UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE TECNOLOGIA E GEOCIENCIAS
DEPARTAMENTO DE ENGENHARIA ELETRICA
CURSO DE GRADUACAO EM ENGENHARIA DE CONTROLE E AUTOMACAO

GABRIEL TARQUINIO SALES MUNIZ

SISTEMA DE COLETA DE DADOS BASEADO NA IEC 61499

Recife
2025

GABRIEL TARQUINIO SALES MUNIZ

SISTEMA DE COLETA DE DADOS BASEADO NA IEC 61499

Trabalho de Conclusdo de Curso
apresentado ao Curso de Graduacdo em
Engenharia de Controle e Automacao da
Universidade Federal de Pernambuco,
como requisito parcial para obtencédo do
grau de Bacharel em Engenharia de
Controle e Automacao.

Orientador(a): Prof. Dr. Herbert de Albérico de Sa Leitao

Recife
2025

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragéo automatica do SIB/UFPE

Muniz, Gabriel Tarquinio Sales.

Sistema de coleta de dados baseado na |EC 61499 / Gabriel Tarquinio Sales
Muniz. - Recife, 2025.

100 p. : il., tab.

Orientador(a): Herbert Albérico De Sa Leitéo
Trabalho de Conclusdo de Curso (Graduag&o) - Universidade Federal de
Pernambuco, Centro de Tecnologia e Geociéncias, Engenharia de Controle e
Automacdo - Bacharelado, 2025.
Inclui referéncias, apéndices.

1. IEC 61499. 2. Coletade Dados. 3. Industria 4.0. 4. Sistemas Distribuidos.
5. Banco de dados ndo-relacionais. |. Leitdo, Herbert Albérico De Sa
(Orientagdo). I1. Titulo.

620 CDD (22.ed.)

GABRIEL TARQUINIO SALES MUNIZ

SISTEMA DE COLETA DE DADOS BASEADO NA IEC 61499

Aprovado em: 17/12/2025

Trabalho de Conclusdo de Curso
apresentado ao Curso de Graduacdo em
Engenharia de Controle e Automacéao da
Universidade Federal de Pernambuco,
como requisito parcial para obtencédo do
grau de Bacharel em Engenharia de
Controle e Automagéo.

BANCA EXAMINADORA

Prof. Dr. Herbert de Albérico de Sa Leitdo (Orientador)
Universidade Federal de Pernambuco

Prof. Dr. Jeydson Lopes da Silva

Universidade Federal de Pernambuco

Prof. MSc. Néstor lvan Medina Giraldo
Universidade Federal de Pernambuco

AGRADECIMENTOS

Primeiramente, gostaria de agradecer a minha mae, Meiriangela Sales, por ter
acreditado em mim desde do comeco e por ter me dado suporte na minha vida e em

todas as minhas escolhas.

Agradeco ao meu pai, lverton José, por ter sido sempre um modelo para mim e por

me ensinar que os estudos e o trabalho sdo apenas uma parte da vida.

Agradeco a minha irm&, Giovanna Tarquinio, por sempre ter sido a minha parceira e
por ter me dado suporte em diferentes ambitos da minha vida.

Agradeco a Peruquinha, meu cachorro e coautor néo oficial deste TCC, por estar
sempre N0 meu pé e por me proporcionar momentos de distracao e lazer em uma

rotina agitada.

Agradeco a Luana Karolyna, amor da minha vida, por me mostra que existe beleza
neste mundo fora de calculos, codigos e maquinas, além do incentivo a leitura e

fazer o cappucino mais gostoso para me ajudar nos estudos.

Agradeco a Jodo Veras, cunhado e amigo, por ter me emprestado a ESP32 que foi

usada neste trabalho.

Agradeco ao resto da minha familia, por estar sempre comigo em momentos

importantes, pelas comemorac¢des nas conquistas e pelos os consolos nas derrotas.

Agradeco aos meus amigos, em especial Jodo Ferreira e Claudio José, por sempre

estarem comigo nos momentos de pausa e de lazer.

Agradeco a equipe de robdtica Maracatronics, por ter me proporcionado um
ambiente de muito aprendizado e por ter me dado oportunidade de trabalhar com

diferentes tipos de pessoas.

Agradeco as pessoas da Qualihouse Automacao, por terem me proporcionado a
experiencia de trabalhar no mercado de trabalho e pelo os ensinamentos técnicos e

humanos para lidar com esse ambiente.

Agradeco ao professor Herbert, por ter me orientado no desenvolvimento deste
trabalho e pelo o ensino do contetdo da disciplina de Automacéo e Controle de
Sistemas Distribuidos, que foi essencial para o desenvolvimento deste projeto.

Agradeco aos meus colegas de curso, por estarem ao meu lado ao enfrentar os

desafios da graduagéo.

Agradeco aos outros professores, pelo os ensinamentos passados durante toda a

graduacéo.

E por fim agrade¢o a mim mesmo por ter sido resiliente e por ter acredito até o fim

gue daria certo.

“Insanidade é fazer a mesma coisa
repetidamente e esperar resultados
diferentes.” Albert Einstein.

RESUMO

A crescente digitalizacdo da industria, impulsionada pelos principios da
Industria 4.0, tem intensificado a necessidade de sistemas eficientes de coleta,
armazenamento e andalise de dados. Nesse contexto, este trabalho apresenta o
desenvolvimento de um sistema de coleta de dados fundamentado na norma IEC
61499, que se destaca por sua abordagem orientada a sistemas distribuidos. A
proposta visa integrar Controladores Légicos Programaveis (CLPs) e softCLPs por
meio do protocolo OPC UA, garantindo comunicagcdo padronizada e
interoperabilidade. O sistema € composto por duas etapas principais: a coleta de
dados em dispositivos de campo e 0 armazenamento em um banco de dados nao
relacional, implementado através de blocos de interface de servi¢o. A adocao da IEC
61499 permite maior flexibilidade, escalabilidade e modularidade na arquitetura,
favorecendo a digitalizacdo dos processos industriais e servindo como base para a
aplicacao de tecnologias emergentes, como Internet Industrial das Coisas (lloT), Big
Data e computacdo em nuvem. Os resultados esperados incluem maior visibilidade
operacional, suporte a manutencdo preventiva e embasamento para tomadas de

decisao estratégicas.

Palavras-chave: IEC 61499; Coleta de Dados, Industria 4.0, Sistemas Distribuidos,

Banco de dados nao-relacionais.

ABSTRACT

The increasing digitalization of the industry, driven by the principles of Industry 4.0,
has intensified the need for efficient systems for data collection, storage, and
analysis. In this context, this work presents the development of a data collection
system based on the IEC 61499 standard, which stands out for its distributed
systems-oriented approach. The proposal aims to integrate Programmable Logic
Controllers (PLCs) and softPLCs through the OPC UA protocol, ensuring
standardized communication and interoperability. The system consists of two main
stages: data collection from field devices and storage in a non-relational database,
implemented through service interface blocks. The adoption of IEC 61499 allows for
greater flexibility, scalability, and modularity in the architecture, favoring the
digitalization of industrial processes and serving as a foundation for the application of
emerging technologies, such as the Industrial Internet of Things (lloT), Big Data, and
cloud computing. The expected outcomes include greater operational visibility,

support for preventive maintenance, and a basis for strategic decision-making.

Keywords: IEC 61499; Data Collection, Industry 4.0, Distributed Systems, Non-

relational Databases.

LISTA DE ILUSTRACOES

Figura 1: Representagéo do bloco de fung¢des da norma IEC 61499..............ccceeeee 21
Figura 2: BIOCO BASICO d€ fUNGOESuviiiiiiieeiiiiiiiiiieeece et 22
Figura 3: ECC de um blOCO DASICOuuuiiiiiiiiiiiiiiiiiieeccee s 24
Figura 4: Representacédo de um bloCo COMPOSTOuuuummiiiiiiiiiiiiiiii 24
Figura 5: ECC de um DIOCO COMPOSTO.......uuuuiiiiiiiiiiiii e 25
Figura 6: Representagao de DlOCOS SIFBS..........uuuuiiiiiiiii e 26
Figura 7: Exemplo de uso de um bloco de interfaceccccoeoiiiiiiiiie 26
FIQUIra 8: ADIAC IDE 29
Figura 9: Meios para usar 0 CmMakeuuuuuiiiiiiiii e 30
Figura 10:Representacdo do Banco de dadosuuimmiiimiiiiiiiiiiees 31
Figura 11:Topologia d FEUEuueiiiiii e 37
Figura 12: Comandos usados para 4Diac FORTE reconhecer a API do Python 40
Figura 13:SIFB MONQODBouuiiiiiie ettt e et e e e e e e e e e aaaa s 41
Figura 14:BIOCO CrONOMELIOFB........ccceiiiieeiii e e e 42
Figura 15:BIOCO CSV_DBIOCK.........uueiiiii e 43
Figura 16:Bloco de interface de servico que faz comunicacdo com o SQlite3 44
Figura 17:BIoco pYthONBIOCK........ccoiiiiiiieeeie e 45
[(o U] = WS AN o] [o= Vo= Lo I I L - Vo 46
Figura 19: Interface Grafica do CmakKe..........cccooveeiiiiiiiiiiiii e 47
Figura 20: Topologia da conexao 10Cal............ccooeeviiiiiiiiiiiii e 49
Figura 21:Executando comunicacdo com UaEXPert........ccccoeeevvveeiiiiiiiiiieeeeeeeeiiiinnnn 49
Figura 22: Leitura e escrita dos dados N0 UaEXPertcccovvvviiiiiiiiiieeeeeeeeiiinnn. 50
Figura 23: Visualizacao dos dados armazenados no MongoDBcccccevvvveennn. 51
Figura 24:ESP32 DEVKItVL.......ouuiiiiieeieeeeei ettt e e 52
Figura 25: Execuca0o do Servidor OPCoiiiiiiiiieeeiee e 52
Figura 26:Sistema conectado a ESP32.........cooiiiiiiiiiiiiii e 53
Figura 27:Dados armazenados da comunicacdo com a ESP32ccccevvvvvnnnnnn. 54
Figura 28:Contagem de 20 eventos, correspondente a quantidade de inputs 56
Figura 29: Namero de documentos salvos na cole¢cdo do MongoDB..............ccc....... 58

Figura 30: ArqUIVO CSV ...t 59

Figura 31:Gréfico do intervalo de tempo das coletas de dados

LISTA DE TABELAS

Tabela 1: Portabilidade entre as principais ferramentas baseadas na norma IEC

CLP

FB

IEC

loT

lloT
TSDB
Ccsv
SoftCLP

ECC
SGBD
GPIO
SIFB
OPC UA

LISTA DE ABREVIATURAS E SIGLAS

Controlador Logico Programavel

Function Blocks

International Electrotechnical Commission

Internet of Things

Industrial Internet of Things

banco de dados de séries temporais

valores separados por virgulas

Controlador Logico Programavel implementado em software

grafico de controle de execucao

Sistema de Gerenciamento de Banco de Dados

Entrada/Saida de propdsito geral

Service Interface Function Blocks

Arquitetura Unificada de Comunicac¢des de Plataforma Aberta

SUMARIO

1 INTRODUGAO ...ttt eaenans 16
1.1 ODJELVOS ... 18

O O R 1 - | PP PP PPPPPPPPPPP 18
1.1.2 ESPECITICOS. ..eieiiiieeei et 18

1.2 Organizagdo do Trabalho..........coooiiiii 18

2 FUNDAMENTAGCAO TEORICAoooeeeeeeeeeeeee e 20
2.1 NOImMA IEC 61499 ... 20
2.2 TIPOS 0€ BIOCOS......cciiiiiiiiiiiiiiiiiiiiiiieeeeeteeeeee ettt eeees 22
2.2.1 BasiC FUNCLION BIOCKSceeiiiiiiiiiiiiieeee e 22
2.2.2 Composite FUNction BIOCKS..........coovviiiiiiiiiiiecee e 24
2.2.3 Blocos de interface de ServiGoSceeiiiieeiieeeiiiiiie e e 25

2.3 ADIBC .ciiiiiiiiiieiee ettt ittt raaeaees 27
231 ADIaC VS FDBK.....coiiiiiiiiii 27
2.3.2 Componentes do 4ADIAC..........cccovviiiiiiiiiii e 28

2.4 CIMAKE ...ttt a e e e e 29
2.5 BanCO d€ DAdOS.........occuiiiiiiiiiee ettt 30

3 METODOLOGIA ..ttt e et e e e e et eeeeara e eaeees 35
3.1 Definicdo dos Requisitos Funcionais e de Dados...........ccccevveeeevieeeiiiiiiieeeeeen, 35
3.2 Modelagem Funcional com Blocos IEC 61499ooiiiiiiiieeiiieeeiciee e, 35
3.3 Desenvolvimento e Implementacdo dos BIOCOSvceeeiiieeiiiveiiiiciee e, 36
3.4 TeSteS € ValidAGAOD ... e 36
3.5 Integrac@o em Sistema PilOt0ccoooeeiiiiiiiiicce e 37

4 DESENVOLVIMENTO DO TRABALHO ... 39

4.1 Configuracéo do ambiente de trabalno ... 39

4.2 Desenvolvimento do SIFB MONQODB...........ccooiiiiiiiiiiiiieee e 40

4.3 Desenvolvimento do SIFB cronometroFB.............cccccciiiiiiiiiiiiis 42
4.4 Desenvolvimento do SIFB CSV_DIOCK........ccoooiiiiiiiiiiiiiieeeieeeccee e 43
4.5 Desenvolvimento do SIFB MYBD ... 44
4.6 Desenvolvimento do SIFB pythonBIOCK ... 45
4.7 Desenvolvimento da apliCagio 4DIacuuuuuuumumimiiiiiiiiee 45
4.8 Geragdo da maquina FORTEcooiiiiiiiiiiiiee e 47
4.9 Validacéo do Sistema de Coleta de Dados.............cceevieeeiiiiieiiiiiiiieeeeeeeeeeiens 48
4.10 Integracdo com O SiStema PilOtOuuuuiiiiiiiiiiii 51
S RESULTADOSttt e e et e e e e et e e e e e et e e e eaeneeaeee 55
5.1 Funcionamento do Sistema em Ambiente Local............cccccevviiiiiiiiiieinicennns 55
5.2 Integracdo com o Sistema Piloto (ESP32)......ccccooviiieiiiiiiiiieeeeeeeecee e 56
5.3 Armazenamento de Dados N0 MONGODBccoovvviiiiiiiiiie e 57
5.4 Teste de Confiabilidadecoooeiiiiiiiiiiii e 57
5.5 Teste de Robustez € DeSEmMPENNO...........uuuiiiiiiiiiiiiece e 58
5.6 Sintese d0S RESUITAAOSuuuiiiiiiiiiiiiiiiiii e 60
6 CONCLUSOES E PROPOSTAS DE CONTINUIDADEcccoveeieeececeeeeeevenen, 62
APENDICE A — SCRIPT BD_mongo_project_fOt.CPP......cceceirieeiriieeeieeeeesveennas 66
APENDICE B — SCRIPT CRONOMETROFBccooiviiveiiceieeece e, 75
APENDICE C — SCRIPT MYBD_fBt.CPP . vvvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesen e s enenen 81
APENDICE D — SCRIPT CSV_BLOCK ...ooouiiiiiieciecieceecteeeee e, 90

APENDICE E — SCRIPT pythonBIOCK_fOL.CPPvceviieeeee it ce e 96

16

1 INTRODUCAO

A industria 4.0 tem promovido mudancas significativas nos sistemas de
producéo, introduzindo tecnologias digitais, como Internet of Things(loT), ou internet
das coisas em portugués, e Big Data, e promovendo a integracéo de sistemas fisicos
aredes inteligentes. Nesse contexto, os dados assumem o papel central, uma vez que
fornecem informacdes essenciais sobre o estado dos processos produtivos,
possibilitando sua otimizacdo continua, a implementacdo de estratégias de
manutencgao preditiva e a tomada de decisdes autbnomas, suportadas por sistemas
de inteligéncia artificial (ARNALSON; BREMDAL; SOLVANG, 2022).

Dessa forma, intensificou-se a demanda por sistemas de controle distribuidos,
capazes de integrar e coordenar estruturas produtivas cada vez mais complexas. A
partir dessa necessidade, surge a norma IEC 61499 (MERKUMIANS; GSELLMANN,;
SCHITTER, 2021), que determina e padroniza a implementacdo de sistemas de
controle distribuidos. As principais vantagens da norma IEC 61499 incluem o uso de
uma linguagem de facil compreenséao baseada em diagramas de blocos de fungdes.
Seu diferencial estd na extensdo do conceito tradicional de blocos de funcgdes,
permitindo sua adaptacdo a realidade dos sistemas de controle distribuido. Além
disso, a norma foi concebida para atender a trés requisitos fundamentais:
portabilidade, configurabilidade e interoperabilidade (PANG et al., 2014).

Um outro efeito associado ao conceito de Industria 4.0 é a crescente
digitalizacdo das industrias, aumentando a geracdo de dados vindo de sensores e
variaveis do sistema. Com isso, também cresce a necessidade de criar meios mais
eficientes para coleta e andlise desses dados gerados (KAJOLA, 2024). Um exemplo
€ 0 estudo de Paavo Kajola (2024), que propde um sistema de coleta e analise de
dados multivariados em séries temporais, baseado na norma IEC 61499. No estudo,
a aquisicdo de dados teve como finalidade capturar dados de sistemas industriais
modernos, coletar dados de servidores OPC UA, armazenar os dados em um banco
de dados de séries temporais (TSDB) e preparar os dados para analise distribuida

utilizando blocos de interface de servicos.

17

A implementacdo de sistemas de coleta de dados na industria apresenta
inlmeras vantagens, uma vez que proporciona maior visibilidade dos processos
produtivos, reduz desperdicios de recursos e possibilita a identificacdo de gargalos
operacionais. No contexto de sistemas distribuidos, o trafego de grandes volumes de
informacgdes entre CLPs torna a presenca de um sistema de coleta indispensével para
aprimorar o desempenho, viabilizar a manutencao preventiva e apoiar a tomada de
decisfes estratégicas (KAJOLA, 2024).

No escopo da Industria 4.0, a utilizacdo e o processamento de dados ocorrem,
de forma geral, em quatro etapas principais: (i) Coleta de dados, na qual informacdes
séo extraidas de sensores, motores e sistemas de controle; (ii) Armazenamento, etapa
em que os dados coletados séo registrados em bancos de dados ou arquivos CSV;
(i) Pré-processamento, fase responsavel pela filtragem e eliminacdo de dados
invalidos ou redundantes; e (iv) Analise, em que graficos e algoritmos de inteligéncia
artificial sdo aplicados para extrair padrées e gerar insights relevantes (BASANTA-
VAL, 2017).

Nesse cenario, a adocdo da norma IEC 61499 para o desenvolvimento de
sistemas de coleta de dados revela-se especialmente vantajosa. Como os dados
industriais sdo provenientes de diferentes processos e dispositivos, o sistema de
coleta caracteriza-se, em esséncia, como um sistema distribuido, alinhando-se
diretamente a filosofia da IEC 61499. Além disso, a coleta de dados representa o
primeiro passo para a digitalizacdo industrial, constituindo-se como base para a
implementac&o de tecnologias emergentes, tais como a Internet Industrial das Coisas

(lloT), Big Data e computacdo em nuvem.

Inspirado por essa abordagem, o presente trabalho tem como objetivo projetar
e implementar um sistema de coleta e armazenamento de dados em conformidade
com a norma IEC 61499. Para tanto, foi desenvolvida uma arquitetura em que a etapa
de coleta é realizada por um CLP, enquanto o armazenamento é executado por um
softCLP em operacdo em um PC central. A comunicacdo entre os dispositivos ocorre
por meio da rede, utilizando o protocolo OPC UA. No processo de armazenamento,
foram implementados blocos de interface de servigo responsaveis por registrar 0s

dados em um banco de dados nao relacional.

18

1.1 Objetivos

1.1.1 Geral

Desenvolver um sistema de coleta e armazenamento de dados industriais
fundamentado na norma IEC 61499, visando aprimorar a visibilidade dos
processos, facilitar a digitalizacdo da industria e fornecer suporte a analise de

dados para tomada de decisfes estratégicas.

1.1.2 Especificos

Projetar uma arquitetura distribuida de coleta de dados baseada em CLPs e
softCLPs conforme a norma IEC 61499;

e Implementar a comunicagao entre os dispositivos utilizando o protocolo OPC

UA, garantindo interoperabilidade e padronizacéo;

e Desenvolver blocos de interface de servico para o armazenamento de dados

em um banco de dados néo relacional acessado localmente pelo softCLP;

e Validar o sistema por meio de simulacdes e testes que demonstrem sua

eficiéncia na coleta e no registro de informacdes industriais.

1.2 Organizacao do Trabalho

Este trabalho esté estruturado da seguinte forma: No Capitulo 2, apresenta-
se a fundamentacao tedrica, contemplando os principais conceitos relacionados
a norma IEC 61499, suas ferramentas e aspectos pertinentes a bancos de dados,

de modo a oferecer a base conceitual necessaria para a compreensao do estudo.

19

O Capitulo 3 descreve a metodologia adotada, detalhando as etapas que
orientaram o desenvolvimento do trabalho, desde o planejamento até a execuc¢ao.
No capitulo 4, é mostrado como foi feito o desenvolvimento do trabalho. No
capitulo 5 € mostrado os resultados obtidos neste projeto. Por fim, o Capitulo 6
relne as conclusdes obtidas a partir dos resultados apresentados no capitulo

anterior, bem como sugestdes e perspectivas para trabalhos futuros.

20

2 FUNDAMENTACAO TEORICA

2.1 Norma IEC 61499

A norma IEC 61499 foi desenvolvida com o objetivo de oferecer um ambiente
pratico e flexivel para a implementacdo de sistemas de controle distribuidos. Em
contraste com a norma IEC 61131-3, que se concentra na padronizacdo das
linguagens de programacao para CLPs tradicionais e esta vinculada a arquiteturas
centralizadas e dependentes de hardware especifico (INTERNATIONAL
ELECTROTECHNICAL COMMISSION, 2025), a IEC 61499 introduz um modelo
orientado a sistemas distribuidos, com foco na interoperabilidade e na independéncia
de plataforma (PANG et al., 2014).

Esse novo paradigma facilita a comunicacdo entre dispositivos de diferentes
fabricantes e garante a portabilidade das aplicacbes em softwares distintos
(CHRISTENSEN et al., 2012). Por exemplo, uma solucao desenvolvida para um CLP
pode ser facilmente adaptada e executada em plataformas alternativas, como o

Raspberry Pi, sem a necessidade de reescrita completa do projeto.

Além da portabilidade, a IEC 61499 foi concebida para atender a dois requisitos

adicionais essenciais:

e Configurabilidade: possibilita a alteracdo dindmica dos parametros de um
projeto sem a necessidade de interromper sua execucao, permitindo maior
flexibilidade e adaptabilidade dos sistemas.

e Interoperabilidade: assegura que dois ou mais dispositivos, mesmo de
fabricantes distintos, possam executar de forma coordenada todas as

aplicacdes de um sistema distribuido.

Dessa forma, a IEC 61499 representa uma evolucao significativa em relacdo a IEC
61131-3, ao alinhar-se as demandas da Industria 4.0 e as necessidades de
arquiteturas de automacao mais distribuidas, escalaveis e independentes de hardware
(CHRISTENSEN et al., 2012).

21

O elemento central da norma IEC 61499 que possibilita essas funcionalidades € o
conceito de blocos de funcdo. Esses blocos representam abstracdes de codigo que
permitem a incorporacdo de mdaltiplos algoritmos, podendo ser desenvolvidos tanto
em linguagens definidas pela IEC 61131-3, como o texto estruturado, quanto em

linguagens de alto nivel, como C++ e Python (PINTO, 2014).

Outra caracteristica fundamental dos blocos definidos pela IEC 61499 é que eles
séo orientados a eventos, em contraste com os blocos da IEC 61131-3, que seguem
um modelo baseado em ciclos de varredura. Essa abordagem orientada a eventos
contribui para sistemas mais eficientes e confiaveis no tratamento de eventos,
reduzindo atrasos desnecessarios e otimizando a utlizagdo dos recursos
computacionais (LEWIS; ZOTIL, 2014).

Sua representacao grafica € constituida por 2 partes: cabecalho e o corpo. No
cabecalho sdo definidos os eventos de entrada, os eventos de saida e o ECC
(execution control chart, grafico de controle de execucéo), onde € administrado a
ocorréncia dos eventos e no corpo se encontram os dados de entrada, os algoritmos
encapsulados e os dados de saida (LEWIS; ZOTIL, 2014).

Figura 1. Representacéo do bloco de fun¢des da norma IEC 61499

Entradas de Saidas de eventos
eventos Nome da instancia /
Entradas de Saidas de
eventos Controle de execucao — eventos
(escondido dentro do =
bloco)
Nome do tipo de |
Fluxo de 1 BF i Saidas de
dados E - Funcionalidade - - dados
in , encapsulada -
(escondido entro do
> <>
bloco)

/

Capacidades
de recursos

Saidas de dados

Capacidades de recursos
(escalar, comunicacoes e
mapenmento de
processos)

Fonte: adaptado do LEWIS (2014)

22

2.2 Tipos de Blocos

Existem 3 tipos de blocos que sdo usados na IEC 61499 que séo:

e Basic Function Blocks: Sao blocos que tem um ou mais algoritmos

encapsulados neles e sua execucao é baseada nos eventos de entrada.

e Composite Function Blocks: Sédo blocos que tem um conjunto de outros

blocos encapsulados neles.

e Service Interface Function Blocks: Os blocos de interface de servico séo
blocos que permitem o acesso externo do sistema, sendo util para ler sensores,

usar atuadores e fazer comunicagdo em rede.

2.2.1 Basic Function Blocks

O tipo de bloco basico € composto por um ou varios algoritmos que séo executados

a partir da ocorréncia dos eventos de entrada e sdo gerenciados pelo ECC.

Figura 2: Bloco Bésico de fun¢des

Entradas Saidas
de eventos de eventos

\ /

Grafico de Controle |<
da Execucao

\

Y

— FB Tipo Nome

Y
A

Algoritmos

v

Variaveis Internas

/ \

Entradas Saidas
de dados de dados

Fonte: adaptado do LEWIS (2014)

23

O ECC é um componente fundamental em aplicagfes desenvolvidas com base na
norma IEC 61499, pois € responsavel por gerenciar as transi¢des de estados de um
bloco de fungdes. A cada evento recebido, o ECC avalia as condi¢es de transicao e
executa o algoritmo associado ao estado ativo, processando os dados de entrada e
gerando as saidas correspondentes. Essa abordagem orientada a eventos permite
maior controle sobre o fluxo de execucdo, aumentando a previsibilidade e a
modularidade do sistema (LIAKH et al., 2022).

A estrutura do ECC é composta por trés elementos principais:

e Estados: representam diferentes modos de operagcao de um bloco de fungdes,

cada um associado a acbes ou algoritmos especificos.

e TransicOes: definem as condi¢des sob as quais o ECC altera o estado atual,

geralmente disparadas por eventos.

e Acdes: correspondem aos algoritmos executados quando um estado € ativado,

permitindo o processamento dos dados e a geracéo de respostas apropriadas.

A seguir, apresenta-se um exemplo de ECC aplicado a um bloco basico de

funcdes, ilustrando um programa simples de somador.

O ECC (Execution Control Chart) desse bloco somador € composto por quatro

estados: START, que representa o estado inicial do bloco; Init; Initialized; e NormalOp.

O ciclo de funcionamento do ECC inicia-se no estado START. Quando o bloco
recebe o evento INIT, ele transita para o estado Init, gerando o evento de saida INITO
e, em seguida, passando para o estado Initialized. Nesse ponto, o programa conclui a

fase de configuracéo (setup) e entra na fase de execucao ciclica (loop).

Ao receber o evento REQ, o bloco transita para o estado NormalOp, no qual é
executado o algoritmo normalOperation. Esse algoritmo realiza a soma dos dois dados

de entrada. Apés a execucao, € gerado o evento de saida CNF, e o bloco retorna ao

24

estado Initialized, aguardando uma nova ocorréncia do evento REQ, que reinicia o

ciclo descrito.

Figura 3: ECC de um bloco basico

Init — INITO

/
INIT \
/ E REQ
START Initialized NormalOp — normalOperation CNF

N

Fonte: Do préprio autor

2.2.2 Composite Function Blocks

Para definir o comportamento de blocos compostos, utiliza-se uma rede de blocos
internos, o ECC e algoritmos, como ocorre nos blocos basicos. A Figura 4 apresenta

a estrutura de um bloco composto.

Figura 4. Representa¢é@o de um bloco composto

Entradas Saidas
de eventos de eventos
\ /
T
;L FB Tipo Nome B
=IO = e
S . Ei
SR R = eE

/

Entradas Saidas

Fonte: Adaptado do LEWIS (2014)

25

Abaixo temos um exemplo de um bloco composto que tem encapsulado nele
dois blocos em sequéncia que sao o E_Switch e o E_SR que sdo usados em conjuntos
para criar uma aplicacéo de flip flop, que sé&o circuitos sequenciais em que o valor de

saida depende do valor atual do componente.

Figura 5: ECC de um bloco composto

REQ f—t-CNF
Qo0

E_SWITCH E_SR

EI E00 s EO
» EO1 R
7| &8l E_SwITCH & E SR

I o s s .

Fonte: Do préprio autor

2.2.3 Blocos de interface de servigcos

Os blocos de interface de servico (SIFB — Service Interface Function Blocks)
sdo componentes utilizados para estabelecer a comunicagédo entre a aplicacéo e o
ambiente externo. Esse ambiente externo pode corresponder tanto a dispositivos de
hardware, permitindo a leitura de sinais de entrada e a escrita em sinais de saida,
guanto a redes de comunicacao entre diferentes dispositivos, viabilizando a integracao

necessaria para a implementacao de sistemas distribuidos.

Por exemplo, os blocos PUBLISHER e SUBSCRIBER, representados na figura
6, possibilitam a comunicacdo em rede utilizando diversos protocolos, como sockets,
OPC UA, Modbus TCP, HTTP, entre outros. Ja os blocos 10 _Read e 10_Write
permitem, respectivamente, a leitura de valores provenientes de sensores fisicos

conectados ao hardware e o envio de comandos para atuadores.

26

Figura 6: Representacéo de blocos SIFBs

EVERT S INIT IHITOHE EVENT EVENT & EVERNT
EVENT —* REQ CEF i~ EVENT EVEHRT - EVEHT
10 wnrres[
BOOL QL rar] B L BOOL BOOL
I TARAMS PAREHE STATUS IO _STATUS I0 _PARRHE IO _STATUS
10 _ADDHE :g: ED_1 RD_l}—& IO VALVE I0_RDOR B _1|—E- 10 VALUE
I0_VALUE an_z ey

Fonte: LEWIS (2014)

Outra aplicacéo para os blocos de interface de servigos € acessar arquivos que
estdo armazenados em um hardware em que o projeto esta sendo executado, como
um arquivo txt ou CSV e cédigos que foram escritos usando linguagens de alto nivel.

Nesse projeto, sera mostrado como usar esse tipo de bloco para executar
codigos em Python que s&o externos ao projeto, sdo chamados a partir do codigo dos
blocos que sédo gerados em C++. Na figura 7 temos um bloco chamado PythonBlock
gue foi criado para auxiliar esse projeto, a funcao deste bloco é executar codigos feitos
em Python, bastando apontar o diretorio do arquivo em FILE_PATH. O cddigo esta

disponivel no Apéndice.

Figura 7: Exemplo de uso de um bloco de interface

pythonBlock
E_CYCLE =INIT INITO®-
PuSTART EO =REQ CNF
=STOP 7] tsd pythonBlock [j

el E cYcLE TRUERQI STATUSal

T#3smDT | "python3 print.py"sFILE PATH D01

Fonte: Do proprio autor

27

2.3 4Diac

O 4Diac é um kit de desenvolvimento de cddigo aberto composto por um ambiente
de desenvolvimento integrado (IDE) e a maquina FORTE, que executa os FBs da IEC
61499, utilizado para o desenvolvimento, implementacéo e visualizacao de aplicacdes
industriais de sistemas de controle distribuidos com base na norma IEC 61499.

Embora existam outras ferramentas compativeis com a norma IEC 61499, nas
préximas secdes deste trabalho € apresentada uma analise comparativa entre o FDBK
e 0 4Diac, a fim de identificar qual delas oferece maior eficiéncia e adequagao para o

desenvolvimento de aplicacdes voltadas a sistemas de controle distribuido.

No estudo de (PANG et al., 2014), foi realizada uma investigacdo sobre
portabilidade e semantica entre diferentes ferramentas baseadas na IEC 61499. Além
do 4Diac, foram avaliadas outras trés plataformas: FBDK, IsaGRAF e nxtStudio,

considerando a capacidade de portabilidade entre elas.

Tabela 1: Portabilidade entre as principais ferramentas baseadas na norma IEC 61499

FBDK 4Diac nxtStudio IsaGRAF
FBDK - Full Partial N/A
4Diac Full - Partial N/A
nxtStudio Partial Partial - N/A
IsaGRAF N/A N/A N/A -

Fonte: adaptado (PANG et al., 2014).

Com os resultados apresentados na Tabela 1, nota-se que as solucdes

nxtStudio e isaGRAF ndo se mostram adequadas para utilizacdo, devido a sua baixa

compatibilidade com outras ferramentas e a escassez de informacdes disponiveis.

2.3.1 4Diac vs FDBK

O FBDK foi a primeira ferramenta produzida com o objetivo de demonstrar os

conceitos da norma IEC 61499, seus componentes sdo um editor de texto e um

28

ambiente de execucdo (FBRT) que utiliza um modelo de execucdo baseado em
multiplas threads, onde cada thread é uma unidade de execucgdo de tarefas, ndo
preemptivo com escalonamento em profundidade, suporta a sintaxe XML normativa,
o que facilita a troca de elementos com outras ferramentas compativeis e sua limitacéo
€ 0 seu desenvolvimento na linguagem Java que limita seu suporte a hardware
industrial(PANG et al., 2014).

O 4Diac é uma ferramenta de codigo aberto que foi desenvolvida originalmente
pela academia para estudar e desenvolver projetos baseados na norma IEC 61499,
seus componentes sdo um editor baseado no Eclipse e um ambiente de execucao
chamado FORTE que foi construido usando C++, seu modo de execucdo é um modelo
sequencial com despache de eventos, altamente compativel com FDBK pois ambos
seguem a sintaxe XML como define a norma e tem como mérito ser a Unica ferramenta
ainda ativa de codigo aberto que recebe atualizagdes e é a ferramenta mais utilizada
para pesquisa e desenvolvimento(PANG et al., 2014).

Com isso foi definido que a melhor ferramenta para utilizar nesse projeto é o
4Diac pois além dos itens apresentados acima, ele possui uma interface agradavel e

intuitiva para desenvolvimento.

2.3.2 Componentes do 4Diac

O 4Diac tem dois componentes principais para a execucao de controle de

sistemas distribuidos sob a norma IEC 61499.

4Diac FORTE: O FORTE é um ambiente de tempo de execucao de multiplas
tarefas baseado na norma IEC 61499, que oferece suporte a execucédo de redes
de blocos de funcdo em dispositivos embarcados de pequeno porte. Trata-se de
uma implementacdo compacta, de baixo custo e baixo consumo de memoria,
desenvolvida em C++. Além disso, o FORTE j& foi testado em diversos sistemas
operacionais, incluindo Windows, Linux e FreeRTOS(ECLIPSE FOUNDATION,
2025).

4Diac IDE: E um ambiente escrito em Java baseado na IDE do Eclipse, a IDE

do 4Diac fornece ao usuario varias ferramentas para desenvolver aplicacfes de

29

sistemas distribuidos baseados na norma IEC 61499 como criar bloco de funcdes,

criar aplicativos, configurar dispositivos e realizar outras tarefas relacionadas a
norma IEC 61499 (ECLIPSE FOUNDATION, 2025). O 4Dlac IDE também vem
com varias bibliotecas nativas pré-compiladas e prontas para serem executadas

na maguina FORTE, a coleg&o de bibliotecas do 4Diac é vasta e bastante rica, tem

blocos da norma IEC 61131-3 que podem ser usados em aplicagdes de sistemas

de controle distribuidos, tem a biblioteca Convert onde ficam blocos destinados a

conversao de dados, tem a biblioteca Net que hospeda os blocos que realizam a

comunicagdo em rede e varias outras.

Figura 8: 4Diac IDE

ys - 4diac IDE
o]
\: ate Search Project b
Syste R @ Type fromf tav 1 L@ pythonBlock g APItest 22 H
% elloworldApp
@ aula_ascd
g & block file
£ Helloworld
> | yHelloworldApp E_PERMIT
System Configuration S sizpletest el £0d
= . SSTART EO4———————peREQ chFa wie peawrr [
(#sT0P] Y simpletest [i |
(@€ cyeLe[STATE
e’ T#1saDT |

Fonte: Do préprio autor

2.4 Cmake

Outro software essencial no desenvolvimento de aplicacées para sistemas de

controle distribuido é o CMake. Trata-se de um conjunto de ferramentas de cédigo

aberto (open-source) que permite criar, testar e empacotar aplicacdes de forma

automatizada e multiplataforma (KITWARE, 2025).

30

No contexto deste trabalho, o CMake é utilizado como ferramenta de
compilacéo e geracdo da maquina FORTE. A partir dos arquivos disponibilizados no
pacote 4Diac FORTE, é possivel gerar maquinas FORTE personalizadas, capazes de
executar tanto blocos de funcdo desenvolvidos pelo préprio usuario quanto blocos
nativos presentes nas bibliotecas fornecidas pelo 4Diac.

O CMake pode ser utilizado de duas formas: por meio da linha de comando

(terminal) ou por meio de uma interface gréafica, conforme ilustrado na figura 9:

Figura 9: Meios para usar o Cmake

(KITWARE, 2025)

2.5 Banco de Dados

O banco de dados pode ser definido como um sistema computacional
destinado ao armazenamento e a manutencdo de informacdes, composto por
hardware, software e pelos proprios dados. As informacbes armazenadas em um
banco de dados possuem carater persistente, sendo removidas apenas mediante uma
solicitacdo explicita, ao contrario dos dados de entrada e saida dos blocos de fungéo

da IEC 61499 que s&o atualizados de forma constante (DATE, 1991).

31

O que gerencia um banco de dados € o SGBD (Sistema de Gerenciamento
de Banco de Dados), que € responsavel por intermediar 0 acesso ao banco de dados
atuando entre as camadas do usuario e o armazenamento fisico, oferecendo uma
interface légica e intuitiva para manipulacdo de dados.

As principais funcdes do SGBD sao gerenciar como o0s dados séo
armazenados e acessados, permitir operacfes para manipulacdo de dados,
estabelecer um controle de acesso, garantindo multiplos acessos de usuarios de
forma simultdnea e sem conflitos, definir permissdes sobre quais usuarios podem
acessar o banco de dados, proteger os dados contra acessos ndo autorizados e

garantir a integridade e a independéncia das informagdes (DATE, 1991).

Figura 10:Representacéo do Banco de dados

Sisterna de gerenciamento de bancos
de dados (SGED)

N
Banco de dados
\ / |

de aplicagao

] 1~
[—o—'_'_'_'_'_'-/ - G —
-~y b —q | =
p— /
- N
. | — C]
T L—
Programas : :

Usudrios finais

Fonte: (DATE, 1991)

A linguagem padrdo usada para manipulacdes de dados é o SQL, que
significa Structured Query Language (linguagem de consulta estruturada), com ela é
possivel criar tabelas, inserir dados, consultar dados, alterar dados, excluir dados e
tabelas. Os principais comandos usados para realizar essas acfes estdo listados
abaixo:

+ CREATE TABLE: usado para criacdo de tabelas;
« DROP TABLE: usado para remover tabelas;

* INSERT: usado para inserir dados em uma tabela;

32

* SELECT: usado para realizar consulta de dados;
* UPDATE: usado para alterar dados inseridos;
* DELETE: usado para excluir dados;

251 Bancos Relacionais

Os bancos de dados relacionais séo sistemas que organizam as informacgdes
por meio de regras estruturais bem definidas. Do ponto de vista estrutural, esses
bancos sdo compostos por tabelas, nas quais os dados sdo armazenados e
relacionados entre si. Todas as tabelas que compdem um banco de dados séo
compostas por linhas e colunas, cada coluna ja tem definido o tipo de valor que ela
vai comportar — por exemplo: inteiro, real, texto e data — e em cada tabela € necessario
gue uma coluna seja a chave primaria para identificacdo de uma linha especifica
registrada na tabela. Os vinculos criados entre as tabelas sao referenciados atraves
de chaves estrangeiras, onde a coluna que representa uma chave primaria em uma

tabela aparece em outra tabela como chave estrangeira (DATE, 1991).

Esse tipo de banco de dados foi proposto por Edgar F. Codd em 1970 e ainda
€ bastante utilizado em varios tipos de sistemas modernos porque 0 seu aspecto
estrutural € bastante intuitivo e facil de entender, sendo ideal para uma organizagao
maior no armazenamento de dados. Outra vantagem que torna o banco de dados
relacional atrativo é a sua integridade em relacdo aos dados, estabelecendo certas
restricbes em relagdo ao armazenamento de dados em estados nao validos e
respeitando a relacdo das tabelas, garantindo que as chaves primarias ndo sejam
nulas e que as relacbes das chaves estrangeiras estejam devidamente validadas
(DATE, 1991).

Porém, para aplica¢cfes industriais, havera uma alta velocidade de geracéo de
dados descentralizados e desconexos o que torna a escolha dos bancos de dados
relacionais ndo apropriada para armazenamento, pois além do baixo desempenho
para lidar com um alto volume de dados, € exigida uma relacdo entre os dados
distribuidos que n&o necessariamente vai existir. Por isso que o tipo de banco de
dados néo-relacional é mais utilizado para aplicacfes IloT do que o banco de dados

relacional.

33

25.2 Bancos Nao-Relacionais

Com a necessidade de manipular grande quantidade de dados que surgiram
depois do advento da web 2.0, foram criados os bancos de dados nao relacionais
também conhecido como NoSQL (“not only SQL”) que tem como caracteristicas um
sistema flexivel, os bancos de dados possuem cdodigo aberto, os dados ndo sao
estruturados e a escalabilidade de armazenamento costuma ser mais barata e menos
complexa (GARCIA & SOTTO,2019).

Os bancos de dados néo-relacionais séo divididos nos seguintes grupos:

. Orientado a documentos: S&o colecbes de atributos e valores que
podem assumir tipos de valores diferentes, essas cole¢cfes sdo armazenadas no
formato JSON. Os tipos de bancos mais populares séo o0 MongoDB e o CouchDB
(DIANA & GEROSA, 2010).

. Armazéns chave-valor: S&o armazenados objetos indexados por chaves
exclusivas que possibilitam fazer a busca por esses objetos. Um exemplo de
banco que esta nessa categoria € o Amazon DynamoDB (AMAZON, 2025).

. Banco de dados por Grafos: Diferente dos outros tipos de banco de
dados que nao definem um modelo de dados previamente, aqui é definido como
modelo de grafos. Onde os dados séo representados por estruturas de grafos que
sao constituidas por nés e bordas. Exemplos de banco de dados: Property Graph
e 0 Resource Description Framework (RDF) (AMAZON, 2025).

Apés analisar essas e varias outras categorias, foi decidido utilizar um banco
de dados orientado a documentos por causa do funcionamento simples, da arquitetura
bastante flexivel e por ter bancos de dados gratuitos como o MongoDB, que foi o

banco de dados escolhido para armazenar os dados lidos pelo o sistema de coletas.

2.5.2.1 MongoDB

O MongoDB, como mencionado no tépico anterior, € um banco de dados

orientado a documentos que permite armazenamento de cole¢bes de documentos

34

semelhantes ao JSON. Ele foi criado com o objetivo de ser uma alternativa a bancos
relacionais como o MySQL para suprir a necessidade de sistemas modernos que tém
um volume grande de dados. Além de gratuito, 0 MongoDB possui uma comunidade
ampla e ativa, bem como documentacao abrangente sobre instalagéo, uso de APIs e
desenvolvimento de aplica¢cdes, disponiveis para consulta (MONGODB Inc, 2025).

Além dessas caracteristicas, cada documento é um objeto independente que
esta organizado no esquema chave-valor, podendo ter diferentes tipos de dados como
arrays, texto e nameros reais. A vantagem dessa estrutura é que ela elimina a
necessidade de definir um esquema fixo, permitindo que documentos de uma mesma
colecdo tenham estruturas diferentes. Essa caracteristica € um dos pontos principais
gue torna o MongoDB uma excelente escolha para lidar com aplicactes de Big Data
e Internet Industrial das Coisas (lloT).

No MongoDB também é possivel fazer uma replicacdo dos dados em
diferentes servidores, assim garantindo a disponibilidade e recuperacao desses dados
em caso de falha. Nesse banco de dados também €& permitido particionar os dados
em varios servidores diferentes, possibilitando o aumento de desempenho, da
capacidade de armazenamento e tornando possivel a escalabilidade horizontal dos

dados.

35

3 METODOLOGIA

A metodologia proposta neste trabalho visa a criacdo, validacao e aplicacéo de
um sistema de coleta de dados, conforme a norma IEC 61499, voltados a manipulacéo
de dados industriais em ambientes compativeis com os principios da Industria 4.0. A
abordagem esté dividida em cinco etapas principais: (1) definicdo dos requisitos, (2)
modelagem funcional, (3) desenvolvimento dos blocos, (4) testes e validacao, e (5)

integracdo em um sistema piloto.

3.1 Definicdo dos Requisitos Funcionais e de Dados

Nesta etapa, foram definidos os requisitos do projeto, que consistem na criacao
de um sistema de coleta de dados baseado na norma IEC 61499, capaz de executar
duas das quatro fases do tratamento de dados: a coleta e 0 armazenamento em um
banco de dados. Como o sistema foi idealizado para coletar informacdes provenientes
de ambientes industriais, ele deve ser capaz de se comunicar por meio de um
protocolo industrial e registrar esses dados em um banco que suporte grandes
volumes de informacdes, além de oferecer mecanismos adequados para lidar com

possiveis perdas de dados.

Tendo em vista esses dois pré-requisitos, definiu-se que o protocolo de
comunicacao a ser utilizado sera o OPC UA, em razao da sua facilidade de integracéo
com diferentes tipos de sistemas. Conforme mencionado na Secéo 2.5.2, o banco de

dados escolhido para o armazenamento das informacdes é o MongoDB.

3.2 Modelagem Funcional com Blocos IEC 61499

Com base nos requisitos, o sistema de coleta de dados tera um bloco de rede
gue vai executar o protocolo OPC UA, um bloco que fara a comunica¢do com o banco
de dados MongoDB e alguns blocos do tipo evento que serdo necessarios para gerar

eventos de requisi¢éo e encerramento do banco de dados. Na biblioteca de blocos do

36

4Diac, existem blocos de comunicacdo em rede e blocos de eventos, logo é

necessario apenas criar o bloco que fara a comunicagdo com o MongoDB.

3.3 Desenvolvimento e Implementacdo dos Blocos

O desenvolvimento da interface gréfica do bloco MongoDB foi feito na IDE do
4Diac. Nesta etapa, foi definido o nimero de eventos de entrada e de saida do bloco
e a quantidade de dados de entrada e de saida. Posteriormente, o script interno do
bloco MongoDB, apresentado no Apéndice A, foi desenvolvido em linguagem C++.

Para a realizacéo do teste de robustez, foram criados mais dois blocos o bloco
cronometroFB que obtém o tempo em que o bloco MongoDB leva para fazer um
armazenamento no banco de dados e o bloco csv_block que cria um arquivo CSV que
armazena o tempo de ocorréncia da chegada dos dados e o tempo obtido do bloco
cronometroFB. A interface grafica dos dois blocos também foi desenvolvida no 4Diac
IDE.

No desenvolvimento deste trabalho foram desenvolvidos dois blocos que nédo foram
usados na versao final deste projeto, mas as suas funcionalidades sao interessantes
para fazer uso em futuros projetos que sdo o myBD e o pythonBlock. O myBD é um
bloco de interface de servico que faz comunicacdo com o banco de dados Sqlite3,
um banco de dados relacional. O pythonBlock € um bloco de interface de servico

gue executa codigos em python.

3.4 Testes e Validacao

O sistema de coleta de dados foi validado em um ambiente de conexao local, no
gual ocorreu a troca de informagdes entre o sistema desenvolvido e um software
responsavel pela leitura e transmissédo de dados utilizando o protocolo OPC UA. Os
testes consideraram:

o Validacao funcional: verificar se os blocos executam corretamente as

operagOes de manipulacao de dados.

e Robustez e confiabilidade: verificacdo de perda de dados e avaliagcédo de

performance.

Ferramentas de monitoramento do 4diac foram utilizadas para observar o

comportamento dos blocos em tempo real.

3.5 Integracédo em Sistema Piloto

37

Os blocos foram integrados em uma aplicacdo piloto, representando um

cenario industrial simplificado. O sistema piloto foi um servidor OPC UA, operando em

uma ESP32. Esse servidor foi utilizado para monitorar variaveis de processo como

estados de Relays e a temperatura do ambiente.

A topologia de rede de uma planta industrial para aquisicdo de dados é

7z

formada por um CLP de campo que coleta os dados e o sistema que recebe os dados

via rede, neste trabalho € proposta uma estrutura semelhante, mas que possui a

vantagem de integrar em um mesmo dispositivo o sistema de controle (CLP) e o

sistema de armazenamento de dados (banco de dados). A figura 11 apresenta esta

topologia de rede, tendo a ESP32 como um dispositivo de campo.

ESP32

Figura 11:Topologia de rede

OPC UA

PC

Fonte: Do proprio autor

Soft
CLP

E—

Banco
de
Dados

Chamado via Script

38

O softCLP se comunica com a ESP32 através do protocolo OPC UA, ap6s o
recebimento dos dados, o softCLP faz comunicagdo com o banco de dados via script
(codigo de programacdo). Esse tipo de comunicacdo foi possivel devido ao
desenvolvimento do bloco SIFB MongoDB da IEC 61499, permitindo que o softCLP

possa ter acesso direto a informacdes de outros servi¢os do PC.

Essa aplicacdo permite demonstrar a viabilidade pratica da metodologia e os
ganhos em termos de modularidade, interoperabilidade e uso de dados em tempo real.

39

4 DESENVOLVIMENTO DO TRABALHO

Neste capitulo, sera apresentado o processo de desenvolvimento deste

trabalho, abrangendo desde a configuracdo do ambiente de trabalho até a

demonstracao do seu funcionamento. O objetivo desta secado € detalhar os softwares

utilizados, as etapas de configuracdo necessarias para sua operacionalizacdo e 0s

blocos de fungéo desenvolvidos, juntamente com seus respectivos codigos.

Esta secédo esta organizada em trés partes: (1) Configuracdo do ambiente de

trabalho; (2) Desenvolvimento dos blocos de funcédo; e (3) Ambiente de teste e

integracdo com o sistema piloto.

4.1 Configuracdo do ambiente de trabalho

Neste trabalho, foi necessario fazer a instalacdo dos seguintes softwares para

execucao do sistema de coleta de dados:

As ferramentas do 4Diac: Como foi dito na secdo 2.3.2, o 4Diac tem duas
ferramentas que séo o 4Diac IDE e o 4Diac FORTE. As duas ferramentas

foram necessérias para o desenvolvimento do projeto.

Compiladores C/C++: Foram necessarios para compilacdo e geracao da

maquina FORTE que executa o projeto do sistema de coleta de dados.

Open62541: O pacote Open62541 da OPC Foundation € uma biblioteca de
cbédigo aberto que habilita o protocolo OPC UA na maquina FORTE
(OPEN62541, 2025).

UaExpert: Software para comunicacdo OPC UA da Unified Automation,
usado para validar o sistema de coleta de dados (UNIFIED AUTOMATION,
2025).

Python: Foi necessario para fazer a comunicacdo com o banco de dados
MongoDB.

MongoDB: Banco de dados usado para fazer o armazenamento dos dados
coletados (MONGODB, 2025).

40

ApGs a instalacdo de todas as ferramentas, foi necessario integrar a APl do
Python com a maquina FORTE usando os comandos da Figura 12 no arquivo
cmakelList.txt principal da maquina FORTE.

Figura 12: Comandos usados para 4Diac FORTE reconhecer a API do Python

find package(Python3 REQUIRED COMPONENTS Development)

ories(forte PRIVATE ${Python3_INCLUDE_DIRS})

t link libraries(forte PRIVATE ${Python3_LIBRARIES})

Fonte: Do préprio autor

4.2 Desenvolvimento do SIFB MongoDB

O bloco MongoDB foi desenvolvido com o propésito de estabelecer a
comunicacao entre a maquina FORTE, em execucao no softCLP, e o banco de dados
MongoDB instalado no sistema. Esse SIFB (Service Interface Function Block) também
€ responsavel por realizar operacdes de criacdo do banco de dados e de suas

cole¢des, bem como pela insercdo de dados nesses repositorios.

O bloco foi projetado com trés eventos de entrada, dois eventos de saida, cinco

dados de entrada e dois de saida.

41

Figura 13:SIFB MongoDB

Fonte: Do préprio autor

O evento INIT, quando acionado, realiza a inicializagdo do bloco MongoDB.
Durante esse processo, € executada uma verificacao para assegurar que o bloco foi
iniciado corretamente. Apos essa verificacao, o interpretador Python é inicializado. Ao
término da execucéao do evento INIT, é gerado o evento de saida INITO, indicando que

0 processo de inicializacéo foi concluido.

O evento REQ, ao ser acionado, seleciona o nome do banco de dados que sera
usado e a colecdo em gque esses dados serao inseridos a partir da entrada PARAMS,
caso o banco de dados e a colecéo ndo existam, elas sao criadas. No evento REQ os
dados que séo recebidos nas entradas Datal, Data2 e Data3 sdo inseridos na colecéo

indicada. Apos essa acao ser finalizada, o bloco aciona o evento de saida CNF.

O evento FINISH tem a funcéo de encerrar a conexao com a APl do Python.
Essa acdo é necessaria devido a natureza da prépria API, pois, caso seja inicializada
e finalizada repetidamente em um curto intervalo de tempo, podera ocorrer um erro
na maquina FORTE, ocasionando a interrup¢éo do sistema. Ao término da execucéao

do evento FINISH, é gerado o evento CNF, indicando a conclusdo do processo.

Os cinco dados de entrada sao Ql, PARAMS, Datal, Data2 e Data3. O QI é
uma variavel booleana usada para habilitar a inicializacdo do bloco, a variavel
PARAMS é uma WSstring que recebe os parametros de configuracao para acesso ao
banco de dados. Esses parametros sdo separados por ponto e virgula: o primeiro
corresponde ao home do banco de dados, o segundo ao nome da colecao e os demais
aos nomes dos atributos. Como trés dados sdo armazenados, foram definidos trés

atributos. As variaveis Datal, Data2 e Data3 representam os dados que serdo

42

enviados ao MongoDB. Os valores Datal e Data2 sdo variaveis booleanas que
indicam o estado de dois relés, enquanto Data3 é uma variavel do tipo Real, destinada

a armazenar a leitura de um sensor de temperatura.

Os dois dados de saida sédo usados para monitoramento do bloco, sendo o QO
uma variavel booleana e o STATUS uma variavel do tipo Wstring. O codigo desse

bloco esta disponivel no Apéndice A.

4.3 Desenvolvimento do SIFB cronometroFB

O bloco cronometroFB foi criado com o propdsito de obter o tempo em que o
bloco MongoDB leva para fazer armazenamento de dados, a interface grafica do
bloco esta representada na figura 14.

Figura 14:Bloco cronometroFB

- Event —&amINIT INITO=m&— Event
- Event —s+maIniciarCronometro CronometroIniciados—s— Event
- Event — mEncerrarCronometro CronometroParado g Event
i 81 cronometrofFB
| 1.8
- Bogt—aese=(I STATUS=saa—RWSTRING
Temposaaa—REAL -

Fonte: Do préprio autor

O bloco cronometroFB possui trés eventos de entrada, trés eventos de
saida, um dado de entrada e dois de saida. O evento INIT ao ser acionado, executa
as configuracdes iniciais do bloco e gera o evento de saida INITO.

O evento IniciarCronometro ao ser acionado, comeca a contar o tempo e

gera o evento de saida Cronometrolniciado. ApGs o acionamento do evento

43

EncerrarCronometro o tempo para de ser contado e o evento de saida
CronometroParado € acionado.

Este bloco possui o dado de entrada booleana QI que é usado para habilitar
a inicializacao do bloco, o dado de saida STATUS, que € uma variavel do tipo
Wstring, monitora o estado em que o bloco se encontra. O bloco cronometroFB
também retorna o dado de saida tempo, nele esta contido o tempo contado pelo o

bloco cronometroFB. Seu cédigo esta disponivel no Apéndice B.

4.4 Desenvolvimento do SIFB csv_block

O bloco csv_block foi criado para salvar dados temporais gerados pelo o
sistema de coleta de dados, representado pela figura 15, o bloco possui 3 eventos
de entrada, 2 eventos de saida, 3 dados de entrada e 1 de saida.

Figura 15:Bloco csv_block

Event —saINIT INITO Event
Event —sr+mCREATE CNFe—5—Fvent
Event —& mTNSERT
_'@CSU block
. 1.8
BOSt—sse=0T STATUSH &2—WSTRING
STRING—sHE-aPARAMS
=

& mDATA

i

Fonte: Do préprio autor

O evento INIT inicializa o bloco e gera o evento de saida INITO e gera o
evento INITO, o evento CREATE cria 0 arquivo csv e gera o evento de saida CNF e
o evento INSERT faz a insercéo dos dados da entrada DATA no arquivo CSV e gera
0 evento de saida CNF.

O dado de entrada QI habilita a inicializagao do bloco, o dado de entrada

PARAMS esta contido nos parametros de criagdo do arquivo que sdo o nome do

4.5

44

arquivo e os nomes das colunas, caso seja hecessario. Os parametros sdo
separados por virgula.

O dado de entrada DATA contém os dados que sdo inseridos no arquivo
csv, em caso de inser¢cao de mais de um dado é necessério concatenar usando
virgula. o dado de saida STATUS, que € uma variavel do tipo Wstring, monitora o

estado em que o bloco se encontra. Seu cédigo esta disponivel no Apéndice D.

Desenvolvimento do SIFB myBD

O bloco myBD foi criado para fazer conexdo com o banco de dados Sqlite3,
a interface gréfica do bloco esta representada na figura 16, mostrando que o bloco
tem 4 eventos de entrada, 3 eventos de saida, 3 dados de entrada e 2 dados de
saida.

Figura 16:Bloco de interface de servico que faz comunicacdo com o SQlite3

Event —-aINIT INITO Event
Event g—aCONNECTION CNFe—&8— Event
Event —& =(JUERY ACTION FILE OUT g Event
Event —& mREAD DATA
7 (&g MyBD
. 1.8
- BaaL 01 STATUSE B8 WSTRING
WS TRING—mmesmaPARAMS RD ——WSTRING
W5 TRINEe—ES QUERY

Fonte: Do préprio autor

O evento INIT inicializa o bloco MyBD e gera o evento de saida INITO, o
evento CONNECTION estabelece a conexdo com o banco de dados e gera o evento
de saida CNF, o evento QUERY_ACTION executa o codigo sqgl na variavel de
entrada QUERY, gerando o evento de saida CNF e READ_DATA executa codigos
de operacgBes de consulta e retorna o resultado no dado de saida RD, gerando o
evento de saida FILE_OUT.

A entrada do dado de entrada booleana QI, é usado para habilitar a

inicializacdo do bloco, o dado de saida STATUS, que é uma variavel do tipo WSstring,

4.6

4.7

monitora o estado em que o bloco se encontra. A entrada PARAMS é definido o
nome do banco de dados que o bloco fara conexao e o dado de entrada QUERY
armazena o codigo sql que sera utilizado. O codigo esta disponivel no Apéndice B.

Desenvolvimento do SIFB pythonBlock

O bloco pythonBlock foi criado para fazer a execucao de arquivos .py, que
sdo cbdigos escritos em python. A interface gréfica do bloco esta representada na
figura 17, onde o bloco tem 2 eventos de entrada, 2 eventos de saida, 2 dados de
entrada e 1 de saida.

Figura 17:Bloco pythonBlock

Event —s=INIT INITO Event
Event —s1+=REQ CNFe—+&— Event
7 81 pythonBlock
. 1.8
BOOL—psEs0I STATUSH&e WS TRING

WSTRING—=— mFILE PATH

Fonte: Do préprio Autor

O evento INIT inicia o bloco pythonBlock e gera o evento de saida INITO, o
evento REQ faz uma requisi¢cdo ao bloco para executar o arquivo para onde o
diretério contido na variavel FILE_PATH esta apontando e gera o evento CNF. O

cbdigo deste bloco encontra-se disponivel no Apéndice E.

Desenvolvimento da aplicacéo 4Diac

45

O sistema de coleta de dados foi desenvolvido com o objetivo de obter

informacdes provenientes de um controlador em campo, utilizando o protocolo OPC

UA. Esse protocolo industrial € independente de plataforma de software e hardware,

0 que o torna particularmente adequado para aplicacbes baseadas na norma IEC

61499 (KAJOLA, 2024). A seguir, apresenta-se a aplicacdo do sistema de coleta

46

executada no soft-CLP. Na sequéncia, sdo descritos os blocos que compdem essa

aplicagédo, bem como suas respectivas funcionalidades.

Figura 18: Aplicagdo 4Diac

SUBSCRIBE_3 BD_mongo_project

A=INIT INITO+_ =INIT INITOm=-
=RSP THD= =REQ CNFw-y
Y s sUBSCRIBE 3 FFinish _
1h01 a0 {85 BD_mengo_project[|
UBSCRIBE;opc...sID truesQl Qo+ |
projeto db;esp novac...sPARAMS STATUS:
i Datal |
J |
................ —— J
Data3
cronometroFB
INIT INITOS———— c5v_block
IniciarCronometro CronometroIniciados b INIT INITOS
#sEncerrarCronometro Cronomet roParados =CREATE CNF=
1 {86 cronometrofs real to string : »=INSERT
trueh0l STATUS: M »aREQ CNFa— | 186 csv blockr
Tempo s real _to string trueb0l STATUS:
50 D4 tempooficial.csv,dur. . . SPARAMS
—_— DATA

Fonte: Do préprio autor

Como apresentado na Figura 18, além do bloco MongoDB, também sao
utilizados os blocos CronometroFB e csv_block, que, em conjunto, tém a funcdo de
contabilizar o intervalo de tempo necessario para que o bloco MongoDB armazene
uma informacédo e salve em um arquivo. No arquivo CSV também ficou registrado o
tempo em que ocorreram 0s registros dos dados no arquivo, isso foi usado para
calcular os intervalos em que ocorreram a coleta de dados. Essas informacfes sao
utilizadas para a avaliacdo da performance e da robustez do sistema. Os codigos dos
blocos CronometroFB e csv_block estdo disponiveis no APENDICE.

Também é empregado o bloco SUBSCRIBE_3, localizado na pasta Net do

4Diac, responsavel pela comunicacdo com a ESP32 por meio do protocolo OPC UA.

Para configurar esse bloco, é necessario, primeiramente, habilitar a variavel QI
com o valor true e, em seguida, definir o identificador ID. A estrutura desse

identificador segue o formato:
opc_ua[<action>;<endpoint>;<pairl>;<pair2>;<pair3>

Em que action, ou acdo em portugués, representa o tipo de a¢do que o bloco

executard seja de leitura ou escrita, endpoint, ou ponto final em portugués,

4.8

47

corresponde ao endereco do servidor ao qual o bloco sera conectado, e os demais

parametros (pairl, pair2, pair3) indicam os dados com os quais o bloco ira interagir.

Inicialmente, o sistema de coleta de dados foi validado por meio de uma
conexao local com um software capaz de realizar comunicagéo via OPC UA. Assim,

a configuracéo inicial do parametro ID foi definida como:

opc_ua[READ;/Objects/1:Control Relay number 0;/Objects/1:Control Relay
number 1;/Objects/1:Ambient temperature]

Geracao da maquina FORTE

Nesta etapa, a geracao da maquina FORTE do projeto é realizada utilizando o
CMake. Como mencionado na Secao 2.4, existem duas opgdes para o uso do CMake:
a interface gréfica e o terminal. Optou-se pela interface grafica por ser mais intuitiva,
como ilustrado na Figura 19, aléem de facilitar a visualizacdo dos parametros

configurados.

Figura 19: Interface Gréafica do Cmake

File Tools Optioes Help

Where is the source code: home/gabnel/Downloads/ sdiac-ide_3.0 0-dnun gtk xB6_64/adiac-ide/sdiac-forte freeze
\

Where 10 buld the binanes: | Mome/gabrielDownloads/ddiac-sde_3.0.0-nux gtk xBs_64/8duc-ide/fore_devidev_project3.0

Search Geouped Advanced | 4 Add Entry

Press Configure to update and desplay new values in red, then press Generate to generate selected busld files.

Configure Generate Current Generator: None

Fonte: Do proprio autor

Os pardmetros utilizados para configuracdo da maquina FORTE que

necessitam de alteracao sao:

48

e CMAKE_BUILD_TYPE: Serve para definir o tipo de compilacdo que o Cmake
ird fazer, normalmente é escolhido a op¢ao Debug;

e FORTE_ARCHITECTURE: Neste parametro foi definido o tipo de sistema em
gue o runtime foi gerado e executado, em um ambiente linux € escolhido Posix;

e FORTE_COM_OPCUA: Este parametro habilita a comunicagdo OPC UA no
FORTE;

e FORTE_EXTERNAL MODULES DIRECTORY: Neste atributo, foi adicionado
o diretorio dos blocos desenvolvidos para este projeto;

e FORTE_MODULE_CONVERT: Habilita o uso dos blocos da pasta Convert;

e FORTE_MODULE_IEC61131: Habilita o uso dos blocos da pasta IEC61131;

e FORTE_MODULE_UTILS: Habilita o uso dos blocos da pasta Utils.

Apos a configuracao e geracdo dos arquivos, a maquina FORTE do projeto foi
gerada.

4.9 Validacao do Sistema de Coleta de Dados

Com a geracao do runtime, a etapa seguinte consiste em testar o sistema de
coleta de dados. Para isso, utilizou-se o software UaExpert, da Unified Automation,
empregado para comunicacdo OPC UA e capaz de atuar tanto como cliente quanto

como servidor OPC.

Nesse teste, a conexao entre o software e o softCLP é realizada localmente,
conforme representado na Figura 16. Nessa configuracdo, o softCLP coleta os dados
disponibilizados pelo UaExpert via OPC UA e, em seguida, armazena essas

informacdes no banco de dados por meio de um script.

49

Figura 20: Topologia da conexéo local

PC

Uabxoere| OPCUA Soft Ba;co
akxpert] EC————— - > €
CLP Chamadovia | Dados
Script

Fonte: Do proprio autor

Uma vez estabelecida a conexao local, foi possivel visualizar a chegada dos
dados coletados e o percurso realizado até o seu armazenamento no banco de dados.

A execucao do sistema de coleta de dados esta representada na Figura 21.

Figura 21:Executando comunicagdo com UaExpert

BD mongo project
1 WINIT INITOY 1

1 wINIT INITO= 1 71 WREQ CNFs 7
0 mRSP INDs 3 0 mFinish
7] iss SUBSCRIBE 3 81 BD_mongo_praject [
TRUE-pOI 00+ TRUE RUE- QT Q04 FALSE
“opc wa[READ; /Objects. ... nID STATUSH 0K projeto_db;novacole. ... APARAMS STATUSH "Executando o codigo..

RD_1d BOOL#TRUE i TRUE pDatal
RD 2 RUE TRUE sData2
RD 3% REAL#20.0 J 20.0 tData3

SUBSCRIBE 3

E CYCLE

VASTART EOd 71
O mSTOP
T GlE CYCLE

Te1s pDT

Fonte: Do proprio autor

Para realizar esse teste, foi necessario adicionar o bloco E_CYCLE,
responsavel por gerar as requisicdes destinadas ao bloco MongoDB. Isso ocorreu

porque, durante a comunicagdo com o software UaExpert, o evento de saida IND do

50

bloco SUBSCRIBE_3 ndo é acionado, ja que as variagdes nos dados séo realizadas
manualmente pelo usuario. Consequentemente, o0s blocos CronometroFB e
CSV_BLOCK foram removidos, pois, nesta etapa, ndo houve avaliacdo do

desempenho do sistema de coleta de dados.

Na Figura 22 estd sendo mostrado a interface do UaExpert, nele é possivel
fazer a leitura e escrita de dados. Ao alterar os valores das variaveis, percebe-se a
mesma alteracdo no sistema que estd sendo executado no 4Diac, comprovando o

funcionamento da comunicagéo entre o UaExpert e softCLP.

Figura 22: Leitura e escrita dos dados no UaExpert

Fonte: Do préprio autor

Apos verificar a comunicacdo, 0 passo seguinte foi confirmar se o MongoDB
estava armazenando os dados corretamente. Para isso, realizou-se uma consulta no
banco de dados utilizado para o armazenamento, cujo resultado foi a exibicdo dos
registros apresentados na Figura 23. Esse resultado comprova que o0 sistema de

coleta de dados esta funcionando adequadamente

4.10

51

Figura 23: Visualizacéo dos dados armazenados no MongoDB

_id: ObjectId(
tempo:

Relay®: ’
Relayl: -
Temperatura:

3

_id: ObjectId(
tempo:

Relay®: ’
Relayl: -
Temperatura:

3

_id: ObjectId(
tempo:

Relay®: ’
Relayl: -
Temperatura:

Fonte: Do préprio autor

Integracdo com o Sistema Piloto

O Sistema Piloto, conforme descrito anteriormente na Secéo 3.5, consiste em
um servidor OPC UA executado em uma placa ESP32. Esse servidor é responsavel
por monitorar os pinos GPI0O32 e GPIO33, utilizados como outputs para ativar Relays,
além do GPIO4, ao qual esta conectado um sensor de temperatura. Os valores lidos
sdo enviados a outros sistemas por meio do protocolo OPC UA para os sistemas que
0 acessam. A ESP32 usada neste trabalho foi a ESP32 DevkitV1, representada na

Figura 24.

52

Figura 24:ESP32 DevkitV1

TLLEREREEEELY
3U3GNDD1IS D2 D4 RX2TX2 D5 01§ D19 021RX0 TX00Z
B X

8 2
LARREREEERERE =

@

Fonte: (CIRCUITSTATE, 2023)

A ferramenta usada para configurar e programar a ESP32 foi a ESP-IDF,
devido ao projeto que foi usado para executar o servidor OPC UA que esta disponivel
no repositorio Github em https://github.com/cmbahadir/opcua-esp32.qit.

Com a inicializacao do servidor OPC, o processo foi acompanhado através do
terminal para verificar se o servidor esta conectado a rede. Quando o terminal mostra
a mensagem “Got a IP Event”, como é mostrado na Figura 25, significa que o servidor

esta conectado a rede.

Figura 25: Execucéo do servidor OPC

Fonte: Do proprio autor

https://github.com/cmbahadir/opcua-esp32.git
https://github.com/cmbahadir/opcua-esp32.git

53

Com a execucao do servidor OPC UA iniciada, a proxima etapa foi testar a
conexao dele com o sistema de coleta de dados. Para a conexao acontecer, foi
necessario fazer mudancas no bloco SUBSCRIBE_3 em relacéo ao parametro ID,
primeiramente o tipo de conexao muda pois a conexao deixa de ser local e passa a
ser remota, logo o endpoint deixa de ser localhost e passa a ser o IP da ESP32.
Devido a mudanca do tipo de conexao, também foi necessario mudar o tipo de acéo
porque o bloco SUBSCRIBE néo suporta fazer a operagdo READ quando a conexao
€ remota, logo a acao foi substituida por SUBSCRIBE.

ApoOs arealizacao dessas alteracfes, a comunicacao ocorreu adequadamente,
sem apresentar falhas. Durante a execucdo no 4Diac mostrada na figura 26,
observou-se uma performance maior do sistema em relacdo ao cenario da sec¢ao 4.5
porque o volume de dados foi maior. Além disso, ao verificar o0 armazenamento de
dados no MongoDB, constatou-se que 0 processo foi realizado com sucesso, como
foi demonstrado na Figura 27, comprovando a validade do sistema de coleta de dados

na obtencao de informacgdes provenientes de dispositivos remotos.

Figura 26:Sistema conectado a ESP32

BD_mongo_project
1 wINIT INITO= 1

P 65mREQ CNFs 64
SUBSCRIBE 3 8 :Finish
1 =INIT INITOS 1 ~ | i85 BD monge project [|
6 RSP e ss +—m— puE- o1 0] FaLst
7] isd SUBSCRIBE 3 prejeto dbjesp noy PARAMS STATUSH “Executande
TRUELRQI 004 TRUE . g:::; |
2| SUBSCRIBE op. 1D STATUSH "0K ',‘I"' Data3 |
RD_1= 50O E =

RD 2= & SE
RD_3s REAL#21.0

- J

©sv_block
crononetrofFB . LaINIT INITOS 1
Lw=INIT INITOS 1 ——F—— i wCREATE CNFd 64
= &dwIniciarCronometro Cronometrolniciados 64 [64 =INSERT
G4 mEncerrarCronometro CronometroParados 64 | ‘& csv block r
|8 crenomet rofFg r real_to_string | TRUE-RQT STATUSH "ini
TRUE QT STATUSH "init ok” . g4hREQ CNFd 6 'tempooti PARAMS
63303 #12 9 i +12' =DATA
. 176 Y lsd real_te_string -

1.76

=+12 8D RDd *1.76330349e+

Fonte: Do proprio autor

Figura 27:Dados armazenados da comunicagdo com a ESP32

{

_id: ObjectId(
tempo:

Relay0: ’
Relayl: ’
Temperatura:

E]

_id: ObjectId(
tempo:

Relay®: ’
Relay1: ’
Temperatura:

]

_id: ObjectId(

tempo:

Relay0: ’

Relayl: ’

Temperatura:
I

Fonte: Do préprio autor

55

5 RESULTADOS

Este capitulo apresenta os resultados obtidos a partir da implementacao,
integracao e validacao do sistema de coleta de dados baseado na norma IEC 61499,
bem como os testes de desempenho, robustez e confiabilidade realizados. Os
resultados sdo organizados em quatro partes: (1) Funcionamento do sistema em
ambiente local; (2) Integracdo com o sistema piloto baseado em ESP32; (3)
Armazenamento de dados no banco MongoDB; e (4) Desempenho, robustez e
confiabilidade do sistema.

5.1 Funcionamento do Sistema em Ambiente Local

A primeira etapa de validagdo consistiu em executar o sistema de coleta de
dados em um ambiente local, utilizando o software UaExpert como servidor OPC UA.
Nessa configuracdo, o soft-CLP executando a maquina FORTE foi capaz de
estabelecer comunicacdo com o UaExpert, ler as variaveis disponibilizadas e

encaminha-las ao bloco MongoDB para posterior armazenamento.
Durante esse teste, observou-se que:

e O sistema respondeu adequadamente as alteracbes manuais realizadas no
UaExpert, foram realizados 20 inputs para esse teste;

e As variacbes nos valores das variaveis foram corretamente identificadas pelo
bloco SUBSCRIBE_3, o numero de inputs realizados foi igual ao niumero de
eventos IND gerados no bloco como pode ser visto na imagem 28;

e Asinformacfes transmitidas foram armazenadas sem inconsisténcias no banco

de dados, como foi visto na Figura 23.

56

Figura 28:Contagem de 20 eventos, correspondente a quantidade de inputs

SUBSCRIBE 3

1 ®INIT INITOS 1
o mRSP INDo 26
7 isd SUBSCRIBE 3
TRUE:}QI Q0+ TRUE
opc wa([READ; /Objects. ... mID STATUSH "0K"

RD 1= BOOL#FALSE
RD 2« BOOL#TRUE
RD 3= REAL#21.0

Fonte: Do préprio autor

5.2 Integracdo com o Sistema Piloto (ESP32)

A segunda etapa envolveu a integracdo com o sistema piloto, composto por
uma ESP32 executando um servidor OPC UA responsavel por monitorar dois relés
(GPIO32 e GPIO33) e um sensor de temperatura (GPIO4).

Apés as adaptacdes necessarias no bloco SUBSCRIBE_3 — incluindo a
substituicdo do tipo de acdo READ por SUBSCRIBE e a mudanca do endpoint para o

IP da ESP32 — a comunicacéo foi estabelecida tendo como principais resultados:

e O envio de dados continuo pela ESP32, permitindo testar o sistema sob maior
volume de informacoes;
e Um registro com menor laténcia por parte do softCLP, em comparac¢ao ao teste

local;

Como resultado, os dados provenientes da ESP32 foram armazenados
corretamente no MongoDB. Nenhuma falha de comunicacao foi observada durante
esta execucao, confirmando a operacdo do sistema em cenéario realista de coleta
industrial com uma taxa de atualizacédo (laténcia) de 100 ms. Essa etapa comprovou
a capacidade do sistema de lidar com dados provenientes de dispositivos remotos,

reforcando sua aplicabilidade em ambientes de Industria 4.0.

57

5.3 Armazenamento de Dados no MongoDB

Em ambas as etapas de validacdo, o banco MongoDB apresentou
comportamento consistente e adequado ao propédsito do sistema. Nas consultas
realizadas durante os testes, verificou-se que:

e Todos os documentos gerados foram armazenados com estrutura correta,

e Nao foram observadas perdas ou duplicagdes irregulares de dados;

e O tempo de escrita dos documentos permaneceu estavel, independentemente
do volume de dados processados;

Os resultados confirmam que o MongoDB atendeu as necessidades de
escalabilidade e flexibilidade que s&o exigidas por sistemas de coleta de dados
industriais, especialmente por permitir armazenamento sem necessidade de esquema

fixo.

5.4 Teste de Confiabilidade

O teste de confiabilidade consiste em executar o sistema de coleta de dados e
monitorar o nimero de ocorréncias do evento de requisicdo do bloco MongoDB. Apos
um numero especifico de ocorréncias, o sistema € parado e o banco de dados é
consultado para verificacdo do numero de registros feito apés aquela execucao
usando o comando db.nome_colecao.countDocuments(). Se o0 numero de
documentos for proximo do numero de ocorréncias do evento de requisicao, significa

gue o sistema de coleta de dados é confiavel.

Neste teste, 0 numero especifico escolhido para o numero de ocorréncias foi
200. O numero de eventos de requisi¢cao foi monitorado no 4Diac, apés o0 himero de
ocorréncias ter atingido 200 o sistema foi parado. Posteriormente foi consultado o
namero de documentos na cole¢éo em que os dados foram salvos e o resultado como
demonstrado na Figura 29 é de 202, assim podendo ser concluido que o sistema é

confiavel e que nenhum dado foi perdido.

58

Figura 29: Nimero de documentos salvos na colecdo do MongoDB

[mongosh mongodb://127.0.0.1:27017/7directConnection=true&serverSele...

Current Mongosh Log ID: 69193190e7f7936444ce5f46
Connecting to:

Using MongoDB: .0.24
3 5a

mongosh 2.5.9 is available for download:

For mongosh info see: https://www.mongodb.com/docs/mangodb-shell/

2025-11-15T19:17:56.170-03:00: Using the XFS filesystem is strongly recommend
ed with the WiredTiger storage engine. See http://dochub.mongodb.org/core/prodno
tes-filesystem

2025-11-15T19:17:59.755-03:00: Access control is not enabled for the database
. Read and write access to data and configuration is unrestricted

test> use projeto_db
switched to db projeto_db
projeto_db> db.esp_novacolecao2.countDocuments()

projeto_db>

Fonte: Proprio Autor

5.5 Teste de Robustez e Desempenho

No teste de robustez, foi testado a consisténcia do desempenho do bloco
MongoDB e comparado com o intervalo de ocorréncia do evento de saida IND do
bloco de comunicacdo. A partir do arquivo CSV gerado pelos blocos
CRONOMETROFB e CSV_Block, foi observado o desempenho do bloco de banco de
dados a partir da diferenca de tempo da ocorréncia do evento de entrada REQ e o
evento de saida CNF. Como mostrado na Figura 30, a coluna de duracdo permanece
com o mesmo valor de 1,76ms enquanto a coluna do tempo mostra o tempo exato em
gue ocorreu o0 evento e com isso foi possivel calcular as diferencas de tempo entre

um evento e outro.

59

Figura 30: Arquivo CSV

Fonte: Préprio Autor

Utilizando um script C++, foi possivel criar outro arquivo CSV que contém as
diferencas de tempo de ocorréncia em milissegundos. A partir desse arquivo, realizou-
se uma analise de dados usando o grafico histograma e foi calculado a média e
mediana dos dados gerados. Com base no grafico da Figura 31, observou-se que a
média de tempo em que a ESP32 manda os dados € de 275,68ms, a mediana é de
214ms e o menor intervalo de ocorréncia € de 77ms. Considerando esses valores,
verifica-se que o tempo meédio necessario para que o MongoDB armazene um
documento é aproximadamente 150 vezes menor que o intervalo de chegada de
novos dados e no caso de menor ocorréncia chega a ser aproximadamente 40 vezes
menor. Portanto, € pouco provavel que ocorram perdas de dados por limitacdes de
desempenho do sistema. Esses resultados permitem concluir que o sistema de coleta
de dados é robusto e apresenta desempenho adequado para coleta de dados

industriais.

60

Figura 31:Gréfico do intervalo de tempo das coletas de dados

Histograma das Duracdes entre Eventos

80 +

=]
L]
1

Frequéncia

o+
o
I

20 4

---- Meédia = 275.68 ms
---- Mediana = 214.00 ms
Menor intervalo = 77.00 ms

0 200 400 600 800 1000

56 S

Duracao (ms)

Fonte: Do préprio Autor

intese dos Resultados

Os testes realizados permitiram demonstrar que:

O sistema de coleta de dados baseado na norma IEC 61499 é funcional e
eficiente.

O bloco MongoDB opera de forma estavel, permitindo criacdo de bancos,
colecdes e insercdo de documentos sem falhas.

A arquitetura distribuida da norma permite integracdo tanto local quanto
remota, validada pelos testes com UaExpert e ESP32.

O sistema apresenta alto grau de confiabilidade e robustez, atendendo aos

requisitos de ambientes industriais.

61

e O MongoDB se mostrou uma solugcdo adequada para grandes volumes de

dados, oferecendo escalabilidade horizontal e flexibilidade estrutural

62

6 CONCLUSOES E PROPOSTAS DE CONTINUIDADE

Este trabalho apresentou o desenvolvimento de um sistema de coleta de dados
baseado na norma IEC 61499, capaz de adquirir informacdes de equipamentos
industriais por meio do protocolo OPC UA e armazen&-las em um banco de dados ndo
relacional. O sistema estabelece a conex&o e a troca de dados entre um softCLP,
executado pelo runtime do 4Diac em ambiente Linux, e um microcontrolador ESP32.

Como demonstrado nos resultados, a adesdo a norma IEC 61499 para fazer
coleta e armazenamento de dados mostrou-se altamente viavel. O sistema de coleta
de dados apresentou funcionamento adequado ao cumprir todos 0s objetivos
propostos, além de demonstrar robustez e tolerancia a falhas de comunicacéo. O
MongoDB também se mostrou uma alternativa eficiente para o armazenamento em
larga escala, atendendo plenamente as demandas de escalabilidade horizontal
esperadas em ambientes da Industria 4.0.

Para projetos futuros, propde-se a realizacdo de um estudo comparativo de
desempenho entre diferentes tipos de bancos de dados, analisando como cada um
deles se comporta em projetos baseados na norma IEC 61499. Outra possibilidade
de melhoria consiste no desenvolvimento de blocos funcionais capazes de executar
as etapas restantes do tratamento de dados, como o pré-processamento e a analise.
No ambito do pré-processamento, podem ser exploradas operacfes nativas dos
bancos de dados, tais como SELECT (ou FIND em bancos néo relacionais), UPDATE
e DELETE.

Durante o desenvolvimento deste trabalho, foi criado um bloco responsavel
pela comunicacdo com o banco de dados SQLite 3, cuja funcdo era executar
comandos SQL recebidos por meio de um de seus parametros. Esse bloco foi capaz
de realizar todas as operacfes previstas no banco de dados, demonstrando que é
viavel implementar, de forma consistente, outras etapas do tratamento de dados
dentro de um ambiente aderente a norma IEC 61499.

No estagio de analise de dados, pode-se empregar o protocolo HTTP para a
visualizacao de gréaficos que apresentem o histérico das variaveis monitoradas, por
meio de uma integracao com scripts desenvolvidos em Python. Outra possibilidade

de aprimoramento consiste na criagcao de blocos capazes de executar algoritmos de

inteligéncia artificial voltados a andlise de dados, ampliando o potencial do sistema

para aplicagbes mais complexas e avangadas.

63

64

REFERENCIAS

AWS. O que € NoSQL? Sédo Paulo: Amazon Web Services, 2025. Disponivel em:
https://aws.amazon.com/pt/nosgl/. Acesso em: 20 dez. 2025.

Arnarson, H., Bremdal, B. A., & Solvang, B. (2022). Reconfigurable Manufacturing: Towards
an industrial Big Data approach.

CHRISTENSEN, J. H., STRASSER, T., VALENTINI, A., VYATKIN, V., & ZOITL, A. (2012).
The IEC 61499 Function Block Standard: Overview of the Second Edition.

CircuitState Electronics. Getting Started with Espressif ESP32 Wi-Fi & Bluetooth SoC using
DOIT ESP32 DevKit V1 Development Board. CircuitState Electronics, 2023. Disponivel em:

https://www.circuitstate.com/tutorials/getting-started-with-espressif-esp32-wifi-bluetooth-soc-

using-doit-esp32-devkit-vl-development-board/. Acesso em: 20 dez. 2025

DATE, C. J. (1991). An introduction to database systems. . Boston: Addison-Wesley
Longman Publishing Co.

Diana, M. D., & Gerosa, M. A. (2010). NOSQLnaWeb2.0: UmEstudoComparativo de Bancos.

IX Workshop de Teses e Disserta,coes em Banco de Dados.

IEEE - Institute of Electrical and Electronic Engineers. (Dec. de 2012). IEEE Guide for
Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a
Grounding System. IEEE Std 81-2012 (Revision of IEEE Std 81-1983), 1-86.

INTERNATIONAL ELECTROTECHNICAL COMMISSION — IEC. IEC 61131-3:
Programmable controllers — Part 3: Programming languages. 2. ed., 2003. 226 p. Disponivel
em: https://www.uv.mx/laindustrial/files/2024/01/IEC-61131-3.pdf. Acesso em: 20 dez. 2025

Kajola, P. (2024). IEC 61499 based distributed data collection framework for multivariate

time series data.

Kitware. (9 de 10 de 2025). CMake: The Standard Build System. Fonte: Cmake:

https://cmake.org/features/#system-introspection

https://aws.amazon.com/pt/nosql/?utm_source=chatgpt.com
https://www.circuitstate.com/tutorials/getting-started-with-espressif-esp32-wifi-bluetooth-soc-using-doit-esp32-devkit-v1-development-board/?utm_source=chatgpt.com
https://www.circuitstate.com/tutorials/getting-started-with-espressif-esp32-wifi-bluetooth-soc-using-doit-esp32-devkit-v1-development-board/?utm_source=chatgpt.com
https://www.uv.mx/laindustrial/files/2024/01/IEC-61131-3.pdf?utm_source=chatgpt.com

65

Lewis, R., & Zoitl, A. (2014). Modelling Control Systems Using IEC 61499.

Liakh, T., Sorokin, R., Akifev, D., Patil, S., & Vyatkin, V. (28 de Julho de 2022). Formal model
of IEC 61499 execution trace in FBME IDE.

Merkumians, M. M., Gsellmann, P., & Schitter, G. (2021). Hierarchization and Integration of
IEC 61131-3 and IEC 61499 for Enhanced Reusability.

MongoDB Inc. (8 de Outubro de 2025). Bem vindo ao MongoDB Docs. Fonte: MongoDB:

https://www.mongodb.com/pt-br/docs/

OPC Foundation. (22 de Outubro de 2025). Unified Architecture — Landingpage. Fonte:

opcfoundation.org: https://opcfoundation.org/about/opc-technologies/opc-ua/

Pang, C., Patil, S., Yang, C.-W., Vyatkin, V., & Shalyto, A. (11 de marco de 2015). A
Portability Study of IEC 61499: Semantics and Tools.

Pfrommer, J., Ebner, A., Ravikumar, S., & Karunakaran, B. (2018). Open Source OPC UA
PubSub over TSN for Realtime Industrial Communication. pp. 1087-1090.

Pinto, L. I. (2014). ICARU-FB: UMA INFRAESTRUTURA DE SOFTWARE ADERENTE A
NORMA IEC 61499.

UNIFIED AUTOMATION. (14 de Novembro de 2025). OPC UA Clients — Downloads. Fonte:

unified-automation: https://www.unified-automation.com/downloads/opc-ua-clients.html

OPENG62541. (14 de Novembro de 2025). open62541. Fonte: Github:
https://github.com/open62541/open62541

66

APENDICE A - SCRIPT BD_mongo_project_fbt.cpp

/***

*** FORTE Library Element

*k%k

*** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!
-

*** Name: BD_mongo_project

*** Description: Service Interface Function Block Type

*** \ersion:

*** 1.0: 2025-11-08/gabriel - -

***/

#include "BD_mongo_project_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP
#include "BD_mongo_project_fbt_gen.cpp”

#endif

#include "core/iec61131_ functions.h"

#include "core/datatypes/forte_array _common.h"
#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"
#include "core/datatypes/forte_array_variable.h"
#include "/usr/include/python3.12/Python.h"
#include <iostream>

#include <fstream>

#include <sstream> // <-- necessario para std::stringstream
#include <string>

#include <vector>

#include <stdio.h>

#include <chrono>

#include <ctime>

#include <iomanip> // para put_time

67

using namespace std;

DEFINE_FIRMWARE_FB(FORTE_BD_mongo_project,
g_nStringldBD_mongo_project)

const CStringDictionary::TStringld
FORTE_BD_mongo_project::scmDatalnputNames][] = {g_nStringldQlI,
g_nStringldPARAMS, g_nStringldDatal, g_nStringldData2, g_nStringldData3};
const CStringDictionary::TStringld
FORTE_BD_mongo_project::scmDatalnputTypelds[] = {g_nStringldBOOL,
g_nStringldSTRING, g_nStringldBOOL, g_nStringldBOOL, g_nStringldREAL};
const CStringDictionary:: TStringld
FORTE_BD_mongo_project::scmDataOutputNames|] = {g_nStringldQO,
g_nStringldSTATUS};

const CStringDictionary:: TStringld
FORTE_BD_mongo_project::scmDataOutputTypelds[] = {g_nStringldBOOL,
g_nStringldWSTRING};

const TDatalOID FORTE_BD_mongo_project::scmEIWith[] = {0, 1,
scmWithListDelimiter, 0, 2, 3, 4, 1, scmWithListDelimiter, 0, 2, 3, 4, 1,
scmWithListDelimiter};

const TFortelntl6 FORTE_BD_mongo_project::scmEIWithindexes|[] = {0, 3, 9};
const CStringDictionary:: TStringld
FORTE_BD_mongo_project::scmEventinputNames[] = {g_nStringIdINIT,
g_nStringldREQ, g_nStringldFinish};

const TDatalOID FORTE_BD_mongo_project::scmEOWith[] = {0, 1,
scmWithListDelimiter, 0, 1, scmWithListDelimiter};

const TFortelntl6 FORTE_BD_mongo_project::scmEOWithindexes[] = {0, 3};
const CStringDictionary:: TStringld
FORTE_BD_mongo_project::scmEventOutputNames[] = {g_nStringIdINITO,
g_nStringldCNF};

const SFBInterfaceSpec FORTE_BD_mongo_project::scmFBlinterfaceSpec = {

3, scmEventinputNames, nullptr, scmEIWith, scmEIWithindexes,

2, scmEventOutputNames, nullptr, sScmEOWith, scmEOWithindexes,
5, scmDatalnputNames, scmDatalnputTypelds,

2, scmDataOutputNames, scmDataOutputTypelds,

0, nullptr,

0, nullptr

FORTE_BD_mongo_project::FORTE_BD_mongo_project(const
CStringDictionary::TStringld palnstanceNameld, forte::core::CFBContainer
&paContainer) :

CFunctionBlock(paContainer, scmFBIinterfaceSpec, palnstanceNameld),

var_QI(0_BOOL),

var_PARAMS(™_STRING),

var_Datal(0_BOOL),

var_Data2(0_BOOL),

var_Data3(0_REAL),

var_QO(0_BOOL),

var_STATUS(U™_WSTRING),

var_conn_QO(var_QO),

var_conn_STATUS(var_STATUS),

conn_INITO(this, 0),

conn_CNF(this, 1),

conn_QI(nullptr),

conn_PARAMS(nullptr),

conn_Datal(nullptr),

conn_Data2(nullptr),

conn_Data3(nullptr),

conn_QO(this, 0, &var_conn_QO),

conn_STATUS(this, 1, &var_conn_STATUS) {

void FORTE_BD_mongo_project::setlnitialValues() {
var_Ql =0 _BOOL;

68

var PARAMS ="' STRING,;
var_Datal = 0_BOOL;
var_Data2 =0 _BOOL,
var_Data3 = 0_REAL;

var_ QO =0 _BOOL;

var_ STATUS = u"™ WSTRING;

string getDateTime() {
/l pega o horério atual

auto agora = chrono::system_clock::now();

/I converte para time_t

time_t tempo = chrono::system_clock::to_time_t(agora);

/I converte para struct tm

tm local_tm = *|localtime(&tempo);

/l monta a string formatada
stringstream ss;
Ss << put_time(&local_tm, "%d/%m/%Y %H:%M:%S");

return ss.str();

void FORTE_BD_mongo_project::executeEvent(const TEventID paEIID,
CEventChainExecutionThread *const paECET) {

vector<string> campos;

string campo;

std::stringstream ss(var_ PARAMS.c_str());

bool Relay0 = static_cast<bool>(var_Datal);

bool Relayl = static_cast<bool>(var_Data?2);

float temperature = static_cast<float>(var_Data3);

69

switch(paEIID) {
case scmEventINITID:
if(var_QI) {

var_STATUS = u"init_ok" WSTRING;
} else {

var_STATUS = u"init_failed"_WSTRING;
}

/' Inicializa o interpretador Python
Py_Initialize();

if (Py_IsInitialized()) {
fprintf(stderr, "Erro ao inicializar Python.\n");

var_STATUS = u"Erro ao inicializar Python" WSTRING;

sendOutputEvent(scmEventINITOID, paECET);
break;

}

sendOutputEvent(scmEventINITOID, paECET);
break;

case scmEventREQID:

while (getline(ss, campo, ;")) {
campos.push_back(campo);

char code[512];
snprintf(code, sizeof(code),
"from pymongo import MongoClient\n"

"client = MongoClient('mongodb://localhost:27017/)\n"
"db = client['%s\n"

"colecao = db['%s]\n"

"colecao.insert_one({'tempo’ : '%s', '%s": '%U', '%s". '%u’, '%s'
"client.close()",

1%, 1f)\n"

70

71

campos|0].c_str(),campos[1].c_str(),getDateTime().c_str(),campos[2].c_str(),Relay0,c

ampos][3].c_str(), Relayl, campos[4].c_str(), temperature

);

/I Executar o cédigo Python
if (PyRun_SimpleString(code) !'=0) {
std::cerr << "Erro ao executar cédigo Python!" << std::endl;
var_STATUS = u"Erro ao executar o codigo Python"_WSTRING;
telse {
var_STATUS = u"Executando o codigo Python!"_ WSTRING;
}
sendOutputEvent(scmEventCNFID, paECET);
break;
case scmEventFinishiD:
var_STATUS = u"Fechando a API do Python" WSTRING;
Py_Finalize();
sendOutputEvent(scmEventCNFID, paECET);

break;

void FORTE_BD_mongo_project::readinputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITID: {
readData(0, var_QI, conn_Ql);
readData(1, var_ PARAMS, conn_PARAMS);
break;

}

case scmEventREQID: {
readData(0, var_QlI, conn_QI);
readData(2, var_Datal, conn_Datal);

readData(3, var_Data2, conn_Data?2);

readData(4, var_Data3, conn_Data3);
readData(1, var_PARAMS, conn_PARAMS);
break;

}

case scmEventFinishiD: {
readData(0, var_QI, conn_Ql);
readData(2, var_Datal, conn_Datal);
readData(3, var_Data2, conn_Data?2);
readData(4, var_Data3, conn_Data3);
readData(1, var_ PARAMS, conn_PARAMS);
break;

}

default:

break;

void FORTE_BD_mongo_project::writeOutputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITOID: {
writeData(0, var_QO, conn_QO);
writeData(1, var_STATUS, conn_STATUS);
break;

}

case scmEventCNFID: {
writeData(0, var_QO, conn_QO);
writeData(1, var_STATUS, conn_STATUS);
break;

}

default:

break;

73

CIEC_ANY *FORTE_BD_mongo_project::getDI(const size_t palndex) {
switch(palndex) {
case 0: return &var_Ql;
case 1: return &var_ PARAMS;
case 2: return &var_Datal,;
case 3: return &var_Data?;
case 4: return &var_Data3;

}

return nullptr;

}

CIEC_ANY *FORTE_BD_mongo_project::getDO(const size_t palndex) {
switch(palndex) {
case O: return &var_QQO;
case 1: return &var_STATUS;
}

return nullptr;

}

CEventConnection *FORTE_BD_mongo_project::getEOConUnchecked(const
TPortld palndex) {
switch(palndex) {
case O: return &conn_INITO;
case 1: return &conn_CNF,;

}

return nullptr;

}

CDataConnection *FORTE_BD_mongo_project::getDIConUnchecked(const TPortld
palndex) {
switch(palndex) {

case O: return &conn_Ql;

74

case 1: return &conn_PARAMS;
case 2: return &conn_Datal,
case 3: return &conn_DataZ;
case 4: return &conn_Data3;

}

return nullptr;

}

CDataConnection *FORTE_BD_mongo_project::getDOConUnchecked(const TPortld
palndex) {
switch(palndex) {
case 0: return &conn_QO;
case 1: return &conn_STATUS;
}

return nullptr;

}

75

APENDICE B — SCRIPT CRONOMETROFB

/***

*** FORTE Library Element

*k%k

*** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!
-

*** Name: cronometroFB

*** Description: Service Interface Function Block Type

*** \ersion:

*¥** 1.0: 2025-11-14/gabriel - -

***/

#include "cronometroFB_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP
#include "cronometroFB_fbt_gen.cpp”

#endif

#include "core/iec61131_ functions.h"

#include "core/datatypes/forte_array _common.h"
#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"
#include "core/datatypes/forte_array_variable.h"
#include <iostream>

#include <chrono>

#include <fstream>

#include <ctime>

using namespace std;

using namespace std:.chrono;

DEFINE_FIRMWARE_FB(FORTE_cronometroFB, g_nStringldcronometroFB)

76

const CStringDictionary::TStringld FORTE_cronometroFB::scmDatalnputNamesJ] =
{g_nStringldQl};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmDatalnputTypelds[] =
{9_nStringldBOOL};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmDataOutputNames|[] =
{g9_nStringldSTATUS, g_nStringldTempo};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmDataOutputTypelds]]
= {g_nStringldWSTRING, g_nStringldREAL};
const TDatalOID FORTE_cronometroFB::scmEIWith[] = {0, scmWithListDelimiter, 0O,
scmWithListDelimiter, 0, scmWithListDelimiter};
const TForteIlntl6 FORTE_cronometroFB::scmEIWithindexes[] = {0, 2, 4};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmEventinputNames[] =
{g_nStringldINIT, g_nStringldiniciarCronometro, g_nStringldEncerrarCronometro};
const TDatalOID FORTE_cronometroFB::scmEOWith[] = {1, scmWithListDelimiter, 1,
scmWithListDelimiter, 1, scmWithListDelimiter};
const TFortelntl6 FORTE_cronometroFB::scmEOWithindexes|[] = {0, 2, 4},
const CStringDictionary:: TStringld FORTE_cronometroFB::scmEventOutputNames|]
= {g_nStringldINITO, g_nStringldCronometrolniciado,
g_nStringldCronometroParado};
const SFBInterfaceSpec FORTE_cronometroFB::scmFBlinterfaceSpec = {

3, scmEventinputNames, nullptr, scmEIWith, scmEIWithindexes,

3, scmEventOutputNames, nullptr, scmEOWith, scmEOWithindexes,

1, scmDatalnputNames, scmDatalnputTypelds,

2, scmDataOutputNames, scmDataOutputTypelds,

0, nullptr,

0, nullptr

FORTE_cronometroFB::FORTE_cronometroFB(const CStringDictionary::TStringld
palnstanceNameld, forte::core::CFBContainer &paContainer) :
CFunctionBlock(paContainer, scmFBIinterfaceSpec, palnstanceNameld),
var_QI(0_BOOL),
var_STATUS(U"™ _WSTRING),

var_Tempo(0_REAL),
var_conn_STATUS(var_STATUS),
var_conn_Tempo(var_Tempo),
conn_INITO(this, 0),
conn_Cronometrolniciado(this, 1),
conn_CronometroParado(this, 2),
conn_QI(nullptr),

conn_STATUS(this, 0, &var_conn_STATUS),

conn_Tempo(this, 1, &var_conn_Tempo) {

void FORTE_cronometroFB::setlnitialValues() {
var_QIl =0_BOOL;
var_ STATUS = u"™ WSTRING;
var_Tempo = 0_REAL;

}

void FORTE_cronometroFB::executeEvent(const TEventID paEIID,
CEventChainExecutionThread *const paECET) {

std::chrono::high_resolution_clock::time_point inicio;
std::chrono::high_resolution_clock::time_point fim;
switch(paEIID) {

case scmEventINITID:

if(var_QI) {

var_STATUS = u"init_ok" WSTRING;
} else {

var_STATUS = u"init_failed" WSTRING,;
}

sendOutputEvent(scmEventINITOID, paECET);
break;
case scmEventlniciarCronometrolD:

inicio = std::chrono::high_resolution_clock::now();

77

sendOutputEvent(scmEventCronometrolniciadolD, paECET);
break;

case scmEventEncerrarCronometrolD:
/l Marca o tempo final

fim = std::chrono::high_resolution_clock::now();

/[Calcula duracéo em milissegundos

auto duracao = duration_cast<milliseconds>(fim - inicio).count();

var_Tempo = CIEC_REAL(static_cast<TForteFloat>(duracao));

sendOutputEvent(scmEventCronometroParadolD, paECET);
break;

void FORTE_cronometroFB::readinputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITID: {
readData(0, var_QI, conn_Ql);
break;

}

case scmEventlniciarCronometrolD: {
readData(0, var_QI, conn_Ql);
break;

}

case scmEventEncerrarCronometrolD: {
readData(0, var_QI, conn_Ql);
break;

}

default:

break;

78

void FORTE_cronometroFB::writeOutputData(const TEventID paEIID) {
switch(paElID) {

case scmEventINITOID: {
writeData(1, var_Tempo, conn_Tempo);
break;

}

case scmEventCronometrolniciadolD: {
writeData(1, var_Tempo, conn_Tempo);
break;

}

case scmEventCronometroParadolD: {
writeData(1, var_Tempo, conn_Tempo);
break;

}

default:

break;

CIEC_ANY *FORTE_cronometroFB::getDI(const size_t palndex) {
switch(palndex) {
case O: return &var_Ql,

}

return nullptr;

}

CIEC_ANY *FORTE_cronometroFB::getDO(const size_t palndex) {
switch(palndex) {
case O: return &var_STATUS;

case 1: return &var_Tempo;

}

return nullptr;

}

79

CEventConnection *FORTE_cronometroFB::getEOConUnchecked(const TPortld
palndex) {
switch(palndex) {
case 0: return &conn_INITO;
case 1: return &conn_Cronometrolniciado;
case 2: return &conn_CronometroParado;

}

return nullptr;

}

CDataConnection *FORTE_cronometroFB::getDIConUnchecked(const TPortld
palndex) {
switch(palndex) {
case O: return &conn_Ql;

}

return nullptr;

}

CDataConnection *FORTE_cronometroFB::getDOConUnchecked(const TPortld
palndex) {
switch(palndex) {
case O: return &conn_STATUS;
case 1: return &conn_Tempo;

}

return nullptr;

}

80

81

APENDICE C - SCRIPT MYBD_fbt.cpp

/***

*** FORTE Library Element

*k%k

*** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!
-

*** Name: MyBD

*** Description: Service Interface Function Block Type

*** \ersion:

*** 1.0: 2025-08-19/gabriel - -

***/

#include "MyBD _fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP
#include "MyBD_fbt_gen.cpp”

#endif

#include "core/iec61131_ functions.h"

#include "core/datatypes/forte_array _common.h"
#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"
#include "core/datatypes/forte_array_variable.h"
#include "sqlite3.h"

#include <iostream>
DEFINE_FIRMWARE_FB(FORTE_MyBD, g_nStringldMyBD)

const CStringDictionary:: TStringld FORTE_MyBD::scmDatalnputNames|] =
{g_nStringldQI, g_nStringldPARAMS, g_nStringldQUERY};

const CStringDictionary:: TStringld FORTE_MyBD::scmDatalnputTypelds[] =
{g_nStringldBOOL, g_nStringldWSTRING, g_nStringldWSTRING};

82

const CStringDictionary::TStringld FORTE_MyBD::scmDataOutputNames][] =
{9_nStringldSTATUS, g_nStringldRD};
const CStringDictionary:: TStringld FORTE_MyBD::scmDataOutputTypelds[] =
{g_nStringldWSTRING, g_nStringldWSTRING};
const TDatalOID FORTE_MyBD::scmEIWith[] = {0, 1, scmWithListDelimiter, 0, 1,
scmWithListDelimiter, 0, 2, 1, scmWithListDelimiter, 0, 1, 2, scmWithListDelimiter};
const TFortelntl6 FORTE_MyBD::scmEIWithindexes[] = {0, 3, 6, 10};
const CStringDictionary::TStringld FORTE_MyBD::scmEventinputNames|] =
{g_nStringldINIT, g_nStringld CONNECTION, g_nStringldQUERY_ACTION,
g_nStringldREAD_DATA};
const TDatalOID FORTE_MyBD::scmEOWith[] = {0, scmWithListDelimiter, 0,
scmWithListDelimiter, 0, 1, scmWithListDelimiter};
const TFortelntl6 FORTE_MyBD::scmEOWithindexes|] = {0, 2, 4};
const CStringDictionary:: TStringld FORTE_MyBD::scmEventOutputNames|] =
{g_nStringldINITO, g_nStringldCNF, g_nStringldFILE_OUT};
const SFBInterfaceSpec FORTE_MyBD::scmFBInterfaceSpec = {

4, scmEventinputNames, nullptr, scmEIWith, scmEIWithindexes,

3, scmEventOutputNames, nullptr, scmEOWith, scmEOWithindexes,

3, scmDatalnputNames, scmDatalnputTypelds,

2, scmDataOutputNames, scmDataOutputTypelds,

0, nullptr,

0, nullptr

FORTE_MyBD::FORTE_MyBD(const CStringDictionary::TStringld
palnstanceNameld, forte::core::CFBContainer &paContainer) :
CFunctionBlock(paContainer, scmFBIinterfaceSpec, palnstanceNameld),
var_QI(0_BOOL),
var_PARAMS(u""_WSTRING),
var_QUERY (U™ _WSTRING),
var_STATUS(U"™ _WSTRING),
var_RD(u""_WSTRING),
var_conn_STATUS(var_STATUS),

var_conn_RD(var_RD),

conn_INITO(this, 0),

conn_CNF(this, 1),

conn_FILE_OUT(this, 2),

conn_QI(nullptr),

conn_PARAMS(nullptr),

conn_QUERY (nullptr),

conn_STATUS(this, 0, &var_conn_STATUS),
conn_RD(this, 1, &var_conn_RD) {

int callback(void* NotUsed, int argc, char** argv, char** azColName) {
std::string* result = reinterpret_cast<std::string*>(NotUsed);
for (inti =0;i<argc; i++) {
std::cout << azColName[i] << ": " << (argv[i] ? argV[i] : "NULL") << "\t";
}
std::cout << "\n";
if (argc > 0 && argv[0]) {
*result = argv[0]; // pega o primeiro valor da primeira coluna

}

return O;

void FORTE_MyBD::setlnitialValues() {
var_Ql =0_BOOL,;
var_PARAMS = u"™_WSTRING;
var_QUERY = u"™_WSTRING;
var_STATUS = u""_WSTRING;
var_RD = u"™ _WSTRING;

void FORTE_MyBD::executeEvent(const TEventID paEIID,
CEventChainExecutionThread *const paECET) {

83

84

sqlite3 *db;

/[sqlite3_stmt* stmt;

int rc;

char *errMsg = nullptr;

std::string resultado;

/l Suponha que a saida 1 seja do tipo WSTRING

CIEC_WSTRING *outWStr = static_cast<CIEC_WSTRING*>(getDO(1));

switch(paEIID) {
case scmEventINITID:
if(var_QI) {
var_STATUS = u"init_ok" WSTRING;
} else {
var_STATUS = u"init_failed" WSTRING;
}
sendOutputEvent(scmEventINITOID, paECET);
break;
case scmeEventCONNECTIONID:

rc = sqlite3_open(var_PARAMS.getValue(), &db);

if (rc '= SQLITE_OK) {

fprintf(stderr, "Erro ao abrir o banco de dados: %s\n", sqlite3_errmsg(db));
var_STATUS = u"connection_failed" WSTRING;
sendOutputEvent(scmEventCNFID, paECET);

break;

std::cout << "Banco de dados aberto com sucesso: " << var_PARAMS.getValue()
<< std::endl;

var_STATUS = u"connection_sucess" WSTRING,;

sqlite3_close(db);

85

sendOutputEvent(scmEventCNFID, paECET);
break;
case scmEventQUERY_ACTIONID:

rc = sqlite3_open(var_PARAMS.getValue(), &db);

if (rc != SQLITE_OK) {
fprintf(stderr, "Erro ao abrir o banco de dados: %s\n", sqlite3_errmsg(db));
var_STATUS = u"connection_failed" WSTRING,;
sendOutputEvent(scmEventCNFID, paECET);
break;

/I Executar query
if (sqlite3_exec(db, var_QUERY.getValue(), callback, nullptr, &errMsg) !=
SQLITE_OK) {
std::cerr << "Erro ao executar query: " << errMsg << std::endl;
var_STATUS = u"QUERY _failed"_WSTRING;
sqlite3_free(errMsg);
sqlite3_close(db);
sendOutputEvent(scmEventCNFID, paECET);

break;

var_STATUS = Uu"QUERY_ok"_WSTRING,;
sqlite3_close(db);
sendOutputEvent(scmEventCNFID, paECET);

break;

case scmEventREAD_DATAID:

rc = sqlite3_open(var_PARAMS.getValue(), &db);

iIf (sqlite3_exec(db, var_QUERY.getValue(), callback, &resultado, &errMsg) !=
SQLITE_OK) {
std::cerr << "Erro ao executar query: " << errMsg << std::endl;
var_STATUS = u"QUERY _failed" WSTRING;
sqlite3_free(errMsg);
sqlite3_close(db);
sendOutputEvent(scmEventFILE_OUTID, paECET);
break;
} else {

std::cout << "nomes:" << resultado << std::endl;

}

var_STATUS = u"QUERY_ok" WSTRING;
/[atribui diretamente a partir de std::string
/Ivar_RD.clear();
/Ivar_RD.fromString(resultado.c_str());
/Ivar_RD = u"teste” WSTRING;

/I Alterando o valor

outWStr->fromString(resultado.c_str());

sendOutputEvent(scmEventFILE_OUTID, paECET);

break;

void FORTE_MyBD::readlnputData(const TEventID paEIID) {
switch(paEIID) {
case scmEventINITID: {
readData(0, var_QI, conn_QI);

readData(l, var_PARAMS, conn_PARAMS);
break;

}

case scmEventCONNECTIONID: {
readData(0, var_QlI, conn_QI);
readData(l, var_ PARAMS, conn_PARAMS);
break;

}

case scmEventQUERY_ACTIONID: {
readData(0, var_QI, conn_Ql);
readData(2, var_QUERY, conn_QUERY);
readData(l, var_PARAMS, conn_PARAMS);
break;

}

case scmEventREAD_DATAID: {
readData(0, var_QlI, conn_QI);
readData(1, var_PARAMS, conn_PARAMYS);
readData(2, var_QUERY, conn_QUERY);
break;

}

default:

break;

void FORTE_MyBD::writeOutputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITOID: {
writeData(0, var_STATUS, conn_STATUS);
break;

}

case scmEventCNFID: {
writeData(0, var_STATUS, conn_STATUS);

87

break;
}
case scmEventFILE_OUTID: {
writeData(0, var_STATUS, conn_STATUS);
writeData(1, var_RD, conn_RD);
break;
}
default:
break;

CIEC_ANY *FORTE_MyBD::getDI(const size_t palndex) {
switch(palndex) {
case O: return &var_Ql;
case 1: return &var_ PARAMS;
case 2: return &var_QUERY,;
}

return nullptr;

}

CIEC_ANY *FORTE_MyBD::getDO(const size_t palndex) {
switch(palndex) {
case O: return &var_STATUS;
case 1: return &var_RD;

}

return nullptr;

}

CEventConnection *FORTE_MyBD::getEOConUnchecked(const TPortld palndex) {

switch(palndex) {
case 0: return &conn_INITO;

case 1: return &conn_CNF,;

88

case 2: return &conn_FILE_OUT;
}

return nullptr;

}

CDataConnection *FORTE_MyBD::getDIConUnchecked(const TPortld palndex) {
switch(palndex) {
case 0: return &conn_Ql;
case 1: return &conn_PARAMS;
case 2: return &conn_QUERY;
}

return nullptr;

}

CDataConnection *FORTE_MyBD::getDOConUnchecked(const TPortld palndex) {
switch(palndex) {
case O: return &conn_STATUS;

case 1: return &conn_RD;

}

return nullptr;

}

89

90

APENDICE D - SCRIPT CSV_BLOCK

/***

*** FORTE Library Element

*k%k

*** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!
-

*** Name: cronometroFB

*** Description: Service Interface Function Block Type

*** \/ersion:

*¥** 1.0: 2025-11-14/gabriel - -

***/

#include "cronometroFB_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP
#include "cronometroFB_fbt_gen.cpp”

#endif

#include "core/iec61131_ functions.h"

#include "core/datatypes/forte_array _common.h"
#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"
#include "core/datatypes/forte_array_variable.h"
#include <iostream>

#include <chrono>

#include <fstream>

#include <ctime>

using namespace std;

using namespace std::.chrono;

DEFINE_FIRMWARE_FB(FORTE_cronometroFB, g_nStringldcronometroFB)

91

const CStringDictionary:: TStringld FORTE_cronometroFB::scmDatalnputNames|] =
{g_nStringldQl};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmDatalnputTypelds[] =
{9_nStringldBOOL};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmDataOutputNames|[] =
{g_nStringldSTATUS, g_nStringldTempo};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmDataOutputTypelds]]
= {g_nStringldWSTRING, g_nStringldREAL};
const TDatalOID FORTE_cronometroFB::scmEIWith[] = {0, scmWithListDelimiter, 0,
scmWithListDelimiter, 0, scmWithListDelimiter};
const TForteIlntl6 FORTE_cronometroFB::scmEIWithindexes[] = {0, 2, 4};
const CStringDictionary:: TStringld FORTE_cronometroFB::scmEventinputNames[] =
{g_nStringldINIT, g_nStringldiniciarCronometro, g_nStringldEncerrarCronometro};
const TDatalOID FORTE_cronometroFB::scmEOWith[] = {1, scmWithListDelimiter, 1,
scmWithListDelimiter, 1, scmWithListDelimiter};
const TFortelntl6 FORTE_cronometroFB::scmEOWithindexes][] = {0, 2, 4},
const CStringDictionary:: TStringld FORTE_cronometroFB::scmEventOutputNames]]
= {g_nStringldINITO, g_nStringldCronometrolniciado,
g_nStringldCronometroParado};
const SFBInterfaceSpec FORTE_cronometroFB::scmFBlinterfaceSpec = {

3, scmEventinputNames, nullptr, scmEIWith, scmEIWithindexes,

3, scmEventOutputNames, nullptr, scmEOWith, scmEOWithIndexes,

1, scmDatalnputNames, scmDatalnputTypelds,

2, scmDataOutputNames, scmDataOutputTypelds,

0, nullptr,

0, nullptr

FORTE_cronometroFB::FORTE_cronometroFB(const CStringDictionary:: TStringld
palnstanceNameld, forte::core::CFBContainer &paContainer) :

CFunctionBlock(paContainer, scmFBinterfaceSpec, palnstanceNameld),

var_QI(0_BOOL),

var_STATUS(u"™ _WSTRING),
var_Tempo(0_REAL),
var_conn_STATUS(var_STATUS),
var_conn_Tempo(var_Tempo),
conn_INITO(this, 0),
conn_Cronometrolniciado(this, 1),
conn_CronometroParado(this, 2),
conn_QI(nullptr),

conn_STATUS(this, 0, &var_conn_STATUS),
conn_Tempo(this, 1, &var_conn_Tempo) {

void FORTE_cronometroFB::setlnitialValues() {
var_ Ql =0 BOOL,;
var_STATUS =u"™"_WSTRING;
var_Tempo = 0_REAL;

}

void FORTE_cronometroFB::executeEvent(const TEventID paEIID,
CEventChainExecutionThread *const paECET) {

std::chrono::high_resolution_clock::time_point inicio;
std::chrono::high_resolution_clock::time_point fim;
switch(paEIID) {

case scmEventINITID:

if(var_QI) {

var_STATUS = u"init_ok" WSTRING;
} else {

var_STATUS = u"init_failed" WSTRING;
}

sendOutputEvent(scmEventINITOID, paECET);

92

93

break;

case scmEventlniciarCronometrolD:
inicio = std::chrono::high_resolution_clock::now();
sendOutputEvent(scmEventCronometrolniciadolD, paECET);
break;

case scmEventEncerrarCronometrolD:
/l Marca o tempo final

fim = std::chrono::high_resolution_clock::now();

/I Calcula duracéo em milissegundos

auto duracao = duration_cast<milliseconds>(fim - inicio).count();
var_Tempo = CIEC_REAL(static_cast<TForteFloat>(duracao));
sendOutputEvent(scmEventCronometroParadolD, paECET);

break;

void FORTE_cronometroFB::readinputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITID: {
readData(0, var_QI, conn_Ql);
break;

}

case scmEventlniciarCronometrolD: {
readData(0, var_QI, conn_Ql);
break;

}

case scmEventEncerrarCronometrolD: {
readData(0, var_QI, conn_Ql);
break;

}

default:

break;

void FORTE_cronometroFB::writeOutputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITOID: {
writeData(1, var_Tempo, conn_Tempo);
break;

}

case scmEventCronometrolniciadolD: {
writeData(1, var_Tempo, conn_Tempo);
break;

}

case scmEventCronometroParadolD: {
writeData(1, var_Tempo, conn_Tempo);
break;

}

default:

break;

CIEC_ANY *FORTE_cronometroFB::getDI(const size_t palndex) {
switch(palndex) {

case O: return &var_Ql,

}

return nullptr;

}

CIEC_ANY *FORTE_cronometroFB:.getDO(const size_t palndex) {
switch(palndex) {

94

case O: return &var_STATUS;
case 1: return &var_Tempo;

}

return nullptr;

}

CEventConnection *FORTE_cronometroFB::getEOConUnchecked(const TPortld
palndex) {
switch(palndex) {
case 0: return &conn_INITO;
case 1: return &conn_Cronometrolniciado;
case 2: return &conn_CronometroParado;

}

return nullptr;

}

CDataConnection *FORTE_cronometroFB::getDIConUnchecked(const TPortld
palndex) {
switch(palndex) {
case O: return &conn_Ql;

}

return nullptr;

}

CDataConnection *FORTE_cronometroFB::getDOConUnchecked(const TPortld
palndex) {
switch(palndex) {
case O: return &conn_STATUS;
case 1: return &conn_Tempo;

}

return nullptr;

}

95

96

APENDICE E — SCRIPT pythonBlock_fbt.cpp

/***

*** FORTE Library Element

*k%k

*** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!
—-—

*** Name: pythonBlock

*** Description: Service Interface Function Block Type

*** \ersion:

*** 1.0: 2025-06-05/gabriel - -

***/

#include "pythonBlock_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP
#include "pythonBlock_fbt_gen.cpp”

#endif

#include "core/iec61131_ functions.h"

#include "core/datatypes/forte_array _common.h"
#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"

#include "core/datatypes/forte_array_variable.h"
DEFINE_FIRMWARE_FB(FORTE_pythonBlock, g_nStringldpythonBlock)

const CStringDictionary:: TStringld FORTE_pythonBlock::scmDatalnputNamesJ] =
{g_nStringldQI, g_nStringldFILE_PATH]};

const CStringDictionary:: TStringld FORTE_pythonBlock::scmDatalnputTypelds|[] =
{g_nStringldBOOL, g_nStringldWSTRING};

const CStringDictionary:: TStringld FORTE_pythonBlock::scmDataOutputNames[] =
{g_nStringldSTATUS, g_nStringldDO1};

97

const CStringDictionary:: TStringld FORTE_pythonBlock::scmDataOutputTypelds][] =
{9_nStringldWSTRING, g_nStringldBOOL};
const TDatalOID FORTE_pythonBlock::scmEIWith[] = {0, scmWithListDelimiter, 0, 1,
scmWithListDelimiter};
const TForteIntl6 FORTE_pythonBlock::scmEIWithindexes][] = {0, 2};
const CStringDictionary::TStringld FORTE_pythonBlock::scmEventinputNames|[] =
{g_nStringldINIT, g_nStringldREQ};
const TDatalOID FORTE_pythonBlock::scmEOWith[] = {0, scmWithListDelimiter, O,
scmWithListDelimiter};
const TForteIntl6 FORTE_pythonBlock::scmEOWithindexes[] = {0, 2};
const CStringDictionary:: TStringld FORTE_pythonBlock::scmEventOutputNames|[] =
{g_nStringIldINITO, g_nStringldCNF};
const SFBInterfaceSpec FORTE_pythonBlock::scmFBInterfaceSpec = {

2, scmEventinputNames, nullptr, scmEIWith, scmEIWithindexes,

2, scmEventOutputNames, nullptr, scmEOWith, scmEOWithindexes,

2, scmDatalnputNames, scmDatalnputTypelds,

2, scmDataOutputNames, scmDataOutputTypelds,

0, nullptr,

0, nullptr

FORTE_pythonBlock::FORTE_pythonBlock(const CStringDictionary:: TStringld
palnstanceNameld, forte::core::CFBContainer &paContainer) :
CFunctionBlock(paContainer, scmFBIinterfaceSpec, palnstanceNameld),
var_QI(0_BOOL),
var_FILE_PATH(u"™_WSTRING),
var_STATUS(U"™_WSTRING),
var_DO1(0_BOOL),
var_conn_STATUS(var_STATUS),
var_conn_DO1(var_DO1),
conn_INITO(this, 0),
conn_CNF(this, 1),

conn_QI(nullptr),

conn_FILE_PATH(nullptr),
conn_STATUS(this, 0, &var_conn_STATUS),
conn_DO1(this, 1, &var_conn_DO1) {

void FORTE_pythonBlock::setlnitialValues() {
var_QIl =0_BOOL;
var_FILE_PATH = u""_WSTRING;
var_STATUS = u""_WSTRING;
var_DO1 =0_BOOL,

void FORTE_pythonBlock::executeEvent(const TEventID paEIID,
CEventChainExecutionThread *const paECET) {
switch(paEIID) {
case scmEventINITID:
if(var_QI) {
var_STATUS = u"init_ok" WSTRING;
} else {
var_STATUS = u"init_failed" WSTRING;
}
sendOutputEvent(scmEventINITOID, paECET);
break;
case scmEventREQID:
if(var_QI){
system(var_FILE_PATH.getValue());
}
sendOutputEvent(scmEventCNFID, paECET);

break;

void FORTE_pythonBlock::readInputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITID: {
readData(0, var_QI, conn_Ql);
break;

}

case scmEventREQID: {
readData(0, var_QlI, conn_QI);
readData(l, var_FILE_PATH, conn_FILE_PATH);
break;

}

default:

break;

void FORTE_pythonBlock::writeOutputData(const TEventID paEIID) {
switch(paEIID) {

case scmEventINITOID: {
writeData(0, var_STATUS, conn_STATUS);
break;

}

case scmEventCNFID: {
writeData(0, var_STATUS, conn_STATUS);
break;

}

default:

break;

99

100

CIEC_ANY *FORTE_pythonBlock::getDI(const size_t palndex) {
switch(palndex) {
case 0: return &var_Ql;
case 1: return &var_FILE_PATH;
}

return nullptr;

}

CIEC_ANY *FORTE_pythonBlock::getDO(const size_t palndex) {
switch(palndex) {
case 0O: return &var_STATUS;
case 1: return &var_DO1;

}

return nullptr;

}

CEventConnection *FORTE_pythonBlock::getEOConUnchecked(const TPortld
palndex) {
switch(palndex) {
case O: return &conn_INITO;
case 1: return &conn_CNF,;

}

return nullptr;

}

CDataConnection *FORTE_ pythonBlock::getDIConUnchecked(const TPortld
palndex) {
switch(palndex) {
case O: return &conn_Ql;
case 1: return &conn_FILE_PATH,;
}

return nullptr;

101

CDataConnection *FORTE_ pythonBlock::getDOConUnchecked(const TPortld
palndex) {

switch(palndex) {
case O: return &conn_STATUS;
case 1: return &conn_DO1;

}

return nullptr;

}

	b2efdbaaac05e36ca15016b8154c9982bc60efe3edf402dcf7611b8f8ef2e1e8.pdf
	b2efdbaaac05e36ca15016b8154c9982bc60efe3edf402dcf7611b8f8ef2e1e8.pdf
	b2efdbaaac05e36ca15016b8154c9982bc60efe3edf402dcf7611b8f8ef2e1e8.pdf
	1 INTRODUÇÃO
	1.1 Objetivos
	1.1.1 Geral
	1.1.2 Específicos

	1.2 Organização do Trabalho

	2 FUNDAMENTAÇÃO TEÓRICA
	2.1 Norma IEC 61499
	2.2 Tipos de Blocos
	2.2.1 Basic Function Blocks
	2.2.2 Composite Function Blocks
	2.2.3 Blocos de interface de serviços

	2.3 4Diac
	2.3.1 4Diac vs FDBK
	2.3.2 Componentes do 4Diac

	2.4 Cmake
	2.5 Banco de Dados

	3 METODOLOGIA
	3.1 Definição dos Requisitos Funcionais e de Dados
	3.2 Modelagem Funcional com Blocos IEC 61499
	3.3 Desenvolvimento e Implementação dos Blocos
	3.4 Testes e Validação
	3.5 Integração em Sistema Piloto

	4 DESENVOLVIMENTO DO TRABALHO
	4.1 Configuração do ambiente de trabalho
	4.2 Desenvolvimento do SIFB MongoDB
	4.3 Desenvolvimento do SIFB cronometroFB
	4.4 Desenvolvimento do SIFB csv_block
	4.5 Desenvolvimento do SIFB myBD
	4.6 Desenvolvimento do SIFB pythonBlock
	4.7 Desenvolvimento da aplicação 4Diac
	4.8 Geração da máquina FORTE
	4.9 Validação do Sistema de Coleta de Dados
	4.10 Integração com o Sistema Piloto

	5 RESULTADOS
	5.1 Funcionamento do Sistema em Ambiente Local
	5.2 Integração com o Sistema Piloto (ESP32)
	5.3 Armazenamento de Dados no MongoDB
	5.4 Teste de Confiabilidade
	5.5 Teste de Robustez e Desempenho
	5.6 Síntese dos Resultados

	6 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE
	APÊNDICE A – SCRIPT BD_mongo_project_fbt.cpp
	APÊNDICE B – SCRIPT CRONOMETROFB
	APÊNDICE C – SCRIPT MYBD_fbt.cpp
	APÊNDICE D – SCRIPT CSV_BLOCK
	APÊNDICE E – SCRIPT pythonBlock_fbt.cpp

