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Resumo
As desordens neuromusculares que afetam os membros superiores exigem métodos cada vez
mais precisos para a análise e o reconhecimento de movimentos. Nesse cenário, os sinais de
eletromiografia de alta densidade (HD-EMG) associados a técnicas de aprendizado de máquina
oferecem novas possibilidades para a identificação de padrões musculares. Este trabalho propõe
a aplicação do método ASTERI na conversão de sinais HD-EMG em imagens bidimensionais,
viabilizando o uso de arquiteturas profundas, como redes neurais convolucionais (CNNs), para
extração de características relevantes na classificação de gestos manuais. Foram utilizados dados
públicos da base PhysioNet, obtidos de 20 voluntários saudáveis durante a execução de 34
gestos distintos. Após o pré-processamento e a conversão dos sinais em imagens, diferentes
classificadores foram avaliados. O modelo SVM com kernel polinomial de grau 1 apresentou o
melhor desempenho, alcançando acurácia de 72,14% em validação cruzada e 72,47% no conjunto
de teste, com sensibilidade de 0,73 e área sob a curva ROC (AUC) de 0,87. Esses resultados
demonstram a eficácia do método ASTERI aliado ao aprendizado de máquina na análise de
sinais mioelétricos, ressaltando seu potencial para aplicações futuras em tecnologias assistivas,
interfaces cérebro-máquina (BMI) e sistemas de apoio ao diagnóstico neuromuscular.

Palavras-chave: HD-EMG, Eletromiografia de alta densidade, Aprendizado de máquina, Classifi-
cação de gestos, Método ASTERI.
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Abstract
Neuromuscular disorders affecting the upper limbs require increasingly accurate methods for
movement analysis and recognition. In this scenario, high-density electromyography (HD-EMG)
signals combined with machine learning techniques offer new possibilities for identifying muscle
patterns. This work proposes the application of the ASTERI method to convert HD-EMG signals
into two-dimensional images, enabling the use of deep architectures, such as convolutional
neural networks (CNNs), to extract relevant features for classifying hand gestures. Public data
from the PhysioNet database, obtained from 20 healthy volunteers performing 34 different
gestures, were used. After preprocessing and conversion of the signals into images, different
classifiers were evaluated. The SVM model with a degree-1 polynomial kernel showed the
best performance, achieving an accuracy of 72.14% in cross-validation and 72.47% in the test
set, with a sensitivity of 0.73 and an area under the ROC curve (AUC) of 0.87. These results
demonstrate the effectiveness of the ASTERI method combined with machine learning in the
analysis of myoelectric signals, highlighting its potential for future applications in assistive
technologies, brain-machine interfaces (BMI), and neuromuscular diagnostic support systems.

Keywords: HD-EMG, High-density electromyography, Machine learning, Gesture classification,
ASTERI method.
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Capítulo 1

Introdução

Este capítulo explora os fundamentos que justificam o desenvolvimento deste estudo,
destacando a relevância das tecnologias modernas de processamento de sinais biomédicos.
Enfatiza-se o uso de sinais de eletromiografia de alta densidade (HD-EMG) combinados a
técnicas de aprendizado de máquina, com foco na representação e classificação de gestos
manuais. Além disso, são apresentados o objetivo geral e específicos do trabalho, evidenciando
sua importância científica e clínica.

1.1 Motivação e justificativa

A reabilitação desempenha um papel crucial na recuperação de pacientes com disfunções
motoras, abrangendo não apenas a formulação de um novo projeto de vida, mas também a
retomada de atividades cotidianas e a conscientização sobre as limitações impostas pela condição.
Esses fatores contribuem significativamente para a reconquista da autoestima e a melhoria da
qualidade de vida, aspectos fundamentais para a reintegração social e o bem-estar emocional dos
pacientes [2].

De acordo com dados da Organização Mundial da Saúde (OMS), aproximadamente 15
em cada 100 indivíduos apresentam alguma forma de disfunção física ou necessidade especial, e
de 2% a 4% enfrentam complicações graves que exigem cuidados extensivos. As projeções da
OMS para 2050 indicam que essas condições poderão impactar até 38% da população mundial,
o que reforça a importância de estratégias inovadoras e eficazes na reabilitação [3]. Esse cenário
destaca a urgência em desenvolver abordagens avançadas e personalizadas, capazes de atender à
crescente demanda por soluções tecnológicas.

Nesse contexto, a eletromiografia de alta densidade (HD-EMG) surge como uma fer-
ramenta essencial na avaliação motora, permitindo análises detalhadas de sinais musculares
e a identificação de padrões associados a diferentes gestos. Embora este estudo tenha como
foco a análise metodológica desses sinais em bases públicas de dados, é importante ressaltar
que tais metodologias podem futuramente apoiar aplicações clínicas, como a personalização de
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terapias e o desenvolvimento de próteses mais eficazes e responsivas [4, 5]. Estudos recentes,
por exemplo, demonstram que a HD-EMG tem sido empregada com sucesso para avaliar a
coordenação muscular em pacientes pós-AVC, fornecendo dados objetivos que auxiliam na
personalização da reabilitação [6].

Apesar dos avanços, ainda existem desafios significativos na aplicação prática de tecnolo-
gias baseadas em EMG, especialmente em próteses mioelétricas. Barreiras como custos elevados,
limitações de robustez e amplitude de movimentos, além de dificuldades na operação intuitiva,
ainda restringem a adoção dessas soluções em larga escala [7, 8, 9]. Nesse sentido, a avaliação
de métodos computacionais robustos para análise de sinais de EMG, como os utilizados neste
trabalho, pode contribuir para superar algumas dessas barreiras em estudos futuros.

A motivação para este estudo é explorar e validar uma metodologia inovadora que integre
sinais de HD-EMG e algoritmos de aprendizado de máquina para o reconhecimento de gestos.
A escolha de técnicas como a conversão de sinais em imagens por meio do método ASTERI
e a aplicação de classificadores de aprendizado profundo reflete a busca por soluções capazes
de ampliar a precisão da análise de movimentos. Embora o escopo atual seja computacional, os
resultados obtidos podem fornecer subsídios valiosos para o avanço de aplicações em reabilitação,
próteses e dispositivos médicos[10, 11, 12, 13].

A combinação de HD-EMG e aprendizado de máquina oferece a perspectiva de superar
limitações dos métodos tradicionais, proporcionando insights mais precisos sobre a ativação
muscular e suas implicações funcionais. Isso abre caminho para tecnologias mais acessíveis e
eficazes, capazes de impactar positivamente a qualidade de vida dos pacientes [14, 15, 16]. Além
disso, reforça a importância de se construir protocolos de análise que, ainda que desenvolvidos
em ambiente computacional, mantenham relevância para a prática clínica.

Portanto, embora este trabalho se concentre na análise metodológica e no reconhecimento
de gestos a partir de sinais de HD-EMG, sua justificativa está diretamente ligada ao potencial
impacto em aplicações futuras na reabilitação motora.

Embora este estudo não tenha realizado experimentos diretamente em contextos de
reabilitação, é importante destacar que os resultados obtidos com o método ASTERI aplicado
aos sinais de HD-EMG possuem potencial translacional para essa área. Em especial, o reconhe-
cimento automático de gestos pode futuramente contribuir para o desenvolvimento de próteses
de controle mioelétrico mais responsivas e para o aprimoramento de interfaces cérebro-máquina
aplicadas em pacientes com limitações motoras mas também promovam autonomia e reintegra-
ção social para milhões de pessoas afetadas por estas disfunções [17, 9]. Assim, a pesquisa aqui
apresentada deve ser entendida como uma contribuição metodológica que pode servir de base
para aplicações clínicas posteriores.
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1.2 Objetivos

Esse estudo visa avaliar a aplicação do método ASTERI na conversão de sinais de HD-
EMG em imagens para classificação de gestos manuais por meio de algoritmos de aprendizado
de máquina.

Para alcançar esse objetivo, faz-se necessário elencar alguns objetivos específicos, são
eles:

1. Realizar a conversão de sinais de HD-EMG em imagens por meio do método ASTERI;

2. Extrair atributos dessas imagens utilizando a arquitetura de rede neural convolucional
VGG16;

3. Aplicar e comparar o desempenho de classificadores de aprendizado de máquina (SVM,
Random Forest, Naive Bayes e Bayes Network) na tarefa de classificação de gestos
manuais;

4. Avaliar as métricas de acurácia, índice kappa, sensibilidade, especificidade e área sob a
curva ROC para os modelos testados;

5. Identificar o(s) classificador(es) mais adequados para o reconhecimento de gestos a partir
dos sinais HD-EMG processados pelo método ASTERI.

1.3 Organização do trabalho

Este trabalho está estruturado da seguinte forma: no capítulo 2 encontra-se a Funda-
mentação Teórica que apresenta os conceitos fundamentais que sustentam os principais temas
abordados na pesquisa, incluindo Eletromiografia de Alta Densidade (HD-EMG), princípios de
aprendizado de máquina, redes neurais convolucionais para extração de atributos, classificadores
e o método de geração de imagens ASTERI. A seguir, no capítulo 3, vem a Metodologia na
qual é detalhado o escopo metodológico da pesquisa, destacando as bases de dados utilizadas, o
experimento proposto e as métricas empregadas para avaliar o desempenho dos classificadores.
No capítulo 4, encontramos os Resultados, onde são apresentados e discutidos os achados obtidos
nos experimentos realizados, com foco na eficácia das abordagens propostas. Por fim, no capítulo
5, temos as Conclusões das implicações do desempenho obtido com este estudo.
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Capítulo 2

Fundamentação teórica

2.1 Eletromiografia de Alta densidade

A Eletromiografia de Alta Densidade (HD-EMG) é uma técnica avançada que permite o
registro detalhado da atividade elétrica muscular por meio de matrizes de múltiplos eletrodos
posicionados na superfície da pele, um exemplo de aplicação desses eletrodos pode ser visto
na Figura 1. Diferentemente da eletromiografia tradicional, que utiliza um número limitado de
eletrodos, a HD-EMG emprega uma alta densidade de sensores, proporcionando uma resolução
espacial superior na detecção dos sinais elétricos gerados durante a contração muscular. Essa
abordagem possibilita uma análise mais precisa da função neuromuscular, sendo especialmente
útil em pesquisas que investigam a coordenação muscular e o controle motor [18].

Figura 1 – Exemplo de posicionamento dos eletrodos de um aparelho de HD EMG de 192
eletrodos tida por Pan et al. (2015)[1].

A coleta dos sinais em HD-EMG envolve a preparação adequada da pele, garantindo
baixa impedância para otimizar a qualidade do sinal. Os eletrodos são dispostos em matrizes
que cobrem a área muscular de interesse, permitindo a captura simultânea de dados de múltiplas
regiões do músculo. Durante a aquisição, os sinais elétricos são amplificados e digitalizados
para posterior análise. É fundamental considerar fatores como a distância entre os eletrodos e a
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padronização dos procedimentos de coleta para assegurar a reprodutibilidade e a confiabilidade
dos dados obtidos [19].

As aplicações da HD-EMG são vastas, abrangendo desde o estudo de desordens neuro-
musculares até o desenvolvimento de interfaces homem-máquina. Na área clínica, essa técnica
tem sido utilizada para avaliar a fadiga muscular, diagnosticar doenças neuromusculares e mo-
nitorar a reabilitação de pacientes. Além disso, a HD-EMG desempenha um papel crucial no
aprimoramento do controle de próteses mioelétricas, permitindo que indivíduos com amputações
controlem dispositivos protéticos de forma mais intuitiva e eficiente, graças à detecção precisa
dos sinais musculares residuais[20].

2.2 Princípios de aprendizado de máquina

O aprendizado de máquina (Machine learning - ML) é um subcampo da inteligência
artificial que se concentra no desenvolvimento de algoritmos e modelos que permitem aos
computadores aprender a partir de dados. Em vez de seguir instruções específicas para executar
uma tarefa, os sistemas de aprendizado de máquina são capazes de reconhecer padrões nos dados
e tomar decisões ou fazer previsões com base nesses padrões [21].

Existem três categorias principais de algoritmos de aprendizado de máquina: aprendizado
supervisionado, aprendizado não supervisionado e aprendizado por reforço. No aprendizado
supervisionado, o algoritmo é treinado em um conjunto de dados que inclui exemplos de entrada
e saída esperada. No aprendizado não supervisionado, o algoritmo é treinado em dados não
rotulados e é deixado para descobrir padrões por conta própria. O aprendizado por reforço
envolve o algoritmo aprendendo através da experiência, ajustando suas ações com base nos
resultados obtidos [22]

O aprendizado de máquina tem sido amplamente aplicado em diversos setores devido à
sua capacidade de processar grandes volumes de dados e descobrir padrões complexos. Como
exemploes de sua utilização temos:

1. Na indústria financeira: são usados para detectar fraudes, analisar o risco de crédito e
realizar negociações automatizadas [23];

2. No setor de marketing: é utilizado para segmentação de clientes, recomendação de produtos
e análise de sentimentos em redes sociais [24];

3. No campo da manufatura: técnicas de aprendizado de máquina são empregadas para prever
falhas de máquinas, otimizar processos de produção e melhorar a manutenção preditiva
[25];

4. No campo da biologia e bioinformática: o aprendizado de máquina tem sido essencial para
a análise de sequências de DNA, predição de estruturas de proteínas e compreensão de
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redes de interação molecular [26];

5. Na área de transportes: os algoritmos de ML são fundamentais para o desenvolvimento de
veículos autônomos, otimização de rotas e previsão de tráfego [21].

No entanto, uma das áreas mais promissoras para a aplicação do aprendizado de máquina
é a saúde. Algoritmos de aprendizado de máquina estão transformando a forma como a medicina
é praticada e melhorando a qualidade do atendimento aos pacientes. Algumas das principais
aplicações incluem:

1. Diagnóstico de Doenças: Algoritmos de aprendizado de máquina podem analisar grandes
volumes de dados médicos para ajudar a diagnosticar doenças com maior precisão e
rapidez. Por exemplo, o diagnóstico de doenças cardíacas e câncer pode ser aprimorado
através do uso de ML [22];

2. Previsão de Doenças: ML pode ser usado para prever a ocorrência de doenças, permitindo
intervenções preventivas mais eficazes. Por exemplo, a previsão de diabetes e doenças
hepáticas pode ser feita com base em dados históricos e comportamentais dos pacientes
[24];

3. Personalização do Tratamento: O aprendizado de máquina permite a personalização dos
tratamentos médicos, ajustando as terapias com base nas características individuais dos
pacientes. Isso pode levar a melhores resultados e uma recuperação mais rápida [23];

4. Descoberta de Novos Medicamentos: ML pode acelerar o processo de descoberta de
novos medicamentos, analisando grandes conjuntos de dados químicos e biológicos para
identificar novos compostos promissores [26];

5. Análise de Imagens Médicas: Algoritmos de ML podem analisar imagens médicas, como
radiografias e ressonâncias magnéticas, para detectar anomalias e ajudar no diagnóstico
precoce de doenças [22].

O aprendizado de máquina tem revolucionado diversas áreas do conhecimento, e suas
aplicações na saúde são particularmente notáveis. Desde o diagnóstico precoce de doenças até
a personalização de tratamentos, os algoritmos de ML estão transformando a prática médica
e oferecendo novas oportunidades para melhorar a qualidade de vida dos pacientes. Com o
contínuo avanço da tecnologia e o aumento da disponibilidade de dados, o aprendizado de
máquina promete trazer ainda mais inovações para a medicina e muitas outras áreas.

2.2.1 Redes Neurais Convolucionais para extração de atributos

As redes neurais convolucionais (CNNs) são um tipo de modelo de aprendizado profundo
especializado em processar dados que possuem uma estrutura em grade, como imagens. Elas são
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compostas por camadas de convolução, pooling e totalmente conectadas, sendo muito utilizadas
em tarefas de reconhecimento de padrões visuais [27].

As redes neurais artificiais são modelos computacionais inspirados no funcionamento do
cérebro humano, compostas por camadas de neurônios artificiais que processam informações
para realizar tarefas como classificação, regressão e reconhecimento de padrões [28]. Elas
são amplamente utilizadas em diversas áreas, como visão computacional, processamento de
linguagem natural e sistemas de recomendação [29].

Uma rede neural artificial é composta por três tipos principais de camadas: a camada de
entrada, a camada oculta e a camada de saída. A camada de entrada recebe os dados brutos, a
camada oculta processa as informações através de uma série de neurônios interconectados, e a
camada de saída fornece o resultado final. Cada neurônio na camada oculta aplica uma função
de ativação aos dados recebidos e gera uma saída que é passada para os neurônios da próxima
camada[28].

As redes neurais convolucionais (CNNs) são um tipo especial de rede neural artifi-
cial, desenvolvidas para lidar com dados estruturados como imagens. Elas têm se mostrado
extremamente eficazes em tarefas de visão computacional devido à sua capacidade de capturar
hierarquias espaciais complexas em imagens. As CNNs são compostas por várias camadas,
incluindo camadas convolucionais, camadas de pooling e camadas totalmente conectadas. As
camadas convolucionais aplicam filtros convolucionais para extrair características de baixo nível,
como bordas e texturas, enquanto as camadas de pooling reduzem a dimensionalidade dos dados,
mantendo as informações mais importantes. As camadas totalmente conectadas, por fim, utilizam
essas características extraídas para realizar a classificação ou regressão [29].

Uma das CNNs mais conhecidas e utilizadas, temos a VGG16. Ela foi proposta pelos
pesquisadores do Visual Geometry Group da Universidade de Oxford. A arquitetura VGG16
se destaca pela sua simplicidade e profundidade, utilizando várias camadas convolucionais
empilhadas com filtros de tamanho 3x3, seguidas por camadas de pooling e camadas totalmente
conectadas [30].

A arquitetura da VGG16, ilustrada na Figura 2, funciona da seguinte forma:

• Camadas Convolucionais: A VGG16 possui 13 camadas convolucionais que aplicam filtros
3x3 para extrair características de diferentes níveis de abstração;

• Camadas de Pooling: Após cada bloco de camadas convolucionais, uma camada de max-
pooling 2x2 é aplicada para reduzir a dimensionalidade dos mapas de características;

• Camadas Totalmente Conectadas: No final, a rede possui três camadas totalmente conecta-
das, onde a última camada possui uma função softmax para a classificação [30].



8

Figura 2 – Representação esquemática da arquitetura VGG16, contendo 13 camadas convolucio-
nais com filtros 3×3, camadas de pooling 2×2 e três camadas totalmente conectadas.
Imagem gerada por inteligência artificial (ChatGPT), a partir da descrição da autora.

A profundidade da VGG16 permite que a rede capture detalhes finos das imagens,
tornando-a ideal para tarefas como reconhecimento de objetos, classificação de imagens e
segmentação semântica.

As CNNs, incluindo a VGG16, são amplamente utilizadas para a extração de atributos
em várias aplicações de visão computacional. Na área da saúde, essas redes são empregadas
para analisar imagens médicas, como radiografias, tomografias e ressonâncias magnéticas, para
detectar anomalias e ajudar no diagnóstico de doenças [22]. As características extraídas por essas
redes podem ser usadas para treinar modelos de classificação que identificam condições médicas
específicas com alta precisão [24].

Além disso, a VGG16 tem sido aplicada na análise de dados histopatológicos para a
detecção de câncer, onde a rede pode identificar padrões sutis nas imagens de tecidos que indicam
a presença de células cancerígenas [26].

2.2.2 Classificadores

Os modelos de classificação são fundamentais no aprendizado de máquina, permitindo
a categorização de dados em diferentes classes com base em suas características. A seguir,
apresentamos uma visão detalhada de três modelos amplamente utilizados: Random Forest,

Support Vector Machine (SVM) e Redes Bayesianas.

O Random Forest é um método baseado em florestas de decisão, que utiliza uma combina-
ção de múltiplas árvores de decisão para melhorar os resultados e reduzir erros. Essa abordagem
busca mitigar o problema de overfitting, que ocorre quando o modelo aprende padrões específicos
do conjunto de treino, resultando em baixo desempenho ao lidar com novos dados [31]. Cada
árvore de decisão é construída com uma amostra selecionada do conjunto de dados e a decisão
final é tomada com base na maioria das árvores específicas, o que contribui para maior robustez
e generalização. Além disso, o Random Forest é amplamente utilizado em áreas como análise
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biomédica e previsão de acidentes de trânsito, pois consegue selecionar as características mais
relevantes de bases de dados complexos [31].

O Support Vector Machine (SVM) é um algoritmo que busca encontrar o hiperplano ótimo,
uma fronteira de decisão que separa as classes de dados com a maior margem possível entre elas,
ou seja, a maior distância entre os pontos mais próximos de classes opostas. Essa maximização
da margem reduz a probabilidade de erro de classificação em novos exemplos [31]. Para lidar
com dados não linearmente separáveis, o SVM utiliza funções de kernel, que transformam os
dados para um espaço dimensional mais elevado, tornando-os linearmente separáveis. Entre
os kernels mais utilizados estão as funções de base linear, polinomial e radial (RBF), sendo
esta última eficaz em identificar padrões complexos. O SVM tem aplicações diversas, como a
classificação de imagens médicas e a identificação de espécies biológicas, dada sua capacidade
de lidar com conjuntos de dados complexos e de alta dimensionalidade [32].

As Redes Bayesianas são modelos probabilísticos que representam a relação entre va-
riáveis de forma hierárquica, organizando as informações em uma estrutura chamada gráfico
direcionado sem ciclos. Essa representação descreve dependências condicionais entre variações,
facilitando a modelagem de incertezas e a realização de inferências, mesmo em bases de dados
incompletas [31]. Este modelo é frequentemente utilizado em sistemas de suporte à decisão clí-
nica, pois permite a incorporação de conhecimento prévio e facilita a interpretação de resultados.
Estudos recentes demonstraram sua eficiência em contextos como previsão de complicações
médicas e segurança viária, devido à sua habilidade em lidar com dados escassos ou incompletos
[33].

A escolha entre esses modelos deve considerar fatores como a complexidade dos dados, a
necessidade de interpretabilidade e o desempenho computacional desejado. Cada modelo oferece
vantagens específicas para diferentes cenários de classificação, desde diagnósticos clínicos até
análises preditivas de sinais fisiológicos.

2.3 Método de geração de imagens ASTERI

O método ASTERI foi desenvolvido para representar janelas de sinais de eletroencefa-
lografia (EEG) na forma de imagens, permitindo a aplicação de redes neurais convolucionais
(CNNs) em sistemas inteligentes baseados em EEG. Essa abordagem utiliza pseudo-sinogramas,
que são janelas de sinais pré-processados onde o algoritmo de reconstrução por retroprojeção é
aplicado [34]. A retroprojeção, originalmente empregada na reconstrução de imagens de tomo-
grafia computadorizada, gera representações gráficas estilizadas com padrões similares a estrelas.
O principal objetivo dessa metodologia é facilitar o uso de arquiteturas profundas na análise de
sinais fisiológicos. O ASTERI mostrou-se eficaz ao traduzir os sinais temporais em represen-
tações visuais detalhadas, otimizando a análise de redes neurais pré-treinadas como VGG16 e
LeNet, tem sido testado anteriormente em sinais de EEG para classificação de imagética motora
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[34]. Um breve exemplo de como o método funciona pode ser visto na Figura 3

Figura 3 – Exemplo esquemático do funcionamento do método ASTERI, criado pela autora,
ilustrando a conversão de sinais de HD-EMG em imagens bidimensionais por meio da
técnica de retroprojeção, possibilitando a extração de características com arquiteturas
profundas.

2.4 WEKA

O WEKA (Waikato Environment for Knowledge Analysis) é uma plataforma de software
de código aberto, amplamente reconhecida e utilizada em pesquisa acadêmica para aprendizado
de máquina e mineração de dados [35]. Essa estrutura unificada permite que os usuários executem
e comparem de maneira eficiente uma vasta gama de algoritmos de classificação, regressão e
agrupamento, solidificando sua posição como um recurso fundamental na análise de dados.

A principal utilidade do WEKA reside em seu extenso repositório de algoritmos e
funcionalidades de suporte. A plataforma conta com implementações robustas de algoritmos
supervisionados e não supervisionados, como as Máquinas de Vetores de Suporte (SVM), Árvores
de Decisão e k-means, permitindo a exploração de diversas abordagens para um mesmo problema
[36]. Além disso, o WEKA simplifica tarefas complexas como a seleção de atributos, que é
crucial para otimizar o desempenho de modelos em bases de dados de alta dimensionalidade. Sua
capacidade de gerar relatórios de desempenho detalhados e matrizes de confusão o torna uma
escolha preferencial para a avaliação e a validação de experimentos, proporcionando resultados
estatisticamente confiáveis para a comunidade científica.
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Figura 4 – Captura de tela da interface do software Weka, realizada pela autora, ilustrando o
ambiente utilizado para experimentação e avaliação dos classificadores de aprendizado
de máquina

O foco deste trabalho reside na avaliação metodológica de uma abordagem inovadora
para a classificação de gestos, utilizando a representação de sinais de eletromiografia de alta
densidade (HD-EMG) através do método ASTERI. Esta integração, que permite a aplicação
de poderosas arquiteturas de aprendizado profundo, como a VGG16, demonstra a robustez da
fundamentação teórica e metodológica apresentada. As tecnologias exploradas neste estudo, ao
converterem dados complexos de séries temporais em um formato visualmente interpretável para
redes neurais, abrem um vasto leque de potencialidades para o futuro. Sua aplicação vai desde o
avanço na interface humano-máquina, passando pelo desenvolvimento de próteses mioelétricas
mais intuitivas, até sistemas de controle de dispositivos assistivos, solidificando a relevância
desta pesquisa para o campo da Engenharia Biomédica.
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Capítulo 3

Metodologia

3.1 Proposta

A reabilitação de distúrbios neuromusculares em membros superiores é um desafio
clínico importante, que afeta a qualidade de vida e a independência funcional dos pacientes. A
eletroneuromiografia de alta densidade e inteligência artificial têm sido cada vez mais utilizadas
como ferramentas complementares para a avaliação e o tratamento desses pacientes. No entanto,
ainda existem lacunas no conhecimento sobre a eficácia, segurança e a aplicabilidade dessas
técnicas na prática clínica.

Este trabalho faz parte de um estudo mais amplo denominado "Projeto de Pesquisa
Monitorando e entregando uma neurorreabilitação personalizada da mão através de atividades
virtuais controladas pelo comando neural"que visa gerar uma base de dados própria, nacional,
para análise de gestos de membros superiores utilizando HD-EMG. Já o presente estudo tem
como propósito analisar o desempenho de algoritmos de aprendizado de máquina supervisionado
por meio de experimentos voltados à classificação de gestos manuais obtidos de sinais de
eletromiografia de alta densidade de um conjunto de dados, de acesso aberto, desenvolvido por
de Jiang et al. (2023)[37].

3.1.1 Base de dados

O banco de dados desenvolvido por Jiang et al. (2023)[37] constitui uma fonte abrangente
de sinais de eletromiografia de superfície de alta densidade (HD-EMG), disponibilizado na
plataforma Physionet para apoiar pesquisas avançadas em reconhecimento de padrões de
gestos e reabilitação neuromuscular. O conjunto foi construído a partir de experimentos com
20 participantes saudáveis, que realizaram duas sessões em dias distintos, seguindo o mesmo
protocolo experimental para todos os envolvidos. Essa padronização assegura a validade dos
dados e sua aplicabilidade em diferentes contextos e perfis musculares.

O banco contém registros de 256 canais de HD-EMG adquiridos durante a execução de
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34 gestos predefinidos, mostrados na Figura 5. Esses gestos incluem desde atividades funcionais
comuns até movimentos específicos utilizados na avaliação neuromuscular, oferecendo uma base
diversificada de padrões de ativação muscular.

Figura 5 – Conjunto de 34 gestos pré-definidos analisados no estudo, representando uma ampla
variedade de movimentos utilizados na avaliação neuromuscular.

Os sinais foram coletados a uma taxa de amostragem de 2048 Hz, enquanto os registros
de força de verdade fundamental foram obtidos a 100 Hz. Para garantir precisão e detalhamento,
utilizou-se uma matriz de eletrodos de alta densidade posicionada em regiões específicas do
membro superior, cobrindo áreas musculares de interesse com alto número de canais. Esse
arranjo permite uma resolução espacial ampliada, fundamental para identificar variações de
ativação em gestos complexos (Figura 6).
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Figura 6 – Posicionamento dos eletrodos durante a coleta de dados.

As gravações foram realizadas em ambiente controlado, com orientações padronizadas
para garantir uniformidade entre os participantes. Em cada sessão, os gestos eram executados
duas vezes, incluindo uma fase dinâmica de 1 segundo (transição do estado de repouso para o
gesto) e uma fase de manutenção de 4 segundos (gesto sustentado). Esse protocolo assegurou
dados consistentes, permitindo análises de variabilidade intra e inter-sujeitos.

Cada gesto foi documentado com anotações detalhadas sobre o tipo de movimento,
posição dos eletrodos, sequência de aquisição e características individuais dos participantes,
como idade, gênero e perfil de atividade física. Essa riqueza de informações torna o banco de
dados especialmente útil para treinar e avaliar algoritmos de aprendizado de máquina, bem como
para aplicações em diferentes linhas de pesquisa.

O acesso aberto do banco na plataforma Physionet promove a reprodutibilidade científica,
permitindo comparações entre estudos e facilitando a exploração de novas abordagens. Além
disso, o conjunto é acompanhado de ferramentas de software para gravação e manipulação dos
sinais, padronizando o pré-processamento e reforçando sua utilidade para a comunidade de
pesquisa.

3.1.2 Experimentos propostos

Nesta seção, apresentamos a análise de desempenho dos algoritmos de aprendizado de
máquina utilizados para a classificação de gestos de mão com base em sinais de eletromiografia
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de alta densidade (HD-EMG) do banco de dados de Jiang et al. (2023)[37]. Nesse contexto, a
Figura 7 apresenta o modelo sugerido, com suas etapas, conversão dos dados e a extração de
atributos.

Figura 7 – Diagrama da metodologia proposta, onde os sinais de eletromiografia de alta densi-
dade (HD-EMG), obtidos a partir do banco de dados de Jiang et al., foram convertidos
em imagens utilizando o método ASTERI, seguida pela extração de atributos e aplica-
ção dos classificadores para avaliação de desempenho.
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Para este estudo foram selecionados os gestos os 1, 6, 7 e 10 que podem ser vistos na
Figura 8. A seleção dos gestos foi realizada considerando critérios anatômicos, funcionais e
metodológicos, bem como sua relevância em atividades da vida diária.

Figura 8 – Conjunto de quatro gestos utilizados no estudo para classificação de sinais HD-EMG,
representando movimentos distintos e funcionalmente relevantes: (1) Extensão do
polegar; (6) Flexão do punho; (7) Extensão do punho; (10) Flexão ulnar do punho.

• Gesto 1 – Extensão do polegar (“Legal”): representa um movimento isolado e bem definido
do polegar, envolvendo músculos específicos como o extensor curto e o extensor longo do
polegar. Além da clareza na ativação muscular, é um gesto amplamente reconhecido no
cotidiano como sinal positivo, de aprovação ou confirmação (“joinha”);

• Gesto 6 – Flexão do punho (“Punho para baixo”): envolve principalmente os flexores do
antebraço (flexor radial do carpo e flexor ulnar do carpo). Esse movimento é comum em
tarefas como digitar no teclado, apoiar a mão sobre uma mesa ou segurar objetos voltados
para baixo, o que reforça sua importância funcional.

• Gesto 7 – Extensão do punho (“Punho para cima”): ativa o grupo dos extensores do
punho (extensor radial longo e curto do carpo, extensor ulnar do carpo). É um movimento
associado a gestos cotidianos como afastar a mão para indicar recusa, levantar a palma
para pedir “pare” ou simplesmente apoiar o dorso da mão em superfícies. Junto com a
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flexão, representa movimentos antagônicos fundamentais para avaliação da precisão do
modelo.

• Gesto 10 – Flexão ulnar do punho (“Punho para o lado do dedo mínimo”): ativa predomi-
nantemente o flexor ulnar do carpo e, em menor grau, o extensor ulnar. Esse gesto ocorre
em situações práticas como segurar um copo e incliná-lo, tocar violão ou apoiar objetos na
lateral da mão, o que demonstra sua relevância funcional.

De forma geral, esses quatro gestos foram escolhidos por representarem movimentos
básicos, distintos e com ampla aplicabilidade no dia a dia. Além disso, ativam diferentes grupos
musculares do antebraço, o que contribui para a diversidade dos sinais de HD-EMG e fortalece a
robustez da análise de classificação.

Visando à aplicação de arquiteturas profundas, os sinais de HD-EMG foram convertidos
em imagens por meio do método ASTERI, exemplificado na Figura 9.O método ASTERI
baseia-se na retroprojeção, originalmente utilizada na reconstrução de imagens de tomografia
computadorizada, para representar sinais de EEG em formato de imagens. Esse método já
demonstrou resultados promissores quando aplicado a sinais de eletroencefalografia, reforçando
seu potencial também em dados de EMG [34],.

A partir das imagens ASTERI, foram extraídos 4097 atributos utilizando a arquitetura
profunda VGG16, pré-treinada com a base de dados ImageNet. Em seguida, a base de dados foi
subdividida em dois conjuntos: treino/validação 80% das instâncias e teste 20%, possibilitando a
avaliação robusta do desempenho dos classificadores.
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Figura 9 – Conversão de sinal de eletromiografia de superfície de alta densidade (HD-
EMG) em imagem, utilizando o método ASTERI. A imagem foi gerada
pela autora com o auxílio do software Weka, representando a reorganização
espacial e temporal do sinal em uma estrutura adequada para análise por
redes neurais convolucionais.

Para a análise comparativa, foram empregados diferentes classificadores de aprendizado
de máquina disponíveis no Weka. O algoritmo Random Forest foi avaliado em cinco configura-
ções, variando entre 100, 200, 300, 400 e 500 árvores, a fim de observar o impacto da quantidade
de árvores no desempenho do modelo. Além disso, foram testados os algoritmos Naive Bayes

e Bayes Network, ambos em suas configurações padrão, bem como o Support Vector Machine

(SVM), utilizando kernels polinomiais de grau 1, 2 e 3 e o kernel RBF.

Os experimentos foram conduzidos inicialmente na aba Experimenter do Weka, utili-
zando validação cruzada de 10 folds com 30 rodadas, o que assegurou maior robustez estatística
aos resultados. A partir dessa etapa, o classificador com melhor desempenho foi selecionado e
executado na aba Explorer para o conjunto de teste, sendo avaliado uma única vez com base nas
métricas: acurácia, índice kappa, sensibilidade, especificidade e área sob a curva ROC (AUC).

No caso do Random Forest, a variação do número de árvores permitiu verificar a influên-
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cia desse parâmetro na acurácia e no custo computacional. A literatura aponta que o aumento do
número de árvores tende a melhorar a estabilidade e a robustez do classificador até determinado
ponto, após o qual os ganhos se tornam marginais enquanto o custo computacional continua a
crescer [38, 39].

O Naive Bayes e a Bayes Network foram testados com configurações padrão, pois são
algoritmos probabilísticos de baixa complexidade que podem lidar bem com dados de alta dimen-
sionalidade, como os gerados pela arquitetura VGG16. O Naive Bayes assume independência
entre as variáveis, sendo uma escolha comum para tarefas de classificação onde a simplicidade
e a velocidade são importantes, enquanto a Bayes Network permite modelar dependências de
forma mais flexível [40].

Para o SVM (Support Vector Machine), foram utilizados diferentes tipos de kernels: o
kernel polinomial de graus 1, 2 e 3, e o kernel RBF (Radial Basis Function). A escolha desses
kernels permitiu testar a capacidade do SVM de capturar relações lineares e não-lineares nos
dados. O kernel polinomial com grau 1 foi usado como referência de uma separação linear
simples, enquanto os graus 2 e 3 introduziram maior complexidade para lidar com relações
mais elaboradas entre as variáveis. O kernel RBF é amplamente usado por sua habilidade de
generalizar em problemas de alta dimensionalidade, onde as distribuições de classes não são
lineares [41, 42].

A validação cruzada de 10 folds com 30 rodadas de treinamento foi aplicada para
obter uma medida robusta da performance dos classificadores, evitando que os resultados
fossem influenciados por uma divisão específica dos dados. Estudos recentes sugerem que essa
abordagem é eficaz para garantir uma avaliação estável e reproduzível dos modelos [43].

3.2 Métricas de avaliação

Na metodologia, foram utilizadas métricas de desempenho reconhecidas para a avaliação
dos modelos de classificação, empregando o software Weka como ferramenta de análise. As
métricas incluem acurácia, índice Kappa, sensibilidade, especificidade e a área sob a curva
ROC (AUC). Cada uma dessas métricas fornece diferentes perspectivas sobre a performance do
modelo, o que contribui para uma análise abrangente de sua eficácia.

A acurácia (Percent Correct), considerada uma medida geral de desempenho, representa
a proporção de predições corretas em relação ao total de predições realizadas pelo modelo. Ela
é calculada pela razão entre o número de predições corretas e o total de predições e indica a
eficácia global do modelo em situações de classes balanceadas. Contudo, a acurácia isolada pode
não ser adequada em casos de classes desbalanceadas, uma vez que não diferencia o desempenho
entre classes distintas [44, 45].

O índice Kappa (Kappa Statistic) complementa a análise ao ajustar a acurácia pelo acaso,
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avaliando a confiabilidade das predições. Esse índice é particularmente relevante em conjuntos
de dados desbalanceados e mede a concordância entre as predições e as classificações reais,
variando de -1 a 1, onde valores mais altos indicam uma maior confiabilidade e concordância
que não são atribuíveis ao acaso [46].

A sensibilidade (True Positive Rate), também chamada de "recall", mede a proporção
de verdadeiros positivos identificados pelo modelo em relação ao total de ocorrências da classe
positiva. Essa métrica avalia a capacidade do modelo de identificar corretamente ocorrências
positivas, sendo essencial em contextos onde a detecção precisa da classe positiva é prioritária
[47].

Especificidade (True Negative Rate) mede a taxa de verdadeiros negativos, indicando a
proporção de amostras da classe negativa que foram corretamente classificadas. Alta especifi-
cidade é crucial em cenários que demandam a minimização de falsos positivos, auxiliando na
análise detalhada da precisão em contextos onde o erro na detecção de falsos positivos deve ser
evitado [48].

Por fim, a área sob a curva ROC (AUC - Area Under ROC Curve) representa a capacidade
do modelo de distinguir entre classes. A curva ROC é um gráfico que relaciona a taxa de verda-
deiros positivos com a taxa de falsos positivos em diferentes limiares, e a AUC é uma métrica
consolidada dessa performance. Valores de AUC próximos a 1 indicam uma alta capacidade
discriminatória do modelo, fornecendo uma visão geral de sua performance em cenários variados
[44, 45].

Essas métricas são amplamente utilizadas na avaliação de modelos de aprendizado
de máquina e fornecem uma base sólida para a análise comparativa da eficácia dos modelos
empregados neste estudo.
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Capítulo 4

Resultados

4.1 Resultados

4.1.1 Conjunto de Treinamento

Os resultados da etapa de treinamento e validação estão sumarizados na Tabela 1. Entre
os classificadores avaliados, o SVM com kernel polinomial de grau 1 apresentou o melhor
desempenho, alcançando acurácia média de 72,14% ± 3,01%. Em seguida, destacou-se o SVM
com kernel polinomial de grau 2, que obteve acurácia de 70,67% ± 3,00%.

Tabela 1 – Resultados obtidos na etapa de treinamento e validação do conjunto de dados, apre-
sentando as métricas de desempenho dos diferentes classificadores testados.

A consistência e robustez desses resultados podem ser visualizadas no Boxplot da Figura
10. A distribuição da acurácia do SVM com kernel polinomial de grau 1 destaca-se como a
mais elevada e concentrada, indicando um desempenho consistentemente superior em todas
as rodadas de validação cruzada. Essa estabilidade é corroborada pelos altos valores de índice
kappa, com o SVM de grau 1 atingindo 0,63 ± 0,04, o que demonstra uma concordância sólida
entre as classificações previstas e as reais, ajustada pelo acaso.
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Figura 10 – Distribuição de acurácia por classificador na etapa de treinamento e validação,
exibindo a mediana, quartis e variabilidade dos resultados obtidos.

O índice kappa, que mede a concordância entre as classificações previstas e as reais,
também reforçou o bom desempenho desses modelos. O SVM com kernel polinomial de grau 1
atingiu o valor mais elevado 0,63 ± 0,04, seguido pelo SVM com kernel polinomial de grau 2
0,61 ± 0,04, o que demonstra uma consistência satisfatória dos resultados.

Em relação à sensibilidade, a capacidade do modelo de identificar corretamente os gestos,
o SVM de grau 1 se destacou com 0,88 ± 0,05. Já a especificidade, que indica a habilidade de
classificar corretamente os casos negativos, também foi superior nesse modelo, alcançando 0,93
± 0,02.

A análise da área sob a curva ROC (AUC) mostrou desempenho consistente em todas as
variações do SVM com kernel polinomial, que registraram valores de 0,95 ± 0,02. Esse resultado
evidencia a boa capacidade desses modelos em distinguir corretamente entre as diferentes classes
de gestos.

4.1.2 Conjunto de Teste

Com base nos resultados obtidos no conjunto de treinamento, verificou-se que o SVM
com kernel polinomial de grau 1 apresentou o melhor desempenho na tarefa de classificação
dos gestos de mão, equilibrando acurácia, sensibilidade e especificidade. Diante disso, o mo-
delo foi escolhido para uma análise mais aprofundada dos resultados e seguir para a fase de
testes, permitindo uma avaliação detalhada de sua eficácia e limitações em comparação com os
demais classificadores testados. Essa abordagem visa garantir uma compreensão mais ampla do
comportamento do modelo e sua adequação para aplicações futuras,
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Os resultados do conjunto teste podem ser observados na Tabela 2 a seguir.

Tabela 2 – Desempenho do classificador SVM com kernel polinomial de grau 1 na tarefa de
classificação dos gestos de mão na etapa de testes.

Para complementar a análise, a Tabela 3 apresenta a matriz de confusão obtida nessa
etapa, ela permite observar em detalhes como o classificador SVM com kernel polinomial de
grau 1 lidou com cada uma das quatro classes de gestos. Nota-se que a classe C1 foi a mais bem
reconhecida, com a maior quantidade de instâncias corretamente classificadas (497), enquanto
a classe C2 apresentou confusões relevantes, sendo equivocadamente identificada em alguns
casos como C3 ou C4. A classe C3 também obteve um número expressivo de acertos (403),
mas ainda assim foi confundida em parte com as demais classes. Já a classe C4, embora tenha
apresentado 355 classificações corretas, foi confundida em especial com C2. Esses resultados
reforçam que, apesar do desempenho geral positivo do modelo, ainda há desafios relacionados à
distinção entre classes com padrões de ativação muscular semelhantes, o que pode explicar os
valores de especificidade reduzidos observados na análise das métricas globais.

Tabela 3 – Matriz de confusão do classificador SVM com kernel polinomial de grau 1, evidenci-
ando os acertos e erros na classificação das quatro classes de gestos.

A aplicação do classificador SVM com kernel polinomial de grau 1 ao conjunto de teste
resultou em uma acurácia de 72,47%, indicando que a maioria das instâncias foi corretamente
classificada. O índice kappa obtido foi de 0,638, valor que reflete uma concordância entre as
classificações previstas e as reais.

Ao analisar os resultados para a sensibilidade de 0,725, vemos que ele foi capaz de
identificar corretamente a maioria dos gestos dessa classe. A especificidade obtida foi de 0,908,
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indicando que o classificador apresentou excelente desempenho na identificação correta das
ocorrências negativas. Esse resultado demonstra a capacidade do modelo em diferenciar de
forma precisa os gestos-alvo daqueles não pertencentes à classe analisada, o que contribui para
a confiabilidade geral do sistema. Além disso, o valor de AUC (Área sob a Curva ROC) foi
de 0,866, o que representa um bom desempenho discriminativo, confirmando que o modelo é
eficiente em diferenciar as classes mesmo quando submetido a dados previamente não vistos.

4.2 Discussões

Os resultados obtidos neste estudo revelam que o algoritmo SVM com kernel polinomial
de grau 1 apresentou o melhor desempenho na classificação de gestos de mão utilizando sinais de
HD-EMG. Essa conclusão é consistente com estudos anteriores que apontam o SVM como uma
técnica eficaz em aplicações de aprendizado de máquina para dados de eletromiografia [49, 50]. A
alta acurácia e os valores do índice kappa indicam que o modelo não apenas conseguiu classificar
os gestos de maneira precisa, mas também apresentou uma boa consistência nos resultados, o que
é crucial em aplicações clínicas e de reabilitação. Isso reflete a importância de utilizar algoritmos
que possam lidar com a variabilidade dos sinais de EMG, permitindo um reconhecimento mais
robusto e confiável dos gestos.

Além disso, o desempenho do SVM pode ser atribuído à sua capacidade de lidar com
a não linearidade dos dados, especialmente quando se utiliza um kernel polinomial. Estudos
demonstram que a escolha do kernel e seus parâmetros têm um impacto significativo no desem-
penho do SVM, e, neste caso, a configuração de grau 1 se mostrou ideal para a classificação
de gestos a partir de sinais de HD-EMG [51, 52]. Essa capacidade do SVM em capturar a
complexidade dos dados é uma vantagem significativa em comparação com outros algoritmos
que podem não ter essa flexibilidade, o que pode explicar o seu desempenho superior.

Além disso, o índice kappa, que mede a concordância entre as classificações previstas e
as reais, ajustado pelo acaso, apresentou um valor de 0.6328. Esse resultado é significativamente
satisfatório e demonstra a robustez e consistência do modelo em sua capacidade de generalizar
além da acurácia simples, o que é especialmente relevante em bases de dados com potencial
desbalanceamento de classes.

Por outro lado, as configurações do Random Forest mostraram-se estáveis, mas não
conseguiram superar a acurácia do SVM. Esse resultado sugere que métodos baseados em
conjuntos, embora robustos, podem não ser sempre a melhor escolha para dados altamente
dimensionalizados como os de HD-EMG. Embora o Random Forest tenha a vantagem de reduzir
o risco de overfitting, a complexidade dos dados de EMG pode exigir modelos que sejam mais
adequados para capturar padrões sutis [53]. A literatura destaca que, em tarefas de classificação
com sinais fisiológicos, a eficácia dos algoritmos pode variar consideravelmente com base nas
características específicas dos dados utilizados.
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Os resultados relativos à sensibilidade e especificidade também são dignos de nota. O
modelo SVM com kernel polinomial de grau 1 destacou-se em sensibilidade, indicando sua
eficácia em identificar corretamente os gestos desejados, o que é particularmente relevante em
aplicações de reabilitação, onde a detecção precisa de movimentos pode influenciar diretamente
a eficácia do tratamento [53].

No entanto, a especificidade, que reflete a habilidade de classificar corretamente as
ocorrências negativas, apresentou resultados expressivos em ambas as etapas. Durante a validação
cruzada no treinamento, o modelo alcançou 0,93, enquanto no conjunto de teste manteve o
desempenho elevado, com 0,908. Esse resultado evidencia a capacidade do classificador em
generalizar para novos dados, reduzindo a ocorrência de falsos positivos e garantindo maior
confiabilidade nas predições.

Além disso, a manutenção de valores altos de especificidade reforça o potencial da
abordagem proposta para aplicações que exigem maior rigor na distinção entre classes, como no
desenvolvimento de sistemas de controle de interfaces homem-máquina e em dispositivos de
apoio tecnológico. Em perspectivas futuras, estratégias de aprimoramento, como a aplicação de
técnicas de balanceamento de dados ou o uso de modelos ensemble, poderão ser exploradas não
para corrigir falhas, mas para potencializar ainda mais a robustez e a aplicabilidade do método
em cenários complexos [54, 55].

Em comparação, os modelos Naive Bayes e Bayes Network mostraram desempenho
inferior, o que levanta questões sobre sua aplicabilidade em contextos em que a acurácia é crítica.
Estudos recentes sugerem que, embora esses modelos possam ser úteis em outros cenários, sua
capacidade de generalização em tarefas de classificação complexas pode ser limitada [56]. Essa
constatação é importante, pois enfatiza a necessidade de selecionar algoritmos de acordo com as
características dos dados e os requisitos da tarefa em questão, especialmente em campos como a
reabilitação onde a precisão pode afetar diretamente os resultados dos pacientes.

A análise da área sob a curva ROC (AUC) revelou que os melhores valores foram
obtidos com o SVM com kernel polinomial de grau 1, apresentando uma AUC de 0.95 no treino
e de 0.87 no teste. Este valor indica uma boa capacidade geral dos modelos para distinguir
entre as classes de gestos, mas também destaca a importância de usar múltiplas métricas de
avaliação ao comparar algoritmos de aprendizado de máquina. A escolha de múltiplos critérios de
avaliação pode fornecer uma visão mais abrangente do desempenho dos modelos, permitindo que
pesquisadores e clínicos façam decisões informadas sobre qual abordagem utilizar em aplicações
práticas.

Quando comparados com outros trabalhos da literatura, os resultados aqui obtidos
apresentam desempenho competitivo. Zhang et al. (2023) reportaram acurácia média de 75%
para a classificação de gestos utilizando HD-EMG e redes neurais convolucionais. De forma
semelhante, Nguyen et al. (2022) alcançaram valores próximos a 78% utilizando SVM em bases
de EMG com menor número de canais. No presente estudo, o SVM com kernel polinomial de
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grau 1 atingiu acurácia de 72,47% no conjunto de teste, resultado que, embora inferior em termos
absolutos, demonstra a viabilidade do método ASTERI na conversão de sinais para imagens, o
que abre perspectivas para sua combinação com arquiteturas profundas em estudos futuros.
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Capítulo 5

Conclusão

Este estudo demonstrou a viabilidade e a eficácia de uma abordagem inovadora para o
reconhecimento de gestos baseada em sinais de eletromiografia de alta densidade (HD-EMG). A
metodologia, que utilizou o método ASTERI para converter sinais em imagens e o classificador
SVM com kernel polinomial de grau 1, apresentou desempenho robusto na etapa de treinamento,
alcançando métricas notáveis: acurácia de 72,14%, índice kappa de 0,63 e valores superiores a
0,88 para sensibilidade e especificidade. A consistência observada na validação cruzada confirma
a capacidade do modelo em aprender e generalizar padrões complexos de ativação muscular.

No conjunto de teste, o modelo manteve resultados satisfatórios, com acurácia de 72,47%,
índice kappa de 0,64, sensibilidade de 0,73 e especificidade elevada 0,908. Esse equilíbrio entre
métricas demonstra que o classificador foi capaz de identificar corretamente tanto os gestos
positivos quanto as ocorrências negativas, garantindo uma discriminação confiável entre as
classes. A área sob a curva ROC (AUC), com valores de 0,95 no treino e 0,87 no teste, reforça a
boa capacidade do modelo em distinguir os diferentes gestos, mesmo diante de dados previamente
não vistos.

Em síntese, este trabalho contribui para o avanço da aplicação de técnicas de aprendizado
de máquina em um contexto biomédico, validando a abordagem do método ASTERI como
ferramenta promissora para a análise de sinais HD-EMG. Os resultados obtidos não apenas
confirmam a eficácia do modelo, como também abrem caminho para investigações futuras
com bases de dados mais amplas, diversificadas e balanceadas, visando ampliar a robustez
e a aplicabilidade dos sistemas de reconhecimento de gestos. Além do desenvolvimento de
próteses mioelétricas mais intuitivas, esta metodologia pode ser explorada no aprimoramento de
interfaces homem-máquina, no controle de cadeiras de rodas e exoesqueletos, bem como em
ferramentas de diagnóstico precoce de distúrbios neuromusculares, consolidando sua relevância
para a Engenharia Biomédica e para a melhoria da qualidade de vida de seus usuários.
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5.1 Dificuldades Encontradas

O desenvolvimento deste trabalho encontrou desafios principalmente relacionados à infra-
estrutura computacional necessária para executar as etapas de conversão dos sinais HD-EMG em
imagens e o processamento de dados de alta dimensionalidade gerados pela extração de atributos
com a VGG16. A utilização de softwares especializados para processamento e classificação,
como o WEKA, exigiu testes reiterados e longos tempos de execução, o que demandou planeja-
mento e otimização na condução dos experimentos. Além disso, a familiarização com técnicas
avançadas de aprendizado de máquina e processamento de sinais biomédicos representou um
processo contínuo de capacitação técnica ao longo do mestrado, conciliado com atividades
profissionais e pessoais.

5.2 Contribuições

Este estudo trouxe diversas contribuições para o campo da Engenharia Biomédica,
tanto no avanço metodológico quanto na difusão do conhecimento científico por meio de
produção acadêmica e participações em eventos especializados. A Tabela 4 apresenta as principais
contribuições realizadas durante o período do mestrado.

Tabela 4 – Produções acadêmicas e reconhecimentos obtidos em detrimento desta pesquisa
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5.3 Trabalhos Futuros

Com base nos achados e limitações observadas, este estudo abre múltiplas possibilidades
de continuidade. Entre os principais direcionamentos, destaca-se a ampliação do conjunto
de gestos de modo a potencializar o desempenho do modelo na classificação de sinais HD-
EMG. Além disso, a integração do método ASTERI diretamente com redes neurais profundas
treinadas com imagens HD-EMG representa uma oportunidade promissora para aprimorar
a sensibilidade e a capacidade discriminativa da abordagem, principalmente em contextos
clínicos e funcionais mais complexos. Outro eixo estratégico para extensão da pesquisa envolve
o desenvolvimento de uma base de dados brasileira, construída localmente na Universidade
Federal de Pernambuco (UFPE). Este esforço poderá fortalecer a pesquisa nacional na área e criar
modelos mais representativos da população brasileira, ampliando a aplicabilidade dos resultados
para a realidade do Sistema Único de Saúde (SUS). Por fim, vislumbra-se o aprimoramento da
solução para uso em tempo real, possibilitando aplicações práticas em próteses mioelétricas,
interfaces assistivas e dispositivos médicos inteligentes.
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