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ABSTRACT

The fractional Fourier transform (FrFT) is a tool for analyzing non-stationary signals, associated
with rotations of signal representations through energy distributions in the time-frequency plane.
The main numerical algorithm for computing the FrFT is derived from its integral definition
and, through sampling, produces a form of discrete FrFT (DFrFT). This thesis focuses on the
study of this type of DFrFT and chirp signals, both of which are relevant in various modern
systems. There are two chirp-based decompositions for computing the DFrFT: (i) one using
chirp convolution and (ii) another relying solely on a discrete Fourier transform (DFT); both
are typically implemented via fast Fourier transform (FFT) algorithms. The first contribution
of this thesis is the implementation of a simplified FrFT(SmFrFT), with variable frequency
scaling, in normalized domains. It is demonstrated that SmFrFT, being a particular case of
canonical linear transforms, exhibits distinct properties compared to conventional FrFT and offers
advantages in chirp signal processing; the reduction in the number of complex multiplications
is approximately 77%. The second contribution of this thesis consists of the reformulation of
the previously mentioned chirp convolution as a circular convolution, represented over the ring
of integers modulo 2b + 1. In this context, an algorithm for computing partial points of an
N -point DFrFT based on a 2D convolution scheme is introduced; in this case, it is possible to
reduce computational complexity by at least 4N multiplications by employing local circular
convolution instead of its global version. This approach includes the use of the Fermat Number
Transform (FNT), for which local input and output optimizations are proposed to avoid operations
involving zero values and to compute only the points of interest. Numerical simulations, including
applications in radar echo modeling, are presented to validate the effectiveness of the proposed
algorithm. As a final contribution, the SmFrFT is applied to direction-of-arrival (DoA) estimation
of wideband chirp signals in scenarios involving one or multiple targets using a uniform linear
array. The multi-target case is reformulated as a multi-line fitting problem. In this context,
two innovative approaches are considered: piecewise slope fitting and line detection in the
Hough space. Numerical simulations demonstrate that both methods achieve low computational
complexity. However, for high-precision scenarios, the ESPRIT algorithm with spatial smoothing,
incorporating the discrete SmFrFT, is recommended, where a novel preprocessing step—a peak-
alignment procedure in the fractional Fourier domain—is introduced.

Keywords: Fractional Fourier transform. Fermat number transform. Direction-of-arrival estima-
tion. Multi-line fitting. Wideband linear chirp.



RESUMO

A transformada fracionária de Fourier (FrFT, do inglês fractional Fourier transform) é uma
ferramenta para análise de sinais não estacionários, associada a rotações da representação de
sinais por meio de distribuições de energia no plano tempo-frequência. O principal algoritmo
numérico para cálculo da FrFT parte da definição integral dessa transformada e, empregando
amostragem, produz uma espécie de FrFT discreta (DFrFT). Esta tese é centrada no estudo deste
tipo de DFrFT e em sinais chirp, ambos relevantes em diversos sistemas modernos. Existem
duas decomposições baseadas em modulações chirp para cálculo da DFrFT: (i) uma utilizando
convolução chirp e (ii) outra usando apenas uma transformada discreta de Fourier (DFT, do
inglês discrete Fourier transform); ambas geralmente implementadas por meio de transformadas
rápidas de Fourier (FFT, do inglês fast Fourier transform). A primeira contribuição desta tese
é a implementação de uma FrFT simplificada (SmFrFT), com escalonamento de frequência
variável, em domínios normalizados. Demonstra-se que a SmFrFT, sendo um caso particular
das transformações lineares canônicas, exibe propriedades distintas em comparação à FrFT
convencional e oferece vantagens no processamento do sinal chirp; com uma redução no número
de multiplicações complexas que pode atingir aproximadamente 77%. A segunda contribuição
desta tese consiste na reformulação da convolução chirp mencionada anteriormente como uma
convolução circular, representada sobre o anel dos inteiros módulo 2b + 1. Nesse contexto,
é apresentado um algoritmo para calcular pontos parciais de uma DFrFT de N pontos com
base em um esquema de convolução 2D; nesse caso, é possível reduzir a complexidade do
cálculo em pelo menos 4N multiplicações ao utilizar convolução circular local em vez da sua
versão global. Essa abordagem inclui o uso a transformada numérica de Fermat (FNT, do inglês
Fermat number transform), para o qual são propostas otimizações locais de entrada e saída, a
fim de evitar operações com valores nulos e calcular apenas os pontos de interesse. Simulações
numéricas, incluindo aplicações em modelagem de eco de radar, são apresentadas para verificar
a eficácia do algoritmo proposto. Como contribuição final, a SmFrFT é aplicada à estimação
da direção de chegada (DoA, do inglês direction-of-arrival) de sinais chirp de banda larga
em cenários com um ou múltiplos alvos, utilizando um arranjo linear uniforme. O caso com
múltiplos alvos é reformulado como um problema de ajuste de múltiplas retas. Nesse contexto,
duas abordagens inovadoras são consideradas: ajuste de inclinação por partes e detecção de retas
no espaço de Hough. As simulações numéricas demonstram que ambos os métodos apresentam
baixa complexidade computacional. No entanto, para cenários de alta precisão, recomenda-se
o algoritmo ESPRIT com suavização espacial, que incorpora a SmFrFT discreta, no qual uma
nova etapa de pré-processamento—um procedimento de alinhamento de picos no domínio da
transformada de Fourier fracionária—é proposta.

Palavras-chaves: Transformada fracionária de Fourier. Transformada numérica de Fermat.
Estimativa da direção de chegada. Ajuste de múltiplas retas. Chirp linear de banda larga.
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1 INTRODUCTION

In Engineering, the Fourier transform (FT) constitutes one of the fundamental mathe-
matical tools for signal processing and analysis. Basically, the so-called ordinary FT allows a
signal, originally represented as a variation of amplitude over time, to be expressed in terms of
its frequency components. However, such a possibility becomes unsuitable for processing non-
stationary signals, for which local time-frequency characteristics are essential. To address this
limitation, alternative mathematical tools–such as the fractional Fourier transform (FrFT)–have
been developed. The FrFT provides a more flexible representation by enabling a continuous tran-
sition between the time and frequency domains, making it particularly effective for processing
signals whose frequency content evolves over time. In brief, the operator related to a fractional
Fourier transform corresponds to a non-integer power of the operator related to the ordinary
Fourier transform. To be more specific, in research carried out in the areas of Mathematics and
Physics at the beginning of the twentieth century, Wiener (1929) led the Fourier developments to
fractional order and Condon (1937) related such a possibility to rotations about a fixed point of
the signal representation in the time-frequency plane. After that, FrFT only returned to the scene
in the 1980s, when the concept of the fractional-order Fourier transform was formally introduced
by Namias (1980). In recent years, it has found applications in optical engineering (HRICHA;
YAALOU; BELAFHAL, 2020; DAI et al., 2021), sound classification (ABDUH et al., 2020;
TAN et al., 2022), biomedical signal processing (PANAHI; RASHIDI; SHEIKHANI, 2021),
image encryption (FARAH et al., 2020; ZHANG et al., 2021), communications (ZHANG et
al., 2021; JIA et al., 2022), radar (FANG et al., 2019; PETROV; YAROVOY, 2022), among
others (GORBUNOV; DOLOVOVA, 2022; NIEWELT et al., 2023).

In practical scenarios, analytical methods are not used to calculate the FrFT; instead,
numerical algorithms are used (SU; TAO; KANG, 2019). A class of algorithms relies on
representing the operator as a numerical integration over discrete variables, leading to a sampling-
type discrete FrFT (DFrFT). This, in turn, can be decomposed into computational steps involving
ordinary discrete FT (DFT) and its standard fast algorithms (FFT, fast Fourier transforms).
These algorithms are based on decomposition and decimation (DUHAMEL; VETTERLI, 1990).
Although often credited to Cooley and Tukey, the origins of decimation techniques for DFT
date back to Carl Friedrich Gauss, who in 1805 devised an efficient method for evaluating
trigonometric sums–later recognized as a precursor to modern FFT algorithms (HEIDEMAN;
JOHNSON; BURRUS, 1984). The breakthrough occurred in 1965, when Cooley and Tukey
formalized such an algorithm (COOLEY; TUKEY, 1965), reducing the computational complexity
of the DFT from O(N2) to O(N logN). It has become considered one of the most important
numerical algorithms of our time (STRANG, 1994).

The algorithm most widely used for the aforementioned type of DFrFT is the one
proposed in (OZAKTAS et al., 1996); the corresponding quadrature formula is decomposed into
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an inner chirp multiplication, a chirp convolution, and an outer chirp multiplication (CM–CC–
CM). The algorithmic complexity of this method is O(N log2N). This form of decomposition
plays an important role in the implementation of linear canonical transforms (KOC et al.,
2008), simplified fractional transforms (WANG, 2011; TALLA; BATTULA, 2024), generalized
convolution theorem (SHI et al., 2014), definition of generalized fractional transforms (WEI;
SHEN, 2023; LI et al., 2025), fractional correlation (PETROV; YAROVOY, 2022), and other
applications (LUO et al., 2023).

In terms of the exact number of multiplications and additions required to compute the
sampling-type DFrFT, a more efficient method involves its decomposition into a chirp multipli-
cation, an ordinary DFT, and another chirp multiplication (PEI; DING, 2000a), with variable
frequency scaling (ZAYED, 1996; CARIOLARO et al., 1998) or variable time scaling (MAR-
INHO; BERNARDO, 1998). Since DFT is implemented using a fast algorithm, this type of
decomposition is referred to as CM–FFT–CM. In recent years, this approach has been applied to
analyze the intrinsic energy distribution of a dynamic time-frequency laser, by decomposing the
laser energy with the chirp-frequency waveform as the basic component (LAN et al., 2023b).

An alternative approach is to use simplified forms with the same capabilities as the
original FrFT (PEI; DING, 2000b), which emerged and found many applications over the
years (ZHANG et al., 2011; ZHANG et al., 2015; ZHAO; LI, 2023). A simplified FrFT is defined
as a reformulated version of the conventional FrFT in which the transform kernel is modified
to achieve reduced computational complexity while preserving its fundamental time–frequency
rotation property. The most relevant simplified FrFT in this context is referred to by the acronym
SmFrFT (SANJAY, 2018). It is obtained as a special case of a three-free-parameter linear
canonical transform (LCT) and offers two key advantages: the removal of the FrFT outer chirp
term and the fact that the sampling parameters do not need to be adjusted in the kernel to become
a DFT (PEI; DING, 2002).

Furthermore, computing partial points of a transform refers to evaluating only a subset
of its output coefficients. This operation is conceptually equivalent to output pruning, where
unnecessary computations in a fast-transform algorithm are omitted to produce only the required
outputs with reduced complexity. To be more specific, there are applications that require spectrum
analysis over only a subset of the N center frequencies of an N -point DFT. A pioneering solution
to this need is the Goertzel algorithm (1958), which provides a recursive and efficient computing
method for the selected DFT bins, particularly useful for tone detection (GOERTZEL, 1958). To
support real-time and streaming applications, variants such as sliding DFT and hopping DFT
were developed, enabling low-overhead spectral tracking over moving windows (JACOBSEN;
LYONS, 2003; PARK; KO, 2014). Building on these concepts, real-time applications that require
recalculating the DFrFT at each or multiple time steps have led to the development of sliding
window algorithms, such as sliding DFrFT (SDFrFT), as well as hopping DFrFT (HDFrFT) (LIU
et al., 2021; HUANG; ZHANG; TAO, 2022). Finally, when only partial points of the sampling-
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type DFrFT are needed, a local version of this transform has been proposed in (MIAO, 2023).
The latter method was applied to the processing of real-world bat echolocation chirp signals.

Other mapping strategies consist of representing the signal in an algebraic structure in
changing domains. For example, the Fourier transform can be efficiently computed by converting
it into a convolution, while in some cases, using the Fourier transform to perform a convolution
is more advantageous(BLAHUT, 2010, p. 91). Discrete-time signals represented as integers can
be convolved without round-off errors by using a ring of integers or a finite field (BLAHUT,
2010, p. 311). In this scenario, when the modulus of the arithmetic operations is a Fermat
number (Ft = 2b + 1 with b = 2t for t = 0, 1, . . . , 6), the Fermat number transform (FNT) is
obtained by defining it in a manner similar to the DFT, providing a low-complexity solution
for circular convolution. To be more precise, for an N -point FNT, selecting the kernel as 2 or√
2 = 2

b
4 (2

b
2 − 1) ensures that N can be a power of two, up to 4b (AGARWAL; BURRUS,

1974a). These kernels allow us to use the radix-two algorithm (COOLEY; TUKEY, 1965), and
multiplications are converted into combinations of additions and bit-shifting operations (XU;
YOU; ZHANG, 2017; SONG et al., 2017; BAOZHOU et al., 2019). In quadratic residue number
representations, a complex multiplication can be performed as two multiplications and four
additions, instead of the traditional three multiplications and three additions (NUSSBAUMER,
1976; KRISHNAN; JULLIEN; MILLER, 1986; XING et al., 2024); this leads to a reduction of
the number of multiplications required for an application.

Finally, considering that a DFT can be expressed as a matrix-vector product, discrete
FrFT formulations based on the eigendecomposition of the DFT matrix have been proposed
in the literature (PEI; DING, 2000a; CANDAN; KUTAY; OZAKTAS, 2000). Regarding this
approach, commonly referred to as the eigendecomposition-based DFrFT, Majorkowska-Mech
and Cariow (2017) point out that:

This type of DFrFT possesses all essential properties which are posed as re-
quirements for DFrFT such as unitarity, additivity, reduction to discrete Fourier
transform (when the power is equal to one), and approximation of continuous
FrFT (MAJORKOWSKA-MECH; CARIOW, 2017, p. 4119).

On the other hand, the overall time complexity of this method is O(N2), which becomes huge
for long signals (IRFAN; ZHENG; SHAHZAD, 2013). Various methods have been proposed to
reduce this complexity. The low-complexity structures for small-size DFrFT presented in (CAR-
IOW; PAPLIŃSKI; MAJORKOWSKA-MECH, 2019) are not scalable for long signals. To our
knowledge, no more efficient method has been reported than the one proposed in (DE OLIVEIRA
NETO et al., 2019), which is supported by the hardware architectures presented in (BISPO;
NETO; LIMA, 2024). It exploits symmetries and null components present in the eigenvectors of
the aforementioned eigendecomposition to reduce the number of additions and multiplications
needed to calculate the transform. In any case, this type of method has quadratic arithmetic
complexity, and its structure is non-scalable in the sense that it does not make use of the so-called
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decimation techniques. Another alternative is the so-called centered DFrFT (CDFrFT), which is
based on the Grünbaum eigenvectors of the centered DFT (VARGAS-RUBIO; SANTHANAM,
2005). The CDFrFT offers improved symmetry and superior energy compaction properties,
which are particularly advantageous for analyzing chirp signals, making it a well-suited operator
for sparse or multi-component chirp estimation (PEACOCK; SANTHANAM, 2011).

Generally speaking, this work explores the aforementioned chirp-based decompositions
for computing fractional Fourier transforms. Specifically, we investigate the possibility of
incorporating techniques based on tools defined over finite algebraic structures as well as
methods for computing partial points of discrete transforms. The development of these algorithms
is motivated by applications in radio detection and ranging (radar). Further details on these
approaches are presented in the following sections.

1.1 MOTIVATION

In radar signal processing, a linear frequency modulated (LFM) signal, also known as
a chirp signal, is a type of signal in which the frequency changes linearly over time; if the
signal were audible, it would sound somewhat like the chirp of a bird (KLAUDER et al., 1960;
BLOCH, 1973). Chirp signals can arise in moving source problems that involve Doppler effects,
particularly when a sinusoidal source undergoes constant acceleration (YETIK; NEHORAI,
2003). An LFM signal is a type of quadratic-phase function signal characterized by constant phase
offset, center frequency (or initial frequency), and chirp rate (LIU; XIAO; WANG, 2021; DING;
WEI; YU, 2024). A chirp, as a non-stationary signal, offers a low probability of interception
and is commonly used in applications such as sound navigation and ranging (sonar) and light
detection and ranging (LiDAR) (MAHADI et al., 2021; LIU; XIAO; WANG, 2022). As the line
representing the Wigner-Ville distribution of a linear chirp can be established as perpendicular
to the frequency variable axis by an FrFT with optimal fractional order a0, this value depends
solely on the chirp rate (AHMAD; LIU; XU, 2010; ALDIMASHKI; SERBES, 2020); such a
procedure only requires a one-dimensional search.

Estimating the direction of arrival (DoA) of wideband chirp signals is a well-established
research area, particularly effective for chirp-like signals, which is an essential topic in modern
radar (ZHANG et al., 2018; KIM et al., 2022), sonar (LEE et al., 2017), and underwater acoustic
systems (YIN et al., 2020). Developing DoA estimation algorithms is also a key challenge for
mobile agent localization in the Internet of Vehicles (IoV) and Internet of Underwater Things
(IoUT) (CUI et al., 2020). In this context, traditional narrowband DoA estimation algorithms,
such as subspace decomposition-based methods (SCHMIDT, 1986; ROY; KAILATH, 1989;
OTTERSTEN; KAILATH, 1990), are no longer accurate for the referred signals due to their
non-stationarity (MULINDE; ATTYGALLE; AZIZ, 2021). As an alternative, mathematical tools
such as FrFT have been incorporated into these algorithms to enhance their performance (TAO;
ZHOU, 2005; CHONG; XIAOMIN, 2011; YU et al., 2015), providing the benefit that wideband
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chirp signals can be processed as narrowband signals in the fractional Fourier domain (ZHONG
et al., 2023; ZHAO et al., 2025). The alternative provides better resolution and lower sidelobes
compared to FT-based techniques (YIN et al., 2020). Due to these properties, FrFT has been
integrated into algorithms related to multiple signal classification (MUSIC) (SCHMIDT, 1986;
TAO; ZHOU, 2005) and estimation of signal parameters via rotational invariance techniques
(ESPRIT) (ROY; KAILATH, 1989; CHONG; XIAOMIN, 2011). Another approach consists
in the slope fitting method in the fractional Fourier domain, offering robust performance with
lower computational demands compared to traditional subspace-based techniques (ZHONG et al.,
2023). However, this method is limited to single-target scenarios. For multi-target cases (AHMED
et al., 2021), FrFT-based ESPRIT, including the principle of spatial smoothing, has been shown
to offer an efficient alternative compared to FrFT-based MUSIC for coherent and non-coherent
LFM signals (CHONG; XIAOMIN, 2011).

The primary motivation for this work stems from the chirp signals scenario outlined above.
However, it is important to note that numerical algorithms involving chirp-based decompositions
are not exclusive to the fractional Fourier transform. In fact, the generalization of classical
transforms to their fractional-order counterparts has been an active area of research, leading to
numerous extensions. Notable examples include the Radon fractional Fourier transform (CHEN
et al., 2014), the hyperbolic fractional Fourier transform (MOUSAVI; SHAHZADI, 2015), and
more recent developments such as synchrosqueezed fractional variants (SHI et al., 2023). These
extensions highlight the growing interest and versatility of fractional domain techniques in
time-frequency analysis and signal processing.

1.2 PROBLEM STATEMENT

The problem of digital computation of the FrFT has traditionally been addressed in
two main ways. An approach involves evaluating FrFT using numerical methods, which are as
accurate as theoretically possible based on time–frequency uncertainty (OKTEM; OZAKTAS,
2009). Another approach defines a DFrFT based on the eigendecomposition of the DFT ma-
trix (CANDAN; KUTAY; OZAKTAS, 2000). This type of DFrFT involves a commuting matrix
and is theoretically elegant, unitary, and index additive, but it is computationally intensive. In the
context of chirp signal analysis, the former is typically used for peak searching in the fractional
Fourier domain (ALDIMASHKI; SERBES, 2020). At the same time, the latter is employed to
construct compact fractional domains (SERBES, 2017) to estimate signal parameters, particularly
the chirp rate. Although both methods aim to extract similar information, they are based on
different principles and may yield results that are not identical. This thesis focuses on the first
approach, considering that a FrFT corresponds to a non-integer power of the operator related to
the FT. More precisely, the FrFT operator corresponds to the a-th power, a ∈ R, of the ordinary
FT operator, consisting, therefore, of a generalization of the latter (which is obtained if a = 1).
The parameter a is usually identified as fractional order. The choice of this value depends
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on the context in which the transform is to be applied (SEJDIĆ; DJUROVIĆ; STANKOVIĆ,
2011; ZHANG et al., 2017; GÓMEZ-ECHAVARRÍA; UGARTE; TOBÓN, 2020). Some specific
questions related to this problem can be formulated:

• Is there a way to reduce the arithmetic complexity to levels below what is required in the
CM–FFT–CM decomposition?

• Since both the FT and the FrFT can be expressed in terms of the convolution operation,
how can one take advantage of the use of fast convolution to compute the FrFT?

• In the process of determining an optimal fractional order, is there any way to reduce the
complexity of the method based on finding peaks in the fractional Fourier domain?

• How can simplified FrFT be used to improve subspace-based DoA estimation for wideband
chirps, since it has not yet been applied in this context?

• How can the slope-fitting method be performed in the (simplified) fractional Fourier
domain and extended for multi-target DoA estimation of wideband linear chirps?

1.3 OBJECTIVES

General Objective:

To propose low-complexity algorithms for computing the fractional Fourier transform
by incorporating techniques such as transform decomposition, decimation, subset-based point
evaluation, and signal representation over modular algebraic structures, with a focus on the
analysis of chirp signals.

Specific Objectives:

In order to achieve the general objective, the specific goals listed in the following items
are considered:

1. To systematize the state-of-the-art computing methods for fractional Fourier transforms;

2. To develop a discrete simplified FrFT for chirp signal processing, including its local
version;

3. To develop a local circular convolution, over the ring of integers modulo 2b + 1, for
accelerating the CM–CC–CM decomposition;

4. To verify the effectiveness of simplified FrFT in DoA estimation of wideband linear chirps.
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1.4 METHODOLOGY

Essentially, the research strategy adopted is problem-based. That is, both the starting
point and the ultimate goal revolve around addressing a specific problem in order to achieve the
previously defined objectives. Therefore, to achieve the objectives outlined in Section 1.3, the
work plan is structured into the following steps, as summarized below.

• STAGE 1 - Literature review: In the initial phase of the project, a comprehensive re-
view of FrFT literature is carried out, including definitions, applications, and discrete
implementation methods.

• STAGE 2 - Theoretical comparison of algorithms: In this phase of the project, the goal is
to identify algorithms with reduced arithmetic complexity for the digital computation of
the FrFT.

• STAGE 3 - Proposing new methods: In this stage of development, based on state-of-the-art
techniques, new computational methods are considered to reduce the arithmetic complexity
of FrFT calculations.

• STAGE 4 - Effectiveness verification: The execution of this stage leads to determining
whether the error generated in the complexity reduction is tolerable; the analysis is carried
out involving systems with known performance.

• STAGE 5 - Risk analysis: This final stage is the ablation study, that is, possible realistic
situations are considered, including some missing or degraded components in the previous
stages, for example, spectral analysis of the signals received through noisy channels.

The research stages presented above, depending on the analysis method, can be grouped
into two; the analytical method and the numerical method (see Figure 1). In other words, the first
two stages involve a literature review and theoretical aspects, while the remaining stages require
numerical calculations and computational experiments. Both methods play a role in generating
the final report.

In terms of research resources, conceptual maps, diagrams, and comparative tables can
be used for the analytical method. In contrast, the numerical method involves signal modeling,
algorithm development, simulation, and statistical analysis. Therefore, the means of investigation
are as follows:

• Hardware: Desktop Computer.

• Software: Linux Operating System, Jupyter Notebook.

• Programming language: Python.
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Figure 1 – Research methods diagram.
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1.5 CONTRIBUTIONS

In this research, we investigate numerical algorithms based on chirp-based decompo-
sitions for the FrFT, exploring two main strategies to reduce algorithmic complexity: (i) the
computation of partial transform points and (ii) the incorporation of techniques grounded in finite
algebraic structures. For application purposes, we reformulate the multi-target direction-of-arrival
(DoA) estimation of wideband linear chirp signals as a multi-line fitting problem in the fractional
Fourier domain. In this context, we further propose the use of a frequency-scaled simplified FrFT
(SmFrFT) as a replacement for the conventional FrFT within subspace-based techniques. To the
best of our knowledge, these approaches have not yet been addressed in the literature. The main
contributions of this thesis are summarized as follows:

1. Frequency-scaled SmFrFT: We propose that the simplified FrFT with variable frequency
scaling be implemented in normalized domains, as this approach is non-trivial due to
the operator exhibiting properties that differ from those of the sampling-type DFrFT. For
example, to address the issue of high oscillations in the magnitude spectrum of chirp
signals, we demonstrate that the cascaded implementation of the corresponding LCT can
be decomposed into a circular convolution, which can be efficiently implemented using
FFT algorithms.
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2. One-dimensional search: In preprocessing of chirp signals, we demonstrate that the
frequency-scaled SmFrFT, in its discrete form denoted by DSmFrFT, serves as a well-suited
operator for estimating the parameters of high-chirp-rate LFM signals. Specifically, select-
ing the optimal fractional order of DSmFrFT can be achieved through a one-dimensional
search for a given center frequency, requiring only the calculation of DSmFrFT at the
index corresponding to this frequency. When one or more center frequencies are unknown
but lie within a known frequency range, the corresponding peak index interval can be
estimated in advance, eliminating the need to compute the full set of DSmFrFT points.

3. Local DSmFrFT: We introduce an algorithm for computing partial points of the DSmFrFT,
which further reduces the arithmetic complexity without compromising the performance of
the DoA estimation. This approach assumes that anN -point DSmFrFT can be decomposed
intoQ-point DFTs, whereN is divisible byQ, resulting in a reduction ofN multiplications
compared to the similar algorithm proposed in (MIAO, 2023).

4. Local circular convolution: Considering that an N -point DFrFT can be decomposed
into a two-dimensional (2D) convolution (AGARWAL; BURRUS, 1974b), we introduce a
local DFrFT based on local circular convolution; an algorithm to compute L consecutive
points of a global circular convolution when N is divisible by L, saving at least 4N
multiplications. In this context, local adaptations of the FNT are introduced in two forms:
a local-input FNT (LiFNT) for calculating the (2N )-point FNT of a sequence whose last
half consists of null elements; and a local-output inverse FNT (LoIFNT) to obtain the last
N points of a (2N )-point inverse FNT. These optimizations avoid unnecessary operations.

5. Improved subspace-based techniques: We propose the integration of DSmFrFT instead
of DFrFT for DoA estimation of chirp signals based on subspace decomposition algorithms,
such as MUSIC and ESPRIT with spatial smoothing. In this context, we show that shifting
the peak index in the fractional Fourier domain to align with the peak position of the signal
received at the reference sensor can improve the precision of subspace-based algorithms.

6. Multi-line fitting: As a low-complexity alternative, we propose the use of multi-line fitting
for DoA estimation of wideband chirps using a ULA. When the peaks in the fractional
Fourier domain can be segmented, piecewise linear regression, the slope-fitting method,
can be applied. Otherwise, line detection based on the Hough transform may be employed,
which is widely used in image processing (DUDA; HART, 1972).

This work resulted in the preparation of two scientific articles. The first has been pub-
lished in a peer-reviewed journal, while the second is currently under review:

• E. G. HUAMPO, J. B. LIMA and J. R. d. O. NETO, Direction-of-Arrival Estimation for
Wideband Chirps via Multi-Line Fitting in the Fractional Fourier Domain, in IEEE Access,
vol. 13, pp. 107328-107342, 2025, doi: <https://doi.org/10.1109/ACCESS.2025.3581843>.

https://doi.org/10.1109/ACCESS.2025.3581843
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• E. G. HUAMPO, J. R. d. O. NETO and J. B. LIMA. Digital Computation of the Fractional
Fourier Transform Based on Modulo-2b+1 Convolutions. Submitted to Circuits, Systems,
and Signal Processing, 2025. (under review)

These works reflect the main contributions of this thesis, covering the development
of efficient algorithms for the sampling-type DFrFT. In the first paper, the effectiveness of
the proposed algorithms is demonstrated in both single- and multi-target scenarios, showing a
reduction of approximately 77% in the number of arithmetic operations when using the DSmFrFT
instead of the conventional DFrFT. The second paper introduces a low-complexity method for
computing partial points of the DFrFT by representing chirp convolutions over the ring of
integers modulo 2b + 1. This method has practical applications in fields such as radar echo
modeling. We classify this approach as a local transform version, as it operates from a specified
starting point and proceeds over a selected range of output values.

1.6 THESIS OUTLINE

This thesis is structured around the development of numerical algorithms for sampling-
type DFrFT based on chirp-based decompositions. Initially, these decompositions are examined
in the real field, including a simplified form with axis scaling–a particularly notable variant. The
chirp-convolution-based approach is then developed over the ring of integers modulo 2b + 1,
with emphasis on computing partial transform points. The remainder of this thesis is organized
as follows.

• In Chapter 2, preliminaries on FrFT are presented, with a focus on uniform linear arrays
and incoming chirp signals. The decomposition of the FrFT in its integral form is given in
two ways: one as a convolution operation and the other as a conventional Fourier transform
within a variable-frequency scaling scheme. Additionally, we explain how simplified forms
of the FrFT can be derived from a linear canonical transform.

• In Chapter 3, the sampling-type DFrFT and its key properties are presented in the normal-
ized and scaled domains, including its application to discrete-time chirp signal processing.
Additionally, the frequency-scaled simplified FrFT–derived as a special case of the lin-
ear canonical transform–is introduced in its discrete form within normalized domains.
This includes discussions on its time-shift property, convertibility property, and localized
version.

• In Chapter 4, the theoretical aspects of FNT, diminished-1 arithmetic, complex multipli-
cation, and circular convolution in the ring of integers modulo 2b + 1, where b = 32 or
64, are presented. The main focus is on the implementation of a chirp convolution, which
leads to the introduction of the CM–CC–CM decomposition in the ring Z2b+1, including
the overlap-and-save method for processing long signals.
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• In Chapter 5, the key contributions related to the CM–CC–CM method are presented. In
this context, the local one- and two-dimensional FNTs are formally defined, incorporating
local input and output adaptations. Subsequently, a computational approach for evaluating
partial points of the DFrFT based on local circular convolution is proposed.

• In Chapter 6, the estimation of the DoA for wideband linear chirps is introduced as a multi-
line fitting problem in the fractional Fourier domain. The previously proposed slope fitting
method for single-target scenarios is extended to the multi-target case using piecewise
linear regression and line detection in the Hough space. In both scenarios, subspace-based
techniques with spatial smoothing are enhanced through the use of simplified FrFT and
peak alignment in the preprocessing step.

• In Chapter 7, the results of the computer experiments are presented. Specifically, error
analysis and arithmetic complexity are examined, focusing on chirp-based decompositions
for the DFrFT over the real field (in floating-point representation) and over the ring
of integers modulo 2b + 1 (in diminished-1 representation). The effectiveness of the
proposed algorithms is validated through DoA estimation for single- and multi-target
scenarios involving wideband linear chirps. The simulations also include stationary and
non-stationary moving sources.

• In Chapter 8, the main contributions of this work are briefly revisited and potential
directions for future research are outlined.

• In Appendix A, the possibilities of multiplying two complex numbers using only three real-
valued multiplications and five real-valued additions are discussed. One of these techniques
can be applied to chirp multiplications, which are part of the DFrFT decompositions.

• In Appendix B, it is considered that an N -point DFrFT can be reformulated as the
computation of partial output points from an infinite linear convolution; this, in turn,
can be performed as a circular convolution using an overlap-and-save procedure. Then it
is shown that a total of 6N real-valued additions can be saved by avoiding unnecessary
operations.
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2 PRELIMINARIES

In this chapter, we provide an overview of signal modeling and the definition of the
continuous FrFT. In this scope, we include chirp signal processing for a uniform linear array
receiver, where the FrFT of a delayed signal is essential. Furthermore, we explain how a simplified
version of the FrFT can be derived from the linear canonical transforms.

2.1 SIGNAL MODELING

A uniform linear array (ULA) is a set of antenna elements arranged in a straight line
with equal spacing between adjacent elements (TREES, 2002, p. 37). This model is commonly
used in array signal processing for direction finding due to its simple geometry, well-established
mathematical models, and scalability, as the angular resolution can be easily controlled by adding
or removing elements. Taking into account a ULA composed of M sensors receiving signals
from K far-field sources, the signal received by the m-th element in ULA is a mixed signal,
xm(t), represented as

xm (t) =
K−1∑
k=0

sk (t− τm,k) + nm (t) , m = 0, 1, . . . ,M − 1, (2.1)

where nm(t) is the additive white Gaussian noise (AWGN). A typical scenario for DoA estimation
considers assumptions such as isotropic and linear transmission medium, far field, and AWGN
channel (CHEN; GOKEDA; YU, 2010, p. 32). The time delay of the m-th element relative to
the reference element (indexed by m0) is given by

τm,k=
1

c
(m−m0)d sin θk, (2.2)

where c is the wave propagation speed, d ⩽ λ/2 is the distance between the elements, λ is
the wavelength, θk is the angle of arrival of the k-th signal of interest (KIM et al., 2022) (see
Figure 2). A center-symmetric ULA is formed when m0 =

⌊
M
2

⌋
(where ⌊·⌋ denotes the floor

function). It is preferred for direction finding due to its improved accuracy and reduced sidelobe
effects (TREES, 2002, p. 37). In addressing problems involving wideband chirps (KLAUDER et
al., 1960; BLOCH, 1973; YETIK; NEHORAI, 2003), the linear frequency-modulated (LFM)
signal, sk(t), is represented by a quadratic phase function, which is

sk (t) = Ake
jϕ0kej(2πfckt+πµkt

2), −T/2 ≤ t ≤ T/2, (2.3)

where Ak, ϕ0k, fck, and µk represent constant amplitude, initial phase, center frequency (or initial
frequency), and chirp rate of the k-th source, respectively (ALDIMASHKI; SERBES, 2020;
LIU; XIAO; WANG, 2021; DING; WEI; YU, 2024). Usually, the time axis t is confined to
the symmetric interval [−T/2, T/2], where T represents the duration of the signal. This form
of complex (or analytic) signals is supported by most receivers, which decompose received
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Figure 2 – Data model for DoA estimation of a k-th target.

...

...
Plane wave
front
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sensor

...

Incident
plane wave

Source: Adapted from Kim et al. (2022).

signals into both in-phase (the real part) and quadrature components (the imaginary part) (CHEN;
GOKEDA; YU, 2010, p. 33). The single-component LFM signal is defined as a particular
case of sk(t) when k = 0, and is denoted by omitting the subscript, i.e., s(t). The basic form
corresponding to the parameter settings A = 1 and ϕ0 = 0 is used as a reference in subsequent
simplified analyses and simulations.

The incident signal, given in (2.1), can be represented by the time-variant steering
vector (ZHONG et al., 2023), so that the received signal vector at time t is modeled as

x(t) = A(t) s(t) + n(t), (2.4)

where:

• x(t) ∈ CM×1 is the received signal vector across the uniform linear array,

• A(t) = [a(t, θ0), a(t, θ1), . . . , a(t, θK−1)] ∈ CM×K is the steering matrix, whose k-th
column is the time-variant steering vector corresponding to the direction of arrival θk,

• s(t) = [s0(t), s1(t), . . . , sK−1(t)]
T ∈ CK×1 is the vector of source signals,

• n(t) ∈ CM×1 is the additive noise vector, modeled as spatially white with zero mean.

Each steering vector a(t, θk) models the relative phase shifts across the sensors due to a plane
wave arriving from direction θk. For a wideband source, the m-th element of a(t, θk) is given by

am(t, θk) = e−j2πfk(t)τm,kejπµkτ
2
m,k , (2.5)

where fk(t) = fck + µkt represents the time-varying frequency.



30

2.2 FRACTIONAL FOURIER TRANSFORM

The (continuous) fractional Fourier transform, with fractional order a ∈ R, of a signal
x(t) is usually denoted as Xa(u) = {Fax}(u) and defined as

Xa(u) =

∫ ∞

−∞
Ka(u, t)x(t)dt, (2.6)

in which Ka(u, t) denotes the FrFT kernel, provided in its general form by

Ka(u, t) =


Aαe

jπ[(t2+u2) cotα−2tu cscα], α ̸= nπ,

δ(t− u), α = 2nπ,

δ(t+ u), α = (2n+ 1)π,

(2.7)

where α = aπ/2, Aα =
√
1− j cotα, and j =

√
−1. Note that α = 2nπ, with n an integer,

reflects the order-4 periodicity of FrFT; increasing a by four yields the same transform, i.e.,
Fa = Fa+4 for 0 < |a| < 2. Moreover, calculating the fractional Fourier transform of a signal
can be interpreted as a rotation of the same signal in the time-frequency plane, the rotation
angle being α. To be more specific, α = 0 corresponds to the identity operation, α = π/2 to
obtain FT (ALMEIDA, 1994; OZAKTAS; KUTAY; MENDLOVIC, 1999). In practical scenarios,
no analytical methods are used to evaluate this integral; therefore, numerical algorithms are
necessary (OZAKTAS et al., 1996). For these numerical methods, this integral can be expressed
in two fundamental ways, as outlined below.

1. The decomposition proposed in (OZAKTAS et al., 1996) is also known as the chirp
convolution-based method (BULTHEEL; SULBARAN, 2004; IRFAN; ZHENG; SHAHZAD,
2013). The key point in establishing this method is the use of the trigonometric identity

tan (α/2) = − cotα + cscα

to rewrite the FrFT kernel expression for α ̸= nπ. This leads to

Xa(u) = Aαe
−jπu2 tan (α

2 )
∫ ∞

−∞
x(t)e−jπt2 tan (α

2 )︸ ︷︷ ︸
g(t)

ejπ(u−t)2 cscαdt. (2.8)

In this manner, the isolated integral becomes a convolution operator, {g ∗ h}(u), where
h(t) = ejπt

2 cscα is a chirp signal with a chirp rate of cscα. Therefore, the FrFT can
be decomposed into two chirp multiplications and a chirp convolution. The diagram
corresponding to this form of decomposition is shown in Figure 3a. In some applications,
the outer chirp term is considered redundant, and it can be removed, giving a simplified
FrFT (WANG, 2011; TALLA; BATTULA, 2024).

2. From a different perspective, the FrFT has been shown to be a variation of the standard
Fourier transform (ZAYED, 1996; CARIOLARO et al., 1998). This concept can be
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illustrated by rewriting the FrFT kernel expression for α ̸= nπ, as follows

Xa(u) = Aαe
jπu2 cotα

∫ ∞

−∞
x(t)ejπt

2 cotα︸ ︷︷ ︸
x̃(t)

e−j2πtu cscαdt. (2.9)

This formulation demonstrates that the FrFT can be decomposed into two chirp mul-
tiplications and a single Fourier transform; with scaling of the frequency variable. The
corresponding diagram is shown in Figure 3b. The discrete form of this method is presented
in (PEI; DING, 2000a), its simplified form in (PEI; DING, 2000b), and its synchrosqueezed
transform for time-frequency representation is detailed in (ZHAO; LI, 2023).

Figure 3 – The signal flow graph of the FrFT; diagram corresponding to its decomposition into
(a) a chirp convolution, y(u) = {g ∗ h} (u), and (b) a Fourier transform with scaling
of the frequency variable.

(a)

FT

(b)

Source: The author (2025).

2.2.1 FrFT of a Delayed Signal

The FrFT of the received signal at the m-th sensor, delayed by τm in the time domain
with respect to the reference sensor for an angle of arrival θ, can be expressed according to the
operational property of time shifts (OZAKTAS; KUTAY; MENDLOVIC, 1999) as

Fa{x (t− τm)} = ejπ(τ
2
m sinα cosα−2uτm sinα)Xa (u− τm cosα) , (2.10)

where, when τm is a small value, as in many practical cases, the delay square τ 2m can be neglected.
For that reason, the approximated exponential term

ejπ(τ
2
m sinα cosα−2uτm sinα) ≃ e−j2πuτm sinα
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can be used to construct the steering vector in the fractional Fourier domain (TAO; ZHOU, 2005;
CHONG; XIAOMIN, 2011; YIN et al., 2020); the referred vector can be written as

aα(u, θ) =
[
e−j2πuτ0 sinα e−j2πuτ1 sinα · · · e−j2πuτ(M−1) sinα

]T
.

2.2.2 FrFT of an LFM Signal

An LFM signal is a type of signal in which the frequency changes linearly over time,
creating as a chirping sound. The FrFT of an LFM signal gradually converges to an impulse in the
fractional domain as the fractional order approaches the optimal value (see Figure 4). Estimation

Figure 4 – The FrFT spectrum of an LFM signal.

Source: Adapted from Tu et al. (2011).

of the center frequency and frequency modulation rate of chirp signals can be obtained by peak
searching in the fractional domain. Substituting (2.3) and (2.7) into (2.6) (x(t) is replaced with
s(t)), we obtain {Fas}(u), that is the FrFT of a single-component chirp signal given by

{Fas}(u) =
∫ T/2

−T/2

s(t)Ka(t, u)dt

= Bα,u

∫ T/2

−T/2

ejπ[2(fc−u cscα)t+(µ+cotα)t2]dt,

(2.11)

where Bα,u = Aαe
jπu2 cotα. The optimal order is obtained when the term

2 (fc − u cscα) t+ (µ+ cotα) t2

is equal to zero in (2.11). In this way, one obtains the relationships

fc = u0 cscα0, (2.12a)

µ = − cotα0, (2.12b)

where α0 is the optimal rotation angle and u0 is the corresponding value in FrFT domain (YIN et
al., 2020). At the reference element and considering the noisy channel, the peak searching in the
fractional domain can be outlined as

{â0, û0} = argmax
a,u

|{Faxm0}(u)|
2 , (2.13)
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where â0 is the estimated optimum order and û0 is the sampling point corresponding to the
maximum peak.

2.3 LINEAR CANONICAL TRANSFORMS

In this section, we explain how (continuous) simplified FrFTs are derived as a special case
of the linear canonical transform (LCT) and demonstrate that one of these simplified versions is
a well-suited operator for estimating high chirp rates. Therefore, let XA(u) = {LAx}(u) denote
the LCT of x(t). The corresponding three-free-parameter linear integral transform is defined as
in (HEALY et al., 2015, p. 40):

XA(u)=


√

1
jb

∫∞
−∞ x(t)ejπ(

d
b
u2− 2

b
ut+a

b
t2)dt, b ̸= 0,

√
dejπcdu

2
x(du), b = 0,

(2.14)

where A=(a, b; c, d) is a matrix whose entries are real numbers that satisfy ad− bc = 1. The
LCT satisfies the cascadability property (HEALY et al., 2015, p. 34), which can be written as{

L(a2,b2;c2,d2)
[
L(a1,b1;c1,d1)x

]}
(u) =

{
L(a3,b3;c3,d3)x

}
(u),

where the matrix (a3, b3; c3, d3) is determined by the composition of the transformations (PEI;
DING, 2002), as[

a3 b3

c3 d3

]
=

[
a2 b2

c2 d2

][
a1 b1

c1 d1

]
. (2.15)

When the matrix A is specified as (cosα, sinα;− sinα, cosα), the LCT becomes FrFT (HEALY
et al., 2015, p. 42). The FrFT operator can be expressed as {Fax}(u) = ej

α
2 {LAx}(u) and has

the additive property as it satisfies (2.15).

The LCT of a single-component LFM signal can be expressed as

{LAs}(u) = A√
jb
ejϕ0ejπ

d
b
u2

∫ t2

t1

e
j2π

[
(fc−u

b )t+(µ+
a
b )

t2

2

]
dt.

If we assume that the amplitude of {LAs}(u) reaches its maximum peak for a matrix A0, given
as (a0, b0; c0, d0), at a sampling point u0, then the parameters of an LFM signal can be determined
using numerical algorithms, as described in (SU; TAO; KANG, 2019). This results in

µ = −a0/b0, fc = u0/b0, andϕ0 = arg
[√

jb0e
−jπd0u2

0/b0{LA0s}(u0)
]
.

In the following items, we analyze the chirp rate for LCT cases in the form of a simplified FrFT:

1. The operator L(cotα,1;−1,0) is a frequency-scaled simplified FrFT (ZAYED, 1996); the
chirp rate is µ = − cotα0, where α0 ̸= nπ represents the optimal rotation angle in the
time-frequency plane. This LCT admits high chirp-rate values, −∞ ≤ µ ≤ ∞, because
the cotangent function has domain and range respectively given by R− nπ and (−∞,∞).
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2. The operator L(sinα cosα,1;−1,0) is a simplified FrFT whose discrete version corresponds
to the so-called single-FFT method (MARINHO; BERNARDO, 1998); in this case, one
has µ = − sinα0 cosα0 = −1

2
sin 2α0. The possible chirp rates are limited to low values,

−1/2 ≤ µ ≤ 1/2, because the sine function has domain and range respectively given by
R and [−1, 1].

3. The operator L(cosα,1;−1,0) corresponds to a simplified FrFT scheme having both frequency
and time scaling. The chirp rate formula is µ = − cosα0. In this case, the chirp rate range
is twice that of the last item, since the cosine function domain and range are respectively
given by R and [−1, 1]. Specifically, the range of possible chirp rate values is −1 ≤ µ ≤ 1.

In conclusion, the simplified FrFT presented in item 1) is a suitable transform for DoA estimation,
since an important aspect, in the referred application, is the quadratic phase signal with high chirp-
rate values (MULINDE; ATTYGALLE; AZIZ, 2021). Thus, although this type of simplified
FrFT has no additive properties, it is convertible (PEI; DING, 2000b). This convertibility arises
from the relationship[

cot β 1

−1 0

]
=

[
1 cotα− cot β

0 1

][
cotα 1

−1 0

]
. (2.16)

In other words, using the cascadability property, the operator L(cotα,1;−1,0) can be converted into
L(cotβ,1;−1,0) as it satisfies (2.16).
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3 CHIRP-BASED DECOMPOSITION ALGORITHMS

This chapter describes the differences among the chirp-based decompositions for the
sampling-type DFrFT. Based on the choice of time-frequency representation, we explore defini-
tions in scaled domains. The analysis includes arithmetic complexity, the time-shift property, and
places particular emphasis on chirp signals; including the estimation of linear chirp parameters.
In this context, we focus on the frequency-scaled simplified FrFT and introduce its local discrete
version.

3.1 DISCRETE-TIME SIGNAL

First, let x[r] represent the discrete-time signal obtained by sampling the continuous-time
signal x(t). In the context of chirp signal processing with fractional Fourier transforms (MIAO,
2023; ZHONG et al., 2023), an N -length sequence x[r] is defined as

x [r] = x

(
r

fs

)
, r = −N0,−N0 + 1, . . . ,−N0 +N − 1, (3.1)

where fs is the sampling rate, N0 =
⌊
N
2

⌋
specifies the starting index, and ⌊·⌋ denotes the floor

function of its argument. For the analysis based on DFrFT, interpolation and decimation are
applied to a digital signal, which is derived from an analog signal, to make its Wigner distribution
more compact (OZAKTAS et al., 1996). However, these operations are omitted throughout this
thesis, as our focus is on exploring numerical algorithms for an N -point DFrFT.

3.2 SAMPLING-TYPE DFrFT ON NORMALIZED DOMAINS

The defining integral (2.6), in its discrete form, can be identified as the sampling-type
discrete FrFT (DFrFT) (PEI; DING, 2000a). In time-frequency analysis, the dimensional nor-
malization means that the coordinates (t,u) are scaled to (t/s,us), where s is a scaling parameter
given by s =

√
N
fs

(OZAKTAS et al., 1996). Figure 5 illustrates this concept by showing the
Wigner–Ville distribution of a linear chirp signal with center frequency f0 and chirp rate µ (YU
et al., 2015; ZHONG et al., 2025). In such scaled domains, when α ̸=nπ, the kernel can be dis-
cretized asKa[q, r]=Ka(q∆, r∆), where ∆ = 1√

N
is the normalized sampling period. Therefore,

the continuous integral transform can be approximated by a quadrature formula as

Xa[q] ≜
Aα√
N
ej

π
N
q2 cotα

−N0+N−1∑
r=−N0

x[r]e−j π
N (2rq cscα−r2 cotα). (3.2)

Notice that the variables a and α, as well as the axes u and v, which belong to normalized
domains (see Figure 5), are different from those given in the continuous integral. In this way, the
sampling points uq=q∆, with −N0≤q<N0+N , correspond to the normalized frequency domain
variable; in fact, it is more practical to use normalized coordinates (LIU; XIAO; WANG, 2021;
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ZHONG et al., 2023), rather than directly deal with the FrFT time-scaling property (OZAKTAS;
KUTAY; MENDLOVIC, 1999). The main drawback of the direct form of discretizing the integral
definition is its high computational cost, which is O(N2).

Figure 5 – Normalized time-frequency plane (t′, f ′) and coordinates (u, v) rotated by an angle
α0, with the u-axis perpendicular to line representing the Wigner-Ville distribution of
a linear chirp: (a) µ < 0, and (b) µ > 0.

(a) µ < 0 (b) µ > 0

Source: The author (2025).

The most widely used numerical algorithm for DFrFT is a decomposition method
proposed in (OZAKTAS et al., 1996), which enables efficient implementation. In such normalized
domains, assuming that N is even, the discrete form of the integral definition from (2.8) can be
expressed as

Xa[q] ≜
Aα√
N
e−j π

N
q2 tan (α

2 )
N/2−1∑
r=−N/2

x[r]e−j π
N
r2 tan (α

2 )︸ ︷︷ ︸
g[r]

ej
π
N
(q−r)2 cscα, (3.3)

which means the whole algorithm involves one chirp multiplication (inner chirp term), one
complex convolution, and one more chirp multiplication (outer chirp term); thus, this method can
be identified as CM–CC–CM. The sequence of interest, generated by the summation formula,
can be computed as a circular convolution, that is

yn=(g ⊛ h)n=

N1−1∑
i=0

gih(n−i), n = 0, 1, . . . , N1 − 1, (3.4)

where N1=2N − 1. In this operator, {gn}N1−1
n=0 and {hn}N1−1

n=0 are sequences that can be periodi-
cally extended outward with period N1; their indices are modulo N1, n (mod N1). Rigorously,
the first non-zero N elements of {gn} correspond to the chirp-modulated input signal, and {hn}
represents the discrete chirp signal ej

π
N
r2 cscα, where −N < r< N . The first N−1 elements of

{yn} are rejected; this procedure is well-known in the overlap-and-save method. As stated by
the convolution theorem, the cyclic convolution outlined in (3.4) can be implemented through
(2N )-point FFT algorithms by means of the zero-padding method (AGARWAL; BURRUS,
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1974b). In such a way, considering that the DFT of {hn} can be pre-computed, the complexity
of an N -point DFrFT consists of 4N complex multiplications, one (2N )-point FFT and one
(2N )-point inverse FFT; a complex multiplication can be done as 3 real-valued multiplications
and 3 real-valued additions (see Appendix A). The arithmetic complexity of the whole process,
in terms of numbers of complex multiplications, Mc

C(N), and complex additions, Ac
C(N), is

Mc
C (N) = 4N + 2MC (2N) , (3.5a)

Ac
C (N) = 2AC (2N) . (3.5b)

The terms MC (·) and AC (·) represent the arithmetic complexity of the DFT/FFT algorithm,
where the subscript C refers to the type of operation, in this case, complex. In Appendix B, we
detail how 3N complex additions can be saved.

3.2.1 DFrFT of a Discrete-Time Delayed Signal

In Section 2.1, we indicated that the signals received by the elements of a ULA have a
delay with respect to the reference element. In this scenario, we need to calculate the fractional
transform of a discrete-time delayed signal. To be more specific, the goal is to show the relation-
ship that exists between the DFrFT of the received signals. First of all, assuming that the delay
τm between the m-th element relative to the reference element generates a displacement of rθ
points, that is

rθ = fsτm, (3.6)

where fs is the sampling frequency. The DFrFT as a numerical integration of the kernel, does
not have scaling on the fractional axis, so that Xa[q], the DFrFT of the discrete-time signal x[r],
can be written as

Xa[q] = Aα,q

∞∑
r=−∞

x[r]e−j π
N (2rq cscα−r2 cotα), (3.7)

where Aα,q =
Aα√
N
ej

π
N
q2 cotα. Then, let Fa{x[r − rθ]} be the DFrFT of the discrete-time delayed

signal x[r − rθ], that is

Fa{x[r − rθ]} = Aα,q

∞∑
r=−∞

x[r − rθ]e
−j π

N (2rq cscα−r2 cotα). (3.8)

Performing the substitution r = n+ rθ, (3.8) becomes

Fa{x[r − rθ]} = Aα,q

∞∑
n=−∞

x[n]e−j π
N [2(n+rθ)q cscα−(n+rθ)

2 cotα],

Fa{x[r − rθ]} = e−j π
N (2rθq sinα−r2θ sinα cosα)

× Aα,q−rθ cosα

∞∑
n=−∞

x[n]e−j π
N [2n(q−rθ cosα) cscα−n2 cotα].
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Using (3.7), one has

Fa{x[r − rθ]} = e−j π
N (2rθq sinα−r2θ sinα cosα)Xa[q − rθ cosα].

In the context of chirp signal processing in uniform linear arrays, this result indicates that the
peak index q0, corresponding to the DFrFT of the signal received by the reference sensor, is
shifted to qm, as shows in the equation

qm = q0 + fsτm cosα0, (3.9)

where α0 = a0π/2, with a0 being the optimal order for the DFrFT. Note that qm represents the
index of the peak position in the DFrFT spectrum of the signal received at the m-th sensor.

3.2.2 DFrFT of an LFM Signal

The relationship between the LFM signal parameters and the optimal fractional Fourier
order, in discrete form, can be derived straightforwardly by performing energy aggregation
analysis, it means identifying peaks in the amplitude spectrum of the DFrFT (ALDIMASHKI;
SERBES, 2020). More specifically, let {Fas}[q] denote the DFrFT of the discrete-time chirp
s[r], which represents the discrete form of the signal given in (2.3). It follows that

{Fas}[q] = Aα√
N
ej

π
N
q2 cotα

N/2−1∑
r=−N/2

e
j2π

[
( fc
fs

− q cscα
N )r+

(
µ

f2s
+ cotα

N

)
r2

2

]
.

The relationship between the chirp signal parameters fc and µ and the optimal rotation angle α0

(corresponding to a0π/2, where a0 is the optimal order for the DFrFT) can be determined under
the criterion of maximum amplitude by setting the coefficients of the polynomial in r within the
exponent to zero. This yields the following formulas:

fc =
1
N
q0fs cscα0, (3.10a)

µ = − 1
N
f 2
s cotα0. (3.10b)

Here, q0 denotes the peak index.

These expressions enable the estimation of the parameters of a linear chirp signal by
searching for peaks in the amplitude spectrum of the DFrFT; representation of the signal received
on the reference element. This process can be outlined as

{â0, q̂0} = argmax
a,q

|{Faxm0}[q]|
2 , (3.11)

where â0 represents the estimated optimal order of the DFrFT, and q̂0 denotes the index of the
sampling point corresponding to the maximum peak. In (ALDIMASHKI; SERBES, 2020), it
was demonstrated that the joint estimation of â0 and q̂0 in a two-dimensional search space can be
achieved by estimating them independently in one-dimensional spaces. The computational cost
of the golden-section search (GSS) for a single-component chirp is then O(N log22N), where
O(N log2N) corresponds to the algorithmic cost of a single DFrFT (OZAKTAS et al., 1996).
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3.3 SAMPLING-TYPE DFrFT ON SCALED DOMAINS

This section formally presents an alternative to the sampling-type DFrFT. This approach
is defined over scaled domains and is affine to a single DFT, incorporating the possibility of
scaling the time or frequency axis in the time-frequency representation. We refer to this method
as the scaled DFrFT. Given a discrete-time signal as in (3.1), the continuous integral transform
of (2.9) can be approximated using a quadrature formula as

Xa(uq) ≈ Aα∆te
jπu2

q cotα

N/2−1∑
r=−N/2

(
x[r]ejπt

2
r cotα

)
e−j2πtruq cscα,

where uq = q∆u and tr = r∆t represent the discrete domains of the FrFT kernel. The sampling
parameter ∆t is not necessarily equal to 1/fs. The points uq, in general, correspond to the
sampling points along the scaled frequency variable axis.

The numerical algorithm for this type of decomposition is based on affine transformations,
such as scaling, chirping, and shifting (PEI; DING, 2000a). Let {F ′ax}[q] denote the DFrFT of
x[r]. Then, this operator can be defined as a one-free-sampling-parameter discrete transform, as

{F ′ax}[q] ≜ Aα∆te
jπq2∆2

u cotα

N/2−1∑
r=−N/2

(
x[r]ejπr

2∆2
t cotα

)
e−j 2π

N
rq, (3.12)

subject to the constraint;

∆u∆t =
1
N
sinα. (3.13)

Thus, the entire algorithm consists of an inner chirp multiplication, the ordinary DFT computation
of the chirp-modulated signal, and an outer chirp multiplication. This decomposition form (two
chirp modulations and one DFT) is referred to as CM–FFT–CM when the DFT is performed
using FFT algorithms. Specifically, if we use (3.12), 2N complex multiplications and one N -
point DFT are required. The arithmetic complexity of (3.12) is given, in terms of numbers of
complex multiplications, Mot

C (N), and complex additions, Aot
C (N), by

Mot
C (N) = 2N + MC (N) , (3.14a)

Aot
C (N) = AC (N) . (3.14b)

In practice, N is typically a power of two, allowing the DFT to be computed using a conventional
FFT algorithm, such as the Cooley-Tukey algorithm (COOLEY; TUKEY, 1965). In this case,
MC (N) and AC (N) are given as N

2
log2N and N log2N , respectively.

3.3.1 DFrFT of a Discrete-Time Delayed Signal

Similarly to the analysis in Subsection 3.2.1, we present the discrete-time property for
the DFrFT. First, (3.12) can be rewritten as

{F ′ax}[q] = Bα,q

∞∑
r=−∞

x[r]e−j π
N (2rq−r2∆2

tN cotα), (3.15)
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where Bα,q = Aα∆te
jπq2∆2

u cotα. Next, let F ′a{x[r − rθ]} denote the DFrFT of the discrete-time
delayed signal x[r − rθ], given by

F ′a{x[r − rθ]} = Bα,q

∞∑
r=−∞

xr−rθe
−j π

N (2rq−r2∆2
tN cotα). (3.16)

As in the previous case, applying the substitution r = n+ rθ, one obtains

F ′a{x[r − rθ]} = Bα,q

∞∑
n=−∞

xne
−j π

N [2(n+rθ)q−(n+rθ)
2∆2

tN cotα],

F ′a{x[r − rθ]} = e−j π
N (2rθq sin

2 α−r2θ∆
2
tN sinα cosα)

×Bα,q−rθ∆
2
tN cotα

∞∑
n=−∞

xne
−j π

N [2n(q−rθ∆
2
tN cotα)−n2∆2

tN cotα].

Following the notations above, one obtains

F ′a{x[r − rθ]} = e−j π
N (2rθq sin

2 α−r2θ∆
2
tN sinα cosα) {F ′ax}[q − rθ∆

2
tN cotα].

From this equation, it can be concluded that the amplitude spectrum of the DFrFT for the signal
received at the m-th sensor is a shifted version of the spectrum corresponding to the signal
received at the reference sensor. Specifically, the peak index q0 is shifted to qm, as indicated in
the expression

qm = q0 + fsτm∆
2
tN cotα0, (3.17)

where α0 = a0π/2, with a0 being the optimal order for DFrFT. Notice that in comparisons
between (3.9) and (3.17), the formula for qm differs in both cases. This is due to the constraint
given in (3.13).

3.3.2 DFrFT of an LFM Signal

Analogously to the previous case, the FrFT-based analysis of an LFM signal in discrete
form by using DFrFT is as follows. Let {F ′as}[q] denote the DFrFT of the discrete-time chirp
s[r]. Considering the expressions that correspond to this method, one obtains

{F ′ax}[q] = Bα,q

N/2−1∑
r=−N/2

e
j2π

[
( fc
fs

− q
N )r+

(
µ

f2s
+∆2

t cotα

)
r2

2

]
.

Thus, the parameters fc and µ are related to the optimal rotation angle α0 (corresponding to
a0π/2, where a0 is the optimal DFrFT order) under the maximum amplitude criterion by setting
the polynomial coefficients in r to zero, resulting in the formulas:

fc =
1
N
q0fs, (3.18a)

µ = −f 2
s∆

2
t cotα0. (3.18b)
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Here, q0 denotes the peak index. Note that (3.18a) is independent of α. This implies that, given a
multi-component LFM signal with fc in the range between the lower frequency f1 and the upper
frequency f2, the intervals for the index q0 can be determined in advance. Specifically, these
indices fall within the range f1N/fs to f2N/fs. As a result, it is not necessary to compute all the
points of the DFrFT. Regarding (3.18b), the following items present some possibilities for the
sampling parameter ∆t:

1. By choosing ∆t as 1/fs, one obtains the formula µ = − cotα0.

2. As in normalized domains, ∆t can be set as 1/
√
N . This implies that the magnitude

representation corresponds to an amplitude spectrum, with the frequency variable scaled;
∆u results in 1√

N
sinα. In addition to that, the formula becomes µ = −f 2

s cotα0/N .

3. In a similar way to the previous item, choosing ∆u as 1/
√
N determines an amplitude

spectrum that corresponds to scaling the time variable. In this case, ∆t is equal to 1√
N
sinα.

Consequently, the formula becomes µ = −f 2
s cosα0 sinα0/N .

In conclusion, the numerical method based on the FrFT–affine Fourier transform differs from the
affine chirp convolution, represented respectively by the CM–FFT–CM and CM–CC–CM struc-
tures, in terms of the discrete-time shift property, arithmetic complexity, and the representation
of chirp signals in the fractional Fourier domain.

3.4 SIMPLIFIED FRACTIONAL FOURIER TRANSFORM

Hereafter, we refer to the LCT with A = (cotα, 1;−1, 0) as simplified FrFT (named
SmFrFT) (PEI; DING, 2000b), for α ̸= nπ, which can be expressed in a linear integral form as

Xa(u) ≜ {L(cotα,1;−1,0)x}(u)

=
1√
j

∫ ∞

−∞
x(t)e−j2πut+jπt2 cotαdt,

where α = aπ/2, with a being the order of SmFrFT. Such a simplified FrFT has remarkable
importance due to its greater capability in estimating chirp rate and simpler implementation,
since its sampled form becomes a DFT. On normalized domains, the (discrete) simplified FrFT
(DSmFrFT) can be given as

Xa[q] ≜
1√
jN

N/2−1∑
r=−N/2

(
x[r]ej

π
N
r2 cotα

)
e−j 2π

N
rq, (3.20)

where α = aπ/2, with a being the order of DSmFrFT. Note that the DSmFrFT consists of chirp-
modulating the signal and computing a discrete Fourier transform only (there is no outer chirp
term nor need for kernel adjustments). SinceN is usually a power of two, theN -point DFT can be
computed using a conventional FFT algorithm, such as the Cooley-Tukey algorithm (COOLEY;
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TUKEY, 1965). Therefore, the arithmetic complexity is given, in terms of the numbers of
complex multiplications, Ms

C(N), and complex additions, As
C(N), by

Ms
C (N) = N

2
log2(N) +N, (3.21a)

As
C (N) = N log2(N). (3.21b)

To be more specific, the number of complex arithmetic operations for DFrFT and DSmFrFT
is provided in Table 1. In the table, we also include the measures ηM and ηA for calculating
algorithm efficiency, which represent the percentage of multiplications and additions saved,
respectively, when using DSmFrFT instead of DFrFT (OZAKTAS et al., 1996). The referred
measurements reach ∼ 77% when multiplications and additions are counted.

Table 1 – Arithmetic complexity of DFrFT and DSmFrFT; in terms of the number of complex
multiplications and additions.

N Multiplications ηM Additions ηA

DFrFT DSmFrFT (%) DFrFT DSmFrFT (%)
512 12288 2816 77.1 20480 4608 77.5

1024 26624 6144 76.9 45056 10240 77.3
Source: The author (2025).

3.4.1 Cyclic Shift Operator

In this numerical algorithm, we remark that, if we want to compute the DFT of a sequence
whose range of index values is as in (3.1), we need to perform a cyclic shift and consider such
an adjustment when interpreting the frequency domain. In short, the discrete Fourier transform
(DFT) is a linear transformation that converts a discrete-time signal from the time domain to the
frequency domain, mapping a sequence of numbers into another sequence representing the sig-

nal’s frequency components. Specifically, given an input signal vector v=
[
v0 v1 · · · vN−1

]T
,

the DFT of v is an output frequency domain vector V=
[
V0 V1 · · · VN−1

]T
. The components

of V are given by

Vk =
1√
N

N−1∑
n=0

e−j 2π
N

knvn, k = 0, 1, . . . , N − 1, (3.22)

where, e−j 2π
N is the root of unity and can be denoted as ωN . The DFT can also be expressed

in matrix form as V = F · v, where F is the DFT matrix with entries Fk,n = 1√
N
ωkn
N , for

n, k = 0, 1, . . . , N − 1, in its k-th row and n-th column. In this form, the DFT is unitary,
preserving vector inner products and ensuring energy conservation during transformation. In this
context, it is important to note that, if we want to compute the DFT of a sequence whose range of
index values is as in (3.1), we first need to shift the components with negative indices. A cyclic
shift is an operator that shifts the DC component to the center of the spectrum, and an inverse
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cyclic shift restores the raw frequency order (VISWANATHAN, 2019). To be more specific, let
us represent the chirp-modulated input signal in discrete form as

x̃[r] = x[r]ej
π
N
r2 cotα, r = −N/2,−N/2 + 1, . . . , N/2− 1.

Then, an inverse cyclic shift is performed before using the DFT, ensuring that the negative-index
components are moved to the end. The resulting sequence is expressed in vector form as

v =
[
x̃[0] x̃[1] · · · x̃[N/2− 1] x̃[−N/2] x̃[−N/2 + 1] · · · x̃[−1]

]T
.

Subsequently, the DSmFrFT of x[r] is the cyclically shifted version of 1√
j
F · v.

3.4.2 Convertibility Property

The convertibility property of an LCT enables it to be transformed into another LCT.
Specifically, when the order of the DSmFrFT (or DFrFT) approaches the values 0 or ±2, the
transformation may produce high oscillations. In the case of DFrFT, this phenomenon is avoided
using the additive property, where the operator Fa can be expressed as Fa−1F or Fa+1F−1. By
analogy, and as shown in (2.16), the operator LA, defined by the matrix (cotα, 1;−1, 0), can
be decomposed into two operators, LA2 and LA1 . In this decomposition, the inner operator is
determined by the matrix A1 = (0, 1;−1, 0), which corresponds to a standard Fourier transform;
angle of rotation is π/2. The outer operator is defined by the matrix A2 = (0,− cotα; 0, 1). In
normalized domains, these operators can be expressed in discrete form as

{LA1x}[q] = 1√
jN

N/2−1∑
r=−N/2

x[r]e−j 2π
N

rq, (3.23a)

{LA2x}[q] =
√

j tanα
N

N/2−1∑
r=−N/2

x[r]e−j π
N
(q−r)2 tanα. (3.23b)

Note that the first operator is an N -point DFT multiplied by 1√
j
. The output sequence for the

second operator can be calculated as the last N elements of the circular convolution between the
input sequence (zero-padded version) and the sequence corresponding to the discrete-time chirp
signal e−j π

N
q2 tanα, where −N ≤ q < N .

To illustrate these properties, we refer to Figs. 6(a–d), which show the FrFT spectra of
a single-component chirp (fc = 20, µ = 10, T = 5). The index q0, corresponding to the peak
value of the DSmFrFT spectrum, can be easily determined by (3.27a) (i.e., q0=100, solid red
line in Figure 6c). Figure 6b shows an amplitude spectrum enhanced by the cascability property
of DFrFT; as a gets closer to 0 or ±2, high oscillations appear in the DFrFT spectrum, which
can be eliminated by applying the index additivity property, for instance, Fa = Fa−1F when
a > 1.5. In the case of DSmFrFT, in a similar situation, the high oscillations can be eliminated by
applying the index convertibility property (see Figure 6d). Specifically, the desired operator LA,
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where A is the matrix (cotα, 1;−1, 0), is decomposed as LA2LA1 when a > 1.5 (or α > 3π/4).
The inner operator corresponds to the matrix A1, given as (0, 1;−1, 0), which becomes a single
DFT. The outer operator is determined by the matrix A2, given as (1,− cotα; 0, 1), and can be
implemented as a chirp convolution.

Figure 6 – Amplitude spectra, |Xa[q]|, corresponding to (a-b) DFrFT and (c-d) DSmFrFT, con-
sidering a single-component LFM signal and fractional order range a ∈ [1, 1.8]. The
transform length is N = 1024.
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Source: The author (2025).

3.4.3 Local Discrete Simplified FrFT

A local discrete transform is an algorithm for computing partial points of a (global)
discrete transform (MIAO, 2023). More specifically, the local discrete SmFrFT (LDSmFrFT)
for any Q consecutive points, q = s, s+ 1, . . . , s+Q− 1 and s ∈ {0, 1, . . . , (P − 1)Q}, can be
defined as

Xa[q] =
1√
jN

Q−1∑
r=0

P0+P−1∑
p=P0

x[p+ rP ]Ka[p+ rP, q], (3.24)
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where N=P Q, P0=−N/2, and Ka[n, q] = e−j 2π
N

nq+j π
N
n2 cotα. Then, by substituting q = s+ l,

where l = 0, 1, . . . , Q− 1, one obtains

Xa[s+ l] =
1√
jP

P0+P−1∑
p=P0

e−j 2π
N

(s+l)p+j π
N
p2 cotα︸ ︷︷ ︸

g[p,l]

× 1√
Q

Q−1∑
r=0

x[p, r]e−j 2π
Q

(s−p cotα)r+j π
Q
Pr2 cotα︸ ︷︷ ︸

h[p,r]

e−j 2π
Q

lr.

In this way, the LDSmFrFT is different from the general form proposed in (MIAO, 2023); it
consists of rearranging the N -length sequence x[n] as a P -by-Q matrix x[p, r] = x[p + rP ],
element-wise multiplying by the inner chirp matrix h[p, r], performing a Q-point DFT by
rows, element-wise multiplying by the outer chirp matrix g[p, l], and summing the elements of
each column. Therefore, the arithmetic complexity is given, in terms of numbers of complex
multiplications, Mo

C(Q), and complex additions, Ao
C(Q), by

Mo
C(Q) = P Q

2
log2(Q) + 2N, (3.25a)

Ao
C(Q) = PQ log2(Q) +N −Q. (3.25b)

Clearly, the reduction in the number of complex multiplications, when LDSmFrFT is used
instead of DSmFrFT, is given by N/2 log2 P −N ; this means that Q must not be greater than
N/4 for the algorithm to be efficient. Note that N log2 P −N +Q complex additions are also
saved.

3.4.4 DSmFrFT of a Discrete-Time Delayed Signal

An important aspect for applications such as DoA estimation concerns the discrete-
time-shift property of discrete FrFT. In this context, let LA{x[r − rθ]} be the DSmFrFT of the
discrete-time delayed signal x[r − rθ]. Using (3.20), one has

LA{x[r − rθ]} =
1√
jN

∞∑
r=−∞

x[r − rθ]e
−j π

N (2rq−r2 cotα).

Substituting r = n+ rθ, one obtains

LA{x[r − rθ]} =
1√
jN

∞∑
n=−∞

x[n]e−j π
N [2(n+rθ)q−(n+rθ)

2 cotα]

= e−j π
N (2rθq−r2θ cotα)Xa[q − rθ cotα].

For the estimation of DoA, assume that the delay τm between the m-th element relative to
the reference element generates a shift of rθ points, that is, rθ = fsτm. Then, the index q0

corresponding to reference sensor is shifted to

qm = q0 + fsτm cotα0, (3.26)

where qm is the index of the peak position in the DSmFrFT spectrum of the signal received at
the m-th sensor.
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3.4.5 DSmFrFT of an LFM Signal

Estimating the parameters of a linear chirp is based on the fact that the FrFT of an LFM
signal gradually converges to an impulse in the fractional Fourier domain as the fractional order
approaches the optimal value (LIU; XIAO; WANG, 2021). Analogously, the DSmFrFT of a
discrete-time chirp signal s[r] can be expressed in its discrete LCT form as

{LAs}[q] = 1√
jN

N/2−1∑
r=−N/2

e
j2π

[
( fc
fs

− q
N )r+

(
µ

f2s
+ cotα

N

)
r2

2

]
,

when A = (cotα, 1;−1, 0). Using an energy aggregation analysis, the peaks can be determined
equalling to zero the coefficients of the polynomial in the variable r in the exponent of the last
equation. This leads to the following relationships between fc and the index of peak q0, as well
as µ and the optimal rotation angle α0:

fc =
1
N
q0fs, (3.27a)

µ = − 1
N
f 2
s cotα0. (3.27b)

In this case, α0 = a0π/2, with a0 being the optimal order of DSmFrFT. Table 2 summarizes the
formulas for stimating chirp parameters depending on DFrFT and DSmFrFT. It can be observed
that DFrFT (CM–FFT–CM) and DSmFrFT result in identical expressions when ∆t = 1/

√
N .

Consequently, in the subsequent analysis, only the DFrFT (CM–CC–CM) and the DSmFrFT
are considered for comparison. Note that, when the center frequency is known, a peak search is
required in a 1D space only. In other words, the position of the peak on the fractional axis can
be determined directly from the sampling parameters, that is, fs and N . In this way, we have
essentially found two advantages in using DSmFrFT instead of DFrFT: (i) the lower arithmetic
complexity, since it requires one DFT only; (ii) for a given fc, one requires a peak search in 1D
space only. Consequently, the overall computational cost of GSS for a single-component chirp is
O(N log2N), since the cost of directly computing the DSmFrFT only at the index q0 is O(N).
In the case of a multi-component LFM signal with fc in the range between the lower frequency
f1 and the upper frequency f2, the intervals for the index q0 can be determined in advance, when
DSmFrFT is used. Specifically, these indices fall into the range f1N/fs to f2N/fs. As a result, it
is not necessary to compute all the points of DSmFrFT.

Table 2 – Formulas for estimating chirp parameters depending on the FrFT Algorithms.

CM–CC–CM CM–FFT–CM DSmFrFT
fc =

1
N
q0fs cscα0 fc =

1
N
q0fs fc =

1
N
q0fs

µ = − 1
N
f 2
s cotα0 µ = −f 2

s∆
2
t cotα0 µ = − 1

N
f 2
s cotα0

qm = q0 + fsτm cosα0 qm = q0 + fsτm∆
2
tN cotα0 qm = q0 + fsτm cotα0

Source: The author (2025).
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4 CM–CC–CM DECOMPOSITION IN Z2b+1

In this chapter, we first present the preliminaries for performing complex convolution
over the ring of integers modulo 2b+1 (the ring Z2b+1). In particular, for the fifth- and sixth-order
Fermat numbers, the corresponding structures are no longer finite fields but instead form rings
of integers. Subsequently, we introduce circular-convolution-based algorithms for the digital
computation of the FrFT, showing how these convolutions can be computed efficiently using
Fermat number transforms. The adopted strategy evaluates the sampling-type DFrFT based on
the CM–CC–CM decomposition in Z2b+1, where the core stage is a circular convolution. In this
context, we also examine the diminished-1 representation, the bounding method used to prevent
amplitude aliasing, and the overlap-and-save technique for handling long convolutions.

4.1 FERMAT NUMBER TRANSFORMS

The Fermat number transform (FNT) of the sequence {vi | i = 0, 1, . . . , N − 1} over the
finite field GF(p), with p = 2b + 1 a Fermat prime (where b = 2t for 0 ≤ t ≤ 4), is defined as

Vk =
N−1∑
i=0

ωikvi (mod p), k = 0, 1, . . . , N − 1, (4.1)

where ω is an N th root of unity over GF(p), i.e., ωN ≡ 1 (mod p). It is well known that the
element 2 has order 2b in GF(2b + 1), since 2b + 1 ≡ 0, 2b ≡ −1, and 22b ≡ 1 (mod p). This
implies that the possible block lengths are given by N = 2t+1.

In applications such as digital filtering (DAHER et al., 2021), the algorithm depends on
whether the resulting sequence, after applying the FNTs and pointwise multiplication, can be
converted back to the original sequence by performing the inverse FNT (IFNT). Specifically, the
IFNT of the sequence {Vk|k = 0, 1, . . . , N − 1} is defined as

vi = N−1

N−1∑
k=0

ω−ikVk (mod p), i = 0, 1, . . . , N − 1, (4.2)

where N−1 is the inverse of N over GF(p), N−1N ≡ 1 (mod p). Since N is a power of two, its
inverse can be obtained as 2−n = −2b−n (mod p). As a consequence of the element ω being of
order N , its inverse can be immediately given as ω−1 = ωN−1 (mod p) (AGARWAL; BURRUS,
1974a). One way to use fast FNT algorithms for IFNT is calculating the sequence v′i = v−i, so
the final result is obtained by the sequence reversal process, that is, vi = v′⟨N−i⟩N

.

4.1.1 Radix-2s Algorithm for FNT

Since the definitions of FNT and DFT are very similar, the Cooley-Tukey algorithm can
be used for FNT in an analogous way (COOLEY; TUKEY, 1965). Let us assume that N=L ·M ,
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then, the input mapping and the output mapping can be respectively denoted as

i = l +mL, k = qM + r,

{
l, q = 0, 1, ..., L− 1,

m, r = 0, 1, ...,M − 1.
(4.3)

After that, two-dimensional (2D) variables can be defined as vl,m = vl+mL and Vq,r = VqM+r.
Substituting i and k in (4.1), considering that ω has order N in GF(p), that is, ωN=1 (mod p),
the FNT in terms of 2D variables becomes

Vq,r =
L−1∑
l=0

ωlqM

[
ωlr

M−1∑
m=0

ωmrLvl,m

]
(mod p), (4.4)

where ωlr is a twiddle factor in GF(p). Note that ωL has order M in GF(p), (ωL)M ≡ 1 (mod p),
which makes the inner sum corresponding to be an M -point FNT. Identically, since ωM has
order L in GF(p), (ωM)L ≡ 1 (mod p), the outer sum becomes an L-point FNT. The Cooley-
Tukey algorithm consists of input mapping, M -point FNTs of the rows (of a matrix), point-wise
multiplication with the twiddle-factor matrix ΩΩΩ = [ωlr], L-point FNTs of the columns and output
mapping (DUHAMEL; VETTERLI, 1990). Notice that the twiddle-factor matrix has L/2×M/2

elements that are odd power of ω.

Figure 7 – Radix-L Cooley-Tukey mapping for an N -point FNT (L = 2 and N = 8).

Source: The author (2025).

The 2n-point FNT, as given in (4.4), where n is a positive integer, with L equal to 2

and M equal to 2n−1, becomes a decimation-in-time radix-two FNT algorithm in GF(p). This
process is illustrated in Figure 7. When ω=2, for instance, the 32-point FNT over GF(216 + 1)

is given by

Vk =
31∑
i=0

2ikvi (mod p), k = 0, 1, . . . , 31. (4.5)

Thus, anN -point FNT only requiresN log2N additions and bit-shifts. As the blocklengthN=2b

can be too short for many applications, one possibility is to use
√
2=2

b
4 (2

b
2 − 1) as the kernel

of FNT (AGARWAL; BURRUS, 1974a), this element has order 4b in GF(2b + 1), then the
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possible blocklengths are N = 2t+2, where 2≤ t≤ 4. In a particular way, the 64-point FNT over
GF(216 + 1) can be expressed as

Vk =
63∑
i=0

(
212 − 24

)ik
vi (mod p), k = 0, 1, . . . , 63. (4.6)

In this case, as every even power of
√
2 is a power of two, and every odd power of

√
2 is equal

to a power of two times 2
b
4 (2

b
2 − 1) (BLAHUT, 2010, p. 315); given a positive integer d, the

(2d+ 1)-th power of
√
2 can be written as 2d1 − 2d2 (mod p), where d1 = d+ 3b

4
(mod 2b) and

d2 = d+ b
4
(mod 2b) (XING et al., 2024). Therefore, assuming that a subtraction costs the same

as an addition, an N -point FNT involves N/4 +N log2N additions and bit-shifts only (N/4 is
the number of factors in the form 2d1 − 2d2).

In general form, considering that the element 2 has order 2b in GF(2b + 1), the kernel ω
in terms of the blocklength N can be expressed as ω = 2

2b
N , where N ∈ {2, 22, . . . , 2b}. Table

3 provides the possible parameters for the implementation of an N -point FNT. In this context,
writing ω = m

√
2, where m = N

2b
, we can consider that there are m elements whose m-th power

equals 2; specifically, rmi ≡ 2 (mod p) for 1, 2, . . . ,m. To select the kernel ω, these elements are
ordered as r1 < r2 < . . . < rm, and ω is chosen as r1. When b is 8 or 16, an efficient method for
calculating the 2n-point FNT, where 2n > 4b, is the radix-2s algorithm. This means selecting
L = 2s in (4.4). In such manner, the arithmetic complexity of a 2n-point FNT over GF(2b + 1),
s<n≤b, in terms of the numbers of multiplications, Mb(2

n), and additions, Ab(2
n), in recursive

form of radix-2s algorithm, can be obtained as

Mb(2
n) = 2sMb(2

n−s) + 2n−sMb(2
s) + MΩΩΩ

b (2
n, 2s);

Ab(2
n) = 2sAb(2

n−s) + 2n−sAb(2
s),

where MΩΩΩ
b (2

n, 2s) is the number of non-trivial multiplications needed to compute the element-
wise product by the twiddle-factor matrix. Notice that the 2n-point FNT, where 2≤n≤s, is a
multiplier-less algorithm.

Finally, notice that ω
m
2 equals

√
2; however, this value can sometimes correspond to

2
b
4 (1−2

b
2 ) (mod p) and can serve as the kernel for the (4b)-point FNT in the radix-(4b) algorithm,

as detailed in Table 4. Taking this into account, the use of L = 4b is more efficient than 2b in
terms of the number of multiplications, as the smallest possible value of MΩΩΩ

b (2
n, 2s) is obtained

as 2n − 2s − 2n−s. This occurs because the first column and the first row of the twiddle-factor
matrix contain only ones, and a trivial-factor element ωlr = 2

b
2 appears when l = L/2 and

r = M/2. However, since this reduction in multiplications comes at the cost of increasing
additions, we consider L = 2b in the subsequent sections.

4.1.2 Two-Dimensional Fermat Number Transform

In convolution implementations, anN1-length sequence is usually arranged into a 2L×R
matrix when N1 = L · R. Therefore, let [Vq,r] denote the two-dimensional Fermat number
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Table 3 – Possible parameters of the FNT and the root of unity ω for different N .

t b Ft N
2 22 23 24 25 26 27 28 · · · 216

0 1 21+1 2
1 2 22+1 22 2

2 4 24+1 24 22 2
√
2

3 8 28+1 28 24 22 2
√
2 4

√
2 8

√
2 16

√
2

4 16 216+1 216 28 24 22 2
√
2 4

√
2 8

√
2 · · · 2048

√
2

5 32 232+1 232 216 28 24 22 2
√
2

6 64 264+1 264 232 216 28 24 22 2
√
2

Source: Adapted from Xing et al. (2024).

Table 4 – The kernel of 2n-point FNT over GF(2b + 1) is calculated as the m-th root of 2,
ω = m

√
2, and its (m/2)-th power (modulo 2b + 1) is the square root of 2, ω

m
2 =

√
2.

n b = 8 b = 16
m ω ω

m
2 m ω ω

m
2

5 2 60 60
6 4 35 197 2 4080 4080
7 8 42 197 4 4938 4080
8 16 27 197 8 5574 4080
9 16 5589 61457

10 32 5851 61457
11 64 3623 4080
12 128 87 4080
13 256 875 4080
14 512 79 61457
15 1024 367 4080
16 2048 23 4080

Source: The author (2025).

transform (2D-FNT) of [vm,l]; this operator is defined as

Vq,r =
M−1∑
m=0

2L−1∑
l=0

vl,mω
lq
2Lω

mr
R (mod p), (4.7)

where q = 0, 1, . . . , 2L− 1 and r = 0, 1, . . . , R − 1. The elements ω2L and ωR have order 2L
and R over GF(p), respectively. Note that (4.7) can be implemented using one-dimensional
butterfly algorithms, i.e., applying (one-dimensional) FNTs to the matrix rows and then to the
columns. Therefore,R times 2L-point FNTs and 2L timesR-point FNTs are required to compute
a 2D-FNT. The back conversion can be performed using the 2D inverse Fermat number transform



51

(2D-IFNT), which can be written as

vl,m = (2N)−1
R−1∑
r=0

2L−1∑
q=0

Vq,rω
−lq
2L ω

−mr
M (mod p). (4.8)

In similar way to the one-dimensional case, the 2D-FNT can be used for computing (4.8) as
v′l,m=v−l,−m, then the sequence reversal is given by vl,m=v′⟨2L−l⟩2L,⟨R−m⟩R

.

In practical scenarios, the Fermat primes (F0, F1, . . . , F4) may not be large enough for
applications involving convolutions. Consequently, it may be necessary to consider F5 and F6.
However, the corresponding Fermat numbers 2b + 1 with b = 32, 64 have been proven to be
composite, and their prime factors are known to be of the form k·2t+2+1 (AGARWAL; BURRUS,
1974a). As a result, the FNT methods discussed above can still be applied, but the maximum
feasible transform length is limited to N = 2t+2, where t = 5, 6. This upper bound is often
too small for many applications, particularly those that require long convolutions. An approach
to address this limitation is to map a one-dimensional convolution onto a two-dimensional
convolution (AGARWAL; BURRUS, 1974b).

4.2 DIGITAL COMPUTATION OF THE FrFT IN Z2b+1

In this section, we consider the digital computation of the FrFT through the CM–CC–CM
decomposition in the ring Z2b+1, in which a simple way to implement the chirp convolution stage
is to use Fermat number transforms (NUSSBAUMER, 1976). This implies representing the in-
phase and quadrature components over the ring of integers modulo Fermat number, Ft = 2b + 1,
when b = 2t, t = 0, 1, . . . , 6. Remark that only integers 0, 1, . . . , 2b are allowed in this modular
arithmetic when the elements of the original sequences are given in the range

[
−2b−1, 2b−1

]
,

negative integers are represented by adding 2b+1 (AGARWAL; BURRUS, 1974a). In the referred
ring of integers, b+1 bits are required to represent all of elements; the additional bit is necessary
to represent the value 2b = −1 (mod Ft). In binary arithmetic, the diminished-1 representation is
a way to avoid additions and multiplications involving the additional bit (LEIBOWITZ, 1976);
the integers from 1 to 2b are represented in binary numbers from 0 to 2b−1.

4.2.1 Diminished-1 Arithmetic

Let x and y be two (b+ 1)-bit numbers, with 0 ≤ x, y ≤ 2b, and let xd and yd represent
their diminished-1 forms such that xd = ⟨x− 1⟩2b+1 and yd = ⟨y − 1⟩2b+1. Strategically,
each arithmetic operation modulo 2b + 1 can be expressed as the corresponding diminished-1
operations (LEIBOWITZ, 1976; BAOZHOU et al., 2019), as outlined in the following items:

• Addition: The addition of two numbers is determined by their most significant bit (MSB);
the operation is inhibited if the MSB of either addend is 1. If this bit of both addend is 0,
the operation is performed, then the complement of the carry is added to b least significant
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bits (LSBs) of the sum, which can be expressed numerically as

fA(xd, yd, b) =



xd, yd = 2b,

yd, xd = 2b,

s− 2b, xd ̸= 2b, yd ̸= 2b, s ≥ 2b,

s+ 1, xd ̸= 2b, yd ̸= 2b, s < 2b,

where s = xd + yd.

The condition s ≥ 2b is equivalent to detecting a carry–out in the b-bit addition of xd and
yd, which occurs precisely when the most significant bit of the sum is 1. This operation
requires a b-bit inverted-end-around-carry (IEAC) adder for its implementation (XING et
al., 2024).

• Negation: The negative of a nonzero number is represented by taking the complement of
its b LSBs, that is

fN(xd, b) =

xd, xd = 2b,

xd ⊕ (2b − 1), xd ̸= 2b,

where ⊕ denotes the bitwise XOR operator; that is to say, a b-bit inversion.

• Subtraction: The subtraction of two numbers is achieved by negating the subtrahend and
then adding it to the minuend, which can be expressed as follows

fS(xd, yd, b) = fA (xd, fN(yd, b), b) .

This operation can be performed using a b-bit inversion followed by a b-bit IEAC adder.

• Left shift: Multiplying a number by 2 can be understood as adding the number by itself.
This can be expressed as

fLS(xd, b) =


xd, xd = 2b,

s− 2b, xd ̸= 2b, s ≥ 2b,

s+ 1, xd ̸= 2b, s < 2b,

where s = 2xd is a left bit-shift (s = xd ≪ 1). Note that multiplying by an n-th power of
2 is the same as applying an inverted circular shift (ICS) n (mod 2b) times.

• Multiplication: One basic method of multiplying two numbers involves converting either
the multiplier or the multiplicand to standard binary form (LEIBOWITZ, 1976). Next,
residue reduction is done by subtracting the b MSBs of the binary product from its b LSBs
using diminished-1 subtraction. In conditional form, it is

fM(xd, yd, b) =


fN(xd, b), yd = 2b − 1,

fN(yd, b), xd = 2b − 1,

fS(mLSBs,mMSBs, b), otherwise,
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where m = x · y is a binary multiplication. Strategically, one operand can expressed
in weighted representation, and the other in diminished-1 representation (VERGOS;
DIMITRAKOPOULOS; NIKOLOS, 2005). Let y = (βb, βb−1, . . . , β0) be a binary number;
then the weighted multiplication can be represented as

fW(xd, y, b) =
b−1∑
i=0

βi · (2i · x)d (mod 2b + 1),

where (2i · x)d denotes the i-th left bit shift, which is part of the diminished-1 operations.
In canonical signed digit (CSD) representation, a single constant multiplication is equiv-
alent to b/3 additions on average and b/2 additions in the worst case (VORONENKO;
PÜSCHEL, 2007).

Note that a binary number can be converted to its diminished-1 form by performing a diminished-
1 addition between it and the binary value of 2b − 1; to be specific, xd = fA

(
x, 2b − 1, b

)
. To

convert back, complement the MSB of a number in diminished-1 representation and add it to the
LSBs.

4.2.2 Complex Multiplication over Z2b+1

In the commutative ring with unity Zm, where m = 2b + 1 is a Fermat number, the
element 2 is invertible because gcd(2,m) = 1, as m is odd. Similarly, the element r = 2b/2 is
invertible and satisfies r2 ≡ −1 (mod m). More specifically, the inverses of 2 and r are given
by

2−1 ≡ −2 b−1, r−1 ≡ −r ≡ −2 b/2 (mod m).

For any scalars a, â, c, ĉ ∈ Zm, define the Hermitian pairs as

u = a+ râ, ū = a− râ, v = c+ rĉ, v̄ = c− rĉ (mod m).

Let the modular products be U = uv and Ū = ū v̄. Then, it follows that

U + Ū = 2(ac− âĉ), U − Ū = 2r(aĉ+ âc) (mod m).

Thus, the product (a+ râ)(c+ rĉ) = x+ ry, where

x = 2−1(U + Ū), y = 2−1r−1(U − Ū) (mod m),

can be computed using only two modular multiplications (to form U and Ū ), and when (c± rĉ)

can be precomputed, it involves only four modular additions.
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4.2.3 Circular Convolution in Z2b+1

Computing (3.3) in Z2b+1 requires 4N multiplications and 8N additions in the chirp
multiplication stages, assuming that complex multiplication is performed in quadratic residue
number systems (KRISHNAN; JULLIEN; MILLER, 1986), as described above. Furthermore,
an efficient way to implement the chirp convolution stage is the method introduced in (NUSS-
BAUMER, 1976), which, based on the convolution theorem, performs the FNT of the in-phase
and quadrature components, followed by pointwise complex multiplication and IFNT of these
components. Consequently, an N1-point complex circular convolution requires two N1-point
FNTs, 2N1 multiplications, 4N1 additions and two N1-point IFNTs (XING et al., 2024). There-
fore, the arithmetic complexity of an N -point DFrFT can be expressed, in terms of the number
of diminished-1 multiplications, M1(·, b), and diminished-1 additions, A1(·, b), as

M1 (N, b) = 8N + 4Mb (2N) ; (4.9a)

A1 (N, b) = 16N + 4Ab (2N) , (4.9b)

where Mb (·) and Ab (·) denotes the arithmetic complexity of the one-dimensional FNT in the
diminished-1 representation (modulo 2b + 1).

After performing the operations, the final result is obtained by converting back to the
interval

[
−2b−1, 2b−1

]
. In this context, amplitude overflow (or aliasing) can occur in some

scenarios. In the following, we explain how to avoid it. Let {gn} and {hn} be two complex
sequences whose elements are given as an+ jân and cn+ jĉn, n = 0, 1, . . . , N − 1, respectively.
In relation to DFrFT computing via (3.3), the discrete input signal can be represented in polar
form as xr = |xr| ejϕr , ϕr = arg[xr]. Furthermore, each non-zero element of {gn} corresponds
to the chirp-modulated input signal, that is

gn = |xr| ejϕre−j π
N
r2 tan (α

2 ), r = n−N/2.

Note that the extreme values of gn are bounded by |xr|. In order to bound the discrete circular
convolution yn = (g ⊛ h)n, one assumes that

|yn| ≤ max
r

|xr|
N−1∑
n=0

√
c2n + ĉ2n ≤ Ft/2, (4.10)

is satisfied; a generalized form of triangular inequality.

For long signals (N > 2b), the one-dimensional convolution can be remapped into a
2D scheme using the overlap-and-save (OaS) method (AGARWAL; BURRUS, 1974b). Let us
assume that the length of the circular convolution given in (3.4) is factored as N1 = L ·R, then
the 2D mapping is given by

n = l +mL, i = q + rL,

{
l, q = 0, 1, ..., L− 1,

m, r = 0, 1, ..., R− 1;
(4.11)
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that is, a two-dimensional L×R array is obtained from the original sequence as ẏ(l,m) = y(l+mL);
the columns of [ẏl,m] are the blocks of the sequence {yn}. Similarly, ġl,m and ḣl,m are elements of
the two-dimensional versions of {gn} and {hn}, respectively. After that, let g̈ be the (2L− 1)×R
array formed by appending (L− 1) rows of zeros to the bottom of ġ, and let ḧ be the (2L− 1)×R
array formed so that its top columns contain the periodic extension of the original ḣ with period
N1. For implementations that use transforms, the arrays are usually extended one additional
row to be 2L × R (AGARWAL; BURRUS, 1974b). Therefore, the two-dimensional cyclic
convolution of the extend arrays can be denoted as

ÿ(l,m) = (g̈ ⊛ ḧ)(l,m) =
R−1∑
r=0

2L−1∑
q=0

g̈(q,r)ḧ(l−q,m−r), (4.12)

where the bottom L × R partition of ÿ is ẏ, and the columns of ẏ are the desired blocks of y
in (3.4). In this way, an N1-length complex circular convolution consumes two 2D-FNTs, two
2D-IFNTs, 4N1 multiplications and 8N1 additions (XING et al., 2024). If we consider computing
an N -point DFrFT, where N is a composite number N = L ·M , the factor R is 2M , since
N zeros have been appended to the input sequence (see Figure 8). In this case, the arithmetic
complexity can be expressed in terms of numbers of diminished-1 multiplications, M2(·, b), and
diminished-1 additions, A2(·, b), as

M2 (N, b) = 12N + 4Mb (2L, 2M) ; (4.13a)

A2 (N, b) = 24N + 4Ab (2L, 2M) , (4.13b)

where Mb (·, ·) and Ab (·, ·) represent the number of multiplications and additions performed
when applying two-dimensional FNT (mod 2b + 1), respectively.

Figure 8 – Mapping DFrFT as 2D convolution; [gl,m] and [ÿl,m] are L ×M matrices that re-
spectively represent the input and output of the 2D convolution, [0] represents a null
matrix, [ḧl,m] is a 2L× 2M matrix, and [■] represents a matrix whose elements are
ignored when forming the output sequence.

=

Source: The author (2025).
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5 OPTIMIZED CM–CC–CM DECOMPOSITION OVER Z2b+1

In this chapter, the in-phase and quadrature components of the signals of interest are
assumed to be represented in the ring Z2b+1, with b = 32 or 64. The numerical formulation of the
fractional Fourier transform is based on a decomposition into circular convolutions – specifically,
the CM–CC–CM scheme employed for computing the DFrFT. Within this framework, we
introduce the local Fermat number transforms and discuss how redundant computations
can be eliminated. Moreover, we propose a local DFrFT, an algorithm involving two chirp
multiplications and a local circular convolution. The latter operation enables the evaluation of
partial results of a (global) circular convolution.

5.1 LOCAL FERMAT NUMBER TRANSFORMS

In applications involving circular convolution and its implementation through discrete
transforms, one or both input sequences are typically zero-appended. When signals are repre-
sented in Z2b+1, to avoid operations involving null values during computation of the FNT, we
propose the use of the local-input Fermat number transform (LiFNT). In this context, computing
only a subset of points of the resulting sequence can be an efficient approach; for this purpose,
we propose employing the local-output inverse Fermat number transform (LoIFNT).

Theorem 5.1. Let {vn | n = 0, 1, . . . , N − 1} denote a sequence in the ring Z2b+1. Then its

LiFNT, acting as an operator that yields the FNT of a sequence zero-padded in its second half, is

the sequence {Vk | k = 0, 1, . . . , 2N − 1}, whose even- and odd-indexed elements are given by

V2r =
N−1∑
n=0

vnω
nr
N (mod 2b + 1), (5.1a)

V2r+1 =
N−1∑
n=0

vnω
n
2Nω

nr
N (mod 2b + 1), (5.1b)

where r = 0, 1, . . . , N − 1. Since ωK , K = 2N , is a primitive K-th root of unity in Z2b+1, it

follows that ωN = ω2
K is an element of order N .

Proof. These two formulas are derived directly from the definition of FNT analogously using
the decimation-in-frequency procedure as follows. The K-point FNT over Z2b+1 is given by

Vk =
K−1∑
n=0

vnω
nk
K (mod 2b + 1), k = 0, 1, . . . , K − 1,

where ωK is a K-th root of unity over Z2b+1. Let vq+s, for q = 0, 1, . . . , Q − 1, denote Q
consecutive non-zero elements of the input sequence, where s is the starting index. The expression
for Vk can be decomposed as

Vk =
s−1∑
n=0

vnω
nk
K +

s+Q−1∑
n=s

vnω
nk
K +

K−1∑
n=s+Q

vnω
nk
K (mod 2b + 1). (5.2)
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Note that the first and third terms are null because vn = 0. By substituting the index n = q + s,
one obtains

Vk = ωsk
K

Q−1∑
q=0

vq+sω
qk
K (mod 2b + 1). (5.3)

Furthermore, when K = P · Q, the output sequence can be mapped onto a two-dimensional
array, Vp,r = Vp+rP , as

Vp+rP = ω
s(p+rP )
K

Q−1∑
q=0

vs+qω
q(p+rP )
K (mod 2b + 1), (5.4)

where p = 0, 1, . . . , P − 1 and r = 0, 1, . . . , Q− 1. Note that ωQ = ωP
K is an element of order

Q. For K = 2N , when the last N elements of {vn} are null, the following settings hold: s = 0,
P = 2, and Q = N . The expression then becomes

V2r+p =
N−1∑
q=0

vq ω
qp
Kω

qr
Q (mod 2b + 1). (5.5)

Equations (5.1a) and (5.1b) are obtained by setting p = 0 and p = 1 in V2r+p, respectively.

Theorem 5.2. Let {Vk | k = 0, 1, . . . , 2N − 1} denote a sequence in the ring Z2b+1, which is

the FNT of {vn}. Then, under the constraint that N is a power of two, the LoIFNT, acting as an

operator that yields the last N consecutive elements of {vn}, is given by

vn+N =(2N)−1

N−1∑
r=0

V2rω
−rn
N (mod 2b + 1)

−(2N)−1ω−n
2N

N−1∑
r=0

V2r+1ω
−rn
N (mod 2b + 1),

(5.6)

where n = 0, 1, . . . , N − 1. Since ωK , K = 2N , is a primitive K-th root of unity in Z2b+1, it

follows that ωN = ω2
K is an element of order N .

Proof. The sequence {vn} can be established by definition of the inverse FNT (IFNT) as

vn = K−1

K−1∑
k=0

Vkω
−kn
K (mod 2b + 1), n = 0, 1, . . . , K − 1,

where ωK is a K-th root of unity over Z2b+1. If the transform length is a composite number
K = P ·Q, by mapping the sequence {Vk} as a P -by-Q matrix, Vp,r = Vp+rP , one obtains

vn = K−1

Q−1∑
r=0

P−1∑
p=0

Vp+rPω
−(p+rP )n
K (mod 2b + 1).
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Then, any Q consecutive points of {vn} can be obtained by substituting n = q + s, where s is
the starting index, that is

vq+s = K−1

P−1∑
p=0

ω−ps
K ω−pq

K

Q−1∑
r=0

Vp+rPω
−rsP
K ω−rqP

K (mod 2b + 1).

where q = 0, 1, . . . , Q− 1. Notice that ωQ = ωP
K is an element of order Q. In a particular way,

when s = N , P = 2, and Q = N , the terms ω−sP
K and ω−s

K become trivial factors, as are 1 and
−1 (mod 2b + 1), respectively.

Note that a LiFNT (from N to 2N points) consumes N multiplications (by the factor
ωn
2N ) and two N -point FNTs; 2N additions are saved by using a LiFNT instead of an FNT.

Calculating the last N consecutive points of the (2N )-point IFNT, as a LoIFNT (from 2N to N
points), requires N additions, N multiplications (by the factor ω−n

2N ), and two N -point IFNTs; N
additions are saved by using a LoIFNT instead of an IFNT.

The two-dimensional forms of these transforms are defined as follows. The 2D-LiFNT
applies the LiFNT to each row of an L ×M matrix, producing an L × 2M matrix, and then
applies the LiFNT to each column to obtain the final 2L× 2M matrix. In this manner, a total of
6LM additions and L instances of (2M)-point FNTs are saved when using 2D-LiFNT instead
of 2D-FNT. Similarly, the 2D-LoIFNT applies the LoIFNT to each row of a 2L× 2M matrix,
producing a 2L ×M matrix, and then applies the LoIFNT to each column to obtain the final
L×M matrix. This form saves a total of 3LM additions and M instances of (2L)-point IFNTs
when 2D-LoIFNT is used instead of 2D-IFNT.

5.2 CIRCULAR CONVOLUTION OVER Z2b+1 FOR DFrFT

In this section, we present how (3.4) can be computed using local Fermat number
transforms under two schemes: a one-dimensional scheme and a two-dimensional scheme. These
optimized implementations, proposed as the chirp-convolution stage for computing an N -point
DFrFT, are shown in Fig. 9.

5.2.1 Proposed 1D Convolution Scheme

The procedure in (3.3) is referred to as the CM–CC–CM (mod 2b+1) decomposition when
implemented over the ring Z2b+1. This subsection details the realization of its chirp-convolution
stage using a one-dimensional circular convolution. The method operates on a chirp-modulated
input sequence {gn | n = 0, . . . , N − 1} and a chirp sequence {hn | n = 0, . . . , 2N − 1}. In this
context, the last N points of the circular convolution, yn+N , n = 0, . . . , N − 1, can be obtained
as described in the following steps:
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Figure 9 – The signal flow graph of the circular convolution yn = (g ⊛ h)n, with n = N,N +
1, . . . , 2N − 1, in which the last N elements of the input sequence are null values,
that is gn = 0, N ≤ n < 2N ; (a) 1D case and (b) 2D case.

LiFNT

LiFNT

FNT

FNT

LoIFNT

LoIFNT

(a) 1D Convolution scheme.

2D-LoIFNT2D-LiFNT

2D-FNT

(b) 2D Convolution scheme.

Source: The author (2025).

1. Computing FNT: Let Ck and Ĉk, k = 0, 1, . . . , 2N − 1, be the FNTs of the real and
imaginary components of {hn}, respectively. Then, their Hermitian pairs are given as

Hk = Ck + 2
b
2 Ĉk (mod 2b + 1), (5.7a)

H̄k = Ck − 2
b
2 Ĉk (mod 2b + 1); (5.7b)

2. Computing LiFNT: Let Ak and Âk, k = 0, 1, . . . , 2N − 1, be the LiFNTs of the real and
imaginary components of {gn}, respectively. Then, their Hermitian pairs can be computed
as

Gk = Ak + 2
b
2 Âk (mod 2b + 1), (5.8a)

Ḡk = Ak − 2
b
2 Âk (mod 2b + 1); (5.8b)

3. Pointwise product: Yk=GkHk and Ȳk=H̄kḠk (mod 2b + 1);
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4. Computing LoIFNT: Let Ek and Êk, k = 0, 1, . . . , 2N − 1, be the FNT of the real and
imaginary components of yn = (g ⊛ h)n, which can be calculated as

Ek = 2−1
(
Yk + Ȳk

)
(mod 2b + 1), (5.9a)

Êk = 2−12−
b
2

(
Yk − Ȳk

)
(mod 2b + 1). (5.9b)

Then, the last N consecutive points of the in-phase and quadrature components of {yn}
can be calculated as the LoIFNT of Ek and Êk, respectively.

Note that item 1) can be precomputed when {hn} is known in advance, which implies a given
fractional Fourier order. The scheme corresponding to this algorithm is shown in Figure 9a. In
conclusion, as explained in items 2) and 4), a total of 6N additions are saved when local FNTs
are used to compute (3.3).

5.2.2 Proposed 2D Convolution Scheme

Similarly to the previous subsection, a 2D scheme is proposed in Z2b+1 to implement (3.4).
The method is based on the OaS procedure. The sequences {gn} and {hn} are first mapped to
their 2D representations, after which a 2D convolution is performed as detailed in the following
steps.

1. Convolutional-chirp tiling: Construct the 2L × 2M matrix by vertically stacking two
L× 2M blocks derived from the chirp sequence {hn}, as

hL+l,m = hl+mL, hl,m = h⟨2N−L+l+mL⟩(2N)
,

l = 0, . . . , L− 1,

m = 0, . . . , 2M − 1.

2. Computing 2D-FNT: Let us denote by [Cq,r] and [Ĉq,r], q = 0, . . . , 2L − 1, r =

0, . . . , 2M − 1, the 2D-FNT of the real and imaginary components of [hl,m], respec-
tively. Then, the Hermitian pairs of the corresponding 2D-FNTs can be computed as

Hq,r = Cq,r + 2
b
2 Ĉq,r (mod 2b + 1), (5.10a)

H̄q,r = Cq,r − 2
b
2 Ĉq,r (mod 2b + 1); (5.10b)

3. Input mapping: Reform the 1D sequence {gn} of length LM into an L×M matrix, that
is gl,m = g l+mL, for l = 0, . . . , L− 1 and m = 0, . . . ,M − 1.

4. Computing 2D-LiFNT: Let Aq,r and Âq, r denote the elements of the 2L×2M arrays ob-
tained by applying 2D-LiFNT to the real and imaginary components of [gl,m], respectively.
The resulting Hermitian pairs are given by

Gq,r = Aq,r + 2
b
2 Âq,r (mod 2b + 1), (5.11a)

Ḡq,r = Aq,r − 2
b
2 Âq,r (mod 2b + 1). (5.11b)
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5. Pointwise product: Yq,r=Gq,rHq,r and Ȳq,r=H̄q,rḠq,r (mod 2b + 1);

6. Computing 2D-LoIFNT: Let Eq,r and Êq,r denote the elements of the 2D-FNT corre-
sponding to the real and imaginary components of the matrix [yl,m], respectively. Then,
these elements can be computed as

Eq,r = 2−1
(
Yq,r + Ȳq,r

)
(mod 2b + 1), (5.12a)

Êq,r = 2−12−
b
2

(
Yq,r − Ȳq,r

)
(mod 2b + 1). (5.12b)

In matrix form, the last N consecutive points of the in-phase and quadrature components
of {yn} appear in the bottom right corner of the 2D-IFNT of Eq,r and Êq,r, respectively.
These matrices of interest can be obtained efficiently using 2D-LoIFNT.

7. Output mapping: Flatten the L×M matrix [yl,m] into a one-dimensional sequence {yn}
of length LM (row–column to linear index) using

yl+mL = yl,m, l = 0, . . . , L− 1, m = 0, . . . ,M − 1. (5.13)

Notice that items 1) and 2) can be included in the pre-computation step for a given sequence
{hn}. The 2D scheme is shown in Figure 9b. A total of 18N additions are saved by the procedure
described in items 4) and 6). Furthermore, (2M)-point FNTs across L rows and (2L)-point
IFNTs across M columns are avoided twice, corresponding to the in-phase and quadrature
components, respectively.

5.2.3 Arithmetic Complexity of Optimized Schemes

For comparison purposes, we first consider two alternatives for an N -point DFrFT, where
N = 2n, decomposed into two chirp multiplications and one chirp convolution over GF(216+1):
the first method employs a 1D convolution scheme. In contrast, the second method uses a 2D
convolution scheme. For comparison purposes, the arithmetic operations are shown in Figure10,
using local FNTs instead of FNTs in both cases. In situations where a second method has a
lower number of multiplications (see Figure 10a) but a higher number of additions than the first
method (see Figure 10b), the relationship between them can be calculated to ensure that both
methods exhibit the same overall complexity, as

ρ(N, b) =
A2(N, b)− A1(N, b)

M1(N, b)− M2(N, b)
, (5.14)

where M1(·, b), A1(·, b) and M2(·, b), A2(·, b) represent the arithmetic complexity of the first and
second algorithms, respectively. In CSD representation, for both algorithms to be equivalent on
average, this measure must be b/3 (VORONENKO; PÜSCHEL, 2007), as the cost of one multi-
plication is ρ(N, b) times that of one addition. Given that ρ(N, b) > b/2, for n = 7, 8, . . . , 10

and b = 16, in our assessment of arithmetic operations (see Table 5), we conclude that the DFrFT
over GF(216 + 1) is more efficient as a 1D convolution than as a 2D convolution.
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Figure 10 – Bar graphs representing the arithmetic complexity of a 2n-point DFrFT using the
CM–CC–CM decomposition over GF(216 + 1); in terms of the number of (a)
multiplications, and (b) additions.
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Table 5 – Arithmetic complexity of a 2n-point DFrFT, decomposed as CM–CC–CM modulo
2b + 1 (with b = 16), in terms of the number of multiplications and additions.

n Multiplications Additions ρ(2n, b)
M1 (2

n, 16) M2 (2
n, 16) A1 (2

n, 16) A2 (2
n, 16)

7 1888 1536 9472 14976 15.6
8 3904 3072 20992 33024 14.5
9 7936 6144 46080 72192 14.6

10 16000 12288 102400 159744 15.4
Source: The author (2025).

In summary, the arithmetic complexity of the 1D and 2D structures, in terms of modulo-
2b + 1 diminished-1 operations for b = 32 or 64, is presented in Table 6. Note that the same
number of arithmetic operations is obtained for n = 8, 9, . . . , 11, when the length of the matrix
columns is arranged as 2L = 4b. The 1D scheme supports transform lengths of up to 2b, while
the 2D scheme extends this limit to 4b2. In conclusion, since b = 16 may be too small for digital
representation, only 2D implementations with b = 32 or 64 are suitable for long-chirp signals,
which constitute the focus of the subsequent error analysis.

5.3 LOCAL CIRCULAR CONVOLUTION OVER Z2b+1 FOR LDFrFT

This section introduces a local DFrFT (LDFrFT) using a 2D convolution approach. We
focus on calculating partial points of a circular convolution, which serves as a decomposed
module of DFrFT and leads to its local variants. The first L consecutive points of the circular
convolution, as given in (3.4), can be obtained through 2D mapping when m = 0 in (4.11),
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Table 6 – Arithmetic complexity of a 2n-point DFrFT, decomposed as CM–CC–CM modulo
2b + 1 (with b = 32 or 64), expressed in terms of the number of multiplications and
additions.

n Multiplications Additions
M1 (2

n, 32) M1 (2
n, 64) A1 (2

n, 32) A1 (2
n, 64)

3 64 64 336 336
4 128 128 800 800
5 256 256 1856 1856
6 512 512 4352 4224
7 1024 9728

(a) 1D Convolution scheme

n Multiplications Additions
M2 (2

n, 32) M2 (2
n, 64) A2 (2

n, 32) A2 (2
n, 64)

7 1536 14976
8 3072 3072 33024 33024
9 6144 6144 72192 72192

10 12288 12288 156672 156672
11 24576 24576 337920 337920
12 49152 49152 737280 724992
13 98304 1548288
14 196608 3342336

(b) 2D Convolution scheme

Source: The author (2025).

resulting in

y(l) =
2M−1∑
r=0

L−1∑
q=0

g(q+rL)h(l−q−rL), (5.15)

where l=0, 1, . . . , L− 1. Then, any L consecutive points of the sequence resulting in (3.4) can
be calculated as

y(l+s) =
2M−1∑
r=0

L−1∑
q=0

g(q+rL)h(l+s−q−rL), (5.16)

where s is a starting point s ∈ {0, 1, . . . , (M − 1)L}. If we denote d(n)=h(n+s) and z(l)=y(l+s),
then (5.16) can be expressed in matrix form such the elements y(l+s), l=0, 1, . . . , L− 1, are the
bottom elements of a 2D convolution column of the respective extended versions, that is

z̈(l) =
2M−1∑
r=0

2L−1∑
q=0

g̈(q,r)d̈(l−q,−r). (5.17)

Note that g̈(q,r)=0, when L≤ q< 2L or M≤ r< 2M , in the case of this operation is part of
DFrFT. Figure 11 illustrates how (5.17) can be implemented as the sum of the last L elements
of the 1D convolutions per column. In this form, the cyclic convolutions originally formulated
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Figure 11 – Mapping Local DFrFT; [gq,r] is an input L ×M matrix, [d̈q,⟨−r⟩2M ] is a 2L ×M
matrix, ⊛′ represents the local FNT-based circular convolution of the columns of the
aforementioned matrices, yl+s is the output L-length vector obtained by adding the
rows of the matrix [fq,r].

=

Source: The author (2025).

in one dimension can be recursively extended to two-dimensional structures to support larger
transform lengths.

The local DFrFT, which is based on the circular convolution decomposition previously
introduced, is hereafter denoted as CM–LCC–CM. This formulation relies on a local circular
convolution (LCC), whose implementation consists of the following sequential steps:

1. Cyclic shift of the discrete chirp sequence, that means d(n) = h⟨n+s⟩N , n = 0, . . . , 2N − 1;

2. Mapping the sequence obtained in the previous item as 2L×M matrix (its top columns
are periodic extension), whose elements are obtained from the original extended matrix as
d̈q,⟨−r⟩2M , where q = 0, 1, . . . , 2L− 1 and r = 0, 1, . . . ,M − 1;

3. Mapping the input sequence as an unextended L×M matrix, whose elements are denoted
as gq,r and obtained as g(q+rL), q = 0, 1, . . . , L− 1 and r = 0, 1, . . . ,M − 1;

4. Circular convolution of each column of the matrix [gq,r] and a column of [d̈q,⟨−r⟩2M ]. This
step involves M instances of (2L)-length convolutions (see Figure 8).

5. Summing the elements of each row of the L×M matrix resulting in the last item gives a
sequence of length L that contains the local points of the circular convolution. This step
requires 2L(M − 1) additions.

This algorithm is denoted as CM–LCC–CM (mod 2b + 1), where the circular convolution in
item 4) can be implemented as a one- or two-dimensional scheme. In the 1D case, note that the
2L- and 2M -point FNTs can be implemented as algorithms that do not contain multiplications;
a total of 4N multiplications are saved when the local circular convolution is used instead of the
global 2D circular convolution; in the local case, each convolution consumes 4L pointwise mul-
tiplications (in total 4LM ), while in the global case, a 2D convolution consumes 8N pointwise
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multiplications. Furthermore, N − L complex multiplications (corresponding to the outer chirp
term) are saved using LDFrFT instead of DFrFT; a complex multiplication can be done as two
multiplications and four additions.

Regarding the proposed LDFrFT using the CM–LCC–CM (mod 2b + 1) decomposition,
Figure 12 illustrates the reduction in the number of multiplications, ηM, and additions, ηA, when
computing only Q consecutive points of an N -point DFrFT, where N = 2n. To be more specific,
in Figure 12a and Figure 12c, it can be observed that ηM increases as the number of Q points
decreases, and for longer transform lengths, ηM also reaches higher values. This measure ranges
give: from 46% to 50% for b = 32 and from 42% to 50% for b = 64. Similarly, Figure 12b and
Figure 12d illustrates how the measurement ηA varies within an expanded percentage range: from
23% to 80% for b = 32 and from 13% to 82% for b = 64. These results confirm that the proposed
LDFrFT provides significantly higher computational efficiency than the conventional DFrFT,
especially when processing only a subset of the total transform points. This advantage becomes
more pronounced for longer transform lengths, where both the reduced number of arithmetic
operations and the modular arithmetic structure lead to lower computational complexity and
improved scalability for real-time or resource-constrained implementations.

Figure 12 – Bar graph depicting the percentage reduction in arithmetic operations for an N -point
DFrFT (N = 2n) when only Q local points (Q = 2q) are calculated; reductions in
the number of (a,c) multiplications, and (b,d) additions.
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6 DIRECTION-OF-ARRIVAL ESTIMATION FOR WIDEBAND CHIRPS

In this chapter, we explore chirp-based decompositions, with the main contribution being
the use of DSmFrFT instead of DFrFT, for direction-of-arrival (DoA) estimation of wideband
linear chirps, addressing both single- and multi-target scenarios. Considering the direction-of-
arrival (DoA) estimation problem using a uniform linear array, the single-target case is formulated
as a least-squares problem, in which we explain the use of LDSmFrFT. The multi-target case
is reformulated as a multi-line fitting problem in the fractional Fourier domain. Moreover, we
consider the use of subspace-based methods with spatial smoothing.

6.1 SINGLE-TARGET DIRECTION FINDING

In this section, as a key contribution, we introduce the estimation of DoA for wide-band
linear chirps using slope fitting in the simplified fractional Fourier domain, a process that involves
the DSmFrFT. Finally, we provide a brief explanation of the use of partial points of the DSmFrFT
for DoA estimation with outlier detection.

6.1.1 Least Square Problem

After determining the optimal rotation angle α0, at the reference sensor, the peak position
qm at the m-th sensor, as a function of θ, can be obtained by substituting τm in (3.26). This
provides

qm = q0 + (m−m0) fsd sin θ cotα0/c︸ ︷︷ ︸
slope

. (6.1)

For θ ∈ [−π/2, π/2], the index qm can be bounded within the range [q0 − ψ, q0 + ψ], where
ψ= fs (m−m0) d cotα0/c; peaks outside this range are considered outliers. In this context,
LDSmFrFT can be used to reduce the complexity of peak searching. To achieve this, we choose
Q to be the smallest power of two such that Q ≥ 2ψ, and ψ ≤ q0 − s ≤ Q − ψ. From (6.1),
denoting the slope as ku, the angle-of-arrival value is given by

θ = arcsin

(
kuc

dfs cotα0

)
, (6.2)

where ku, the slope of the fitting curve, can be calculated using the CLSM (ZHONG et al., 2023).
For comparison purposes, Table 7 presents the formulas for the DoA estimation of a chirp signal.
The equations corresponding to DFrFT were provided in (ZHONG et al., 2023).

6.1.2 Constrained Least Squares Method

In the least squares method (LSM), given a set of points {xi, yi}N−1
i=0 , the goal is to find a

line y = a0 + a1x that best fits the given data points, where a1 is the slope of the line and a0 is
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Table 7 – Formulas for DoA estimation depending on numerical algorithms for FrFT.

DFrFT DSmFrFT
qm = q0 + fsτm cosα0 qm = q0 + fsτm cotα0

θ = arcsin
(

kuc
dfs cosα0

)
θ = arcsin

(
kuc

dfs cotα0

)
Source: The author (2025).

the y-intercept. The first-order polynomial associated with this least squares problem has the
form

ŷi = a0 + a1xi, i = 0, 1, ..., N − 1, (6.3)

where a0 and a1 are the coefficients found by least squares regression. In the case of DoA
estimation in the fractional domain, for a ULA with M elements, N is bounded as 1 < N ≤M ,
due to the outlier detection method. The first order solution by least squares regression can be
represented by matrix operations as follows

q0

q1
...

qN−1


︸ ︷︷ ︸

Y

=


1 x0

1 x1
...

...

1 xN−1


[
a0

a1

]

︸ ︷︷ ︸
XA

, Y =
[
q0 q1 · · · qN−1

]T
, A =

[
a0 a1

]T
(6.4)

where Y is the vector of the peak positions of the received signal, X is the Vandermonde matrix
and A is the coefficient vector. By the principle of LSM, the solution is given by

A =
(
XTX

)−1
XTY, (6.5)

where A =
[
a0 a1

]T
. Then, the slope ku of the fitted curve is a1. Since arcsin of x is defined

as the inverse sine function when −1 ≤ x ≤ 1, when DSmFrFT is employed, the target slope
must be constrained as

|a1| − |dfs cotα0/c| ≤ 0;

it converts the least square problem into a Lagrange duality problem as well as LSM becomes
CLSM (ZHONG et al., 2023). Therefore, the obtained solution can be expressed as

A =
(
XTX+ λpTp

)−1
XTY, (6.6)

where A =
[
a0 a1

]T
, p =

[
0 1

]
and λ is the Lagrange multiplier, λ ≥ 0. Similarly, the slope

ku is given by the coefficient a1.

For visual inspection and comparisons, the DFrFT, DSmFrFT, and LDSmFrFT spectra
of the noise-free signal at the first eight ULA elements are shown in Figure 13. In which, to
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illustrate the use of LDSmFrFT instead of DFrFT, we present the same example and data as
in (ZHONG et al., 2023). In such a figure, we observe that the peaks can be determined using
LDSmFrFT at optimal fractional order.

Figure 13 – Fractional Fourier–domain spectra of chirp signals received by the first eight ULA
elements, computed using DFrFT, DSmFrFT, and LDSmFrFT, with N = 1024.
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Table 8 details the total number of complex multiplications and additions reduced in
estimating the DoA with an ULA of 40 elements, when using LDSmFrFT instead of DSmFrFT,
for N = 1024. In percentage terms, the aforementioned reductions are 32.1% and 48.7%,
respectively.

Table 8 – Reduction in number of complex multiplications and additions when using LDSmFrFT
instead of DSmFrFT, N = 1024.

m Q N/2 log2 P −N N log2 P −N +Q
From 2 to 4 4 3072 7172
From 5 to 10 8 2560 6152
From 11 to 22 16 2048 5136
From 23 to 40 32 1536 4128

Total: 76800 194364
Source: The author (2025).

6.2 MULTI-TARGET DIRECTION FINDING

In this section, we present two approaches for multi-target DoA estimation of wideband
chirp signals in the fractional Fourier domain, including the simplified FrFT. First, we introduce
peak alignment as a pre-processing step for subspace-based algorithms. Second, we propose a
multi-line fitting approach, where the lines can either be non-intersecting or intersecting. The
corresponding methods for this approach are piecewise linear regression and Hough transform-
based line detection.
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6.2.1 Subspace-Based Algorithms

In a manner analogous to the traditional narrowband subspace methods, we first propose
the incorporation of peak alignment into the preprocessing stage of subspace-based algorithms for
DoA estimation of LFM signals. Subsequently, spatial smoothing and angle-of-arrival calculating
are also described.

6.2.1.1 Peak Alignment

For improving DoA estimation of wideband linear chirp signals, it is proposed that the
peaks in the fractional Fourier domain should be aligned. Let ∆q denote the difference between
the peak index corresponding to the m-th sensor and that of the reference sensor. Depending on
the computational method, ∆q can be utilized as described in the following items:

1. In the case of DFrFT, considering the time-shift property (see Section 3.2.1), under
the constraint 2q ≫ fsτm,k cosα0, the steering vector corresponding to the k-th source,
a[q0k, α0k, θk], can be derived in the DFrFT domain. The m-th element of this vector can
be expressed as

am(q0k, α0k, θk) = e−j 2π
N

fsτm,kq0k sinα0k , (6.7)

where q0k and α0k represent the peak index and the optimal DFrFT order for the k-th
target, respectively. This vector is typically used in subspace-based algorithms (QU et al.,
2006; CHONG; XIAOMIN, 2011). Then, let g[r] represent the shifted signal x[r − rθ].
The DFrFT of g[r] is denoted by Ga[q]. In this context, aligning the peaks corresponds to
applying the following shift:

Ya[q] = Ga[q +∆q] = e−j π
N (2rθq+r2θ cosα) sinαXa[q].

The value of ∆q can be estimated by a peak search procedure. The elements of the steering
vector in the DFrFT domain remain as given in (6.7), as long as 2q ≫ fsτm,k cosα0.

2. In the case of DSmFrFT, note that the FrFT of x(t) can be expressed as

{Fax}(u) =
√
jAαe

jπu2 cotα{LAx}(u cscα),

where A = (cotα, 1;−1, 0). This implies that the peaks obtained using DSmFrFT must be
shifted to the position corresponding to the peak index when using DFrFT and multiplied
by the term

√
jAαe

j π
N
q20 cotα0 , where α0 is the optimal order of DSmFrFT and q0 is the

peak index given in (3.10a).

In the case of multi-target DoA estimation, peaks can be detected and extracted to form new
snapshots in the fractional Fourier domain; that is, nonzero values correspond only to the detected
peaks. If two peaks are to be shifted to the same position, the resulting peak can be obtained
by summing them. This step requires KM complex multiplications when the DSmFrFT is
employed.
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6.2.1.2 Spatial Smoothing

Consider a uniform linear array (ULA) with M elements. Let Ya ∈ CM×N denote the
snapshot matrix obtained after discrete fractional Fourier transform (DFrFT) processing and
peak alignment. The array is divided into P =M −L+ 1 overlapping subarrays, each of length
L. The p-th subarray snapshot is then formed as

Yf
p = Jf

pYa, p = 1, 2, . . . , P,

where Jf
p ∈ RL×M is a selection matrix that extracts the p-th forward subarray. The backward

snapshots are given as Yb
p = JL(Y

f
p)

∗, where JL ∈ RL×L is the exchange matrix with the ones
on the antidiagonal, used to reverse the sensor order. To enhance the rank and robustness of the
covariance estimate, forward–backward (FB) averaging is then applied to each subarray, and the
corresponding sample covariance matrix is given by

RFB =
1

2P

P∑
p=1

[
Yf

p(Y
f
p)

H +Yb
p(Y

b
p)

H
]
,

where (·)H denotes the Hermitian (conjugate transpose) of a matrix. The procedure described
above is referred to as forward-backward spatial smoothing (FBSS). The time complexity of this
step is O(PL2N).

6.2.1.3 Methods for Estimating the Angle of Arrival

Given the covariance matrix RFB, the signal and noise subspaces can be obtained by
eigendecomposition, resulting in Us ∈ CL×K and Un ∈ CL×(L−K), respectively. Subsequently,
two methods can be employed to estimate the angle of arrival:

• ESPRIT method: Based on the principle of spatial smoothing, the first and last rows
of the signal subspace matrix are removed to form two submatrices, U1 and U2. The
rotational invariance property is exploited by finding the matrix Ψ such that U2 = ΨU1.
This equation is solved using the least squares method

Ψ = U2U
△
1 ,

where (·)△ denotes the pseudo-inverse of a matrix. The eigenvalues λi of Ψ are then
computed, and the angles of arrival are estimated as

θi = − arcsin

(
arg(λi)

2πℓi

)
, i = 0, . . . , K − 1

where ℓi = dfs
cN
q0i sinα0i. The computational complexity of this step is approximately

O(L3 +K2L).
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• MUSIC method: Given the noise subspace, the spatial spectrum for the k-th target can be
calculated as

PMUSIC(θ) =
1

aH(q0k, α0k, θ)UnUH
na(q0k, α0k, θ)

,

where a(q0k, α0k, θ) ∈ CL×1 is the steering vector in the DFrFT domain corresponding to
the k-th target and angle θ. The peaks of PMUSIC(θ) correspond to the estimated directions
of arrival (DoAs). For Na angle samples, each projection requires O(L2) operations,
resulting in a total complexity of O(L3 +KNaL

2). In this context, the efficiency of the
method can be improved using techniques such as those proposed in (BARABELL, 1983;
LAN et al., 2023a).

6.2.2 Multi-Line Fitting

The multi-line fitting problem involves partitioning a dataset into segments, each of
which can be approximated by a straight line (see Figure 14). In this work, the problem is
addressed in two ways: slope fitting, where the goal is to fit multiple linear models to the data
while minimizing the overall error, and line detection, where lines in an image formed by peaks
are detected using the Hough transform to determine their slopes.

Figure 14 – Representation of peaks as K lines in the fractional Fourier domain: (a) non-
intersecting lines and (b) intersecting lines
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(a) Non-intersecting lines.
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(b) Intersecting lines.

Source: The author (2025).

6.2.2.1 Piecewise Linear Regression

The least squares method can be extended to fit multiple lines when the peaks indices
can be divided into segments, with each segment corresponding to one line (see Figure 14b).
To be more specific, piecewise linear regression involves dividing the data set into K segments,
each of which is fitted with a straight line. The procedure can be summarized as follows:
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• Let the set of Np points be {(xn, yn)}, where n = 0, 1, . . . , Np − 1. The goal is to fit K
straight lines so that the piecewise model approximates the data points.

• Breakpoints define the boundaries between theK segments. Let the breakpoints be denoted
as xMi

for i = 1, 2, . . . , K − 1. Taking into account the start and end indices M0 = 0 and
MK = Np, the data is then partitioned into K segments as

Sk = {(xn, yn)|Mk ≤ n < Mk+1}, k = 0, 1, ..., K − 1. (6.8)

These breakpoints may be predefined (for example, Mi = i ⌊Np/K⌋) or selected using
optimization techniques.

• For each segment Sk, the slope of a linear model is fitted using CLSM.

The algorithmic complexity of this method is O(KM3). However, that way of piecewise linear
regression fails when the lines intersect, as depicted in Figure 14a.

6.2.2.2 Line detection in Hough space

In this context, an alternative approach is line detection using the Hough transform (DUDA;
HART, 1972). In short, a straight line in the image space (x, y) can be represented in the Hough
space by the parameters (ρ, θ), where ρ is the perpendicular distance from the origin to the line
and θ is the angle between the normal line and the x-axis. This line can be represented as a
single point (ρ, θ) in the Hough space, as illustrated in Figure 15. The geometric interpretation
of the Hough transform (HT) is as follows: for any point P = (x, y) on a straight line, the vector
P − P0, where P0 = (ρ cos θ, ρ sin θ) is the intersection of the line and the perpendicular to the
origin, must be orthogonal to the vector P0 − 0 = P0. This orthogonality condition leads to
equation (P − P0) · P0 = 0. Therefore, the equation of the line in polar coordinates is given by

x cos θ + y sin θ = ρ. (6.9)

This equation represents the fundamental relationship used in the Hough transform to map a
straight line from Cartesian space to Hough space.

The algorithm for fitting K lines to a set of Np points {xi, yi} in the fractional Fourier
domain is detailed in the following items:

1. Convert the sequence to an image: Define a 2D binary image I(x, y) of size L ×M ,
where L is the number of points from the minimum index to the maximum index of the
detected peaks. The white lines correspond to the sequence S = {(xi, yi)}Np

i=1 onto the
image, setting I(xi, yi) = 1.

2. Compute the Hough transform: Discretize the Hough space in the polar representation
of a line ρj = xi cos θj + yi sin θj , where ρj is the perpendicular distance from the origin,
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Figure 15 – Representation of a straight line in Hough space.

(a) Image domain. (b) Hough domain.

Source: Adapted from Duda e Hart (1972).

and θj is the angle in the discretized range. Let Nθ be the number of discrete angles θj ,
j = 1, . . . , Nθ. Initialize an accumulator array H(ρ, θ) with zeros. After that, for each
white pixel (xi, yi) in I(x, y), find the closest discretized ρ for each θj .

3. Detect peaks in Hough space: Identify the K highest peaks in the accumulator array
H(ρ, θ). Each peak (ρk, θk) represents a detected line with a slope given as − cos θk

sin θk
, when

θk ̸= 0.

The time complexity of this multi-line fitting algorithm is given by O(NpNθ), where Np=KM

is the maximum number of peaks (M being the number of elements in the ULA). Note that HT
can be more efficient than CLSM when Nθ < M2 (see Table 9). The HT-based algorithm can be
improved using the probabilistic Hough transform (PHT), which is particularly useful since it
processes only a random subset of edge points rather than all points (MATAS; GALAMBOS;
KITTLER, 2000). The time complexity for PHT is given as O(NsNθ), where Ns ≪ Np and Ns

represents the number of sampled points. Since Ns is much smaller than Np, the computational
cost is significantly reduced. The computational complexity of DoA estimation, excluding
the stages DFrFT and DSmFrFT, is summarized in Table 9. The operations required for peak
alignment are not included as they are negligible compared to the overall complexity of the
complete algorithm.

Table 9 – The Time complexity of DoA estimation for K targets.

Algorithm Time Complexity
FBSS-MUSIC O(PL2N + L3 +KNaL

2)
FBSS-ESPRIT O(PL2N + L3 +K2L)
CLSM O(KM3)
HT O(KMNθ)

Source: The author (2025).
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7 RESULTS AND COMPUTER SIMULATIONS

In this chapter, we first present an analysis of the arithmetic complexity of the sampling-
type DFrFT by decomposing it into a circular convolution over the ring of integers modulo 2b+1.
This analysis includes comparisons between the 1D and 2D convolution schemes. Following
this, the circular convolution-based algorithms are compared to the decomposition into two
chirp multiplications and one FFT algorithm; this analysis is based on the time complexity
determined by the equivalent number of additions. Furthermore, error analysis and applications
are also provided for a better understanding of the proposed algorithms. Including computer
experiments related to obtaining the amplitude spectrum of a single-component LFM signal,
radar echo modeling, estimation of the DoA in the so-called simplified fractional Fourier domain.
All numerical simulations1 are performed in the interactive Jupyter Notebook using Python
programming language (version 3.9.7).

7.1 COMPLEXITY ANALYSIS

As a preliminary comparison, we consider chirp-convolution-based decompositions for
DFrFT, Figure 16a presents a bar graph illustrating the number of multiplications, while Fig-
ure 16b exhibits the number of additions. In both figures, we also include the DFrFT decomposed
into two chirp multiplications and one FFT algorithm (ZAYED, 1996; CARIOLARO et al.,
1998; PEI; DING, 2000a; LAN et al., 2023b); this refers to the CM–FFT–CM decomposition.
Note that the decomposition into a 2D convolution (mod 232 + 1 or 264 + 1) requires the fewest
multiplications, although this comes at the expense of an increased number of additions. However,
neither of the aforementioned bar graphs reflects realistic performance, as they do not consider
the number of bits in data representation. To address this issue, we establish theoretical metrics
to facilitate comparisons. These metrics are based on arithmetic operations using floating-point
and diminished-1 representations. In the diminished-1 case, we neglect the minor effects of
b-bit inversion and ICS, as they have a negligible impact on the overall resources of the entire
system. In the bar representation shown in Figure 17, the overall time complexity represents
the algorithm’s runtime in unitless terms; it is quantified by a weighted sum of the number
of additions and multiplications, with multiplications assigned a higher weight due to their
greater computational complexity. In such a representation, we define the mean case as requiring
b/3 b-bit additions for multiplications by other constants. At the same time, the upper values
are based on the worst-case scenario of needing up to b/2 b-bit additions (VORONENKO;
PÜSCHEL, 2007). After determining the equivalent number of additions, we adopt a logarithmic
time complexity, which means that each b-bit addition is performed using a parallel-prefix IEAC
adder (VERGOS; EFSTATHIOU; NIKOLOS, 2002), which has a delay given by

τadder(b) = 2 ⌈log2 b⌉+ 3, (7.1)
1 Code available at: https://github.com/egutierrezhu/doa-frft-chirps
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where ⌈·⌉ denotes the ceil of the argument. The lower values in the bar representation for the CM–
CC–CM modulo 2b + 1 correspond to the multipliers proposed in (VERGOS; EFSTATHIOU,
2007).

Figure 16 – Bar graph illustrating the arithmetic complexity of a 2n-point DFrFT, showing the
number of (a) multiplications and (b) additions.
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Source: The author (2025).

For comparison, we consider that a precise method for implementing (3.3) can use
floating-point operations based on the IEEE 754 standard. In double precision (64 bits): 1
bit for the sign, 11 bits for the exponent, and 52 bits for the significand. The complexity
of floating-point arithmetic can be evaluated by the required fixed-point operations: adding
two floating-point numbers involves aligning exponents, adding significands (one fixed-point
addition), normalizing, and rounding, while multiplying them requires multiplying significands
(one fixed-point multiplication), adding exponents (one fixed-point addition), normalizing, and
rounding (WASSON, 2011). To ensure similar evaluation contexts, we assume that fixed-point
additions are performed using parallel-prefix adders, allowing the delay for this operation to
be specified by (7.1). When fixed-point multiplications of significands are performed in CSD
representation, using the speed of bit-shifts over repeated fixed-point additions, it is essential to
note that the number of bits in the adders is twice that of the mantissa (WASSON, 2011). Upon
inspecting the results, it becomes evident that the method based on CM–CC–CM (mod 232 + 1)
can be more efficient than DFrFT affine one FFT when represented in double precision format
(64-bit CM–FFT–CM).

Although CM–CC–CM over Z2b+1 achieves a substantial reduction in the number of
multiplications, this advantage comes at the cost of an increased number of additions. Such trade-
offs may affect hardware efficiency depending on the arithmetic architecture, as diminished-1
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Figure 17 – Bar graph representing the arithmetic complexity of a 2n-point DFrFT; expressed in
addition-equivalent units under a logarithmic-time adder model.
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arithmetic, with minimal carry propagation, is well suited to field-programmable gate array
(FPGA) designs using IEAC adders, ICS operations, and CSD multipliers, whereas its ben-
efits may diminish on general-purpose processors with highly optimized floating-point units.
Therefore, the results should be regarded as analytical upper limits, with practical performance
determined by the underlying hardware and word-length constraints.

7.2 ERROR ANALYSIS

The validation of the proposed algorithms is essentially based on verifying the chirp
signal parameters. The experiments focus on peak searching in the fractional Fourier domain.
In the first analysis, numerical experiments were conducted to evaluate the performance of
the GSS algorithm at various SNR levels for a single-component chirp signal centered at
20 kHz. The duration of the signal is T = 5µs, uniformly sampled with 1024 points. If we
consider a bandwidth B from 5 to 100, kHz, the corresponding chirp rate (B/T ) ranges from 1

to 10,MHz/µs. Figures 6(a–b) illustrate the mean absolute error (MAE) of fractional Fourier
order, between the exact value (a0) and its estimated value (â0). Given the starting points of 1
and 1.2 for the GSS algorithm, a minimal error is observed in the chirp rate interval from 6 to
7,MHz/µs; outside this range, the absolute error increases for lower SNR values. At certain
intermediate SNR levels, DFrFT may be more accurate than DSmFrFT. Considering that the
results show only minor inaccuracies when using DSmFrFT instead of DFrFT, we conclude
that the GSS method can be an efficient approach to estimate the fractional order of DFrFT or
DSmFrFT. Consequently, it offers a low-complexity solution for estimating the parameters of a
linear chirp.
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Figure 18 – Error in selecting the fractional order for (a) DFrFT and (b) DSmFrFT. The curves
are fitted with fifth-order polynomial regression for visual inspection
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As a second analysis, we provide examples to illustrate the method for avoiding amplitude
overlap when circular convolution is represented in the ring of integers modulo 2b+1. In which we
determine the number of bits to represent them without overflow and the error due to amplitude
quantization. Our analysis consists of three numerical experiments described below. In the first
experiment, we consider as the input signal a single-component chirp signal, which is modulated
by the inner chirp, and the resulting in-phase and quadrature components are represented as
integers in the range

[
−2d−1, 2d−1

]
, d = 4, 8, 16. The chirp that convolves is also encoded in

the same range. After that, we proceed to bound the maximum absolute value in the output as
indicated in (4.10), that is

ϑ(N, d) = 2d−1

N−1∑
i=0

√
c2i + ĉ2i ,

where ci and ĉi are integer representation of the real and imaginary part of h(t) = ejπt
2 cscα,

α = aπ/2, with fractional order a in the range [0.5, 1.5]. The exponent b in 2b+1 is calculated as
b(N, d) = ⌈log2(2ϑ(N, d)− 1)⌉. This parameter as a function of n and d is shown in Table 10.
In amplitude quantization by d = 4, performing the described analysis, one can conclude that
a 2n-point DFrFT, 3 ≤ n ≤ 8, can be calculated over GF(216 + 1) without amplitude aliasing,
since the calculated value b(N, 4) is not greater than 16. If the input signal is encoded as in the
cases when d is 8 and 16, one concludes that the modulus of the arithmetic operations must be
232 + 1 and 264 + 1, respectively.

In the third analysis, the difference between the two results is calculated in the second
experiment as the root mean square error (RMSE). Specifically, a single-component chirp signal
is used to evaluate the error as a function of the transform length. The Latin hypercube sampling
(LHS) method is applied to generate random samples of parameters: a ∈ [0.5, 1.5], fc ∈ [0, 1000]
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and µ ∈ [0, 50]. The duration of the LFM signal is T = 5. Let ϵ(N, d) be the pointwise error
in the amplitude spectrum between DFrFT decomposed into floating-point convolution, Xa[q],
and fixed-point convolution, X̂d

a [q]. Specifically, fixed-point representation means that the in-
phase and quadrature components are represented as integers by multiplying them by 2d−1 and
applying the rounding function, and the result of multiplication (or convolution) is divided by
2d−1 twice. After that, we determine the RMSE as a function of the length transforms (N = 2n,
n = 3, 4, . . . , 13) and the amplitude quantization levels (d = 4, 8, 16), that is

ϵ(N, d) =

√√√√ 1

N

N/2−1∑
q=−N/2

(
|Xa[q]| −

∣∣∣X̂d
a [q]
∣∣∣)2.

This measure is included in Table 10. In that way, considering floating-point representation in
double precision format, ϵ(N, 16) is practically null, when d is 16.

Table 10 – Bit length and RMSE for DFrFT computed via integer convolution.

n d = 4 d = 8 d = 16
b(N, d) ϵ(N, d) b(N, d) ϵ(N, d) b(N, d) ϵ(N, d)

3 11 0.0454 19 0.0030 35 0.0
4 12 0.0515 20 0.0032 36 0.0
5 13 0.0500 21 0.0032 37 0.0
6 14 0.0527 22 0.0033 38 0.0
7 15 0.0518 23 0.0033 39 0.0
8 16 0.0527 24 0.0033 40 0.0
9 17 0.0525 25 0.0033 41 0.0

10 18 0.0535 26 0.0033 42 0.0
11 19 0.0549 27 0.0033 43 0.0
12 20 0.0563 28 0.0033 44 0.0

Source: The author (2025).

In the fourth analysis, we perform numerical simulations to investigate amplitude aliasing
when the CM–CC–CM decomposition is implemented using modulo-2b + 1 arithmetic. The
results are shown in Table 10, where it is observed that the criterion in (4.10) is not satisfied
when n exceeds 8 for b = 16. In this context, there is no clearly noticeable amplitude overflow
for n = 9. In the case of n = 10, Figure 19a presents the DFrFT spectrum (in logarithmic scale)
of a single-component LFM signal in double-precision floating-point format. The magnitude
spectrum, also expressed in decibels (dB), corresponding to the calculations over GF(216+1), is
depicted in Figure 19c. There is evident overflow in the peak values, with a magnitude difference
reaching up to −1 dB (see Figure 19e). The error outside the peak position reaches −21 dB ,
which can be attributed to quantization (d = 4). In contrast, the same representation over the
ring of integers modulo 232 + 1 is shown in Figure 19b. In this case, the upper quantization error
reaches −30 dB, which is lower than in the previous case, and there is no amplitude overflow
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(see Figure 19d). In conclusion, these numerical simulations confirm that the bounding criterion
provided in (4.10) can effectively help avoid amplitude aliasing. Finally, it can be observed
that a minimum quantization error is achieved at the optimal fractional order of the DFrFT. In
contrast, for other values, the error remains below −18 dB, as illustrated in Figure 19f. These
upper-bound values indicate that the associated inaccuracies are within a tolerable range. The
figure also includes the case where the chirp–convolution stage is implemented in the ring Z2b+1,
denoted as CM–CC(mod 2b + 1)–CM. In this case, the error reaches a lower value of −35 dB

at the optimal order.

Figure 19 – The 210-point DFrFT spectrum of a single-component LFM signal (with f0 = 20,
µ = 8, and T = 5) at the optimal fractional Fourier order, including the magnitude
error due to quantization and overflow.
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7.3 APPLICATIONS

In this section, we examine two cases to demonstrate the application of the proposed
decompositions. First, we apply LDFrFT for radar echo modeling, using modulo-2b + 1 convolu-
tions. Second, we employ DSmFrFT to estimate the direction of arrival of incoming signals on a
uniform linear array.

7.3.1 LDFrFT and Simulated Radar Signals

In this section, we examine the application of LDFrFT to radar echo modeling using
FMCW signals (BARRICK, 1973; STOVE, 1992). Radar echo modeling using frequency-
modulated continuous-wave (FMCW) signals (BARRICK, 1973; STOVE, 1992) involves a
continuous wave signal with frequency modulation over time, typically in a sawtooth pattern (PA-
TOLE et al., 2017; ERDOGAN et al., 2017). The transmitted FMCW signal can be expressed
mathematically as

sT(t) = Aej(2πfct+πB
T
t2), t1 ≤ t ≤ t2,

where A is the amplitude, fc is the carrier frequency, B is the bandwidth, T is the sweep time,
and B/T is the frequency modulation rate. When the radar signal encounters a target, it reflects
to the radar. The received echo is delayed based on the distance to the target. Specifically, the
echo model for two stationary point targets located at different distances, Ri, i = 1, 2, can be
expressed as

sR(t) =
2∑

i=1

Aie
j(2πfc(t−τi)+πB

T
(t−τi)

2),

where τi = 2Ri/vc, and vc is the speed of light. This model is approximated under the assumption
that τi ≪ T , leading to the following result

sR(t) ≈
2∑

i=1

Aie
−j2πfcτiej(2π(fc−

B
T
τi)t+πB

T
t2).

In this way, the received signal becomes a two-component LFM signal. These signals can be
processed using LDFrFT to extract range and velocity information from the beat frequency. From
the geometric representation in Figure 5 and considering scaled coordinates, one obtains that(

fc −
B

T
τi

)
︸ ︷︷ ︸

f0i

√
N

fs︸︷︷︸
s

=
qi√
N︸︷︷︸

u0i

cscα0, i = 1, 2,

where α0 is the optimal rotation angle of the time-frequency axis. Here, qi denotes the index of
the i-th peak in the DFrFT spectrum. Consequently, the formula for Ri is given by

Ri =
vcT

2B

(
fc −

qifs
N sinα0

)
, i = 1, 2. (7.2)
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Our LDFrFT method does not use axis scaling depending on α in numerical calculations. In
contrast, the method proposed in (MIAO, 2023) adjusts the kernel through axis scaling, leading
to a different corresponding formula

R′
i =

vcT

2B

(
fc −

qifs
N

)
, i = 1, 2.

If we assume R1 > R2 and a given number of consecutive points (i.e., q2 − q1 is consistent
for both cases), we obtain the relationship R′

1 − R′
2 = (R1 − R2) sinα0. This suggests that

the distance coverage for the two targets of our LDFrFT can be wider than that of the method
proposed in (MIAO, 2023), which means |R′

1 −R′
2| ≤ |R1 −R2|. The relationship between α0

and the parameters of the FMCW signal can be determined using the trigonometric relationship
in scaled coordinates as

cotα0 =
sf0i

−f0i
µs

= −NB
f 2
s T

,

where µ represents the frequency slope B/T .

Table 11 – Parameters in simulated radar signals.

Parameter Description Value
A1, A2 amplitude 1
fc carrier frequency 24 GHz
B bandwidth 10 GHz
T sweep time 300 µs
N number of sampling points 65536

Source: The author (2025).

Simulations are performed in a way similar to that presented in (MIAO, 2023). First,
the sampling frequency is set to fs = 3(fc + B), resulting in 102 GHz. Figure 20a illustrates
the DFrFT spectrum (64-bit CM–CC–CM) corresponding to the parameters given in Table 11,
considering τ1 = 10µs and τ2 = 10µs. When applying the LDFrFT proposed in Section 5.3, a
number of consecutive points higher than 2b (up to 4b2) results in each column convolution cor-
responding to a 2D scheme. Figure 20b shows the spectrum obtained for Q = 2048 consecutive
points, starting at q = 46843, corresponding to the CM–LCC–CM (mod 232 + 1) decomposition,
where the local circular convolution is mapped as 2D schemes, with peak indices at q1 = 47760

and q2 = 47974. The distances from the two point targets to the radar can be estimated using the
formula given in (7.2), yielding R1 ≈ 3000m and R2 ≈ 1500m, thereby confirming the relation
τi = 2Ri/vc.

In complexity comparisons, we observe that the LDFrFT proposed in (MIAO, 2023) is no
longer efficient than the global version (CM–FFT–CM) in terms of the number of multiplications
when Q ≥ 210 (see Figure 21a). In contrast, our method requires lower multiplications than
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Figure 20 – Fractional Fourier spectrum of the simulated radar-echo signal; corresponding to (a)
the floating-point DFrFT using CM–CC–CM and (b) the LDFrFT using CM–LCC–
CM modulo 2b + 1.
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Figure 21 – Bar graph illustrating the arithmetic complexity of DFrFT and LDFrFT, showing
(a) the number of multiplications, (b) the number of additions, and (c) the time
complexity based on the equivalent number of additions.
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the aforementioned methods; however, this comes at the cost of a higher number of required
additions (see Figure 21b). Considering the number of equivalent additions and the logarithmic
time complexity outlined in (7.1), as illustrated by the bars in Figure 21c, it is clear that the
LDFrFT proposed as two chirp multiplications and a local chirp convolution, CM–LCC–CM
(mod 232 + 1), is faster than the LDFrFT presented in (MIAO, 2023), when it employs floating-
point operations in double precision.

7.3.2 DoA Estimation in the Fractional Fourier Domain

For DoA estimation in the Fractional Fourier Domain, we consider both single-target and
multi-target scenarios. In the first case, we account for factors such as the number of snapshots,
noisy environments, and a wide range of incidence angles. In the second case, we conduct
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experiments with both stationary and non-stationary sources. As in the first case, we also include
experiments involving noise, as well as multi-carrier scenarios.

7.3.2.1 Single-Target Scenario

In the first experiment, we consider that there is a single target. The difference between
the direction of arrival, θ, and its estimated value, θ̂, is determined by Monte Carlo simulation.
To be more specific, we calculate the root mean square error (RMSE) of the estimated DoA as

RMSE =

√
1

R

∑R

r=1

(
θ̂r − θr

)2
,

where R is the count of the simulation per point, R=500. The fixed parameters are T =2µs,
fc=20MHz, the antenna array is a ULA of 40 elements, and the distance between adjacent
elements d is set as half wavelength corresponding to the highest frequency with a bandwidth of
20MHz. As in (ZHONG et al., 2023), the DoA estimation algorithm consists of taking snapshots
of xm (t), obtaining the peak position qm, detecting and rejecting outliers of qm, and determining
θ̂ by CLSM. In Figure 22, the root mean square error (RMSE) versus the number of snapshots (N )
is presented, comparing the CLSM method with subspace-based algorithms. The basic subspace-
based methods are denoted as DFrFT-MUSIC and DFrFT-ESPRIT. Two array configurations
are considered: a non-symmetric uniform linear array (ULA) with m0 = 0 and a centered ULA
with m0 = 20. In both scenarios, it is observed that the application of peak snapping results
in a lower RMSE. The improved versions of the algorithms are referred to DFrFT†-MUSIC
and DFrFT†-ESPRIT, where (·)† denotes the peak alignment in the pre-processing step. For
non-symmetric ULA, when N > 512, CLSM outperforms the aforementioned basic methods in
terms of estimation efficiency.

Figure 22 – RMSE of DoA estimated as a function of the number of snapshots (N ) when θ = π/8
and SNR = −15 dB.
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In the second experiment, the DSmFrFT is included and the RMSE is plotted against
the signal-to-noise ratio (SNR). For the non-symmetric ULA, CLSM outperforms the subspace-
based methods at SNR levels above −18 dB (see Figure 23). However, for the centered ULA
configuration, the trend is reversed; subspace-based methods exhibit a lower RMSE, with the
DFrFT†-ESPRIT algorithm achieving the highest accuracy for SNR values greater than −15 dB.
The simplification of the transform, replacing DFrFT with DSmFrFT, improves the accuracy of
the DoA estimation.

Figure 23 – RMSE of DoA estimated as a function of SNR when θ = π/8 and N = 1024.
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In the third experiment, for different angles of arrival, θ ∈ [20o, 70o], if m0 = 0, the
RMSE using subspace-based techniques and DSmFrFT increases considerably as θ increases
within the given range (see Figure 24a). However, the RMSE remains smaller than 1o when
CLSM is used. On the other hand, if m0 = 20, CLSM is no longer more accurate than subspace-
based techniques and reaches RMSE above 1o (see Figure 24b). In this example, only the
DSmFrFT is considered, as substituting the DFrFT in its place does not significantly affect the
accuracy of DoA estimation.

7.3.2.2 Multi-Target Scenario

As a first experiment, we consider two moving sources. When an underwater acoustic
source moves with velocity vs, the received frequency at a stationary observer is affected by
the Doppler effect. The observed frequency fr changes over time as the source moves. The
Doppler-shifted frequency fr is given by: fr = c

c±vs
f0, where the + sign denotes a source

moving away, while the − sign indicates a source approaching. For vs ≪ c, the propagation
speed of the wave in an aquatic medium is usually given by c = 1500 m/s, the frequency
change is approximately linear when the source accelerates along the direction of incidence.
In mathematical terms, it is an approximation of Taylor’s series, given by fr ≈

(
1∓ vs

c

)
f0.
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Figure 24 – RMSE of DoA estimated as a function of θ when SNR = −10 dB and N = 1024.
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Figure 25 shows the spatial spectrum of the MUSIC algorithm with forward and backward
smoothing (the size of the subarrays is half of the total). In this case, two moving sources with
the same velocity are considered, approaching a 41-element center-symmetric ULA; the internal
spacing between the elements is half the wavelength corresponding to the maximum frequency
when vs = 200 m/s. The initial frequency f0 is 15 kHz and the observation time is 20 ms. The
results show that replacing a DFrFT with a DSmFrFT provides a similar accuracy. In both cases,
as speed increases, the sidelobe levels in the spatial spectrum increase, but the source directions
remain determinable.

Figure 25 – The spatial spectrum of the MUSIC algorithm with forward–backward smoothing
for DoA estimation of two non-stationary sources moving at the same velocities 0,
10, and 200 m/s.
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In the second experiment, we consider two wide-band linear chirps, which causes the
shift in the fractional Fourier domain to remain significant. Both signals have the same center
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frequency of 20 kHz and the observation time is 2µs. The distance d is half the wavelength
corresponding to the maximum frequency when the bandwidth is 20 kHz. In Figure 26, it is
observed that the MUSIC algorithm with forward and backward smoothing remains effective
when using the peak-position fitted DFrFT, denoted as DFrFT†, as well as when using the
simplified fitted version, which is denoted as DSmFrFT†. For a chirp rate of 10MHz/µs, the
use of the aforementioned algorithms results in an increase of sidelobes in the spatial spectrum,
but they still accurately determine the direction of arrival. In other words, the incorporation of
DFrFT and DSmFrFT into a subspace narrowband algorithm, along with their respective shift
adjustments in the fractional Fourier domain, remains accurate. Significantly, the sidelobes are
lower than those observed in the previously presented non-stationary case.

Figure 26 – The spatial spectrum of the MUSIC algorithm with forward–backward smoothing
for DoA estimation of two wideband linear chirps with the same center frequency
and chirp rates 1, 2, and 10 MHz/µs.
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In the third experiment, we focus on three incident chirp signals with directions of arrival
(DoA) at −40◦, 20◦, and 40◦, with center frequencies of fc0=10, fc1=15, and fc2=20 MHz. The
signal observation time is 5 µs, and the bandwidth of each signal is 20 MHz. The corresponding
peaks in the fractional Fourier domain are shown in Figure 14b. The peaks when fc1 = 10 MHz
are depicted in Figure 14a. In this context, the MUSIC algorithm is not included because it
exhibits cross-null interference, which is well-knwon in a multi-carrier case (AMIN, 1993; LIU
et al., 2019), leading to replicas of the interference angles of arrival in the spatial spectrum. For
error analysis, we use the mean absolute error (MAE), defined as

MAE =
1

K

K∑
k=0

|ek|,

where ek represents the RMSE for the k-th target. The representations of MAE versus SNR of
these multi-carrier cases are shown in Figure 27(a-b). For comparison purposes, we consider the
ESPRIT algorithm with spatial smoothing and forward-backward averaging (FBSS-ESPRIT).
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Figure 27 – Representation of the mean absolute error (MAE) of the multi-target DoA estimation
versus SNR, considering the ESPRIT algorithm with forward–backward averaging,
as well as spatial smoothing, piecewise slope fitting, and the Hough transform-based
multi-line fitting.
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The size of the smoothing subarray is given as L = ⌊M/2⌋. Numerical simulations indicate
that subspace-based techniques exhibit higher accuracy compared to slope-fitting methods. In
both multi-target scenarios, the integration of DSmFrFT into the FBSS-ESPRIT algorithm,
combined with peak-position fitting, yields a more precise DoA estimator for wideband linear
chirps. Consequently, DSmFrFT serves as an effective preprocessing operator to enhance DoA
estimation for chirp signals using ULA configurations.

In Figure 27b, the MAE measurement is presented for a correlated case, where fc0 = fc1.
In this scenario, given that the lines formed by peaks in the fractional Fourier domain intersect and
cannot be segmented into K distinct lines, where K denotes the number of targets, the piecewise
linear regression approach (CLSM method) is consequently inapplicable. An alternative approach
is multiline fitting based on the Hough transform (HT), which yields lower absolute error than
the CLSM method at SNR levels below approximately −14 dB. The HT method, as well as
CLSM, exhibits small differences in MAE calculations when applied with either DFrFT or
DSmFrFT, indicating that the simplified FrFT operator is a valid low-complexity alternative for
multiline fitting. In the case of using the HT method for DoA estimation of wideband linear
chirps, increasing the number of elements in ULA can further reduce the estimation error.
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8 CONCLUDING REMARKS

In this thesis, low-complexity numerical algorithms for digital computation of the FrFT
are proposed, with a focus on the sampling-type DFrFT and its application to chirp signal
analysis. This type of DFrFT serves as an alternative tool for time-frequency analysis or for
systems with physical interpretability, such as radar and sonar systems. Considering the number
of arithmetic operations, especially for long one-dimensional signals, the sampling-type DFrFT
is more efficient than the eigenvector decomposition DFrFT, which is mathematically robust and
possesses all essential properties. The choice of the type of DFrFT depends on the application’s
focus, practice utility, and theoretical rigor.

The most widely used numerical algorithm for the sampling-type DFrFT is the chirp-
convolution-based method, specifically the CM–CC–CM decomposition. This type of decompo-
sition is performed involving normalized domains. In this context, we have outlined that the chirp
convolution in discrete form becomes a circular convolution, as it corresponds to partial points
of an infinite linear convolution following the overlap-and-save procedure, which decomposes a
linear convolution into smaller circular convolutions. In other words, an N -point DFrFT can be
decomposed into two (2N)-length element-wise multiplications and one (2N)-length circular
convolution. Subsequently, we demonstrated that the algorithm can be accelerated using Fermat
number transforms by representing discrete-time signals over the ring of integers modulo 2b + 1.

Considering a 1D convolution modulo 2b + 1, which can be part of a DFrFT, where half
of the input sequence is padded with zeros and only the latter half of the output sequence is
required, we introduced local Fermat number transforms to eliminate operations involving null
values and focus on relevant points. This optimization results in saving a total of 6N additions
for an N -point DFrFT. Furthermore, we introduced a radix-(4b) algorithm for computing a
2n-point FNT in GF(2b + 1), with b = 8 or 16, where log2(4b) < n ≤ b. In particular, when
the kernel is chosen as the m-th root of 2, its (m/2)-th power is the square root of 2, which
can occasionally be given by 2

b
4 (1 − 2

b
2 ) (modulo 2b + 1). This operand reduces to left-bit

shifts and one subtraction when used in a multiplication. The radix-(4b) is more efficient in
terms of multiplications than the radix-(2b) method. However, a reduction in the number of
multiplications may lead to an increase in additions. Despite this, the proposed algorithm offers
an alternative to achieve larger transform lengths with a given Cooley-Tukey mapping.

In applications such as radar signals, Fermat primes Ft, with t = 0, 1, . . . , 4, may be too
small to represent the CM–CC–CM decomposition. Therefore, it is necessary to use Fermat
numbers Ft, with t = 5, 6. In this way, the maximum length of an FNT is 2t+2. For long
one-dimensional signals, a low-complexity alternative involves using a 2D convolution scheme
alongside 2D-FNTs. In this scheme, only one-fourth of the input matrix contains the sequence to
be processed, and one-fourth of the output matrix contains the required sequence. In an N -point
DFrFT, local input/output adaptations can reduce arithmetic operations by at least 18N additions.
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In low-complexity algorithms based on computing partial points, the LDFrFT based on
local circular convolution can provide a wider coverage in terms of target distance compared to
the previous LDFrFT algorithm when calculating a specified number of consecutive points in
the DFrFT. For comparisons, we use the CSD representation to estimate the equivalent number
of additions and a logarithmic time complexity for modulo 2b + 1 adders. Simulations of radar
signals show that our LDFrFT, decomposed into a local circular convolutions modulo 232 + 1,
achieves a lower time complexity with minimal inaccuracies compared to the double precision
floating point LDFrFT decomposed into fast Fourier transforms.

An alternative numerical algorithm for the sampling-type DFrFT involves using axis
scaling, which enables its decomposition into a single DFT and two chirp multiplications. This
is referred to as the CM–FFT–CM decomposition when the DFT is implemented within the
framework of fast Fourier transforms. The method has been generalized as a discrete transform
with a free sampling parameter, and in essence it is a scaled DFrFT, as it involves axis scaling
based on the angle of rotation in the time-frequency plane. As a result, greater efficiency can
be achieved in comparison to the chirp-convolution-based decomposition when a floating-point
representation is used. Additionally, the differences between the methods in terms of time-shift
properties and the relationship between the optimal order and the parameters of a linear chirp
were detailed.

Considering the ways in which a linear canonical transform becomes an FrFT, we
explored versions with amplitude simplification and those that can be decomposed into a single
Fourier transform. Here, we demonstrate that the frequency-scaled simplified FrFT (referred to
as SmFrFT) admits high chirp rates. The discrete form of this transform, defined in normalized
domains, is denoted as DSmFrFT and possesses the convertibility property. This property enables
the elimination of high oscillations when the fractional order approaches 0 or ±2.

In the context of chirp signal processing using the FrFT, the DSmFrFT offers substantial
advantages for linear chirps, particularly by reducing the peak search dimension when the center
frequency is known. This has been validated through numerical simulations, which involved
analyzing the amplitude spectrum of a single-component LFM signal and estimating the DoA of
a single target in the fractional Fourier domain. In this scenario, we have demonstrated how the
local DSmFrFT algorithm can reduce the number of multiplications and additions. Furthermore,
it can be concluded that the DSmFrFT enhances the range of chirp rates and provides a robust
capability for estimating the parameters of chirp signals.

For both single- and multi-objective DoA estimation, it has been shown that applying
peak alignment during the preprocessing stage of subspace-based algorithms significantly reduces
the estimation error when using a center-symmetric ULA. In the multi-carrier scenario, where
chirp signals have different center frequencies and their peaks in the fractional Fourier domain
can be clustered such that non-intersecting lines can be fitted, piecewise linear regression has
been shown to be effective. However, when the lines formed by these peaks intersect, the CLSM
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method becomes inapplicable. In such cases, multi-line fitting using the HT presents an efficient
alternative, when the number of angles in the Hough space is smaller than the square of the
number of sensors in the ULA. Finally, it is important to note that both the CLSM and the HT
methods may offer lower computational complexity compared to subspace-based algorithms.
However, the forward-backward spatial smoothing technique generally provides high accuracy.
In this context, the ESPRIT algorithm integrated with the simplified fractional Fourier transform
is particularly effective, whereas the MUSIC algorithm may exhibit cross-null interference under
the same conditions.

Future work may be directed toward the development of low-complexity algorithms for
the digital computation of the fractional Fourier transform and its applications, as outlined in the
following items:

1. Hardware implementation: Future work will focus on FPGA-based implementation of the
CM–CC–CM structure in the ring Z2b+1, using IEAC adders, ICS operations, and CSD
multipliers to improve modular arithmetic efficiency and latency performance.

2. Two-dimensional FrFT: Future work will extend the proposed chirp-based decomposi-
tions for two-dimensional FrFT (2D-FrFT), exploiting separable forms for image rota-
tion, filtering, and encryption, and nonseparable forms for coupled chirp synthesis, joint
time–frequency analysis, and radar imaging.

3. Centered DFrFT: Future research may explore low-complexity algorithms for the centered
DFrFT (CDFrFT), leveraging the structure of the Grünbaum tridiagonal operator as well
as Krylov subspace methods. Such approaches could enhance the practical applicability
of the CDFrFT in resource-constrained systems, including real-time radar and quantum
signal processing.

4. Receiver for FMCW radar: The fractional correlation-based receiver for FMCW signals
plays a critical role in applications such as automotive radar. The problem can be addressed
through decomposition based on chirp convolutions in the ring Z2b+1, or by using simplied
FrFT with frequency-variable scaling for a more efficient correlation process.

5. Localization of mobile agents: In IoV or IoUT applications, future studies may focus on
multi-target DoA estimation of mobile agents based on wideband chirp signals in the
fractional Fourier domain, encompassing Cramér–Rao bound analysis and scalable array
geometries such as uniform rectangular arrays.
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APPENDIX A – COMPLEX MULTIPLICATION TRICKS

In this appendix, we present a brief explanation of how a chirp multiplication can be
performed efficiently, which is commonly encountered in numerical algorithms for the sampling-
type DFrFT. First, in its natural form, the product of two complex numbers is given as

(a+ jb)(c+ jd) = ac− bd+ j(ad+ bc), (A.1)

which involves four multiplications and two additions over the real field. This result can be
found as a special case of the multiplication of two polynomials modulo a third; specifically, it
means that (a0 + a1u)(b0 + b1u) modulo u2 + 1 (KNUTH, 1981, p. 647). In (MADANAYAKE
et al., 2020), for example, the authors mention that twiddle-factor multiplications in fast Fourier
transforms can be implemented using 3 real-valued multipliers and 5 real-valued adders by
employing Gauss’s algorithm for complex multiplication. However, there is some debate about
whether the mathematician Carl Friedrich Gauss (1777–1855) developed this algorithm or
whether he was the first to propose it (SHEN, 2019). Blahut (2010) comments that:

Algorithms for complex multiplication using three real multiplications became
generally known in the late 1950s, but the origin of these algorithms is a little
hazy (BLAHUT, 2010, p. 20).

In this context, we can identify three methods for reducing the number of real multiplications
in (A.1), one of which is particularly significant in computing fast Fourier transforms. These
methods, involving only three multiplications, are:

1. The term ad+ bc can be replaced by its equivalent as follows

ad+ bc = (a+ b)(c+ d)− ac− bd,

therefore, the three multiplications in (A.1) are ac, bd, and (a + b)(c + d). This trick
has been attributed to Gauss (DASGUPTA; PAPADIMITRIOU; VAZIRANI, 2006, p.55).
However, in earlier years, this algorithm was presented in (WINOGRAD, 1971) without
any mention of Gauss. According to Knuth (KNUTH, 1981, p.647), this formula was
suggested by Peter Ungar in 1963. In (BERNSTEIN, 2001), original sources for each
algorithm are presented, and this particular one is referred to as Karatsuba’s trick rather
than Gauss’s trick. In (MOORE; MERTENS, 2011, p.37), the authors state that Karatsuba
and Ofman (1962) discovered the algorithm for multiplying n-digit integers in 1962, but
the concept of reducing four multiplications to three originated with Gauss.

2. Another approach involves using the equations:

ac− bd = a(c+ d)− d(a+ b),

ad+ bc = a(c+ d) + c(b− a).
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In this case, the three multiplications in (A.1) are a(c+ d), d(a+ b), and c(b− a). This
optimization method appears in (MUNRO, 1971), once again without reference to Gauss.
In Exercise 41 of (KNUTH, 1981, p. 501), it is described as:

Show that the real and imaginary parts of (a+jb)(c+jd) can be obtained
by performing 3 multiplications and 5 additions of real numbers, where
two of the additions involve a and b only (KNUTH, 1981, p. 501).

3. In a similar way of item 1), when ac− bd is substituted by its equivalent

ac− bd = (a+ b)(c− d) + ad− bc,

in consequence, the three multiplications in (A.1) are ad, bc, and (a+ b)(c−d). According
to Singleton (1969), this alternative was pointed out by Golub.

In conclusion, the method described in item 2) can be more efficient, as two additions can be
saved by pre-computing the operations a+ b and b−a, which is feasible in fast Fourier transform
algorithms (DUHAMEL; HOLLMANN, 1984).

Returning to DFrFT and DSmFrFT, chirp multiplications in (3.3) and (3.20) can be
expressed as x̃[r] = ejϕα[r]x[r], where ϕα[r] =

π
N
r2µα is a generic phase and µα denotes a chirp

rate depending on α, specifically − tan
(
α
2

)
and cot(α), respectively. For a specific rotation

angle α = aπ/2, with a being the fractional order, pre-computing techniques can be applied as:

y[r] = cosϕα[r] + sinϕα[r],

z[r] = sinϕα[r]− cosϕα[r].

Subsequently, with w[r]=cosϕα[r] (Re {x[r]}+ Im {x[r]}), the real and imaginary parts of
x̃[r] are given by:

Re {x̃[r]} = w[r]− y[r]Im {x[r]} ,

Im {x̃[r]} = w[r] + z[r]Re {x[r]} .

Therefore, an N -point element-wise chirp modulation requires 3N real-valued multiplications
and 3N real-valued additions.
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APPENDIX B – PARTIAL LINEAR CONVOLUTION

In this appendix, we begin by observing that an N -point DFrFT corresponds to a subset
of samples from an infinite-length linear convolution. These points can be efficiently computed
using a (2N − 1)-point circular convolution, following the overlap-and-save (OaS) algorithm,
which decomposes the linear convolution into smaller circular convolutions. Furthermore, we
describe how this circular convolution can be optimized when the input is zero-padded and only
the last N output samples are of interest.

OVERLAP-AND-SAVE APPROACH

The sampling-type DFrFT, through its decomposition presented in (3.3), can be formally
expressed as a linear convolution problem, given by

y[r] = (g ∗ h)[r], (B.1)

where:

• g[r] is a finite-length sequence of length N , supported on r ∈ [−N/2, N/2).

• h[r] is an infinite-length sequence.

• The output y[r] is an infinite-length sequence, whose values within r ∈ [−N/2, N/2) are
the points of interest.

The above referred partial output of y[r] can be computed via a circular convolution by ap-
plying the overlap-and-save (OaS) algorithm, which avoids directly computing the full linear
convolution, as described in the following items:

• Block division of the infinite sequence: Split h[r] into overlapping blocks of length
L = 2N − 1. Each block is indexed by an integer m as

hm[r] = h[r +mN ] for r ∈ (−N,N).

• Circular convolution within each block: Perform the (2N − 1)-point circular convolution
between the finite-length signal g[r] and each block hm[r]: ym[r] = (g ⊛ hm)[r], where
⊛ denotes circular convolution. This operation efficiently computes the valid part of the
linear convolution within the portion of h[r] covered by the block m.

• Selection of valid output: Due to circular convolution, some points correspond to linear
convolution aliases (wrap-around effects). Therefore, only the last N points in the output
are retained, as they correspond to the desired partial linear convolution.
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CALCULATING THE POINTS OF INTEREST

Note that the N -point DFrFT given by (3.3) can be computed exactly for m = 0 by
applying the OaS algorithm to the linear convolution in (B.1). In this specific case, the above
decomposition can be efficiently implemented using N -point DFTs, as follows:

1. Pre-computing DFT of h: h=[h0, . . . , h2N−1] is a 2N -length vector whose elements are
given by the chirp function ej

π
N
r2 cscα, −N≤r<N , so that its DFT, H=[H0, . . . , H2N−1],

can be computed in advance.

2. Computing DFT of g: g = [g0, . . . , g2N−1] is a 2N -length vector whose first non-null
elements are computed as x[r]e−j π

N
r2 tan (α

2 ), −N/2≤r<N/2. By definition, the DFT of
g, G=[G0, . . . , G2N−1], is a matrix-vector product given by

Gk =
1√
2N

2N−1∑
n=0

gnω
kn
2N , k = 0, 1, . . . , 2N − 1, (B.2)

where ωp = e−j 2π
p , p = 2N . Particularly, the DFT of g can be separated into two smaller

summations by the decimation-in-frequency procedure, as follows

Gk =
1√
2N

(
N−1∑
n=0

gnω
kn
2N +

2N−1∑
n=N

gnω
kn
2N

)
.

Observe that the second summation is null (gn=0), so that the even elements, G2k, and the
odd elements, G2k+1, k = 0, 1, . . . , N − 1, can be computed as

G2k =
1√
2N

N−1∑
n=0

gnω
kn
N ,

G2k+1 =
1√
2N

N−1∑
n=0

gnω
n
2Nω

kn
N .

As demonstrated, the DFT of g involves N complex multiplications and two N -point
DFTs.

3. Pointwise product: the convolution theorem states that the DFT of a circular convolution,
y = g ⊛ h, is the same as the product of their respective DFTs, that is, Yk = GkHk,
k = 0, . . . , 2N − 1.

4. Inverse DFT of [Y0, . . . , Y2N−1]: let y = [y0, . . . , y2N−1] be the vector resulting from the
aforementioned circular convolution whose last N elements corresponds to summation
term of (3.3). Then, y can be obtained by the inverse DFT (IDFT) as

yn =
1√
2N

2N−1∑
k=0

Ykω
−kn
2N , n = 0, 1, . . . , 2N − 1.
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Analogous to the decimation-in-time procedure in DFT, the elements of interest yn+N ,
n=0, . . . , N − 1, can be calculated as the addition of the N -point IDFTs of the even and
odd indices, that is

yn+N =
1√
2N

N−1∑
k=0

Y2kω
−kn
N − ω−n

2N√
2N

N−1∑
k=0

Y2k+1ω
−kn
N .

In that way, calculating the last N points of y requires N complex multiplications, N
complex additions, and two N -point IDFTs.

Notice that a total of 3N complex additions is reduced by the procedure explained in items
2) and 4). An alternative approach to implement (3.4) is illustrated in Figure 28. In which a
decimation-in-frequency (DIF) approach is first applied to avoid operations with zero-padding
values when calculating the DFT (DUHAMEL; HOLLMANN, 1984), resulting in a reduction of
2N complex additions. Subsequently, after pointwise multiplication (⊗), only the last N points
of the inverse DFT (IDFT) are calculated, saving an additional of N complex additions. The
IDFT is implemented by swapping the real and imaginary parts of the input (▷◁), applying the
decimation-in-time (DIT) procedure and then swapping the parts again, following the method
described in (DUHAMEL; PIRON; ETCHETO, 1988).

Figure 28 – The signal flow graph of an n-point circular convolution, implemented using DFT
in recursive form of split-radix FFT algorithm (LOAN, 1992, p. 111); the dotted
lines represent either null input signals or neglected output signals. In which, given
m = n/2 and p = m/2, the twiddle-factors are represented by diagonal matrix
∆p = diag (1, ωn, . . . , ω

p−1
n ), where ωn = e−j 2π

n .

Source: The author (2025).
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