condicdes de carga variavel, minimizando chamadas
redundantes e otimizando recursos. Neste trabalho foram encontrados resultaods promissores
ao realizadar simulacGes para observar a relacdo da taxa de acerto e tamanho da memédria

cache utilizando a abordagem da teoria de controle.

Palavras-chaves: Memoéria Cache, Teoria de Controle, Sistemas Adapatativos, gRPC

ABSTRACT

Cache memory is essential and widely used to improve applications performance. How-
ever, managing cache size in environments that experience load variations is still a challenge.
Although several algorithms exist to improve cache efficiency, most of these algorithms are
based on static or heuristic configurations that cannot adapt quickly enough to traffic spikes.
In this context, classic solutions can lead to wasted resources or system instability because
they cannot adjust in time. This work proposes an adaptive cache for distributed systems us-
ing gRPC, based on Control Theory. The proposed solution was implemented as a closed-loop
system that monitors the error between the cache hit rate and the target (setpoint) to be
achieved. The adjustment in cache size is based on the amplitude of this error. This approach
aims to ensure system stability, allowing it to remain efficient even under variable load condi-
tions, minimizing redundant calls and optimizing resources. This work yielded promising results
by conducting simulations to observe the relationship between hit rate and cache memory size

using a control theory approach.

Keywords: Cache Memory, Control Theory, Adaptive Systems, gRPC

LISTA DE FIGURAS

[Figura 1 Funcionamento do gRPC|. L 15
[Figura 2 Funcionamento de um interceptador| 16
[Figura 3 Sistema de malha abertalo 18
[Figura 4 Sistema de malha fechadal 19
[Figura 5 Arquitetura do servidor|. 20
[Figura 6 Variacao de top-k= 50 e intervalode 30s|. 30
[Figura 7 Variacao de top-k = 50 e intervalode 10s| 31
[Figura 8 Variacao de top-k = 1000 e intervalode 10| 33
[Figura 9 Variacao de top-k = 1000 e intervalode 30s 34

LISTA DE CODIGOS

[Codigo Fonte 1 Interceptador]. 21
(Codigo Fonte 2 Definicao docachel. 22
[Codigo Fonte 3 Funcao de insercao de novo elemento na cachel 22
[Codigo Fonte 4 Definicao do controlador|. 23
[Codigo Fonte 5 Atualizacao do tamanhodacachel 24

LISTA DE TABELAS

SUMARIO

il INTRODUCAO| . . . v o oo et e e e e e e i 12
1 CONTEXTUALIZACAO E MOTIVACRQ] 12
T2 PROBLEMA o oo 13

3 CACHE ADAPTATIVA

34 SISTEMA DE CONTROLE]
(3.4.1 Definicaoda Planta| 23
(3.4.2 Setpoint| 23
343 Controlador PIDI 23
a AVALIACAO DE DESEMPENHO)] v v v oo 26
4.1 DEFINICAO DO SISTEMA|. 26
26
27
28
45 CARGA DE TRABAILHO 28

46 RESULTADOS! o o o 29

14.6.1 Cobertura percentual top-k de 95%, variacao de 50 no tamanho |

| do top-k e intervalo de 30 segundos|. 29
14.6.2 Cobertura percentual top-k de 95%, variacao de 50 no tamanho |
| do top-k e intervalo de 10 segundos|. 30
14.6.3 Cobertura percentual top-k de 95%, variacao de 1000 no tamanho |
| do top-k e intervalo de 10 segundos|. 32
14.6.4 Cobertura percentual top-k de 95%, variacao de 1000 no tamanho |
| do top-k e intervalo de 30 segundos|. 33
5 CONCLUSAO E TRABALHOS FUTUROS| 35
5.1 CONTRIBUICOES| 35
5.2 LIMITACOES| 35

h.3 TRABALHOS FUTUROS

12

1 INTRODUCAO

Este capitulo apresenta inicialmente o contexto e a motivacao para este trabalho. Em se-
guida, ele apresenta o problema e solucdes existentes para resolvé-lo. Finalmente, é apresentada

uma visdo geral da solucao proposta e a estrutura do trabalho.

1.1 CONTEXTUALIZACAO E MOTIVACAO

Com um mundo altamente conectado e digital, as aplicacdes atuais enfrentam padroes
de trafego volateis e imprevisiveis, o que torna o dimensionamento de recursos essencial para
enfrentar esses cendrios a fim de ndo saturar a aplicacdo e nem desperdicar recursos. Como
exemplo, temos a meméria cache. Caso ela seja subdimensionada pode acarretar em uma baixa
taxa de acerto, o que prejudicaria o desempenho do sistema por aumentar sua laténcia. Por
outro lado, o superdimensionamento da cache resultard em um desperdicio de meméria RAM.

A evolucao dos sistemas distribuidos e a adoc3do crescente de microservicos e varias tecnolo-
gias como middlewares (TANENBAUM; STEEN, 2023)) tem levado a comunicagdo entre servicos
ser cada vez mais eficiente.O gRPC (Google Remote Procedure Call) é um middleware muito
utilizado para intermediar conexdes entre servicos. Contudo, ele possui algumas limitacGes
como n3do possuir um suporte nativo a cache, que é de extrema importancia para servicos de
alto desempenho executarem mais rapidamente (PASCHOS et al., [2018)). Além disso, existem
diversas estratégias de cache muito populares (MAYER; RICHARDS, 2025) que utilizam para-
mentros estaticos como a politica de substituicdo e tamanho da cache. Contudo, abordagens
dinamicas ainda s3o escassas.

A Teoria de Controle (NISE, [2012)) é amplamente usada em sistema fisicos, nas mais diversas
areas da engenharia tal como em aeronaves, rob0s industriais, circuitos elétricos, entre outras
muitas aplicacGes. Contudo, na engenharia de software, a teoria de controle ainda ndo é
uma abordagem amplamente utilizada, baseando-se no fato de que por sistemas de softwares
sdo discretos e légicos e ndo se comportam como plantas fisicas continuas (JANERT, 2013)).
Porém, com o aumento da complexidade de sistemas distribuidos, a abordagem manual vai
se mostrando cada vez mais insustetavel e surge uma busca pela automac3do. Diante desse
contexto, a motivacao desse trabalho é implementar um sistema de cache adaptativa para

chamadas gRPC que adapte o tamanho da cache de acordo com a variacdo de trafego da

13

aplicacao.

1.2 PROBLEMA

O problema central do trabalho é conciliar o uso eficiente da meméria cache sem com-
prometer o desempenho de uma aplicacdo em sistemas distribuidos submetidos a trafegos
variaveis.

Em varias aplicacdes de software a laténcia é um requisito fundamental, que usa da cache
como uma solucao para reduzir o tempo de chamadas. Porém, a meméria RAM é um recurso
finito e mais caro que meméria em disco, e com isso temos um trade-off em relacdo ao seu

dimensionamento:

Subdimensionamento: Uma cache configurada com tamanho insuficiente para a demanda
ird acarretar em uma baixa de taxa de acerto, fazendo com que e aplicacdo tenha que
realizar novas chamadas em rede ou consulta a banco de dados, assim degradando o

tempo de resposta.

Superdimensionamento: Por outro lado, uma cache maior do que a necessaria (superdimen-
sionada) pode ocasionar desperdicio de recursos computacionais e, consequentemente,

recursos financeiros.

1.3 ESTRATEGIAS EXISTENTES

As abordagens usadas para dimensionamento de recursos normalmente seguem uma es-
tratégia estatica, provisionando os recursos manualmente ou de forma ad-hoc (MENASCE;
ALMEIDA, 2001). Contudo, com o uso crescente de sistemas em nuvem, existem algumas
abordagens para lidar com o ambiente dindmico das aplicacoes, como exemplo, o mecanismo
de autoscaling de memoéria cache da Amazon (Amazon Web Services, [2025). Arman et al. (2012)
utilizam o sistema de feedback para escalar horizontalmente armazenamentos chave- valor e
reforcam como a teoria do controle pode ser usada em sistemas computacionais.

Entre as abordagens existentes, a que mais se aproxima do trabalho aqui apresentado, é
o trabalho de (FAROKHI et al., 2015 que propdem uma uma adaptacdo vertical da memodria
baseada na perfomance da aplicacao utilizando teoria do controle. Nesse trabalho, os autores

reduziram em entre 47% e 57% o consumo de meméria quando comparado com a abordagem

14

sem o redimensionamento de recursos, ficando em evidéncia a importancia da adaptatividade
da memodria cache. Os autores usaram o tempo de resposta como setpoint (meta) do sistema

de controle.

1.4 SOLUCAO PROPOSTA

Tendo em vista o fato de que estratégias de cache estaticas ndo reagem a mudancas
de demanda do servidor e com o uso cada vez maior de sistemas distribuidos em nuvem,
esse trabalho propoe a implementacdo, de uma sistema de cache adaptativa. Tendo como
base o trabalho de (FAROKHI et al, 2015), que teve uma enfoque maior no desempenho da
aplicacdo, este trablho foca na utilizacdo de memdéria. Desse modo foi utilizada a taxa de
acerto da cache como critério de tomada de decisao, e as analises foram focadas em o quanto

a memoria alocada esta sendo usada em relacao ao tamanho tedrico ideal.

1.5 ESTRUTURA

O restante deste trabalho esta organizado em 5 capitulos. O Capitulo 2 apresenta as bases
tedricas necessdrias para a compreensao dos experimentos. No Capitulo 3 serd apresentada a
solucdo proposta, descrevendo tecnologias utilizadas, configuracdes de experimentos e como
os resultados foram obtidos. Ja no Capitulo 4 sdo apresentados os resultados dos experimentos

e suas analises. Por fim o Capitulo 5 apresenta as conclusdes e propostas de trabalhos futuros.

15

2 FUNDAMENTACAO TEORICA

Este capitulo introduz a base tedrica necessaria para a compreensdo do trabalho. Primei-
ramente, é feita uma apresentacao do gRPC; logo apés, sao apresentados os conceitos de

interceptador, cache e teoria do controle, que sdo os objetos centrais deste estudo.

2.1 GRPC

O gRPC (GOOGLE [2025)) é um middleware open-source desenvolvido pela Google que atua

na comunicacao entre servicos. Ele é utilizado para realizar chamadas de procedimento remoto
(RPC), isto é, permite que um cliente realize chamadas para um servidor que estd em uma
maquina diferente como se estivesse fazendo uma chamada local. Servidores e clientes gRPC
podem se comunicar em qualquer linguagem de programacao que seja suportada pelo gRPC;

como podemos ver no exemplo da Figura 1, um servidor em C++ pode ter um cliente em

Ruby e outro em Java. Isso é possivel pois o gRPC utiliza protocol buffers (GOOGLE, 2024)

como IDL (Interface Definition Language), uma linguagem para definir as estruturas de dados
e servicos. Uma vez que definimos essas estruturas, usamos o compilador de protocol buffer
para gerar classes de acesso na linguagem a ser utilizada, chamadas de stub no cliente e gRPC

server no servidor, que fazem a codificacdo e decodificacdo de requisicSes.

Figura 1 — Funcionamento do gRPC

gRPC Server Ruby Client

C++ Service

for
v RESP{)HSE(S\]

Android-Java Client

Fonte: 2025))

16

2.1.1 Interceptadores

Existem ldégicas que precisam ser implementadas em todos os métodos da RPC; para esses
casos, o gRPC possui uma abstracdo chamada interceptador. Ela é utilizada para interceptar
requisicdes e respostas do servidor ou do cliente, como podemos ver na Figura 2. E possivel
utilizar um interceptador como logger, cache, autenticador, entre muitas outras funcionalida-
des. Neste trabalho, utilizaremos o interceptador para realizar a implementacao de cache em

requisicoes que chegam ao servidor.

Figura 2 — Funcionamento de um interceptador

Server

Request

@ Request Request
e interceptor interceptor

Interceptor 1 Interceptor 2

HTTP/2
@ Response Response
Response interceptor interceptor

Client

Request Request Request @

interceptor interceptor I

Llient Interceptor 1 Interceptor 2

Application

HTTP2
Response Response @
interceptor interceptor Response

Fonte: 2022)

17

2.2 MEMORIA CACHE

A cache é uma memdria volatil de acesso rapido para armazenar dados, de forma que
uma aplicacdo ndo precise acessar fontes de dados mais lentas, como um banco de dados,
ou aplicar algum processamento custoso. Dentre suas aplicacGes, a cache ajuda a diminuir
a laténcia de requisices recorrentes. E importante ressaltar que existem diversas estratégias
de cache (MAYER; RICHARDS| 2025) e vérios pardmetros que podem ser calibrados em um

algoritmo de cache.

2.2.1 Cache Estatica

A cache estatica, como o préprio nome dugere, possui apenas parametros fixos que n3o
se alteram de acordo com a demanda. Como exemplo de parametros, temos o tamanho total
da cache e as politicas de substituicdo, que sdo definidos previamente a sua execu¢do. Como
lado positivo dessa abordagem, temos a facilidade de implementacdo e uma previsibilidade
maior, facilitando os testes, entre outros pontos. Contudo, como lado negativo, pode ocorrer

a ociosidade de recursos e queda de desempenho no sistema.

2.2.2 Cache Adaptativa

Muitas vezes, os sistemas nao possuem uma demanda constante, como pode ser observado
em (GMACH et al., 2007). Na realidade, encontramos vérios sistemas que possuem horarios de
pico e recursos que s3o populares para varios usudrios. Para lidar com essa dinamica e evitar
a ociosidade, a cache adaptativa se mostra uma abordagem eficaz, na qual os parametros
se ajustam continuamente de acordo com a demanda e métricas observadas ao longo do
tempo, como taxa de acerto e volume de requisicoes. A partir dessas métricas, podemos
alterar parametros como o tamanho da cache para melhor acomodar a demanda. Para fazer
essa adaptacdo, podemos utilizar diversas estratégias, como heuristicas, inteligéncia artificial,
andlises estatisticas e teoria do controle. Neste trabalho, focaremos na abordagem utilizando

teoria do controle como algoritmo de adaptacao.

18

2.3 TEORIA DE CONTROLE

Na engenharia, a teoria de controle é amplamente utilizada para regular sistemas a partir
de observacdes de sinais de entrada e saida, e comparacao com um valor de referéncia. Um

sistema de controle é geralmente composto por quatro elementos principais:

Referéncia (setpoint): Valor desejado para a saida do sistema (por exemplo, manter a taxa

de acerto em 90%).

Sensor/Monitor: Componente responséavel por medir a saida real do sistema, como o moni-

toramento da taxa de acerto.
Controlador: Calcula o erro entre o valor desejado e o valor real, gerando uma acdo corretiva.

Planta: Parte do sistema que é influenciada pela acdo do controlador, como a cache.

Existem duas principais abordagens para a arquitetura do sistema de controle: malha aberta
(Figura 3) e malha fechada (Figura 4). A principal diferenca entre os sistemas de malha aberta
e fechada é que o controlador de malha fechada utiliza a saida como parametro da acdo de
controle — também conhecido como controle de feedback —, sendo este o tipo de sistema

utilizado neste trabalho.

Figura 3 — Sistema de malha aberta

Perturbagdo 1 Perturbagdo 2
+ + Saida
Einirad Transdutor * Processo | + ou
ou —> —> Controlador)
~ . | deentrada ou Planta Variavel
Referéncia 2 =
Jungdo de Jungéo de controlada
soma soma

Fonte: (NISE, 2012)

19

Figura 4 — Sistema de malha fechada

Entrada | ronsdutor | +
o de entrada
Referéncia o
Juncdo de

soma

Erro e Perturbacéo 1 Perturbagéo 2
Sinal de
atuacéo
‘e +F
Controlador Processo
ou Planta
Juncgdo de Jungdo de
soma soma
Transdutor
de saida |
ou Sensor

—

Saida
ou
Variavel
controlada

2.3.1 Controlador PID

Fonte: (NISE, 2012)

Como mencionado previamente, o controlador é responsavel por calcular o erro entre o

valor desejado e o valor real de saida e, a partir disso, gerar uma acao corretiva. No caso da

memoria cache, o controlador poderia aumentar o tamanho da cache para elevar o hit-rate.

Os controladores servem para calcular essa acdo corretiva com base em calculos matematicos.

Embora existam diversos tipos, neste projeto foi estudado o controlador PID (Proporcional

Integral Derivativo), amplamente utilizado na engenharia. Esse controlador, apresentado ma-

tematicamente pela Equacdo [2.1} utiliza o erro corrente, o histérico acumulado de erros e a

taxa de variacdo do erro.

u(t) = Kpe(t) + K, [Ce(r) dr + K,

de(t)
dt

20

3 CACHE ADAPTATIVA

Neste capitulo, apresentaremos a solucdo proposta. Comecaremos pela arquitetura, forne-

cendo uma visdo macro e serdo apresentados detalhes de cada componente.

3.1 ARQUITETURA

A arquitetura do projeto é apresetada na Figura 5. Primeiramente, as requisicdes chegam
ao servidor; entdo, o interceptador da requisicdo é responsavel por verificar se a resposta
estd na memoria cache. Em caso positivo, retornamos a resposta; caso contrario, devemos
fazer uma chamada para o servico, que naturalmente é mais custosa do que retornar algo

armazenado na cache.

Figura 5 — Arquitetura do servidor

Ve
Servidor \
Cache [=—— Controlador
PID
Requisi¢ao = | Interceptador Servico gRPC
<———— Resposta
< Resposta
= J

Fonte: Elaborado pelo autor

O servidor foi desenvolvidos na linguagem de programacdo Go (GOLANG, 2024), por ser
uma linguagem amplamente utilizada em sistemas distribuidos. Foi utilizado o gRPC como
middleware e protocol buffers para definir as estruturas de dados e servicos; para o banco de

dados, utilizou-se o MySQL (ORACLE CORPORATION, [2023)).

21

3.2 INTERCEPTADOR

O interceptador é responsavel por processar todas as requisicGes que chegam ao servidor.
Como podemos ver no Cédigo Fonte 1, a Linha 16 acessa a cache; a Linha 18 verifica se ha
um valor para a respectiva chave e, em caso positivo, o valor ja é retornado na resposta. Caso

contrario, o fluxo prossegue para o servico gRPC na Linha 27.

Cédigo Fonte 1 — Interceptador

1 func CachelInterceptor(lruCache *LRUCache) grpc.UnaryServerInterceptor {
2 return func(

3 ctx context.Context,

4 req interface{},

5 info *xgrpc.UnaryServerInfo,

6 handler grpc.UnaryHandler,

7) (interface{}, error) {

8 totalRequests = totalRequests + 1

9 // Type assert the request

10 r, ok := req.(*pb.Request)

11 if lok {

12 return nil, status.Errorf(codes.Internal, "invalid request type")
13 }

14

15 var clientId = int(r.GetClientId())
16 var cachedValue = cache.Get(clientId)
17

18 if cachedValue != "not found” {

19 cacheHits = cacheHits + 1

20 address := cachedValue

21 response := &pb.Response{

22 ClientAddress: address,

23 }

24 return response, nil

25 3}

26

27 resp, err := handler(ctx, req)

28 if err != nil {

29 return nil, err

30 }

31

32 return resp, nil

33 }

34 3

22

3.3 CACHE ADAPTATIVA

Para a cache, como podemos ver no Cédigo Fonte 2, criamos uma estrutura que consiste
em um hashmap para armazenar e acessar os valores rapidamente, uma lista com a ordem de

acesso das chaves e, por fim, o tamanho da cache.

Cédigo Fonte 2 — Definicdo do cache

1 type LRUCache struct {

2 capacity int

3 cache map[intJxlist.Element
4 order *list.List

5 %}

No Cédigo Fonte 3, podemos observar como funciona a insercao de novos valores. Pri-
meiramente, verificamos na Linha 2 se o elemento ja estd na cache; caso positivo, apenas
alteramos sua posicdo para o inicio da lista, para refletir o uso recente da chave, e a funcao é
encerrada. Ja na Linha 8, verificamos se o tamanho maximo foi atingido; caso positivo, a cache
utiliza o algoritmo LRU (Least Recently Used), que consiste em retirar o (ltimo elemento da

lista e apaga-lo do hashmap. Entao, o novo elemento é adicionado, como mostrado nas Linhas

14 a 16.

Cédigo Fonte 3 — Fungdo de insercdo de novo elemento na cache

1 func (lru xLRUCache) Put(key int, value string) {
2 if element, found := lru.cachel[key]; found {
3 element.Value.(*Cacheltem).value = value
4 lru.order.MoveToFront(element)

5 return

6 }

7

8 if lru.order.Len() == lru.capacity {

9 backElement := lru.order.Back()

10 lru.order.Remove (backElement)

11 delete(lru.cache, backElement.Value.(*Cacheltem).key)
12 }

13

14 item := &Cacheltem{key: key, value: value}

15 element := lru.order.PushFront(item)

16 lru.cachel[key] = element

23

3.4 SISTEMA DE CONTROLE
3.4.1 Definicao da Planta

Na abordagem da teoria de controle, a planta trata-se do elemento a ser controlado. Em
nosso contexto, o foco é o uso eficiente da cache; portanto, nosso elemento controlado sera

a prépria cache.

3.4.2 Setpoint

Uma das métricas mais importantes para avaliar um algoritmo de cache é a sua taxa de
acerto. Dessa forma, utilizaremos o valor de 90% como nosso setpoint, isto é, o valor a ser
atingido. E importante observar que n3o é vidvel definir um setpoint de 100%, visto que isso

implicaria em uma taxa de variacdo crescente e, portanto, o sistema nunca convergiria.

3.4.3 Controlador PID

O controlador teve suas constantes (Kp, Ki e Kd), como mostrado na Equac3o 1, calculadas
através de um tuning empirico, que consiste em ajustar os parametros de acordo com a
execucdo de experimentos e seleciona-los conforme os melhores resultados. Para isto, foram
observados o overshoot, a oscilacdo e o tempo de estabilizacdo. O Cédigo Fonte mostra a
implementac3o do controlador, que basicamente implementa a equacdo 1. Note que também
foi adicionado uma légica de clamping, que se trata de definir limites para o erro integal,
para evitar um possivel fendmeno do termo integral crescer indefinidamente conhecido como

windup (ASTROM; HAGGLUND) 2006)).

Cédigo Fonte 4 — Definicdo do controlador

func (pid *PIDController) calculate(currentError float64) float64 {
now := time.Now()
dt := now.Sub(pid.lastControllerTime).Seconds ()

pid.lastControllerTime = now

1
2
3
4
5
6 if dt <= 0 {

7 pid.previousError = currentError
8 pid.integralError = 0

9 return pid.kp * currentError

10 }

24

11

12 proportionalTerm := pid.kp * currentError
13

14 pid.integralError += currentError * dt

15

16 pid.integralError += currentError * dt

17 if pid.integralError > 1.0 {

18 pid.integralError = 1.0

19 } else if pid.integralError < -1.0 {

20 pid.integralError = -1.0

21 }

22

23 integralTerm := pid.ki % pid.integralError
24

25 derivativeTerm := pid.kd * (currentError - pid.previousError) / dt
26 pid.previousError = currentError

27

28 output := proportionalTerm + integralTerm + derivativeTerm
29

30 return output

31 3}

O cédigo fonte 5 mostra como é feita a atualizacdo do tamanho da cache. A entrada do
controlador € erro, isto é, a diferenca entre a nossa taxa de acerto de referéncia (setpoint) e
a taxa de acerto atual. A taxa de acerto corrente é calculada a cada periodo de amostragem,
que corresponde ao intervalo de tempo entre duas invocacdes consecutivas do controlador.
Apods isso o erro é passado como entrada para o controlador e a partir disso recebemos o fator
de correcao, note que como taxa de acerto é adimensional e normalizada temos de multiplicar
o fator de correcdo pelo tamanho da cache atual para obtermos o ajuste na escala correta e
por fim calcular o novo tamanho da cache. Também foi adicionado um limite inferior como
uma trava de seguranca para nao obtermos valores negativos de cache, o que n3o faria sentido

fisicamente.
Cédigo Fonte 5 — Atualizacdo do tamanho da cache
errorHitRate := setpoint - currentHitRate
controlOutput := pid.calculate(errorHitRate)
adjustment := int(controlOutput * float64(lruCache.capacity))

var newCacheSize = lruCache.capacity + adjustment

© 0 N o g A W N =

25

10
11
12
13
14

if newCacheSize < 10 {

newCacheSize = 10

lruCache.SetCacheSize(newCacheSize)

26

4 AVALIACAO DE DESEMPENHO

Este capitulo apresenta uma avaliacdo de desempenho da cache adaptativa proposta e, para
isso, segue a metodologia de Jain (JAIN, 1991)). Inicialmente, aborda-se a definicdo do sistema,
seguida pela escolha das métricas que guiardo a comparacdo de desempenho, a definicao da

carga a qual o sistema serd submetido e, por fim, a analise dos resultados.

4.1 DEFINICAO DO SISTEMA

O sistema analisado é a cache adaptativa implementada e utilizada pelo servico gRPC.
A cache recebe como entrada o padrdo de requisicoes e a taxa de acertos, processa tais
informacdes por meio de um controlador (PID) e produz, como saida, o ajuste dindmico do

tamanho da cache.

4.2 METRICAS AVALIADAS

A primeira métrica a ser avaliada é a taxa de acerto da cache, fundamental para determinar
o grau de utilizacdo da memdria. Ela é calculada pela razdo entre o nimero de requisicdes
atendidas pela memdria cache e o nimero total de requisicdes do sistema no intervalo de ajuste
do controlador. Note que, para uma avaliacdo mais precisa, essa métrica deve ser analisada
em conjunto com o tamanho da cache.

A importancia de monitorar o tamanho da cache reside na premissa de que, hipotetica-
mente, uma memoria suficientemente grande resultaria em uma taxa de acertos altissima.
No entanto, tal configuracdo nao seria necessariamente eficiente, pois consumiria recursos
excessivos € manteria memoria ociosa.

Nesta avaliagdo, considera-se a métrica de GR (Goal Range), com base na pesquisa de
(ROSA; CAVALCANTI, |2024). O GR representa o intervalo aceitavel da métrica avaliada, refle-
tindo a estabilidade do controlador. Neste trabalho, utiliza-se um intervalo de 90% a 110% do

setpoint.

27

4.3 PARAMETROS

Os parametros referem-se as caracteristicas do ambiente que afetam as métricas, sendo
fundamentais para determinar as condicOes sob as quais a analise sera realizada. Eles podem ser
divididos em duas categorias: parametros do sistema e parametros de carga. Os pardmetros
do sistema referem-se a atributos internos, como o hardware no qual o servico estd sendo
executado; por outro lado, os pardametros de carga correspondem a forma como o sistema é
estimulado, como, por exemplo, o nimero de requisicdes por segundo.

Os parametros foram especificados na Tabela 1. Os experimentos foram executados local-
mente em uma maquina com as configuracdes detalhadas, a politica de cache foi fixada como
LRU e a implementacdo do controlador também foi mantida constante. Para os parametros
de carga, fixou-se o valor de 100 requisicGes por segundo para simular um ambiente de alta
demanda. Todos os experimentos tiveram duracdo de 20 minutos, € o grupo de requisicoes
mais frequentes foi alterado a cada 5 minutos para observar a capacidade de adaptacao do
sistema.

Para fins de simplificacdo, denominamos o grupo de requisicGes mais frequentes como top-
k. Note que o setpoint foi definido como 90% para ter uma margem de 5 pontos percentuais
abaixo da cobertura percentual de top-k para respeitar os limites estatisticos do sistema,
visto que o desempenho maximo tedrico da cache corresponderia a prépria porcentagem da

cobertura do top-k.

28

Tabela 1 — Parametros

Categoria Parametro Descricao
sistema Maquina Processador: i5-1235u
SO: Ubuntu 20.04
Ram: 16gb
SSD: 512gb
sistema Politica de cache LRU
sistema Implementacdo do controlador | PID
sistema Kp 0.25
sistema Ki 0.1
sistema Kd 0.05
carga Requisicoes por segundo 100
carga duracdo dos experimentos 20 minutos
carga Intervalo de mudanca top-k | 5 minutos
carga Cobertura percentual top-k | 95%
carga Setpoint 90%
4.4 FATORES

Os fatores sdo os parametros alterados nos experimentos com o objetivo de mensurar o
impacto destes parametros sobre as métricas durante os experimentos. Foram escolhidos como
fatores o intervalo de tempo de ajuste do controlador e o tamanho absoluto do grupo top-k,
visando analisar o comportamento do sistema diante de pequenas e grandes mudancas no

numero de usuarios mais frequentes.

Fatores Valores

Intervalo de ajuste do controlador | 10 e 30 segundos
Variacdo do tamanho top-k 50 e 1000

Tabela 2 — Fatores

45 CARGA DE TRABALHO

Para gerar a carga, foi utilizada a ferramenta Locust, que permite um alto controle sobre as
requisicoes do sistema e a personalizacdo das simulacdes, tais como a definicdo da porcentagem

de requisicoes mais frequentes e o intervalo de tempo entre elas. Neste trabalho, ajustamos

29

as requisicoes do top-k de acordo com a tabela de fatores, e foram realizadas chamadas para

um Unico método do servico gRPC.

4.6 RESULTADOS

Os resultados serdo apresentados dentro do universo de cada cobertura percentual de top-
k. A apresentacdo serd feita graficamente e, em seguida, os resultados serao discutidos com

base nos dados e na variacdo dos fatores.

4.6.1 Cobertura percentual top-k de 95%, variacdo de 50 no tamanho do top-k e

intervalo de 30 segundos

A Figura 6 mostra que o tamanho da cache ficou aproximadamente igual ao tamanho
do top-k (indicado pela linha pontilhada no grafico). Isso mostra que o sistema otimizou o
tamanho da cache sem que houvesse grande ociosidade de meméria. E importante notar que,
além de manter o tamanho da cache condizente com o top-k, a taxa de acerto permaneceu,
na maior parte do tempo, dentro do goal range. E importante ressaltar que os momentos em
que ocorre um maior desvio do goal range sao as transicGes de tamanho do top-k, o que é

esperado, visto que esses novos valores ainda n3o haviam sido incorporados a memdria cache.

30

Figura 6 — Variacdo de top-k= 50 e intervalo de 30s

Tamanho total da cache (a cada 30 segundos)

—8— Cache Size

2004 ™7 Quantidade de clientes mais frequentes = 100 | ™ I < . N
——- Quantidade de clientes mais frequentes = 150
——- Quantidade de clientes mais frequentes = 200

Quantidade de clientes mais frequentes = 150

180 A

160

Tamanho cache

140

120

L e

T T T T T
D (] o
o o)
L) A @ & Ky Y

Tempo (segundos)

Taxa de acerto a cada 30 segundos

o 0.6
k=4
o
b=
@
[}
o
o
3
= 0.4
0.2 1
—e— Taxa de acerto
—-—- setpoint (90%)
----- Goal range inferior (81%)
----- Goal range superior (99%)
0.0 T T T T T T T T T T T T
o o o o o o o o o o o o
B » & w & & S & EX & o2

Tempo (segundos)

Fonte: Elaborado pelo autor

4.6.2 Cobertura percentual top-k de 95%, variacdo de 50 no tamanho do top-k e

intervalo de 10 segundos

Neste experimento, reduzimos o intervalo de 30 para 10 segundos. Podemos perceber,
pela Figura 7, que o tamanho da cache se manteve abaixo do tamanho do top-k. Isso ocorre
porque, com um intervalo de ajuste menor e um tamanho de top-k reduzido, a distribuicdo das
requisicoes consegue ser reproduzida dentro desses 10 segundos. Como o setpoint é definido

5 pontos percentuais abaixo da porcentagem real do top-k, conseguimos manter a taxa de

31

acerto dentro do goal range, apesar de o sistema utilizar um tamanho menor de memoria

cache. Também notamos que os momentos em que a taxa de acerto se desvia do goal range

sao as transicoes de tamanho do top-k, conforme o esperado.

Figura 7 — Variacdo de top-k = 50 e intervalo de 10s

Tamanho cache

Tamanho total da cache (a cada 10 segundos)

200

180 A

160

140

120

100

80 4

—e— Cache Size

——- Quantidade de clientes mais frequentes = 100
Quantidade de clientes mais frequentes = 150
Quantidade de clientes mais frequentes = 200
Quantidade de clientes mais frequentes = 150

O O o L O o O
$ i &y w L3 & o &

Tempo (segundos)

Taxa de acerto

Taxa de acerto a cada 10 segundos

0.6

0.4 1

0.2 1

0.0

—8— Taxa de acerto
——- setpoint (30%)
- Goal range inferior (81%)
- Goal range superior (99%)

; T
o o ® o
R P » ®

T T T T
(8] H
& AQ

Tempo (segundos)

(7]
(“]

&, |
2,

Fonte: Elaborado pelo autor

32

4.6.3 Cobertura percentual top-k de 95%, variacdo de 1000 no tamanho do top-k

e intervalo de 10 segundos

Neste experimento, alteramos a variacdo do top-k de 50 para 1000 em relacdo ao cenario
anterior. Podemos perceber, pela Figura 8, que a medida que o tamanho do grupo mais
frequente aumentava, o tamanho da cache desviava mais do tamanho real do top-k. Isso ocorre
porque, sendo o nimero do top-k elevado — atingindo o pico de 3000 itens no intervalo de 600
a 900 segundos — e considerando que os parametros definem 100 requisicdes por segundo,
em 10 segundos teriamos apenas 1000 requisicoes. Este volume n3o é suficiente para refletir
a distribuic3o real; dessa forma, um intervalo de amostragem maior beneficiaria esse tamanho
de top-k. Nota-se também na Figura 8 que, apesar dessa diferenca no tamanho da cache,
a taxa de acerto manteve-se na maior parte do tempo dentro do goal range, com desvios

significativos apenas nos momentos de transicdo.

33

Figura 8 — Variacdo de top-k = 1000 e intervalo de 10

Tamanho total da cache (a cada 10 segundos)

6000 - —8— Cache Size

=== Quantidade de clientes mais frequentes = 100
——-- Quantidade de clientes mais frequentes = 150
——-- Quantidade de clientes mais frequentes = 200
5000 7 Quantidade de clientes mais frequentes = 150

4000 -

3000

Tamanho cache

2000

1000 +

T T T T T T T
H O O
o o Q) QP
Al o A L) 2 5

Tempo (segundos)

Taxa de acerto a cada 10 segundos

Taxa de acerto

—8— Taxa de acerto

——~- setpoint (90%)

----- Goal range inferior (81%)
----- Goal range superior {99%)

0.0 T

!
Q (]
& & L

.
o o o o
& & & &2

Tempo (segundos)

Fonte: Elaborado pelo autor

4.6.4 Cobertura percentual top-k de 95%, variacdo de 1000 no tamanho do top-k

e intervalo de 30 segundos

Em relacdo ao experimento anterior, aumentamos o intervalo de ajuste para 30 segundos.
Podemos observar, pela Figura 9, que embora o tamanho da cache ndo se desvie significa-
tivamente do tamanho do top-k, a taxa de acerto demora mais para atingir o goal range.
Isso mostra que, para um intervalo de amostragem maior, ha a necessidade de um tempo de

aquecimento (warm-up) mais longo para a estabilizagcdo do sistema nesses cenérios.

34

Figura 9 — Variacdo de top-k = 1000 e intervalo de 30s

Tamanho total da cache (a cada 30 segundos)

—8— Cache Size
=== Quantidade de clientes mais frequentes = 1000

3000 4 ——- Quantidade de clientes mais frequentes = 2000 ————— e e e e e
—-- Quantidade de clientes mais frequentes = 3000
Quantidade de clientes mais frequentes = 2000

2500 4
o
520004+ e N
o
o
Q
=
5
£ 1500 A
I

1000 4 r~—————————————— g

500 ~
0 T T T T T T T T T T T T
Q H o O O H D o] O L O
R S B S o & S @ S & S
Tempo (segundos)
Taxa de acerto a cada 30 segundos

2
@
=
@
[}
o
i
by
I

—8— Taxa de acerto

——- setpoint (90%)
Goal range inferior (81%)
Goal range superior {99%)

0.0

; T t ;
o o) o
o o o S
@ ES S

Tempo (segundos)

Fonte: Elaborado pelo autor

35

5 CONCLUSAO E TRABALHOS FUTUROS

Este capitulo apresenta inicialmente as contribuicdes deste trabalho. Em seguida, ele apre-

senta as limitacOes e sugestdes de trabalhos futuros..

5.1 CONTRIBUICOES

Este trabalho apresentou uma aplicacdo de Teoria de Controle ao desenvolvimento de uma
cache adaptiva para o gRPC. A cache proposta foi implementada no lado do Consumidor
e tem o seu tamanho definido dinamicamente por um controlador PID. A utilizacdo de um
controlador permite que propriedades (e.g., overshoot e estabilidade) sobre o desempenho da

cache sejam garantidas em tempo de execucao.

5.2 LIMITACOES

E importante ressaltar que os experimentos foram realizados em um ambiente controlado,
utilizando uma topologia simplificada de um cliente e um servidor. Embora este modelo funcio-
nal tenha atingido o objetivo de validar a proposta, ele representa uma simplificacao que pode
ser estendida em cendrios mais complexos. Vale também ressaltar que diversos parametros
foram fixados para a viabilizacdo dos testes, os quais podem sofrer variacGes dinamicas em
aplicacOes reais. Adicionalmente, foram selecionadas métricas especificas para manter o escopo
do trabalho focado, embora outras varidveis de desempenho pudessem ter sido integradas a

analise.

5.3 TRABALHOS FUTUROS

Com base nas limitacoes expostas, hd uma série de possibilidades para trabalhos futuros.

» Explorar outros controladores: Como foi pontuado na secio 4.3, se um setpoint for
maior que a porcentagem do top-k, o tamanho da cache ndo ird convergir. Dessa forma,
seria um grande avanco determinar o setpoint dinamicamente, caso contrario a aborda-
gem apresentada s6 deve ser utilizada em sistemas em que se tenha uma estimativa da

porcentagem do grupo top-k.

36

= Avaliacdo de outros fatores: Em trabalhos futuros podem ser avaliadas as variacoes
de outras varaveis, como tempo entre requisicoes, politicas de cache, outros tipos de

controladores, etc.

» Utilizacdo de cache distribuida:Podem ser avaliadas a operacao de varios nés para-

lelos que utilizem uma mesma memdria cache global.

37

REFERENCIAS

Amazon Web Services. Amazon ElastiCache User Guide: On-demand scaling for Memcached
clusters. [S.l.], 2025. Acessado em: 29 dez. 2025. Disponivel em: <https://docs.aws.amazon.
com/AmazonElastiCache/latest /dg/Scaling-self-designed.mem-heading.html|>.

ASTROM, K. J. et al. Advanced PID Control. Research Triangle Park, NC: ISA - The
Instrumentation, Systems, and Automation Society, 2006. ISBN 978-1-55617-942-6.

FAROKHI, S. et al. Performance-based vertical memory elasticity. In: IEEE. 2015 IEEE
International Conference on Autonomic Computing. [S.l.], 2015.

GMACH, D. et al. Workload analysis and demand prediction of enterprise data center
applications. Performance Evaluation, v. 64, n. 9-12, p. 1052-1073, 2007. Disponivel em:
<https://doi.org/10.1016/j.peva.2007.04.018> .

GOLANG. The Go Programming Language Documentation. 2024. https://go.dev/doc/.
Disponivel em: <https://go.dev/doc/>. Acesso em: 9 jul. 2025.

GOOGLE. Protocol Buffers Documentation. 2024. https://protobuf.dev/. Disponivel em:
<https://protobuf.dev/>. Acesso em: 9 jul. 2025.

GOOGLE. gRPC - Documentagéo oficial. 2025. Disponivel em: <https://grpc.io/docs/>.
Acesso em: 11 jun. 2025.

JAIN, R. The art of computer systems performance analysis. [S.l.]: John Wiley Sons, 1991.

JANERT, P. K. Feedback Control for Computer Systems: Introducing Control Theory to
Enterprise Programming. [S.l.]: O'Reilly Media, 2013.

KUMAR, P. gRPC Interceptor: unary interceptor with code example. 2022. Disponivel em:
<https:/ /techdozo.dev/grpc-interceptor-unary-interceptor-with-code-example /> Acesso
em: 12 jun. 2025.

MAYER, H. et al. Comparative analysis of distributed caching algorithms: Performance
metrics and implementation considerations. arXiv preprint, arXiv:2504.02220, 2025. Preprint.
Disponivel em: <https://arxiv.org/abs/2504.02220>.

MENASCE, D. A. et al. Capacity Planning for Web Services: metrics, models, and methods.
Upper Saddle River, NJ, USA: Prentice Hall, 2001. ISBN 0-13-065901-1.

NISE, N. S. Engenharia de sistemas de controle. 6. ed. [S.l.]: LTC, 2012.

ORACLE CORPORATION. MySQL 8.0 Reference Manual. [S.1.], 2023. Acesso em: 14 jul.
2025. Disponivel em: <https://dev.mysql.com/doc/refman/8.0/en/>.

PASCHOS, G. S. et al. The role of caching in future communication systems and networks.
IEEE Journal on Selected Areas in Communications, v. 36, n. 6, p. 1111-1125, 2018.

ROSA, N. S. et al. Exploiting controllers to adapt message-oriented middleware. In: 2024
IEEE International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS). [S.1.]: IEEE, 2024. p. 91-100.

TANENBAUM, A. S. et al. Distributed Systems: Principles and Paradigms. [S.l.]: Maarten
Van Steen, 2023. v. 4.

https://docs.aws.amazon.com/AmazonElastiCache/latest/dg/Scaling-self-designed.mem-heading.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/dg/Scaling-self-designed.mem-heading.html
https://doi.org/10.1016/j.peva.2007.04.018
https://go.dev/doc/
https://protobuf.dev/
https://grpc.io/docs/
https://techdozo.dev/grpc-interceptor-unary-interceptor-with-code-example/
https://arxiv.org/abs/2504.02220
https://dev.mysql.com/doc/refman/8.0/en/

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Listing
	Lista de quadros
	Lista de tabelas
	Sumário
	Introdução
	Contextualizacao e Motivação
	Problema
	Estratégias existentes
	Solução Proposta
	Estrutura

	Fundamentação Teórica
	gRPC
	Interceptadores

	Memória cache
	Cache Estática
	Cache Adaptativa

	Teoria de Controle
	Controlador PID

	Cache Adaptativa
	Arquitetura
	Interceptador
	Cache Adaptativa
	Sistema de Controle
	Definição da Planta
	Setpoint
	Controlador PID

	Avaliação de desempenho
	Definição do sistema
	Métricas Avaliadas
	Parâmetros
	Fatores
	Carga de Trabalho
	Resultados
	Cobertura percentual top-k de 95%, variação de 50 no tamanho do top-k e intervalo de 30 segundos
	Cobertura percentual top-k de 95%, variação de 50 no tamanho do top-k e intervalo de 10 segundos
	Cobertura percentual top-k de 95%, variação de 1000 no tamanho do top-k e intervalo de 10 segundos
	Cobertura percentual top-k de 95%, variação de 1000 no tamanho do top-k e intervalo de 30 segundos

	Conclusão e trabalhos futuros
	Contribuições
	Limitações
	Trabalhos futuros

	Referências

