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RESUMO

Buracos de minhoca surgem no contexto da relatividade geral como uma tentativa de
dar aos raios de luz e particulas materiais uma histéria completa, ou seja, eliminar as sin-
gularidades do espaco-tempo. Nesse contexto, Homer G. Ellis propde que o acoplamento de
um campo escalar a geometria do espaco-tempo eliminaria a dificuldade, o que culminou na
métrica do “sumidouro” (do inglés drainhole), do qual o buraco de minhoca da presente dis-
sertacdo aparece como caso especial. O estudo de sistemas gravitacionais passa pela teoria da
perturbacao, que para a métrica de interesse é desenvolvida para o caso escalar e gravitacional,
mostrando que para ambos a equacdo radial tem o formato de uma equacao de Heun con-
fluente. A obtencdo de modos quase-normais (MQNs) é de relevancia astrofisica imensuravel,
motivados pela deteccdo de ondas gravitacionais pelas colaboracées LIGO e Virgo. Para a
métrica de Schwarzschild é exposta a obtencdo por meio do método WKB. Para o buraco de
minhoca de Ellis é proposto seguir pelo método das deformacdes isomonodromicas. As equa-
cOes que garantem a isomonodromia formam um sistema integravel e garantem a existéncia
da quinta transcendente de Painlevé, a 7y,. Partindo da expansdo dada por Jimbo o problema
de Riemann-Hilbert é tratado e resolvido, culminando na expressdo para os MQN.

Finalizando, mostra-se que as equacdes para ambas as perturbacdes podem ser interpola-
das. Obtém-se o potencial apdés uma transformacdo do tipo Schrodinger e percebe-se que ele
é estritamente positivo e ndo admite estados ligados com frequéncia real positiva, o que n3o
descarta a possibilidade de obtencdo de estados de decaimento com frequéncia imaginaria que
decrescem exponencialmente com o tempo, respeitadas as condicdoes de contorno impostas.
Em seguida sdo expostos resultados obtidos numericamente, utilizando o método isomono-
dromico. O desenvolvimento encerra argumentando que os resultados numéricos obtidos serdo
fundamentais para a futura busca pelos MQNs para o buraco de minhoca de Ellis, tomando
por base o sucesso do método ja exposto na literatura na obtencdo de tais modos para os
buracos negros de Kerr e Reissner-Nordstrom, sob perturbacdes escalares, eletromagnéticas e

gravitacionais no primeiro caso e sob perturbacdes escalares e espinoriais no segundo caso.

Palavras-chaves: Buraco de minhoca. Perturbacdo. Isomonodromia.



ABSTRACT

Wormbholes arise in the context of general relativity as an attempt to provide light rays and
material particles with a complete history, that is, to eliminate spacetime singularities. In this
context, Homer G. Ellis proposes that the coupling of a scalar field to the spacetime geometry
would eliminate this difficulty, which culminated in the so-called “drainhole” metric, of which
the wormhole studied in the present work appears as a special case. The study of gravitational
systems proceeds through perturbation theory, which for the metric of interest is developed for
both scalar and gravitational cases, showing that in both situations the radial equation takes
the form of a confluent Heun equation. The determination of quasi-normal modes (QNMs)
is of immeasurable astrophysical relevance, motivated by the detection of gravitational waves
by the LIGO and Virgo collaborations. For the Schwarzschild metric, their determination via
the WKB method is presented. For the Ellis wormhole, it is proposed to proceed through the
method of isomonodromic deformations. The equations that ensure isomonodromy form an
integrable system and guarantee the existence of the fifth Painlevé transcendent, 7. Starting
from the expansion given by Jimbo, the Riemann—Hilbert problem is addressed and solved,
culminating in an expression for the QNMs.

Finally, it is shown that the equations for both perturbations can be interpolated. The
potential is obtained after a Schrodinger-type transformation, and it is observed that it is
strictly positive and does not admit bound states with positive real frequency, which does not
rule out the possibility of obtaining decaying states with imaginary frequency that decrease
exponentially in time, provided the imposed boundary conditions are respected. Subsequently,
results obtained numerically using the isomonodromic method are presented. The development
concludes by arguing that the numerical results obtained will be fundamental for the future
search for QNMs for the Ellis wormhole, based on the success of the method already presented
in the literature in obtaining such modes for Kerr and Reissner—Nordstrom black holes, under
scalar, electromagnetic, and gravitational perturbations in the former case, and under scalar

and spinorial perturbations in the latter case.

Keywords: Wormhole. Perturbation. Isomonodromy.
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1 INTRODUCAO

O fascinio da humanidade pela estrutura celestial perdura por milénios. Na tentativa de
estabelecer uma ordem ao que se via e percebia surgiram as mais diversas explicacdes. O
primeiro protagonista nesse contexto a descrever de maneira satisfatéria e aparentemente geral
os fenémenos gravitacionais foi Isaac Newton em seus Principios Matematicos de Filosofia
Natural, ali propde que a gravidade é uma forca de interacdo universal que depende apenas
da massa dos corpos e do quadrado de sua distancia, explicando de maneira satisfatéria o
movimento dos planetas, dos satélites, dos cometas e das marés. Porém, seu trabalho encontra
dificuldades na descricdo do periélio de Mercurio. Tais dificuldades foram sanadas com a
publicacdo em 1915 das equagBes para o campo gravitacional por Albert Einstein (1I), nesse
contexto a gravidade deixa de ser vista como uma forca de interacao universal e passa a ser
tratada como uma consequéncia geométrica a presenca de massa e energia no espaco-tempo.
A proximidade do planeta Mercirio ao Sol faz com que sua trajetéria seja alterada, devido a
grande curvatura no espaco-tempo causada pela estrela, dando uma explicacdo resolutiva a
aparente anomalia.

As equacoes de campo de Einstein encontrariam a primeira solucao em 1916 e tdo logo
iriam se deparar com uma dificuldade que perdura e é palco de discussdes até hoje, a presenca
de singularidades no espaco-tempo, que no caso da solucdo de Schwarzschild (2)), uma delas é
intrinseca ao proprio espaco, nao podendo ser removida mesmo na extensdo analitica maxima.

Os buracos de minhoca surgem como uma tentativa de resolver o problema da singula-
ridade. Comecando pelo reconhecimento geométrico por Ludwig Flamm (3)) da estrutura de
“ponte” para a solucao de Schwarzschild, passando pela unido de duas folhas da regido exterior
do espaco-tempo de Schwarzschild por um buraco topolégico, proposto por Einstein e Rosen
(4)), seguindo pelo trabalho de Wheeler demonstrando a instabilidade de tal abordagem, che-
gando por fim ao acoplamento de um campo escalar a geometria do espaco tempo por Ellis (5))
e Bronnikov (), que tem por funcdo manter a “ponte” ou “gargalo” sempre aberto. Os bu-
racos de minhoca, dada sua propriedade resolutiva do problema da singularidade, tornaram-se
objetos de grande interesse, principalmente para a fisica tedrica e sua existéncia como objeto
astrofisico ainda é assunto de discussdo na comunidade cientifica e de intensa pesquisa, princi-
palmente devido aos problemas relacionados a estabilidade, tépico que sera tratado brevemente

na secao seguinte.
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1.1 A QUESTAO DA ESTABILIDADE

N3o é raro encontrar discussOes a respeito da relevancia fisica de certas solucdes matema-
ticas que aparecem no desenvolvimento de uma teoria. A relevancia fisica de um problema nao
depende apenas de sua boa consisténcia, solucoes matematicas bem comportadas podem dar
origens a situacdes consideradas nao fisicas. No contexto dos objetos gravitacionais em geral,
a estabilidade frente a perturbacdes garante a relevancia astrofisica do objeto em quest3o.

A questao da estabilidade de um sistema gravitacional mostra-se ainda mais fundamental
com a deteccdo das ondas gravitacionais pela colabora¢do LIGO e Virgo ([7)). Afim de que ondas
gravitacionais provenientes de um buraco de minhoca sejam detectadas por tais mecanismos
é necessario que ele nao colapse diante de perturbacdes que o acometam.

Os buracos de minhoca aparecem como solu¢Ges da equacdes de campo de Einstein. No
caso do buraco de minhoca de interesse da presente dissertacao, o de Ellis, ele é geodesicamente
completo e isento de singularidades, mas para que ele possua tais atributos é necessario o
acoplamento de um campo escalar a geometria do espaco-tempo, um campo denominado
de “fantasma”E] por possuir energia negativa, o que viola as condicdes padroes de matéria e
energia esperadas na relatividade geral.

A instabilidade de um buraco de minhoca suportado por um campo escalar fantasma, sob
perturbacdes lineares, foi demonstrada em (§8). No artigo mostra-se que o operador associado
as perturbacdes possui um modo instavel com energia negativa, que da origem a uma solucao
das equacdes de campo linearizadas que cresce exponencialmente com o tempo. O modo, da
forma como é apresentado no artigo, nao decorre da escolha particular de gauge, sendo um
resultado vélido para toda a familia dos buracos de minhoca suportados por um campo escalar
fantasma. Uma outra questdo é levantada a respeito da escala do tempo da instabilidade,
mostra-se que ele é da ordem do tamanho da “garganta” dividido pela velocidade da luz, ou
seja, muito pequeno. Sendo assim, a instabilidade levaria ou a um crescimento muito rapido
ou ao colapso do buraco de minhoca.

Em (9) mostra-se que buracos de minhoca estaticos e esfericamente simétricos suportados
por um campo escalar fantasma também s3o instaveis com respeito a flutuacdes ndo-lineares,
sendo que a escala de tempo da instabilidade concorda com o cenério linear exposto em ({8)).
Mostra-se também que a depender do formato da perturbac3o inicial o resultado final pode

variar, ou ocorre o colapso do buraco de minhoca formando um buraco negro ou ele expande

1 Veja (5).
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rapidamente.

A instabilidade para perturbacdes lineares e ndo-lineares da familia de buracos de minhoca
de Ellis-Bronnikov mostra que, embora tais geometrias sejam regulares e transponiveis E] a
sua nao subsisténcia por tempos relevantes limita a sua viabilidade astrofisica. A concordancia
das duas andlises ndo sé mostra a instabilidade mediante perturbacdes, mas que a prépria
geometria possui uma instabilidade que destrdi a estrutura do buraco de minhoca, diminuindo
sua relevanica no cenario observacional.

Espera-se que apds as discussdes “motivadoras” feitas acima o leitor nao encontre-se
desmotivado. Por mais que a instabilidade sobre perturbacdes lineares e n3o-lineares ja tenha
sido demonstrada para o buraco de minhoca de Ellis na teoria da gravidade de Einstein, a sua
relevancia permanece imensa, nao sé por ele ter sido o primeiro buraco de minhoca transponivel
da literatura, mas também pela riqueza analitica que ele traz as discussoes a respeito do papel

dos buracos de minhoca na Relatividade Geral e em teorias modificadas da gravidade.

1.2 O METODO ISOMONODROMICO

No contexto da analise de sistemas gravitacionais, como ja foi visto anteriormente, é
importante saber como o objeto em questao evolui ao ser perturbado linearmente por campos
das mais diversas naturezas (escalar, eletromagnético, espinorial, gravitacional).

Quando um sistema gravitacional é acometido por uma perturbacdo sua evolucdo pode
ser dividida em algumas etapas. Percebeu-se ap6s uma analise mais detalhada que, para certo
intervalo de tempo, denominado regime ringdown a frequéncia e o tempo de decaimento da
evolucao da perturbacdo n3o depende de seu tipo, apenas das caracteristicas fisicas do ob-
jeto gravitacional em questdao como a massa, momento angular e carga elétrica. Tais modos
caracteristicos ficaram conhecidos pelo nome de modos quase-normais, que se assemelham
aos modos normais observados em sistemas aclsticos, mas ndao mantém o perfil estacionario,
decaindo ao longo do tempo. Como os modos quase-normais dependem apenas das caracte-
risticas fisicas eles funcionam como uma espécie de assinatura astrofisica, permitindo através
da obtenc3o de informacdes de ondas gravitacionais por interferometros descrever um evento
no espaco-tempo.

A obtenc3do dos modos quase-normais aconteceu primeiro para o buraco negro de Schwarzs-

child por Vishveshwara (10) no estudo do espalhamento de ondas gravitacionais por um bu-

2 Veja
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raco negro de Schwarzschild. Neste trabalho, Vishveshwara, utilizando a teoria perturbativa
desenvolvida por Regge e Wheeler (11)), percebeu numericamente que, para certo intervalo de
tempo, a dinamica da perturbacdo é dominada por modos amortecidos que dependem apenas
da massa do buraco negro.

Dada a importancia que os modos quase-normais tem, por serem uma assinatura astrofisica
do objeto gravitacional, e pelos resultados obtidos para o buraco negro de Schwarzschild, o
estudo e a busca por modos quase-normais dos mais diversos sistemas virou palco central
na area de gravitacdo. Com o passar do tempo outros métodos foram desenvolvidos, como a
integracdo das equacdes perturbativas (12)), o método aproximativo WKB (13) e o método
da fracdo continuada por Leaver (14), que de todos é o mais bem sucedido.

O método isomonodrémico, que é o de interesse no presente trabalho, permite escrever ex-
pressoes analiticas para os modos quase-normais e também para o problema do espalhamento,
o que é de relevancia inestimavel. A possibilidade de obtencao de tais expressdes analiticas
ocorre pela conexdo que ha entre deformacdes isomonodrémicas em sistemas lineares e sis-
temas completamente integraveis. Tal conexao é feita através de mapas de Riemann-Hilbert
que permitem a escrita das propriedades de monodromia dos sistemas lineares associados a
equacao diferencial de interesse em termos dos transcedentes de Painlevé, cuja expansoes sado
conhecidas na literatura?

O método sera desenvolvido no capitulo [4]

3 Vejao apéndice



15

2 AS EQUACOES DE CAMPO DA RELATIVIDADE GERAL E SUA ESTRU-
TURA

O objetivo deste capitulo é introduzir ao leitor as principais ideias que levaram o fisico
alemdo Albert Einstein a postular em 1915 suas equacdes de campo, seguido das mais diversas
consequéncias advindas desta nova teoria da gravitacdo. Na sec3o 2.1 é feito um breve resumo
histérico das principais ideias e conceitos que foram utilizados na obtencao das equacdes de
campo. Na secdo 2.2 obtém-se as equacoes de campo seguindo um caminho euristico baseado
em (I5)). Na secdo 2.3 é obtida a primeira solucdo para as equacbes de campo através do
método das tetradas que é descrito no apéndice [A] junto com o método das coordenadas
como formas equivalentes de obter-se os objetos matematicos importantes, encerra-se com a
extensdo analitica maxima para a métrica obtida seguido do primeiro encontro com um buraco
de minhoca. Na secdo 2.4 é exposta a métrica de Ellis que corresponde ao buraco de minhoca
“transponivel” de interesse da dissertacdo. Na secdo 2.5 concluimos fazendo a caracterizacao

de um buraco de minhoca transponivel.

2.1 INTRODUCAO

Em 1915, o fisico alem3o Albert Einstein em seu revolucionério artigo Die Feldgleichungen
der Gravitation (l), apresenta ao mundo as equacdes de campo para o campo gravitacional.
Diferentemente do caminho que seguiu ao publicar os principios da relatividade especial em
1905 (116), Einstein ndo tentou modificar a gravitacdo newtoniana afim de torna-la compa-
tivel com essa ultima, ao invés disso, heuristicamente, buscou um caminho novo motivado
fortemente por duas ideias principais.

A primeira delas foi o principio da equivaléncia, que estabelece que todos os corpos sdao
influenciados pela gravidade, sendo assim, todos os corpos “caem” de maneira equivalente
em um campo gravitacional. O movimento dos corpos em um campo gravitacional independe
de sua natureza constitutiva, sendo assim, sua trajetéria da origem a um conjunto de curvas
preferenciais, de tal maneira que podemos associar as caracteristicas do campo gravitacional
a prépria estrutura geométrica do espaco-tempo, seguindo as ideias ja desenvolvidas anterior-
mente por Riemann sobre o comportamento de curvas em espacos nao-euclidianos.

O segundo conjunto de ideias que motivou Einstein, no desenvolvimento de suas equacdes

de campo baseia-se no principio de Mach. Ele estabelece que toda a matéria presente no
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universo deve contribuir para a nossa nocao local do que seria um movimento nao-acelerado e
néo—rotacionaE]. Sendo assim, o principio de Mach rompe com as nocdes de espaco absoluto
adotados na mecanica newtoniana, espaco esse que seria imutavel e indiferente a presenca da
matéria que o ocupa.

Inspirado por essas ideias, Einstein buscou formular uma teoria para a gravitacdo em
que a estrutura do espaco-tempo, pelo menos de maneira local, fosse afetada e modificada
pela presenca de matéria, alterando o comportamento de curvas preferenciais que possam ser
estabelecidas nesse espaco.

Assim, partindo do pressuposto de que o espaco-tempo é uma variedade diferenciavel, suas
propriedades intrinsecas sdo estabelecidas por sua métrica. No contexto da relatividade geral,
diferentemente do que ocorre na relatividade especial, a métrica nao precisa ser necessaria-
mente plana, tendo sua curvatura associada a distribuicdo local de matéria e energia, conforme
descrito pelo tensor de estresse-energia-momento no espaco-tempo.

Tendo esse conjunto de ideiais em mente, surge uma dificuldade ao tentar estabelecer a
ideia do que seria um observador inercial, pois no espaco-tempo curvo as geodésicas para a
métrica coincidem com a linhas de mundo de observadores em queda livre em um campo
gravitacional. A priori, ndo temos como isolar um observador ou corpo do campo gravitacional
devido ao principio da equivaléncia, sendo assim, ndo temos uma maneira direta de medir o
aspecto de “forca” do campo gravitacional. O caminho tomado é o de supor que n3o é possivel
construir uma familia de observadores inerciais, mesmo que por procedimentos complicados.
Sendo assim, n3o ha sentido em tratar o campo gravitacional como um campo de forca, mas

encara-lo como um aspecto do préprio espaco-tempo (15)).

2.2 O PRINCIPIO DA COVARIANCIA GERAL E AS EQUACOES DE CAMPO

A estrutura do espaco-tempo, dado pela relatividade geral, pode ser resumida da seguinte
maneira: O espaco-tempo é uma variedade MP| com uma métrica Lorentziana gf| definida
nela, sendo a curvatura da métrica relacionada a distribuicao de matéria no espaco-tempo

pelas equacdes de Einstein (18]).

1 Veja o capitulo 9 de (17).

2 Faz-se a requisicio de ser uma variedade de Hausdorrf, C™°, conectada e quadrimensional. A discussio
sobre o que é uma variedade é feita no Apéndice .

Uma métrica Lorentziana é caraterizada por possuir assinatura +2 (ou (-2) dependendo da conven¢do
adotada) e ser ndo-degenerada.
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Ha dois principios que norteiam as leis da fisica na teoria da relatividade, que sao:

1) Principio da covaridncia geral que estabelece que nas equacdes da fisica, a métrica e
quantidades que podem ser derivadas dela devem ser as (nicas grandezas do espaco-tempo
que podem estar presentes.

2) As equacdes das leis da fisica na relatividade geral devem reduzir-se as equac¢des das
leis da fisica na relatividade especial quando a métrica for plana.

A partir disso, o Ultimo passo seria obter, com a ajuda de todas as consideracdes feitas,
as equacdes do campo gravitacional. O procedimento exposto abaixo segue a argumentacdo
do livro do Wald (15).

Ha um paralelo que pode servir de guia nesse processo de desenvolvimento, que seria
estabelecer uma relacdo entre a aceleracio de maré da teoria da gravitacio Newtoniand’| e a
aceleracao de maré na relatividade geral. Na teoria Newtoniana, o campo gravitacional pode
ser descrito por um potencial ¢, que satisfaz a equac3o de Poisson V2¢ = 4mp. Utilizando
o potencial ¢, temos a seguinte expressao para a aceleracdo de maré para duas particulas
préximas na teoria Newtoniana: —(iﬁ)ﬁ¢ ja na relatividade geral a aceleracdo é dada pela
equacdo do desvio geodésico (ideia de que geodésicas inicialmente paralelas ndo permanecerdo

assim em um espaco curvo) — R, “v°z’v?, em que R, % é o tensor de Riemann, responsével

C
por descrever como a curvatura do espaco se comporta em todas as direcoes em torno de
um ponto. A notacdo tensorial aqui adotada é a mesma que em ([15), em que letras latinas
indicam indices "abstratos” (independentes de um sistema de coordenadas especifico) e letras
gregas para indices indicam as componentes da quantidade geométrica em questdo em um

determinado sistema de coordenadas. O tensor de Riemann pode ser definido através da nao

comutatividade do operador derivada natural associado a métrica da seguinte forma:

(Vavb - vaa)li'c = Rabcd/’fd (2.1)

Sendo assim, podemos fazer uma correspondéncia do seguinte tipo:

Rcbdavcvd > 8baa¢ (22)

4 A aceleracio de maré diz respeito a variacio na forca gravitacional experimentada pelas diversas partes

de um corpo extenso. Como a forca varia com o inverso do quadrado da distancia, partes do corpo mais
préximas estariam sob uma maior intensidade que partes mais distantes.
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Podemos também, motivados pela ideia de relacionar a distribuicdo de massa e energia ao
campo gravitacional, buscar uma correspondéncia entre a equacdo de Poisson (V?¢ = 47p)
na teoria Newtoniana (que associa p a ¢), com as propriedades de energia e matéria na
relatividade geral que sdo descritos pelo tensor energia-momento 7}, . A partir disso podemos
fazer a associacdo descrita logo abaixo, sabendo que 7., v%1® no contexto relativistico é a

densidade de energia medida por um observador com uma 4-velocidade v*:

T, v > p (2.3)

a

O que sugere a correspondéncia: R, ,“v°v? = 47T, ,v°v%, levando a seguinte equac3o para
o campo gravitacional: R, = 47T, . Porém, formulada dessa maneira, as equacdes de campo
apresentam sérios problemas e afim de evitar um conflito entre a conservacao local da energia

(V°T,; = 0) e a identidade de Bianchi contraida (V*(R.; — 39.4R = 0 devemos ter:

C

1

Que é a equacdo de Einstein para o campo gravitacional exposta em seu seminal artigo

(I). Aqui considera-se o sistema natural de unidades em que temos a velocidade da luz ¢ = 1.

2.3 A SOLUCAO DE SCHWARZSCHILD

Essencialmente, o ponto de partida para uma possivel solucdao da equacdo de campo de
Einstein seria a situacdao mais simples possivel. A lei da gravitacdo universal newtoniana tem
dois importantes aspectos a cerca de sua estrutura, ela é esfericamente simétrica e estatica.
Sendo assim, podemos imaginar que a situacao mais simples em que podemos buscar uma
solucdo para as equacdes de campo de Einstein (motivados pelo sucesso obtido em formular
as equacdes de campo a partir de analogias com a gravitacdo Newtoniana) também seria o
caso do campo gravitacional externo de um corpo esfericamente simétrico e estatico.

A solucdo das equacSes de campo de Einstein para esse caso foi obtida por Karl Schwarzs-

child em 1916 (2)), apenas alguns meses apds a publicacdo por Einstein de suas equacdes de

5 Veja a propriedade 4 do tensor de Riemann no Apéndice |Al e a equacio
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campo no vacuo. Tendo a solugdo de Schwarzschild (como ficou conhecida) em m3os foi pos-
sivel fazer um grande nimero de predicSes que viriam a ser confirmadas experimentalmente.

Através da solucdo de Schwarzschild também foi possivel prever que determinados corpos
suficientemente massivos ndo sdo capazes de evitar um eventual colapso gravitacional total,
criando em sua vizinhanca um campo gravitacional tdo intenso que nem mesmo a luz consegue
“escapar” dele (a velocidade de escape necesséria para sair de tal regido é superior a velocidade
da luz). Esses corpos foram popularizados com o nome de buraco negro pelo fisico norte
americano John Wheeler através de uma série de palestras, artigos e textos académicos da
década de 60. Embora o estado final do colapso gravitacional completo de um corpo celeste
sé tenha sido entendido de maneira mais expressiva com a Relatividade Geral, Laplace em seu
célebre livro Exposition du Systéme du Monde, conjecturou (sem prova) que a forca atrativa
de um corpo poderia ser tdo grande que a luz (utilizando o modelo corpuscular proposto
por Newton) n3o conseguiria escapar dele, sendo assim, os corpos celestes mais massivos do
universo seriam invisiveis a nds e apenas percebidos devido a sua atracdo gravitacional a outros
corpos préximos. Para uma traducdo ao inglés da exposicdo de Laplace veja o apéndice A de
(18).

A obtencdo da solucdo de Schwarzschild foi de importancia impar na histéria e futuros
desenvolvimentos da relatividade geral. As equacdes de Einstein formam um sistema acoplado
de equacdes diferencias parciais ndo-lineares de segunda ordem para os componentes da mé-
trica, sua estrutura é t3o robusta que o préprio Einstein duvidava que alguém fosse capaz de
encontrar uma solucdo algum dia (19)). A obtenc3o da primeira solucdo alguns meses apés o
conhecimento das equacoes de campo abriu as portas para o que viria a ser um dos ramos

mais frutiferos da fisica moderna e contemporanea.

2.3.1 Derivacao da solucdo

A derivacdo da solucdo de Schwarzschild exposta nesta subsecdo tem por base o procedi-
mento seguido no livro do Wald (15).

Como dito no inicio da subsecdo, estamos interessados em determinar a solucao das equa-
cOes de campo de Einstein para o caso que aparenta ser o mais simples possivel, quando a
métrica é estatica e esfericamente simétrica. Assim, antes de prosseguirmos com a derivacao,
faz-se necessario definir brevemente de uma maneira mais precisa o que significam os termos

“estatico” e “esfericamente simétrico”.
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Um espaco tempo é dito estatico se ele é estacionario (Um espaco tempo estacionario é
um que possui um campo vetorial de Killing tipo tempo. Um campo vetorial de Killing é um
campo que satisfaz a equacdo de KiIIingﬂ e permite a identificacdo das isometrias da métrica)
e se possui uma hipersuperficie tipo espaco que seja ortogonal as érbitas da isometrid’|

Dizemos que um espaco é esfericamente simétrico se seu grupo de isometrias contém um
subgrupo que é isomérfico ao grupo SO(3), e as érbitas desse subgrupo sdo topologicamente
esferas bidimensionais S2.

A métrica para um espaco tempo estatico e esfericamente simétrico arbitrario tem a se-

guinte formd}

ds? = —f(r)dt® + h(r) dr? + r2(d6* + sin 20 d¢?) (2.5)

O trabalho em encontrar a solucdo para as equacoes de campo agora, pode ser resumido
da seguinte maneira: calcular o tensor de Ricci e determinar as duas funcdes f e h. Para
isso podemos usar qualquer uma das duas abordagens descritas no apéndice [A] do presente
trabalho. Faremos a escolha pelo método das tetradas, o leitor interessado pode encontrar a
solugdo de Schwarzschild através do método das coordenadas no livro do D'Inverno(17) ou no
artigo original do Schwarzschild(2).

Sendo assim, o primeiro passo é escolher uma base ortonormal conveniente, em seguida
encontrar as relacdes da equacdo |A.23] utiliza-las para encontrar as 1-forma de conexdo,
encontrar o tensor de Riemann através das 1-forma de conexdo seguindo a equacdo |A.21]
encontrar o tensor de Ricci através da contracdo do tensor de Riemann e por fim determinar
as funcdes f e h através das equacdes de campo.

Uma base coveniente para a métrica apresentada é:

(€p)a = f2(dt), (2.6a)
(e1)a = h2(dr)a (2.6b)
(€3)a = r(df)a (2.6¢)
(e3)a = rsinf(de), (2.6d)

V(&) = 0.

Veja por favor os apéndices B e C do livro do Wald (15)).

A métrica toma a forma indicada em um sistema de coordenadas cuja escolha pode ser consultada pelo
leitor nas paginas 120 e 121 do capitulo 6 do livro do Wald (15]).

8
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Escolhida a base, basta seguir o caminho citado acima, os detalhes serdo omitidos e o leitor
interessado neles é convidado a consultar o livro do Wald (15). Procedendo dessa maneira,

obtemos os valores abaixo para o tensor de Riemann:

Ruor = 1R 2 ) ) (dt) (272)
Rue = 72071 £/(d0) 0(dt )y (2.7b)
Rz = 7207 f/sin 0(dg) u(dt)y (2.7¢)
Rupio = h7321 (dr)1(d0)y (2.7d)
Rz = sin 0h =21/ (dr) o (do)y (2.7¢)
Rypas = 2(1 — b7 1) sin6(d6) o (do)y 2.7f

Com o tensor de Riemann em maos podemos computar o tensor de Ricci através da

equacdo[A.22] e finalmente, apds igualar o resultado a zero, obtemos as equacdes de Einstein:

0= Rog = 3 (FR) 2L U(FR) 25+ (rf ) f (282)
0= Ry =~ (FR) 2GR 2]+ () (2.8b)
0= Rpp =~ (rfh) ™' 4+ S (B W 1720 — ) (2.8¢)

Agora que ja foram obtidas as equacGes de Einstein, podemos utiliza-las para descobrir o

valor das funcdes f e h. Os resultados s3o:

f=1+ S (2.9a)

h = (1 + f>_1 (2.9b)

Em que C' é uma constante que pode ser determinada ao comparar o movimento de um
corpo de teste na solucdo de Schwarzschild no regime de campo fraco ao movimento de
um corpo de teste na gravitacdo Newtoniana, ou seja, fazendo uma anélise do caso limite.
Fazendo isso, chega-se a conclusdo de que —C'/2 pode ser interpretada como a massa total

M do campo de Schwarzschild. Assim, a forma final da solucdo é:

2M oM\
ds? = — (1 — > de? + (1 — ) dr? + r?(d6? + sin 20 d¢?) (2.10)

r T
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A equacdo [2.10] é conhecida como solucdo de Schwarzschild.

Podemos notar de imediato que no limite »r — oo a métrica se reduz a de Minkowski em
coordenadas esféricas, ou seja, a métrica de Schwarzschild é assintoticamente plana, significado
que longe da fonte do campo gravitacional o espaco n3o se curva. O que é esperado ja que
a curvatura do espaco-tempo na teoria da gravidade de Einstein é gerada pela presenca de
matéria e energia.

Olhando com um pouco mais de cuidado para o resultado obtido, percebemos que existe
um problema para r = 0 e r = 2M, indicando a presenca de singularidades para a métrica
obtida. A existéncia destas singularidades trouxe dividas quanto aos limites fisicos da teoria,
e a resolucdo de tais dlvidas veio a surgir duas décadas depois. Essa questdo sera tratado a

seguir.

2.3.2 A extensdao de Kruskal e o buraco de minhoca de Shwarzschild

Dadas as singularidades em r» = 0 e = 2M para a métrica de Schwarzschild, a pergunta
mais importante a ser feita é se elas aparecem devido a escolha do sistema de coordenadas
ou se sao singularidades intrinsecas de um espaco-tempo estatico e esfericamente simétrico.
Se for o caso da primeira alternativa basta encontrar uma transformacdo para outro sistema
de coordenadas que elimine as singularidades, tornando o espaco geodesicamente completcﬂ
Caso elas sejam singularidades intrinsecas, independente das transformacdes de coordenadas
que forem feitas, elas continuardo presentes e podem apresentar um limite fisico para a teoria.

O estudo das regides demarcadas por r = 0 e r = 2M para a solucido de Schwarzschild
no vacuo sé faz sentido caso estejamos analisando o estagio final do colapso gravitacional
de um corpo suficiente massivo, isso porque, caso estivermos nos referindo, por exemplo, a
uma estrela, ambas as regides estardo em seu interior, ndo caracterizando assim uma solucao
de vacuo. Dito isto, considerando o caso do estagio final de um colapso gravitacional, uma
maneira de saber o comportamento da solucdo para as regides descritas é através do célculo
do invariante de Kretschmann dado por R = R, R%“?, como se trata de um escalar ele n3o
é afetado pela escolha do sistema de coordenadas. Calculando o invariante de Kretschmann

para a métrica de Schwarzschild temos o seguinte:

9

Diz-se que uma variedade é geodesicamente completa quando todas as geodésicas que emanam de um
ponto podem ser extendidas a valores infinitos de seus parametros afins, em ambas as direcGes.
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A8M?
R = G (2.11)
Analisando o resultado obtido, percebemos que se » = 2M temos R = 3/4M4, ou

seja, um valor finito, ja se » — 0 o resultado para o invariante de Kretschmann diverge
R — o0. Isso indica que as singularidades descritas sdo de naturezas distitas, a singularidade
em r = 2M é advinda da escolha do sistema de coordenadas (podendo ser removida através
de uma transformac3o adequada deste), j& a singularidade em r = 0 é prépria de um espaco
estatico e esfericamente simétrico para a teoria da relatividade geral de Einstein. De maneira
mais rigorosa, a andlise da natureza de uma singularidade nao é tdo simples assim, existem
singularidades do espaco-tempo em que o invariante de Kretschmann nao diverge. A tarefa
de formular de maneira precisa uma definicdo para “singularidade” ndo é trivial e foge ao
escopo deste trabalho, o leitor interessado é convidado a consultar as dicussdes no capitulo
9 do Wald(15)) ou do capitulo 8 do Hawking-Ellis(18). A figura abaixo esboca um grafico do

comportamento de R para a métrica de Schwarzschild:

Figura 1 — Comportamento do invariante de Kretschmann.

Fonte: Elaborada pelo autor.

Feitas essas consideracGes, o proximo passo € buscar um sistema de coordenadas adequado
em que a singularidade em r = 2M n3o esteja presente. O desenvolvimento que se segue tem
por base o realizado no livro do Wald (15)).

Em duas dimensGes ha uma forma de evitar singularidades advindas da escolha do sistema

de coordenadas, aproveitando caracteristicas da geometria do préprio espaco ao escolher o
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sistema. Localmente, geodésicas nulas, em duas dimensdes, podem ser divididas em duas clas-
ses, geodésicas de “saida” e geodésicas de “entrada”. Sendo assim, podemos usar coordenadas
“nulas”, a primeira sendo constante ao longo das geodésicas de “entrada”, a segunda sendo
constante ao longo das geodésicas de “saida”. A métrica de Schwarzschild é quadrimensional,
mas dada sua simetria esférica apenas as partes temporal e radial sdo relevantes na anélise da

singularidade em r = 2M . Dessa forma, temos o seguinte:

M M\
ds* = — (1 — 2) dt* + (1 — 2) dr? (2.12)

T r

E a partir disso podemos aplicar o procedimento geral. O passo-a-passo é exemplificado
em (I5)) para a métrica de Rindleﬂ que é utilizada no contexto da relatividade geral para
a descricao de um movimento uniformemente acelerado, dada a sua forma em duas dimen-
sdes: ds? = —22dt? 4 da?, ela apresenta também uma singularidade aparente para z = 0,
permitindo uma analogia com a singularidade em r = 2M da métrica de Schwarzschild. Para
encontrar as geodésicas nulas o ponto de partida advém de aplicar a condicao nula para a

métrica reduzida (2.12)):

0= g,6%" = —(1 —2M/r)f* 4 (1 — 2M /r)i* (2.13)

Assim, as geodésicas nulas satisfazem:

t = +r. + constante (2.14)

Sendo r, a famosa coordenada tartaruga de Regge-Wheeler, definida por:

,
. = 2MIn| — —1 2.15
r r+ n<2M ) ( )

Feito os procedimentos necessarios a métrica toma a seguinte formd™}
32M3e~r/2M

ds® = — dU dV (2.16)

Perceba que a métrica obtida ndo mais apresenta singularidade para r = 2M (a singu-
laridade em r = 0 n3o desaparece porque ela é de natureza fisica, o que pode ser atestado

através da divergéncia do invariante de Kretschmann R, ,R%°?). Uma (ltima transformacio

abc

10 Uma resolucdo alternativa pode ser encontrada no capitulo 3 de (20).
11 —u R
U=—emr|V=ei u=1t—1,0=1=1+T1,.
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de coordenadas é necessaria para deixar a métrica no formato apresentado por Kruskal em seu

artigo de 1960(21)). Fazendo T'= (U +V)/2 e X = (V — U)/2 temos:

- 32M3€—r/2M
r

ds (—dT? + dX?) + r?(d6? + sin 6% d¢?) (2.17)

Sendo as relagdes entre as coordenadas antigas (t,r) e as novas (7', X) dadas por:

r/2M
reQM _or2M _ x2 (2.18a)
S = (T 4+ X) ~ In(T — X) = 2tanh ™ (T/X) (2.18b)

Através das relacoes expostas acima é possivel desenhar um diagrama de espaco-tempo
para a extensdo de Kruskal afim de realizar uma anélise visual de sua estrutura causal. O
diagrama pode ser dividido em quatro grandes regiGes, de naturezas semelhantes, porém

distintas, veja:

-~ r = constante

— t = constante

Figura 2 — Diagrama de Kruskal para a extens3o analitica maxima da métrica de Schwarzschild.

Fonte:(22).

Na figura estdo indicadas hipérboles representando valores constantes de r e linhas radiais
passando pela origem, representando valores constantes de ¢. A regido | corresponde a regiao
r > 2M para o espaco-tempo de Schwarzschild, estdo representados cones de luz em azul
e a trajetéria de um observador em verde, perceba, ao analisar a interseccdo do cone de luz
com a reta r = 2M, que apds adentrar a regido |l o observador ndo pode mais escapar,
caindo inevitavelmente na singularidade em X = (T — 1)'/2. A regido Il é um buraco negro.
A regido Il é semelhante a regido Il, com a diferenca que a singularidade, posicionada em

X = —(T? — 1)Y/2, encontra-se em seu “passado”, sendo assim, qualquer observador na
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regidao Ill tem origem na singularidade, esta regidao é conhecida por buraco branco. A regiao
IV apresenta as mesmas propriedades da regido |. Se voltarmos a metrica de Kruskal(2.17),
fazendo T = constante, suprimindo um grau de liberdade rotacional (§ = 7/2) e procedendo
com uma imersdo (embedding) em um espaco euclidiano com métrica cilindrica, obteriamos

algo semelhante a figura abaixo:

Figura 3 — O buraco de minhoca de Schwarzschild

Fonte: Gravitation (23)), p.837.

Que ficou conhecido como buraco de minhoca de Schwarzschild. Ele é responséavel por
conectar duas regides assintoticamente planas do mesmo universo (ou de universos diferentes
a depender do contexto), como as regides | e IV representadas no diagrama de Kruskal.
Embora, matematicamente previsto a conexdo entre as duas regides, a realidade fisica de tal
objeto ainda é palco de discussdo, como foi exposto no capitulo [Ij A comunicacdo entre as
regioes | e IV é impossivel, uma hipersuperficie tipo tempo que ligue as duas regioes passando
por T' = X = 0 nado é estatica, dada a mudanca de caracteristica das translacdes temporais
(deixam de ser “tipo tempo” e passam a ser “tipo espaco” nas regides Il e lll), a consequéncia
disto é que a “garganta” se forma, expande e colapsa t3o rapidamente que nem mesmo um
sinal de luz conseguiria atravesa-la. Isso possibilita que a causalidade n3o seja violada. O leitor

interessado nas discussdes a respeito da causalidade pode consultar (24).

2.4 O BURACO DE MINHOCA DE ELLIS

Embora a solugdo de Schwarzschild, exibida na equagdo [2.10} tenha uma relevéncia imensa
dada que foi a primeira solucdo encontrada para as equacdes de campo ela possui uma limita-
¢do que, mesmo em sua extensdo analitica méxima feita por Kruskal (21)) (exposta na subsecdo
anterior), torna-a insatisfatéria na representacdo de um modelo de particula para a relativi-

dade geral, que é o fato dela ndo ser geodesicamente completf_z-] devido a sua singularidade

12" Veja a nota de rodapé@
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de espaco-tempo na origem. O fato da métrica de Schwarzschild ser geodesicamente incom-
pleta impossibilita que se dé uma histéria completa as particulas materiais e raios de luz que
eventualmente encontrem a singularidade.

Em seu seminal artigo “The particle problem in the General Theory of Relativity”(4),
Einstein e Rosen propdem uma forma de circunvizinhar o problema encontrado na métrica
de Schwarzschild. Eles estabelecem um modelo do espaco-tempo formado por duas “folhas”
idénticas e com a particula sendo representada por uma “ponte” (buracos topoldgicos) que
conecta as duas folhas. A proposta de Einstein e Rosen n3o encontra singularidades em seu
caminho, mas carrega outros problemas consigo, o fato da métrica utilizada ser degenerada (o
determinante da métrica se anula na “garganta”) e geodesicamente incompleta (hd geodésicas
completas na métrica de Kruskal que ndo estdo presentes na construcdo de Einstein-Rosen).

Homer Ellis, em seu artigo de 1973 (b)), na tentativa de encontrar um espaco satisfatério
para descricao de um modelo de particula, propos que o acoplamento de um campo escalar
fantasme{lzl a geometria do espaco-tempo retornaria um espaco-tempo estatico, esfericamente
simétrico, geodesicamente completoEe sem horizonte de eventos, com um buraco topolégico
em seu centro que ele nomeou de "“sumidouro” (do inglés drainhole) afim de n&o ser confundido
com a ponte de Einstein-Rosen ou o buraco de minhoca de Kruskal-Fronsdal. A presenca do
buraco topoldgico permite com que as geodésicas de tipo tempo, que poderiam representar
as linhas de fluxo de um fluido, ndo terminem de maneira abrupta. Sendo assim, o modelo
proposto por Ellis supera as dificuldades encontradas por Schwarzschild, Kruskal e Einstein-
Rosen.

O elemento de linha geral para o sumidouro tem a seguinte forma:

ds® = —dt* + [dp — f(p) dt]* + r*(p)[d6* + sin 20 d¢?] (2.19)

Com os intervalos de coordenadas dados por:

—0o<t<oo,—o<p<o0, <<, —T<Pp<T

E uma geometria dinamica, suportada por um campo escalar sem massa com energia

cinética negativa e a funcdo f e a funcdo ndo-negativa r s3o determinadas através das equacdes

13O campo escalar é a estrutura adicional que permite manter a singularidade de Schwarzschild “aberta”.
14 Veja por favor a secdo VIII do artigo (5).
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de campd™

Na secdo VIl de (b)), sdo descritas todas as variedades que tém por solucdo o elemento de
linha geral para o sumidouro. No presente trabalho estamos interessados em analisar os coefi-
cientes de monodromia da equacao radial obtida depois da perturbacdo escalar e gravitacional
do que ficou conhecido por “buraco de minhoca de Ellis’E], que leva esse nome por ser um
caso especial do elemento de linha geral para o sumidouro, especificamente, o caso |ll descrito
na secdo VIl do artigo, em que um parametro m que pode ser interpretador como a massa do
buraco de minhoca é tomado como zero (as solu¢cdes com m diferente de zero tem a forma
assintética de um buraco negro de Schwarzschild com massa m). O elemento de linha para o

buraco e minhoca de Ellis tem o seguinte formato:

ds? = —di? + dr? + (1?4 b?)(d6? + sin %0 d¢?) (2.20)

Possuindo regides assintoticamente planas em r — +o0o , separadas, mas transponiveis
(veja a discussdo sobre os critérios para a transponibilidade por um buraco de minhoca na
subsecdo|2.5)), representando os dois lados do buraco de minhoca. Os intervalos de coordenadas

sao dados por:

—o<t<oo,—o<r<oo,0<f<m,—nT<op<m

Os angulos sdo os usuais das coordenadas esféricas e as superficies com r e ¢ constantes sdo
esferas de raio p = v/r? + b2. Diferentemente do que temos para o espaco plano, a coordenada
radial r pode assumir valores negativos, ja que a parte esférica ndo se anula quando r tende
a zero. Pelo contrério, o sistema possui um tamanho natural minimo dado por p = b, que
representa a “garganta” do buraco de minhoca. A “garganta” é responsavel por conectar duas
regides cuja métrica em seu limite assintético (r — +oo) toma a forma do espaco plano de
Minkowski.

Na subsecdo a seguir serdo feitas breves discussdes sobre as principais caracteristicas dos
buracos de minhoca e serd apresentada, baseado em (25)), uma métrica geral que representa

uma classe de buracos de minhoca transponiveis segundo os critérios a serem descritos.

15 Na secdo VI do artigo, (B), é justificado a escolha do acoplamento do campo escalar e a respectiva equacio
de campo.
16 Veja também (6)).
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2.5 CARACTERISTICAS GERAIS DE UM BURACO DE MINHOCA E A CLASSE ESPECIAL
DOS BURACOS DE MINHOCA TRANSPONIVEIS

O termo “buraco de minhoca”, assim como o termo “buraco negro” foi originalmente
proposto por John Wheeler em um artigo com coautoria de Charles Misner, nomeado Classical
Physics as Geometry (26]), mas sua aparicdo no contexto da Relatividade Geral pré-data até
mesmo os buracos negros. Um ano apés a publicacao de Einstein de suas equacbes de campo,
o fisico Austriaco Ludwig Flamm reconheceu que a solucdo de Schwarzschild obtida alguns
meses antes representava uma ponte entre duas regides do espaco-tempo (3)), através de
um diagrama que ele fez em seu artigo ligando o horizonte de eventos do buraco negro de
Schwarzschild ao anti-horizonte do buraco branco.

No contexto da Relatividade Geral, um buraco de minhoca se refere a solucGes das equacdes
de campo de Einstein que possuem a caracteristica de ligar duas regides distintas do espaco-
tempo, distantes ou n3o, ou até mesmo regides entre universos diferentes. Podemos classificar
os buracos de minhocas em dois grandes grupos, transponiveis ou ndo-transponiveis. O buraco
de minhoca de Schwarzchild, por exemplo, se encontraria no grupo dos n&o-transponiveis por
algumas razdes especificas, entre elas esta o fato do buraco de minhoca de Schwarzschild
ser dindmico e possuir um movimento de expans3o da “garganta” de um tamanho nulo até
um tamanho maximo, conectando duas regides, seguido de uma contracdo do tamanho da
garganta até que as duas regides fiquem novamente desconexasF_7]. Esse processo acontece de
maneira t3o rapida que mesmo que fosse possivel a um observador mover-se na velocidade da
luz ele seria pego no meio do caminho pela contracdo (23)).

Em um artigo de 1988 (25)), Kip Thorne e Michael Morris propde a utilizacdo dos buracos
de minhoca transponiveis como objeto para o ensino de Relatividade Geral basica. S3o citadas
as propriedades desejaveis principais que os buracos de minhoca transponiveis devem possuir,

listadas abaixo:

1. A métrica deve ser esfericamente simétrica e estatica;

2. A solucdo deve possuir uma “garganta” que conecte duas regiGes que em seu limite

assintético sejam planas;

3. N3o deve haver horizontes, para que a viajem de dupla via (“ida” e “volta") seja possivel.

17 Diagramas representativos e uma discuss3o sobre esse processo podem ser encontrados no capitulo 31 da
seco 6 de (23).
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Esses sdo os critérios basicos que um buraco de minhoca transponivel deve possuir (o pri-
meiro foi posto apenas para simplificar os célculos no artigo). Outras caracteristicas nomeadas
de “critérios de usabilidade” s3o citadas no artigo com o intuito de discutir quais outros fato-
res seriam importantes e relevantes para permitir a passagem “confortavel” de seres humanos,
mas como os critérios ndo s3o relevantes na presente dissertacdo eles foram omitidos.

O elemento de linha geral de um buraco de minhoca que satisfaca as propriedades citadas

acima tem o seguinte formato (25):

b —1
ds? = —e2® d¢? + d/? (1 — z) + 12(d6? + sin 20 d¢?) (2.21)

Em que ® = ®(l) e b = b(l) sdo funcdes arbitrarias de . b(l) recebe o nome de “funcio
de forma” pois é responsavel por determinar o formato do buraco de minhoca e a funcio ®(/)
recebe o nome de “funcdo de desvio para o vermelho” por determinar o desvio para o vermelho
gravitacional. O leitor atento deve ter visto o que parece ser uma singularidade para [ = b,
mas nao passa de uma singularidade aparente, removivel com uma adequada transformacao
de coordenadas.

Sendo assim, o buraco de minhoca que estamos interessados em analisar no presente
trabalho, representado pelo elemento de linha dado na equacdo [2.20] é transponivel segundo
os critérios expostos acima. De tal forma que, feitas as transformacdes corretas podemos
colocar no formato do elemento de linha [2.21] Tomando 72 = 2 — b? ficamos com:

AN
ds? = —dt? + dr? (1 — z2> + (r? 4 b*)(dH* + sin0 d¢?) (2.22)

Comparando a equacdo acima com [2.21| percebemos que para o buraco de minhoca de
Ellis s3o feitas as transformacdes: b(l) = b*/l e ®(I) = 0 que reforca o caréter ultra-estitico
da métrica.

No préximo capitulo, utilizando os métodos explorados no apéndice [A] serdo obtidas as
quantidades geométricas de interesse para a métrica do buraco de minhoca de Ellis, incluindo
o tensor de Einstein, tanto para o caso em que nao ha perturbacdo na métrica, quanto para o
caso em que ha perturbacao que leva-a a um desvio da métrica ndo perturbada. Em ambos os
casos mostraremos que a equacao diferecial obtida através do operador de Laplace-Beltrami
é separavel em uma parte radial e uma polar, resultando na equacdo de Heun cuja descricao

e estudo de suas particularidades serd exposta no capitulo [4]
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2.6 CONCLUSAO

O presente capitulo buscou estabelecer um caminho heuristico dos pontos de partida e
das principais ideias que levaram Einstein a obter em 1915 suas equacbes de campo, até
chegar na discussao de uma das consequéncias mais notaveis que podem ser obtidas de suas
equacdes: os buracos de minhoca. A exposicdo foi feita buscando garantir o encadeamento
e a sequéncia légica das ideias que levaram a métrica de Ellis em 1973(5]), motivada pelos
problemas apresentados pela métrica de Schwarzschild, Einstein-Rosen e Kruskal, finalizando
com a exposicdo de que o buraco de minhoca de Ellis faz parte da classe dos buracos de
minhoca transponiveis segundo os critérios apresentados. Como discutido, a existéncia fisica
de buracos de minhoca como objetos astrofisicos ainda carece de evidéncia observacional,
e os resultados tedricos obtidos apontam no sentido de que uma grande classe deles sdo
instaveis, enquanto uma outra grande classe sé existe em condicdes extremas, no entanto,
o estudo da Relatividade Geral a partir dos buracos de minhoca é ainda um campo fértil de
pesquisa. Além de seu interesse intrinseco como solucdes exatas ou aproximadas das equacoes
de Einstein, os buracos de minhoca tém servido como arenas conceituais fundamentais para
o teste de hipoteses. Sua relevancia extrapolou o dominio da Relatividade Geral, alcancando
um papel central nas tentativas de se compreender a gravidade quantica e os fundamentos da
informacdo quantica. Em especial, a conjectura ER = EPR, proposta por Maldacena e Susskind
(27)), sugere que conexdes tipo buraco de minhoca podem ser manifestacdes geométricas do
entrelacamento quantico.

Sendo assim, os buracos de minhoca podem servir de ponte de didlogo entre areas de

grande interesse na fisica moderna.
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3 TEORIA DA PERTURBACAO NO CONTEXTO DA RELATIVIDADE GERAL

A teoria da perturbacido na fisica se faz presente no mais diversos contextos e fornece
ferramentas para “atacar” problemas que de outra forma encontrariam dificuldades em serem
abordados. A proposta do presente capitulo é tratar justamente disso e apresentar os resultados
pertinentes da teoria aplicada a métrica de Ellis e Schwarzschild. Na secdo 3.1 é feito uma
introducdo da importancia da teoria da perturbacdo na relatividade geral, trazendo resultados
observacionais recentes que se alinham com predicdes feitas pela teoria. Na secdo 3.2 s3o
apresentadas as duas principais abordagens no contexto da relatividade geral, a de Regge-
Wheeler e a de Newman-Penrose. Na secao 3.3 sdo apresentados os principais resultados
da teoria para a métrica de Schwarzschild, mostrando que tanto para perturbacles axiais,
quanto para perturbacdes polares as equacdes diferenciais resultantes s3o separaveis e que
os resultados de ambas as situacGes podem ser unificados em um sé, além disso também
sdo obtidos os MQN pelo método WKB. Na secdo 3.4 a teoria é explorada para a métrica de
interesse da dissertacdo, mostra-se que tanto no caso sem perturbacao métrica quanto no caso

com perturbacao que a equacdo diferencial resultante é uma equacdo de Heun confluente.

3.1 INTRODUCAO

A teoria das perturbacdes ocupa um papel central na formulacdo contemporanea da fisica
tedrica, constituindo uma metodologia indispensavel para abordar sistemas que ndo admitem
solucdes exatas ou cuja dinamica se torna mais compreensivel por meio de aproximacdes
em torno de soluces conhecidas. No contexto da Relatividade Geral, a aplicacdo da teoria
das perturbacdes a métrica do espaco-tempo permite investigar a estabilidade de solucdes, a
emissao de ondas gravitacionais e a estrutura dinamica de objetos compactos como buracos
negros e estrelas de néutrons.

A abordagem perturbativa em Relatividade Geral tem ganhado renovado interesse nos
dltimos anos, especialmente em virtude da recente confirmacao experimental da existéncia
de ondas gravitacionais, cujo primeiro registro direto foi realizado pelas colaboraces LIGO e
Virgo em 2015 (7). Tais observacdes revelaram oscilagdes caracteristicas provenientes da fusdo
de buracos negros e estrelas de néutrons, as quais se manifestam como modos quase-normais

(MQNs) — solucdes complexas das equacBes de perturbacdo linearizadas sobre métricas de
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fundo, cuja parte imaginaria representa o amortecimento das oscilacdes devido a emissdo de
radiacdo gravitacional.

Além de fornecer uma via concreta para a comparacao com observacoes astrofisicas, a
teoria das perturbacoes desempenha um papel conceitual essencial ao investigar a robustez
de solucBes da Relatividade Geral frente a pequenas flutuacdes. E nesse sentido que surgem
duas abordagens paradigmaticas: a formulacdo de Regge-Wheeler, que trata das perturbacdes
axissimétricas da métrica de Schwarzschild (1)), e o formalismo tetradico de Newman-Penrose
(28)), que generaliza o tratamento das perturbacGes para contextos onde o formalismo escalar
de Weyl se mostra mais vantajoso.

A importancia da andlise perturbativa se estende inclusive ao dominio especulativo da
gravitacdo tedrica, como no caso dos buracos de minhoca. Embora tais solu¢es ainda carecam
de suporte observacional, o estudo da estabilidade de métricas como a de Ellis (5) permite
investigar sob que condicdes topologias ndo triviais podem sobreviver a pequenas flutuacoes
gravitacionais. Como sera explorado neste capitulo, a anélise dos MQNs associados a métrica
de Ellis representa ndo apenas um exercicio tedrico relevante, mas também uma ponte entre
gravitacdo classica e abordagens mais modernas da fisica fundamental, incluindo propostas

envolvendo gravidade quantica.

3.2 AS PRINCIPAIS ABORDAGENS PERTURBATIVAS NA RELATIVIDADE GERAL
3.2.1 A abordagem de Regge-Wheeler

A abordagem de Regge-Wheeler (como ficou conhecida) exposta em (LI)), consiste em
perturbar diretamente os coeficientes da métrica através da equacdo de Einstein. A ideia é
utilizar a métrica de Schwarzschild como métrica de “fundo” e adicionar a ela a perturbacdo,
da seguinte maneira:

ny
Em que g, € a métrica perturbada, gW(O) é a métrica de Schwarzschild ndo perturbada e
h,, representa a perturbacdo. O interesse é em pequenas perturbacdes, de tal maneira que a
analise pode ser restrita a primeira ordem em £ ,,,.
O préximo passo apds estabelecida a forma da perturbacdo é aplica-la as equacbes de

campo, no caso da métrica exterior de Schwarzschild temos:
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Para o espaco perturbado as equacGes tomam a forma:

R, (9+h)=0 (3.3)

Negligenciando termos de ordem 2 e superiores, a equacao perturbada pode ser expandida

da seguinte maneira:

R, (9) +0R,,(h)=0 (3.4)

Em que 0R,, contém apenas termos de primeira ordem em h . A partir da equa¢do
percebe-se através de que as equacdes diferenciais que dizem respeito a perturbacdo siao

dadas por 0RR,. Dito isso, os termos 6, sdo dados pela férmula (29):

— B B
6R v _5F Nlj;ﬁ “I'_ 5F Mﬁ;” (35)

o

won

Em que “;" indica a derivada covariante e I'°,, s30 os simbolos de Christoffefl] A partir da
obtenc&o dos simbolos de Christoffel pode-se obter o tensor de Riemann [A.13] proceder com
a contracdo e obter o tensor de Ricci[A.14] disto surgem as equacdes diferenciais provenientes
da perturbac3o gerada na métrica. Os resultados das perturbacdes obtidas foram divididas em
duas classes, perturbacdes de paridade impar-(—1)!! e perturbacdes de paridade par-(—1)!,
sendo [ o momento angular associado ao modo em quest3o.

A partir do estudo de ambas as paridades é possivel chegar a uma equacdo de onda
para tratar do problema do espalhamento e absorcdo de ondas gravitacionais pelo buraco
negro (ou buraco de minhoca). Em seu artigo, Regge e Wheeler conseguiram desacoplar as
perturbacoes para o caso de paridade impar e obter a equacdo de onda respectiva. Para o caso
das perturbacdes de paridade par o desacoplamento foi feito por Zerilli (30), obtendo também
a equacao de onda que se espera.

Embora as perturbacGes possuam paridades diferentes, os resultados obtidos, surpreenden-

temente, podem ser unificados em um sé. Tal feito serd exposto na secdo seguinte.

1 Vejao apéndice
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3.2.2 A abordagem de Newman-Penrose

O formalismo de Newman-Penrose foi introduzido em 1962 no artigo An Approach to
Gravitational Radiation by a Method of Spin Coefficients (28). A ideia principal partiu do
interesse de implementar na teoria da relatividade geral uma anélise espinorial de maneira
natural. O formalismo é um caso especial do formalismo das tetradas, nele sdo introduzidos
quatro vetores nulos I, i, m e m* como base para o espaco tempo, os vetores nulos [ e n sdo
reais, equantos os vetores nulos m e m* sdo complexos conjugados mutuos. Até entdo, como
se pode perceber na solucdo de Shwarzschild desenvolvida na secdo [2.3, o padrdo na procura
por solucdes das equacoes de campo era a introducao de uma base ortonormal, a escolha de
uma base nula por Newman e Penrose representou uma ruptura com o que se fazia até entao.

A escolha de uma base nula nao foi aleatéria, um elemento fundamental do espaco-tempo
é a estrutura de cone de luz, o que possibilita a introducdo de uma base espinorial. A estrutura
do cone de luz permite, através do formalismo, que se extraia as simetrias intrinsecas do
espaco-tempo revelando sua riqueza analitica.

O formalismo com o passar do tempo mostrou-se uma ferramente extremamente poderosa
na construcdo de solucdes e no estudo da propagacdo de campos em espacos curvos (31)).
Sendo o formalismo de Newman-Penrose um caso especial do formalismo das tetradas, seu
objetivo é que todas as quantidades geométricas e relevantes sejam escritas em termos da base

nula. Os vetores nulos que formam a base satisfazem as seguintes condices de ortogonalidade:

Il-m=l-m"=n-m=n-m"=0 (3.6)

Sendo eles vetores nulos satisfazem também as seguintes condicdes:

l-l=n-n=m -m=m"-m"=0 (3.7)

Satisfazem também as condicoes de normalizacdo dadas por:

I n=1 e m-m"=-1 (3.8)

Através destes vetores é possivel obter 12 coeficientes complexos de Spin, 5 escalares de
Weyl, 10 funcbes que guardam informacdo do tensor de Ricci e 4 derivadas covariantes.
Como o formalismo ndo é utilizado na dissertacdo a exposicdo termina aqui. O leitor

interessado na implementacao e estudo das principais consequéncias e desdobramentos do
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formalismo para espacos-tempo bem conhecidos como Schwarzschild, Reissner-Nordstrém e

Kerr encontrard um excelente compéndio na monografia (20)).

3.3 PERTUBACAO DA METRICA DE SCHWARZSCHILD

Grande parte dos resultados aqui descritos sao inspirados nos desenvolvimentos realizados
na monografia monumental de Chandrasekhar (20) e o leitor interessado nos mais diversos
desdobramentos e nuances da teoria é convidado a consultar a obra.

O ponto de partida é o seguinte elemento de linha:

ds? = e d(t?) — e*(d¢ — wdt — gy da* — g3 da®)*—
(3.9)
—el2(dz?)? — e (da®)?

Que representa o elemento de linha de um espaco-tempo com suficiente generalidade que
permite tratar perturbacdes de uma forma geral’l Embora tal generalidade seja imposta logo de
comeco a abordagem que serad apresentada segue de maneira semelhante a de Regge-Wheeler,
a ideia é trabalhar com o elemento de linha geral que abarca as perturbacdes pertinentes e
proceder com o processo de linearizacdo em relacdo a métrica de Schwarzschild.

Dado o elemento de linha do espaco-tempo de interesse os préximos passos seguem de
maneira genérica ao que ja é conhecido, encontrar o tensor de Ricci e o tensor de Einstein.
Os resultados sdo longos, para manter a fluidez eles foram omitidos, o leitor interessado pode
encontra-los no capitulo 4 de (20)).

Para o caso da métrica de Schwarzschild podemos fazer as seguintes identificacdes em [3.9

e =e 2 =1-2M/r = A/r*, et =r, eV = rsinf (3.10)

w=qs=¢q3=0 (A =7r?—2Mr;2* =r;a° = 0) (3.11)

Uma perturbacao geral resultard em w, g2 € g3 como pequenas quantidades e as funcdes v,
2, i3 € P sofrendo pequenos incrementos (dv, Oz, dji3, 01)). As perturbacdes dos dois tipos

sao de naturezas diferentes, o que garantird que as equacdes de perturbacdo obtidas poderao

2 Os resultados aqui expostos irdo se restringir a modos axisimétricos e dependentes do tempo.
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ser desacopladas, dada a independécia entre os dois tipos. As perturbacdes que resultam em w,
G2 € q3 como pequenas quantidades serdo denominadas perturbacdes axiais e as que resultam
em pequenos incrementos (dv, d 2, S, 01)) serdo denominadas perturbacées polares. Fazendo
um paralelo com a abordagem de Regge-Wheeler, as axiais sdo as de paridade impar e polares

as de paridade par.

3.3.1 Perturbacdes axiais

As equacbes de campo que governam as perturbacdes axiais sao dadas por:

Ryy =Ry =0 (3.12)

Trabalhando com as equacoes de campo, assumindo dependéncia temporal para as per-

turbacdes no formato e’ e eliminando w obtemos a seguinte equac3o:

0 ([AJQ ) 0 1 0Q\ o2t
1 0[R20y 309 o _
" ar <r4 m)“m Y50 <sm39 ae>+ N (3.13)
Em que:
Q(t, T, 9) = AQgg Siﬂ3 6 = A(QQ73 — Q3’2 Sin3 9) (314)

A equacao pode ser separada utilizando a seguinte substituicao:

Q(r,0) = Q(r)C,Y*(9) (3.15)

Em que C? é a funcdo de Gegenbauerﬂ Com a substituicdo acima a parte radial toma o

seguinte formato:

2 —
Em que yu representa a dependéncia angular y? = 2n = (I — 1)(I + 2). Procedendo com

a mudanca de variaveis para a “coordenada tartaruga” [2.15| fazendo também Q(r) = rZ().

A (A dQ) 12A

Percebemos que Z(~) satisfaz a equac3o de onda de Schrédinger unidimensional:

2
<d - 02> z0) =y z6) (3.17)

2
dr?

Informacdes, propriedades e representacdes da funcdo de Gegenbauer (também conhecida como ultra-
esférica) podem ser encontrados em (32)).

3
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Com o potencial efetivo dado por:

VO = 22+ 2)r — 60 (3.18)

Que ¢é justamente a equacgdo de onda obtida por Regge e Wheeler (11)). Abaixo plotamos

um grafico para o comportamento do pontencial para os valores de | = 2, 3, 4:

oo
~wN

Vo)

-75 -5.0 -25 0.0 25 5.0 7.5 10.0 125
r«/M

Figura 4 — Barreira de potencial da métrica de Schwarzschild para perturbacdes axiais

Fonte: Elaborada pelo autor com base em Chandrasekhar (20).

Na subsecao seguinte vamos obter a equacao de onda para as perturbacdes polares e sera

possivel perceber a semelhanca entre as barreiras de potencial para os dois casos.

3.3.2 Perturbacdes polares

Retomando o que foi dito anteriormente, as perturbacdes polares surgem de incrementos
nas funcdes v, o, i3 € 1. Linearizando Ry, Ry3, Ros, Ry, € Goy com respeito a métrica de
Schwazschild, podemos proceder com a separacdo de varidveis em r e 0 a partir das seguintes

substituicdes (20, 33):

dv = N(r)P/(cosb) (3.19)

dps = L(r)P/(cos ) (3.20)

Oug = T(T)B + V(T)B’e,g (321)
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0 =|T(r)P,+ V(r)Pgcotd (3.22)

O processo que se segue a partir daqui é longo e serd omitido, o leitor interessado em
todos os detalhes é convidado a consultd-los em (120)), de onde os principais desenvolvimentos
desta secdo foram retirados. Apds os devidos procedimentos serem realizados, nota-se que
também é possivel obter para as perturbacdes polares uma equacdo de onda de Schrodinger

unidimensional:

d2
Com Z) dado por:
(M e (3.24)
nr +3M \ nr '

E a barreira de potencial dada por:

2A
r®(nr 4+ 3M)?
A equacdo de onda foi obtida pela primeira vez por Zerilli (30) e recebe o nome de

174S2 . [n2(n + D)7 4+ 3Mn*r? + 9M*nr + 9M? (3.25)

equacdo de Zerilli (veja também (34))). Abaixo plotamos também um grafico para o compor-

tamento do pontencial para os valores de | = 2, 3, 4:

oo
s wN
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Figura 5 — Barreira de potencial da métrica de Schwarzschild para perturbacdes polares

Fonte: Elaborada pelo autor com base em Chandrasekhar (20).

Comparando com o gréafico para a barreira de potencial no caso de perturbacdes

axiais é possivel perceber uma forte semelhanca. Essa semelhanca n3o é coincidéncia, percebe-

P X=nm=L11-1)(+2)V.
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se que os resultados obtidos para o potencial de ambas as perturbacdes podem ser resumidos

da seguinte maneira (20):

d
Ve = iﬁd?;f + B2+ kf (3.26)
Em que:
f = constante = 6, Kk = constante = 4n(n + 1)
(3.27)
= 1 (p* +2)
também:
A A
f= (3.28)

— r3(pPr 4+ 6M) - 2r3(nr 4+ 3M)

N3o ha uma razao imediata do porqué os resultados obtidos poderem ser relacionados de
maneira tao simples, a origem dessa conexao é explorada a partir do tratamento de Newman-
Penrose, o leitor interessado pode consultar as secbes §§28 e 29 de (20).

O objetivo de tudo feito até aqui e da proéria teoria da perturbacdo em si, para a Relati-
vidade Geral, é entender como o objeto em estudo reaje com a incidéncia dos mais diversos
campos. Em particular, é interessante entender como o problema do espalhamento de ondas
gravitacionais pelo objeto pode nos dar informacGes sobre as mais diversas caracteristicas do
estudo do espaco-tempo. Dada o fato da equacao de onda obtida para ambas as perturbacdes
terem o formato da equacdo de onda de Schrodinger unidimensional, o problema do espalha-
mento pode ser tratado de forma semelhante ao feito nos cursos basicos de mecanica quantica,
mudando, obviamente, as condicdes de contorno.

O comportamento dos potenciais obtidos, tanto no infinito, quanto na fronteira do hori-

zonte de enventos é dado por:

VE S92+ 1% com 7 — 71, = 400 (3.29)

V® 5 (constante) = e™/*M  com 7, — —oco (1 — 2M) (3.30)

Ou seja, para o caso de r, — 400 o decaimento é com o inverso ao quadrado da distancia,
ja para r, — —o0 o decaimento é exponencial, de toda forma, em ambos os casos temos o

seguinte:
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0 r.— +o0,
Vv = (3.31)

0 r.— —oo.
E as equacdes de onda obtidas anteriormente para ambas as perturbacdes tomam a seguinte

forma no limite assintético:

d2z()
dr?

+ 022 =0 (3.32)

Que representa uma equacao diferencial linear de segunda ordem com coeficientes cons-
tantes, sendo sua solucdo combinacdo de exponenciais do tipo €i7*" e e~1*"x
Para o problema de espalhamento em questido as seguintes condicbes de contorno sio

convenientes:

Z(:t) —)B—HUT*—FR(:I:)(O')e_wT* (’f’* —)—FOO) (333)

TE) _y tior (re = —00) (3.34)

Essas condicGes correspondem a uma onda incidente de amplitude 1 vindo do +o0o dando
origem a uma onda refletida de amplitude R™®) no 400 e uma onda transmitida de amplitude
T™) em —oo. Perceba que n3o é possivel nenhuma onda emergir de —oco (r = 2M), pois
corresponde ao horizonte de eventos, regido do espaco-tempo da qual nada escapa, ja que seria
necessaria uma velocidade maior que a da luz, o que no contexto da teoria da relatividade é
impossivel.

De maneira similar também é possivel determinar o coeficiente de reflexdo e transmissao
utilizando o formalismo de Newman-Penrose, como o formalismo n3o é utilizado na presente
dissertacdo os resultados ndao foram expostos aqui, o leitor interessado é convidado a consultar
as secdes 29,30,31 e 32 de (20) para elucidac3o.

Uma outra questdo de interesse da teoria da perturbacdo é sobre a estabilidade do objeto
de estudo em questdo, ou seja, se uma dada perturbacdo ird crescer de maneira indefinida.
N3o a toa o artigo de Regge e Wheeler tem por titulo Stability of a Schwarzschild Singula-
rity, a questao da estabilidade tem tremenda importancia na fisica, ela garante que o objeto
em questdo é de relevancia astrofisica. No artigo, para pequenas perturbacoes de paridade
impar (descritas aqui como “perturbacdes axiais") eles mostraram que as equacdes diferen-

ciais obtidas s3o auto-adjuntas, garantindo que os autovalores associados as frequéncias k>
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sdo reais, sendo assim, s3o descartadas solucoes com frequéncias imagindrias que representa-
riam a instabilidade da singularidadeﬂ concluindo-se que o sistema é estavel por perturbacdes
lineares fracas. Eles conjecturaram ainda que haveria estabilidade também para o caso das
perturbacdes pares (descritas aqui como perturbacdes “polares”), porém ndo foram mais adi-
ante pois ndo conseguiram proceder com o desacoplamento das equacdes diferenciais obtidas,
mas a conjectura foi confirmada em 1970 por Zerilli (30). Posteriormente, Vishveshwara (35))
extende os esforcos dos trabalhos anteriores e analisa a questdo da estabilidade a luz das co-
ordenadas de Kruskal, concluindo novamente que a métrica de Shwarzschild é estavel contra
perturbacGes lineares e que perturbacées com frequéncias puramente imaginarias, que leva-
riam a métrica a ser instavel, divergem no horizonte, garantindo assim a sua impossibilidade
fisica. Discussdes recentes sobre estabilidade do espaco-tempo de Schwarzschild podem ser
encontradas em (36)).

Um dltimo ponto a ser tratado é a respeito dos modos quase-normais para a métrica
de Schwarzschild. Esses modos representam frequéncias caracteristicas dos intervalos finais
apds um processo de perturbacdo e guardam consigo informacdes importantes que ajudam
na descricdo do objeto em estudo. Os modos ndo dependem do tipo de perturbacdo que foi
realizada, apenas das caracteristicas do objeto perturbado.

Os modos quase-normais no contexto da relatividade geral ja foram amplamente estudados
para os mais diversos tipos de métrica, a abordagem que sera apresentada a seguir foi retirada
de (37). Em geral, existem diversos métodos para sua obtencdo, abaixo estdo alguns deles

seguidos de uma breve descricao de sua implementacao:

1. Método de aproximacdo WKB: Talvez, de todos que serao listados este é o mais co-
nhecido devido a sua ampla aplicabilidade em cursos basicos da formac3o académica. O
método WKB (ou JWKB) foi proposto inicialmente por Jeffreys (38)) afim de conseguir
solucBes aproximadas para equacoes diferenciais de segunda ordem, incluindo a equacdo
de Schrddinger, posteriormente o método viria a ser desenvolvido por Wentzel (39),

Kramers (40) e Brillouin (41)).

A equacdo que governa os modos quase-normais é:

d2
62—22(7‘*) + (02 - V) Z(ry,) =0 (3.35)
dr?
No artigo hd o uso trocado de “singularity” e “wormhole”, a relacdo entre as duas coisas é estabelecida
no artigo Morris-Wheeler.

5
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Sendo € um pequeno pardmetro para se ajustar  ordem da aproximac3o. E importante
ressaltar que o método WKB mantém alta precis3o para a regido o> — V(r,) > 0. Sendo
V(r.) unimodal criam-se dois pontos de retorno que dividem a regido de integracdo em
trés partes (na regido Il estd o ponto maximo do potencial). Assumindo uma forma
assintética para Z nas regides | e Ill(notadamente, a esquerda e a direita do ponto

méximo do potencial) temos:

Z(r)) ~ exp [1 nf% Sn(r*)e"] (3.36)

A forma para S, pode ser obtida substituindo a expansdo na equacido e comparando
os termos de igual ordem em ¢. Nas regides | e Ill hd duas solucdes, como descritas a

seguir:

I —iors I o
ZL~eT M Z et em o, — 00, (3.37)

ZH s emiore .z~ et em r, — —00. (3.38)

)

Ressaltamos como dito anteriormente que r, — +oco é o infinito espacial e r, —& —00
o horizonte de eventos. A solucao geral nas regides [ e 111, a partir do que foi dito até

agora, sao dadas por:

vzt + vl 71 na regido I,

out

Z(r,) ~ (3.39)

QLI ZHT L LT 7T ng regiso [11.

out

Em que V;, e W, sdo ondas incidentes da regidao [ ou [1] para a regidao /] e ondas
emitidas da regido I para a regido I ou III respectivamente. Podemos associar as

amplitudes na regido I com as da regido /1] através do seguinte (42):

\I/III Mll M12 \I’I

out out
= . (3.40)

11 I

v My My v
Na expressao acima My, Mis, My, e Msy pode ser determinadas através de uma
comparacao entre a solucao obtida em e a solucdo na regido /1. Sendo assim, o

préximo passo é obter a solucao na regiao /1, para isso vamos considerar que ela pode

ser escrita como uma série de Taylor em torno do ponto maximo para o potencial, veja:
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1d*V
az| (el

* lre=ro

o —V(r,) = (6 = V(ry)) — (3.41)

Sendo a primeira derivada nula por se tratar de um ponto de maximo. A expansio acima

é valida para:

2(a% =V (ro))

d2v
dr?

~ e (3.42)

7. — o] <

r«=TQ

E possivel colocar a equacdo para os modos quase-normais na forma de uma equacao

parabdlica cilindrica:

Ly
u+—4t)Z:0 (3.43)
De tal forma que:

Cimsa (T —10) 1d*V
=R k=

3.44
ol APV 1 VERL (3:44)
0 ev) 2 2 €
* IT%=T0
A partir disso, a solucao da equacdo pode ser dada por:
Z(t)=AD,(t) + BD_,_1(it) (3.45)

Sendo D, (t) e D_,_(it) funcdes parabdlicas cilindricas[?] A férmula assintética destas

funcdes tem o seguinte formato:

7 ~ BG—W(%)—”II (1 — 1)~ @+ D VR —r)?/2 |
—iUT 346)
(277-)1/26 /2 1TV 4 *'\/E _ 2 (
A+B—~F——— ARV A (1, — 1)V e VR(r—0)?/2
+<*‘ S I A

para r >> ro. Ja para r >> r; temos:

6

Propriedades a respeito das funcdes parabélicas cilindricas podem ser encontradas em (32)).
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_ iy

Z ~ Ae” 5 (4k) M (r, — ro)”e_i‘/E(r*_’“O)Q/QJr(B—

(3.47)

1/2 ,—ivn/2\ .
‘iA(Q?T)r(e)) T (4k) 5T (ry — 1) " VEC 102
—UV

r1 € 0 menor ponto de retorno e ry 0 maior. Agora com os resultados em maos podemos
na regido I comparar os coeficientes de €[3.39, da mesma forma, para a regido 11
podemos comparar os coeficientes de|3.47| com os de [3.39| Eliminando as constantes A

e B ficamos com:

171 inv iR%eimv (2m)1/2 I
\Pout _ € I‘(erl) \Ijout (3 48)
111 R-2(2m)1/? —imv I '
q]in L(—v) —€ \Ijin

Com R sendo dado por:

(2v+1)/4
) 6_(2V+1)/4 (349)

1
R= <2 +v
E importante lembrar que a natureza do horizonte de eventos n3o permite que emiss3o
de sua regido, ao mesmo tempo que ele também n3o permite o escape de ondas que
chegam até ele, sendo o coeficiente de reflexdo igual a zero. Essas observacGes resultam

I _ i _ :
em V;, =0eWV;~ =0, segue que:

I'(v) = o0 (3.50)

Sobre primeira ordem da aproximacdo WKB os MQN s&o dados por (37):

d2v
0'2 = V(TO) — 2@

*

1

Sendo V() o valor méximo para o potencial. O sinal e n denota a parte real de w tal

que:

0,1,2,3,...  %(0)>0
n= (3.52)

~1,-2,-3,... R(o) <0

Y
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representando um conjunto discreto de frequéncias complexas. E possivel também obter

uma expressao para WKB de ordens maiores, ela tem o seguinte formato:

a2V 1
o =V(r) — |2 (n++2@k>i
d?“g T«=T0 2 k=2 (353)

n=0,+1,+£2,..
Oy sdo funcdes do potencial de de suas derivadas em seu valor maximo r, = ry.

2. O método da fragdo continuada: O método das fracdes continuadas (também denomi-
nado método de Leaver) é amplamente utilizado para o calculo dos MQN no contexto da
relatividade geral. Sua origem remonta 1986 quando Leaver, percebendo que as equacoes
obtidas por Teukolsky sao uma subclasse de equacoes de onda esferoidais, introduziu o
método das fracGes continuadas a problemas de perturbacdo e encontrou os MQN para
as métricas de Schwarzschild e Kerr. O método foi amplamente desenvolvido e é uma
das formas mais efetivas e precisas de calcular os MQN, embora o método tenha sua

convergéncia prejudicada a medida que o valor do harménico aumenta (37)).

3. O método pseudo-espectral: Na implementacdo deste método, as varidveis continuas,
como a coordenada radial presente nas equacdes dos MQN s3o substituidas por um
conjunto discreto de pontos que recebe o nome de malha. As auto-funcdes podem ser
aproximadas por funcdes cardinais e os coeficientes expandidos em funcdo da frequéncia

dos MQN, resultando em uma matriz que governa o problema de auto-valor.

4. Solugcdes exatas da equacdo de Heun: A equacdo radial pode ser posta no formato de
uma equacdo de Heun (veja [3.66)). Solucionada a equac3o é possivel obter os MQN. No
capitulo |4 serd desenvolvida a teoria das deformagdes isomonodrémicas afim de resolver

numericamente a equacao de Heun.

Para concluir, algumas Gltimas consideracdes sobre a métrica de Schwarzschild, especial-

mente, a métrica descrevendo um buraco negro:

1. Os MQN, sobre a convencio adotada, possuem parte imaginaria positiva, represen-
tando assim modos amortecidos, ou seja, podemos afirmar a estabilidade da métrica de

Schwarzschild sobre perturbacdes lineares pequenas.
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2. O tempo de amortecimento dos MQN depende linearmente da massa do buraco negro,

sendo menor qudo maior os modos forem.

3. Uma perturbacdo do buraco negro da origem ao seu “toque” e o final da dindmica
dessas perturbacdes podem ser descritas através de uma lei de poténcia representando

o conjunto dos MQN em decaimento.

4. Os MQN s3o isoespectrais, significando que independentemente das pertubacdes serem

axiais ou polares, o conjunto de frequéncias caracteristicas serd o mesmo.

3.4 PERTUBACOES DO BURACO DE MINHOCA DE ELLIS

O caminho a ser seguido afim de trabalhar com a equacdo de campo de Einstein dada
em [2.4) é, primeiramente, encontrar o tensor de Einstein para a métrica de interesse, dada em
[2.20] Sendo assim, podemos fazer uso de qualquer um dos métodos desenvolvidos no Apéndice
para esse fim. Nesse capitulo especificamente, faremos opcdo por utilizar o método das

coordenadas. O primeiro passo é encontrar os simbolos de Christoffel para a métrica:

ds? = — A2 + dr? + (r2 + b2)(d6> + sin 20 d¢?) (3.54)

Eles sdo dados por:

I, = —r, I, = —rsin’(f), (3.55a)
r :
Iy =Ty, = T I, = — cos(f) sin(f) (3.55b)
6 e T 6 o _ cos(0)

O passo seguinte é, através dos simbolos de Christoffel encontrar o tensor de Riemann,

seguem os resultados obtidos:

o _1 r’ R p— Tg (3.56a)
o T 2 4 p2 (r2 + b2)2’ Tér 22 (124 b2)2 '
, b? r
R90r (7"2 + b2)7 00 2 + b2 (356b)
; b? sin?(0) s b*sin?(0)
Rababr - (,,,2 + 62)’ R¢¢9 - (r2 + 62) (3'56C)
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Seguindo, o tensor de Ricci e o escalar de curvatura sdo dados por:

—2p? —2p?
- = _ - = _ 57
RTT (T2 + b2)2 R (T‘2 + b2)2 (3 5 )

Com esses resultados podemos obter o tensor de Einstein para a métrica de Ellis:

—b?
Gtt = (b2 +7’2>2 (3583)
G - U (3.58b)
L (b2 + 12)2 :
b2
G99 = m (358C)
b? sin 20
E o resultado obtido pode ser resumido da seguinte maneira:
0 —b’ b 0
Gl 9] = m”anb + m( Gap — Malp) (3.59)

em que n, = (dr), é o vetor unitario na direcio radial, e °g,;, é a métrica associada a m
(a notagdo escolhida é justificada pelo que vem a seguir e pelo que foi desenvolvido na secdo
anterior).

Estamos interessados em realizar a perturbacio escalar da métrica de interesse, para isso
devemos resolver a equacdo de Klein-Gordon. Sendo assim, considere a equacdo de Klein-

Gordon para um campo escalar massivo:

V20 = 12 ® (3.60)

Em que V? é o operador de Laplace-Beltrami definido pela seguinte relacio:

:\/1—_98?3#<gw\/__982”> (3.61)

Onde g é o determinante da métrica, que para o caso de interesse vale —(r% + b?)%sin 2.

v2

Sendo a representacdo da métrica covariante uma matriz diagonal, o inverso da métrica tam-

bém o sera e sua relacdo é simples, dada por:

1 1
W L .62
g d|ag< y 1, (Tg n bz)v (7.2 + b2) sin? (9)) (3 6 )
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Assim, utilizando as expressGes acima, encontramos que o operador de Laplace-Beltrami

tem o seguinte formato:

2 00 L of, O, L1 ol 0
Vo= o <f<"’)ar> NG [sin@@@ (S eae>+

3.63
R .
sin 260 0¢?
Sendo f(r) = r? + b®. Logo, podemos escrever para o campo escalar massivo:
0? 1 0 0 1 1 0 0
°5 _ |9 . L O o O ([ 9
Vb= [ ot2 + f(r)or (f(r)&’) * f(r) (Siﬂ@@@ (Sln080>+ (3.64)

1 0
———— | |0 = PP
)|~
Ao fazer a seguinte identificacdo padrdo: ® = e “'R(r)Y,(0, ¢), podemos prosseguir

com a separacdo da equacdo. Substituindo em ficamos com:

[1d(7,2 I bz)jr LWt ZT(QZ i ;2)] R(r) =0 (3.65)

Para a equacdo radial, em que fizemos p = 0. Se quisermos recuperar a dependéncia de
massa basta fazer w? — w? — 1.
A equacdo ([3.65)), mediante uma transformacdo apropriada, pode ser posta na forma

candnica da equacao confluente de Heun, dada por:

9? 1—16, 1—61\ 0 1 0. 20Ct i
[aZpL( . +Z_z0>az—<4+22+z(2_20) y(z) =0 (3.66)

Basta substituir z = —2w(r—ib) em ([3.65)). Feito isso notamos também que os parametros

para a equacao radial sdo dados por:

90 = 61 = 6* = O, 20 — 4bw, 20Ct — l(l + 1) (367)

Como dito na secao anterior, um dos métodos que pode ser utilizado para encontrar os
MQN é a partir da equacdo de Heun. A equacdo de Heun é uma generalizacdo da equacdo hi-
pergeométrica, caracterizada por dois pontos singulares regulares e um ponto singular irregular

no infinitd’l

7

A discuss3do sobre as caracteristicas dos pontos singulares e suas classificacoes sera feita no capitulo
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As condicoes de contornos apropriadas para tratar do problema de espalhamento devem
levar em consideracdo a ideia de que estamos particularmente interessados em “mergulhar”
por dentro do buraco de minhoca, ja que o buraco de minhoca tratado no presente trabalho
faz parte da categoria especial dos “transponiveis”, caracterizado especialmente pela auséncia
de singularidade e de um tamanho minimo para o sistema dado por r = b, de acordo com as
ideias expostas em (25)) e as discussées feitas na subsecdo [2.5

Levando isso em considerac3do, as condicdes de contorno a serem impostas serao:

Te wr — r— —00
R(r) ~ (3.68)

e~ + Re™r r— 400

Essas condicoes de contorno representam uma onda de amplitude unitéria vindo de +o00
dando origem a uma onda refletida de amplitude R que retorna ao +oc e uma onda transmitida
de amplitude T que passa pelo buraco de minhoca em direcao a —oo. Devido ao formato da
métrica a coordenada radial admite valores no intervalo (—oo, +00).

Dada sua relevancia astrofisica, é importante também considerar as condicoes de contorno
para os modos quase-normais, que correspondem a perfis localizados de energia ao redor de
buraco de minhoca caso a parte imaginaria de w seja menor que zero (Imw < 0), lembrando
que essa condicdo imposta a parte imaginaria garante que os perfis localizados de energia nao
irdo crescer exponencialmente tornando a métrica instavel e consequentemente anulando sua

relevancia no contexto astrofisico observacional. As condicdes para os MQN s3o dadas por:

e r — —00,
R(r) ~ (3.69)
e=tr, r — 400,
Tendo as condicdes de contorno em maos e bem definidas o préximo passo é prosseguir

com a perturbacao da métrica|3.54} seguindo uma abordagem semelhante a desenvolvida para

a métrica de Schwarzschild nas secGes anteriores do presente capitulo.

3.4.1 Perturbacao axial da métrica de Ellis

Como citado no inicio do presente capituo e na subsec&o[3.2] as duas abordagens principais

na teoria da perturbacao métrica da relatividade geral s3o a de Regge-Wheeler e Newman-
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Penrose. A abordagem que sera aplicada na perturbacdo da métrica de Ellis serd a de Regge-
Wheeler, caracterizada por ser uma perturbacao na prépria métrica.

O desenvolvimento a seguir toma por base a exposicdo do capitulo 4, secdo 24 de (20)),
em que é feita a perturbacdo axial da métrica de Schwarzschild, que também foi exposta no
presente capitulo na subsecdo [3.3] com a diferenca de que aqui estamos interessados em, ao
ter a equacdo radial em maos, transforma-la através de uma mudanca de coordenadas em
uma equacao de Heun.

Seguindo o que é exposto e adaptando para nossos propésitos, comecamos definindo a

seguinte 1-forma:

0o = T (qy(r,0)(dAt)q + g, (r, 0)(d7)a + go(7, 0)(d0)a) (3.70)

que serd a fonte da perturbacdo. Inserindo-a na métrica original ficamos com o seguinte:

ds® = —dt? +dr® + (r* + 0%)(d6” + sin*6(dg + 0)?) (3.71)

O desacoplamento das equacdes linearizadas n3o segue o mesmo caminho que em (20)), em
dltima andlise as equacoes de campo dependem da matéria que compde o buraco de minhoca.
E importante ressaltar que o buraco de minhoca de Ellis n3o representa a solucdo das equacdes
de campo de Einstein para o caso estatico e esfericamente simétrico no vacuo. Pelo teorema de
Birkhoff (uma discuss&o e prova do teorema podem ser encontrados no apéndice B de (18))) a
Unica solucdo admitida com essas caracteristicas é a de Schwarzschild, sendo assim, a métrica
de Ellis como solucdo das equacdes requer a presenca de matéria, e consequentemente, a
forma que a solucao toma depende das propriedades e caracteristicas desta ultima. Baseado
na forma do tensor de estresse-energia (25)), vamos assumir que os coeficientes em [3.59] tendo
a interpretacdo de pressao e densidade de energia, sdo mantidos fixos, equanto os componentes
de g, no sistema particular de coordenadas pode flutuar.ﬁ

Em (43) uma abordagem diferente é sugerida, é posicionado um campo dindmico particular,
composto por uma superposicao de um campo eletromagnético e “poeira” com densidade de
energia negativa permitindo uma generalizacdo do modelo.

Resumindo, vamos assumir que o tensor de Einstein associado a métrica perturbada (3.71

satisfaz a mesma forma tensorial que [3.59;
8

Sendo assim, o procedimento apresentado aqui toma um caminho diferente daquele apresentado em (25)).
L4, os buracos de minhoca transponiveis tem a forma de sua métrica definida a priori, enquanto a forma
do tensor de estresse-energia deve ser ajustado afim de satisfazer as condicGes requeridas para a “transpo-
nibilidade".
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Gablgan] = 1 v v — NaMp) (3.72)

mnanb + m(gab
Onde, novamente, n, = (dr), e agora g,, representa a métrica perturbada.
Seguindo o que foi exposto na subsubsecdo [3.2.1] o objetivo é realizar a perturbacdo da
métrica e expandir em primeira ordem para as funcdes ¢;, ¢, e q9. Focando em duas equacoes

relevantes:

1 0 (0 0w\ . Oq 3 cos0 (0g Og)
r24+0200 \ 00  Or “or T 2sing \ 90 or (3.73)
—i—qur =0.
Para a componente G7'¢ e:
0 (g Og9\ | . Oq 2r (0, Ogp ,
m(ae ar>+“ae+r2+b2<ae ar> wigp = 0. (3.74)

Para a componente G,,,. As outras equacdes colocam g; em termos de g,, s, 0-G, € Opga,
de maneira que n3o faremos uso delas.
A partir de agora a abordagem serd semelhante a exposta para a perturbacdo axial da

métrica de Schwarzschild. Definindo Q(r,6) tal que:

_ 1 8(]1" aqg
Qr.8) = (r2 +0b2)sind ( 90 87’) (375)

Derivando a equacdo |3.73/em relacdo a 6 e a equacao [3.74| em relacdo a r, somando-as e

utilizando a equacao anterior [3.75], ficamos com:

1 o ( . 0
+ (r? + b?) sin® 0 a0 <Sm5 0) +W21 Qr.0)=0.

Que pode ser separada em uma parte radial e uma parte angular mediante a seguinte

substituicdo:

Q(r,0) = Y;(cos 0)R(r) (3.77)

sin?

Utilizando a substuticdo descrita encontramos a seguinte equacao para a parte radial:
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[(7"24—1()2)3;7‘ ((r2 + b2)3ddr> +w?— W R(r) =0. (3.78)

Que novamente representa uma equacao de Heun confluente que pode ser posta em sua

forma padrao através das seguintes trocas de variaveis:

2z = —2iw(r +ib), y(z) = (r* +b*)2R(r), (3.79)

Com os parametros da equacdo sendo dados por:

90 = 01 = 2, 9* = 0, 20 — 4bw, 20Ct = (l — 1)(l + 2) (380)

O valor de [ foi ajustado de forma que o parametro acessério recupere o valor no espaco
plano para o autovalor (I — s)(I+ s+ 1) para s = 2 em 3.7

As equacdes radiais e serao, seguindo as abordagens expostas na literatura, as
utilizadas no estudo numérico dos coeficientes de monodromia para a equacao de Heun a elas

associada, tendo por base a teoria das deformacGes isomonodromicas desenvolvida no capitulo

4

3.5 CONCLUSAO

Nesta secao foram expostos os principais tépicos que rondam a teoria da perturbacao no
contexto da relatividade geral, desde seu surgimento com o seminal artigo de Regge e Wheeler,
até seus aperfeicoamentos com trabalhos recentes no estudo das questdes de estabilidade sobre
perturbacdes lineares e ndo-lineares, tépico central a ser discutido garantindo a relevéncia fisica
das solucGes obtidas para as equacdes de campo. Foram descritos também a importancia que
os modos quase-normais tem na descricdo dos mais diversos sistemas gravitacionais, dado que
sao frequéncias caracteristicas do objeto, independem da perturbacdo que o acometem. Foram
apresentados diversos métodos para sua obtencdo, dando uma atencao especial para o método
WKB que neste capitulo foi aplicado a métrica de Schwarzschild, sendo brevemente discutido
também o método isomonodrémico que sera desenvolvido no capitulo [4| e aplicado a métrica
de Ellis para estudo dos coeficientes de monodromia no capitulo [5] Percebeu-se também que
diante de perturbacdes escalares e gravitacionais, a métrica de Ellis da origem a equacoes de

Heun palco principal dos dois capitulos seguintes.
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4 TEORIA DAS DEFORMACOES ISOMONODROMICAS

4.1 EQUACOES DIFERENCIAIS E A FISICA

A fisica enquanto ciéncia busca modelar os mais diversos fenbmenos da natureza a partir
de relacoes matematicas. As mais famosas dessas relacoes sdo as equacoes diferenciais, que se
fazem presentes em todas as areas da fisica, desde mecanica, termodinamica e eletromagne-
tismo até relatividade geral, teoria quantica de campos em espacos curvos e teoria de campos
conformes.

Um grande nimero de problemas, quando formulados matematicamente, conduzem a equa-
cOes diferenciais parciais de segunda ordem que podem ser divididas em grupos nomeados de:
equacoes parabdlicas, hiperbdlicas e elipticas. Como exemplo de equacao parabdlica temos
a equacio do calor K'V?)) = (0v/0t), como exemplo de equac3o eliptica temos a equacdo
de Laplace-Poisson D®¢) = g(m,y), como equacao hiperbdlica temos a equacao de onda
V2 = (0*)/0t?)/c*. Na busca por solucdes destas equacdes, na grande maioria das vezes
recorre-se ao método de separacdo de variaveis, o mesmo método que nos permitiu nos capitu-
los anteriores separar a parte angular da parte radial nas perturbacdes métricas. O método de
separacdo de variaveis permite que o problema de resolver uma equacao diferencial parcial seja
transformado em um problema de resolver equacdes diferenciais ordinérias, cuja obtencao da
solucdo costuma ser mais simples. Em casos especificos, quando a equacao admite separacao,
se a equacdo diferencial parcial é n-dimensional o método permite escrever n equacdes dife-
renciais ordinarias com a introducdo de n — 1 constantes de separacdo, que s3o determinadas
a partir das condicoes de contorno do problema.

O problema da construcdo de solucdes para equacdes diferenciais ordinérias de segunda
ordem foi parcialmente resolvido por Frobenius, através do método que leva o seu nome. O
método consiste em admitir a existénci:ﬂ na vizinhanca de um ponto ordinario ou singular,

de uma solucao em formato de série:

oo
y(x) = Z an (T — 20)"+* (4.1)
n=0
Sendo zy o ponto ordindrio ou singular regular e a, e s icégnitas a serem descobertas.
p g g g

Ao substituir a equacdo [4.1] na equacdo diferencial que se quer resolver, serd obtida o que é

1 (2) _ 2%y |, 2’y
D — Ox2 + 0y?
2 A quest3o referente 3 existéncia da soluc3o foi parcialmente resolvida pelo teorema de Fuchs.
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conhecida por equacdo indicial, a partir da qual é possivel tracar relacdes de recorréncia para
os coeficientes a,,.

Dada a busca por solucoes no entorno de pontos ordindrios ou singulares regulares, é
necessario que falemos brevemente sobre a classificacdo dos pontos de uma equacao diferencial.

Seja uma equacao diferencial de segunda ordem de formato genérico:

A(z)y" + B(z)y + C(x)y =0 (4.2)

Temos o seguinte:

1. Ponto ordinario: Um ponto z, é dito ordinario se na equacao A(xg) # 0. Assim
p(z) = B(z)/A(z) e ¢(x) = C(x)/A(x) também podem ser desenvolvidos em série de

poténcia.

2. Ponto singular regular: Quando x — xg, p(x) e g(z) divergem, mas (x — x¢)p(z) e

(r — w0)%q(z) permanecem finitos.

3. Ponto singular irregular: Quando = — zy, p(z) e g(z) divergem e (z — x¢)p(z) ou

(x — x0)%q(z) ndo permanecem finitos a medida que x — .

Embora as equacdes de interesse da dissertacio e possam ser resolvidas a
partir do método de Frobenius o problema principal que serd tratado ndo é o da busca por
uma solucao, mas o estudo da equacao de Heun a partir de seus parametros de monodromia,
essencialmente, a resolucio de um dos problemas de Riemann-Hilbert. A partir disso sera
implementada a anéalise numérica para o estudo dos MQN.

Para finalizar, a titulo de completude, algumas outras definicdes a respeito da teoria das
varidveis complexas s3o importantes afim da garantir a fluidez do que vem a partir de agora:

Uma funcdo f(z) é dita analitica em uma regido U C C se ela pode ser representada por

uma série de Taylor convergente em torno de qualquer ponto de U. Isso implica:

f(z) = i an(z — )",

onde a série converge para f(z) em um raio de convergéncia positivo.
Uma funcdo f(z) é dita holomorfa em U C C se ela é diferenciavel em todos os pontos

de U. Isso significa que a derivada f’(z) existe no sentido da teoria das varidveis complexas:
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com Az € C.
Uma funcdo f(z) é dita meromorfa em uma regido U se ela é holomorfa em U, exceto
em um conjunto discreto de n pontos (os polos) onde f(z) diverge para co como (z — z) ™"

com n inteiro. Isso significa que f(z) pode ser escrita como:

_92)
f(Z) - h(2)7

onde g(z) e h(z) sdo fungdes holomorfas em U, e os zeros de h(z) correspondem aos polos
de f(2).

Neste sentido, funcdes analiticas e holomorfas sao termos sin6nimos, principalmente de-
vido ao teorema que relaciona a analiticidade (diferenciabilidade com adicdo de satisfazer as
condicbes de Cauchy-Riemann) de uma funcdo com a existéncia da sua representacdo em série
de poténcia (veja o teorema 23 na secdo 11 do capitulo 8 de (44)). Assim, os termos podem

aparecer de maneira alternada no presente trabalho.

4.2 EQUACOES DIFERENCIAIS ORDINARIAS NO PLANO COMPLEXO

A forma geral de uma equacdo diferencial linear e homogénea é a seguinte:

dN dN—l dN—Q
dziNy(Z) +P1(Z)Wy(2) + pQ(Z)Wy(Z) + -+ pa(2)y(2) = 0. (4.3)
em que os coeficientes racionais representados por pi, ps,..., p, sao funcdes holomérfas

z € C. A equacdo apresentada acima é genérica, e seu comportamento nos pontos singulares
permite classifica-la como fuchsiana ou nao-fuchsiana. Essa classificacao é semelhante a discu-
tida na secdo anterior, mas agora generalizada para equacoes diferenciais de ordem N. Sendo
os coeficientes da equacao funcdes racionais, poderao apresentar polos. Um ponto singular é
chamado de regular (ou singularidade regular) se a ordem do polo associado ao coeficiente for
menor ou igual a ordem do coeficiente na equacdo diferencial. Caso contrario, sera classificado
como uma singularidade irregular. Equacdes diferenciais fuchsianas sdo aquelas que possuem
apenas singularidades regulares. Por outro lado, equacdes com pelo menos uma singularidade
irregular s3o chamadas de nao-fuchsianas.

A equacdo [4.3 pode ser escrita na forma de um sistema linear:
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Y () = AR)Y() (44)

Sendo Y (z) um vetor coluna (N x 1) e A(z) é uma matriz N x N. O vetor coluna Y (z)

tem o seguinte formato:

y1(2)

Y2(2)

yn(2)
Em que y,(2) = 9/,_,(2) e as entradas A;;(z) da matriz A(2) sdo funcdes holomorfas. E

importante também falar da solucdo matricial fundamental:

L Y(2) = AR)Y(2) (4.6)

Cuja Y(z) é uma matriz N X N e é composta por N solucdes linearmente independentes,
de tal maneira que W(Y(z)) # 0, sendo W(Y (z)) o Wronskiano. Note que para obter A(z)
basta multiplicar ambos os lados da equacdo anterior por Y~!(z). Supondo A(z) uma funcdo
holomérfa e olhando para seu conjunto de polos podemos estabelecer a classificacdo de Poicaré
e determinar se o sistema matricial fundamental é ou ndo Fuchsiano. Se a funcdo A(z) possuir
apenas polos simples (singularidades regulares) o sistema é dito Fuchsiano, se A(z) depender
de polos de ordem maior (singularidades irregulares) o sistema é dito ndo-Fuchsiano. Os polos
podem ser classificados segundo o critério de Poicaré, polos simples sdo ditos de ranking » = 0,
polos duplos de ranking » = 1 e assim sucessivamente.

E possivel generalizar de forma coveniente a expressio para a matriz A(z) escrevendo-a
em termos de seus pontos singulares, fazendo a distincdo entre pontos “finitos” e pontos no
“infinito”, todos eles referentes a polos que podem ser classificados segundo o critério de

Poicaré citado acima. A expressdo geral toma a seguinte forma (45)):

ZZ ’ZH +ZA 7 (4.7)

zle

Em que A;; e A, ; sdo matrizes constantes N x N e r; e 1o, representam o rank das

singularidades.
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A equacdo de Heun que é a de maior interesse no presente trabalho possui trés singulari-
dades, duas regulares e uma irregular em oo de rank 1. Sendo assim, trabalharemos com
para o caso de NV = 2:

d*y dy

p +p1(2)% —i—m(z)y(z) =0.

Utilizando-se da forma temos o seguinte:

WE) _ p@a), AR =Y

dz = (z—2%)

Com A; e A, € GL(2,C). O dominio do sistema acima representado é dado por S :

+ A (4.8)

CP'/{z1, 22,00}, em que CP é a esfera de Riemann “perfurada”. Para o caso em questdo é

importante notar que ®(z) é composta por duas solu¢des linearmente independentes.

4.3 MONODROMIA

A continuacdo analitica é um conceito amplamente utilizando na teoria das variaveis com-
plexas quando se pretende estender o dominio de uma funcao além de seu dominio inicial.
Quando este processo é feito é possivel que no “meio do caminho” encontre-se singularida-
des da func3do cuja continuacdo analitica estd sendo feita. O comportamento de uma funcao
quando é analiticamente continuada e encontra uma singularidade é descrito por sua mono-
dromia. Dito isto, faz-se necesério iniciar a presente secdo com a exposicdo do teorema da
monodromia (46)):

Teorema 4.1: Seja D um dominio simplesmente conectado de uma funcdo f(z) analitica
em um disco Dy C D. Se a funcdo pode ser continuada analiticamente ao longo de dois
contornos suaves quaisquer 7y; e o para um ponto em D, caso n3o haja pontos singulares
contidos dentro de 7, e 79, entdo o resultado da continuagdo analitica é dnico e a funcdo f(z)
é univalente?

Sendo assim, caso no processo de continuacdo analitica encontre-se pontos singulares, o
comportamento da funcao sera descrito por sua monodromia, de tal forma que para resolver

o sistema de interesse é fundamental saber o comportamento das solucées no entorno das

30O teorema pode ser extendido para o caso em que na regido contida pelos contornos -y, e 75 ha singulari-

dades isoladas, com f(z) possuindo uma série de Laurent na vizinhanca de quaisquer dos pontos singulares
(46)
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singularidades e qual a continuacdo analitica para cada uma das solucdes em termos das
matrizes de monodromia.

Em geral, na matematica, os conceitos podem ser divididos como globais e locais, nao é
diferente no caso da monodromia. Uma monodromia é dita local quando descreve a mudanca
no sistema fundamental de solucdes da equacao diferencial por meio da continuacao analitica
feita ao entorno de um ponto singular regular. J4 a monodromia global é responséavel por des-
crever a mudanca causada por uma continuacao analitica global, que inclui o comportamento
da funcdo no entorno de todas as suas singularidades. A exposicdo feita a seguir toma por
base os argumentos e desenvolvimentos feitos em (47)).

Dito isto, seja a solugdo matricial fundamental ®(z) definida no dominio S : CP' que
representa a esfera de Riemann, fixando um ponto peS (p pode ser um ponto qualquer), seja
também um laco v também definido no dominio acima que comeca no ponto p. A continuacao

analitica de ®(z) por 7, que também é uma solucdo matricial fundamental, resultard em (47)):

B(z,) = B()M, (4.9)

Em que M, é a matriz de monodromia € GL(2,C). A matriz M, é determinada de
maneira Unica pela classe de homotopia de v no dominio de definicdo. Disto, temos o seguinte

mapa:

p: 7 (CP',b) = GL(2,C) (4.10)
v — M,

E interessante notar que um produto em 7;(CP' b) é mapeado em um produto em

GL(2,C), pois:

D(2y192) = (P(291))(242) (4.11)
= ®(2y2) My
— (2)M. M., (4.12)

Que resulta em M.,1,0 = M1 M5 e p(7172) = p(71)p(72). O mapa p é um antimorfismo
de grupos, chamado de representacdo de monodromia da equacdo diferencial em questdo

em relacao ao seu sistema de solucdes fundamentais. A imagem de p é um subgrupo de
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GL(2,C) é recebe o nome de grupo de monodromia da equacido diferencial. A representacdo

de monodromia é Unica e dada por (para o caso geral de p singularidades):

p=(My,My,..., Mp) (4.13)

Sendo p o niimero de pontos singulares da equacao diferencial considerada.
A representacao de monodromia depende da escolha da solucdo matricial fundamental.
Seja outra solucdo denominada por ®(z), existe uma relacdo entre as duas solucdes dada por

®(2) = ®(2)C, sendo C € GL(2,C) uma matriz N x N. Assim, temos o seguinte:

Q(z,) = ®(2,)C (4.14)
= &(2)M,C
= d(2)C'M,C (4.15)

Sendo C~'M.,C' a matriz de monodromia de ®(z) associada a continuagio analitica ®(z,).
Para o caso da monodromia local, a classe de conjugacao da matriz de monodromia M., €
GL(2,C) definida como a monodromia local em z = a, sendo um a um ponto singular, n3o
depende da escolha solucao matricial fundamental.

Voltando a considerar as equacdes diferencias cujo coeficientes sdo funcdes racionais (com
um nimero p de singularidades), o grupo fundamental 7;(CP',b), sendo b um ponto fixo,

tem a seguinte apresentacdo (47)):

m(CP',b) = (0,71, -, Wl -7 = 1) (4.16)
para cada i(0 < i < p, v; € um (+1)-lago para a;, sendo a; um dos pontos singulares da
equacdo diferencial. Veja a figura 4.3

A solucdo matricial fundamental continua com a mesma forma:

B(z,) = d(2)M, (4.17)

Mas, pelo que foi exposto acima a respeito do produto de mapeamentos, a nova matriz
de monodromia depois de percorridas todas as singularidades da equacao diferencial toma a

seguinte forma:

M, =[[M, (4.18)
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Figura 6 — Lacos circuvizinhando individualmente as singularidades

Fonte: Haraoka(47).

com a representacao de monodromia dada por:

p

p(v) = T1 p() (4.19)

i=0
Para a tupla [4.13] é valida a seguinte relago:

M,.. .MMy =1 (4.20)

Em que I é a matriz identidade. Percebe-se assim que as matrizes de monodromia formam
a representacdo de um grupo (47).

Feitas todas estas consideracOes, é importante voltar ao ponto de partida. A equacao
de interesse para obtencdo dos modos quase normais é a equacdo de Heun, que como dito
anteriormente possui trés singularidades, duas delas regulares e uma irregular. A forma geral

para uma equacao diferencial linear e homogénea do segundo grau é obtida fazendo N = 2

em [4.3t

diZyz(QZ) +p1(z)6hil(;) +p2(2) =0 (4.21)

Que pode também ser posta na forma de um sistema linear:

L a(z) = A()2() (4.22)

As singularidades da equacdao de Heun sdo, uma singularidade regular em 2z = 0, uma
singularidade regular em 2z = 2, e uma singularidade irregular em z — oo. Levando isso em
consideracao e utilizando a expressao geral que determina A(z) em termos de matrizes

constantes A, ; e A ; e suas singularidades, para a equacdo de Heun temos o seguinte:
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Ay A,
A(z) = 70 + ﬁ +As (4.23)
— <0

Que é a forma que serd utilizada nos desenvolvimentos posteriores.

4.4 ISOMONODROMIA

O problema central tratado no contexto da teoria das deformacdes isomonodromicas é
encontrar sobre quais condicGes a monodromia associada a cada solucdo das equacdes dife-
renciais permanece invariante, equanto as posicdes das singularidades podem variar. Sendo
assim, a abordagem que se seguird a partir daqui é considerar a singularidade em z = z, da
equacdo de Heun confluente como mével, substituindo-a pelo parametro ¢t. Ficamos com o

seguinte:

At) | Ad)

A(z,t) = . po—

+ Ay (4.24)

Com o sistema matricial fundamental possuindo a seguinte forma:

;Z(I)(z,t) = A(z,1)P(2,1) (4.25)

Essas expressdes formam um sistema de Garnier.
A isomonodromia tem por base a simetria nas propriedades de monodromia do sistema
matricial. A simetria, do ponto de vista fisico, surge da equivaléncia entre as matrizes de

monodromia e os lacos de Wilson:

M, = Pef A2)d= (4.26)

equivalente a ®(2¢?™)®~! para uma curva n3o contratil .

No presente trabalho estamos interessandos em um sistema matricial 2x2 com duas sin-
gularidades regulares (2 = 0 e z = z, que no contexto do presente desenvolvimento fizemos
29 — t, segundo as motivacdes expostas acima) e uma singularidade irregular (z = 00). Ha
uma variedade de sistemas 2x2 que essencialmente dao a mesma solucao, sendo assim, pode-
mos escolher uma que nos seja conveniente. A escolha que faremos é pela que diagonalize A
o0 que equivale a substituicio de ®(z,t) por Go ®(z,t) de tal forma que G ®(z,t)G toma

a forma diagonal. Pelo mesmo procedimento, seja a seguinte transformacao s-homotdpica:



63

B(z,t) = 290(2 — )% 7D (2, 1) (4.27)

tal transformacdo tem por efeito provocar uma modificacdo na matriz A, proporcional a

matriz identidade:

A = Ar + il (4.28)

Sendo I a matriz identidade. Essas transformacdes resultardo em uma forma mais “pala-
tavel” de trabalhar com que sera fundamental quando avang¢armos para o cerne da teoria
isomonodromica. As transformacdes acima permitem-nos impor uma série de restricoes nas
matrizes Ay. Primeiro, consideremos, sem prejuizo do que vem sendo desenvolvido, que A,
é diagonal, em seguida, podemos fazer a transformacdo s-homotdpica descrita acima para
deixar A, sem traco e Ay e A;, ambas, com determinante nulo. Por fim, podemos promover
o reescalonamento na variavel z de tal forma que A, tenha por autovalores +1/2. Feito isso,

é possivel mostrar que os coeficientes p(z) de d/dzy+ e q(z) de y. da equacdo:

d
(2) — (Tr A + 0,(log A12)) @yi(z)—l— (4.20)

+(det A — 9, A1; + Ay 0. (log Ar) Jys(2) = 0.

@yi

retirada da primeira linha da solu¢do fundamental ®(z,t), tomam a seguinte forma:

1— 1- 1
_ 129 176 (4.30)

p(z) z z—t 2=\

q(z):—i— 2z z(z—t)jLz(z—)\)7

em que A\ é uma singularidade aparente, ou seja, ndo corresponde a polos no sistema

(4.31)

em questdo. Além disso sdo feitas as seguintes consideraces: Oy = Tr Ay, ©, = Tr A,, e

0, =2 Tr(AOO(AO + At)) = TI'(O'g(AO + At)). Por fim, temos o seguinte termo:

A=t [, (0 6,1 1 e,+1
He=—= (“ <A+A—t>“ 1 2 ) (432)

Cujo formato ndo é genérico, ha uma conexdo profunda entre deformacées isomonodromi-

cas e sistemas Hamiltonianos (48). Feitas as consideracBes acima, podemos escrever A(z,t)

da seguinte maneira:
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_(02(z,1) . 4 1 Ay A
A(z,t)_< o )@ (z,t)—203—|— ~ to (4.33)
com
1 0
det{Ap} = det{A;} =0 e o3 = (4.34)
0 —1

Em que o3 é uma das matrizes de Pauli e se encaixa perfeitamente nas restricdes citadas
mais acima para a A...

A partir de agora focaremos nossa atencdo no formato dado por [4.33] O objetivo da
teoria isomonodromica é que a a representacao de monodromia para a [4.33| seja invariante
para qualquer mudanca no parametro ¢. Isso é possivel desde que ®(z,t) satisfaca o seguinte

sistema de equacdes:

%ézvt) = A(2,1) B(2,1),

(4.35)
0P (z,t)
T = B(Z,t) (I)(Z? t),

e pela condicdo de curvatura nula:

0A(z,t)  0B(z1)
ot 0z

temos que a matriz 2x2 B(z,t) toma a seguinte forma:

+[A(z.1), Bz,1)] =0.

Aq(t)

B(z,t) ==

que satisfaz a condicdo de manutencao do valor das matrizes de monodromia para qualquer
variacdo do parametro t. Pela condicdo de curvatura nula exposta acima, sdo obtidas as
seguintes equacdes diferenciais:
0A; 1

04, 1 1 1
5 3 [Ao, Ad, 5 "3 o3, Af] + : [Ag, Ay] (4.36)

Que recebem o nome de equacbes de Schlesinger. Tais equacdes podem ser vistas como
um sistema completamente integravel no sentido classico: o fluxo gerado por ¢ preserva todos
os dados monodromicos e, portanto, a evolucao é inteiramente determinada pelas condicdes
iniciais impostas a Ay, A; e o3. Sendo um sistema integravel, as equacdes podem ser

vistas como a condicao de integrabilidade que garante a existéncia da funcdo 7, de Painlevé:
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0 1 1
a log TV = 5 TI'(O'3At) + E TI'(AoAt>. (437)

O sistema possui ainda as seguintes constantes de movimento:

TI'AO = @0, TI'At = @t, TI'(O'g(A() + At)) = @*.

além de que temos também det{Ay} = det{A;} = 0. Dada a importéncia que a funcdo
Ty tem no presente trabalho, é pertinente expor sua expansdo em termos dos coeficientes de
monodromia o e 7. Tal expansdo, para t pequeno, foi obtida por M.Jimbo em (49) e tem o

seguinte formato:

- 12 o2 g2y 1 « (B2 — ©?
(00,01, 0,:0,m:1) = Cy (G5 0) 437"~ OD 20 (1 ) (2 - W) t
g

. (Os +0) ((0 +6,)* - 67) oolfl=o _
v

8o2(c — 1)?

+ O(tQ, ’t‘2i2Reo>) )

(0, =) (0 -01)° = 85) 14
802(0 + 1)? v

(4.38)
em que {é} = {0y, O, 0,}. O coeficiente o é tomado em seu ramo principal que corr-
responde a —1 < R(0) < 1 e é definido a menos de um nimero par. Cy nada mais é que

uma constante complexa e ky é dado por:

(0, +0)) (1456 + 60 +0)) I'(1+3(0; — 6 +0))

T(1+0)2T(1+ (0, —0)) T(1+ (6 + 60— 0)) [(1+ 5(8, — 0y — 7))
(4.39)

Feitas as consideracdes acima, o préximo passo € tratar do problema de Riemann-Hilbert

que orbita a isomonodromia, que consiste em, dadas as solucdes para:

[52+<1—90+1—9t>3_(1+9*+tctﬂy(z):o. (4.40)

0z z z—1 ) 0z 4 2z z(z-—1)
encontrar os coeficientes de monodromia {o, 7} como funcdo dos pardmetros da equacdo

diferencial {t, ¢, 6o, 0;,0,}. A relacdo entre {é,g} é a seguinte:

@() = 90, @t == et - 1, @* == 9* — 1, (441)
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Na resolucao do problema de Riemann-Hilbert impdem-se a 7y as seguintes condicoes:

mv({0};0,m;t) =0,
(4.42)

aatlogﬁ/({@_};a —1,mt)=c¢ + 00(0;;1).

em que {07} = {6y,0; — 1,0, + 1}. A primeira condic3o é a equacdo de Toda em sua
versdo da Painlevé V (50), a segunda define o pardmetro acessério ¢; em termos da derivada
logaritmica da transcedente 7y,. A expans3o para a 7y para t pequeno ja foi exposta acima, ha
também a possibilidade de expressa-la por meio do determinante de Fredholm, os resultados
principais foram deixados para o apéndice [B]

O presente trabalho tem como foco o buraco de minhoca de Ellis descrito pela métrica
[3.54] e com condic¢des de contorno para o problema do espalhamento dadas por [3.68| e para os
modos quase-normais dadas por [3.69] No entanto, para fins de desenvolvimento, consideremos

o problema do espalhamento para um buraco negro e suas condicdes fisicas pertinentes. A

solucdo assintética de Frobenius para z = oo e z =t possuem o seguinte formato:

ya(2) = (z = )" (1+0(z - 1)),

(4.43)
y—(2) = (z =) (1 4+ O(z — 1)).
para z = t, ja para z = oo:
Yoot (2) = €27 2729 (14 0(1/2)),
(4.44)

Yoo (2) = €78 23% (14 O(1/2)).

E importante lembrar que as condicdes de contorno para um buraco negro excluem on-
das saindo do horizonte de eventos e ondas vindo do infinito. As solucdes expostas acima
estabelecem um mapa entre o horizonte externo z =t e o infinito z = oo.

As solucées de Frobenius expostas acima sdo solucdes para o sistema matricial 2x2
e podem ser relacionadas entre si a partir da matriz de conexao C,, que possui o seguinte

formato:

e BN e, —e B (e Gy
C, = : (4.45)

_mi mi _mip mi
e B —eTEN 4 e
Sendo 1 uma quantidade invariante definida por €™ = r;/r, em que 7, é um ndmero

complexo arbitrdrio que surge nas consideracdes das solucoes aproximadas para o sistema
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matricial da equacao confluente de Heun e r; é um parametro complexo genérico que surge
no desenvolvimento do problema de estabelecer as matrizes de conexao. E importante ter
em mente que o e 7, juntos, descrevem as propriedades de monodromia da solucdo. Dado a

expressao acima para a matriz de conexdo temos o seguinte:

_mip .y mip __—Tip / L

poo,—l—yoo,-‘r(z) . € Czt €z Czt e Coo Zt+€2 CooCzt pZt7+yzt7+(Z>

Poor— Yoo (2) e~ FN _ e e E 4 e | P Y (2)
(4.46)

Com:

G = sin<72r((9t 6 — a)) sm(g(et 0 - 0)) , e
¢, = sin<72r(l9t + 6y + 0)> Sin<72r(0t — 6y + a)) )

(oo = €27 sin(g(eOO + a)> :
| (4.48)
¢l o=e2° sin<;(9m - O')) .

Poot € pr+ S3a0 constantes de normalizacdo que podem ser calculadas via formulas de
conexdo (51]), mas no nosso caso a derivacdo da equacdo confluente de Heun veio a partir do
operador de Laplace-Beltrami para perturbacdes escalares e gravitacionais, e por isso é mais
facil usar a conservacdo da corrente afim de normalizar as solu¢des. Para o caso do problema
dos modos quase-normais (ainda para um buraco negro) n3o seria necessério a normalizac3o,
visto que a busca seria por solucdes sem fluxo de energia saindo do horizonte de eventos e
sem fluxo de energia vindo do infinito. Isso impde a matriz de conex3do entre os dois pontos

singulares z =t e z = 0o que ela seja triangular inferior. Sendo assim, a quantidade invariante

definida mais acima (e™ = r;/r,), toma a seguinte forma:

o Gl sin(5(0, +0)) sin(5 (0 + 05 + o)) sin(5(0: — 6 + 0)) (449)
G Sin(g(e* - 0)) sin(%(@t + 6y — 0)) sin(g(ﬁt — 6y — 0)) '

O que nos permite escrever 1 em termos de o e dos pardmetros de monodromia {0} =
{60, 6:, 6.}, reduzindo o niimero de pardmetros na expanséo da 7y [4.38|
Na proposta da resolucdo do problema de encontrar os modos quase-normais, faz-se ne-

cessario também encontrar uma expressao conveniente que nos dé o outro coeficiente de
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monodromia o. Tal expressdo pode ser obtida através com a ajuda do parametro acessério
associado a equacdo de Heun confluente. Uma expansao para tc; pode ser obtida através da
solucdo em série (semelhante ao método de Frobenius descrito em para a equacao diferen-
cial), a partir dela obtém-se uma relacdo de recorréncia e é possivel encontrar a expans3o para
¢; por meio do método da fracdo continuada. Os detalhes serdo omitidos, o leitor interessado

pode encontra-los em (52)). O resultado é:

(01 = (o + 0 = 1) | Bulo(o—2)+ 62— 63]

te, =
4 do(o —2)
1 0307 —65)° (1 1 (1 — 02)(65 — 07)° + 20765 + 67)
* { * 64 <03 (o — 2)3> 320 (0 — 2)
(1= 62) (6o — 1)* = 07] [(60 + 1)* — 67 | ., , [02(65—67)° (1 1
a 32(c 4+ 1)(c — 3) i 256 <o—5 (o — 2)5>
4(0% — 02)30, — (5(05 — 05) + 80} + 15020} — 03(8 + 1502)) 62 [ 1 1
- 1024 (0—3 (o — 2)3>
- @24_5(;%)9* 64 + 8062 + 862(20 — 296?) 1 1
+ (05 + 07) (12502 — 116) + 63(160 — 23202 + 67(232 — 25093))} (U - — 2)
I 1)? — 07] (65 — 67) [(60 + 1)* — 07] 0.(1 — 6%)
96(3 — o) (1 + o)
[(6 —2)* — 07] (05 — 07) [(00 +2)° — 7] 0.(4 — 67) | 5 4
a 4096(4 — 0)(2 + 0) F+ 0.
(4.50)

Tal expressdao concorda com uma das condicoes impostas a transcedente 7y, a ordem t",
e computacionalmente falando, encontrar o pardmetro acessorio via representacao em série é
menos exigente que pela derivada logaritmica da 7y, .

Voltando ao propodsito original de encontrar uma forma de obter os modos quase-normais,
em principio, a expansao da 7 dada por|4.38| nos fornece o e 17 em funcao dos parametros da
equacdo de Heun {0}, ou seja, ela pode ser utilizada para obter 77 em termos de {o,t,{0}} e
podemos usar a expressdo para expansao do parametro acessorio ¢; para obter o em termos
de {#}. Olhando para a é possivel perceber que ela é meromérfa E] em termos de k17,
ou seja, fazendo uso da primeira condicao imposta a 7, em é possivel uma série para ™

em termos do parametro ¢t. Assumindo novamente o ramo principal para o, temos o seguinte:

4 Para uma discuss3o sobre o que é uma funcio meromérfa veja a exposicio feita na segéo
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Oy (0;0) e™tI™t = 1 (0;0; ). (4.51)

Que podemos expressar da seguinte maneira:

@V(é.o.) _ F2(2—0) F(%(@*+U)) F(%(@t—i-@o—f—a)) F(%(@t—@o‘f—a)) ‘
’ F2(0) T(1+3(0,—0)) T(1+4 50+ 60 —0)) I(1+ 5(6; — 0y — 7))
(4.52)

Olhando para o outro lado da igualdade, xy é anah’tic desde que t seja pequeno, levando

isso em consideracdo temos a seguinte expans3o:

xv({0};o5t) =1+ (0 —1) (9;2((6; - 33)2) t le*(et(;; W (054 DT _1 2y

2 2 =g r200F ) (11
(a—m2+aw—20 61 (ﬂ w—2y> (4.53)
(1—62)(0F — (6 —1)*)(07 — (0o + 1)) (1 1 2 3

* 128 ((a+1)2_ (0—3)2”’5 +0(t)

Através do desenvolvimento feito podemos juntar a expressdo [4.49] na expressdo [4.51]

Utilizando a propriedade da funcdo gamma: I'(z)I'(1 — z) = 7/ sin(7z) ficamos com:

Oy ({0},0)e™ = —e ™ Oy (—{0},0). (4.54)

Voltando novamente a4.51] ficamos com:

—e ™ Oy (—{0}, o)ty = xv({0}; 05 t0) (4.55)

A equacao |4.55| é a dos modos quase-normais. Como dito acima podemos utilizar a equa-
cao para escrever 0 em termos dos pardametros de monodromia, assim, o problema de
encontrar os modos quase-normais através do método isomonodromico e da resolucao do mapa
de Riemann-Hilbert encontra-se resolvido. Os resultados obtidos a partir da implementacao

numérica do que foi desenvolvido serdo expostos no capitulo [f

5 Veja
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5 RESULTADOS E ANALISE NUMERICA

O presente capitulo é destinado a exposicdo dos resultados obtidos durante o curso de
elaboracdo da dissertacao. Na secdo 5.1 faz-se a exposicao do caminho até a obtencdo da
equacdo de tipo Schrodinger para o potencial efetivo do buraco de minhoca de Ellis, a partir
da equacdo radial obtida no capitulo (3| para a perturbacdo escalar e gravitacional da métrica,
seguindo com a andlise qualitativa para a forma do potencial. Na secdo 5.2 sdo expostas tabelas
e graficos referentes a implementacdo numérica do método isomonodromico desenvolvido no
capitulo [4 essencialmente, gréaficos dos pardmetros de monodromia o e 1 em funcdo da
quantidade admensional bw, sendo b a “garganta” do buraco de minhoca. Na secdo 5.3 sdo
expostas perspectivas futuras sobre a utilizacao da implementacdo numérica na obtencao dos
modos quase-normais e dos coeficientes de espalhamento para a métrica de interesse e sdo
discutidos brevemente resultados ja publicados na literatura utilizando a mesma implementacao
numérica (53)) que tem por base a teoria isomonodrémica desenvolvida em (4 e a expansédo

para a 7y a partir do determinante de Fredholm exposta no apéndice [B]

5.1 O POTENCIAL EFETIVO PARA A METRICA DE ELLIS

No capitulo [3| foram expostos os principais resultados referente a perturbacdo da métrica
de Schwarzschild. Houve a exposicdo dos principais resultados tanto para perturbacdes axiais,
quanto para perturbacoes polares. Naquela oportunidade mostrou-se que apds o efetivo desa-
coplamento das equacoes linearizadas, a parte radial, em ambos os casos, poderia ser colocada

no formato da equacido diferencial de Schrodinger:

2
dgfﬁ (W = V(2)| ¥(x) =0. (5.1)
E por consequéncia, podia-se obter um potencial efetivo que é fundamental na elucidacao
do comportamento fisico das solucdes.
Aqui faremos o mesmo procedimento, mas dessa vez utilizando a métrica de Ellis. Durante

o desenvolvimento realizado no capitulo [3 a equagio radial obtida para o caso da perturbacdo

escalar (s = 0) mostrou-se da seguinte maneira:

1 d d I(l+1
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Ja a equacdo radial para o caso da perturbacdo gravitacional (s = 2) apareceu com o

seguinte formato:

[M,Zn ((r2 + b2)36i> +w? - W] R(r) =0. (5.3)

E foi possivel perceber que mediante uma transformacao apropriada de coordenadas ambas

poderiam ser postas na forma padrao da equacdo confluente de Heun:

82 1—90 1—91 0 1 0* 20Ct o
[(()722+< z +Z—ZO>82_<4+2,Z+Z(Z—ZU) y(z) =0 (54)

Olhando para o formato de e é possivel perceber uma forte semelhanca entre

as duas. Tal semelhanca nao é acidental, visto que ambas derivam do operador de Laplace-
Beltrami (n3o sei se isso é uma justificativa razoavel). Podemos unificar ambos os resultados

interpolando-os em uma Unica equacao radial:

1 d 2 g2vsi1 @ o ((=s)(l+s+1) _
l(T‘“er)“"*ld?"Qr +07) dr) +w' — N Ry(r) = 0. (5.5)

Sendo s o spin referente ao tipo de perturbacdo executada, tendo s = 0 para perturbacdes
escalares e s = 2 para perturbacGes gravitacionais.

De forma semelhante ao procedimento exposto no capitulo [3| é possivel colocar a equa-
cao na forma de uma equacdo de Heun confluente 5.4 Para isso, facamos a seguinte

substituicdo:

ys(2) = (r* + %) *R,(7) z = —2w(r —ib)

ficamos com:

e () (o PRES e eo

Em que podemos fazer as seguintes identificacGes para os parametros:

0y =01 = s, g, =0, 2o = 4bw, zocr = (04 s)(0 — s+ 1).

Voltando para a equacao radial que une ambas as perturbacdes, podemos escrevé-la

no formato de uma equacgdo de Schrodinger [5.1] Fazendo a substituicdo:

us(r) = (r2 + b)) HI2 R (r)
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Ficamos com:

%§i+nﬂﬂkmm:k%wﬁ

Onde o potencial efetivo é dado por:

) (2P
Verr(r) = 22 (124 0)2 (5.7)

Sendo s o spin da perturbacdo em questdo. Abaixo, plotamos dois graficos do potencial,
um para o caso da perturbacdo escalar e outro para o caso da perturbacdo gravitacional.
Nesse processo, foi de interesse fazer x = r/be V = bQV;ff, ja que a coordenada tartaruga
re = 1+ 2M1In(r/2M — 1), para o caso da métrica de Ellis, toma a forma trivial r, = 7.
Sendo assim, para a perturbacdo escalar temos o comportamento do potencial ilustrado na

figura abaixo:

Potencial paras =0

N
o
T

Sesss
i niaun
APWNHFO

fary
w
T

V(x) = b2 V_eff
o

X =r/b

Figura 7 — Barreira de potencial da métrica de Ellis para perturbacdes escalares

Fonte: Elaborado pelo autor.
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E para a perturbacdo gravitacional temos:

Potencial paras = 2
40

S ss
LI T | O
o WN

ol A

V(x) = b2 V_eff

=
o
T

1 - 1 1 1 - 1
-10 -5 0 5 10
X =r/b

Figura 8 — Barreira de potencial da métrica de Ellis para perturbacées gravitacionais

Fonte: Elaborado pelo autor.

E possivel notar a semelhanca ilustrada nas imagens para ambos os casos, tal semelhanca é
esperada devido a forma do potencial [5.7] Em ambas as plotagens respeitou-se a condicdo de
que [ > s. Percebe-se também que hd uma interpolacdo para r = 0 e r — 400 (é importante
lembrar que a coordenada radial estende-se para +-00) dado que o potencial nesses casos toma
a seguinte forma:

I(1+1)—s*+1

Verp(0) = 72 e Vepr(oo) =0 (5.8)

Da forma como o desenvolvimento foi feito até aqui percebe-se a possibilidade de tratar

diferentes regimes fisicos a partir de uma Unica equacao, uma equacdo mestra, escolhendo o
pardmetro desejado. Tal qual a equacdo mestra de Teukolsky(54)) que resume em uma U(nica
equacdo os principais casos perturbativos para a métrica Kerr, a equacgdo [5.5] também o faz.
Ou seja, variando o parametro s recuperamos como caso especial os dois setores fisicos de
interesse, de tal forma que ambos estdo unificados em uma (nica estrutura diferencial. Ja
a interpolacao no contexto da descricao do potencial significa que a coordenada radial r
conecta de maneira suave e continua o potencial no “gargalo” (r = 0) com seu valor no limite
assintético (r — £00).

Tratando ainda do potencial [5.7] percebe-se que ele possui um méaximo para r = ., em

que:
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E o potencial, em seu valor maximo, toma a seguinte forma:

(0 +1)?
4(s2 = 1)?

Abaixo, um grafico do comportamento do potencial para seu valor maximo em ambos os

Veff(TC) = (5.10)

casos perturbativos de interesse:

V(x_c) (s =0) V(x_c) (s = 2)
40
20 /\ —1=0 —1=2
—=1 —1=3
—1=2 —1=4
(=3 L=5
\ —L=4 30 b —1L=6
15 |
S S
I [ I
X0t R ke
pS / \ pS
N
/ //\\
/[ \
0 1 1 //l \\\ 1 1
-10 -5 0 5 10
x c=rc/b x_c=r_c/b

Figura 9 — Valor maximo para a barreira de potencial da métrica de Ellis para ambas as perturbacées

Fonte: Elaborado pelo autor.

Nota-se novamente uma semelhanca entre ambos os casos, como é esperado dada a in-
terpolacdo descrita mais acima no texto.

Alguns comentarios adicionais fazem-se necessarios quanto ao perfil do potencial 5.7} Na
janela fisica que é relevante [ > s, tanto para s = 0, quanto para s = 2 o potencial é n3o-
negativo em todo o dominio e vai a zero nos limites assintéticos. Derivando o potencial e
fatorando em r tém-se o seguinte:

d‘/:sﬁ? 2r

dr — (12 +02)? [_6(4 (0 +2(s° — 1) bﬂ ' (5.11)

Sendo assim, os dois pontos criticos s3o r = 0 e as solucdes para a equacdo —((£+1)(r*+

b*) 4+ 2(s* — 1)b* = 0, que retornam o 7, exposto anteriormente. Um méaximo fora de r = 0

exige que 72 > 0 (na direcio de ambos os limites assintéticos), ou seja:
C T
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2(s*—1)
00+1)

Para s = 0 temos que 2(32 —1) < 0, de modo que rf < 0 para todo #, sendo assim, nao

—1>0&2* 1) >1(+1) (5.12)

existe maximo real fora do gargalo » = 0. No caso de s = 2 ficamos com 6 > [(l + 1), e a
condicdo fisica é que [ > 2, novamente, o ponto critico real é apenas o gargalo. Portanto, em
ambos os setores (s =0 e s = 2 com ¢ > s), o potencial decresce de maneira mondtona em
|r| a partir de seu valor maximo que é atingido no gargalo.

A consequéncia disso é a auséncia de estados ligados reais. O potencial nesse caso funciona
como uma espécie de “barreira” positiva que é maxima no gargalo e vai a zero no limite
assintético, sendo incapaz de confinar os campos. Porém, a possibilidade da existéncia de
estados de decaimento com a parte imaginaria de w negativa nao devem ser descartados.
Esses perfis possuiriam decaimento exponencial com o tempo, respeitadas as condicGes de
contorno expostas no capitulo [3| Tais perfis sdo os modos quase-normais.

Estabelecidos os principais detalhes a respeito do potencial para as perturbacdes escalares e
gravitacionais, ponto fundamental em uma analise do problema do espalhamento, no préximo
capitulo serdo expostos os valores obtidos para os coeficientes de monodromia das equacdes
confluentes de Heun de ambos os casos (perturbacdo escalar e perturbacdo gravitacional)
fazendo uso de uma implementacdo numérica que tem por base o método isomonodromico

descrito na secao |4.4|

5.2 ANALISE NUMERICA DOS PARAMETROS DE MONODROMIA

Os resultados apresentados nesta subsecdo tem por base a implementacdo numérica do
método isomonodrémico desenvolvido no capitulo[d] A implementacdo numérica de tal método
rendeu diversos resultados no célculo dos modos quase-normais (55| 56]), com um controle
numérico mais suave bastante significativo préximo aos limites extremais dos buracos negros
de Kerr e Reissner-Nordstrom. Os scripts relevantes podem ser encontrados no repositério
(53).

Nesta secdo faremos a exposicao dos resultados obtidos para a parte real e imaginaria dos
pardmetros de monodromia o e 17 em func&o de bw, sendo b o tamanho natural do sistema (a
“garganta” do buraco de minhoca de Ellis) e w a frequéncia, que foi considerada extritamente

positiva. O intervalo considerado para os pardmetros de monodromia correspondem ao ramo
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principal, ou seja, a parte real de o e a parte real de 7 estdo entre [—1, 1].

» Para s =0el =0 temos o seguinte:

b = 0.01 — ramo principal (filtro)

b = 0.01 — ramo principal (filtro)

Re(n) \ Re(o)
———Im(n) 5 im(o)
4
5 3
3
e
g 2
-]
1
VR
/
/
J Ll
0.0025 0.0050 0.0075 0.0100 0.0125 0.0025 0.0050 0.0075 0.0100 00125
b = 0.1 — ramo principal (filtro) b = 0.1 — ramo principal (filtro)
4 — Re(o)
Im(o)
\
2
o
S
<
F4
5 o
Re(n) -2
— Im(n)
0.03 0.06 0.09 0.12 0.15 0.03 0.06 0.09 012 015

Figura 10 —

Valores das partes real e imaginaria de o e n em funcdo de bw paras=0el = 0.

Fonte: Elaborado pelo autor.

b = 2.0 — ramo principal (filtro)

b = 2.0 — ramo principal (filtro)

2 b
‘ Re(n) \ Re(a)
| Im(n) \ Im{a)
| W
| 1
| |
| ] ‘:
i1 g [
A 3 [
'/‘|\4‘,}3/+—— — = Wi
AN - — £ TN
}w\;‘ JW 5 Il
|/ | 0 Il R R —
I I | 7
I | P
| 1 c"‘\ )L"
I U~
a1
0 5 10 15 20 0 5 10 15 20
b = 3.0 — ramo principal (filtro) b = 3.0 — ramo principal (filtro)
| wl e
| N N
| I n
R R B — I
| AP — - \
i — w1 S
| 3 / ——
| .
n g M
= -05 M
I B I
| I
1| s b
I |
| —— Re(n) |
s 10 15 20 25 30 s 10 15 20 25 30

Figura 11 — Valores das partes real e imaginaria de o e n em funcdo de bw paras=0el = 0.

Fonte: Elaborado pelo autor.

Percebe-se que o comportamento é linear para bw pequeno quando b é pegueno e linear

para bw grande quando b é grande.
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= Para s=0el =1 temos o seguinte:

b = 3.0 — ramo principal (filtro) b = 3.0 — ramo principal (filtro)
08 /\ [\ ’Fjl feter
/ \ \ r/ “ 5 Im(a)
/ "1 L\ . al
/ . 4
06 Ya
/ ’ S 3
03 // E
/ | g 2
/ ©
0.0 // o 1 \\\\
/ N
/ 0 \\\
/ -
el —l | ~_ _
I 10 20 30 10 20 30
Figura 12 — Valores das partes real e imaginaria de o e  em funcdo de bw paras =0el = 1.

Fonte: Elaborado pelo autor.

Demonstrando um perfil linear para o no intervalo considerado e para n para valores

pequenos de bw.

» Para s =2 el =2 temos o seguinte:

b = 2.0 — ramo principal (filtro)

b = 2.0 — ramo principal (filtro)

Figura 13

e | . e _
\ e >
ﬂ/// //
075 05 e
g
0.50 E 0.0 S/ WA NN —
H
025 =05
0.00 -1.0
40 45 5.0 55 6.0
b = 3.0 — ramo principal (filtro)
Re(0) -
Im{a) —
075 0.5
5
050 E 0.0
I3
0.25 o5
0.00 — -1.0
— Valores das partes real e imaginaria de 0 e 7 em func3o de bw paras =2el = 2.

Fonte: Elaborado pelo autor.
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b = 5.0 — ramo principal (filtro) b = 5.0 — ramo principal (filtro)
e — \ Reln) e Re(o)
Im{n) Im(o)
075 05
s
030 é 00 VoY
© ’/
025 05 R \\'
N
Figura 14 — Valores das partes real e imaginaria de 0 e n em funcdo de bw paras=2el = 2.

Fonte: Elaborado pelo autor.

Que demonstra um perfil semelhante para as partes real e imaginaria de o e 7, sendo

linear para a parte real e imaginaria de ) para pequenos valores de bw.

A obtencdo de tais resultados numericamente abre caminho para o estudo do problema
do espalhamento e busca pelos modos quase-normais do buraco de minhoca de Ellis,

topico discutido na secao seguinte.

5.3 PERSPECTIVAS FUTURAS

A aplicacao do método isomonodrémico no estudo do problema do espalhamento e na
obtencdo dos modos quase-normais para diversos sistemas gravitacionais é extensa e extre-
mamente frutifera. Abaixo s3o citados alguns trabalhos da literatura que utilizam do método
isomonodrémico e que também fazer uso da mesma implementacdo numérica (53)) do presente
trabalho, que podem servir de guia para as perspectivas futuras do estudo da métrica de Ellis.

Em (55) os autores fazem o estudo de perturbacBes de spin s = 0 e s = 1/2 para a
métrica de Reissner-Nordstrom, tanto no caso nao-extremal quanto para o limite extremal
(Q — M, sendo Q a carga do buraco negro e M sua massa). Em seu estudo, é utilizada
a mesma implementacdo numérica que proporcionou os resultados da secdo [5.2] O trabalho
comeca mostrando que ambas as perturbacdes podem ser englobadas em uma Gnica equacao
mestra tal qual a [5.5} seguindo é exposto que tal equacdo mestra pode ser posta na forma
de uma equacdo de Heun confluente, apés seguem-se as devidas discussoes a respeito da te-
oria isomonodrémica. Os autores conseguiram mostrar que na analise da perturbacao escalar
e espinorial, os resultados numéricos implementados tendo por base o método isomonodro-
mico concordam com os que ja existiam na literatura usando o método da fracao continuada

para o buraco negro de Schwarzschild, o que os permitiu seguir com confianca na anélise do
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buraco negro de Reissner-Nordstrom e obter que, no regime quase-extremal, o espectro de
modos quase-normais se decompde em duas familias distintas: modos amortecidos, com parte
imaginéria finita, e modos “ndo amortecidos”, cujas frequéncias tendem a Rew — ¢Q/M e
Imw — 0 quando @ — M. Ainda, dada a natureza do mapa de Riemann-Hilbert, os autores
tem confianca que o mesmo método também serviria na andlise de perturbacdes com spins
maiores.

Em (56)) os autores fazem o estudo de perturbacdes escalares massivas (1 # 0) na mé-
trica de Kerr, para valores arbitrarios do fator adimensional My e do fator de rotacdo a/M,
utilizando o método isomonodrémico. Assim como no presente trabalho, a equacdo radial
e a equacao angular sao trazidas a forma da equacdo de Heun confluente e o problema é
reformulado em termos dos pardmetros de monodromia {6} associados a 7y, com implemen-
tacdo numérica baseada em (53)). Feita uma validacdo semelhante ao do artigo do paragrafo
anterior, comparando resultados da literatura com o obtido pelo método das fracGes conti-
nuadas no caso sem massa e para rotacdes moderadas, o artigo passa a explorar o regime
quase-extremal a/M — 1, mostrando como o espectro de modos quase-normais se bifurca em
modos amortecidos e modos de amortecimento nulo na presenca de massa. Para { =m =1,
os autores demonstram que o modo fundamental, que para massas pequenas se comporta
como um modo de amortecimento nulo com Rew — m/(2M) e Imw — 0 no limite extre-
mal, transforma-se em um modo amortecido quando a massa do campo ultrapassa um valor
critico (Mp)., associado a um pardmetro de extremalidade d. ou, equivalentemente, a um
spin critico (a/M).. Nesse ponto critico, identificado como um ponto excepcional no espaco
de parametros, o modo fundamental e o primeiro harmonico tornam-se degenerados, compar-
tilhando a mesma frequéncia real e o mesmo tempo de decaimento, o que leva a um cenério de
“level crossing” e histerese espectral. Faz-se também uma expansao para as frequéncias dos
modos de amortecimento nulo no regime quase-extremal. Tal abordagem mostra a forca que
método possui para descrever, de forma unificada, tanto o comportamento numérico quanto
o limite analitico desses modos.

A versatilidade e o éxito da implementacdo numérica (53)) aos mais diversos casos de
sistemas gravitacionais e perturbacdes, somado as exposices feitas acima de resultados da
literatura, encoraja a continuacdo do estudo da métrica de Ellis seguindo na mesma linha
de pesquisa. Sendo assim, a primeira perspectiva futura do presente trabalho é encontrar os
estados de decaimento com parte imaginaria de w negativa, ou seja, os modos quase-normais,

em seguida prentende-se prosseguir, utilizando as mesmas ferramentas, na andlise de problemas
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mais robustos que sejam de interesse.
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6 CONCLUSAO

O presente trabalho teve como objetivo explorar as principais caracteristicas do buraco de
minhoca de Ellis. Os buracos de minhoca, como ressaltado durante a exposicdo, surgem de
uma necessidade de evitar a singularidade essencial que aparece na solucdao de Schwarzschild.
No presente desenvolvimento foi dada uma motivacao histérica e técnica no capitulo [1| da
importancia de tais objetos gravitacionais, seguindo-se de uma breve introducdo de como o
método isomonodromico torna-se relevante na obtencao de modos quase-normais e dos coefi-
cientes do problema do espalhamento. No capitulo [2] foi exposto o desenvolvimento histérico
das principais ideias que levaram Einstein a publicar suas equacoes de campo, também foi
exposto a primeira resolucdo a tais equacdes, a de Schwarzschild, seguindo com a discussao
dos seus problemas relacionados a singularidade essencial que é presente mesmo em sua exten-
sao analitica maxima, finalizando com a introducdo dos buracos de minhoca na relatividade
geral e uma breve discussdo a respeito dos critérios de transponibilidade. No capitulo (3| foi
desenvolvida a teoria da perturbacdo utilizando a abordagem de Regge-Wheeler tanto para
a métrica de Schwarzschild quanto para a métrica de Ellis, para o caso da métrica de Ellis,
tanto a perturbacao escalar quanto a perturbacdo gravitacional apés a devida separacdo de
varidveis resultaram para a parte radial uma equacdo de Heun confluente, o que permitiu
no capitulo seguinte o desenvolvimento da teoria das deformacdes isomonodrémicas no pre-
sente contexto, relacionado as deformacdoes isomonodromicas da equacdo de Heun confluente
a funcdo 7. O capitulo [4] inicia recapitulando as definicdes mais importantes a respeito das
equacdes diferenciais em contextos fisicos, segue-se com a exposicdo das principais discussdes
a respeito de monodromias e matrizes de conexdo para em seguida adentrar na isomonodro-
mia, garantida pelas condicdes impostas a quinta transcedente de Painlevé, e resolve-se o
problema de encontrar os modos quase-normais pelo método isomonodrémico. No capitulo
mostra-se que ambos os resultados a respeito da equacao radial para o buraco de minhoca
de Ellis em perturbacGes escalares e gravitacionais podem ser unificados em uma equacao
mestra. Obtém-se a forma do potencial e mostra-se que ele ndo admite estados ligados com
frequéncias positivas, pois o potencial é sempre positivo e decresce de maneira mondtona a
partir do gargalo, discute-se também que mesmo na auséncia de estados ligados desse tipo ha
a possibilidade da obtencao de estados de amortecimento com parte imaginaria negativa, os

modos quase-normais. Expdem-se brevemente resultados numéricos obtidos a partir da imple-
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mentacdo do método isomonodromico. Finaliza-se expondo resultados da literatura em que o
método isomonodrémico foi utilizado na obtencdo dos modos-quase normais para os buracos
negros de Kerr e Reissner-Nordstrom. Nos apéndices sao expostos resultados importantes de
geometria diferencial que possibilitaram o desenvolvimento dos capitulos [2] e 3] e também é
exposta a funcdo 7y, por meio do determinante de Fredholm.

Como perspectiva futura, dado o desenvolvimento aqui exposto e a discussao realizada na
secdo [5.3} fica a possibilidade de obtencdo, em trabalhos futuros, dos modos quase-normais
e dos coeficientes de espalhamento para o buraco de minhoca de Ellis através do método

isomonodrdomico.
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APENDICE A - GEOMETRIA DIFERENCIAL E O CALCULO DA
CURVATURA

A proposta desse apéndice € tratar dos principais conceitos de geometria diferencial neces-
sarios para trabalhar com as equacdes de Einstein. Essencialmente, ap6s uma breve apresen-
tacao dos principais conceitos, estaremos interessados em mostrar duas formas que podemos
utilizar para calcular o tensor de Riemann (definido na equacdo ([2.1))) para determinada mé-
trica, afim de que possamos, através de sucessivas contracdes, obter o tensor de Ricci e o
Escalar de Curvatura que s3o utilizados na definicdo do tensor de Einstein. Apds a exposicao,
seguirdo os calculos omitidos no capitulo 2.

Todo o cenario em que as ideias serdao desenvolvidas nomeia-se variedade diferenciavel.
Uma variedade diferenciavel é um objeto matematico que localmente se assemelha ao R”,
possuindo sua estrutura diferencial, permitindo a generalizacao dos principais conceitos sobre
diferenciabilidade e através disso possibilitando que possamos criar uma nocao intrinseca de
curvatura, sem a necessidade de fazer menc3o a um espaco de dimensdo maior em que nosso
objeto estaria inserido, que é como geralmente obtemos uma nocao intuitiva de curvatura.

Faz-se necessério a definicao do que seria um operador derivada. Um operador derivada é
um mapa que leva todo campo tensorial suave de tipo (k,I) em um campo tensorial de tipo
(k, 14+1) e satisfaz cinco propriedades [] Quando definidos em uma variedade os operadores

derivada nao s3o Gnicos, podemos relacionar dois deles através da seguinte expressao:

by...by _ N biby
v, T crey, = VaT ;

.Cl 1

b; by...d...b
... + ZC adT c1...cp
i

(A1)
- Z Odac]- Tblmbkcl...cl
J

Em que V e V sdo dois operadores derivadas quaisquer que concordam em sua acao sobre
campos escalares. Caso o operador V seja o operador derivada ordinario que ja conhecemos,
o campo tensorial C,, é denotado por I'“; e recebe o nome de simbolo de Christoffel. Sendo

assim, para um vetor por exemplo, teriamos:

V. t? = 0,t° +T° (A.2)

1O leitor interessado pode consulta-las no capitulo 3 de (15) ou seguir a exposicio da secdo 4 do capitulo

1 de (20).
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Existe um altimo requerimento que gostariamos de impor ao nosso operador derivada,
queremos que ele seja (inico ao equiparmos nossa variedade com uma estrutura adicional. Essa
estrutura é a métrica e temos o seguinte teorema:

Teorema A.1: Seja g,, uma métrica definida em uma variedade diferenciavel. Existe um
unico operador derivada que satisfaz V,g,, = OE]

Desse teorema segue a seguinte relacao importante que nos permitira calcular a curvatura:

1
I = 590d <8agbd + ObGoa — 8dgab> (A3)

A nocao intrinseca de curvatura segue através de duas ideias. A primeira é de que um
vetor que é paralelamente transportado (um vetor V' é paralelamente transportado se satisfaz:
u’V VI =0, sendo u* o vetor tangente a curva) ao longo de uma curva infinitesimal fechada
ndo volta ao seu valor original. A segunda é de que geodésicas que s3o inicialmente paralelas
falham em permanecer paralelas. Ambas as ideias estdo relacionadas a um campo tensorial ja

apresentado no capitulo 1, o tensor de Riemann, que foi definido como:

(VaVb - vaa)wc = Rabcdwd (A4)

Semelhantemente, a partir das propriedades do operador derivada e da regra de Leibniz

podemos obter o seguinte:

(Vo V= V) Vo)t = —R,, 7 (A.5)

E generalizar para um campo tensorial arbitrario:

k
(Vavb . vaa)Tq.“del...dl —_ Z RabeciTCL..ckdlmdl
i=1

l
ercy ...C
+ Z Rabd]- T di...e...d;

=1

O tensor de Riemann tem quatro propriedades principais:
1. E antisimétrico nos dois primeiros indices R,,.* = —R,,.°
2. A parte antissimétrica de seus primeiros trés indices é nula R[abc]d =0

3. Para o operador derivada natural associado a métrica temos R,;.; = — R p4c

2 A prova do teorema pode ser vista na pagina 35 do capitulo 3 de (I5).
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4. Vale a identidade de Bianchi VIt ;"

Das propriedades 1, 2 e 3 também segue que:

Rabcd = Rcdab (AY)

Através da contracdo do primeiro e terceiro indices no tensor de Riemann segue o tensor

de Ricci:

R,.=R,} (A.8)

Que é simétrico em seus indices. Uma (Gltima contracdo, agora no tensor de Ricci, leva ao
escalar de curvatura R:

R=R, (A.9)

a

O tensor de Einstein que aparece na equacdo de campo de Einstein é definido em termos
desses dois udltimos da seguinte maneira:

1
Gab - Rab - igabR (A]'O)

E da contracdo da identidade de Bianchi (veja a propriedade 4 do tensor de Riemann)

segue 0 seguinte:

VG, =0 (A.11)

E importante ressaltar que saber como calcular a curvatura é essencial para resolver as
equacdes de Einstein, abaixo seguem duas formas de fazer isso. A primeira é a mais conhecida,
baseia-se em escolher um sistema de coordenadas e calcular os simbolos de Christoffel a partir
da métrica. A segunda parte da implementacdo de uma base ortonormal em cada ponto da

variedade, e da escrita das quantidades relevantes em termos dessa base.

A.1 METODO DAS COORDENADAS

O método consiste em escolher um sistema de coordenadas e encontrar o tensor de Riemann

através da relacao abaixo:



86

Rabcd = [_zﬁ[ardb]c + 2Fec[ade]e] (A12)

Tomando as componentes temos o seguinte:

o a g 8 (o2 (0% (o2 (03 (o
R o, —+=1%,+> (0,17, —I%,I%,) (A.13)

wp T Javs BT Gyn

Podemos utilizar a equac3o [A.3] escrita em uma base de coordenadas para encontrar os
simbolos de Christofell e por fim calcular o tensor de Riemann. Obtido o tensor de Riemann,

podemos encontrar o tensor de Ricci através de uma contracao:

R, = ZV: R/wpu
0

o ) o o
_ ijaxyr o W(ijr V,,) +;<F oD —T%,,T w) (A.14)

E uma dltima contracdo nos daria o escalar de curvatura.
Uma dltima relacdo pode ser Gtil para o calculo do simbolo de Christoffel contraido que

aparece na relacdo para o tensor de Ricci:

u 0
T ap = @ln |g| (A15)

Em que g é o determinante da métrica

A2 METODO DA BASE ORTONORMAL OU METODO DAS TETRADAS

O método consiste em introduzir uma base ortonormal ndo-holonémica de campos vetorias

suaves (e, )" que satisfazem:

(e,u,)a(el/)a = nuu (A16)
Em que ), = diag(—1,...,—1,1,...,1), sendo 11 e v identificadores dos vetores da base
com intervalo 1,...,n, ja a letra “a” representa um indice tensorial. Em quatro dimensdes

{(eu)“} recebe o nome de tetrada. Ainda temos a seguinte relacdo atil:

3 A métrica pode ser representada por uma matriz quando tem seus componentes escritos em uma base de

coordenadas.
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>0 (e)(e,)" =07 (A-17)

Em que 6%, é o mapa identidade.
Nosso objetivo €, assim como no método das coordendas, encontrar o tensor de Riemann
para determinada métrica. Para fazer isso vamos definir a seguinte 1-forma de conexdo em

termo das tetradas:

W = (€,)"Va(e,) (A.18)

Suas componentes recebem o nome de coeficientes de rotacdo de Ricci

w)\,u,u = (eA)a(e,u)bV(l(eu)b (Alg)

A 1-forma de conex3o é antissimétrica em seus dois Gltimos indices:

Wy, = —W (A.20)

Podemos encontrar o tensor de Riemann através da seguinte relacao:

Rpa;u/ = (ep)a<ea)b{vawbuu - waauu - zé naﬁ[waﬂuwbalj - wb,é’,uwaau]} (A21)

E em seguida, podemos obter o tensor de Ricci através de uma contracdo:

R, = > 17 Ry (A.22)

A grande sacada que permite um caminho bem menos trabalhoso até o tensor Riemann

através do método das tetradas baseia-se na seguinte expressao:

a[a(ea)b} = Z nluy<€,u>[awb]0'1/ (A23)
w,v

Essa Gltima relacdo permite que encontremos as 1-forma de conex3o apenas realizando a
derivada parcial das tetradas! Apds encontrar as 1-forma de conexao basta utilizar a equacao
para encontrar o tensor de Riemann, que é nosso objetivo. A equacao baseia-se no
fato do espaco ser livre de torcdo (algo que tinhamos deixado implicito até ent3o, inclusive

no método das coordenadas), quando o espaco é livre de torcdo a derivada antisimetrizada de
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uma 1-forma independe do operador derivada, assim, podemos utilizar o mais trivial que seria
justamente o operador derivada ordinario.

A vantagem apresentada pelo método das coordenadas consiste em seu processo mais
direto e mecanico, mas tem como desvantagem o fato de ser mais laborioso. Ja a vantagem
do método das tetradas consiste na facilidade de utilizar as simetrias do espaco-tempo em
questao para diminuir o trabalho de obter o tensor de Riemann, dando uma interpretacao
geométrica mais significativa.

Para mais detalhes sobre as derivacoes e motivacoes dos resultados apresentados o leitor
é convidado a consultar o capitulo 3 do livro do Wald (15) de onde a inspiracdo para esse
apéndice, em grande parte, foi retirada. O leitor é convidado também a consultar a exposicao
feita para o formalismo das tetradas na monografia do Chandrasekhar (20) que é seguida de

uma exposicdo do tratamento de Newman-Penrose citada no capitulo [3|
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APENDICE B - O DETERMINANTE DE FREDHOLM E A REPRESENTACAO
DA TV

Como citado no capitulo [4/ hd como fazer a expansdo da funcdo transcedente 7y, por meio
do determinante de Fredholm. Os principais resultados que serdo expostos logo a seguir tem
por base o artigo de Lisovyy, Nagoya e Roussillon (57)), onde a representacdo para a 7y, por
meio do determinante de Fredholm foi apresentada pela primeira vez. E possivel expressar a
transcedente 7y, em termos dos pardmetros de monodromia {o, 7}, dos pardmetros da equag&o

de Heun confluente {6y, 0;, 03} e do determinante de Fredholm da seguinte maneira:

({0} 0, m:t) = (7706004 ¢ (0:)/2 det(I _A ,{‘(/03)/2 t93)/2 D (1) H‘;(Js)/Q t—(aag)/Q)
(B.1)

Em que A e D, s3o operadores tais que sua acdo em W é dada por:

(AV)(2) = 217” Cdz’A(z, 2)U(Z), (D.Y)(z) = 21m Cdz' D.(z,2") V(). (B.2)

Em que C é um circulo de tal maneira que C < 1, com ¥ = ¥(z) sendo dado por:
¢+ (%)
vy =| (B.3)
¢ (%)
E os nicleos para os operadores sdo, desde que ¢t < C, tais que:

X71<0-7 907 eta Z,) X(Ju 90) 9t7 Z) —1

z— 2z

A(z,2') =
(B.4)

I— Xc_l(_o-v 8*; t/zl> Xc<_07 9*; t/Z)

De(z, Zl) = v —

Em que a matriz x é dada tal que:

w(0-7 607915;’2) g(_o-a 007915;2)
X(U7 607015;2) - (BS)

5(0-7 Hﬂ)et;z) ¢(_07 Hant;Z>
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Os termos (0, 6y, 0y; 2) e (0, by, 0; 2) sdo dados por meio da funcdo hipergeométrica de

Gauss QFlE] :

(o, 0;,00;2) = 2F1<%(O' — 0+ 60), 2 (0 — 0, — by); o; z) : (B.6)

N
o
g3
—
/N
[u—
+
N

(0 —0,+0),1+ 3(c — 0, —0y); 2+ 0; z).
(B.7)
Ja a matriz . tem o seguinte formato:

Ve(—0,04;t/2) E(—0,0,5/2)
Xe(—0,0,;t/2) = (B.8)

E(0,05t)2)  (o,0,;t)2)

Com 1), e &, por sua vez, dados em termos da funcio hipergeométrica confluente F; ]

e(Fo,0,;t/2) = 1F1(_9*2i" ; o ; —t/z) : (B.9)
—O0,t0 t
+0,0,t/2) =+t ———~ - [y (14+ =552+ 0; —t/z). B.1
fc( O',e,t/Z) 20_(1:|:O_)Z1 1( + 2 ) g, t/Z) ( O)
E kv em [B.1] é expressa da seguinte maneira:
ky = ™ IL(O,,0) (6,0, 0) (B.11)
Com:
L(1—o0)T(1+ (0. +0))
H*(0*70-> - 1 b
T(1+0)T(1+ 30, — o))
(B.12)
118, 60.0) — o) T (14 5(6:+ 00+ 0)) T(1+ 30 — 60 + 0))
,00,0) = :
t> 0o r(1+a)1“(1+%(6t+00—a))l“(1+§(6t—90—a))

Resultado para xy ja obtido anteriormente no desenvolvimento da secdo [4.4]

Para definicdes formais, propriedades analiticas, representacées integrais e expansdes assintéticas da funcao
hipergeométrica de Gauss oF1, ver NIST Digital Library of Mathematical Functions, Cap. 15, disponivel
em: |[<https://dImf.nist.gov/15>.

2 Consultar NIST Digital Library of Mathematical Functions, Cap. 13, disponivel em: <https://dImf.nist.
gov/13>.


https://dlmf.nist.gov/15
https://dlmf.nist.gov/13
https://dlmf.nist.gov/13
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