

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE TECNOLOGIA E GEOCIÊNCIAS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CURSO DE GRADUAÇÃO EM ENGENHARIA DE CONTROLE E AUTOMAÇÃO

GABRIEL TARQUINIO SALES MUNIZ

SISTEMA DE COLETA DE DADOS BASEADO NA IEC 61499

Recife
2025

GABRIEL TARQUINIO SALES MUNIZ

SISTEMA DE COLETA DE DADOS BASEADO NA IEC 61499

Trabalho de Conclusão de Curso
apresentado ao Curso de Graduação em
Engenharia de Controle e Automação da
Universidade Federal de Pernambuco,
como requisito parcial para obtenção do
grau de Bacharel em Engenharia de
Controle e Automação.

Orientador(a): Prof. Dr. Herbert de Albérico de Sá Leitão

 Recife
2025

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Muniz, Gabriel Tarquinio Sales.
 Sistema de coleta de dados baseado na IEC 61499 / Gabriel Tarquinio Sales
Muniz. - Recife, 2025.
 100 p. : il., tab.

 Orientador(a): Herbert Albérico De Sá Leitão
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Tecnologia e Geociências, Engenharia de Controle e
Automação - Bacharelado, 2025.
 Inclui referências, apêndices.

 1. IEC 61499. 2. Coleta de Dados. 3. Indústria 4.0. 4. Sistemas Distribuídos.
5. Banco de dados não-relacionais. I. Leitão, Herbert Albérico De Sá.
(Orientação). II. Título.

 620 CDD (22.ed.)

GABRIEL TARQUINIO SALES MUNIZ

SISTEMA DE COLETA DE DADOS BASEADO NA IEC 61499

Trabalho de Conclusão de Curso
apresentado ao Curso de Graduação em
Engenharia de Controle e Automação da
Universidade Federal de Pernambuco,
como requisito parcial para obtenção do
grau de Bacharel em Engenharia de
Controle e Automação.

Aprovado em: 17/12/2025

BANCA EXAMINADORA

Prof. Dr. Herbert de Albérico de Sá Leitão (Orientador)
Universidade Federal de Pernambuco

Prof. Dr. Jeydson Lopes da Silva
Universidade Federal de Pernambuco

__

Prof. MSc. Néstor Iván Medina Giraldo
Universidade Federal de Pernambuco

AGRADECIMENTOS

Primeiramente, gostaria de agradecer a minha mãe, Meiriangela Sales, por ter

acreditado em mim desde do começo e por ter me dado suporte na minha vida e em

todas as minhas escolhas.

Agradeço ao meu pai, Iverton José, por ter sido sempre um modelo para mim e por

me ensinar que os estudos e o trabalho são apenas uma parte da vida.

Agradeço a minha irmã, Giovanna Tarquinio, por sempre ter sido a minha parceira e

por ter me dado suporte em diferentes âmbitos da minha vida.

Agradeço a Peruquinha, meu cachorro e coautor não oficial deste TCC, por estar

sempre no meu pé e por me proporcionar momentos de distração e lazer em uma

rotina agitada.

Agradeço a Luana Karolyna, amor da minha vida, por me mostra que existe beleza

neste mundo fora de cálculos, códigos e maquinas, além do incentivo a leitura e

fazer o cappucino mais gostoso para me ajudar nos estudos.

Agradeço a João Veras, cunhado e amigo, por ter me emprestado a ESP32 que foi

usada neste trabalho.

Agradeço ao resto da minha família, por estar sempre comigo em momentos

importantes, pelas comemorações nas conquistas e pelos os consolos nas derrotas.

Agradeço aos meus amigos, em especial João Ferreira e Claudio José, por sempre

estarem comigo nos momentos de pausa e de lazer.

Agradeço a equipe de robótica Maracatronics, por ter me proporcionado um

ambiente de muito aprendizado e por ter me dado oportunidade de trabalhar com

diferentes tipos de pessoas.

 Agradeço as pessoas da Qualihouse Automação, por terem me proporcionado a

experiencia de trabalhar no mercado de trabalho e pelo os ensinamentos técnicos e

humanos para lidar com esse ambiente.

Agradeço ao professor Herbert, por ter me orientado no desenvolvimento deste

trabalho e pelo o ensino do conteúdo da disciplina de Automacão e Controle de

Sistemas Distribuídos, que foi essencial para o desenvolvimento deste projeto.

Agradeço aos meus colegas de curso, por estarem ao meu lado ao enfrentar os

desafios da graduação.

Agradeço aos outros professores, pelo os ensinamentos passados durante toda a

graduação.

E por fim agradeço a mim mesmo por ter sido resiliente e por ter acredito até o fim

que daria certo.

“Insanidade é fazer a mesma coisa

repetidamente e esperar resultados
diferentes.” Albert Einstein.

RESUMO

A crescente digitalização da indústria, impulsionada pelos princípios da

Indústria 4.0, tem intensificado a necessidade de sistemas eficientes de coleta,

armazenamento e análise de dados. Nesse contexto, este trabalho apresenta o

desenvolvimento de um sistema de coleta de dados fundamentado na norma IEC

61499, que se destaca por sua abordagem orientada a sistemas distribuídos. A

proposta visa integrar Controladores Lógicos Programáveis (CLPs) e softCLPs por

meio do protocolo OPC UA, garantindo comunicação padronizada e

interoperabilidade. O sistema é composto por duas etapas principais: a coleta de

dados em dispositivos de campo e o armazenamento em um banco de dados não

relacional, implementado através de blocos de interface de serviço. A adoção da IEC

61499 permite maior flexibilidade, escalabilidade e modularidade na arquitetura,

favorecendo a digitalização dos processos industriais e servindo como base para a

aplicação de tecnologias emergentes, como Internet Industrial das Coisas (IIoT), Big

Data e computação em nuvem. Os resultados esperados incluem maior visibilidade

operacional, suporte à manutenção preventiva e embasamento para tomadas de

decisão estratégicas.

Palavras-chave: IEC 61499; Coleta de Dados, Indústria 4.0, Sistemas Distribuídos,

Banco de dados não-relacionais.

ABSTRACT

The increasing digitalization of the industry, driven by the principles of Industry 4.0,

has intensified the need for efficient systems for data collection, storage, and

analysis. In this context, this work presents the development of a data collection

system based on the IEC 61499 standard, which stands out for its distributed

systems-oriented approach. The proposal aims to integrate Programmable Logic

Controllers (PLCs) and softPLCs through the OPC UA protocol, ensuring

standardized communication and interoperability. The system consists of two main

stages: data collection from field devices and storage in a non-relational database,

implemented through service interface blocks. The adoption of IEC 61499 allows for

greater flexibility, scalability, and modularity in the architecture, favoring the

digitalization of industrial processes and serving as a foundation for the application of

emerging technologies, such as the Industrial Internet of Things (IIoT), Big Data, and

cloud computing. The expected outcomes include greater operational visibility,

support for preventive maintenance, and a basis for strategic decision-making.

Keywords: IEC 61499; Data Collection, Industry 4.0, Distributed Systems, Non-

relational Databases.

LISTA DE ILUSTRAÇÕES

Figura 1: Representação do bloco de funções da norma IEC 61499 21

Figura 2: Bloco Básico de funções .. 22

Figura 3: ECC de um bloco básico .. 24

Figura 4: Representação de um bloco composto .. 24

Figura 5: ECC de um bloco composto ... 25

Figura 6: Representação de blocos SIFBs .. 26

Figura 7: Exemplo de uso de um bloco de interface ... 26

Figura 8: 4Diac IDE ... 29

Figura 9: Meios para usar o Cmake .. 30

Figura 10:Representação do Banco de dados .. 31

Figura 11:Topologia de rede ... 37

Figura 12: Comandos usados para 4Diac FORTE reconhecer a API do Python 40

Figura 13:SIFB MongoDB ... 41

Figura 14:Bloco cronometroFB .. 42

Figura 15:Bloco csv_block... 43

Figura 16:Bloco de interface de serviço que faz comunicação com o SQlite3 44

Figura 17:Bloco pythonBlock ... 45

Figura 18: Aplicação 4Diac .. 46

Figura 19: Interface Gráfica do Cmake.. 47

Figura 20: Topologia da conexão local .. 49

Figura 21:Executando comunicação com UaExpert .. 49

Figura 22: Leitura e escrita dos dados no UaExpert ... 50

Figura 23: Visualização dos dados armazenados no MongoDB 51

Figura 24:ESP32 DevkitV1 .. 52

Figura 25: Execução do servidor OPC .. 52

Figura 26:Sistema conectado a ESP32 ... 53

Figura 27:Dados armazenados da comunicação com a ESP32 54

Figura 28:Contagem de 20 eventos, correspondente a quantidade de inputs 56

Figura 29: Número de documentos salvos na coleção do MongoDB 58

Figura 30: Arquivo CSV ... 59

Figura 31:Gráfico do intervalo de tempo das coletas de dados 60

LISTA DE TABELAS

Tabela 1: Portabilidade entre as principais ferramentas baseadas na norma IEC

61499 .. 27

LISTA DE ABREVIATURAS E SIGLAS

CLP Controlador Logico Programável

FB Function Blocks
IEC International Electrotechnical Commission

IoT Internet of Things

IIoT Industrial Internet of Things

TSDB banco de dados de séries temporais
CSV valores separados por vírgulas
SoftCLP Controlador Logico Programável implementado em software

ECC gráfico de controle de execução
SGBD Sistema de Gerenciamento de Banco de Dados

GPIO Entrada/Saída de propósito geral

SIFB Service Interface Function Blocks

OPC UA Arquitetura Unificada de Comunicações de Plataforma Aberta

SUMÁRIO

1 INTRODUÇÃO ... 16

1.1 Objetivos ... 18

1.1.1 Geral .. 18

1.1.2 Específicos... 18

1.2 Organização do Trabalho .. 18

2 FUNDAMENTAÇÃO TEÓRICA ... 20

2.1 Norma IEC 61499 ... 20

2.2 Tipos de Blocos... 22

2.2.1 Basic Function Blocks .. 22

2.2.2 Composite Function Blocks.. 24

2.2.3 Blocos de interface de serviços ... 25

2.3 4Diac ... 27

2.3.1 4Diac vs FDBK ... 27

2.3.2 Componentes do 4Diac.. 28

2.4 Cmake ... 29

2.5 Banco de Dados.. 30

3 METODOLOGIA .. 35

3.1 Definição dos Requisitos Funcionais e de Dados .. 35

3.2 Modelagem Funcional com Blocos IEC 61499 .. 35

3.3 Desenvolvimento e Implementação dos Blocos .. 36

3.4 Testes e Validação .. 36

3.5 Integração em Sistema Piloto .. 37

4 DESENVOLVIMENTO DO TRABALHO .. 39

4.1 Configuração do ambiente de trabalho .. 39

4.2 Desenvolvimento do SIFB MongoDB ... 40

4.3 Desenvolvimento do SIFB cronometroFB .. 42

4.4 Desenvolvimento do SIFB csv_block ... 43

4.5 Desenvolvimento do SIFB myBD ... 44

4.6 Desenvolvimento do SIFB pythonBlock ... 45

4.7 Desenvolvimento da aplicação 4Diac .. 45

4.8 Geração da máquina FORTE .. 47

4.9 Validação do Sistema de Coleta de Dados .. 48

4.10 Integração com o Sistema Piloto ... 51

5 RESULTADOS ... 55

5.1 Funcionamento do Sistema em Ambiente Local .. 55

5.2 Integração com o Sistema Piloto (ESP32) ... 56

5.3 Armazenamento de Dados no MongoDB .. 57

5.4 Teste de Confiabilidade ... 57

5.5 Teste de Robustez e Desempenho.. 58

5.6 Síntese dos Resultados ... 60

6 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE ... 62

APÊNDICE A – SCRIPT BD_mongo_project_fbt.cpp .. 66

APÊNDICE B – SCRIPT CRONOMETROFB .. 75

APÊNDICE C – SCRIPT MYBD_fbt.cpp .. 81

APÊNDICE D – SCRIPT CSV_BLOCK ... 90

APÊNDICE E – SCRIPT pythonBlock_fbt.cpp ... 96

16

1 INTRODUÇÃO

A indústria 4.0 tem promovido mudanças significativas nos sistemas de

produção, introduzindo tecnologias digitais, como Internet of Things(IoT), ou internet

das coisas em português, e Big Data, e promovendo a integração de sistemas físicos

à redes inteligentes. Nesse contexto, os dados assumem o papel central, uma vez que

fornecem informações essenciais sobre o estado dos processos produtivos,

possibilitando sua otimização contínua, a implementação de estratégias de

manutenção preditiva e a tomada de decisões autônomas, suportadas por sistemas

de inteligência artificial (ARNALSON; BREMDAL; SOLVANG, 2022).

Dessa forma, intensificou-se a demanda por sistemas de controle distribuídos,

capazes de integrar e coordenar estruturas produtivas cada vez mais complexas. A

partir dessa necessidade, surge a norma IEC 61499 (MERKUMIANS; GSELLMANN;

SCHITTER, 2021), que determina e padroniza a implementação de sistemas de

controle distribuídos. As principais vantagens da norma IEC 61499 incluem o uso de

uma linguagem de fácil compreensão baseada em diagramas de blocos de funções.

Seu diferencial está na extensão do conceito tradicional de blocos de funções,

permitindo sua adaptação à realidade dos sistemas de controle distribuído. Além

disso, a norma foi concebida para atender a três requisitos fundamentais:

portabilidade, configurabilidade e interoperabilidade (PANG et al., 2014).

Um outro efeito associado ao conceito de Indústria 4.0 é a crescente

digitalização das indústrias, aumentando a geração de dados vindo de sensores e

variáveis do sistema. Com isso, também cresce a necessidade de criar meios mais

eficientes para coleta e análise desses dados gerados (KAJOLA, 2024). Um exemplo

é o estudo de Paavo Kajola (2024), que propõe um sistema de coleta e análise de

dados multivariados em séries temporais, baseado na norma IEC 61499. No estudo,

a aquisição de dados teve como finalidade capturar dados de sistemas industriais

modernos, coletar dados de servidores OPC UA, armazenar os dados em um banco

de dados de séries temporais (TSDB) e preparar os dados para análise distribuída

utilizando blocos de interface de serviços.

17

A implementação de sistemas de coleta de dados na indústria apresenta

inúmeras vantagens, uma vez que proporciona maior visibilidade dos processos

produtivos, reduz desperdícios de recursos e possibilita a identificação de gargalos

operacionais. No contexto de sistemas distribuídos, o tráfego de grandes volumes de

informações entre CLPs torna a presença de um sistema de coleta indispensável para

aprimorar o desempenho, viabilizar a manutenção preventiva e apoiar a tomada de

decisões estratégicas (KAJOLA, 2024).

No escopo da Indústria 4.0, a utilização e o processamento de dados ocorrem,

de forma geral, em quatro etapas principais: (i) Coleta de dados, na qual informações

são extraídas de sensores, motores e sistemas de controle; (ii) Armazenamento, etapa

em que os dados coletados são registrados em bancos de dados ou arquivos CSV;

(iii) Pré-processamento, fase responsável pela filtragem e eliminação de dados

inválidos ou redundantes; e (iv) Análise, em que gráficos e algoritmos de inteligência

artificial são aplicados para extrair padrões e gerar insights relevantes (BASANTA-

VAL, 2017).

Nesse cenário, a adoção da norma IEC 61499 para o desenvolvimento de

sistemas de coleta de dados revela-se especialmente vantajosa. Como os dados

industriais são provenientes de diferentes processos e dispositivos, o sistema de

coleta caracteriza-se, em essência, como um sistema distribuído, alinhando-se

diretamente à filosofia da IEC 61499. Além disso, a coleta de dados representa o

primeiro passo para a digitalização industrial, constituindo-se como base para a

implementação de tecnologias emergentes, tais como a Internet Industrial das Coisas

(IIoT), Big Data e computação em nuvem.

Inspirado por essa abordagem, o presente trabalho tem como objetivo projetar

e implementar um sistema de coleta e armazenamento de dados em conformidade

com a norma IEC 61499. Para tanto, foi desenvolvida uma arquitetura em que a etapa

de coleta é realizada por um CLP, enquanto o armazenamento é executado por um

softCLP em operação em um PC central. A comunicação entre os dispositivos ocorre

por meio da rede, utilizando o protocolo OPC UA. No processo de armazenamento,

foram implementados blocos de interface de serviço responsáveis por registrar os

dados em um banco de dados não relacional.

18

1.1 Objetivos

1.1.1 Geral

 Desenvolver um sistema de coleta e armazenamento de dados industriais

fundamentado na norma IEC 61499, visando aprimorar a visibilidade dos

processos, facilitar a digitalização da indústria e fornecer suporte à análise de

dados para tomada de decisões estratégicas.

1.1.2 Específicos

● Projetar uma arquitetura distribuída de coleta de dados baseada em CLPs e

softCLPs conforme a norma IEC 61499;

● Implementar a comunicação entre os dispositivos utilizando o protocolo OPC

UA, garantindo interoperabilidade e padronização;

● Desenvolver blocos de interface de serviço para o armazenamento de dados

em um banco de dados não relacional acessado localmente pelo softCLP;

● Validar o sistema por meio de simulações e testes que demonstrem sua

eficiência na coleta e no registro de informações industriais.

1.2 Organização do Trabalho

 Este trabalho está estruturado da seguinte forma: No Capítulo 2, apresenta-

se a fundamentação teórica, contemplando os principais conceitos relacionados

à norma IEC 61499, suas ferramentas e aspectos pertinentes a bancos de dados,

de modo a oferecer a base conceitual necessária para a compreensão do estudo.

19

O Capítulo 3 descreve a metodologia adotada, detalhando as etapas que

orientaram o desenvolvimento do trabalho, desde o planejamento até a execução.

No capítulo 4, é mostrado como foi feito o desenvolvimento do trabalho. No

capítulo 5 é mostrado os resultados obtidos neste projeto. Por fim, o Capítulo 6

reúne as conclusões obtidas a partir dos resultados apresentados no capítulo

anterior, bem como sugestões e perspectivas para trabalhos futuros.

20

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Norma IEC 61499

 A norma IEC 61499 foi desenvolvida com o objetivo de oferecer um ambiente

prático e flexível para a implementação de sistemas de controle distribuídos. Em

contraste com a norma IEC 61131-3, que se concentra na padronização das

linguagens de programação para CLPs tradicionais e está vinculada a arquiteturas

centralizadas e dependentes de hardware específico (INTERNATIONAL

ELECTROTECHNICAL COMMISSION, 2025), a IEC 61499 introduz um modelo

orientado a sistemas distribuídos, com foco na interoperabilidade e na independência

de plataforma (PANG et al., 2014).

 Esse novo paradigma facilita a comunicação entre dispositivos de diferentes

fabricantes e garante a portabilidade das aplicações em softwares distintos

(CHRISTENSEN et al., 2012). Por exemplo, uma solução desenvolvida para um CLP

pode ser facilmente adaptada e executada em plataformas alternativas, como o

Raspberry Pi, sem a necessidade de reescrita completa do projeto.

 Além da portabilidade, a IEC 61499 foi concebida para atender a dois requisitos

adicionais essenciais:

● Configurabilidade: possibilita a alteração dinâmica dos parâmetros de um

projeto sem a necessidade de interromper sua execução, permitindo maior

flexibilidade e adaptabilidade dos sistemas.

● Interoperabilidade: assegura que dois ou mais dispositivos, mesmo de

fabricantes distintos, possam executar de forma coordenada todas as

aplicações de um sistema distribuído.

 Dessa forma, a IEC 61499 representa uma evolução significativa em relação à IEC

61131-3, ao alinhar-se às demandas da Indústria 4.0 e às necessidades de

arquiteturas de automação mais distribuídas, escaláveis e independentes de hardware

(CHRISTENSEN et al., 2012).

21

 O elemento central da norma IEC 61499 que possibilita essas funcionalidades é o

conceito de blocos de função. Esses blocos representam abstrações de código que

permitem a incorporação de múltiplos algoritmos, podendo ser desenvolvidos tanto

em linguagens definidas pela IEC 61131-3, como o texto estruturado, quanto em

linguagens de alto nível, como C++ e Python (PINTO, 2014).

 Outra característica fundamental dos blocos definidos pela IEC 61499 é que eles

são orientados a eventos, em contraste com os blocos da IEC 61131-3, que seguem

um modelo baseado em ciclos de varredura. Essa abordagem orientada a eventos

contribui para sistemas mais eficientes e confiáveis no tratamento de eventos,

reduzindo atrasos desnecessários e otimizando a utilização dos recursos

computacionais (LEWIS; ZOTIL, 2014).

 Sua representação gráfica é constituída por 2 partes: cabeçalho e o corpo. No

cabeçalho são definidos os eventos de entrada, os eventos de saída e o ECC

(execution control chart, gráfico de controle de execução), onde é administrado a

ocorrência dos eventos e no corpo se encontram os dados de entrada, os algoritmos

encapsulados e os dados de saída (LEWIS; ZOTIL, 2014).

Figura 1: Representação do bloco de funções da norma IEC 61499

Fonte: adaptado do LEWIS (2014)

22

2.2 Tipos de Blocos

 Existem 3 tipos de blocos que são usados na IEC 61499 que são:

● Basic Function Blocks: São blocos que tem um ou mais algoritmos

encapsulados neles e sua execução é baseada nos eventos de entrada.
● Composite Function Blocks: São blocos que tem um conjunto de outros

blocos encapsulados neles.
● Service Interface Function Blocks: Os blocos de interface de serviço são

blocos que permitem o acesso externo do sistema, sendo útil para ler sensores,

usar atuadores e fazer comunicação em rede.

2.2.1 Basic Function Blocks

 O tipo de bloco básico é composto por um ou vários algoritmos que são executados

a partir da ocorrência dos eventos de entrada e são gerenciados pelo ECC.

Figura 2: Bloco Básico de funções

Fonte: adaptado do LEWIS (2014)

23

 O ECC é um componente fundamental em aplicações desenvolvidas com base na

norma IEC 61499, pois é responsável por gerenciar as transições de estados de um

bloco de funções. A cada evento recebido, o ECC avalia as condições de transição e

executa o algoritmo associado ao estado ativo, processando os dados de entrada e

gerando as saídas correspondentes. Essa abordagem orientada a eventos permite

maior controle sobre o fluxo de execução, aumentando a previsibilidade e a

modularidade do sistema (LIAKH et al., 2022).

A estrutura do ECC é composta por três elementos principais:

● Estados: representam diferentes modos de operação de um bloco de funções,

cada um associado a ações ou algoritmos específicos.

● Transições: definem as condições sob as quais o ECC altera o estado atual,

geralmente disparadas por eventos.

● Ações: correspondem aos algoritmos executados quando um estado é ativado,

permitindo o processamento dos dados e a geração de respostas apropriadas.

A seguir, apresenta-se um exemplo de ECC aplicado a um bloco básico de

funções, ilustrando um programa simples de somador.

O ECC (Execution Control Chart) desse bloco somador é composto por quatro

estados: START, que representa o estado inicial do bloco; Init; Initialized; e NormalOp.

O ciclo de funcionamento do ECC inicia-se no estado START. Quando o bloco

recebe o evento INIT, ele transita para o estado Init, gerando o evento de saída INIT0

e, em seguida, passando para o estado Initialized. Nesse ponto, o programa conclui a

fase de configuração (setup) e entra na fase de execução cíclica (loop).

Ao receber o evento REQ, o bloco transita para o estado NormalOp, no qual é

executado o algoritmo normalOperation. Esse algoritmo realiza a soma dos dois dados

de entrada. Após a execução, é gerado o evento de saída CNF, e o bloco retorna ao

24

estado Initialized, aguardando uma nova ocorrência do evento REQ, que reinicia o

ciclo descrito.

Figura 3: ECC de um bloco básico

Fonte: Do próprio autor

2.2.2 Composite Function Blocks

 Para definir o comportamento de blocos compostos, utiliza-se uma rede de blocos

internos, o ECC e algoritmos, como ocorre nos blocos básicos. A Figura 4 apresenta

a estrutura de um bloco composto.

Figura 4: Representação de um bloco composto

Fonte: Adaptado do LEWIS (2014)

25

Abaixo temos um exemplo de um bloco composto que tem encapsulado nele

dois blocos em sequência que são o E_Switch e o E_SR que são usados em conjuntos

para criar uma aplicação de flip flop, que são circuitos sequenciais em que o valor de

saída depende do valor atual do componente.

Figura 5: ECC de um bloco composto

 Fonte: Do próprio autor

2.2.3 Blocos de interface de serviços

Os blocos de interface de serviço (SIFB – Service Interface Function Blocks)

são componentes utilizados para estabelecer a comunicação entre a aplicação e o

ambiente externo. Esse ambiente externo pode corresponder tanto a dispositivos de

hardware, permitindo a leitura de sinais de entrada e a escrita em sinais de saída,

quanto a redes de comunicação entre diferentes dispositivos, viabilizando a integração

necessária para a implementação de sistemas distribuídos.

Por exemplo, os blocos PUBLISHER e SUBSCRIBER, representados na figura

6, possibilitam a comunicação em rede utilizando diversos protocolos, como sockets,

OPC UA, Modbus TCP, HTTP, entre outros. Já os blocos IO_Read e IO_Write

permitem, respectivamente, a leitura de valores provenientes de sensores físicos

conectados ao hardware e o envio de comandos para atuadores.

26

Figura 6: Representação de blocos SIFBs

 Fonte: LEWIS (2014)

Outra aplicação para os blocos de interface de serviços é acessar arquivos que

estão armazenados em um hardware em que o projeto está sendo executado, como

um arquivo txt ou CSV e códigos que foram escritos usando linguagens de alto nível.

Nesse projeto, será mostrado como usar esse tipo de bloco para executar

códigos em Python que são externos ao projeto, são chamados a partir do código dos

blocos que são gerados em C++. Na figura 7 temos um bloco chamado PythonBlock

que foi criado para auxiliar esse projeto, a função deste bloco é executar códigos feitos

em Python, bastando apontar o diretório do arquivo em FILE_PATH. O código está

disponível no Apêndice.

Figura 7: Exemplo de uso de um bloco de interface

Fonte: Do próprio autor

27

2.3 4Diac

 O 4Diac é um kit de desenvolvimento de código aberto composto por um ambiente

de desenvolvimento integrado (IDE) e a máquina FORTE, que executa os FBs da IEC

61499, utilizado para o desenvolvimento, implementação e visualização de aplicações

industriais de sistemas de controle distribuídos com base na norma IEC 61499.

Embora existam outras ferramentas compatíveis com a norma IEC 61499, nas

próximas seções deste trabalho é apresentada uma análise comparativa entre o FDBK

e o 4Diac, a fim de identificar qual delas oferece maior eficiência e adequação para o

desenvolvimento de aplicações voltadas a sistemas de controle distribuído.

 No estudo de (PANG et al., 2014), foi realizada uma investigação sobre

portabilidade e semântica entre diferentes ferramentas baseadas na IEC 61499. Além

do 4Diac, foram avaliadas outras três plataformas: FBDK, IsaGRAF e nxtStudio,

considerando a capacidade de portabilidade entre elas.

Tabela 1: Portabilidade entre as principais ferramentas baseadas na norma IEC 61499

 FBDK 4Diac nxtStudio IsaGRAF

 FBDK - Full Partial N/A

 4Diac Full - Partial N/A

 nxtStudio Partial Partial - N/A

 IsaGRAF N/A N/A N/A -

 Fonte: adaptado (PANG et al., 2014).

Com os resultados apresentados na Tabela 1, nota-se que as soluções

nxtStudio e isaGRAF não se mostram adequadas para utilização, devido à sua baixa

compatibilidade com outras ferramentas e à escassez de informações disponíveis.

2.3.1 4Diac vs FDBK

O FBDK foi a primeira ferramenta produzida com o objetivo de demonstrar os

conceitos da norma IEC 61499, seus componentes são um editor de texto e um

28

ambiente de execução (FBRT) que utiliza um modelo de execução baseado em

múltiplas threads, onde cada thread é uma unidade de execução de tarefas, não

preemptivo com escalonamento em profundidade, suporta a sintaxe XML normativa,

o que facilita a troca de elementos com outras ferramentas compatíveis e sua limitação

é o seu desenvolvimento na linguagem Java que limita seu suporte a hardware

industrial(PANG et al., 2014).

O 4Diac é uma ferramenta de código aberto que foi desenvolvida originalmente

pela academia para estudar e desenvolver projetos baseados na norma IEC 61499,

seus componentes são um editor baseado no Eclipse e um ambiente de execução

chamado FORTE que foi construído usando C++, seu modo de execução é um modelo

sequencial com despache de eventos, altamente compatível com FDBK pois ambos

seguem a sintaxe XML como define a norma e tem como mérito ser a única ferramenta

ainda ativa de código aberto que recebe atualizações e é a ferramenta mais utilizada

para pesquisa e desenvolvimento(PANG et al., 2014).

Com isso foi definido que a melhor ferramenta para utilizar nesse projeto é o

4Diac pois além dos itens apresentados acima, ele possui uma interface agradável e

intuitiva para desenvolvimento.

2.3.2 Componentes do 4Diac

O 4Diac tem dois componentes principais para a execução de controle de

sistemas distribuídos sob a norma IEC 61499.

· 4Diac FORTE: O FORTE é um ambiente de tempo de execução de múltiplas

tarefas baseado na norma IEC 61499, que oferece suporte à execução de redes

de blocos de função em dispositivos embarcados de pequeno porte. Trata-se de

uma implementação compacta, de baixo custo e baixo consumo de memória,

desenvolvida em C++. Além disso, o FORTE já foi testado em diversos sistemas

operacionais, incluindo Windows, Linux e FreeRTOS(ECLIPSE FOUNDATION,

2025).

4Diac IDE: É um ambiente escrito em Java baseado na IDE do Eclipse, a IDE

do 4Diac fornece ao usuário várias ferramentas para desenvolver aplicações de

29

sistemas distribuídos baseados na norma IEC 61499 como criar bloco de funções,

criar aplicativos, configurar dispositivos e realizar outras tarefas relacionadas a

norma IEC 61499 (ECLIPSE FOUNDATION, 2025). O 4DIac IDE também vem

com várias bibliotecas nativas pré-compiladas e prontas para serem executadas

na máquina FORTE, a coleção de bibliotecas do 4Diac é vasta e bastante rica, tem

blocos da norma IEC 61131-3 que podem ser usados em aplicações de sistemas

de controle distribuídos, tem a biblioteca Convert onde ficam blocos destinados a

conversão de dados, tem a biblioteca Net que hospeda os blocos que realizam a

comunicação em rede e várias outras.

Figura 8: 4Diac IDE

Fonte: Do próprio autor

2.4 Cmake

Outro software essencial no desenvolvimento de aplicações para sistemas de

controle distribuído é o CMake. Trata-se de um conjunto de ferramentas de código

aberto (open-source) que permite criar, testar e empacotar aplicações de forma

automatizada e multiplataforma (KITWARE, 2025).

30

 No contexto deste trabalho, o CMake é utilizado como ferramenta de

compilação e geração da máquina FORTE. A partir dos arquivos disponibilizados no

pacote 4Diac FORTE, é possível gerar máquinas FORTE personalizadas, capazes de

executar tanto blocos de função desenvolvidos pelo próprio usuário quanto blocos

nativos presentes nas bibliotecas fornecidas pelo 4Diac.

O CMake pode ser utilizado de duas formas: por meio da linha de comando

(terminal) ou por meio de uma interface gráfica, conforme ilustrado na figura 9:

Figura 9: Meios para usar o Cmake

 (KITWARE, 2025)

2.5 Banco de Dados

 O banco de dados pode ser definido como um sistema computacional

destinado ao armazenamento e à manutenção de informações, composto por

hardware, software e pelos próprios dados. As informações armazenadas em um

banco de dados possuem caráter persistente, sendo removidas apenas mediante uma

solicitação explícita, ao contrário dos dados de entrada e saída dos blocos de função

da IEC 61499 que são atualizados de forma constante (DATE, 1991).

31

 O que gerencia um banco de dados é o SGBD (Sistema de Gerenciamento

de Banco de Dados), que é responsável por intermediar o acesso ao banco de dados

atuando entre as camadas do usuário e o armazenamento físico, oferecendo uma

interface lógica e intuitiva para manipulação de dados.

 As principais funções do SGBD são gerenciar como os dados são

armazenados e acessados, permitir operações para manipulação de dados,

estabelecer um controle de acesso, garantindo múltiplos acessos de usuários de

forma simultânea e sem conflitos, definir permissões sobre quais usuários podem

acessar o banco de dados, proteger os dados contra acessos não autorizados e

garantir a integridade e a independência das informações (DATE, 1991).

 Figura 10:Representação do Banco de dados

 Fonte: (DATE, 1991)

 A linguagem padrão usada para manipulações de dados é o SQL, que

significa Structured Query Language (linguagem de consulta estruturada), com ela é

possível criar tabelas, inserir dados, consultar dados, alterar dados, excluir dados e

tabelas. Os principais comandos usados para realizar essas ações estão listados

abaixo:

• CREATE TABLE: usado para criação de tabelas;

• DROP TABLE: usado para remover tabelas;

• INSERT: usado para inserir dados em uma tabela;

32

• SELECT: usado para realizar consulta de dados;

• UPDATE: usado para alterar dados inseridos;

• DELETE: usado para excluir dados;

2.5.1 Bancos Relacionais

 Os bancos de dados relacionais são sistemas que organizam as informações

por meio de regras estruturais bem definidas. Do ponto de vista estrutural, esses

bancos são compostos por tabelas, nas quais os dados são armazenados e

relacionados entre si. Todas as tabelas que compõem um banco de dados são

compostas por linhas e colunas, cada coluna já tem definido o tipo de valor que ela

vai comportar – por exemplo: inteiro, real, texto e data – e em cada tabela é necessário

que uma coluna seja a chave primária para identificação de uma linha específica

registrada na tabela. Os vínculos criados entre as tabelas são referenciados através

de chaves estrangeiras, onde a coluna que representa uma chave primária em uma

tabela aparece em outra tabela como chave estrangeira (DATE, 1991).

 Esse tipo de banco de dados foi proposto por Edgar F. Codd em 1970 e ainda

é bastante utilizado em vários tipos de sistemas modernos porque o seu aspecto

estrutural é bastante intuitivo e fácil de entender, sendo ideal para uma organização

maior no armazenamento de dados. Outra vantagem que torna o banco de dados

relacional atrativo é a sua integridade em relação aos dados, estabelecendo certas

restrições em relação ao armazenamento de dados em estados não válidos e

respeitando a relação das tabelas, garantindo que as chaves primárias não sejam

nulas e que as relações das chaves estrangeiras estejam devidamente validadas

(DATE, 1991).

 Porém, para aplicações industriais, haverá uma alta velocidade de geração de

dados descentralizados e desconexos o que torna a escolha dos bancos de dados

relacionais não apropriada para armazenamento, pois além do baixo desempenho

para lidar com um alto volume de dados, é exigida uma relação entre os dados

distribuídos que não necessariamente vai existir. Por isso que o tipo de banco de

dados não-relacional é mais utilizado para aplicações IIoT do que o banco de dados

relacional.

33

2.5.2 Bancos Não-Relacionais

 Com a necessidade de manipular grande quantidade de dados que surgiram

depois do advento da web 2.0, foram criados os bancos de dados não relacionais

também conhecido como NoSQL (“not only SQL”) que tem como características um

sistema flexível, os bancos de dados possuem código aberto, os dados não são

estruturados e a escalabilidade de armazenamento costuma ser mais barata e menos

complexa (GARCIA & SOTTO,2019).

 Os bancos de dados não-relacionais são divididos nos seguintes grupos:

 • Orientado a documentos: São coleções de atributos e valores que

podem assumir tipos de valores diferentes, essas coleções são armazenadas no

formato JSON. Os tipos de bancos mais populares são o MongoDB e o CouchDB

(DIANA & GEROSA, 2010).

 • Armazéns chave-valor: São armazenados objetos indexados por chaves

exclusivas que possibilitam fazer a busca por esses objetos. Um exemplo de

banco que está nessa categoria é o Amazon DynamoDB (AMAZON, 2025).

 • Banco de dados por Grafos: Diferente dos outros tipos de banco de

dados que não definem um modelo de dados previamente, aqui é definido como

modelo de grafos. Onde os dados são representados por estruturas de grafos que

são constituídas por nós e bordas. Exemplos de banco de dados: Property Graph

e o Resource Description Framework (RDF) (AMAZON, 2025).

 Após analisar essas e várias outras categorias, foi decidido utilizar um banco

de dados orientado a documentos por causa do funcionamento simples, da arquitetura

bastante flexível e por ter bancos de dados gratuitos como o MongoDB, que foi o

banco de dados escolhido para armazenar os dados lidos pelo o sistema de coletas.

2.5.2.1 MongoDB

 O MongoDB, como mencionado no tópico anterior, é um banco de dados

orientado a documentos que permite armazenamento de coleções de documentos

34

semelhantes ao JSON. Ele foi criado com o objetivo de ser uma alternativa a bancos

relacionais como o MySQL para suprir a necessidade de sistemas modernos que têm

um volume grande de dados. Além de gratuito, o MongoDB possui uma comunidade

ampla e ativa, bem como documentação abrangente sobre instalação, uso de APIs e

desenvolvimento de aplicações, disponíveis para consulta (MONGODB Inc, 2025).

 Além dessas características, cada documento é um objeto independente que

está organizado no esquema chave-valor, podendo ter diferentes tipos de dados como

arrays, texto e números reais. A vantagem dessa estrutura é que ela elimina a

necessidade de definir um esquema fixo, permitindo que documentos de uma mesma

coleção tenham estruturas diferentes. Essa característica é um dos pontos principais

que torna o MongoDB uma excelente escolha para lidar com aplicações de Big Data

e Internet Industrial das Coisas (IIoT).

 No MongoDB também é possível fazer uma replicação dos dados em

diferentes servidores, assim garantindo a disponibilidade e recuperação desses dados

em caso de falha. Nesse banco de dados também é permitido particionar os dados

em vários servidores diferentes, possibilitando o aumento de desempenho, da

capacidade de armazenamento e tornando possível a escalabilidade horizontal dos

dados.

35

3 METODOLOGIA

A metodologia proposta neste trabalho visa a criação, validação e aplicação de

um sistema de coleta de dados, conforme a norma IEC 61499, voltados à manipulação

de dados industriais em ambientes compatíveis com os princípios da Indústria 4.0. A

abordagem está dividida em cinco etapas principais: (1) definição dos requisitos, (2)

modelagem funcional, (3) desenvolvimento dos blocos, (4) testes e validação, e (5)

integração em um sistema piloto.

3.1 Definição dos Requisitos Funcionais e de Dados

Nesta etapa, foram definidos os requisitos do projeto, que consistem na criação

de um sistema de coleta de dados baseado na norma IEC 61499, capaz de executar

duas das quatro fases do tratamento de dados: a coleta e o armazenamento em um

banco de dados. Como o sistema foi idealizado para coletar informações provenientes

de ambientes industriais, ele deve ser capaz de se comunicar por meio de um

protocolo industrial e registrar esses dados em um banco que suporte grandes

volumes de informações, além de oferecer mecanismos adequados para lidar com

possíveis perdas de dados.

Tendo em vista esses dois pré-requisitos, definiu-se que o protocolo de

comunicação a ser utilizado será o OPC UA, em razão da sua facilidade de integração

com diferentes tipos de sistemas. Conforme mencionado na Seção 2.5.2, o banco de

dados escolhido para o armazenamento das informações é o MongoDB.

3.2 Modelagem Funcional com Blocos IEC 61499

Com base nos requisitos, o sistema de coleta de dados terá um bloco de rede

que vai executar o protocolo OPC UA, um bloco que fará a comunicação com o banco

de dados MongoDB e alguns blocos do tipo evento que serão necessários para gerar

eventos de requisição e encerramento do banco de dados. Na biblioteca de blocos do

36

4Diac, existem blocos de comunicação em rede e blocos de eventos, logo é

necessário apenas criar o bloco que fará a comunicação com o MongoDB.

3.3 Desenvolvimento e Implementação dos Blocos

O desenvolvimento da interface gráfica do bloco MongoDB foi feito na IDE do

4Diac. Nesta etapa, foi definido o número de eventos de entrada e de saída do bloco

e a quantidade de dados de entrada e de saída. Posteriormente, o script interno do

bloco MongoDB, apresentado no Apêndice A, foi desenvolvido em linguagem C++.

Para a realização do teste de robustez, foram criados mais dois blocos o bloco

cronometroFB que obtém o tempo em que o bloco MongoDB leva para fazer um

armazenamento no banco de dados e o bloco csv_block que cria um arquivo CSV que

armazena o tempo de ocorrência da chegada dos dados e o tempo obtido do bloco

cronometroFB. A interface gráfica dos dois blocos também foi desenvolvida no 4Diac

IDE.

No desenvolvimento deste trabalho foram desenvolvidos dois blocos que não foram

usados na versão final deste projeto, mas as suas funcionalidades são interessantes

para fazer uso em futuros projetos que são o myBD e o pythonBlock. O myBD é um

bloco de interface de serviço que faz comunicação com o banco de dados Sqlite3,

um banco de dados relacional. O pythonBlock é um bloco de interface de serviço

que executa códigos em python.

3.4 Testes e Validação

O sistema de coleta de dados foi validado em um ambiente de conexão local, no

qual ocorreu a troca de informações entre o sistema desenvolvido e um software

responsável pela leitura e transmissão de dados utilizando o protocolo OPC UA. Os

testes consideraram:

 Validação funcional: verificar se os blocos executam corretamente as

operações de manipulação de dados.

37

 Robustez e confiabilidade: verificação de perda de dados e avaliação de

performance.

Ferramentas de monitoramento do 4diac foram utilizadas para observar o

comportamento dos blocos em tempo real.

3.5 Integração em Sistema Piloto

 Os blocos foram integrados em uma aplicação piloto, representando um

cenário industrial simplificado. O sistema piloto foi um servidor OPC UA, operando em

uma ESP32. Esse servidor foi utilizado para monitorar variáveis de processo como

estados de Relays e a temperatura do ambiente.

 A topologia de rede de uma planta industrial para aquisição de dados é

formada por um CLP de campo que coleta os dados e o sistema que recebe os dados

via rede, neste trabalho é proposta uma estrutura semelhante, mas que possui a

vantagem de integrar em um mesmo dispositivo o sistema de controle (CLP) e o

sistema de armazenamento de dados (banco de dados). A figura 11 apresenta esta

topologia de rede, tendo a ESP32 como um dispositivo de campo.

 Fonte: Do próprio autor

Figura 11:Topologia de rede

38

O softCLP se comunica com a ESP32 através do protocolo OPC UA, após o

recebimento dos dados, o softCLP faz comunicação com o banco de dados via script

(código de programação). Esse tipo de comunicação foi possível devido ao

desenvolvimento do bloco SIFB MongoDB da IEC 61499, permitindo que o softCLP

possa ter acesso direto a informações de outros serviços do PC.

Essa aplicação permite demonstrar a viabilidade prática da metodologia e os

ganhos em termos de modularidade, interoperabilidade e uso de dados em tempo real.

39

4 DESENVOLVIMENTO DO TRABALHO

Neste capítulo, será apresentado o processo de desenvolvimento deste

trabalho, abrangendo desde a configuração do ambiente de trabalho até a

demonstração do seu funcionamento. O objetivo desta seção é detalhar os softwares

utilizados, as etapas de configuração necessárias para sua operacionalização e os

blocos de função desenvolvidos, juntamente com seus respectivos códigos.

Esta seção está organizada em três partes: (1) Configuração do ambiente de

trabalho; (2) Desenvolvimento dos blocos de função; e (3) Ambiente de teste e

integração com o sistema piloto.

 4.1 Configuração do ambiente de trabalho

 Neste trabalho, foi necessário fazer a instalação dos seguintes softwares para

execução do sistema de coleta de dados:

 As ferramentas do 4Diac: Como foi dito na seção 2.3.2, o 4Diac tem duas

ferramentas que são o 4Diac IDE e o 4Diac FORTE. As duas ferramentas

foram necessárias para o desenvolvimento do projeto.

 Compiladores C/C++: Foram necessários para compilação e geração da

máquina FORTE que executa o projeto do sistema de coleta de dados.

 Open62541: O pacote Open62541 da OPC Foundation é uma biblioteca de

código aberto que habilita o protocolo OPC UA na máquina FORTE

(OPEN62541, 2025).

 UaExpert: Software para comunicação OPC UA da Unified Automation,

usado para validar o sistema de coleta de dados (UNIFIED AUTOMATION,

2025).

 Python: Foi necessário para fazer a comunicação com o banco de dados

MongoDB.

 MongoDB: Banco de dados usado para fazer o armazenamento dos dados

coletados (MONGODB, 2025).

40

Após a instalação de todas as ferramentas, foi necessário integrar a API do

Python com a máquina FORTE usando os comandos da Figura 12 no arquivo

cmakeList.txt principal da máquina FORTE.

Figura 12: Comandos usados para 4Diac FORTE reconhecer a API do Python

 Fonte: Do próprio autor

4.2 Desenvolvimento do SIFB MongoDB

O bloco MongoDB foi desenvolvido com o propósito de estabelecer a

comunicação entre a máquina FORTE, em execução no softCLP, e o banco de dados

MongoDB instalado no sistema. Esse SIFB (Service Interface Function Block) também

é responsável por realizar operações de criação do banco de dados e de suas

coleções, bem como pela inserção de dados nesses repositórios.

O bloco foi projetado com três eventos de entrada, dois eventos de saída, cinco

dados de entrada e dois de saída.

41

Figura 13:SIFB MongoDB

Fonte: Do próprio autor

O evento INIT, quando acionado, realiza a inicialização do bloco MongoDB.

Durante esse processo, é executada uma verificação para assegurar que o bloco foi

iniciado corretamente. Após essa verificação, o interpretador Python é inicializado. Ao

término da execução do evento INIT, é gerado o evento de saída INIT0, indicando que

o processo de inicialização foi concluído.

O evento REQ, ao ser acionado, seleciona o nome do banco de dados que será

usado e a coleção em que esses dados serão inseridos a partir da entrada PARAMS,

caso o banco de dados e a coleção não existam, elas são criadas. No evento REQ os

dados que são recebidos nas entradas Data1, Data2 e Data3 são inseridos na coleção

indicada. Após essa ação ser finalizada, o bloco aciona o evento de saída CNF.

O evento FINISH tem a função de encerrar a conexão com a API do Python.

Essa ação é necessária devido à natureza da própria API, pois, caso seja inicializada

e finalizada repetidamente em um curto intervalo de tempo, poderá ocorrer um erro

na máquina FORTE, ocasionando a interrupção do sistema. Ao término da execução

do evento FINISH, é gerado o evento CNF, indicando a conclusão do processo.

Os cinco dados de entrada são QI, PARAMS, Data1, Data2 e Data3. O QI é

uma variável booleana usada para habilitar a inicialização do bloco, a variável

PARAMS é uma Wstring que recebe os parâmetros de configuração para acesso ao

banco de dados. Esses parâmetros são separados por ponto e vírgula: o primeiro

corresponde ao nome do banco de dados, o segundo ao nome da coleção e os demais

aos nomes dos atributos. Como três dados são armazenados, foram definidos três

atributos. As variáveis Data1, Data2 e Data3 representam os dados que serão

42

enviados ao MongoDB. Os valores Data1 e Data2 são variáveis booleanas que

indicam o estado de dois relés, enquanto Data3 é uma variável do tipo Real, destinada

a armazenar a leitura de um sensor de temperatura.

Os dois dados de saída são usados para monitoramento do bloco, sendo o Q0

uma variável booleana e o STATUS uma variável do tipo Wstring. O código desse

bloco está disponível no Apêndice A.

4.3 Desenvolvimento do SIFB cronometroFB

 O bloco cronometroFB foi criado com o propósito de obter o tempo em que o

bloco MongoDB leva para fazer armazenamento de dados, a interface gráfica do

bloco está representada na figura 14.

Figura 14:Bloco cronometroFB

Fonte: Do próprio autor

 O bloco cronometroFB possui três eventos de entrada, três eventos de

saída, um dado de entrada e dois de saída. O evento INIT ao ser acionado, executa

as configurações iniciais do bloco e gera o evento de saída INIT0.

 O evento IniciarCronometro ao ser acionado, começa a contar o tempo e

gera o evento de saída CronometroIniciado. Após o acionamento do evento

43

EncerrarCronometro o tempo para de ser contado e o evento de saída

CronometroParado é acionado.

 Este bloco possui o dado de entrada booleana QI que é usado para habilitar

a inicialização do bloco, o dado de saída STATUS, que é uma variavel do tipo

Wstring, monitora o estado em que o bloco se encontra. O bloco cronometroFB

também retorna o dado de saída tempo, nele está contido o tempo contado pelo o

bloco cronometroFB. Seu código está disponível no Apêndice B.

4.4 Desenvolvimento do SIFB csv_block

 O bloco csv_block foi criado para salvar dados temporais gerados pelo o

sistema de coleta de dados, representado pela figura 15, o bloco possui 3 eventos

de entrada, 2 eventos de saída, 3 dados de entrada e 1 de saída.

Figura 15:Bloco csv_block

Fonte: Do próprio autor

 O evento INIT inicializa o bloco e gera o evento de saída INIT0 e gera o

evento INIT0, o evento CREATE cria o arquivo csv e gera o evento de saída CNF e

o evento INSERT faz a inserção dos dados da entrada DATA no arquivo CSV e gera

o evento de saída CNF.

 O dado de entrada QI habilita a inicialização do bloco, o dado de entrada

PARAMS está contido nos parâmetros de criação do arquivo que são o nome do

44

arquivo e os nomes das colunas, caso seja necessário. Os parâmetros são

separados por vírgula.

 O dado de entrada DATA contém os dados que são inseridos no arquivo

csv, em caso de inserção de mais de um dado é necessário concatenar usando

vírgula. o dado de saída STATUS, que é uma variavel do tipo Wstring, monitora o

estado em que o bloco se encontra. Seu código está disponível no Apêndice D.

4.5 Desenvolvimento do SIFB myBD

 O bloco myBD foi criado para fazer conexão com o banco de dados Sqlite3,

a interface gráfica do bloco está representada na figura 16, mostrando que o bloco

tem 4 eventos de entrada, 3 eventos de saída, 3 dados de entrada e 2 dados de

saída.

Figura 16:Bloco de interface de serviço que faz comunicação com o SQlite3

Fonte: Do próprio autor

 O evento INIT inicializa o bloco MyBD e gera o evento de saída INIT0, o

evento CONNECTION estabelece a conexão com o banco de dados e gera o evento

de saída CNF, o evento QUERY_ACTION executa o codigo sql na variável de

entrada QUERY, gerando o evento de saída CNF e READ_DATA executa códigos

de operações de consulta e retorna o resultado no dado de saída RD, gerando o

evento de saída FILE_OUT.

 A entrada do dado de entrada booleana QI, é usado para habilitar a

inicialização do bloco, o dado de saída STATUS, que é uma variável do tipo Wstring,

45

monitora o estado em que o bloco se encontra. A entrada PARAMS é definido o

nome do banco de dados que o bloco fará conexão e o dado de entrada QUERY

armazena o código sql que será utilizado. O código está disponível no Apêndice B.

4.6 Desenvolvimento do SIFB pythonBlock

 O bloco pythonBlock foi criado para fazer a execução de arquivos .py, que

são códigos escritos em python. A interface gráfica do bloco está representada na

figura 17, onde o bloco tem 2 eventos de entrada, 2 eventos de saída, 2 dados de

entrada e 1 de saída.

Figura 17:Bloco pythonBlock

 Fonte: Do próprio Autor

 O evento INIT inicia o bloco pythonBlock e gera o evento de saída INIT0, o

evento REQ faz uma requisição ao bloco para executar o arquivo para onde o

diretório contido na variável FILE_PATH está apontando e gera o evento CNF. O

código deste bloco encontra-se disponível no Apêndice E.

4.7 Desenvolvimento da aplicação 4Diac

O sistema de coleta de dados foi desenvolvido com o objetivo de obter

informações provenientes de um controlador em campo, utilizando o protocolo OPC

UA. Esse protocolo industrial é independente de plataforma de software e hardware,

o que o torna particularmente adequado para aplicações baseadas na norma IEC

61499 (KAJOLA, 2024). A seguir, apresenta-se a aplicação do sistema de coleta

46

executada no soft-CLP. Na sequência, são descritos os blocos que compõem essa

aplicação, bem como suas respectivas funcionalidades.

Figura 18: Aplicação 4Diac

Fonte: Do próprio autor

Como apresentado na Figura 18, além do bloco MongoDB, também são

utilizados os blocos CronometroFB e csv_block, que, em conjunto, têm a função de

contabilizar o intervalo de tempo necessário para que o bloco MongoDB armazene

uma informação e salve em um arquivo. No arquivo CSV também ficou registrado o

tempo em que ocorreram os registros dos dados no arquivo, isso foi usado para

calcular os intervalos em que ocorreram a coleta de dados. Essas informações são

utilizadas para a avaliação da performance e da robustez do sistema. Os códigos dos

blocos CronometroFB e csv_block estão disponíveis no APÊNDICE.

 Também é empregado o bloco SUBSCRIBE_3, localizado na pasta Net do

4Diac, responsável pela comunicação com a ESP32 por meio do protocolo OPC UA.

Para configurar esse bloco, é necessário, primeiramente, habilitar a variável QI

com o valor true e, em seguida, definir o identificador ID. A estrutura desse

identificador segue o formato:

opc_ua[<action>;<endpoint>;<pair1>;<pair2>;<pair3>

Em que action, ou ação em português, representa o tipo de ação que o bloco

executará seja de leitura ou escrita, endpoint, ou ponto final em português,

47

corresponde ao endereço do servidor ao qual o bloco será conectado, e os demais

parâmetros (pair1, pair2, pair3) indicam os dados com os quais o bloco irá interagir.

Inicialmente, o sistema de coleta de dados foi validado por meio de uma

conexão local com um software capaz de realizar comunicação via OPC UA. Assim,

a configuração inicial do parâmetro ID foi definida como:

opc_ua[READ;/Objects/1:Control Relay number 0;/Objects/1:Control Relay

number 1;/Objects/1:Ambient temperature]

4.8 Geração da máquina FORTE

Nesta etapa, a geração da máquina FORTE do projeto é realizada utilizando o

CMake. Como mencionado na Seção 2.4, existem duas opções para o uso do CMake:

a interface gráfica e o terminal. Optou-se pela interface gráfica por ser mais intuitiva,

como ilustrado na Figura 19, além de facilitar a visualização dos parâmetros

configurados.

Figura 19: Interface Gráfica do Cmake

Fonte: Do próprio autor

 Os parâmetros utilizados para configuração da máquina FORTE que

necessitam de alteração são:

48

● CMAKE_BUILD_TYPE: Serve para definir o tipo de compilação que o Cmake

irá fazer, normalmente é escolhido a opção Debug;

● FORTE_ARCHITECTURE: Neste parâmetro foi definido o tipo de sistema em

que o runtime foi gerado e executado, em um ambiente linux é escolhido Posix;

● FORTE_COM_OPCUA: Este parâmetro habilita a comunicação OPC UA no

FORTE;

● FORTE_EXTERNAL_MODULES_DIRECTORY: Neste atributo, foi adicionado

o diretório dos blocos desenvolvidos para este projeto;

● FORTE_MODULE_CONVERT: Habilita o uso dos blocos da pasta Convert;

● FORTE_MODULE_IEC61131: Habilita o uso dos blocos da pasta IEC61131;

● FORTE_MODULE_UTILS: Habilita o uso dos blocos da pasta Utils.

 Após a configuração e geração dos arquivos, a máquina FORTE do projeto foi

gerada.

 4.9 Validação do Sistema de Coleta de Dados

Com a geração do runtime, a etapa seguinte consiste em testar o sistema de

coleta de dados. Para isso, utilizou-se o software UaExpert, da Unified Automation,

empregado para comunicação OPC UA e capaz de atuar tanto como cliente quanto

como servidor OPC.

Nesse teste, a conexão entre o software e o softCLP é realizada localmente,

conforme representado na Figura 16. Nessa configuração, o softCLP coleta os dados

disponibilizados pelo UaExpert via OPC UA e, em seguida, armazena essas

informações no banco de dados por meio de um script.

49

Figura 20: Topologia da conexão local

Fonte: Do próprio autor

Uma vez estabelecida a conexão local, foi possível visualizar a chegada dos

dados coletados e o percurso realizado até o seu armazenamento no banco de dados.

A execução do sistema de coleta de dados está representada na Figura 21.

Figura 21:Executando comunicação com UaExpert

 Fonte: Do próprio autor

 Para realizar esse teste, foi necessário adicionar o bloco E_CYCLE,

responsável por gerar as requisições destinadas ao bloco MongoDB. Isso ocorreu

porque, durante a comunicação com o software UaExpert, o evento de saída IND do

50

bloco SUBSCRIBE_3 não é acionado, já que as variações nos dados são realizadas

manualmente pelo usuário. Consequentemente, os blocos CronometroFB e

CSV_BLOCK foram removidos, pois, nesta etapa, não houve avaliação do

desempenho do sistema de coleta de dados.

 Na Figura 22 está sendo mostrado a interface do UaExpert, nele é possível

fazer a leitura e escrita de dados. Ao alterar os valores das variáveis, percebe-se a

mesma alteração no sistema que está sendo executado no 4Diac, comprovando o

funcionamento da comunicação entre o UaExpert e softCLP.

Figura 22: Leitura e escrita dos dados no UaExpert

 Fonte: Do próprio autor

Após verificar a comunicação, o passo seguinte foi confirmar se o MongoDB

estava armazenando os dados corretamente. Para isso, realizou-se uma consulta no

banco de dados utilizado para o armazenamento, cujo resultado foi a exibição dos

registros apresentados na Figura 23. Esse resultado comprova que o sistema de

coleta de dados está funcionando adequadamente

51

Figura 23: Visualização dos dados armazenados no MongoDB

Fonte: Do próprio autor

4.10 Integração com o Sistema Piloto

O Sistema Piloto, conforme descrito anteriormente na Seção 3.5, consiste em

um servidor OPC UA executado em uma placa ESP32. Esse servidor é responsável

por monitorar os pinos GPIO32 e GPIO33, utilizados como outputs para ativar Relays,

além do GPIO4, ao qual está conectado um sensor de temperatura. Os valores lidos

são enviados a outros sistemas por meio do protocolo OPC UA para os sistemas que

o acessam. A ESP32 usada neste trabalho foi a ESP32 DevkitV1, representada na

Figura 24.

52

Figura 24:ESP32 DevkitV1

 Fonte: (CIRCUITSTATE, 2023)

A ferramenta usada para configurar e programar a ESP32 foi a ESP-IDF,

devido ao projeto que foi usado para executar o servidor OPC UA que está disponível

no repositório Github em https://github.com/cmbahadir/opcua-esp32.git.

Com a inicialização do servidor OPC, o processo foi acompanhado através do

terminal para verificar se o servidor está conectado à rede. Quando o terminal mostra

a mensagem “Got a IP Event”, como é mostrado na Figura 25, significa que o servidor

está conectado à rede.

Figura 25: Execução do servidor OPC

Fonte: Do próprio autor

https://github.com/cmbahadir/opcua-esp32.git
https://github.com/cmbahadir/opcua-esp32.git

53

 Com a execução do servidor OPC UA iniciada, a próxima etapa foi testar a

conexão dele com o sistema de coleta de dados. Para a conexão acontecer, foi

necessário fazer mudanças no bloco SUBSCRIBE_3 em relação ao parâmetro ID,

primeiramente o tipo de conexão muda pois a conexão deixa de ser local e passa a

ser remota, logo o endpoint deixa de ser localhost e passa a ser o IP da ESP32.

Devido a mudança do tipo de conexão, também foi necessário mudar o tipo de ação

porque o bloco SUBSCRIBE não suporta fazer a operação READ quando a conexão

é remota, logo a ação foi substituída por SUBSCRIBE.

 Após a realização dessas alterações, a comunicação ocorreu adequadamente,

sem apresentar falhas. Durante a execução no 4Diac mostrada na figura 26,

observou-se uma performance maior do sistema em relação ao cenário da seção 4.5

porque o volume de dados foi maior. Além disso, ao verificar o armazenamento de

dados no MongoDB, constatou-se que o processo foi realizado com sucesso, como

foi demonstrado na Figura 27, comprovando a validade do sistema de coleta de dados

na obtenção de informações provenientes de dispositivos remotos.

Figura 26:Sistema conectado a ESP32

Fonte: Do próprio autor

54

Figura 27:Dados armazenados da comunicação com a ESP32

Fonte: Do próprio autor

55

5 RESULTADOS

Este capítulo apresenta os resultados obtidos a partir da implementação,

integração e validação do sistema de coleta de dados baseado na norma IEC 61499,

bem como os testes de desempenho, robustez e confiabilidade realizados. Os

resultados são organizados em quatro partes: (1) Funcionamento do sistema em

ambiente local; (2) Integração com o sistema piloto baseado em ESP32; (3)

Armazenamento de dados no banco MongoDB; e (4) Desempenho, robustez e

confiabilidade do sistema.

 5.1 Funcionamento do Sistema em Ambiente Local

A primeira etapa de validação consistiu em executar o sistema de coleta de

dados em um ambiente local, utilizando o software UaExpert como servidor OPC UA.

Nessa configuração, o soft-CLP executando a máquina FORTE foi capaz de

estabelecer comunicação com o UaExpert, ler as variáveis disponibilizadas e

encaminhá-las ao bloco MongoDB para posterior armazenamento.

Durante esse teste, observou-se que:

● O sistema respondeu adequadamente às alterações manuais realizadas no

UaExpert, foram realizados 20 inputs para esse teste;

● As variações nos valores das variáveis foram corretamente identificadas pelo

bloco SUBSCRIBE_3, o número de inputs realizados foi igual ao número de

eventos IND gerados no bloco como pode ser visto na imagem 28;

● As informações transmitidas foram armazenadas sem inconsistências no banco

de dados, como foi visto na Figura 23.

56

Figura 28:Contagem de 20 eventos, correspondente a quantidade de inputs

 Fonte: Do próprio autor

 5.2 Integração com o Sistema Piloto (ESP32)

A segunda etapa envolveu a integração com o sistema piloto, composto por

uma ESP32 executando um servidor OPC UA responsável por monitorar dois relés

(GPIO32 e GPIO33) e um sensor de temperatura (GPIO4).

Após as adaptações necessárias no bloco SUBSCRIBE_3 – incluindo a

substituição do tipo de ação READ por SUBSCRIBE e a mudança do endpoint para o

IP da ESP32 – a comunicação foi estabelecida tendo como principais resultados:

● O envio de dados contínuo pela ESP32, permitindo testar o sistema sob maior

volume de informações;

● Um registro com menor latência por parte do softCLP, em comparação ao teste

local;

Como resultado, os dados provenientes da ESP32 foram armazenados

corretamente no MongoDB. Nenhuma falha de comunicação foi observada durante

esta execução, confirmando a operação do sistema em cenário realista de coleta

industrial com uma taxa de atualização (latência) de 100 ms. Essa etapa comprovou

a capacidade do sistema de lidar com dados provenientes de dispositivos remotos,

reforçando sua aplicabilidade em ambientes de Indústria 4.0.

57

 5.3 Armazenamento de Dados no MongoDB

Em ambas as etapas de validação, o banco MongoDB apresentou

comportamento consistente e adequado ao propósito do sistema. Nas consultas

realizadas durante os testes, verificou-se que:

● Todos os documentos gerados foram armazenados com estrutura correta;

● Não foram observadas perdas ou duplicações irregulares de dados;

● O tempo de escrita dos documentos permaneceu estável, independentemente

do volume de dados processados;

Os resultados confirmam que o MongoDB atendeu às necessidades de

escalabilidade e flexibilidade que são exigidas por sistemas de coleta de dados

industriais, especialmente por permitir armazenamento sem necessidade de esquema

fixo.

 5.4 Teste de Confiabilidade

O teste de confiabilidade consiste em executar o sistema de coleta de dados e

monitorar o número de ocorrências do evento de requisição do bloco MongoDB. Após

um número específico de ocorrências, o sistema é parado e o banco de dados é

consultado para verificação do número de registros feito após aquela execução

usando o comando db.nome_colecao.countDocuments(). Se o número de

documentos for próximo do número de ocorrências do evento de requisição, significa

que o sistema de coleta de dados é confiável.

Neste teste, o número específico escolhido para o número de ocorrências foi

200. O número de eventos de requisição foi monitorado no 4Diac, após o número de

ocorrências ter atingido 200 o sistema foi parado. Posteriormente foi consultado o

número de documentos na coleção em que os dados foram salvos e o resultado como

demonstrado na Figura 29 é de 202, assim podendo ser concluído que o sistema é

confiável e que nenhum dado foi perdido.

58

Figura 29: Número de documentos salvos na coleção do MongoDB

Fonte: Próprio Autor

 5.5 Teste de Robustez e Desempenho

No teste de robustez, foi testado a consistência do desempenho do bloco

MongoDB e comparado com o intervalo de ocorrência do evento de saída IND do

bloco de comunicação. A partir do arquivo CSV gerado pelos blocos

CRONOMETROFB e CSV_Block, foi observado o desempenho do bloco de banco de

dados a partir da diferença de tempo da ocorrência do evento de entrada REQ e o

evento de saída CNF. Como mostrado na Figura 30, a coluna de duração permanece

com o mesmo valor de 1,76ms enquanto a coluna do tempo mostra o tempo exato em

que ocorreu o evento e com isso foi possível calcular as diferenças de tempo entre

um evento e outro.

59

Figura 30: Arquivo CSV

Fonte: Próprio Autor

Utilizando um script C++, foi possível criar outro arquivo CSV que contém as

diferenças de tempo de ocorrência em milissegundos. A partir desse arquivo, realizou-

se uma análise de dados usando o gráfico histograma e foi calculado a média e

mediana dos dados gerados. Com base no gráfico da Figura 31, observou-se que a

média de tempo em que a ESP32 manda os dados é de 275,68ms, a mediana é de

214ms e o menor intervalo de ocorrência é de 77ms. Considerando esses valores,

verifica-se que o tempo médio necessário para que o MongoDB armazene um

documento é aproximadamente 150 vezes menor que o intervalo de chegada de

novos dados e no caso de menor ocorrência chega a ser aproximadamente 40 vezes

menor. Portanto, é pouco provável que ocorram perdas de dados por limitações de

desempenho do sistema. Esses resultados permitem concluir que o sistema de coleta

de dados é robusto e apresenta desempenho adequado para coleta de dados

industriais.

60

Figura 31:Gráfico do intervalo de tempo das coletas de dados

Fonte: Do próprio Autor

 5.6 Síntese dos Resultados

Os testes realizados permitiram demonstrar que:

● O sistema de coleta de dados baseado na norma IEC 61499 é funcional e

eficiente.

● O bloco MongoDB opera de forma estável, permitindo criação de bancos,

coleções e inserção de documentos sem falhas.

● A arquitetura distribuída da norma permite integração tanto local quanto

remota, validada pelos testes com UaExpert e ESP32.

● O sistema apresenta alto grau de confiabilidade e robustez, atendendo aos

requisitos de ambientes industriais.

61

● O MongoDB se mostrou uma solução adequada para grandes volumes de

dados, oferecendo escalabilidade horizontal e flexibilidade estrutural

62

6 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE

Este trabalho apresentou o desenvolvimento de um sistema de coleta de dados

baseado na norma IEC 61499, capaz de adquirir informações de equipamentos

industriais por meio do protocolo OPC UA e armazená-las em um banco de dados não

relacional. O sistema estabelece a conexão e a troca de dados entre um softCLP,

executado pelo runtime do 4Diac em ambiente Linux, e um microcontrolador ESP32.

Como demonstrado nos resultados, a adesão à norma IEC 61499 para fazer

coleta e armazenamento de dados mostrou-se altamente viável. O sistema de coleta

de dados apresentou funcionamento adequado ao cumprir todos os objetivos

propostos, além de demonstrar robustez e tolerância a falhas de comunicação. O

MongoDB também se mostrou uma alternativa eficiente para o armazenamento em

larga escala, atendendo plenamente às demandas de escalabilidade horizontal

esperadas em ambientes da Indústria 4.0.

Para projetos futuros, propõe-se a realização de um estudo comparativo de

desempenho entre diferentes tipos de bancos de dados, analisando como cada um

deles se comporta em projetos baseados na norma IEC 61499. Outra possibilidade

de melhoria consiste no desenvolvimento de blocos funcionais capazes de executar

as etapas restantes do tratamento de dados, como o pré-processamento e a análise.

No âmbito do pré-processamento, podem ser exploradas operações nativas dos

bancos de dados, tais como SELECT (ou FIND em bancos não relacionais), UPDATE

e DELETE.

 Durante o desenvolvimento deste trabalho, foi criado um bloco responsável

pela comunicação com o banco de dados SQLite 3, cuja função era executar

comandos SQL recebidos por meio de um de seus parâmetros. Esse bloco foi capaz

de realizar todas as operações previstas no banco de dados, demonstrando que é

viável implementar, de forma consistente, outras etapas do tratamento de dados

dentro de um ambiente aderente à norma IEC 61499.

No estágio de análise de dados, pode-se empregar o protocolo HTTP para a

visualização de gráficos que apresentem o histórico das variáveis monitoradas, por

meio de uma integração com scripts desenvolvidos em Python. Outra possibilidade

de aprimoramento consiste na criação de blocos capazes de executar algoritmos de

63

inteligência artificial voltados à análise de dados, ampliando o potencial do sistema

para aplicações mais complexas e avançadas.

64

REFERÊNCIAS

AWS. O que é NoSQL? São Paulo: Amazon Web Services, 2025. Disponível em:

https://aws.amazon.com/pt/nosql/. Acesso em: 20 dez. 2025.

Arnarson, H., Bremdal, B. A., & Solvang, B. (2022). Reconfigurable Manufacturing: Towards

an industrial Big Data approach.

CHRISTENSEN, J. H., STRASSER, T., VALENTINI, A., VYATKIN, V., & ZOITL, A. (2012).

The IEC 61499 Function Block Standard: Overview of the Second Edition.

CircuitState Electronics. Getting Started with Espressif ESP32 Wi-Fi & Bluetooth SoC using

DOIT ESP32 DevKit V1 Development Board. CircuitState Electronics, 2023. Disponível em:

https://www.circuitstate.com/tutorials/getting-started-with-espressif-esp32-wifi-bluetooth-soc-

using-doit-esp32-devkit-v1-development-board/. Acesso em: 20 dez. 2025

DATE, C. J. (1991). An introduction to database systems. . Boston: Addison-Wesley

Longman Publishing Co.

Diana, M. D., & Gerosa, M. A. (2010). NOSQLnaWeb2.0: UmEstudoComparativo de Bancos.

IX Workshop de Teses e Disserta¸c˜oes em Banco de Dados.

IEEE - Institute of Electrical and Electronic Engineers. (Dec. de 2012). IEEE Guide for

Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a

Grounding System. IEEE Std 81-2012 (Revision of IEEE Std 81-1983), 1-86.

INTERNATIONAL ELECTROTECHNICAL COMMISSION – IEC. IEC 61131-3:

Programmable controllers – Part 3: Programming languages. 2. ed., 2003. 226 p. Disponível

em: https://www.uv.mx/laindustrial/files/2024/01/IEC-61131-3.pdf. Acesso em: 20 dez. 2025

Kajola, P. (2024). IEC 61499 based distributed data collection framework for multivariate

time series data.

Kitware. (9 de 10 de 2025). CMake: The Standard Build System. Fonte: Cmake:

https://cmake.org/features/#system-introspection

https://aws.amazon.com/pt/nosql/?utm_source=chatgpt.com
https://www.circuitstate.com/tutorials/getting-started-with-espressif-esp32-wifi-bluetooth-soc-using-doit-esp32-devkit-v1-development-board/?utm_source=chatgpt.com
https://www.circuitstate.com/tutorials/getting-started-with-espressif-esp32-wifi-bluetooth-soc-using-doit-esp32-devkit-v1-development-board/?utm_source=chatgpt.com
https://www.uv.mx/laindustrial/files/2024/01/IEC-61131-3.pdf?utm_source=chatgpt.com

65

Lewis, R., & Zoitl, A. (2014). Modelling Control Systems Using IEC 61499.

Liakh, T., Sorokin, R., Akifev, D., Patil, S., & Vyatkin, V. (28 de Julho de 2022). Formal model

of IEC 61499 execution trace in FBME IDE.

Merkumians, M. M., Gsellmann, P., & Schitter, G. (2021). Hierarchization and Integration of

IEC 61131-3 and IEC 61499 for Enhanced Reusability.

MongoDB Inc. (8 de Outubro de 2025). Bem vindo ao MongoDB Docs. Fonte: MongoDB:

https://www.mongodb.com/pt-br/docs/

OPC Foundation. (22 de Outubro de 2025). Unified Architecture – Landingpage. Fonte:

opcfoundation.org: https://opcfoundation.org/about/opc-technologies/opc-ua/

Pang, C., Patil, S., Yang, C.-W., Vyatkin, V., & Shalyto, A. (11 de março de 2015). A

Portability Study of IEC 61499: Semantics and Tools.

Pfrommer, J., Ebner, A., Ravikumar, S., & Karunakaran, B. (2018). Open Source OPC UA

PubSub over TSN for Realtime Industrial Communication. pp. 1087-1090.

Pinto, L. I. (2014). ICARU-FB: UMA INFRAESTRUTURA DE SOFTWARE ADERENTE À

NORMA IEC 61499.

UNIFIED AUTOMATION. (14 de Novembro de 2025). OPC UA Clients – Downloads. Fonte:

unified-automation: https://www.unified-automation.com/downloads/opc-ua-clients.html

OPEN62541. (14 de Novembro de 2025). open62541. Fonte: Github:

https://github.com/open62541/open62541

66

APÊNDICE A – SCRIPT BD_mongo_project_fbt.cpp

/***

 *** FORTE Library Element

 *** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!

 *** Name: BD_mongo_project

 *** Description: Service Interface Function Block Type

 *** Version:

 *** 1.0: 2025-11-08/gabriel - -

 ***/

#include "BD_mongo_project_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP

#include "BD_mongo_project_fbt_gen.cpp"

#endif

#include "core/iec61131_functions.h"

#include "core/datatypes/forte_array_common.h"

#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"

#include "core/datatypes/forte_array_variable.h"

#include "/usr/include/python3.12/Python.h"

#include <iostream>

#include <fstream>

#include <sstream> // <-- necessário para std::stringstream

#include <string>

#include <vector>

#include <stdio.h>

#include <chrono>

#include <ctime>

#include <iomanip> // para put_time

67

using namespace std;

DEFINE_FIRMWARE_FB(FORTE_BD_mongo_project,

g_nStringIdBD_mongo_project)

const CStringDictionary::TStringId

FORTE_BD_mongo_project::scmDataInputNames[] = {g_nStringIdQI,

g_nStringIdPARAMS, g_nStringIdData1, g_nStringIdData2, g_nStringIdData3};

const CStringDictionary::TStringId

FORTE_BD_mongo_project::scmDataInputTypeIds[] = {g_nStringIdBOOL,

g_nStringIdSTRING, g_nStringIdBOOL, g_nStringIdBOOL, g_nStringIdREAL};

const CStringDictionary::TStringId

FORTE_BD_mongo_project::scmDataOutputNames[] = {g_nStringIdQO,

g_nStringIdSTATUS};

const CStringDictionary::TStringId

FORTE_BD_mongo_project::scmDataOutputTypeIds[] = {g_nStringIdBOOL,

g_nStringIdWSTRING};

const TDataIOID FORTE_BD_mongo_project::scmEIWith[] = {0, 1,

scmWithListDelimiter, 0, 2, 3, 4, 1, scmWithListDelimiter, 0, 2, 3, 4, 1,

scmWithListDelimiter};

const TForteInt16 FORTE_BD_mongo_project::scmEIWithIndexes[] = {0, 3, 9};

const CStringDictionary::TStringId

FORTE_BD_mongo_project::scmEventInputNames[] = {g_nStringIdINIT,

g_nStringIdREQ, g_nStringIdFinish};

const TDataIOID FORTE_BD_mongo_project::scmEOWith[] = {0, 1,

scmWithListDelimiter, 0, 1, scmWithListDelimiter};

const TForteInt16 FORTE_BD_mongo_project::scmEOWithIndexes[] = {0, 3};

const CStringDictionary::TStringId

FORTE_BD_mongo_project::scmEventOutputNames[] = {g_nStringIdINITO,

g_nStringIdCNF};

const SFBInterfaceSpec FORTE_BD_mongo_project::scmFBInterfaceSpec = {

 3, scmEventInputNames, nullptr, scmEIWith, scmEIWithIndexes,

68

 2, scmEventOutputNames, nullptr, scmEOWith, scmEOWithIndexes,

 5, scmDataInputNames, scmDataInputTypeIds,

 2, scmDataOutputNames, scmDataOutputTypeIds,

 0, nullptr,

 0, nullptr

};

FORTE_BD_mongo_project::FORTE_BD_mongo_project(const

CStringDictionary::TStringId paInstanceNameId, forte::core::CFBContainer

&paContainer) :

 CFunctionBlock(paContainer, scmFBInterfaceSpec, paInstanceNameId),

 var_QI(0_BOOL),

 var_PARAMS(""_STRING),

 var_Data1(0_BOOL),

 var_Data2(0_BOOL),

 var_Data3(0_REAL),

 var_QO(0_BOOL),

 var_STATUS(u""_WSTRING),

 var_conn_QO(var_QO),

 var_conn_STATUS(var_STATUS),

 conn_INITO(this, 0),

 conn_CNF(this, 1),

 conn_QI(nullptr),

 conn_PARAMS(nullptr),

 conn_Data1(nullptr),

 conn_Data2(nullptr),

 conn_Data3(nullptr),

 conn_QO(this, 0, &var_conn_QO),

 conn_STATUS(this, 1, &var_conn_STATUS) {

};

void FORTE_BD_mongo_project::setInitialValues() {

 var_QI = 0_BOOL;

69

 var_PARAMS = ""_STRING;

 var_Data1 = 0_BOOL;

 var_Data2 = 0_BOOL;

 var_Data3 = 0_REAL;

 var_QO = 0_BOOL;

 var_STATUS = u""_WSTRING;

}

string getDateTime() {

 // pega o horário atual

 auto agora = chrono::system_clock::now();

 // converte para time_t

 time_t tempo = chrono::system_clock::to_time_t(agora);

 // converte para struct tm

 tm local_tm = *localtime(&tempo);

 // monta a string formatada

 stringstream ss;

 ss << put_time(&local_tm, "%d/%m/%Y %H:%M:%S");

 return ss.str();

}

void FORTE_BD_mongo_project::executeEvent(const TEventID paEIID,

CEventChainExecutionThread *const paECET) {

 vector<string> campos;

 string campo;

 std::stringstream ss(var_PARAMS.c_str());

 bool Relay0 = static_cast<bool>(var_Data1);

 bool Relay1 = static_cast<bool>(var_Data2);

 float temperature = static_cast<float>(var_Data3);

70

 switch(paEIID) {

 case scmEventINITID:

 if(var_QI) {

 var_STATUS = u"init_ok"_WSTRING;

 } else {

 var_STATUS = u"init_failed"_WSTRING;

 }

 // Inicializa o interpretador Python

 Py_Initialize();

 if (!Py_IsInitialized()) {

 fprintf(stderr, "Erro ao inicializar Python.\n");

 var_STATUS = u"Erro ao inicializar Python"_WSTRING;

 sendOutputEvent(scmEventINITOID, paECET);

 break;

 }

 sendOutputEvent(scmEventINITOID, paECET);

 break;

 case scmEventREQID:

 while (getline(ss, campo, ';')) {

 campos.push_back(campo);

 }

 char code[512];

 snprintf(code, sizeof(code),

 "from pymongo import MongoClient\n"

 "client = MongoClient('mongodb://localhost:27017/')\n"

 "db = client['%s']\n"

 "colecao = db['%s']\n"

 "colecao.insert_one({'tempo' : '%s', '%s': '%u', '%s': '%u', '%s' : '%.1f'})\n"

 "client.close()",

71

campos[0].c_str(),campos[1].c_str(),getDateTime().c_str(),campos[2].c_str(),Relay0,c

ampos[3].c_str(), Relay1, campos[4].c_str(), temperature

);

 // Executar o código Python

 if (PyRun_SimpleString(code) != 0) {

 std::cerr << "Erro ao executar código Python!" << std::endl;

 var_STATUS = u"Erro ao executar o codigo Python"_WSTRING;

 }else {

 var_STATUS = u"Executando o codigo Python!"_WSTRING;

 }

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 case scmEventFinishID:

 var_STATUS = u"Fechando a API do Python"_WSTRING;

 Py_Finalize();

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 }

}

void FORTE_BD_mongo_project::readInputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITID: {

 readData(0, var_QI, conn_QI);

 readData(1, var_PARAMS, conn_PARAMS);

 break;

 }

 case scmEventREQID: {

 readData(0, var_QI, conn_QI);

 readData(2, var_Data1, conn_Data1);

 readData(3, var_Data2, conn_Data2);

72

 readData(4, var_Data3, conn_Data3);

 readData(1, var_PARAMS, conn_PARAMS);

 break;

 }

 case scmEventFinishID: {

 readData(0, var_QI, conn_QI);

 readData(2, var_Data1, conn_Data1);

 readData(3, var_Data2, conn_Data2);

 readData(4, var_Data3, conn_Data3);

 readData(1, var_PARAMS, conn_PARAMS);

 break;

 }

 default:

 break;

 }

}

void FORTE_BD_mongo_project::writeOutputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITOID: {

 writeData(0, var_QO, conn_QO);

 writeData(1, var_STATUS, conn_STATUS);

 break;

 }

 case scmEventCNFID: {

 writeData(0, var_QO, conn_QO);

 writeData(1, var_STATUS, conn_STATUS);

 break;

 }

 default:

 break;

 }

}

73

CIEC_ANY *FORTE_BD_mongo_project::getDI(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_QI;

 case 1: return &var_PARAMS;

 case 2: return &var_Data1;

 case 3: return &var_Data2;

 case 4: return &var_Data3;

 }

 return nullptr;

}

CIEC_ANY *FORTE_BD_mongo_project::getDO(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_QO;

 case 1: return &var_STATUS;

 }

 return nullptr;

}

CEventConnection *FORTE_BD_mongo_project::getEOConUnchecked(const

TPortId paIndex) {

 switch(paIndex) {

 case 0: return &conn_INITO;

 case 1: return &conn_CNF;

 }

 return nullptr;

}

CDataConnection **FORTE_BD_mongo_project::getDIConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_QI;

74

 case 1: return &conn_PARAMS;

 case 2: return &conn_Data1;

 case 3: return &conn_Data2;

 case 4: return &conn_Data3;

 }

 return nullptr;

}

CDataConnection *FORTE_BD_mongo_project::getDOConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_QO;

 case 1: return &conn_STATUS;

 }

 return nullptr;

}

75

APÊNDICE B – SCRIPT CRONOMETROFB

/***

 *** FORTE Library Element

 *** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!

 *** Name: cronometroFB

 *** Description: Service Interface Function Block Type

 *** Version:

 *** 1.0: 2025-11-14/gabriel - -

 ***/

#include "cronometroFB_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP

#include "cronometroFB_fbt_gen.cpp"

#endif

#include "core/iec61131_functions.h"

#include "core/datatypes/forte_array_common.h"

#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"

#include "core/datatypes/forte_array_variable.h"

#include <iostream>

#include <chrono>

#include <fstream>

#include <ctime>

using namespace std;

using namespace std::chrono;

DEFINE_FIRMWARE_FB(FORTE_cronometroFB, g_nStringIdcronometroFB)

76

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataInputNames[] =

{g_nStringIdQI};

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataInputTypeIds[] =

{g_nStringIdBOOL};

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataOutputNames[] =

{g_nStringIdSTATUS, g_nStringIdTempo};

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataOutputTypeIds[]

= {g_nStringIdWSTRING, g_nStringIdREAL};

const TDataIOID FORTE_cronometroFB::scmEIWith[] = {0, scmWithListDelimiter, 0,

scmWithListDelimiter, 0, scmWithListDelimiter};

const TForteInt16 FORTE_cronometroFB::scmEIWithIndexes[] = {0, 2, 4};

const CStringDictionary::TStringId FORTE_cronometroFB::scmEventInputNames[] =

{g_nStringIdINIT, g_nStringIdIniciarCronometro, g_nStringIdEncerrarCronometro};

const TDataIOID FORTE_cronometroFB::scmEOWith[] = {1, scmWithListDelimiter, 1,

scmWithListDelimiter, 1, scmWithListDelimiter};

const TForteInt16 FORTE_cronometroFB::scmEOWithIndexes[] = {0, 2, 4};

const CStringDictionary::TStringId FORTE_cronometroFB::scmEventOutputNames[]

= {g_nStringIdINITO, g_nStringIdCronometroIniciado,

g_nStringIdCronometroParado};

const SFBInterfaceSpec FORTE_cronometroFB::scmFBInterfaceSpec = {

 3, scmEventInputNames, nullptr, scmEIWith, scmEIWithIndexes,

 3, scmEventOutputNames, nullptr, scmEOWith, scmEOWithIndexes,

 1, scmDataInputNames, scmDataInputTypeIds,

 2, scmDataOutputNames, scmDataOutputTypeIds,

 0, nullptr,

 0, nullptr

};

FORTE_cronometroFB::FORTE_cronometroFB(const CStringDictionary::TStringId

paInstanceNameId, forte::core::CFBContainer &paContainer) :

 CFunctionBlock(paContainer, scmFBInterfaceSpec, paInstanceNameId),

 var_QI(0_BOOL),

 var_STATUS(u""_WSTRING),

77

 var_Tempo(0_REAL),

 var_conn_STATUS(var_STATUS),

 var_conn_Tempo(var_Tempo),

 conn_INITO(this, 0),

 conn_CronometroIniciado(this, 1),

 conn_CronometroParado(this, 2),

 conn_QI(nullptr),

 conn_STATUS(this, 0, &var_conn_STATUS),

 conn_Tempo(this, 1, &var_conn_Tempo) {

};

void FORTE_cronometroFB::setInitialValues() {

 var_QI = 0_BOOL;

 var_STATUS = u""_WSTRING;

 var_Tempo = 0_REAL;

}

void FORTE_cronometroFB::executeEvent(const TEventID paEIID,

CEventChainExecutionThread *const paECET) {

 std::chrono::high_resolution_clock::time_point inicio;

 std::chrono::high_resolution_clock::time_point fim;

 switch(paEIID) {

 case scmEventINITID:

 if(var_QI) {

 var_STATUS = u"init_ok"_WSTRING;

 } else {

 var_STATUS = u"init_failed"_WSTRING;

 }

 sendOutputEvent(scmEventINITOID, paECET);

 break;

 case scmEventIniciarCronometroID:

 inicio = std::chrono::high_resolution_clock::now();

78

 sendOutputEvent(scmEventCronometroIniciadoID, paECET);

 break;

 case scmEventEncerrarCronometroID:

 // Marca o tempo final

 fim = std::chrono::high_resolution_clock::now();

 // Calcula duração em milissegundos

 auto duracao = duration_cast<milliseconds>(fim - inicio).count();

 var_Tempo = CIEC_REAL(static_cast<TForteFloat>(duracao));

 sendOutputEvent(scmEventCronometroParadoID, paECET);

 break;

 }

}

void FORTE_cronometroFB::readInputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITID: {

 readData(0, var_QI, conn_QI);

 break;

 }

 case scmEventIniciarCronometroID: {

 readData(0, var_QI, conn_QI);

 break;

 }

 case scmEventEncerrarCronometroID: {

 readData(0, var_QI, conn_QI);

 break;

 }

 default:

 break;

 }

}

79

void FORTE_cronometroFB::writeOutputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITOID: {

 writeData(1, var_Tempo, conn_Tempo);

 break;

 }

 case scmEventCronometroIniciadoID: {

 writeData(1, var_Tempo, conn_Tempo);

 break;

 }

 case scmEventCronometroParadoID: {

 writeData(1, var_Tempo, conn_Tempo);

 break;

 }

 default:

 break;

 }

}

CIEC_ANY *FORTE_cronometroFB::getDI(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_QI;

 }

 return nullptr;

}

CIEC_ANY *FORTE_cronometroFB::getDO(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_STATUS;

 case 1: return &var_Tempo;

 }

 return nullptr;

}

80

CEventConnection *FORTE_cronometroFB::getEOConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_INITO;

 case 1: return &conn_CronometroIniciado;

 case 2: return &conn_CronometroParado;

 }

 return nullptr;

}

CDataConnection **FORTE_cronometroFB::getDIConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_QI;

 }

 return nullptr;

}

CDataConnection *FORTE_cronometroFB::getDOConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_STATUS;

 case 1: return &conn_Tempo;

 }

 return nullptr;

}

81

APÊNDICE C – SCRIPT MYBD_fbt.cpp

/***

 *** FORTE Library Element

 *** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!

 *** Name: MyBD

 *** Description: Service Interface Function Block Type

 *** Version:

 *** 1.0: 2025-08-19/gabriel - -

 ***/

#include "MyBD_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP

#include "MyBD_fbt_gen.cpp"

#endif

#include "core/iec61131_functions.h"

#include "core/datatypes/forte_array_common.h"

#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"

#include "core/datatypes/forte_array_variable.h"

#include "sqlite3.h"

#include <iostream>

DEFINE_FIRMWARE_FB(FORTE_MyBD, g_nStringIdMyBD)

const CStringDictionary::TStringId FORTE_MyBD::scmDataInputNames[] =

{g_nStringIdQI, g_nStringIdPARAMS, g_nStringIdQUERY};

const CStringDictionary::TStringId FORTE_MyBD::scmDataInputTypeIds[] =

{g_nStringIdBOOL, g_nStringIdWSTRING, g_nStringIdWSTRING};

82

const CStringDictionary::TStringId FORTE_MyBD::scmDataOutputNames[] =

{g_nStringIdSTATUS, g_nStringIdRD};

const CStringDictionary::TStringId FORTE_MyBD::scmDataOutputTypeIds[] =

{g_nStringIdWSTRING, g_nStringIdWSTRING};

const TDataIOID FORTE_MyBD::scmEIWith[] = {0, 1, scmWithListDelimiter, 0, 1,

scmWithListDelimiter, 0, 2, 1, scmWithListDelimiter, 0, 1, 2, scmWithListDelimiter};

const TForteInt16 FORTE_MyBD::scmEIWithIndexes[] = {0, 3, 6, 10};

const CStringDictionary::TStringId FORTE_MyBD::scmEventInputNames[] =

{g_nStringIdINIT, g_nStringIdCONNECTION, g_nStringIdQUERY_ACTION,

g_nStringIdREAD_DATA};

const TDataIOID FORTE_MyBD::scmEOWith[] = {0, scmWithListDelimiter, 0,

scmWithListDelimiter, 0, 1, scmWithListDelimiter};

const TForteInt16 FORTE_MyBD::scmEOWithIndexes[] = {0, 2, 4};

const CStringDictionary::TStringId FORTE_MyBD::scmEventOutputNames[] =

{g_nStringIdINITO, g_nStringIdCNF, g_nStringIdFILE_OUT};

const SFBInterfaceSpec FORTE_MyBD::scmFBInterfaceSpec = {

 4, scmEventInputNames, nullptr, scmEIWith, scmEIWithIndexes,

 3, scmEventOutputNames, nullptr, scmEOWith, scmEOWithIndexes,

 3, scmDataInputNames, scmDataInputTypeIds,

 2, scmDataOutputNames, scmDataOutputTypeIds,

 0, nullptr,

 0, nullptr

};

FORTE_MyBD::FORTE_MyBD(const CStringDictionary::TStringId

paInstanceNameId, forte::core::CFBContainer &paContainer) :

 CFunctionBlock(paContainer, scmFBInterfaceSpec, paInstanceNameId),

 var_QI(0_BOOL),

 var_PARAMS(u""_WSTRING),

 var_QUERY(u""_WSTRING),

 var_STATUS(u""_WSTRING),

 var_RD(u""_WSTRING),

 var_conn_STATUS(var_STATUS),

83

 var_conn_RD(var_RD),

 conn_INITO(this, 0),

 conn_CNF(this, 1),

 conn_FILE_OUT(this, 2),

 conn_QI(nullptr),

 conn_PARAMS(nullptr),

 conn_QUERY(nullptr),

 conn_STATUS(this, 0, &var_conn_STATUS),

 conn_RD(this, 1, &var_conn_RD) {

};

int callback(void* NotUsed, int argc, char** argv, char** azColName) {

 std::string* result = reinterpret_cast<std::string*>(NotUsed);

 for (int i = 0; i < argc; i++) {

 std::cout << azColName[i] << ": " << (argv[i] ? argv[i] : "NULL") << "\t";

 }

 std::cout << "\n";

 if (argc > 0 && argv[0]) {

 *result = argv[0]; // pega o primeiro valor da primeira coluna

 }

 return 0;

}

void FORTE_MyBD::setInitialValues() {

 var_QI = 0_BOOL;

 var_PARAMS = u""_WSTRING;

 var_QUERY = u""_WSTRING;

 var_STATUS = u""_WSTRING;

 var_RD = u""_WSTRING;

}

void FORTE_MyBD::executeEvent(const TEventID paEIID,

CEventChainExecutionThread *const paECET) {

84

 sqlite3 *db;

 //sqlite3_stmt* stmt;

 int rc;

 char *errMsg = nullptr;

 std::string resultado;

 // Suponha que a saída 1 seja do tipo WSTRING

 CIEC_WSTRING *outWStr = static_cast<CIEC_WSTRING*>(getDO(1));

 switch(paEIID) {

 case scmEventINITID:

 if(var_QI) {

 var_STATUS = u"init_ok"_WSTRING;

 } else {

 var_STATUS = u"init_failed"_WSTRING;

 }

 sendOutputEvent(scmEventINITOID, paECET);

 break;

 case scmEventCONNECTIONID:

 rc = sqlite3_open(var_PARAMS.getValue(), &db);

 if (rc != SQLITE_OK) {

 fprintf(stderr, "Erro ao abrir o banco de dados: %s\n", sqlite3_errmsg(db));

 var_STATUS = u"connection_failed"_WSTRING;

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 }

 std::cout << "Banco de dados aberto com sucesso: " << var_PARAMS.getValue()

<< std::endl;

 var_STATUS = u"connection_sucess"_WSTRING;

 sqlite3_close(db);

85

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 case scmEventQUERY_ACTIONID:

 rc = sqlite3_open(var_PARAMS.getValue(), &db);

 if (rc != SQLITE_OK) {

 fprintf(stderr, "Erro ao abrir o banco de dados: %s\n", sqlite3_errmsg(db));

 var_STATUS = u"connection_failed"_WSTRING;

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 }

 // Executar query

 if (sqlite3_exec(db, var_QUERY.getValue(), callback, nullptr, &errMsg) !=

SQLITE_OK) {

 std::cerr << "Erro ao executar query: " << errMsg << std::endl;

 var_STATUS = u"QUERY_failed"_WSTRING;

 sqlite3_free(errMsg);

 sqlite3_close(db);

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 }

 var_STATUS = u"QUERY_ok"_WSTRING;

 sqlite3_close(db);

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 case scmEventREAD_DATAID:

 rc = sqlite3_open(var_PARAMS.getValue(), &db);

86

 if (sqlite3_exec(db, var_QUERY.getValue(), callback, &resultado, &errMsg) !=

SQLITE_OK) {

 std::cerr << "Erro ao executar query: " << errMsg << std::endl;

 var_STATUS = u"QUERY_failed"_WSTRING;

 sqlite3_free(errMsg);

 sqlite3_close(db);

 sendOutputEvent(scmEventFILE_OUTID, paECET);

 break;

 } else {

 std::cout << "nomes:" << resultado << std::endl;

 }

 var_STATUS = u"QUERY_ok"_WSTRING;

 // atribui diretamente a partir de std::string

 //var_RD.clear();

 //var_RD.fromString(resultado.c_str());

 //var_RD = u"teste"_WSTRING;

 // Alterando o valor

 outWStr->fromString(resultado.c_str());

 sendOutputEvent(scmEventFILE_OUTID, paECET);

 break;

 }

}

void FORTE_MyBD::readInputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITID: {

 readData(0, var_QI, conn_QI);

87

 readData(1, var_PARAMS, conn_PARAMS);

 break;

 }

 case scmEventCONNECTIONID: {

 readData(0, var_QI, conn_QI);

 readData(1, var_PARAMS, conn_PARAMS);

 break;

 }

 case scmEventQUERY_ACTIONID: {

 readData(0, var_QI, conn_QI);

 readData(2, var_QUERY, conn_QUERY);

 readData(1, var_PARAMS, conn_PARAMS);

 break;

 }

 case scmEventREAD_DATAID: {

 readData(0, var_QI, conn_QI);

 readData(1, var_PARAMS, conn_PARAMS);

 readData(2, var_QUERY, conn_QUERY);

 break;

 }

 default:

 break;

 }

}

void FORTE_MyBD::writeOutputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITOID: {

 writeData(0, var_STATUS, conn_STATUS);

 break;

 }

 case scmEventCNFID: {

 writeData(0, var_STATUS, conn_STATUS);

88

 break;

 }

 case scmEventFILE_OUTID: {

 writeData(0, var_STATUS, conn_STATUS);

 writeData(1, var_RD, conn_RD);

 break;

 }

 default:

 break;

 }

}

CIEC_ANY *FORTE_MyBD::getDI(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_QI;

 case 1: return &var_PARAMS;

 case 2: return &var_QUERY;

 }

 return nullptr;

}

CIEC_ANY *FORTE_MyBD::getDO(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_STATUS;

 case 1: return &var_RD;

 }

 return nullptr;

}

CEventConnection *FORTE_MyBD::getEOConUnchecked(const TPortId paIndex) {

 switch(paIndex) {

 case 0: return &conn_INITO;

 case 1: return &conn_CNF;

89

 case 2: return &conn_FILE_OUT;

 }

 return nullptr;

}

CDataConnection **FORTE_MyBD::getDIConUnchecked(const TPortId paIndex) {

 switch(paIndex) {

 case 0: return &conn_QI;

 case 1: return &conn_PARAMS;

 case 2: return &conn_QUERY;

 }

 return nullptr;

}

CDataConnection *FORTE_MyBD::getDOConUnchecked(const TPortId paIndex) {

 switch(paIndex) {

 case 0: return &conn_STATUS;

 case 1: return &conn_RD;

 }

 return nullptr;

}

90

APÊNDICE D – SCRIPT CSV_BLOCK

/***

 *** FORTE Library Element

 *** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!

 *** Name: cronometroFB

 *** Description: Service Interface Function Block Type

 *** Version:

 *** 1.0: 2025-11-14/gabriel - -

 ***/

#include "cronometroFB_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP

#include "cronometroFB_fbt_gen.cpp"

#endif

#include "core/iec61131_functions.h"

#include "core/datatypes/forte_array_common.h"

#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"

#include "core/datatypes/forte_array_variable.h"

#include <iostream>

#include <chrono>

#include <fstream>

#include <ctime>

using namespace std;

using namespace std::chrono;

DEFINE_FIRMWARE_FB(FORTE_cronometroFB, g_nStringIdcronometroFB)

91

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataInputNames[] =

{g_nStringIdQI};

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataInputTypeIds[] =

{g_nStringIdBOOL};

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataOutputNames[] =

{g_nStringIdSTATUS, g_nStringIdTempo};

const CStringDictionary::TStringId FORTE_cronometroFB::scmDataOutputTypeIds[]

= {g_nStringIdWSTRING, g_nStringIdREAL};

const TDataIOID FORTE_cronometroFB::scmEIWith[] = {0, scmWithListDelimiter, 0,

scmWithListDelimiter, 0, scmWithListDelimiter};

const TForteInt16 FORTE_cronometroFB::scmEIWithIndexes[] = {0, 2, 4};

const CStringDictionary::TStringId FORTE_cronometroFB::scmEventInputNames[] =

{g_nStringIdINIT, g_nStringIdIniciarCronometro, g_nStringIdEncerrarCronometro};

const TDataIOID FORTE_cronometroFB::scmEOWith[] = {1, scmWithListDelimiter, 1,

scmWithListDelimiter, 1, scmWithListDelimiter};

const TForteInt16 FORTE_cronometroFB::scmEOWithIndexes[] = {0, 2, 4};

const CStringDictionary::TStringId FORTE_cronometroFB::scmEventOutputNames[]

= {g_nStringIdINITO, g_nStringIdCronometroIniciado,

g_nStringIdCronometroParado};

const SFBInterfaceSpec FORTE_cronometroFB::scmFBInterfaceSpec = {

 3, scmEventInputNames, nullptr, scmEIWith, scmEIWithIndexes,

 3, scmEventOutputNames, nullptr, scmEOWith, scmEOWithIndexes,

 1, scmDataInputNames, scmDataInputTypeIds,

 2, scmDataOutputNames, scmDataOutputTypeIds,

 0, nullptr,

 0, nullptr

};

FORTE_cronometroFB::FORTE_cronometroFB(const CStringDictionary::TStringId

paInstanceNameId, forte::core::CFBContainer &paContainer) :

 CFunctionBlock(paContainer, scmFBInterfaceSpec, paInstanceNameId),

92

 var_QI(0_BOOL),

 var_STATUS(u""_WSTRING),

 var_Tempo(0_REAL),

 var_conn_STATUS(var_STATUS),

 var_conn_Tempo(var_Tempo),

 conn_INITO(this, 0),

 conn_CronometroIniciado(this, 1),

 conn_CronometroParado(this, 2),

 conn_QI(nullptr),

 conn_STATUS(this, 0, &var_conn_STATUS),

 conn_Tempo(this, 1, &var_conn_Tempo) {

};

void FORTE_cronometroFB::setInitialValues() {

 var_QI = 0_BOOL;

 var_STATUS = u""_WSTRING;

 var_Tempo = 0_REAL;

}

void FORTE_cronometroFB::executeEvent(const TEventID paEIID,

CEventChainExecutionThread *const paECET) {

 std::chrono::high_resolution_clock::time_point inicio;

 std::chrono::high_resolution_clock::time_point fim;

 switch(paEIID) {

 case scmEventINITID:

 if(var_QI) {

 var_STATUS = u"init_ok"_WSTRING;

 } else {

 var_STATUS = u"init_failed"_WSTRING;

 }

 sendOutputEvent(scmEventINITOID, paECET);

93

 break;

 case scmEventIniciarCronometroID:

 inicio = std::chrono::high_resolution_clock::now();

 sendOutputEvent(scmEventCronometroIniciadoID, paECET);

 break;

 case scmEventEncerrarCronometroID:

 // Marca o tempo final

 fim = std::chrono::high_resolution_clock::now();

 // Calcula duração em milissegundos

 auto duracao = duration_cast<milliseconds>(fim - inicio).count();

 var_Tempo = CIEC_REAL(static_cast<TForteFloat>(duracao));

 sendOutputEvent(scmEventCronometroParadoID, paECET);

 break;

 }

}

void FORTE_cronometroFB::readInputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITID: {

 readData(0, var_QI, conn_QI);

 break;

 }

 case scmEventIniciarCronometroID: {

 readData(0, var_QI, conn_QI);

 break;

 }

 case scmEventEncerrarCronometroID: {

 readData(0, var_QI, conn_QI);

 break;

 }

 default:

94

 break;

 }

}

void FORTE_cronometroFB::writeOutputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITOID: {

 writeData(1, var_Tempo, conn_Tempo);

 break;

 }

 case scmEventCronometroIniciadoID: {

 writeData(1, var_Tempo, conn_Tempo);

 break;

 }

 case scmEventCronometroParadoID: {

 writeData(1, var_Tempo, conn_Tempo);

 break;

 }

 default:

 break;

 }

}

CIEC_ANY *FORTE_cronometroFB::getDI(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_QI;

 }

 return nullptr;

}

CIEC_ANY *FORTE_cronometroFB::getDO(const size_t paIndex) {

 switch(paIndex) {

95

 case 0: return &var_STATUS;

 case 1: return &var_Tempo;

 }

 return nullptr;

}

CEventConnection *FORTE_cronometroFB::getEOConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_INITO;

 case 1: return &conn_CronometroIniciado;

 case 2: return &conn_CronometroParado;

 }

 return nullptr;

}

CDataConnection **FORTE_cronometroFB::getDIConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_QI;

 }

 return nullptr;

}

CDataConnection *FORTE_cronometroFB::getDOConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_STATUS;

 case 1: return &conn_Tempo;

 }

 return nullptr;

}

96

APÊNDICE E – SCRIPT pythonBlock_fbt.cpp

/***

 *** FORTE Library Element

 *** This file was generated using the 4DIAC FORTE Export Filter V1.0.x NG!

 *** Name: pythonBlock

 *** Description: Service Interface Function Block Type

 *** Version:

 *** 1.0: 2025-06-05/gabriel - -

 ***/

#include "pythonBlock_fbt.h"

#ifdef FORTE_ENABLE_GENERATED_SOURCE_CPP

#include "pythonBlock_fbt_gen.cpp"

#endif

#include "core/iec61131_functions.h"

#include "core/datatypes/forte_array_common.h"

#include "core/datatypes/forte_array.h"

#include "core/datatypes/forte_array_fixed.h"

#include "core/datatypes/forte_array_variable.h"

DEFINE_FIRMWARE_FB(FORTE_pythonBlock, g_nStringIdpythonBlock)

const CStringDictionary::TStringId FORTE_pythonBlock::scmDataInputNames[] =

{g_nStringIdQI, g_nStringIdFILE_PATH};

const CStringDictionary::TStringId FORTE_pythonBlock::scmDataInputTypeIds[] =

{g_nStringIdBOOL, g_nStringIdWSTRING};

const CStringDictionary::TStringId FORTE_pythonBlock::scmDataOutputNames[] =

{g_nStringIdSTATUS, g_nStringIdDO1};

97

const CStringDictionary::TStringId FORTE_pythonBlock::scmDataOutputTypeIds[] =

{g_nStringIdWSTRING, g_nStringIdBOOL};

const TDataIOID FORTE_pythonBlock::scmEIWith[] = {0, scmWithListDelimiter, 0, 1,

scmWithListDelimiter};

const TForteInt16 FORTE_pythonBlock::scmEIWithIndexes[] = {0, 2};

const CStringDictionary::TStringId FORTE_pythonBlock::scmEventInputNames[] =

{g_nStringIdINIT, g_nStringIdREQ};

const TDataIOID FORTE_pythonBlock::scmEOWith[] = {0, scmWithListDelimiter, 0,

scmWithListDelimiter};

const TForteInt16 FORTE_pythonBlock::scmEOWithIndexes[] = {0, 2};

const CStringDictionary::TStringId FORTE_pythonBlock::scmEventOutputNames[] =

{g_nStringIdINITO, g_nStringIdCNF};

const SFBInterfaceSpec FORTE_pythonBlock::scmFBInterfaceSpec = {

 2, scmEventInputNames, nullptr, scmEIWith, scmEIWithIndexes,

 2, scmEventOutputNames, nullptr, scmEOWith, scmEOWithIndexes,

 2, scmDataInputNames, scmDataInputTypeIds,

 2, scmDataOutputNames, scmDataOutputTypeIds,

 0, nullptr,

 0, nullptr

};

FORTE_pythonBlock::FORTE_pythonBlock(const CStringDictionary::TStringId

paInstanceNameId, forte::core::CFBContainer &paContainer) :

 CFunctionBlock(paContainer, scmFBInterfaceSpec, paInstanceNameId),

 var_QI(0_BOOL),

 var_FILE_PATH(u""_WSTRING),

 var_STATUS(u""_WSTRING),

 var_DO1(0_BOOL),

 var_conn_STATUS(var_STATUS),

 var_conn_DO1(var_DO1),

 conn_INITO(this, 0),

 conn_CNF(this, 1),

98

 conn_QI(nullptr),

 conn_FILE_PATH(nullptr),

 conn_STATUS(this, 0, &var_conn_STATUS),

 conn_DO1(this, 1, &var_conn_DO1) {

};

void FORTE_pythonBlock::setInitialValues() {

 var_QI = 0_BOOL;

 var_FILE_PATH = u""_WSTRING;

 var_STATUS = u""_WSTRING;

 var_DO1 = 0_BOOL;

}

void FORTE_pythonBlock::executeEvent(const TEventID paEIID,

CEventChainExecutionThread *const paECET) {

 switch(paEIID) {

 case scmEventINITID:

 if(var_QI) {

 var_STATUS = u"init_ok"_WSTRING;

 } else {

 var_STATUS = u"init_failed"_WSTRING;

 }

 sendOutputEvent(scmEventINITOID, paECET);

 break;

 case scmEventREQID:

 if(var_QI){

 system(var_FILE_PATH.getValue());

 }

 sendOutputEvent(scmEventCNFID, paECET);

 break;

 }

}

99

void FORTE_pythonBlock::readInputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITID: {

 readData(0, var_QI, conn_QI);

 break;

 }

 case scmEventREQID: {

 readData(0, var_QI, conn_QI);

 readData(1, var_FILE_PATH, conn_FILE_PATH);

 break;

 }

 default:

 break;

 }

}

void FORTE_pythonBlock::writeOutputData(const TEventID paEIID) {

 switch(paEIID) {

 case scmEventINITOID: {

 writeData(0, var_STATUS, conn_STATUS);

 break;

 }

 case scmEventCNFID: {

 writeData(0, var_STATUS, conn_STATUS);

 break;

 }

 default:

 break;

 }

}

100

CIEC_ANY *FORTE_pythonBlock::getDI(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_QI;

 case 1: return &var_FILE_PATH;

 }

 return nullptr;

}

CIEC_ANY *FORTE_pythonBlock::getDO(const size_t paIndex) {

 switch(paIndex) {

 case 0: return &var_STATUS;

 case 1: return &var_DO1;

 }

 return nullptr;

}

CEventConnection *FORTE_pythonBlock::getEOConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_INITO;

 case 1: return &conn_CNF;

 }

 return nullptr;

}

CDataConnection **FORTE_pythonBlock::getDIConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_QI;

 case 1: return &conn_FILE_PATH;

 }

 return nullptr;

101

}

CDataConnection *FORTE_pythonBlock::getDOConUnchecked(const TPortId

paIndex) {

 switch(paIndex) {

 case 0: return &conn_STATUS;

 case 1: return &conn_DO1;

 }

 return nullptr;

}

	b2efdbaaac05e36ca15016b8154c9982bc60efe3edf402dcf7611b8f8ef2e1e8.pdf
	b2efdbaaac05e36ca15016b8154c9982bc60efe3edf402dcf7611b8f8ef2e1e8.pdf
	b2efdbaaac05e36ca15016b8154c9982bc60efe3edf402dcf7611b8f8ef2e1e8.pdf
	1 INTRODUÇÃO
	1.1 Objetivos
	1.1.1 Geral
	1.1.2 Específicos

	1.2 Organização do Trabalho

	2 FUNDAMENTAÇÃO TEÓRICA
	2.1 Norma IEC 61499
	2.2 Tipos de Blocos
	2.2.1 Basic Function Blocks
	2.2.2 Composite Function Blocks
	2.2.3 Blocos de interface de serviços

	2.3 4Diac
	2.3.1 4Diac vs FDBK
	2.3.2 Componentes do 4Diac

	2.4 Cmake
	2.5 Banco de Dados

	3 METODOLOGIA
	3.1 Definição dos Requisitos Funcionais e de Dados
	3.2 Modelagem Funcional com Blocos IEC 61499
	3.3 Desenvolvimento e Implementação dos Blocos
	3.4 Testes e Validação
	3.5 Integração em Sistema Piloto

	4 DESENVOLVIMENTO DO TRABALHO
	4.1 Configuração do ambiente de trabalho
	4.2 Desenvolvimento do SIFB MongoDB
	4.3 Desenvolvimento do SIFB cronometroFB
	4.4 Desenvolvimento do SIFB csv_block
	4.5 Desenvolvimento do SIFB myBD
	4.6 Desenvolvimento do SIFB pythonBlock
	4.7 Desenvolvimento da aplicação 4Diac
	4.8 Geração da máquina FORTE
	4.9 Validação do Sistema de Coleta de Dados
	4.10 Integração com o Sistema Piloto

	5 RESULTADOS
	5.1 Funcionamento do Sistema em Ambiente Local
	5.2 Integração com o Sistema Piloto (ESP32)
	5.3 Armazenamento de Dados no MongoDB
	5.4 Teste de Confiabilidade
	5.5 Teste de Robustez e Desempenho
	5.6 Síntese dos Resultados

	6 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE
	APÊNDICE A – SCRIPT BD_mongo_project_fbt.cpp
	APÊNDICE B – SCRIPT CRONOMETROFB
	APÊNDICE C – SCRIPT MYBD_fbt.cpp
	APÊNDICE D – SCRIPT CSV_BLOCK
	APÊNDICE E – SCRIPT pythonBlock_fbt.cpp

