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RESUMO 

 

O surto de COVID-19, causado pelo vírus SARS-CoV-2, iniciou-se ao final de 2019 

na China e rapidamente foi propagado a nível mundial, tornando-se uma pandemia 

em meados de 2020. Por ser uma patologia cujos sintomas remetiam a infecções do 

sistema respiratório, como uma gripe, porém com desfechos fatais, tanto 

profissionais operacionais quanto pesquisadores viviam o enorme desafio de obter 

um diagnóstico rápido para esta nova doença. Uma alternativa aos exames 

laboratoriais de transcrição reversa seguida de reação em cadeia da polimerase 

(RT-PCR) é o diagnóstico por imagem baseado em tomografia computadorizada 

(TC) de tórax dos pacientes. Todavia, as características presentes nessas imagens 

também são compatíveis com outras infecções agudas respiratórias. O aumento da 

acurácia em exames de imagem pode ser obtido a partir da utilização de sistemas 

computacionais de análise de imagens baseados em inteligência artificial (IA). Este 

trabalho é parte integrante de um projeto de pesquisa com o objetivo de 

desenvolvimento e validação de um software para diagnóstico automático de 

COVID-19 baseado em TC, radiômica (extração de atributos de imagem de alto 

rendimento) e IA. A obtenção da predição neste tipo de diagnóstico depende da 

correlação entre os atributos radiômicos e a patologia, que tem por cerne a 

determinação de características que sejam reprodutíveis e robustas com relação a 

etapa da segmentação das lesões nas imagens. Neste trabalho foram gerados para 

análise, a partir dos mesmos exames de TC de tórax de pacientes com COVID-19 

confirmados por teste RT-PCR, dois conjuntos de segmentações manuais de lesões 

obtidas por avaliadores independentes. As segmentações e as extrações dos 

atributos radiômicos foram obtidos utilizando-se o software livre LIFEx. Obtiveram-se 

três classes de atributos: de forma e de texturas - de primeira e de segunda ordens. 

Para a avaliação da robustez foi utilizada a métrica estatística índice de correlação 

intra-classe (ICC) a partir da aplicação SPSS Statistics. Os resultados apresentados 

classificaram notadamente como não reprodutíveis os atributos de forma, enquanto 

determinados atributos de textura, de primeira e segunda ordens, compuseram o rol 

dos atributos robustos. Desta forma, pôde-se demonstrar a existência de atributos 

radiômicos preditores da referida virose e a consequente possibilidade de obtenção 

de um diagnóstico alternativo baseado em atributos radiômicos de TC de tórax para 

a COVID-19.  

 

Palavras-chave: tomografia computadorizada; COVID-19; atributos radiômicos; 

diagnóstico. 

 

 

 

 



 
 

ABSTRACT 

 

The COVID-19 outbreak, caused by the SARS-CoV-2 virus, started in late 2019 in 

China and quickly spread worldwide, becoming a pandemic in mid-2020. As it is a 

pathology whose symptoms refer to infections of the respiratory system, such as the 

flu, but with fatal outcomes, both operational professionals and researchers faced the 

enormous challenge of obtaining a rapid diagnosis for this new disease. An 

alternative to laboratory tests of reverse transcription followed by polymerase chain 

reaction (RT-PCR) is diagnostic imaging based on computed tomography (CT) of the 

patients' chest. However, the characteristics present in these images are also 

compatible with other acute respiratory infections. Increased accuracy in imaging 

exams can be obtained from the use of computational image analysis systems based 

on artificial intelligence (AI). This work is an integrated part of a research project with 

the objective of developing and validating a software for automatic diagnosis of 

COVID-19 based on CT, radiomics (extraction of high-throughput image features) 

and AI. Obtaining a prediction in this type of diagnosis depends on the correlation 

between the radiomic features and the pathology, which has as its core the 

determination of characteristics that are reproducible and robust in relation to the 

stage of segmentation of the lesions in the images. In this work, two sets of manual 

segmentation of lesions obtained by independent evaluators were generated for 

analysis from the same chest CT scans of patients with COVID-19 confirmed by RT-

PCR test. The segmentations and extractions of the radiomic features were obtained 

using the free software LIFEx. Three classes of features were obtained: shape and 

texture - first and second order. To assess the robustness, the statistical metric intra-

class correlation index (ICC) was used from the SPSS Statistics application. The 

presented results notably classified the shape features as non-reproducible, while 

certain texture features, of first and second order, made up the list of robust features. 

In this way, it was possible to demonstrate the existence of predictive radiomic 

features of the referred virus and the consequent possibility of obtaining an 

alternative diagnosis based on radiomic features of chest CT for COVID-19. 

 

Keywords: computed tomography; COVID-19; radiomic features; diagnosis. 
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1 INTRODUÇÃO 

 

 O setor de diagnóstico e prognóstico médico por meio de imagens 

radiológicas tem evoluído de maneira significativa, fato que tem exercido grande 

contribuição sobre a qualidade e expectativa de vida da população humana. Este 

desenvolvimento, entretanto, carrega consigo um crucial desafio, que consiste em 

detectar e caracterizar nas imagens radiológicas as características relevantes 

associadas às patologias investigadas. 

 No período em que as radiografias eram apenas analógicas as inspeções 

eram feitas unicamente pela análise visual feita por especialistas, sendo os recursos 

obtidos limitados à percepção ocular humana. Entretanto, com o advento da 

tecnologia digital surgem as tomografias digitais, possibilitando que a análise dos 

dados radiográficos pudesse ser realizada com o auxílio de um algoritmo 

computacional, dando origem ao campo do processamento digital de imagens (PDI), 

ampliando assim a obtenção de características de imagem relevantes.  

 A incorporação das redes computacionais de processamento, baseadas em 

redes neurais artificiais, pertencentes ao objeto da inteligência artificial (IA), 

possibilitou a ampliação dos métodos de PDI, gerando o campo da extração de 

recursos de imagens radiológicas denominado radiômica. A radiômica vem 

apresentando resultados animadores e promissores para o aproveitamento de seu 

potencial na prática clínica, todavia, carece ainda de uma fundamentação empírica e 

teórica capaz de gerar processos padronizados e reprodutíveis de extração de 

recursos das imagens. De acordo com Santos et al (2019), a radiômica é definida 

como “Extração massiva de dados mensuráveis de imagens médicas e sua 

integração em modelos preditivos multidisciplinares para o gerenciamento 

diagnóstico, terapêutico e prognóstico de pacientes”. 

 A segmentação de imagens é uma etapa fundamental no processamento e 

análise de imagens médicas e, de fato, consiste em dividir a imagem em regiões que 

possuam correlação com a anatomia das lesões, em outras palavras segmentar é 

separar anatomicamente tecidos e estruturas. Esta separação não necessariamente 

abrange todo um tecido, estrutura ou órgão, limitando se a regiões com 

características específicas, denominadas regiões de interesse (ROI, do inglês region 

of interest) (SANTOS ET AL, 2019). 

A pandemia do COVID-19, em virtude da necessidade de testagem em 

massa e rapidez de obtenção do diagnóstico, incitou as pesquisas ao 

desenvolvimento de tecnologias alternativas para este fim. Neste cenário, devido ao 

pulmão sofrer lesões determinísticas da presença do vírus, o prognóstico baseado 

em imagens de tomografia computadorizada (TC) de tórax é uma opção viável. 

Este projeto de pesquisa objetiva disponibilizar uma assinatura de atributos 

radiômicos em TC de tórax de pacientes com COVID-19, que tenha aceitável 

variância de valores em relação à diversidade de segmentações possíveis para uma 
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mesma ROI, de modo a disponibilizar recursos para a construção de uma ferramenta 

automática, baseada em IA, para o diagnóstico rápido da COVID-19. 

 

2 REVISÃO DA LITERATURA 

 

2.1 A Imagem Analógica de Raios-X e suas Limitações para Examinar as 

Estruturas Internas do Corpo 

 Os raios-X são compostos por fótons de alta energia. A interação dos raios-X 

com a matéria é caracterizada por uma dispersão insignificante, sendo notória a 

observação do fenômeno da absorção de sua energia como função das densidades 

dos tecidos do corpo humano por esses raios atravessados. Deste modo, é possível 

obter uma imagem a partir da detecção dos raios-X emergentes de um corpo, onde 

a quantidade de energia residual representa a informação para geração de uma 

intensidade de tom na imagem. O sistema de detecção normalmente é feito por meio 

da combinação de uma tela de fósforo e um filme sensível à luz. Uma segunda 

forma utilizada para detecção de raios-X é baseada na fluoroscopia, onde o 

intensificador de imagem é utilizado para converter a energia dos raios-X em sinais 

elétricos para serem detectados por câmeras de sensores CMOS (do inglês 

complementary metal oxide semicondutor) que produzem uma imagem analógica 

diretamente em um monitor de vídeo (Figura 1). 

 Essas imagens analógicas de raios-X, que são obtidas por fotografia em 

filme, apresentam diversas limitações que inviabilizam o exame de estruturas 

internas do corpo. As principais são:  

i) A superposição da informação tridimensional em um único plano 

obscurece diferenças sutis na atenuação ao longo do percurso dos raios-

X, tornando o diagnóstico confuso ou impraticável;  

ii) A limitada faixa dinâmica dos filmes disponíveis para detecção impede a 

distinção entre tecidos com características de atenuação próximas, 

portanto apenas objetos que apresentem grandes variações na absorção 

de raios-X podem ser distinguidos na imagem a olho nu. 

Consequentemente, os detalhes das estruturas ósseas apresentam alta 

nitidez, enquanto a forma e a composição dos órgãos de tecido mole 

apresentam difícil diferenciação, mesmo mediante o uso de contrastes 

injetados;  

iii) Grandes áreas de feixes de raios-X geram considerável quantidade de 

radiação espalhada, dificultando a exibição de diferenças sutis no 

contraste do objeto.    

 

 Uma alternativa aos detectores convencionais acima apresentados é a 

utilização de um detector digital, que consiste de um painel matricial plano feito de 
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material semicondutor, o qual converte fótons de raios-X diretamente em um sinal 

elétrico de natureza digital, reduzindo o custo de armazenamento e facilitando sua 

transmissão eletrônica. Deste modo, a imagem representada e composta por sinais 

digitais transforma-se em um conjunto de dados, possibilitando seu processamento 

computacional, dando início à era da imagem radiológica digital e tomografia 

computadorizada. A Figura 1 contém uma representação desses métodos: os 

esquemas do topo e meio ilustram a geração de imagens analógicas de raios-X: no 

primeiro, a imagem se deve a um filme queimado devido à interação com raios-X, 

enquanto que no segundo, os feixes de raios-X são acelerados e interagem numa 

tela de TV analógica para produzir uma imagem por fluorescência. O esquema 

inferior capta os raios-X através de um detector digital para um computador 

reconstruir a imagem. 

 

Figura 1 - Métodos de Aquisição de Imagens de Raios-X. 

 
Fonte: O autor (2023). 

 

2.2 A Imagem Digital da Tomografia Computadorizada 

 Inventada e desenvolvida nos Laboratórios Centrais de Pesquisa da EMI Ltd, 

Reino Unido, por G. N. Hounsfield, a TC foi inicialmente projetada a partir de 1962 

para análises neurológicas, o que permitiu, pela primeira vez aos radiologistas, a 

distinção entre diferentes tipos de tecido, bem como diferenciar o sangue normal do 

coagulado. A utilidade de se ter scanners para o corpo foi logo percebida e 

tomógrafos de corpo inteiro com uma vasta gama de aplicações clínicas foram 

disponibilizados em escala comercial em 1972 (KHANDPUR, 2003). 

 Primeiramente, a TC difere das técnicas convencionais de raios-X porque as 

imagens exibidas não são fotografias, mas sim reconstruídas a partir de um grande 
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número de perfis de absorção obtidos em intervalos angulares regulares em torno de 

uma seção transversal (fatia), constituindo uma imagem digital plana (2D), 

denominada imagem matricial, constituída de pixels (do inglês, picture elements). 

Em segundo lugar, o conjunto das imagens das fatias paralelas obtidas dos perfis de 

absorção de raios-X, permite, ao empilhar sequencialmente essas fatias, obter uma 

representação aproximada de imagem tridimensional (3D) do objeto. A Figura 2 é 

uma representação do volume compreendido entre dois planos de seção vizinhos, 

aqui composto por 64 voxels (do inglês, volume element). A distância entre eles é 

denominada resolução do voxel. 

 À medida que o conjunto de imagens transversais 2D permite a exibição 

aproximada de volumes anatômicos, a resolução do voxel confere perda de 

informação espacial à representação 3D. Todavia, comparativamente às imagens 

convencionais de raios-X, a TC é uma ferramenta extremamente útil no quesito da 

visualização anatômica de volumes em diversas regiões do corpo (HENDEE, 2002).  

 

Figura 2 – Representação Matricial de uma Imagem Digital. 

 
Fonte: O autor (2023). 

 

2.3 Fundamentos Matemáticos da Imagem Tomográfica Computadorizada 

 

 Para feixes de raios-X monoenergéticos ou aproximadamente, as 

características da transmissão energética dos raios-X através do paciente podem 

ser descritas pela Lei de Beer-Lambert: 
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It = I0.exp(-μx)                                                     (1) 

onde:  

I0 = Intensidade da radiação incidente 

It = intensidade transmitida 

x = espessura do tecido atravessado  

μ = coeficiente de atenuação característico do tecido 

 

 Entretanto, ao utilizar esta equação para a análise de uma imagem 

convencional de raios-X, o paciente é considerado um meio homogêneo e a 

atenuação obtida é a soma (superposição) das atenuações dos diversos tecidos 

encontrados ao longo do percurso do feixe de raios-X. Desse modo, se n regiões 

com diferentes coeficientes de atenuação ocorrem ao longo da trajetória dos raios-X, 

eles são atenuados por porções de materiais com diferentes coeficientes de 

atenuação ao longo de cada trajetória. 

 A Figura 3 mostra uma representação esquemática das trajetórias de três 

feixes de raios-X ao longo de uma seção (imagem 2D com 5x9 pixels) de um 

paciente. Cada pixel é identificado pelo índice de refração da superfície a ele 

associada (μ1, ..., μ45). Representam os raios-X incidente e transmitido, I0 e It, 

respectivamente. Aplicando a equação (1) voxel a voxel ao longo dessas trajetórias 

obtém se para os feixes as seguintes equações: 

Feixe 1: It(1) = I0(1).exp[-(μ1x1 + μ11x11 + μ21x21 + μ31x31 + μ41x41)                       (2) 

Feixe 2: It(2) = I0(2).exp[-(μ2x2 + μ11x11 + μ20x20 + μ29x29 + μ38x38)                       (3) 

Feixe 3: It(3) = I0(3).exp[-(μ8x8 + μ17x17 + μ26x26 + μ35x35 + μ44x44)                       (4) 

Generalizando os resultados acima obtidos para cada sequência de n pixels 

atravessados por determinado feixe de raios-X, temos:   

 

              It = I0exp[-(μ1x1 + μ2x2 + μ3x3 +...+ μnxn)                             (5) 

 

de onde se obtém a equação linear: 

 

μ1x1 + μ2x2 + μ3x3 +...+ μnxn = ln(I0/It)                                 (6) 

 

com x1 = x2 = … = xn valores constantes e iguais à dimensão do pixel 

e μ1, μ2, ..., μn são as incógnitas da equação. 
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Figura 3 - Esquema da trajetória de três raios-X atravessando uma seção do paciente. 

 
Fonte: O autor (2023). 

  

 

As equações (2), (3) e (4) ilustram a incapacidade da informação que a 

irradiação em uma única direção gera para determinar os coeficientes de atenuação 

separadamente, pois em termos algébricos obtém-se um sistema de equações 

lineares com várias incógnitas com quantidade insuficiente de equações para 

solução. Entretanto, através de diversas medidas de transmissão em um mesmo 

plano a partir de diferentes direções de irradiação é possível obter um sistema de 

equações lineares com solução possível. Logo surgiram os primeiros equipamentos 

desenvolvidos para obter múltiplas medidas de transmissão, sendo denominados 

scanners de TC de primeira geração.  

 Esses scanners são formados por um emissor e um detector de raios-X, 

alinhados em lados opostos do paciente. O par emissor-detector move-se em 

semicírculo em torno do paciente a incrementos angulares de 1 grau, ao passo que 

em cada posição angular há uma pausa no movimento de rotação e uma varredura 

translacional é executada, obtendo uma determinada quantidade de medições de 

transmissão. Desta maneira, quantidade suficiente e grande de medidas de 

transmissão são acumuladas e seguem para o próximo estágio de obtenção da TC, 

que é o processamento matemático através dos ditos algoritmos de reconstrução. 

Mais três gerações de scanners surgiram com modificações nos sistemas de 

emissão e detecção de raios-X. Em suma, há quatro gerações de scanners de TC: a 

primeira geração, usando um feixe, estreito como um lápis, de raios-x e a 

combinação dos movimentos de rotação e translação (Figura 4.a); a segunda 

geração com um feixe de raios-x em leque, múltiplos detectores e a combinação dos 

movimentos de rotação e translação (Figura 4.b); a terceira geração, um feixe de 

raios-X em leque atravessa completamente as seções do paciente acompanhado do 

movimento de rotação suave e síncrono do emissor de raios-X e dos detectores 
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(Figura 4.c); e a quarta geração, feixe de raios-X igual ao da terceira geração com 

movimento rotacional e uma matriz circular estacionária de detectores (Figura 4.d). 

 

Figura 4 – Movimentos de varredura em TC. 

 

Fonte: O autor (2023). 

 

 

 O sistema helicoidal compõe o tomógrafo que sucedeu a quarta geração, 

implementando a tecnologia slip-ring, a qual permitiu a rotação contínua do par 

emissor-detector ao deslocamento simultâneo da mesa, realizando 

concomitantemente as etapas de rotação e translação. No tomógrafo helicoidal os 

cortes tomográficos são obtidos com a mesa em movimento, de modo que as 

“seções” não mais são planas, e sim em forma de hélice, ao passo que o modelo de 

aquisição assemelha-se a uma espiral. A mesa do tomógrafo realiza junto com o 

paciente o movimento de translação na direção perpendicular ao plano do feixe de 

raios-X, enquanto este executa sempre a mesma trajetória em movimento de 
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rotação. A combinação dos movimentos gera na matriz circular estacionária de 

detectores uma superfície contínua contorcida em forma de espiral (Figura 5). 
 

Figura 5 – Esquema da Técnica de Aquisição Helicoidal. 

 

Fonte: O autor (2023). 

 

 

 Sistemas de computação modernos e mais robustos permitiram que o método 

helicoidal ganhasse em agilidade, reduzindo de forma drástica o tempo de 

realização dos exames. A exemplo, tornou possível a realização de exames de 

crânio em 20 segundos, quando em um equipamento de 3ª geração seriam 

necessários cerca de 3 minutos (NOBREGA, 2005). 

  

2.4 Algoritmos de Reconstrução 

 

 Os algoritmos de reconstrução de imagens tomográficas podem ser 

basicamente de três formas a saber: 1. Retroprojeção; 2. O Método Interativo; 3. O 

Método Analítico. 

 A retroprojeção é um método teórico, não mais utilizados nos equipamentos 

atuais. Nesse método, cada caminho de raios-X através do corpo é dividido em 

elementos (pixels) igualmente espaçados. A partir das interseções de todas as 

projeções em cada elemento (Figura 6A), a soma da atenuação em todos os 

caminhos de raios-X neste intercepto permite determinar o coeficiente de atenuação 

do elemento. Dessa maneira, repetindo a soma das atenuações para todos os 

outros elementos presentes na seção anatômica digitalizada, uma imagem 

composta de coeficientes de atenuação é obtida. Apesar desta abordagem simples 

de retroprojeção para reconstrução ser direta, ela gera imagens borradas em todos 

os objetos, devido à formação de artefatos em estrela (Figura 6B). 
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Figura 6 – Retroprojeção de Raios-X. 

 

Figura 6A: Interseção de duas retroprojeções simples; Figura 6B: Interseção de várias retroprojeções 

simples e o surgimento do artefato em estrela. 

Fonte: O autor (2023). 

 

 

 O método interativo difere da retroprojeção na maneira como determina os 

coeficientes de atenuação. Este método considera um valor médio de coeficiente de 

atenuação para cada coluna ou linha da imagem. Essa média é utilizada como 

referência para calibração de cada elemento da imagem, até a sua reconstrução 

final. Dessa forma, o Método Interativo consegue minimizar os artefatos em estrela e 

gera imagens mais nítidas. 

 

 O método analítico é utilizado em quase todos os equipamentos comerciais, 

sendo composto por duas metodologias: 1.  A Análise Bidimensional de Fourier; 2. 

Retroprojeção Filtrada. 

 O método de análise bidimensional de Fourier consiste na avaliação de 

funções temporais do espaço através das frequências e amplitudes acumuladas 

correspondentes. Trata-se de um método de elevada complexidade. A vantagem em 

utilizar a análise bidimensional de Fourier está em conferir maior velocidade de 

processamento computacional, fator este relevante em qualquer sistema 

tomográfico. 

 A retroprojeção filtrada corresponde à utilização do método de retroprojeção 

juntamente com filtros matemáticos, destinados à eliminação das frequências 

correspondentes aos artefatos em estrela verificados na retroprojeção, tornando a 

imagem mais nítida. 
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2.5 A Escala de Contraste 

 

 Dentro do computador do tomógrafo os valores dos coeficientes de atenuação 

dos tecidos possuem uma representação numérica em uma escala discreta 

expressa em números inteiros. Esta representação recebeu o nome de números de 

Hounsfield, abreviados por HU (Hounsfield Units), sendo também denotados por 

“números de TC”. A amplitude da escala numérica da TC largamente utilizada varia 

em valores de -1.000 a +1.000, de tal forma que o zero é atribuído à água e -1.000 

para o ar, enquanto o valor +1.000 representa tecidos altamente densos (Figura 7). 

A partir da destas definições para a escala de contraste, a relação entre o 

coeficiente de atenuação linear e o correspondente número de Hounsfield é obtida 

por 

 

onde: 

μwater = coeficiente de atenuação da água. 

μ = coeficiente de atenuação de determinado tecido. 

 

O eixo ordenado apresenta a escala de Hounsfield, que é distribuída em 

valores inteiros que vão de -1.000 até +1.000. Os gráficos de barras representam 

diversos tecidos constituinte do corpo humano, e suas projeções no eixo ordenado 

determinam os intervalos da escala onde cada tecido tem sua representação (Figura 

7). 

 

Figura 7 -Escala numérica de Hounsfield utilizada em TC. 

 

Fonte: O autor (2023). 
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 O processamento computacional é capaz de diferenciar todos os valores de 

HU. Entretanto, como o olho humano e o monitor de vídeo não são capazes de 

diferenciar todos os 2.000 tons nessa escala, apenas uma seção da escala, ajustada 

para os tecidos que se desejam observar, é representada no monitor de vídeo para 

visualização de tecidos específicos. Os sistemas de apresentação em vídeo 

possuem controles de nível e largura de janela, informalmente conhecidos como 

janelamento.  A redução da largura da escala de visualização provoca aumento no 

contraste da imagem. Deste modo, é possível a visualização de mudanças muito 

pequenas na densidade do tecido com mais clareza. Na Figura 8 é apresentada uma 

janela de uma banda que vai de -300 a +100 aproximadamente (escala à esquerda) 

em uma nova escala que vai de -60 a +20 (escala à direita). De acordo com a Figura 

7, este janelamento é capaz de evidenciar estruturas como: seio, água, baço, 

gordura, pâncreas, rim, sangue e coração, entre outras. 
 

Figura 8 – Controle de nível e largura de janela em TC. 

 

Fonte: O autor (2023). 

 

2.6 Digitalização dos Sistemas de Aquisição e Base de Dados Médicos 

 Nos anos de transição entre as décadas de 1990 e 2000, houve uma grande 

revolução tecnológica no campo da radiologia, notadamente nos processos de 

aquisição de imagem. A revelação de imagem em filme fotográfico foi substituída por 

sistemas de aquisição de imagens totalmente digitalizados. Ademais, esses 

sistemas eram integrados com outros sistemas de informação, dentro de um modelo 

denominado hospital digital (SANTOS, 2019). 

 A base de dados da radiologia digital é o Sistema de Arquivamento e 

Comunicação de Imagens, PACS (do inglês Picture Archiving and Communication 
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System), referindo-se a um sistema que opera a digitalização, pós-processamento, 

distribuição e armazenamento de imagens médicas padronizadas. A padronização 

das imagens médicas e informações relacionadas é regida pela normativa ISO 

12052 – DICOM (Digital Image Communications in Medicine), que define os formatos 

para imagens médicas que podem ser trocadas com os dados e qualidade 

necessários para uso clínico.  

 A integração do PACS com o sistema de informação clínica HIS (do inglês 

Hospital Information System) e o sistema de informação radiológica RIS (do inglês 

Radiology Information System) tornou possível a implementação de modelos de 

análise e diagnóstico auxiliados por computador. 

 

2.6.1 A Imagem digital 

 

 Uma imagem digital pode ser definida como uma função bidimensional de 

pixels, f(x, y), com os valores de x, y e f(x, y) representados por uma matriz de 

quantidades finitas e discretas, onde x e y são as coordenadas espaciais do plano 

(i.e., os índices das linhas e colunas da imagem matricial) e a amplitude de f em 

qualquer pixel de coordenadas (x, y) é a intensidade ou nível de cinza da imagem 

nesse pixel. A função matricial f(x, y), onde a abscissa x indica a coluna da matriz e 

a ordenada y, a linha da matriz, é representada num plano cartesiano. Os valores de 

f(x, y) indicam os níveis de cinza associados a cada pixel da matriz da imagem 

(Figura 9). A escala de valores inteiros de tons de cinza é representada pelo preto 

(menor valor), branco (maior valor) e tons de cinza (valores intermediários). As 

imagens de TC são representadas de forma volumétrica a partir de um conjunto de 

imagens planas paralelas e uniformemente espaçadas a uma distância denominada 

espessura de corte. Essa espessura de corte é incorporada ao pixel, representando 

a altura do elemento volumétrico de imagem, o voxel. É com essa representação 

matricial de valores numéricos para as imagens médicas digitais que os algoritmos 

de análise e processamento computacional operam. 
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Figura 9 – Representação da função matricial de uma imagem médica digital (corte axial de uma TC 

de tórax) em escala de cinza. 

 

Fonte: O autor (2023). 

  

2.6.2 CAD – Diagnóstico/Detecção Auxiliado por Computador 

 Os primeiros sistemas computacionais de auxílio ao processamento de 

imagens médicas digitais, denominados CAD (do inglês, Computer-Aided Detection 

or Diagnosis), surgiram no final da década de 1980, com a aplicação sistêmica na 

medicina de análise quantitativa de imagens, oriunda do desenvolvimento do campo 

da visão computacional, que ascendia desde a década de 1960. Inicialmente, o CAD 

foi desenvolvido para auxiliar na interpretação de desfechos radiológicos e no 

diagnóstico precoce de doenças, objetivando melhorar a acurácia e consistência do 

diagnóstico por imagem, sugerindo uma segunda opinião de análise para os 

médicos. Suas principais ferramentas pautavam-se em técnicas de processamento 

digital de imagens, visão computacional e aprendizado de máquina (AVANZO, 2017; 

SANTOS, 2019). 

 Os algoritmos de CAD trabalham em dois estágios, detecção e classificação, 

denominados CADe (Computer-Aided Detection) e CADx (Computer-Aided 

Diagnosis), respectivamente. O CADe trabalha com um conjunto de atributos 

quantitativos de imagem calculados para uma região de interesse ROI (do inglês, 

Region of Interest), obtida por segmentação automática ou manual. Esses atributos 

descrevem a estrutura geométrica, a distribuição de intensidades e a textura da ROI. 

O CADx é composto por um classificador árvore de decisão binária, treinado para 

distinguir a lesão do tecido normal, a partir dos atributos obtidos pelo CADe. Em 

função da elevada quantidade de atributos que podem ser extraídos, os sistemas 

CAD operam junto a algoritmos de seleção de atributos, que determinam quais são 

os mais relevantes para a precisão de determinado diagnóstico. 
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2.7 Etapas do Processamento para Análise de Imagens Digitais  

 Para a análise computacional, os métodos de processamento digital de 

imagens utilizados caracterizam-se pelas entradas de dados (input) serem 

compostas de intensidades de pixels, enquanto que os de saída (output) são os 

atributos extraídos. Tais métodos estão subdivididos em quatro etapas: a 

segmentação, a extração, a seleção e a classificação de atributos relevantes. 

 A segmentação é a etapa inicial, na qual uma imagem é subdividida em 

regiões ou objetos que a compõem, as ROIs. Essas regiões devem ter correlação 

com a anatomia normal das lesões, ou seja, segmentar imagens médicas para 

análise e diagnóstico é separar anatomicamente tecidos e estruturas 

comprometidos. A segmentação é, portanto, uma das principais etapas do 

processamento, e sua precisão determina o sucesso ou fracasso (falso positivo) final 

dos procedimentos de análise computacional (GONZALEZ e WOODS, 2010). A 

segmentação de uma imagem pode ser feita utilizando-se formas definidas, como 

círculos e retângulos, ou delineadas na imagem a partir de propriedades de tons de 

níveis de cinza, de descontinuidade (bordas) ou similaridade. Como exemplo, 

observe-se a segmentação de nódulos pulmonares em CT de tórax de dois 

pacientes diferentes. Ambos os nódulos possuem contornos irregulares, sendo a 

segmentação guiada pela análise das diferenças de texturas. (Figura 10). Estas 

abordagens de segmentação podem ser implementadas de forma manual, 

semiautomática ou completamente automática, com pouca ou nenhuma interferência 

do usuário nas duas últimas (SANTOS, 2019). 

 

Figura 10 – Exemplos de segmentações em imagens de TC. 

 
Fonte: SANTOS (2019). 

  

A etapa de extração de atributos consiste no cálculo de valores numéricos 

(descritores) através de algoritmos computacionais denominados extratores de 

características, que realizam processos quantitativos nas imagens, como, por 

exemplo, construção de histogramas, classificação de texturas, reconhecimento de 
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formas e contornos, estimativas de área e volume. Esses descritores representam o 

conteúdo visual da imagem e são armazenados, após suas extrações, na forma de 

um vetor de atributos de imagem. Os atributos são classificados em três grupos 

principais: cor (níveis de cinza), textura e forma. A extração dos atributos de níveis 

de cinza, também denominados atributos de primeira ordem, corresponde à 

contagem, em pixels/voxels, da frequência absoluta de cada nível de cinza presente 

na imagem, resultando em uma apresentação gráfica denominada histograma. A 

Figura 11 é um histograma gerado por uma TC axial de tórax, com 256 níveis de 

cinza, excluindo o fundo da imagem (níveis de cinza entre 0 e 16), mostrando a 

distribuição de pixels ou voxels de acordo com os níveis de cinza dos pixels 

constituintes da imagem. Entretanto, os descritores de níveis de cinza, por si só, não 

revelam informações sobre a distribuição espacial do conteúdo da imagem, sendo 

esta lacuna preenchida pelos descritores de textura. Os atributos de textura, ou 

atributos de segunda ordem, revelam as áreas que possuem pixels/voxels com 

intensidades similares, possibilitando assim, distinguir regiões com diferentes 

texturas e refletir os detalhes contidos dentro de uma lesão identificada em uma 

imagem médica, o que torna os atributos de textura particularmente importantes 

para a identificação e definição de lesões em tecidos. A Figura 12 apresenta as 

diferenças de textura entre tumores de câncer de pulmão de células não pequenas 

(NSCLC) medido por imagem de TC, mais heterogêneos (Figura 12A) e mais 

homogêneos (Figura 12B). Por fim, os atributos de forma descrevem as 

características geométricas do objeto segmentado, como contornos, junções, curvas 

e regiões poligonais. A qualidade da caracterização quantitativa das formas do 

objeto depende intrinsecamente da eficiência dos algoritmos de segmentação. São 

apresentadas as listas com os atributos de imagem dos três grupos supracitados 

nos Quadros 1, 2 e 3, de acordo com a nomenclatura constante no software LIFEx.  

 

Figura 11 - Histograma associado a uma imagem de TC. 

 

Fonte: O autor (2022) 
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Figura 12 - Textura em Imagem de TC. 

 

Fonte: LAMBIN (2017). 

 

 

Quadro 1 – Atributos de forma – nomenclatura utilizada pelo software LIFEx 

SHAPE_Volume(mL) Volume de interesse em mililitros 

SHAPE_Volume(vx) Volume de interesse em voxels 

SHAPE_Sphericity[onlyFor3DROI]) Esfericidade do volume de interesse 

SHAPE_Surface(mm2)[onlyFor3DROI] Área superficial do volume de interesse 

SHAPE_Compacity[onlyFor3DROI] Capacidade do volume de interesse 

Fonte: O autor (2022). 

 

 

 

Quadro 2  – Atributos de primeira ordem – nomenclatura utilizada pelo software LIFEx 

CONVENTIONAL_Humin 

 

Valor mínimo dos números de 

Hounsfield (HU) 

CONVENTIONAL_Humean Valor médio dos HU 

CONVENTIONAL_Hustd Valor padrão dos HU 

CONVENTIONAL_Humax Valor máximo dos HU 
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CONVENTIONAL_HUQ1 Valor do primeiro quartil dos HU 

CONVENTIONAL_HUQ2 Valor do segundo quartil dos HU 

CONVENTIONAL_HUQ3 Valor do terceiro quartil dos HU 

CONVENTIONAL_HUSkewness Distorção dos valores dos HU 

CONVENTIONAL_HUKurtosis Curtose dos valores dos HU 

CONVENTIONAL_HUExcessKurtosis Excesso de curtose dos valores dos HU 

Fonte: O autor (2022). 

 

 

 

Quadro 3 – Atributos de segunda ordem – nomenclatura utilizada pelo software LIFEx 

GLCM (Grey-Level Co-occurence Matrix) Matriz de Coocorrência de nível de cinza 

(NC) 

GLCM_Homogeneity[=InverseDifference] Homogeneidade de pares de voxels em NC 

GLCM_Energy[=AngularSecondMoment] Uniformidade de pares de voxels em NC 

GLCM_Contrast[=Variance] Variações locais no GLMC 

GLCM_Correlation Dependência linear de NC no GLMC 

GLCM_Entropy_log10 Aleatoriedade de pares de voxels em NC 

GLCM_Entropy_log2[=JointEntropy] Aleatoriedade de pares de voxels em NC 

GLCM_Dissimilarity Variação de pares de voxels em NC 

GLRLM (Grey-Level Run Length Matrix) Matriz de Comprimento de Execução de NC 

GLRLM_SRE Distribuição dos trechos curtos na imagem 

GLRLM_LRE Distribuição dos trechos longos na imagem 

GLRLM_LGRE Distribuição das execuções de NC baixo 

GLRLM_HGRE Distribuição das execuções de NC alto 

GLRLM_SRLGE Distribuição das séries curtas homogêneas 

com NC baixos 

GLRLM_SRHGE Distribuição das séries curtas homogêneas 

com NC altos 

GLRLM_LRLGE Distribuição das execuções longas 

homogêneas com NC baixos 

GLRLM_LRHGE Distribuição das execuções longas 

homogêneas com NC altos 

GLRLM_GLNU Não uniformidade dos NC das séries 
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homogêneas 

GLRLM_RLNU Não uniformidade do comprimento das 

séries homogêneas 

GLRLM_RP Homogeneidade das séries homogêneas 

NGLDM (Neighborhood Grey-Level 

Difference Matrix) 

Matriz de diferenças de NC da vizinhança 

NGLDM_Coarseness Nível de taxa espacial de mudança de NC 

NGLDM_Contrast Diferença de intensidades entre as zonas 

vizinhas 

NGLDM_Busyness Frequência espacial das mudanças de 

intensidade 

GLZLM (Grey-Level Zone Length Matrix) Matriz de Comprimento de área de NC 

GLZLM_SZE Distribuição das zonas homogêneas curtas 

GLZLM_LZE Distribuição das zonas homogêneas longas 

GLZLM_LGZE Distribuição das zonas de baixo NC 

GLZLM_HGZE Distribuição das zonas de alto NC 

GLZLM_SZLGE Distribuição das zonas homogêneas curtas 

com baixos NC 

GLZLM_SZHGE Distribuição das zonas homogêneas curtas 

com altos NC 

GLZLM_LZLGE Distribuição das zonas homogêneas longas 

com baixos NC 

GLZLM_LZHGE Distribuição das zonas homogêneas longas 

com altos NC 

Fonte: O autor (2022). 

  

Devido à grande gama de atributos que podem ser extraídos de uma imagem, 

surge a etapa da seleção, objetivando a identificação e descarte daqueles que são 

irrelevantes para a análise em questão, bem como também dos que apresentem 

redundância, inserindo ruído ou inconsistências às informações de interesse. Dessa 

forma, essa etapa realiza a seleção dos descritores mais relevantes, aumentando a 

acurácia da investigação clínica desejada. Os algoritmos de seleção são em boa 

parte desenvolvidos com recursos de aprendizado de máquina e alguns realizam a 

seleção dos atributos através de redes neurais artificiais (RNAs), árvores de decisão 

e florestas aleatórias (SANTOS, 2019). 
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2.8 Aprendizado Profundo (Deep Learning) e Radiômica (Radiomics) 

 

 Os métodos tradicionais de aprendizado de máquina possuem limitações no 

processamento de dados, pois necessitam do suporte de outros algoritmos, que 

efetuem a segmentação e a extração de atributos, gerando o vetor de atributos 

como entrada para o processo de aprendizado. Cientistas da área de IA obtiveram 

sucesso ao utilizar as estruturas das RNAs para implementar o treinamento de 

máquina, que foi denominado Aprendizado Profundo (DL, do inglês Deep Learning), 

e possibilitou o desenvolvimento de algoritmos que integram os processos de 

extração de atributos e classificação dentro da própria rede neural, minimizando a 

necessidade de pré-processamento ou segmentação (SANTOS, 2019). Uma rede 

neural artificial (RNA) é composta por várias camadas de neurônios artificiais. A 

primeira é denominada camada de entrada e é responsável pelo recebimento dos 

dados da imagem digital (Figura 13A). As intermediárias realizam o processamento 

dos dados, extração e seleção de atributos relevantes (Figura 13B). Por fim, aquela 

dita de saída obtém a classificação para a imagem analisada (Figura 13C). 

  

Figura 13 – Arquitetura de uma RNA. 

 
Fonte: O autor (2023). 

 

 O DL ampliou a profundidade de investigação de descritores em imagens 

médicas, dando luz à área da saúde denominada medicina personalizada, onde 

informações sutis obtidas dessas imagens estariam associadas a fenótipos 

específicos do paciente. Essa “capacidade” de revelação fenotípica deu origem ao 

termo radiomics, originada da palavra “radio”, referindo-se à radiologia, e do sufixo 

“omics”, utilizado outrora no termo genomics para indicar o mapeamento do genoma 

humano (SANTOS, 2019). Logo, infere-se que a Radiomics é a área da ciência da 

análise de imagens radiológicas capaz de obter de uma imagem de TC um 

mapeamento de fenótipos – hipótese radiômica - e correlacioná-lo com desfechos 

clínicos ou diagnósticos. De acordo com Avanzo (2017), “porque combina análise 

quantitativa de imagens radiológicas e métodos de aprendizado de máquina, a 

radiômica tem suas raízes no CAD e é considerada como uma nova aplicação de 

técnicas estabelecidas”. 
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 O fluxo de trabalho da radiomics é descrito por quatro etapas. A primeira é a 

etapa da aquisição de imagem radiológica de alta qualidade e padronizada para o 

diagnóstico ou outro fim desejado. A etapa posterior consiste na identificação e 

demarcação macroscópica de uma região de lesão, seja por um método de 

segmentação automático ou manualmente por um profissional qualificado para essa 

função. Na etapa terceira, as características quantitativas de imagem – radiomic 

features – são extraídas da região da lesão previamente definida. Essas features 

envolvem descritores de distribuição de intensidade, relações espaciais entre os 

vários níveis de intensidade, padrões de heterogeneidade de textura, descritores de 

forma e das relações da lesão com os tecidos circundantes, numa quantidade que 

pode ultrapassar 200 características de imagem. Estas extrações são submetidas a 

um procedimento de seleção de recursos, onde são avaliados em função de sua 

informatividade, independência de outras características, reprodutibilidade e 

destaque nos dados. A etapa final analisa as características selecionadas a partir de 

modelos preditivos para o resultado (Figura 14) (LAMBIN, 2017). 
 

 

Figura 14 – Diagrama do fluxo de trabalho da Radiomics. 

 

Fonte: O autor (2023). 
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2.9 Diagnóstico de COVID-19 através de imagens de TC de pulmão 

 

 Como o vírus SARS-Cov-2 ataca os pulmões, provocando uma pneumonia, 

imagens radiológicas de pulmão, como radiografia e TC, têm sido avaliadas em 

exames que auxiliem no prognóstico e diagnóstico da doença. Por serem imagens 

de baixo contraste, dificultam a leitura pelos radiologistas, gerando por vezes falsos 

negativos no que tange diferenciar uma pneumonia causada por COVID-19 de outra 

pneumonia qualquer (HANI, 2020) (Figuras 15 e 16). Neste cenário, figura o desafio 

que consiste em detectar e caracterizar nas imagens radiológicas as características 

relevantes à patologia investigada. 

 Uma grande variedade de achados de imagens pode ser encontrada na 

COVID-19, sendo o principal na pneumonia causada pelo vírus, a presença de 

opacidades em vidro fosco, tipicamente distribuídas perifericamente e nas regiões 

subpleurais. Entretanto, este padrão de opacidade em vidro fosco associado às 

lesões podem ter origem também em processos não infecciosos, como edema 

pulmonar, derrame pleural e hemorragia alveolar (HANI, 2020). Por conseguinte, a 

correta correlação entre as lesões e suas patologias se torna um processo de difícil 

diferenciação através da inspeção visual humana das imagens de TC.  A Figura 15 

mostra 4 imagens tomográficas utilizadas para o diagnóstico de acompanhamento 

de paciente infectado com COVID-19. As imagens iniciais foram obtidas sem 

contraste antes da confirmação por teste RT-PCR e mostram padrão vidro fosco 

periférico bilateral no segmento dorsal dos lobos superiores (Figura 15A) e inferiores 

(Figura 15C) (Setas). Já as imagens realizadas com contraste (Figura 15C e Figura 

15D), obtidas 6 dias depois, para descartar a hipótese de embolia pulmonar, 

apresentam consolidações lineares típicas de um padrão de pneumonia em 

organização (pontas de seta). Outras lesões observadas são as opacidades em 

vidro fosco, associadas a secreções endobrônquicas, observada no segmento 

posterior e lateral do lobo inferior direito (Figura 16A) (seta) e mais proximalmente 

(Figura 16B) (ponta de seta).  
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Figura 15 – Imagens de TC iniciais e de acompanhamento de paciente com pneumonia devida a 

COVID-19. 

 

Fonte: HANI (2020). 

  

 

Figura 16 - Imagens de TC sem contraste de paciente com pneumonia bacteriana. 

 

Fonte: HANI (2020).  

 

 Uma tecnologia que vem apresentando resultados promissores na área de 

análise computacional de imagens radiológicas é a radiômica, que corresponde à 

área de processamento de dados computacionais que objetiva a extração de 

características quantitativas, semânticas e agnósticas, através de recursos clássicos 

do PDI e, notadamente, da utilização de inteligência artificial (IA), apesar de não ser 

um recurso clássico. 
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 De acordo com Haarburger et al (2020), a análise radiômica de imagens 

busca extrair recursos mineráveis e quantitativos de imagens médicas. Assim, com 

base nestes dados, modelos quantitativos de classificação, prognóstico e 

diagnóstico podem ser determinados, constituindo assinaturas eletrônicas para a 

patologia analisada. Apesar de inúmeras dessas terem sido desenvolvidas 

recentemente e se mostrado promissoras para a prática clínica, a introdução desta 

nova tecnologia na prática clínica esbarra nas dificuldades em extrair de forma 

reprodutível tais características, que vão desde os processos de aquisição de 

imagem até a extração final dos recursos. 

 Em suma, a utilização da radiômica possibilita, através do processamento 

computacional das imagens digitais, a extração de recursos quantificáveis, que não 

são perceptíveis à visão humana, mas que possuem correlação preditiva e 

diagnóstica com as patologias dos pacientes radiografados para análise.  

 

2.10 Reprodutibilidade de segmentações e robustez dos recursos de imagem 

 

 O caráter estocástico da variabilidade de segmentação possível para uma 

mesma imagem, devido a avaliadores distintos ou os mesmos avaliadores em 

momentos diferentes, bem como a utilização de segmentação automática por um 

algoritmo computacional, é um grande entrave à padronização da extração de 

recursos radiômicos. O estado da arte atual para este cenário apresenta esforços 

voltados para avaliar a robustez de recursos radiômicos em relação a essas 

variações, onde esses recursos não são significativamente alterados pelos desvios 

de segmentações distintas, possibilitando assim uma padronização consistente de 

recursos extraídos.  

 Haarburger et al. (2020) avaliaram em seu estudo como as diferenças de 

segmentação de tumores em imagens de TC afetam a variabilidade das 

características radiômicas. Neste contexto, as características instáveis com relação 

à variação inevitável das segmentações geram um conjunto de características que 

devem ser consideradas com cuidado. O estudo observou a robustez de recursos 

em três conjuntos de dados a saber: 1) Dados público do Lung Image Database 

Consortium (LIDC-IDR), consistindo de 1035 imagens de TC torácico helicoidal com 

lesões pulmonares para segmentação; 2) Dados de desafios KiTS, contendo 300 

imagens de TC da fase arterial tardia em tumores renais; 3) Dados do Desafio de 

segmentação do tumor do fígado (LiTS), com 201 imagens de TC de pacientes com 

tumores hepáticos. 

 Utilizaram-se dois procedimentos para as segmentações dos conjuntos de 

imagens, segmentações manuais realizadas por quatro especialistas e 

segmentações automatizadas probabilísticas usando uma rede neural (PHiSeg). O 

coeficiente de correlação intraclasse (ICC), em sua forma para medidas aleatórias 

unilaterais, foi a métrica utilizada para avaliar a robustez dos recursos nas 

segmentações. Os resultados apontaram alta concordância dos valores obtidos 
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através das segmentações dos especialistas, bem como entre os especialistas e os 

das segmentações automatizadas (PHiSeg). Desta forma, este estudo obteve 

resultados consistentes na identificação da robustez de recursos radiômicos em 

imagens de TC com relação à variabilidade de segmentação. 

   O trabalho de Pfaehler et al. (2021) comparou dois métodos de 

segmentação semiautomática baseados em IA com o Método de segmentação 

semiautomática convencional. As segmentações de referência usadas para treinar, 

validar e testar o algoritmo foram obtidas aplicando uma segmentação automática, 

ajustadas manualmente por um físico médico especialista com mais de vinte anos 

de experiência em segmentação de tumor em tomografia por emissão de pósitron 

(PET, do inglês positron emission tomography) . Esta abordagem foi escolhida 

porque foi demonstrado que a adaptação manual de um algoritmo (semi-) 

automático é mais robusta do que uma segmentação manual pura. A abordagem 

baseada em IA foi implementada com uma rede neural convolucional (CNN), 

codificada em Python 3.6 usando as bibliotecas keras e scikit-learn, nativas da 

linguagem. Sua base de dados foi composta de 96 imagens de PET/TC de pacientes 

com câncer de pulmão com NSCLC Estágio III – IV, sendo 70% dessas imagens 

utilizadas para validação cruzada quíntupla (A base de dados é dividida 

aleatoriamente em 5 subconjuntos com aproximadamente a mesma quantidade de 

amostras em cada um deles. A cada iteração, treino e teste, 4 subconjuntos são 

utilizados para treinamento e o subconjunto restante é utilizado para teste), 10% 

para validação e 20% para testes independentes. As métricas de avaliação 

utilizadas foram: 1) para a precisão da segmentação de ambas as abordagens foi 

usado o coeficiente de Jaccard (JC); 2) a repetibilidade foi avaliada com coeficientes 

de teste-reteste (TRT%) e ICC. Por fim, o estudo infere que as abordagens de 

segmentação semiautomáticas baseadas em IA avaliadas forneceram melhor 

repetibilidade do que as abordagens de segmentação convencionais. Além disso, 

ambos os algoritmos levam a segmentações precisas tanto para tumores primários 

quanto para metástases e são, portanto, bons candidatos para segmentação de 

tumor PET/TC. 

 Wang et al. (2020) realizaram um estudo retrospectivo com 266 imagens de 

TC de tórax, entre pacientes de COVID-19 e de não-COVID, mas apresentando os 

sintomas da doença, obtidas durante o surto de COVID-19 – entre 18 de janeiro de 

2020 e 30 de maio de 2020 - em três hospitais na China e nos EUA. Todas as 

lesões presentes nessas imagens foram segmentadas manualmente por quatro 

radiologistas. Uma estrutura baseada em rede bidirecional adversarial e o pacote 

PyRadiomics foram usados para treinar e extrair recursos de aprendizagem 

profunda (Deep Learning, DL) e radiômica, respectivamente. 

 Para determinar o desempenho de DL e recursos extraídos por radiômica 

foram empregados dois classificadores de amplo uso: um classificador linear, 

normalmente aplicado em aprendizagem supervisionada, e o menor encolhimento 

absoluto e operador de seleção (Lasso), frequente em avaliações de radiômica.  

Além disso, os recursos DL e radiomics foram combinados em uma única entrada 

para determinar o desempenho de cada um dos dois modelos. O desempenho do 
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modelo foi avaliado no conjunto de teste de validação, bem como no conjunto de 

validação externa. 

 A análise dos dados mostrou que as características obtidas de DL e da 

radiômica apresentaram desempenho semelhante com os classificadores linear e 

Lasso, com sensibilidade maior que 73% e especificidade maior que 75%.  Além 

disto, os recursos oriundos de DL tiveram desempenho superior, ao longo de todas 

as áreas afetadas do pulmão, no conjunto de dados de validação externa. As saídas 

de previsão gerados a partir do modelo combinado de DL e radiômica aumentaram 

ainda mais o desempenho do especialista humano. 

 

2.11 Coeficiente de Correlação Intraclasse 

 

A medição da relação bivariada entre variáveis que representam diferentes 

classes de medidas é feita em estatística através de métricas de correlação 

intraclasse, sendo o coeficiente de Pearson o mais comum, mas esse não gera 

conhecimento sobre a concordância entre as classes. Todavia, no caso específico 

onde as variáveis de uma classe comum compartilham sua métrica e variância, os 

coeficientes de correlação intraclasse são as estatísticas alternativas para medir a 

homogeneidade (MCGRAW & WONG, 1996). 

  

2.11.1 Representação dos dados: Matriz dos dados medidos 

  

Para o cálculo do ICC, os resultados das medições devem ser quantidades 

que podem ser representadas de forma significativa por um número real, ou seja, 

por dados numéricos em vez de dados categóricos. Uma descrição geral que cobre 

a maioria das situações experimentais de interesse, desde que o ICC seja aplicável, 

deve ser a seguinte: de uma população P, um número n de objetos de medição (i = 

1, 2, ..., n) são selecionados aleatória e uniformemente. Sobre esses objetos algum 

tipo de medição de uma quantidade específica x, relacionada a alguma 

característica (atributo) do objeto, é feita. Sobre cada objeto a medição é feita k 

vezes (j = 1, 2, ..., k). O resultado obtido para o objeto (i) na medição (j) é um 

número real xij (um atributo). O resultado experimental completo para todos os 

objetos e todas as medições podem então ser escritos como uma matriz com n 

linhas e k colunas, i.e., um arranjo tabular de números xij (Quadro 4) (LIJEQUIST et 

al., 2019). 
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Quadro 4 - Matriz de dados medidos com n linhas e k colunas 

Objetos Atributo 1 Atributo 2 ... Atributo k 

1 x11 x12 ... x1k 

2 x21 x22 ... x2k 

3 x31 x32 ... x3k 

... ... ... ... ... 

... ... ... ... ... 

n xn1 xn2 ... xnk 

Fonte: O autor (2023) 

 

Com relação aos dados presentes na Quadro 4, temos duas possibilidades de 

valores:  podem ser de medições únicas ou de medições médias. O modelo de 

medições únicas é aquele onde cada valor medido utilizado na análise representa 

uma única medição, enquanto no modelo de medições médias os valores são 

obtidos através da média aritmética de duas ou mais medições para cada valor de 

medida. Embora a interpretação qualitativa desses dois modelos seja diferente, eles 

são estatisticamente equivalentes (MCGRAW & WONG, 1996). 

 

2.11.2 Caracterizando os ICCs 

 

O ICC é um estimador de confiabilidade baseado na análise de variâncias, 

cuja relação básica é a razão entre a variância específica de interesse da análise e a 

variância total associada ao experimento. Os parâmetros e condições para a 

determinação dessas variâncias e do próprio ICC são determinados por duas 

classificações relativas ao experimento a saber: o tipo de efeito analisado, 

caracterizando os modelos de efeitos fixos e de efeitos mistos, e a fonte sistemática 

de variância, compreendendo os modelos de uma-via e de duas-vias. Por fim, a 

cada modelo ainda pode ser atribuída a especificidade de medição para consistência 

ou concordância absoluta entre as medidas (CALEGARE, 2009). 

No modelo de efeitos aleatórios (Random effects model), os objetos de 

avaliação são escolhidos aleatoriamente, como num sorteio por exemplo, dentre 

uma grande população de objetos disponíveis igualmente prováveis. Neste caso, as 

conclusões obtidas no experimento podem sem estendidas a toda a população 

pertencente ao grupo de objetos participantes do ensaio (CALEGARE, 2009).  

No modelo de efeitos fixos (fixed effects model) o pesquisador escolhe a priori 

os objetos de avaliação a serem utilizados no experimento. Nesse modelo, as 

conclusões não podem ser estendidas para além dos objetos escolhidos. Por 
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exemplo, considere que um avaliador deseja medir o desempenho de trabalhadores 

em uma construção e resolveu fazer um experimento com 4 pedreiros: João, Paulo, 

Severino e José. Desse modo, as conclusões obtidas se aplicam somente a esses 

pedreiros, não devendo ser extrapoladas para outros objetos além dos escolhidos. 

No caso de modelos estatísticos que possuem efeitos aleatórios, além dos efeitos 

fixos, a denominação é modelo de efeitos mistos (mixed effects model) (CALEGARE, 

2009). 

O modelo de uma-via de variação (one-way model) compreende apenas os 

efeitos aleatórios e está definido quando a variável de linha aleatória representa a 

única fonte sistemática de variância, isto é, o caso onde os dados são coletados de 

forma que sua ordenação em j (Quadro 4) é irrelevante. Em outras palavras, cada 

uma das j medições associadas ao experimento possuem o mesmo grau ou 

probabilidade de erro sistemático (MCGRAW & WONG, 1996). 

O modelo de duas-vias de variação (two-way model) existe quando, além da 

fonte sistemática de variação presente ao longo das linhas, há também uma 

associada às colunas. É o caso em que as k (Quadro 4) medidas por objeto diferem 

por alguma das formas. Por exemplo, caso as colunas representem questões em 

uma avaliação, as questões podem diferir em níveis de dificuldade, gerando assim 

uma fonte separável de variação. Esse tipo de modelo é delineado por blocos 

aleatórios, nos quais a variável coluna é cruzada com a variável linha (MCGRAW & 

WONG, 1996).  

A correlação entre as medidas representa a variação conceitual entre os 

modelos de uma-via e duas-vias. A característica final a ser considerada é essa 

variação conceitual, denominada variável de coluna, que gera uma distinção na 

forma como se apresenta o denominador da equação geral que define o ICC. 

Enquanto que para o modelo de duas-vias há as componentes de variação relativas 

às linhas e às colunas, no modelo de uma-via há apenas a componente de variação 

das linhas. Neste contexto, o modelo de uma-via é utilizado apenas para determinar 

a consistência entre as medidas avaliadas no ICC, enquanto ao modelo de duas-

vias, além da consistência há também a fórmula da concordância (absoluta) 

(MCGRAW & WONG, 1996).  

Em conformidade com as diferenciações acima expostas, são obtidos cinco 

modelos distintos para a determinação do ICC, podendo o conjunto de medições ter 

sido obtido de medidas únicas ou de medidas médias. Usando a notação com 

parênteses de McGraw and Wong (1996), o índice 1 refere-se a um experimento de 

medidas únicas. No caso de se ter um experimento de medidas médias, o índice 1 é 

substituído por k. Sumarizando, têm-se os modelos (Quadro 5): 

• ICC (1, consistência): Modelo de Efeitos Aleatórios Unidirecionais 

para avaliar a consistência entre as medidas; 

• ICC (C, 1, consistência): Modelo de Efeitos Aleatórios Bidirecionais 

para avaliar a consistência entre as medidas; 

• ICC (A, 1, concordância): Modelo de Efeitos Aleatórios Bidirecionais 

para avaliar a concordância absoluta entre as medidas; 
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• ICC (C, 1, consistência): Modelo de Efeitos Mistos Bidirecionais para 

avaliar a consistência entre as medidas; 

• ICC (A, 1, concordância): Modelo de Efeitos Mistos Bidirecionais para 

avaliar a concordância absoluta entre as medidas. 

 

 

Quadro 5 - Equações dos modelos de ICCs 

ICC (1, consistência) = [MSR – MSW] / [MSR + (k – 1) MSW] 
 
ICC (C, 1, consistência) = [MSR – MSE] / [MSR + (k – 1) MSE] 
 

ICC (A, 1, concordância) = [MSR – MSE] / [MSR + (k – 1) MSE + 
𝐤

𝐧
 (MSC – MSE)] 

 
ICC (C, 1, consistência) = [MSR – MSE] / [MSR + (k – 1) MSE] 
 

ICC (A, 1, concordância) = [MSR – MSE] / [MSR + (k – 1) MSE + 
𝐤

𝐧
 (MSC – MSE)] 

 
Fonte: O autor (2023). 

 

 

 

2.11.3 Tratamento estatístico dos dados e construção matemática dos modelos 

de ICCs 

 

Para a obtenção das equações matemáticas dos modelos de ICCs é 

necessário realizar uma análise de variância (ANOVA) na matriz de dados medidos, 

de acordo com as diversas fontes de variação das medidas caracterizadas no item 

2.11.2, resultando no cálculo das várias possibilidades de somas de quadrados 

envolvendo as linhas e colunas dessa matriz, e, a partir dessas somas, a obtenção 

dos seguintes quadrados médios (MS – Mean Squares) (Quadro 6):  

• quadrado médio para linhas: MSR – Mean Square for rows; 

• quadrado médio para colunas: MSC – Mean Square for Columns; 

• quadrado médio para fontes residuais de variância: MSW – Mean Square for 

residual sorces of variance; 

• erro quadrático médio: MSE – Mean Square error. 
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Quadro 6 – Fórmulas para os cálculos dos quadrados médios em função das somas de quadrados 

para os modelos de ICC apresentados no item 2.11.2 

Modelo Quadrados Médios  

ICC(1, consistência)  

Entre linhas (r) MSR = kσ2
r + σ2

w 

Interiormente às linhas (w) MSW = σ2
w 

ICC(C, 1, consistência)  

Entre linhas (r) MSR = kσ2
r + σ2

e 

Interiormente às linhas (w) MSW = σ2
c + σ2

e 

Entre colunas (c) MSC = nσ2
c + σ2

e 

Erro (e) MSE = σ2
e 

ICC(A, 1, concordância)  

Entre linhas (r) MSR = kσ2
r + σ2

rc + σ2
e 

Interiormente às linhas (w) MSW = σ2
c + σ2

rc + σ2
e 

Entre colunas (c) MSC = nσ2
c + σ2

rc + σ2
e 

Erro (e) MSE = σ2
rc + σ2

e 

ICC(C, 1, consistência)  

Entre linhas (r) MSR = kσ2
r + σ2

e 

Interiormente às linhas (w) MSW = Ɵ2
c + σ2

e 

Entre colunas (c) MSC = nƟ2
c + σ2

e 

erro (e) MSE = σ2
e 

ICC(A, 1, concordância)  

Entre linhas (r) MSR = kσ2
r + σ2

e 

Interiormente às linhas (w) MSW = Ɵ2
c + 

k

k−1
σ2

rc + σ2
e 

Entre colunas (c) MSC = nƟ2
c + 

k

k−1
σ2

rc + σ2
e 

Erro (e) MSE = 
k

k−1
σ2

rc + σ2
e 

Fonte: O autor (2023). 
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Não existe padronização dos valores de ICC para inferir confiabilidade 

aceitável. No entanto as sugestões de autores como Pfaehler et al. (2021), Aslan et 

al. (2022), Wang et al. (2021) e Cheng et al. (2019), convergem e podem ser bem 

representadas pela notação proposta por KooL and Li (2016), onde se tem valores 

de ICC inferiores a 0,5, que são indicativos de baixa correlação, valores entre 0,5 e 

0,75 indicando correlação moderada, valores entre 0,75 e 0,9, boa correlação e, 

para valores superiores a 0,9, excelente correlação. 

 

2.11.4 Selecionando um ICC apropriado 

  

Tendo como referência as qualificações discutidas no item 2.11.2, o 

fluxograma proposto por McGraw and Wong, 1996 (Figura 17) serve de guia para a 

seleção adequada do ICC. Tendo as respostas para o modelo de efeitos, tipo de 

efeitos, medições e conceito, é só seguir horizontalmente, da esquerda para a direta, 

o fluxograma até finalmente encontrar o modelo específico desejado. 

 

Figura 17 - Fluxograma para a seleção de um ICC apropriado. 

 
Fonte: O autor (2022). 
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3 MATERIAL E MÉTODOS 

  

O presente trabalho é um segmento do projeto de pesquisa intitulado 

“Desenvolvimento e validação de software para diagnóstico de COVID-19 baseado 

em Tomografia Computadorizada, Radiômica e Inteligência Artificial”, sob a 

coordenação do Laboratório de Pesquisa em Infectologia (LAPI) do HUPES/UFBA, 

com aprovação no Comitê de Ética em Pesquisa (CAAE: 36624620.0.0000.0049).  

A primeira etapa do fluxograma de trabalho da análise radiômica é a 

aquisição das imagens médicas para as avaliações. Nessas imagens foram 

delineados manualmente as regiões de interesse. Em seguida, partindo das regiões 

de interesse foram extraídos os valores dos atributos radiômicos. Por fim, os 

atributos extraídos foram avaliados com relação a robustez entre-avaliadores. As 

etapas deste trabalho são apresentadas no fluxograma da Figura 18. 

 
 

Figura 18 - Fluxograma da análise radiômica. 

 
Fonte: O autor (2022). 

 

 

3.1 Aquisição das Imagens 

 

 As imagens de TC de tórax dos pacientes com diagnóstico positivo para 

COVID-19 foram obtidas do Hospital Universitário da Universidade Federal de Juiz 

de Fora (HU-UFJF), tendo a pesquisa na referida instituição sido aprovada por sua 

comissão de ética (4.926.688), conforme Parecer Consubstanciado do CEP 

constante no ANEXO A. As características de aquisição de imagens do equipamento 

tomográfico utilizado na obtenção das imagens são apresentadas no Quadro 7. 
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Quadro 7 - Características do tomógrafo 

Fabricante Modelo Espessura da fatia Energia Corrente do tubo Núcleo 

Siemens Emotion 6 1.25 mm 130 kVp 61-240 B30s 

Fonte: O autor (2022). 

 

 

 

 Os pesquisadores do HU-UFJF selecionaram os exames de TC de tórax de 

pacientes com confirmação da COVID-19 via teste RT-PCR, retrospectivamente no 

período compreendido entre abril de 2020 e abril de 2021. Como critérios de 

exclusão foram utilizados: imagens com má qualidade; lesões com áreas pequenas 

ou imperceptíveis e ausência de teste RT-PCR confirmando a COVID-19.  

3.2 Segmentação das ROIs de Interesse e Extração dos Atributos Radiômicos 

 

As segmentações foram obtidas por dois avaliadores humanos 

independentes, a Drª Thamiris Rosado Reina, médica radiologista, e Krsna Murari de 

Albuquerque Rodrigues, autor desta monografia, utilizando a metodologia manual. 

As regiões de interesse foram delineadas por ambos utilizando se a aplicação 

computacional LIFEx, versão 6.30 (www.lifexsoft.org). O LIFEx é um software de 

extração de atributos, que recebe como entrada o conjunto de imagens de uma TC e 

retorna atributos radiômicos calculados nas ROIs delimitadas por seus operadores. 

A Figura 19 é uma captura de tela da interface de segmentação de ROIs do LIFEx, 

obtida pelo autor desta pesquisa. Essa interface permite ao avaliador o contorno das 

ROIs fatia por fatia em cada um dos planos anatômicos, gerando pela combinação 

dessas ROIs, um volume de interesse (VOI – do inglês volume of interest). 

 

 
 

http://www.lifexsoft.org/
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Figura 19 - Interface para segmentação de imagem do software LIFEx v.6.30 

 
Fonte: O autor (2022). 

 

 Após a conclusão da etapa de segmentação, os VOIs obtidos seguiram para 

a fase da extração dos atributos radiômicos no próprio LIFEx. Houve um ajuste de 

parâmetros de processamento aplicado a nível volumétrico (3D). Assim, a grade da 

máscara matricial foi parametrizada para voxels de dimensão 1x1x2 mm3, enquanto 

que a amplitude da discretização de intensidades dos voxels foi dimensionada para 

128 níveis de tons de cinza. Os atributos radiômicos extraídos compuseram 

planilhas com três classes de atributos: os Atributos de Primeira Ordem, os de 

Segunda Ordem e os de Forma. 

 

3.3 Avaliação da Robustez dos Atributos Radiômicos 

 

Para a avaliação da robustez dos atributos radiômicos foi utilizada a 

estatística Coeficiente de Correlação Intraclasse sobre as planilhas destes dados 

obtidas. O critério utilizado neste trabalho para aceitar a robustez é possuir um ICC 

superior a 0,5. 

Os ICCs foram obtidos pelo autor deste trabalho utilizando o software IBM 

SPSS Statistics (Versão 25), segundo a configuração: 

• Estatística de Análise de Confiabilidade: ICC. 

• Configuração do ICC: 

- Modelo: Misto Bidirecional; 

- Tipo: Concordância Absoluta; 

- Intervalo de Confiança: 95%; 

- Valor de Teste: 0. 
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4 RESULTADOS E DISCUSSÃO 

  

As imagens de TC de tórax de pacientes com COVID-19 foram segmentadas 

manualmente por dois avaliadores independentes, a Drª radiologista Thamiris Reina 

e o próprio autor deste estudo, ambos utilizando o software LIFEx(Versão 6.3). Esse 

mesmo software foi usado pelo autor para a extração dos atributos radiômicos das 

ROIs obtidas de ambos os conjuntos de segmentações. Por fim, o autor submeteu 

os resultados dessas extrações para os cálculos dos ICCs utilizando-se do software 

IBM SPSS Statistics (Versão 25).  

O autor gerou, utilizando o software Microsoft Office Excel (Versão 2019), 

gráficos de colunas agrupadas duas a duas, comparando os valores das extrações 

dos atributos de imagem referentes as segmentações de ambos os avaliadores que 

executaram a etapa da segmentação, obtendo as Figuras 20, 21 e 22. Para melhor 

visualização dos dados, devido à alta amplitude de valores obtidos nos diversos 

atributos, foi utilizada a notação científica, tendo suas potências decimais suprimidas 

da representação gráfica e indicadas entre colchetes juntamente com o rótulo 

indicativo do atributo. A Figura 20.a e Figura 20.b apresentam os gráficos referentes 

aos valores obtidos para os atributos de forma e atributos de primeira ordem, 

respectivamente. A Figura 21 é a apresentação gráfica dos valores obtidos para os 

atributos de segunda ordem. 

A comparação entre os valores dos atributos de forma referentes a ambos os 

avaliadores, ilustrada na Figura 20.a, mostra em sua maioria uma baixa correlação. 

Estes resultados refletem as dificuldades de replicações de VOIs com altos graus de 

similaridade, quando o parâmetro para os contornos é baseado na percepção e 

acuidade visuais humanas. Notadamente, observa-se correlação praticamente nula 

nos atributos que determinam o volume em mL (SHAPE_Volume(mL)) e a 

compacidade (SHAPE_Compacity) dos VOIs, e correlação visualmente abaixo dos 

50% para o volume em voxel (SHAPE_Vlomume(vx)) e área de superfície 

(SHAPE_Surface(mm2)). Já o atributo esfericidade (SHAPE_Sphericity) apresenta 

uma boa correlação, demostrando que os avaliadores independentes obtiveram 

concordância relevante no quesito de terem aplicado contornos semelhantes, isto é, 

com variabilidades aceitáveis, em torno das lesões segmentadas. 

 As comparações dos valores dos atributos de primeira ordem na Figura 20.b 

apresentam em sua maioria boas correlações. Como esta categoria de atributos é 

obtida de histogramas de níveis de cinza, conclui-se então que os conteúdos das 

frequências dos níveis de cinza dentro das VOIs segmentadas estão bem 

correlacionados. Uma análise visual do conteúdo da Figura 20.b apresenta os 

seguintes atributos com alta correlação: intensidade mínima dos HUs 

(CONVENTIONAL_Humin), intensidade média do HU (CONVENTIONAL_Humean), 

desvio padrão de intensidade dos HUs (CONVENTIONAL_Hustd), intensidades dos 

primeiro quartil do HUs (CONVENTIONAL_HUQ1), intensidades dos segundo quartil 

do HUs (CONVENTIONAL_HUQ2), intensidades do terceiro quartil dos HUs 

(CONVENTIONAL_HUQ3), curtose de intensidades (CONVENTIONAL_HUKurtosis); 

e os bem correlacionados: intensidade máxima dos HUs 
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(CONVENTIONAL_Humax), distorção de intensidades dos HUs 

(CONVENTIONAL_HUSkewness). Todavia, o único atributo desta classe com 

correlação abaixo de 50% foi o excesso de curtose de intensidades dos HUs 

(CONVENTIONAL_HUExcessKurtosis), que evidencia uma não similaridade no 

achatamento das caudas dos histogramas das distribuições de intensidade de HUs 

referentes aos dois avaliadores. 

 

Figura 20 – Valores dos Atributos de Forma e de Primeira Ordem 

 

Fonte: O AUTOR (2022). 

 

A Figura 21 ilustra graficamente a comparação dos valores de vinte e nove 

atributos de segunda ordem (ou atributos de textura) obtidos para os dois 

avaliadores deste estudo. A inspeção visual revela o atributo uniformidade de pares 

de voxels em NC (GLCM_Energy) com correlação praticamente nula, enquanto 

foram obtidas excelentes correlações para: dependência linear de NC no GLMC 

(GLMC_Correlation), distribuição dos trechos longos na imagem (GLRLM_LRE), 

diferença de intensidades entre as zonas vizinhas (NGLDM_Contrast) e distribuição 

das zonas homogêneas curtas (GLZLM_SZE). Com correlações ao redor dos 50%, 

obtiveram se: aleatoriedade dos pares de voxels em NC (GLMC_Entropy), 

distribuição dos trechos curtos na imagem (GLRLM_SRE), homogeneidade das 

séries homogêneas (GLRLM_RP), distribuição das execuções de NC baixo 

(GLRLM_LGRE), distribuição das execuções longas homogêneas com NC altos 

(GLRLM_LRHGE) e distribuição das zonas de baixo NC (GLZLM_LGZE). 
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Figura 21 – Valores dos Atributos de Segunda Ordem 

 

Fonte: O AUTOR (2022). 

 

 

 Os valores obtidos para a métrica ICC entre os valores das medidas dos 

atributos supra apresentados estão condensados e ilustrados no gráfico da Figura 

22. Para melhorar a acuidade visual da apresentação gráfica, quatro valores foram 

suprimidos da apresentação na escala vertical e indicados entre colchetes 

juntamente com o rótulo indicativo do atributo, são eles: CONVENTIONAL_HUQ3[-

7,693] na sétima coluna, SHAPE_Volume[-4,4] na décima primeira coluna, 

GLRLM_GLNU[-2,6] na trigésima primeira coluna e GLZLM_LZLGE[85,4] na 

quadragésima terceira coluna – esses valores representam outliers e estão sendo 

apresentados para servirem de referência a trabalhos posteriores. Como os 

resultados de relevância para o presente trabalho são os atributos que apresentaram 

ICCs maiores do que 0,5, infere-se do gráfico apresentado na Figura 22 os 

seguintes atributos de interesse: GLZLM_LGZE, GLZLM_SZE, NGLDM_Contrast, 

GLRLM_LRHGE, GLRLM_LGRE, GLRLM_LRE, GLCM_Correlation, 

CONVENTIONAL_HUExcessKurtosis, CONVENTIONAL_HUstd, 

CONVENTIONAL_HUmean. 
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Figura 22 – Valores dos ICCs 

 

Fonte: O AUTOR (2022). 

 

 

De acordo com a notação de Koo and Li (2016) e o critério de robustez aceito 
neste trabalho (ICC > 0,5), os ICCs apresentados na Figuras 22 classificam os 
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atributos robustos como de moderada correlação, de boa correlação ou de excelente 
correlação (Tabela 1). 

 

 

Tabela 1 - Classificação da correlação dos atributos considerados robustos 

Atributo Correlação Moderada (0,50 < ICC < 0,75) 
CONVENTIONAL_HUExcessKurtosis 0,723 

GLRLM_LRE 0,601 
GLRLM_LGRE 0,69 

GLRLM_LRHGE 0,716 
GLZLM_LGZE 0,649 

Atributo Correlação Boa (0,75 < ICC < 0,90) 
GLCM_Correlation 0,801 
NGLDM_Contrast 0,752 

GLZLM_SZE 0,89 
Atributo Correlação Excelente (ICC > 0,90) 

CONVENTIONAL_HUmean 0,906 
CONVENTIONAL_HUstd 0,938 

Fonte: O autor (2023). 

 

Wu et al. (2020) construíram dois modelos prognósticos para a COVID-19, um 
de faze inicial, denominado RadScore_earlyphase, e um de fase tardia, denominado 
RadScore_latephase, baseados em atributos radiômicos extraídos de TC de tórax 
de pacientes com COVID-19. As imagens foram segmentadas de forma automática 
através do modelo DenseNet121-FPN, construído para este fim, enquanto os 
atributos radiômicos foram extraídos com o software PiRadiomics (Versão 2.20). 

A correlação intraclasse de 107 atributos foi avaliada com o software R 
(Versão 3.5.1), sendo considerados robustos os atributos com valores de ICC > 0,9. 
O Quadro 8 contém uma lista dos atributos selecionados para a composição dos 
modelos de fase inicial e tardia supracitados.  Comparando com os resultados 
obtidos neste trabalho, dois dos atributos classificados como robustos também o 
foram por Wu et al. (2020): o GLCM_Correlation (ICC = 0,801) e o GLRLM_LRHGE 
(ICC = 0,716). 

 

Quadro 8 – Atributos radiômicos robustos nos modelos prognósticos do trabalho de Wu et al. (2020) 

Modelo RadScore_earlyphase Modelo RadScore_latephase 

SHAPE_Sphericity SHAPE_Flatness 

GLCM_ClusterShade SHAPE_Sphericity 

GLMC_Correlation FIRSTORDER_10Percentile 

GLRLM_LRHGE FIRSTORDER_Minimum 

NGTDM_Complexity NGTDM_Complexity 

Fonte: O AUTOR (2022). 
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De imagens tomográficas de tórax de pacientes com COVID-19, segmentadas 

manualmente por dois radiologistas independentes, utilizando o software ITK-SNAP, 

Xie et al. (2021) obtiveram os atributos radiômicos a partir do software AK (Artificial 

Intelligence Kit, GE Healthcare), para a geração do modelo de predição baseado em 

radiômica denominado rad-score.  

A avaliação da reprodutibilidade dos atributos radiômicos foi medida pelo ICC, 

obtido via pacote ‘Desc-Tools’, e foram considerados reprodutíveis, sendo 

selecionados para compor o referido modelo, os atributos com ICC > 0,75. O Quadro 

9 é composto por uma lista contendo os atributos selecionados no projeto de Xie et 

al. O presente trabalho possui um atributo robusto listado nesse rad-score, o 

GLRLM_LRHGE (ICC = 0,716), nomeada nesse trabalho de Xie simplesmente por 

LongRunHighGreyLevelEmphasis.  

 

Quadro 9 – Atributos radiômicos reprodutíveis do modelo rad-score do trabalho de Xie et al. (2019) 

Atributos radiômicos componentes do modelo rad-score 

GLCM_Entropy 

VoxelVolume 

MajorAxisLength 

Run-LengthNonuniformity 

sumAverage 

HaraEntropy 

LongRunHighGreyLevelEmphasis 

Fonte: O autor (2023). 

 

 Cheng et al. (2020) propuseram um nomograma baseado em atributos 
radiômicos de imagens tomográficas para predição do prognóstico de COVID-19. As 
imagens foram delineadas manualmente por dois radiologistas independentes 
utilizando a radiomics cloud platform V.3.1.0 (http://radcloud.cn/, Huiying Medical 
Technology Co., Ltd, Beijing, China). Já a extração dos atributos radiômicos foi 
realizada por modelos construídos com três classificadores baseados em 
aprendizagem de máquina: k-NearestNeighbor (KNN), Support Vector Machine 
(SVM) e Logistic Regression (LR). 
 

Foram selecionados para compor o nomograma os atributos considerados 
como de boa concordância, com ICC > 0,75, e sendo denominados Rad-score. O 
Quadro 10 lista os atributos que foram julgados adequados para a composição do 
referido nomograma. Em concordância o este trabalho, tem-se o atributo 
GLRLM_LGRE (ICC = 0,69) (wavelet-HLL glrlm LowGrayLevelRunEmphasis, no 
trabalho de Cheng. et al., 2020). 
 

 

http://radcloud.cn/
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Quadro 10 - Composição do rad-score do nomograma do trabalho de Cheng et al. (2020) 

Atributos radiômicos componentes do rad-score 

original_firstorder_Range 

squareroot_firstorder_RootMeanSquared 

square_firstorder_RobustMeanAbsoluteDeviation 

wavelet-LLH_firstorder_TotalEnergy 

exponencial_firstorder_90Percentile 

wavelet-LHH_firstorder_Maximum 

wavelet-LLL_fiestorder_Range 

squareroot_glszm_SmallAreaHighGrayLevelEmphasis 

logarithm_glszm_SmallAreaHighGrayLevelEmphasis 

wavelet-HLL_glszm_HighGrayLevelZoneEmphasis 

wavelet-HLL_glrlm_ShortRunLowGrayLevelEmphasis 

wavelet-HHL_glcm_Imc1 

wavelet-LLH_glrlm_ShortRunLowGrayLevelEmphasis 

original_glszm_SmallAreaHighGrayLevelEmphasis 

wavelet-HLL_glrlm_LowGrayLevelRunEmphasis 

Fonte: O autor (2023). 

 

  

 É válido observar que os valores de ICC dos atributos classificados como 
robustos neste trabalho, quando comparados com os valores dos mesmos achados 
em trabalhos anteriores, foram sempre menores. Este fato pode ser avaliado como 
um indicador para análise das limitações do método proposto e das ferramentas 
utilizadas. 

Todos os atributos de forma foram classificados como de baixa concordância 

inter-avaliador, o que enfatiza o fato de as segmentações manuais, obtidas a partir 

da avaliação visual dos observadores sobre as imagens de TC, apresentarem 

variabilidades não reprodutíveis devido à não possibilidade de normalização dos 

parâmetros inerentes a acuidade dos mecanismos do processo de observação 

humana. 

 Já os atributos de segunda ordem distribuíram se ao longo de todas as faixas 

de classificação, representando, dentre todos os atributos classificados como de 

moderada, boa e excelente da percepção visual humana inter-avaliador supracitada. 
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 Foram dos atributos de primeira ordem que figuraram os únicos 
representantes classificados como de excelente concordância, sendo eles o valor 
médio e o valor padrão das intensidades dos pixels, respectivamente. Confrontando 
o conceito desses atributos com o conceito de textura e a percepção visual humana, 
pode-se justificar a robustez obtida nesses atributos devido ao fato de os valores 
médio e padrão de uma textura serem mais perceptíveis, por representarem 
quantificadores globais, e não locais, para cada área de textura observada. 

 

 

5 CONCLUSÃO 

 

 O presente trabalho obteve um conjunto de atributos radiômicos considerados 
robustos em relação ao quesito variância de segmentação de lesões, conforme a 
estatística ICC. Em virtude de vários desses atributos terem sido classificados 
também como tal em trabalhos anteriores, conclui-se que a busca por assinaturas de 
atributos radiômicos para diagnóstico de COVID-19 baseado em TC de tórax é uma 
realidade próxima. Consequentemente, para a implementação desta tecnologia de 
predição é necessário um computador digital munido de um software para 
segmentação de imagens de TC e extração de atributos, como o LIFEx ou 
PiRadiomics. Por fim, o resultado do diagnóstico será obtido em função dos valores 
dos preditores presentes na assinatura radiômica, os quais devem estar dentro de 
um intervalo de valores padrão que se correlacionem positivamente com a patologia.  
 

Demonstrou-se neste trabalho a existência de um conjunto de atributos 

radiômicos que satisfazem as condições de robustez baseadas no índice ICC, 

sugerindo que modelos de predição para COVID-19 tendo como referência uma 

assinatura radiômica podem ser construídos no futuro, integrando um sistema 

automatizado de diagnóstico. 

As perspectivas geradas pelos resultados deste trabalho, em conformidade 

com pesquisas anteriores, é a confirmação do potencial que o uso da IA possui para 

a extração de atributos de imagens médicas e diagnóstico de predição de patologias 

a partir da análise e classificação dessas imagens. 
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ANEXO A – PARECER CONSUBSTANCIADO DO CEP 
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