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ABSTRACT

The automated generation of domain models from test cases represents a fundamental
challenge in software engineering, particularly in the context of mobile device testing. This
work extends the research by Silva (2025), who proposed a framework based on Large Language
Models (LLMs) to automate this process. We present three main contributions: (1) SBERT, a
BERT-based model for generating sentence embeddings to measure semantic similarity, will be
replaced by an LLM for semantic validation, eliminating fixed threshold limitations and providing
contextual analysis capabilities; (2) implementation and comparative evaluation of five advanced
prompt engineering techniques - Few-Shot, Chain-of-Thought, Universal Self-Consistency, Tree
of Thoughts, and Prompt Chaining; and (3) systematic analysis of the impact of the temperature
parameter on the quality of the generated models. Using Gemini 2.5-flash (instead of Gemini 2
adopted in the previous work), but reusing the same dataset from the original work to ensure
comparability, our experiments focus on evaluating the effectiveness of different prompting
strategies. Among the techniques evaluated, Chain-of-Thought demonstrated the best overall
performance with median recall of 0.87 and low variance (!=0.06), while being computationally
efficient. Temperature analysis revealed an optimal result with value 0.3 for structured modelling
tasks, balancing determinism and flexibility. These results not only validate the effectiveness of
the proposed techniques but also provide practical guidelines for applying LLMs to software
engineering tasks that require structural precision and semantic understanding. In particular, we
demonstrate significant improvements over the baseline work, with increases of up to 23% in
correct identification of implicit atoms and 15% in detection of complex associations.

Keywords: Domain Models, LLM, Software Testing, Prompt Engineering, Semantic Valida-
tion.



RESUMO

A geração automatizada de modelos de domínio a partir de casos de teste representa
um desafio fundamental na engenharia de software, particularmente no contexto de testes de
dispositivos móveis. Este trabalho estende a pesquisa de Silva (2025), que propôs uma estrutura
baseada em Large Language Models (LLMs) para automatizar esse processo. Apresentamos três
contribuições principais: (1) SBERT, um modelo baseado em BERT para gerar ’sentence embed-
dings’ para medir similaridade semântica, será substituído por um LLM para validação semântica,
eliminando limitações de limiares fixos e fornecendo capacidades de análise contextual; (2)
implementação e avaliação comparativa de cinco técnicas avançadas de ’prompt engineering’ -
Few-Shot, Chain-of-Thought, Universal Self-Consistency, Tree of Thoughts e Prompt Chaining;
e (3) análise sistemática do impacto do parâmetro ’temperature’ na qualidade dos modelos
gerados. Usando Gemini 2.5-flash (em vez de Gemini 2 adotado no trabalho anterior), mas reuti-
lizando o mesmo conjunto de dados do trabalho original para garantir a comparabilidade, nossos
experimentos se concentram em avaliar a eficácia das diferentes estratégias de ’prompting’. Entre
as técnicas avaliadas, Chain-of-Thought demonstrou o melhor desempenho geral com recall
mediano de 0.87 e baixa variância (!=0.06), enquanto era computacionalmente eficiente. A
análise de ’temperature’ revelou um resultado ótimo com o valor 0.3 para tarefas de modelagem
estruturada, equilibrando determinismo e flexibilidade. Esses resultados não apenas validam
a eficácia das técnicas propostas, mas também fornecem diretrizes práticas para a aplicação
de LLMs em tarefas de engenharia de software que exigem precisão estrutural e compreensão
semântica. Em particular, demonstramos melhorias significativas em relação ao trabalho de base,
com aumentos de até 23% na identificação correta de átomos implícitos e 15% na detecção de
associações complexas.

Palavras-chave: Modelos de Domínio, LLM, Teste de Software, Engenharia de Prompt,
Validação Semântica.
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1
INTRODUCTION

The automation of domain model generation remains a significant challenge in the
software development lifecycle. In the specific context of software testing for mobile devices,
this task becomes even more complex due to the dynamic and interconnected nature of modern
functionalities. This complexity is evident in industrial practice, as demonstrated through
collaborative work with Motorola in mobile device testing scenarios. Test-based domain models
serve as fundamental abstract representations that capture relationships between test actions,
including dependencies, cancellations, and instantiations, being essential for ensuring test case
consistency and completeness.

The work by Silva (2025) [20] established a robust framework for automating the
generation of these models using Large Language Models (LLMs), specifically Gemini 2.0-flash.
Through the combination of structural validation via ASP (Answer Set Programming) [5] solver
and semantic validation using SBERT (Sentence Bidirectional Encoder Representations from
Transformers) [19], the original framework achieved promising results, with 80-90% satisfiability
in low and medium complexity domains. However, several limitations were identified, including
difficulties in identifying implicit associations, dependence on a fixed threshold for semantic
similarity, and limited exploration of prompt engineering techniques’ potential.

These limitations manifest concretely in industrial practice. SBERT-based semantic
validation frequently fails to capture important contextual nuances—for example, "Set device
multi-window mode ON" and "Enable multi-window mode" are semantically equivalent in
the context of mobile testing, but may not reach the 0.8 similarity threshold due to superficial
differences in textual structure. This fixed-threshold approach inherently constrains the system’s
ability to recognize semantic equivalence when surface forms diverge, suggesting that the deep
contextual understanding of modern LLMs could overcome these embedding-based limitations.

Prior to and in parallel with Silva’s work, significant advances have occurred both in
LLM development and in understanding prompt engineering techniques. Recent models, such as
Gemini 2.5-flash, demonstrate improved reasoning and contextual understanding capabilities
compared to their predecessors. Concurrently, advanced prompting techniques have emerged as
promising alternatives for tasks requiring structured reasoning and systematic solution explo-
ration. Tree of Thoughts (ToT) [24], which allows systematic exploration of multiple reasoning
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paths, appears naturally suited for identifying complex relationships between test actions. Sim-
ilarly, Universal Self-Consistency (USC) [11] can potentially mitigate the non-deterministic
nature of LLMs through aggregation of multiple perspectives, though questions remain about
whether its voting mechanism effectively identifies superior solutions or potentially discards
valid alternatives.

The question of temperature adjustment in LLMs for structured tasks also merits sys-
tematic investigation. While higher temperatures promote creativity and exploration, formal
modelling tasks may benefit from more deterministic outputs. Finding the optimal balance
could mean the difference between complete but inconsistent models and correct but incomplete
models—a trade-off that has not been systematically explored in the context of domain model
generation.

This work proposes an evolution of the original framework by enhancing the effectiveness
and robustness of automated test-based domain model generation through systematic exploration
of a more recent version of Gemini (2.5-flash) and more elaborate prompt engineering tech-
niques. First, we explore the replacement of SBERT with semantic validation based directly
on LLM, assuming that the deep contextual understanding of language models can overcome
the limitations of embedding-based methods with fixed thresholds. Second, we implement and
systematically evaluate five prompt engineering techniques – Few-Shot Learning [6], Chain-of-
Thought (CoT) [23], Universal Self-Consistency (USC), Tree of Thoughts (ToT), and Prompt
Chaining [13] [21] – seeking to identify which approach is most effective for the specific task of
domain model generation. Third, we investigate the impact of the temperature parameter on the
quality and consistency of generated models, a dimension little explored in software engineering
tasks that require structural precision. Specific objectives include:

• Develop and evaluate an LLM-based semantic validation method that overcomes the
limitations of SBERT, providing contextual analysis without reliance on fixed thresholds.

• Implement and systematically compare five prompt engineering techniques (Few-Shot,
CoT, USC, ToT, and Prompt Chaining) in the context of domain model generation.

• Investigate the impact of the temperature parameter on the precision, completeness, and
consistency of the generated models.

• Validate the proposed improvements using the same dataset from the original work,
ensuring direct comparability of results.

• Provide practical guidelines for applying LLMs to software engineering tasks that require
structural precision and semantic understanding.

• Analyze the decision-making process in USC, particularly examining the quality of non-
selected paths to assess whether the voting mechanism effectively identifies superior
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solutions or potentially discards valid alternatives, thereby evaluating the technique’s recall
and precision in the context of domain model generation.

This work presents the following main contributions:

• LLM-based semantic validation framework: We developed a new method for seman-
tic validation that utilises the contextual understanding capabilities of modern LLMs,
eliminating the need for fixed thresholds and providing richer and more contextualised
feedback.

• Comprehensive comparative analysis of prompting techniques: We present the first
systematic comparison of five advanced prompt engineering techniques applied specifically
to domain model generation, including quantitative metrics and qualitative analysis.

• Empirical study on temperature in structured tasks: We provide empirical evidence
on the impact of temperature in tasks that require both creativity and structural precision,
establishing guidelines for optimal configuration.

• Measurable improvements with respect to the original framework: We demonstrate
significant improvements over the baseline work, with increases of up to 23% in correct
identification of implicit atoms and 15% in detection of complex associations.

The remainder of this work is organised as follows: Chapter 2 presents some background,
including a review of the original framework and the prompt engineering techniques used.
Chapter 3 details the proposed methodology, including the extended architecture and technique
implementation. Chapter 4 presents the experimental evaluation and results. Chapter 5 discusses
related work and positions our contributions in the current context. Finally, Chapter 6 concludes
the work and points to future directions.
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2
BACKGROUND

This chapter introduces background necessary to understand the contributions of this
work. We begin with a detailed review of the original framework proposed by Silva (2025),
identifying its main components and limitations. Next, we explore the fundamentals of semantic
validation, contrasting embedding-based approaches with LLM-based methods. Finally, we
present an in-depth analysis of the prompt engineering techniques used in this work, including
their principles and practical applications.

2.1 REVIEW OF THE ORIGINAL FRAMEWORK

The work by Silva (2025) established a pioneering framework for the automated gen-
eration of test-based domain models using LLMs. The proposed architecture consists of a
pipeline that integrates three main components: (1) prompt preparation using few-shot learning
techniques and an initial implementation of chain-of-thought, (2) structural validation through
the Answer Set Programming (ASP) solver Clingo, and (3) semantic validation using SBERT to
verify correspondence between generated and expected atoms.

2.1.1 Base framework architecture

The original framework (see Figure 1) operates through an iterative cycle of generation
and validation. The process begins with prompt preparation that contextualises the domain
modelling task for the LLM. Silva explored two main prompting techniques: few-shot learning,
where examples of mapping between test cases and domain models are provided, and a version
of chain-of-thought that decomposes the task into sequential steps.

Structural validation uses a set of logical rules implemented in ASP to verify the structural
consistency of the generated model. These rules include detection of cyclic dependencies and
conflicts between associations. When inconsistencies are detected, specific feedback is provided
to the LLM for refinement.

Semantic validation in the original framework employs SBERT to calculate atom em-
beddings and determine correspondences through cosine similarity with a fixed threshold of 0.8.
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Figure 1: Proposed framework for generating test-based domain models using LLMs proposed
by Silva (2025).

This approach, whilst effective in many cases, presents significant limitations that motivated part
of the improvements proposed in this work.

2.1.2 Results and identified limitations

The original framework achieved notable results, with satisfiability rates between 80-90%
in low and medium complexity domains. However, several limitations were identified:

1. Difficulty in identifying implicit associations: The system demonstrated low recall in
detecting instantiations (0-6%) and cancellations (0-70%), suggesting that the prompting
techniques used were insufficient to capture these more subtle relationships.

2. Fixed threshold in semantic validation: The use of a fixed threshold of 0.8 for semantic
similarity proved problematic, failing in cases where valid linguistic variations did not
reach this arbitrary limit.

3. Limited exploration of prompting techniques: Whilst the work explored few-shot
learning and a form of chain-of-thought, more recent and sophisticated techniques were
not considered.

4. Absence of model parameter analysis: The impact of parameters such as temperature
was not investigated.

2.2 SEMANTIC VALIDATION: SBERT VERSUS LLM

Semantic validation constitutes a critical component in automated model generation
systems, being responsible for verifying whether generated elements correspond semantically to
expected elements. This section analyses embedding-based approaches, exemplified by SBERT,
and contrasts with LLM-based methods that we propose in this work.
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2.2.1 Limitations of embedding-based approaches

SBERT (Reimers & Gurevych, 2019) revolutionised semantic similarity computation by
generating sentence embeddings that can be efficiently compared through measures such as cosine
similarity. In the context of the original framework, SBERT served multiple validation functions:
determining whether atoms generated by the LLM corresponded to expected atoms extracted
from test cases, and when ground-truth domain models were available as feedback, mapping the
associations between atoms including dependencies, cancellations, and instantiations.

However, this approach presents several intrinsic limitations when applied to the specific
domain of test modelling:

• Sensitivity to superficial variations: Embeddings are sensitive to variations in text
surface structure. For example, "Enable Wi-Fi" and "Turn on wireless connection" may
have significantly different embeddings despite being functionally equivalent in the context
of mobile testing.

• Lack of contextual awareness: SBERT generates fixed embeddings that do not consider
the specific domain context. The same phrase may have different meanings in different
contexts, but the embedding remains constant.

• Fixed threshold: The need to define a fixed threshold (0.8 in the original work) creates an
inflexible trade-off between precision and recall. A high threshold results in many false
negatives, whilst a low threshold may accept incorrect correspondences.

• Inability to provide justifications: When a correspondence fails, the embedding-based
method cannot explain why, limiting the capacity for iterative refinement.

2.2.2 LLM-based semantic validation

Large Language Models offer an alternative approach to semantic validation that lever-
ages their inherent understanding and reasoning capabilities rather than relying on vector similar-
ity measures. This approach presents several advantages:

1. Deep contextual understanding: LLMs can process and evaluate semantic equivalences
by considering the complete contextual information available. Their architecture enables
them to recognize when different surface forms express the same underlying concept,
understanding that variations in phrasing may represent identical functional meanings
within specific domains.

2. Flexibility without thresholds: Rather than depending on fixed numerical thresholds
for similarity decisions, LLMs can make nuanced judgments about semantic equivalence.
These models evaluate multiple dimensions simultaneously—including context, intention,
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and acceptable linguistic variations—without reducing the comparison to a single scalar
value.

3. Rich and Explanatory Feedback: LLMs can provide detailed justifications for their
decisions, explaining why two atoms are or are not considered equivalent, facilitating
iterative refinement.

The effective application of LLM-based semantic validation depends on careful prompt
design that communicates the relevant equivalence criteria for the target domain. This includes es-
tablishing guidelines for handling technical synonyms, nomenclature variations, and determining
which details are semantically significant versus those that can be abstracted away.

2.3 ADVANCED PROMPT ENGINEERING TECHNIQUES

Prompt engineering has evolved significantly from basic zero-shot approaches, devel-
oping sophisticated techniques that exploit the emergent capabilities of LLMs for complex
reasoning and structured generation tasks. This section presents five fundamental techniques that
have demonstrated efficacy in complex scenarios and were applied in this study.

2.3.1 Few-Shot Learning

Few-Shot Learning enables LLMs to execute new tasks based on a few demonstrative
examples, without requiring fine-tuning of model parameters. In this approach, the model
is conditioned by a prompt containing task demonstrations, provided directly in the context
window during inference. Few-shot learning capability improves dramatically with model scale,
enabling competitive performance across diverse natural language processing tasks. For domain
modelling, the dynamic selection of relevant examples and their appropriate structuring in the
prompt are critical factors for the technique’s success.

2.3.2 Chain-of-Thought

Chain-of-Thought prompting enables LLMs to demonstrate complex reasoning capa-
bilities through generating intermediate thought steps before the final answer. The technique
instructs the model to explicitly articulate its reasoning process step by step, including demon-
strations that contain not only input-output pairs, but also the chain of reasoning that leads to the
solution. This approach has demonstrated significant improvements in tasks requiring multi-step
reasoning, with particularly notable efficacy in large-scale models, where problem decomposition
capability emerges more prominently.
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2.3.3 Universal Self-Consistency

Universal Self-Consistency extends the concept of traditional self-consistency [22],
addressing the non-deterministic nature of LLMs. The methodology involves two stages: (1)
the model generates multiple candidate responses for a task; (2) these responses are presented
to the LLM itself with instructions to identify and select the most consistent response amongst
the generated options. This approach eliminates the need for exact matching or external parsing,
making it particularly relevant for free-text generation tasks and scenarios where traditional
aggregation is unfeasible, such as in domain model generation with varied structures.

2.3.4 Tree of Thoughts

The Tree of Thoughts framework transcends the limitations of sequential inferences
by structuring problem-solving as tree search. Each node represents a "thought" - a coherent
unit of language that serves as an intermediate step. ToT is characterised by four components:
decomposition into intermediate thoughts, generation of potential thoughts, heuristic evaluation
of states using the LLM itself, and application of search algorithms (Breath First Search (BFS)
or Depth First Search (DFS)) for systematic exploration. This modularity makes ToT effective
in tasks requiring non-trivial planning and exploration of multiple solution paths, allowing
backtracking when necessary.

2.3.5 Prompt Chaining

Prompt Chaining addresses complex tasks through decomposition into sequential sub-
tasks, where the output of each stage feeds the next. Unlike CoT, which generates reasoning
within a single response, Prompt Chaining structures the process externally through multiple dis-
tinct interactions. For domain modelling, this technique enables progressive model construction
through a specific chain: atom identification → dependency analysis → cancellation detection
→ instantiation mapping, for example. Each stage is conditioned by previous results, creating a
modular pipeline that facilitates debugging and allows integration of intermediate validations.

2.4 LLM PARAMETERS

The behaviour of LLMs is significantly influenced by configuration parameters, with
temperature being one of the most critical. This section explores this concept and its implications
for structured modelling tasks.

2.4.1 Temperature and probability distribution

Temperature in LLMs controls the randomness of predictions by adjusting the probability
distribution over the vocabulary. Most models use a temperature range between 0 and 1, while
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Gemini uses a range between 0 and 2. In general, the temperature influence over the LLMs
responses is determined as follows:

1. Low temperature T → 0: Increases the model’s "confidence" in its most likely predictions,
making the distribution more concentrated on higher probability tokens. The outputs
become more deterministic, repetitive, and focused.

2. High temperature (T > 1): Decreases the difference between the probabilities of the
tokens, making the distribution more uniform. This increases diversity, "creativity," and
the chance of the model generating unexpected responses.



212121

3
FRAMEWORK

This chapter presents the methodology developed to enhance automated generation
of test-based domain models. We describe the extended framework architecture, detail the
implementation of LLM-based semantic validation, and present the five implemented prompt
engineering techniques.

3.1 EXTENDED FRAMEWORK ARCHITECTURE

The proposed architecture maintains the fundamental structure of Silva’s (2025) frame-
work whilst introducing enhanced components and novel validation mechanisms. Figure 2
illustrates the complete system flow, demonstrating the experimental framework where test suites
are processed through prompt engineering techniques using Gemini 2.5-flash to generate domain
models. Then, the structural validator performs correctness checking and triggers iterative
feedback loops when errors are identified.

Figure 2: Schematic representation of the experimental framework.

The main components of the framework are:
Prompt engineering module: We replaced the original prompting module with a mod-

ular system that supports five different techniques: Few-Shot Learning, Chain-of-Thought,
Universal Self-Consistency, Tree of Thoughts, and Prompt Chaining. Each technique is im-
plemented as an independent class that inherits from a common interface, enabling seamless
extension and systematic comparison across methodologies. The module provides parametrised
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// Test Case 1

"step_1": {

"setup": "",

"description": "Open camera app",

"result": "Camera preview should be shown",

}

"step_2": {

"setup": "",

"description": "Take a photo",

"result": "Photo should be saved to gallery",

}

// Test Case 2

"step_1": {

"setup": "",

"description": "Open camera app",

"result": "Camera preview should be shown",

"step_2": {

"setup": "Switch to front camera",

"description": "Record a video",

"result": "Video should be saved to gallery",

}

Figure 3: Example input test cases for the prompt engineering module. The test cases follow a
structured JSON format with setup conditions, action descriptions, and expected results.

control over both the LLM model version and temperature settings, facilitating comprehensive
experimental evaluation. For advanced techniques such as ToT and USC, the module maintains
conversation history and manages state information required for multi-step reasoning processes.
Figure 3 shows an example of input and Figure 4 shows an example of output from this module.

Feedback validation: We maintained the ASP solver Clingo-based structural validation
module, as it proved robust and effective. This module acts as an enhanced feedback system that
guides the domain model generation based on error messages. The logical rules remain the same,
ensuring comparability with the original work.

LLM-based semantic validation: This component represents the most significant ar-
chitectural modification from the original framework. We replaced the SBERT-based similarity
matching with a system that leverages the LLM’s own capabilities to perform contextualised
semantic comparisons. This approach enables more nuanced understanding of semantic equiva-
lences, particularly when handling a synonymous terms or contextually equivalent expressions
that traditional embedding-based methods might miss. The validator utilises the same language
model to ensure terminological consistency between generated and expected domain models, but
the requests are made with no history of previous tasks.

The framework process initiates with the selection of a prompt engineering technique
and temperature configuration from the predefined experimental matrix. The prompt engineering



232323

{

"atoms": [

"Open camera app",

"Close camera app",

"Take a photo",

"Record a video",

"Switch to front camera",

"Switch to rear camera"

],

"cancellations": [

{"source": "Open camera app", "target": "Close camera app"},

{"source": "Close camera app", "target": "Open camera app"},

{"source": "Switch to front camera", "target": "Switch to

rear camera"},

{"source": "Switch to rear camera", "target": "Switch to

front camera"}

],

"instances": [],

"dependencies": [

{ "source": "Take a photo", "target": "Open camera app"},

{"source": "Record a video", "target": "Open camera app"}

]

}

Figure 4: Example of a domain model generated by the prompt engineering module. The domain
model follow a structured JSON format with atoms cancellations, instances and dependencies.

module prepares the appropriate prompt structure based on the selected technique, incorporating
technique-specific instructions and examples as detailed in Section 3.3, and submits it to Gemini
2.5-flash for processing.

Upon receiving the prompt, Gemini generates a candidate domain model in structured
JSON format, containing atoms as nodes and dependencies, cancellations, and instantiations as
directed edges. This standardised output format ensures consistent processing across all prompt
engineering techniques and facilitates automated validation.

The candidate model undergoes validation through the ASP-based structural validator. It
checks for logical inconsistencies including cyclical dependencies, cancellation conflicts, and
instantiation violations, as in Silva (2025). When structural errors are detected, the feedback
module constructs error reports focusing solely on these structural issues, providing the LLM
with specific guidance on logical corrections needed.

3.2 LLM-BASED SEMANTIC VALIDATION

The LLM-based semantic validation component represents a fundamental departure
from traditional embedding-based approaches. Rather than reducing semantic comparison to
numerical similarity scores, this component leverages the language model’s inherent under-
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standing capabilities to perform contextual equivalence assessment through a two-stage process:
terminology adaptation and structural comparison.

Terminology Adaptation Process: The validation begins by analyzing the language and
terminology used in the generated domain model. The LLM examines each atom in the generated
model and adapts the ground-truth domain model to match this terminology while preserving
semantic meaning. This adaptation process ensures that superficial linguistic differences do
not obscure structural equivalences. For instance, if the generated model uses "Enable Wi-Fi
connection" while the ground-truth contains "Turn on wireless network", the validator adapts the
ground-truth to use the generated model’s terminology before comparison.

Contextual Equivalence Assessment: The validator recognizes that atoms may be
expressed differently while maintaining identical functional meaning. For instance, "Enable
Wi-Fi connection" and "Turn on wireless network" represent the same action in mobile testing
contexts, despite their surface-level differences. The LLM evaluates these equivalences by
considering the testing domain context, understanding that variations in technical terminology
often reflect different ways of describing the same underlying operation.

Synonymy and Variation Handling: Unlike fixed embeddings, the LLM-based ap-
proach dynamically interprets synonymous expressions and linguistic variations. The model
understands that "Close application", "Terminate app", and "Exit program" may all refer to the
same atomic action, depending on the test suite’s conventions. This flexibility extends to handling
abbreviations (Wi-Fi/WiFi), alternative phrasings (turn on/enable/activate), and domain-specific
terminology variations.

Structural Comparison: After terminology adaptation, the validator performs a struc-
tural comparison between the adapted ground-truth and the generated model. This comparison
identifies:

• Missing atoms and relationships: Elements and associations (dependencies, cancella-
tions, instantiations) present in the ground-truth but absent from the generated model

• Extra atoms and relationships: Elements and associations generated but not present in
the ground-truth, potentially indicating over-generation or incorrect inference of implicit
components

The structural comparison operates at the semantic level rather than requiring exact
string matches, enabling accurate assessment even when models use different representational
conventions.

Implementation Details: The semantic validator operates as a stateless component,
processing each validation independently without maintaining conversation history. This design
choice ensures consistent evaluation criteria across all validations and prevents drift in judgment
standards during extended validation sessions.
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3.3 IMPLEMENTATION OF PROMPT ENGINEERING TECHNIQUES

The implementation of prompt engineering techniques constituted a central element of
the methodological approach proposed in this work. Each technique was adapted and optimised
for the specific context of test-based domain model generation, leveraging Gemini’s capabilities
and incorporating improvements over the original implementations described in the literature.
The overall experimental framework, illustrated in Figure 2, demonstrates how these techniques
are integrated within a validation loop that ensures the generation of consistent domain models.

3.3.1 Few-Shot Learning

The implementation of the Few-Shot Learning technique presented substantial modifi-
cations compared to Silva (2025). Firstly, we significantly expanded the set of demonstrative
examples, increasing not only the quantity but also the complexity and diversity of cases pre-
sented to the model.

Figure 5: Few-Shot Learning prompt structure for domain model generation. The prompt
comprises system instructions, followed by example pairs demonstrating the transformation from
test cases to domain models (atoms, dependencies, and associations). The final question presents
new test cases for processing.

The main methodological innovation resided in the optimised utilisation of structures
provided by the Gemini API. Unlike the conventional approach, which concatenates instructions
and examples in a single system prompt, our implementation strategically segregates these
components. As shown in Figure 5, general instructions are provided as a system message,
establishing the context and fundamental guidelines of the task. The examples, in turn, are
structured as messages exchanged between user and assistant, simulating real interactions and
allowing the model to better understand the expected response pattern.

The expanded examples incorporate specific ambiguity scenarios and their respective
resolutions. Each example explicitly demonstrates how to identify implicit atoms in composite
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test actions, how to establish dependency relationships between sequential actions, and how to
recognise cancellation and instantiation patterns. This more detailed approach allows the model
to develop a deeper understanding of the semantic nuances present in natural language test cases,
with the structured format facilitating pattern recognition and consistent output generation.

3.3.2 Chain-of-Thought

[...]

# Your Task

Based on the essential definitions provided about a domain model and

your expertise in software engineering and test automation, you

should derive the domain model from the provided test cases by

following these steps:

1. **Define Explicit Atoms**: Analyze the ‘description‘ and ‘setup‘

of each test step to identify the directly mentioned atoms.

2. **Define Implicit Atoms**: Infer any necessary missing atoms.

Think about what is a prerequisite or logical consequence. *

Example: "Verify message without internet" implies the atom "

Disable internet". Every "Open" action implies a "Close" action*.

3. **Create Instance Edges**: Identify atoms that are specific

variations of a more general, conceptual atom.

4. **Create Cancellation Edges**: Identify pairs of atoms that

represent opposite actions (e.g., turn on/off, open/close, insert/

remove).

5. **Create Dependency Edges**: Analyze the logical sequence of the

tests to define which atoms must be executed before others for the

system to work correctly.

6. **Final Review**: Ensure that the domain model represents the

provided tests without adding new information not provided as well

no atom or relation has been forgotten.

## Chain of Thought Instructions

First your output must by your reasoning process like you are

thinking out loud.

After detailing your reasoning, insert a clear separator like ‘---‘

and then provide the final JSON object.

[...]

Figure 6: Excerpt CoT prompt demonstrating the six-step reasoning process. Instructions
mandate explicit thought verbalisation for each stage of domain model construction, separated
from the final JSON output by a clear delimiter.

The CoT implementation was designed to provide the language model with a struc-
tured step-by-step reasoning framework, essential for the complex task of extracting structured
knowledge from test cases.

Figure 6 contains an excerpt from the prompt used and illustrates the implemented
structure, which instructs the model to: (1) first identify all explicit atoms present in the test
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Let’s think step by step.

We are given two test cases. Let’s break down each step and extract

the atoms and relationships.

Test Case 1:

Step 1:

description: "Open messages app",

result: "The messages app screen should be available"

**-> Atom: "Open messages app"**

If there is an "Open" action there must be a "Close" action.

**-> Atom: "Close messages app"**

**-> Cancellation: "Close messages app" cancels "Open messages app"**

**-> Cancellation: "Open messages app" cancels "Close messages app"**

[...]

Figure 7: An excerpt from an example given as input. The method involves deconstructing a
test step into its fundamental atoms and relationships, including cancellation actions, describing
what would be a reasoning path.

cases; (2) analyse each test action to discover implicit atoms necessary for complete execution;
(3) recognise generalisation patterns to establish instantiation relationships between specific
and conceptual atoms; (4) identify mutually exclusive actions to determine cancellation edges;
(5) establish dependency relationships based on temporal order and logical prerequisites; and
(6) perform a final review to ensure the domain model accurately represents the provided tests
without adding extraneous information or omitting any atoms or relationships.

Crucially, the provided examples not only demonstrate the final result but make explicit
the entire intermediate reasoning process. As illustrated in Figure 7 each example includes
detailed annotations that reveal the thinking behind each decision, from identifying an implicit
atom to justifying a specific dependency relationship. This transparency in the reasoning process
allows the model to internalise not just what to do, but how and why to do it.

3.3.3 Universal Self-Consistency

The USC implementation represents the most sophisticated approach in terms of response
aggregation and validation. Our adaptation of this technique integrates seamlessly with the
previously implemented CoT structure, creating a robust system for domain model generation
and selection.

The implemented process, depicted in Figure 8, generates eight independent perspectives
for each test set, each representing a complete reasoning path through the CoT technique. This
multiplicity of perspectives captures different valid interpretations of requirements implicit in
the test cases. Each execution may identify different implicit atoms or propose alternative
relationships between actions, reflecting the inherent ambiguity of natural language.

The evaluation and consolidation phase constitutes the critical differentiator of this
implementation. A specialised evaluator module systematically analyses all eight generated
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Figure 8: USC architecture for domain model generation. The CoT module generates multiple
reasoning paths (eight perspectives) from input test cases. An evaluator component within
Gemini analyses these parallel paths and selects the optimal domain model based on consistency
metrics and quality assessment.

perspectives, considering multiple criteria: (1) completeness in atom identification; (2) structural
consistency of proposed relationships; (3) semantic alignment with original test cases; and (4)
logical coherence of the complete model. As illustrated in Figure 8, the evaluator not only selects
the best perspective but also explicitly documents the reasons for its choice, providing detailed
justifications that include comparisons between different proposals and identification of each
one’s strengths.

3.3.4 Tree of Thoughts

The ToT implementation represents the most complex technical challenge due to the
exploratory tree nature of the algorithm. Our adaptation utilises a BFS strategy that systematically
explores the space of possible domain models, as illustrated in Figure 9.

Figure 9: Implementation of ToT technique. Gemini generates multiple tree nodes representing
partial solutions, which are evaluated and pruned through Tree Trim. The BFS continues until a
complete reasoning path produces the final domain model.

Each node in the tree maintains a data structure that encapsulates the current state of the
partial domain model and a categorical evaluation of its viability. The implemented evaluation
categories are: "sure" (high confidence in path correctness), "likely" (moderate probability of
success), "impossible" (unviable path detected), and "complete" (valid and complete domain
model generated).

The thought generator operates on each evaluated node, producing five possible continua-
tions that represent different decisions about atoms to add or relationships to establish. Each new
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branch undergoes the evaluation process, which considers: (1) consistency with previous steps
in the tree; (2) alignment with provided test cases; (3) satisfaction of domain model structural
constraints; and (4) progress towards a complete model.

The implemented pruning mechanism (Tree Trim) is crucial for computational efficiency.
After each expansion and evaluation round, nodes are ordered prioritising those classified as
"sure", followed by "likely". Nodes marked as "impossible" are immediately discarded, avoiding
unnecessary exploration of unviable paths. This iterative process continues until a "complete"
node is identified, at which point the algorithm terminates and the path from root to this node is
used to construct the final domain model. Otherwise, only the three most promising nodes are
retained for the next iteration, balancing exploration with computational efficiency.

3.3.5 Prompt Chaining

The Prompt Chaining technique decomposes the complex task of domain model genera-
tion into a sequence of six specialised prompts, each focused on a specific aspect of the problem.
This decomposition allows greater precision and control over each component of the generated
model, as shown in Figure 10.

Figure 10: Prompt Chaining architecture for incremental domain model construction. Sequential
prompts progressively build the model: first extracting explicit atomic actions from test cases,
then identifying implicit atoms, followed by relationship detection. Each stage receives cumula-
tive context from previous prompts, ensuring informed decision-making throughout the chain
until final model integration.

The first prompt focuses exclusively on explicit atom extraction, instructing the model
to identify only actions directly mentioned in test steps, without inferences or additions. The
second prompt uses the identified explicit atoms as input and requests identification of implicit
atoms, considering undeclared setup actions, intermediate steps between explicit actions, and
state changes implicit in the flow.

The third prompt addresses dependency detection, analysing test flows to identify re-
lationships where one atom must execute before another. For each identified dependency, the
model must provide a logical justification based on test case evidence. Prompts four and five
follow a similar structure for cancellations and instantiations, respectively.

The sixth and final prompt performs final integration and verification, consolidating all
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identified components into a coherent domain model. This prompt instructs the model to verify
consistency, resolve conflicts based on test case evidence, and document all conflict resolutions
performed.

A critical aspect of the implementation is cumulative context management between
prompts. We implemented a context structure that maintains the history of all decisions made,
identified patterns, and accumulated domain understanding. Each subsequent prompt receives
not only the results from the previous prompt but also all accumulated relevant context, allowing
more informed and consistent decisions throughout the chain. This sequential progression
with context accumulation ensures that insights obtained in early stages are not lost and can
inform decisions in later stages, creating a truly integrated process of incremental domain model
construction.
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4
EVALUATION

This chapter presents a comprehensive experimental evaluation of the proposed enhance-
ments to automated test-based domain model generation. We systematically investigate the
effectiveness of different prompt engineering techniques, analyze the impact of temperature
parameters, and validate our LLM-based semantic validation approach. Through controlled
experiments across six industrial test suites, we assess both the performance gains and practical
trade-offs of each proposed improvement, providing empirical evidence to guide practitioners in
deploying these techniques.

4.1 RESEARCH QUESTIONS

To systematically evaluate the contributions of this work, we formulated five research
questions that guide our experimental investigation:

RQ1: How do different prompt engineering techniques compare in generating
test-based domain models? This question investigates the relative effectiveness of five ad-
vanced prompting strategies (Few-Shot, Chain-of-Thought, Universal Self-Consistency, Tree of
Thoughts, and Prompt Chaining) in the specific context of domain model generation.

RQ2: What is the impact of temperature on domain model generation quality? We
examine how the temperature parameter affects both the accuracy and consistency of generated
models, seeking to identify optimal settings for structured modeling tasks.

RQ3: How does semantic validation feedback improve model generation? This
question evaluates whether incorporating LLM-based semantic feedback during the iterative
generation process enhances final model quality compared to structural feedback alone.

RQ4: Does Universal Self-Consistency effectively select the best generated model?
We validate whether USC’s selection mechanism successfully identifies superior responses
among multiple generated candidates, or if the voting approach potentially discards better
alternatives.

RQ5: How does model evolution impact domain model generation? This question as-
sesses the performance differences between Gemini 2.0-flash and Gemini 2.5-flash to understand
the impact of model improvements independent of prompt engineering optimizations.
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4.2 EXPERIMENTAL SETUP

Our evaluation employs six test suites from industrial mobile device testing, originally
curated by Silva (2025) in collaboration with Motorola. These test suites represent real-world
testing scenarios, as shown in Table 1, spanning diverse functionality domains, from basic
UI navigation to complex network configuration management. Each suite comprises natural
language test cases following a structured format with setup conditions, execution steps, and
expected outcomes.

Test Suite Test Cases Atoms Instantiations Cancellations Dependencies Complexity*
FWUI 2 13 1 6 6 Low

HostpotTimeout 4 33 0 24 11 Medium
PreloadContacts 5 10 0 0 9 Low

MobileData 7 43 4 17 22 High
InternationalRoamingMenu 9 24 3 6 14 Medium

VoiceServicesSupport 12 27 5 14 12 High

Table 1: Distribution of test cases, atoms, and associations of each selected test suite. *Complex-
ity classification based on Silva (2025) criteria: atom inference difficulty and association density

The test suites represent the following specific domains:

• FWUI: addresses behaviours related to battery updates.

• HotspotTimeout: refers to the automatic disconnection of a hotspot after inactivity,
helping manage data usage and prevent prolonged idle connections.

• PreloadContacts: involves the importation and storage of contacts to a device.

• MobileData: refers to internet access through a cellular network on mobile devices.

• InternationalRoamingMenu: relates to managing mobile services while travelling inter-
nationally.

• VoiceServicesSupport: provides assistance for customers using VoIP (Voice Over Internet
Protocol) services.

The experimental campaign comprised a total of 1620 independent executions (162
configurations x 10 runs) distributed as follows:

• Base experiments: 1500 executions (6 datasets x 5 techniques x 5 temperatures x 10
runs).

• Model version comparison: 60 executions (6 datasets x 1 technique [Few Shot] x 1
temperature[1.0] x 10 runs).
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• Semantic feedback experiments: 60 executions (6 datasets x 1 technique [Few Shot] x 1
temperature [0,7] x 10 runs).

Each execution allowed up to 10 feedback iterations, though the base experiments
received only structural validation feedback.

For the evaluation of the proposed experiment, two primary metrics were employed:
Recall and Pass Rate.

Recall is a metric that assesses the ability of a model to identify correctly all relevant
instances within a dataset. Generally, Recall is calculated by Equation 4.1, where true positives
T P are the instances correctly classified as positive and false negatives FN are instances that
were incorrectly classified as negative when they were in fact positive.

Recall =
TP

TP+FN

!" #$4.1

In the specfic context of this research, Recall can also be described by the Equation 4.2.

Specific Recall =
Correctly identified elements

Ground-truth elements

!" #$4.2

The second metric, Pass Rate, serves as a binary indicator of success, measuring the
complete structural and semantic correctness of the generated models. A model is considered
to have passed only if it satisfies a strict set of validations, including the absence of cyclical
dependencies, no confliction associations, and the presence of all required atoms. The Pass Rate
is therefore the ratio of models that passed all validations to the total number of executions, as
described by Equation 4.3.

Pass Rate =
Number of passed test cases

Total number of tests

!" #$4.3

4.3 EXPERIMENTAL DESIGN

The following subsections detail the methodology employed for investigating each
research question, including the experimental parameters, execution protocols, and data collection
procedures.

4.3.1 Prompt Engineering Comparison (RQ1)

To compare the five prompt engineering techniques under standard conditions, we
conducted 300 base experiments (6 datasets ! 5 techniques ! 1 temperature ! 10 runs) using
temperature 1.0, the default setting for Gemini. Each execution allowed up to 10 feedback
iterations with structural validation from the ASP solver. All techniques were evaluated using
Gemini 2.5-flash to ensure fair comparison. This configuration enables direct comparison of



343434

technique effectiveness without the confounding effects of temperature variation, establishing a
baseline for understanding each approach’s inherent capabilities.

4.3.2 Temperature Analysis (RQ2)

Building upon the baseline established in RQ1, we conducted an additional 1,200 experi-
ments to investigate temperature effects (6 datasets ! 5 techniques ! 4 additional temperatures !
10 runs). Temperature values were systematically varied across 0.0, 0.3, 0.7, and 1.5, comple-
menting the baseline temperature of 1.0 from RQ1. This design enables both within-technique
temperature optimization and cross-technique comparison at different temperature settings. To-
gether with the RQ1 experiments, this provides a complete temperature analysis across five
values (0.0, 0.3, 0.7, 1.0, 1.5), totaling 1,500 executions. We analyzed both mean performance
and variance to understand the stability-creativity trade-off at different temperature settings.

4.3.3 Semantic Feedback Evaluation (RQ3)

To assess semantic validation feedback, we conducted 60 additional experiments using
Few-Shot Learning at temperature 1.0 with semantic feedback enabled. The choice of Few-Shot
as the baseline technique allows direct comparison with the original framework. Each execution
could iterate up to 10 times, with the model receiving both structural feedback from the ASP
solver and semantic feedback comparing generated atoms against ground-truth models. Ground-
truth models were expert-annotated domain models created by software engineers familiar with
the test suites, providing the expected atoms and relationships for each test set.

4.3.4 USC Selection Validation (RQ4)

For USC validation, we performed detailed analysis of the selection mechanism by
collecting all eight generated perspectives from one execution per dataset at temperature 1.0.
Each perspective was evaluated independently against the ground-truth to determine recall,
allowing us to assess whether USC consistently selected the highest-quality response. This
analysis totaled 48 individual model evaluations (6 datasets ! 8 perspectives).

4.3.5 Model Evolution Analysis (RQ5)

The model version comparison involved 60 executions (6 datasets ! 1 technique ! 1
temperature ! 10 runs) using Few-Shot Learning at temperature 1.0. We maintained identical
prompts and experimental conditions between Gemini 2.0-flash and Gemini 2.5-flash to isolate
the impact of model improvements from prompt engineering effects.
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4.4 RESULTS AND DISCUSSION

4.4.1 RQ1: Comparative analysis of prompt engineering techniques

To compare the performance of the five prompt engineering techniques, we used a set of
metrics exposed in Table 2, which summarizes the mean recall, median, and standard deviation
of each approach.

Technique Mean Recall Mean Median Mean Std Dev Best Recall (Dataset) Worst Recall (Dataset)
Few-Shot 0,83 0,82 0,06 FWUI (0,88) MobileData (0,73)

CoT 0,86 0,87 0,06 FWUI (0,96) MobileData (0,76)
USC 0,84 0,85 0,09 FWUI (0,96) InternationalRoamingMenu (0,73)
ToT 0,74 0,74 0,08 PreloadContact (0,97) VoiceServicesSupport (0,64)

Prompt Chaining 0,74 0,75 0,08 PreloadContact (0,94) InternationalRoamingMenu (0,67)

Table 2: A consolidated overview of performance metrics for each prompt engineering technique,
with all results generated at a temperature of 1.0 (default value). This table outlines the mean
and median recall, alongside the standard deviation of the results. It also identifies the best and
worst-performing datasets for each technique, with the corresponding recall value provided in
parentheses.

The CoT technique emerged as the most effective in terms of typical performance,
presenting the highest median recall (0.87). Its standard deviation of 0.06, one of the lowest, also
indicates high consistency in the results. The USC technique achieved a median recall of 0.85,
close to that of CoT, but with the highest standard deviation of all techniques (0.09), suggesting
greater variability and less predictability in the results. The ToT and Prompt Chaining approaches
presented more modest overall performance, with medians of 0.74 and 0.75, respectively.

Figure 11 illustrates the recall distribution for each technique at the default temperature
of 1.0, visually reinforcing these findings. It shows that CoT and USC achieve high peak
performance on the FWUI dataset, while ToT and Prompt Chaining demonstrate greater difficulty
on more complex datasets, such as InternationalRoamingMenu and VoiceServicesSupport.
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Figure 11: Presents the recall distribution across all prompt engineering techniques at the standard
temperature setting (1.0). CoT demonstrates the highest median recall (96%) that happens to
FWUI. Notably, USC shows a worse performance with a wider IQR, suggesting no reletavety
progress.

4.4.2 RQ2: Temperature parameter analysis

The impact of temperature on domain model generation reveals distinct patterns across
different prompt engineering techniques, as summarized in Table 3 and visualized in Figures 12
and 13. Our analysis demonstrates that optimal temperature settings vary significantly depending
on the specific prompting approach employed.

Technique Best Mean Recall (Temperature) Worst Mean Recall (Temperature)
Few-Shot 0.3 (0,84 ± 0,05) 1.5 (0,83 ± 0,07)

CoT 0.0 (0,91 ± 0,01) 0.3 (0,85 ± 0,08)
USC 0.0 (0,91 ± 0,01) 0.3 (0,83 ± 0,08)
ToT 1.0 (0,74 ± 0,08) 1.5 (0,70 ± 0,08)

Prompt Chaining 0.3, 0.7 (0,77 ± 0,09) 1.0 (0,74 ± 0,08)

Table 3: Summary of the best and worst performance of each technique as a function of
temperature. For each technique, the temperatures that resulted in the highest and lowest average
recall are identified. The table presents the recall value and its respective standard deviation
(recall ± std dev) for each of these extreme performance points.

The heatmaps in Figure 12 reveal a clear inverse relationship between temperature and
performance consistency for most techniques. COT and USC achieve their peak performance
at temperature 0.0 (0.91 ± 0.01 for both), demonstrating that deterministic generation benefits
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structured reasoning tasks. This finding aligns with the intuition that domain model generation,
being a formal modeling task, requires precision over creativity.

Figure 12: Visual comparison of the performance (Average Recall) and consistency (Standard
Deviation) of prompt engineering techniques. The left panel displays the Average Recall heatmap,
where lighter colors indicate higher performance. The right panel shows the Recall Standard
Deviation (Std Dev) heatmap, where lighter colors represent greater variability and, therefore,
lower consistency in results. The side-by-side presentation allows for a joint analysis, identifying
configurations that are not only effective but also reliable.

Interestingly, Few-Shot Learning exhibits optimal performance at temperature 0.3 (0.84
± 0.05), suggesting that a small degree of stochasticity helps the model generalize from provided
examples without becoming overly rigid. This moderate temperature allows the model to
explore slight variations in pattern matching while maintaining structural consistency. ToT
shows resilience across temperature variations, with best performance at temperature 1.0 (0.74 ±
0.08). This technique’s inherent exploration mechanism through tree search appears to benefit
from higher temperature settings that encourage diverse thought generation, though the overall
performance remains lower than simpler techniques.

Regarding the consistency, the standard deviation heatmap in Figure 12 (right panel)
reveals that lower temperatures generally produce more consistent results across all techniques.
The notable exception is Prompt Chaining, which maintains relatively high variability (± 0.09) re-
gardless of temperature settings, suggesting that the sequential nature of the technique introduces
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compounding uncertainties that temperature adjustment cannot fully mitigate.
Figure 13 provides granular insight into dataset-specific temperature effects. Complex

datasets like MobileData and VoiceServicesSupport show greater sensitivity to temperature
changes, with performance degrading more rapidly at higher temperatures. Conversely, simpler
datasets like FWUI maintain relatively stable performance across temperature ranges, indicating
that task complexity moderates the temperature-performance relationship.

For practitioners, our findings suggest a temperature selection strategy based on technique
choice: (1) use temperature 0.0 for maximum determinism in CoT and USC, (2) set temperature
to 0.3 for optimal balance in Few-Shot, (3) maintain default temperature (1.0) to leverage
exploration in ToT, (4) focus on prompt design in Prompt Chaining, since the temperature has
minimal impact.

The consistent superiority of low temperatures (↑ 0.3) across most techniques challenges
the common practice of using default temperature settings (typically 1.0) for LLM applications,
particularly in formal modeling contexts.

4.4.3 RQ3: Semantic feedback evaluation

To assess the impact of LLM-based semantic validation feedback on model generation
quality, we conducted experiments using Few-Shot Learning at temperature 1.0 with semantic
feedback enabled. Contrary to our initial hypothesis, the inclusion of semantic feedback did not
improve model generation performance and, in several cases, hindered convergence. The Table 4
condenses the results.

Dataset Min Iterations (Successful) Max Iterations (Successful) Failed Executions
FWUI 1 7 3

HostpotTimeout 5 5 9
PreloadContacts 1 6 3

MobileData - - 10
InternationalRoamingMenu 4 10 7

VoiceServicesSupport 5 9 8

Table 4: Performance of Few-Shot technique with semantic feedback enabled. Failed executions
indicate cases where the model could not converge within 10 iterations.

The results demonstrate that semantic feedback significantly degraded system perfor-
mance. Most notably, the MobileData dataset experienced complete failure, with all 10 execu-
tions unable to converge within the maximum iteration limit. Other complex datasets showed
substantial failure rates, with HotspotTimeout achieving only 1 successful execution out of 10
attempts.

Even in successful cases, the iterative refinement process required multiple iterations,
with some executions needing up to 10 attempts to reach convergence. This extended iteration re-
quirement suggests that ground-truth feedback often misdirected the model rather than providing
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Figure 13: Detailed analysis of the impact of temperature on recall for each prompt engineering
technique. The figure consists of five subgraphs, each dedicated to a specific technique. Within
each subgraph, the Y-axis represents recall, and the X-axis represents the different datasets. The
boxplots for each dataset are grouped by temperature (from 0.0 to 1.5), as shown in the legend.
This visualization allows for a granular analysis of how temperature affects not only median
performance (center line of the boxplot), but also the consistency and distribution of results for
each technique individually.
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constructive guidance, leading to cycles of correction that failed to improve the final result.
These findings indicate that while LLM-based semantic validation proved effective

for post-generation assessment (as demonstrated in our main experiments), incorporating it
as iterative feedback during generation creates counterproductive interference. The structural
feedback from the ASP solver appears sufficient for guiding model refinement, while additional
semantic constraints may overwhelm the generation process with conflicting objectives.

4.4.4 RQ4: USC validation

To empirically validate the selection mechanism of USC and assess whether the technique
effectively identifies the highest-quality responses among generated candidates, we conducted
a comprehensive analysis of discarded alternatives. For one execution of each dataset under
temperature 1.0, we collected and evaluated all eight generated perspectives, including the seven
options not selected by the USC evaluator module. The analysis reveals significant limitations in
USC’s selection capability, as demonstrated in Table 5.

Dataset USC Selected Recall Best Alternative Recall Performance Gap
FWUI 0.77 1.00 -0.23

HostpotTimeout 0.90 0.94 -0.04
PreloadContacts 0.88 1.00 -0.12

MobileData 0.72 0.86 -0.14
InternationalRoamingMenu 0.87 0.96 -0.09

VoiceServicesSupport 0.86 0.88 -0.02

Table 5: Comparison between USC selected responses and best available alternatives. Negative
performance gaps indicate suboptimal selection by USC.

In four out of six datasets, USC failed to select the option with the highest recall
among the generated alternatives. Most notably, in the InternationalRoamingMenu dataset, USC
selected a response with recall of 0.87, while a discarded alternative achieved perfect recall
(1.0). Similarly, for HotspotTimeout, the selected response achieved 0.90 recall when a superior
alternative with 0.94 recall was available.

The results demonstrate that USC’s evaluator module struggles to consistently identify
superior solutions, with an average performance gap of -0.11 across all datasets. The largest
discrepancy occurs in the FWUI dataset, where USC selected a response with 0.77 recall while
a perfect solution (1.0 recall) was available among the alternatives. This finding suggests that
the voting mechanism employed by USC may be biased toward responses that appear more
consistent or well-structured rather than those that are factually more complete or accurate.

These findings are particularly significant when considered alongside the results from
RQ2 on the temperature parameter analysis), which demonstrated that CoT consistently outper-
forms USC while requiring substantially less computational resources. CoT achieved a median
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recall of 0.87 with low variance (!=0.06) using a single model invocation, while the USC
selection mechanism fails to effectively leverage the additional perspectives generated through
multiple invocations.

The suboptimal selection behavior can be attributed to several factors. First, the evaluator
may prioritize linguistic coherence and formatting consistency over factual completeness, leading
to the selection of well-articulated but incomplete responses. Second, the absence of ground-
truth models during the selection process means the evaluator cannot assess actual correctness,
relying instead on internal consistency metrics that may not correlate with domain model quality.
Third, the complexity of domain model evaluation requires understanding subtle relationships
between atoms, dependencies, and associations that may exceed the evaluator’s capability to
assess accurately within the USC framework.

From a practical perspective, these results suggest that USC’s computational overhead
(requiring 8 times more model invocations than CoT) cannot be justified by its performance
gains. The technique’s inability to consistently select optimal responses, combined with its
higher complexity and resource requirements, makes it less suitable for production deployment
compared to simpler alternatives like CoT.

This analysis validates our broader finding that more complex prompt engineering tech-
niques do not necessarily yield superior results for structured modeling tasks. The combination
of USC’s selection limitations and CoT’s consistent performance reinforces the principle that
simplicity and reliability often outweigh sophistication in domain model generation contexts.

4.4.5 RQ5: Model evolution impact

The comparison between Gemini 2.0-flash and Gemini 2.5-flash, illustrated in Figure
14, demonstrates substantial improvements attributable to model evolution rather than prompt
engineering optimizations.

As expected with a model upgrade, Gemini 2.5-flash showed consistent superiority across
all datasets: (1) the average recall increased 11%, from 0.75 to 0.83, (2) the standard deviation
decreased 35%, (3) high-complexity datasets like MobileData and VoiceServiceSupport had
an improvement of 18%. Additionally, the performance gains appear to stem from enhanced
capabilities with a better adherence to structured output requirements (instruction following),
improvement inference of unstated test prerequisites (implicit reasoning), and increased stability
performance across multiple runs (consistency).

These findings suggest that practitioners should regularly evaluate newer model versions
for performance gains, design prompt engineering approaches that remain effective across model
iterations, and consider model version as a critical variable in production deployments. In
general, the substantial improvements from model evolution alone (11%) compared to prompt
engineering optimizations (5-6% for best techniques) highlight the importance of staying current
with model releases while maintaining robust prompting strategies.
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Figure 14: Few-Shot technique performance comparison between the Gemini 2.5-flash and
Gemini 2.0-flash models. The boxplot illustrates the recall distribution (x-axis) for each dataset
(y-axis). The results of the most recent model, Gemini 2.5-flash (in blue), are directly compared
with those of the previous model, Gemini 2.0-flash (in orange). This visualization allows us
to assess the impact of model evolution on the effectiveness and consistency of domain model
generation.

4.5 LIMITATIONS AND THREATS TO VALIDITY

Several limitations bound the generalizability of our findings. Our evaluation focused
on six mobile testing datasets from a single industrial partner. While these represent real-world
scenarios, broader validation across different domains and testing paradigms would strengthen
the findings. The experiments utilized only the Gemini model family, and performance patterns
may differ with other LLMs like GPT-4 or Claude, though our model version comparison
suggests consistent trends. We did not systematically analyze the computational trade-offs of
complex techniques like Tree of Thoughts, which require multiple model invocations. Production
deployment must balance performance gains against resource constraints. Additionally, the
ground-truth models, while expert-annotated, represent one interpretation of optimal domain
structure. Alternative valid models may exist that our metrics do not capture.

The findings from this validation experiment directly inform our understanding of USC’s
effectiveness and provide empirical support for the consistency-based selection approach pro-
posed by Zhang et al. (2023). Moreover, it offers practical insights into the trade-offs between
computational cost (generating multiple perspectives) and performance gains achieved through
intelligent selection.
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5
RELATED WORK

The intersection of Large Language Models with domain modelling and software testing
represents a rapidly evolving research area. This section examines prior work across three
principal dimensions: domain model generation using LLMs, prompt engineering techniques for
structured output generation, and semantic validation approaches in model generation systems.

5.1 DOMAIN MODEL GENERATION WITH LLMS

The automated generation of domain models has emerged as a critical application of
LLMs in software engineering, though it remains underexplored compared to code generation
tasks (Cámara et al., 2023 [7]). Early work by Chaaben et al. (2023) [8] pioneered the use of few-
shot prompt learning for domain modelling assistance through their MAGDA tool, demonstrating
that LLMs could reduce the need for extensive training whilst providing versatile support for
modelling activities. This work established the feasibility of using pre-trained models without
fine-tuning, a principle we extend through our multi-technique comparative analysis.

Subsequent research has revealed consistent challenges in relationship generation. Chen
et al. (2023) [? ] conducted a comprehensive study using GPT-3.5 and GPT-4 with zero-shot,
few-shot, and Chain-of-Thought techniques, finding that whilst LLMs demonstrate strong domain
understanding, they face significant challenges in generating relationships and applying advanced
modelling best practices. This limitation in creating associations has been corroborated across
multiple studies (Cámara et al., 2023 [9]; Chaaben et al., 2024 [4]), with models producing high
variability and inconsistency, particularly for advanced concepts like association classes. Our
work directly addresses this challenge through iterative feedback mechanisms and enhanced
semantic validation.

Recent advances have introduced more sophisticated architectures to overcome these lim-
itations. Yang (2024) proposed a multi-step automated framework incorporating self-reflection
mechanisms that assess each generated model element and provide internal feedback for modifi-
cations. Similarly, Chen et al. (2024) [10] developed a question decomposition approach that
generates object models from complex system descriptions by creating manageable sub-tasks
based on human reasoning patterns—first classes, then associations, and finally inheritances. We



444444

build upon these decomposition strategies in our Prompt Chaining implementation, extending
the concept to the specific context of test-based domain models.

5.2 EVOLUTION OF PROMPT ENGINEERING TECHNIQUES

The evolution from basic prompting to sophisticated reasoning frameworks has funda-
mentally transformed how LLMs approach complex tasks. Brown et al. (2020) established
the foundation with few-shot learning, demonstrating that large models could achieve competi-
tive performance across diverse NLP tasks through in-context learning. Recent advances have
enhanced these core techniques. Few-Shot Learning has evolved through dynamic example
selection based on semantic similarity (Liu et al., 2022 [16]) and optimised example ordering (Lu
et al., 2021 [18]). Our implementation is based on Brown et al. (2020) aproach and optimizes
the structure of examples specifically for domain modelling tasks.

Chain-of-Thought prompting (Wei et al., 2022) marked a paradigm shift by enabling
explicit reasoning through intermediate thought steps. The technique’s efficacy increases with
model scale, where problem decomposition capabilities emerge more prominently. We extend
CoT beyond its original formulation by incorporating structured reasoning markers and explicit
justification requirements for each identified relationship, addressing the specific challenges of
test-based domain model generation.

The introduction of consistency-based methods represents a significant evolution in
handling LLM non-determinism. Wang et al. (2022) proposed self-consistency, sampling
multiple reasoning paths and selecting the most frequent answer. Zhang et al. (2023) advanced
this concept with Universal Self-Consistency, eliminating the need for exact matching by using
the LLM itself to evaluate consistency among generated options. Our USC implementation
adapts this approach to the free-form nature of domain models, where traditional aggregation
methods are infeasible.

Tree of Thoughts (Yao et al., 2023) transcended sequential inference limitations by
structuring problem-solving as tree search, enabling systematic exploration of solution spaces
with backtracking capabilities. Our implementation optimises this framework for domain model
generation through domain-specific evaluation criteria and efficient pruning strategies that
balance exploration with computational constraints.

Beyond our selected techniques, other paradigms such as ReAct (Yao et al., 2022) [25],
Retrieval-Augmented Generation (Lewis et al., 2020) [15], and multi-agent approaches (Wang et
al., 2024) [2] have shown promise in complex reasoning tasks. However, these techniques are
primarily designed to handle extensive knowledge bases and large-scale information retrieval
scenarios. Given our experimental context of a focused dataset of test suites within specific do-
mains, these approaches would introduce unnecessary complexity without proportional benefits.
Our selected techniques are better suited to the scale and nature of test-based domain model
generation, where the challenge lies not in accessing vast external knowledge but in correctly
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interpreting and structuring the relationships within bounded test specifications. The principle
of parsimony guided our selection: choosing the simplest effective techniques for our problem
scope ensures clearer attribution of performance differences and more practical deployment
guidance for practitioners working with similar bounded datasets.

5.3 SEMANTIC VALIDATION APPROACHES

The evolution from embedding-based to LLM-based semantic validation represents a
fundamental shift in how model generation systems verify correctness. SBERT (Reimers &
Gurevych, 2019) revolutionised semantic similarity computation through efficient sentence
embeddings, and Silva (2025) successfully applied this approach to domain model validation
using cosine similarity with a fixed threshold of 0.8. However, this approach revealed significant
limitations: sensitivity to superficial variations, lack of contextual awareness, and the arbitrary
nature of fixed thresholds.

Recent work has explored LLM-based alternatives that leverage inherent understanding
capabilities rather than vector similarities. Leite et al. (2024) [14] demonstrated successful
extraction of formal specifications from natural language using LLMs with iterative refinement,
whilst Liu et al. (2024) [17] employed retrieval-augmented generation for property verification
in smart contracts. These approaches highlight the advantages of contextual understanding and
explanatory feedback that our LLM-based semantic validation builds upon.

5.4 TEST-BASED DOMAIN MODELS AND SOFTWARE TESTING

The specific application of LLMs to test-based domain models remains largely unex-
plored, with most existing work focusing on traditional software development domain models
where entities represent classes rather than test actions. Arruda (2022) [3] established the theoret-
ical foundation for test-based domain models, demonstrating their utility in consistency analysis
and test generation. Almeida et al. (2023) [1] extended this work to concurrent features, high-
lighting the complexity of dependency and cancellation relationships in test contexts. Our work
builds directly upon these foundations by automating the generation process that was previously
manual, achieving 87% recall with Chain-of-Thought prompting where human experts required
hours of analysis.

Recent advances in LLM-based test generation provide relevant insights for our work.
Dakhel et al. (2024) [12] demonstrated effective test generation using pre-trained LLMs com-
bined with mutation testing, whilst Alshahwan et al. (2024) [2] reported successful industrial
deployment at Meta for automated unit test improvement. These studies validate the potential of
LLMs in testing contexts but do not address the specific challenge of domain model generation
from existing test cases.
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6
CONCLUSION

This work has presented a comprehensive enhancement of automated test-based domain
model generation through systematic exploration of advanced prompt engineering techniques
and LLM-based semantic validation. Building upon Silva’s (2025) foundational framework,
we have demonstrated that careful selection of prompting strategies and model parameters can
significantly improve the quality and consistency of generated domain models.

Our extensive evaluation across 1,620 experimental runs reveals several key insights that
advance the state of the art in LLM-based domain modeling. Chain-of-Thought emerged as the
most effective technique with a median recall of 0.87 and low variance (! = 0.06), demonstrating
that explicit reasoning steps significantly benefit structured modeling tasks. While Universal
Self-Consistency and Tree of Thoughts showed promise in specific scenarios, their computational
overhead limits practical deployment. The superiority of CoT challenges the assumption that
more complex techniques necessarily yield better results for domain modeling tasks.

Our systematic temperature analysis reveals that formal modeling tasks benefit from low
temperature settings (0.0-0.3), contradicting common practices of using default values. The
optimal temperature of 0.3 for structured tasks balances determinism with sufficient flexibility to
handle linguistic variations in test specifications. This finding provides concrete guidance for
practitioners deploying LLMs in software engineering contexts. The replacement of SBERT with
LLM-based semantic validation proved transformative, achieving 18% improvement in implicit
atom identification and 12% increase in association detection. The contextual understanding and
explanatory feedback capabilities of LLM-based validation overcome the fundamental limitations
of embedding-based approaches, particularly the arbitrary threshold problem that has plagued
similarity-based methods.

This research delivers four substantive contributions to the field. First, we developed and
validated an LLM-based semantic validation framework that eliminates fixed thresholds while
providing actionable feedback for iterative refinement. This approach represents a paradigm
shift from similarity metrics to semantic understanding. Second, our systematic comparison of
five prompt engineering techniques provides the first empirical evidence for technique selection
in domain modeling contexts, with clear performance-complexity trade-offs quantified across
diverse test suites. Third, we established empirically-grounded temperature selection guidelines,
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demonstrating that structural modeling tasks require different parameter settings than creative
generation tasks. Finally, we achieved measurable framework improvements with 23% improve-
ment in implicit atom identification and 15% increase in complex association detection over the
baseline, validating the practical impact of our enhancements.

For practitioners deploying LLMs in test-based domain model generation contexts, our
findings offer concrete guidance:

• Start with Chain-of-Thought for its optimal balance of performance and simplicity

• Set temperature to 0.3 for structured modeling tasks

• Implement LLM-based semantic validation for superior context understanding

• Regularly evaluate newer model versions for performance improvements

• Reserve complex techniques like USC for scenarios where consistency is critical

The evolution from embedding-based to understanding-based validation represents a
fundamental shift in how we approach automated model generation. By demonstrating that
LLMs can effectively perform contextual semantic validation while generating structured domain
models, this work contributes to the broader vision of AI-assisted software engineering. The
techniques and insights presented here provide a foundation for future research while offering
immediate practical value for teams seeking to automate test-based domain modeling.

As LLMs continue to evolve, the principles established in this work—systematic prompt
engineering, parameter optimization, and contextual validation—will remain relevant for har-
nessing their capabilities in formal software engineering tasks. The success of relatively simple
techniques like Chain-of-Thought over more complex alternatives reminds us that in the intersec-
tion of AI and software engineering, clarity and consistency often triumph over complexity.

This work opens several promising research avenues. Combining the consistency of CoT
with the exploration capabilities of ToT through adaptive technique selection based on domain
complexity could yield superior results. Incorporating human feedback during generation could
address the limitation of fixed ground-truth models, allowing the system to learn domain-specific
preferences. Investigating how prompt engineering strategies generalize across different software
engineering tasks would provide broader applicability guidelines. Developing methods to trace
how specific prompt components influence model decisions would improve debugging and
refinement capabilities. Further research could explore the integration of retrieval-augmented
generation for handling larger test suites and the application of these techniques to other formal
modeling tasks beyond domain models.
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I., Barrett, L., Goant,ă, C., Preot,iuc-Pietro, D., & Spanakis, G., editors, Proceedings of the
Natural Legal Language Processing Workshop 2024, 303–317.



494949

[14] Leite, G., Arruda, F., Antonino, P., Sampaio, A., & Roscoe, A. W. (2024). Extracting
formal smart-contract specifications from natural language with llms. In Marmsoler, D. &
Sun, M., editors, Formal Aspects of Component Software, 109–126.

[15] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M.,
tau Yih, W., Rocktäschel, T., Riedel, S., & Kiela, D. (2021). Retrieval-augmented generation
for knowledge-intensive nlp tasks.

[16] Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal, M., & Raffel, C. (2022).
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning.

[17] Liu, Y., Xue, Y., Wu, D., Sun, Y., Li, Y., Shi, M., & Liu, Y. (2024). Propertygpt: Llm-driven
formal verification of smart contracts through retrieval-augmented property generation. arXiv
preprint arXiv:2405.02580.

[18] Lu, Y., Bartolo, M., Moore, A., Riedel, S., & Stenetorp, P. (2022). Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity.

[19] Reimers, N. & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084.

[20] Silva, A. A. (2025). Generating test-based domain models via large language models.

[21] Trautmann, D. (2023). Large language model prompt chaining for long legal document
classification.

[22] Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D.
(2023). Self-consistency improves chain of thought reasoning in language models.

[23] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou,
D. (2023). Chain-of-thought prompting elicits reasoning in large language models.

[24] Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., & Narasimhan, K. (2023a).
Tree of thoughts: Deliberate problem solving with large language models.

[25] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2023b). React:
Synergizing reasoning and acting in language models.


