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RESUMO

Este trabalho de conclusdo de curso apresenta uma abordagem inovadora para o ensino
da matematica no Ensino Médio, utilizando a Teoria dos Grafos e o Algoritmo de Dijkstra para
compreender problemas reais, como a escolha do caminho mais curto em aplicativos de carona,
Waze, Google mapas, Apple mapas, dentre outros aplicativos semelhantes. O objetivo é tornar
a matematica mais proxima do cotidiano dos alunos, mostrando como conceitos abstratos
podem ser aplicados em situacOes préticas e relevantes.

A partir da Teoria dos Grafos, os alunos podem modelar problemas como rotas de
transito ou logistica, enquanto o Algoritmo de Dijkstra lhes permite encontrar solucdes
eficientes para esses desafios. A proposta pedagdgica sugerida inclui atividades interativas com
mapas e grafos, estimulando os estudantes a participarem ativamente do processo de
aprendizagem e a enxergarem a matematica como uma ferramenta pratica e (til.

A dissertacdo conclui que essa metodologia ndo apenas facilita a compreensdo de
conceitos matematicos, mas também promove um ensino mais dinamico e envolvente,
incentivando os alunos a aplicarem o que aprendem para solucionar problemas reais de forma

criativa e eficaz.

Palavras-chave: Teoria dos Grafos, Algoritmo de Dijkstra, Ensino Médio, Matematica

Aplicada, Educacdo Inovadora.
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1 INTRODUCAO

Uma das barreiras enfrentadas pelos estudantes do Ensino Médio é a quebra da
conectividade entre a matematica e o cotidiano. Segundo Souza [20], os primeiros contatos com
a matematica devem ser factuais e relacionados ao dia a dia do aluno, tornando o aprendizado
envolvente. No entanto, quando chegam ao Ensino Médio, os estudantes muitas vezes percebem
a matematica como uma disciplina abstrata e distante, sem proposito préatico claro.

Dessa forma, este trabalho visa reintroduzir essa conexdo, utilizando a Teoria dos
Grafos para compreender problemas cotidianos como o calculo de rotas otimizadas em
aplicativos de carona, tema que é altamente relevante no contexto atual de urbanizagdo e
desenvolvimento tecnoldgico. Por meio da aplicacdo do algoritmo de Dijkstra, pretende-se
oferecer aos alunos uma oportunidade de explorar a matematica de forma aplicada,
demonstrando como a abstracdo tedrica pode ser usada para resolver desafios reais, como a
escolha do caminho mais curto entre dois pontos em um mapa.

Este trabalho estd estruturado da seguinte forma: primeiro, discute-se a Teoria dos
Grafos e suas aplicacdes praticas. Em seguida, apresenta-se o algoritmo de Dijkstra em detalhe,
aplicando-o a problemas cotidianos. Finalmente, propde-se uma abordagem pedagogica para o

ensino do algoritmo no contexto do Ensino Médio.
1.1 JUSTIFICATIVA

De acordo com a Base Nacional Comum Curricular (BNCC), ¢ essencial que os alunos
desenvolvam competéncias que lhes permitam interpretar e solucionar problemas do cotidiano
por meio de ferramentas matematicas. A Teoria dos Grafos € uma dessas ferramentas,
oferecendo um modo eficiente de modelar e resolver problemas relacionados a otimizacao de
recursos, como a minimizacéo de distancias e custos.

Assim, a necessidade de um ensino de matematica mais contextualizado esté cada vez

mais presente no debate educacional. Para Olgin [13]:

“Para o Ensino Médio, considera-se que, para escolha de temas, é importante
selecionar os que possibilitam aos estudantes perceberem a sua importancia e seu
impacto na Matematica e na sociedade, conforme as indicagbes do autor.
Considerando que uma finalidade da Educacéo Béasica é preparar o0 estudante para a
vida em sociedade, para o trabalho, para o aprofundamento dos conhecimentos
adquiridos, etc.”
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Também segundo Doll Jr. [8], deve-se escolher os conteudos a serem tratados no Ensino
Médio a partir da andlise de quatro aspectos, a saber: riqueza, recursao, relagdo e rigor. Em
relacdo a riqueza, o autor trabalha a possibilidade de profundez do assunto, vislumbrando
interpretacdes diversas para ele e procurando transformar os agentes da educacdo, tanto
professores quanto alunos.

J& na questdo de recursdo, para esse autor, o curriculo deve prezar por uma comunicagdo
intermitente entre os contetdos que neles existem, podendo sempre haver um ciclo em que um
conteddo leve a outro. Dessa maneira, 0 aluno sempre podera analisar e refletir sobre os
conteidos de maneiras diversas ao longo da jornada escolar.

Quando Doll Jr. [8] fala a respeito do critério de relacGes, ele trata a respeito das
possibilidades de o curriculo se conectar, tanto com questdes pedagdgicas quanto com questes
culturais dos alunos e da sociedade.

Em relagdo ao rigor, ele entende que se deve abordar todas as possibilidades de
interpretacdo e buscar, com perseveranca, a determinacdo dos caminhos realizaveis para um
processo de transformacao, tanto do professor quanto do aluno

Assim, neste trabalho, pretende-se mostrar também que o ensino da Teoria dos Grafos
no Ensino Medio pode satisfazer tais critérios e oferecer aos estudantes uma abordagem
inovadora, que promova 0 engajamento, 0 pensamento critico e a aplicacdo pratica dos
conceitos matematicos, alinhando-se aos objetivos educacionais atuais e contribuindo para uma

formacdo mais completa e interdisciplinar dos alunos.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Demonstrar como a Teoria dos Grafos e, especificamente, o algoritmo de Dijkstra
podem ser utilizados como ferramentas pedagogicas no Ensino Médio para resolver problemas

praticos de otimizacdao de rotas.

1.2.2 Obijetivos especificos

Aplicar a Teoria dos Grafos em situacdes cotidianas, exemplificando seu uso na

otimizacdo de rotas simulando uma situacdo anéloga a um aplicativo de carona.
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Integrar o algoritmo de Dijkstra ao curriculo do Ensino Médio, enfatizando sua
relevancia préatica e estimulando o pensamento critico.
Esclarecer que a matematica ndo se resume apenas a contas e equacdes algébricas como

é, algumas vezes, pensado por alunos do Ensino Médio.
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2 TEORIA DOS GRAFOS

2.1 BREVE APANHADO HISTORICO

A Teoria dos Grafos tem origem na busca da solugéo de um problema que, dentre todos
0s que sdo trabalhados nesta area, ainda € o mais conhecido, que é o problema das pontes de
Kénigsberg. Ele consiste no questionamento feito por Euler se era possivel ou ndo, dentro da
referida cidade, fazer um passeio por toda ela, comecando e terminando no mesmo lugar,
cruzando cada ponte que existia nesta cidade uma Unica vez. Nesta cidade havia um rio que a
cortava, o rio Pregel. Neste rio havia duas ilhas, Kneiphof e Lomse, que eram ligadas a cidade
por quatro pontes e duas pontes, respectivamente, além de uma ponte que as ligava, como

mostra a figura a seguir.

Figura 1 - Representacéo ilustrativa da cidade de Kénigsberg

Fonte: Autoria prépria

Este problema pode ser modelado utilizando um conjunto de vértices e arestas e

podemos desenhéa-lo da seguinte forma:

Figura 2 - Grafo modelando o problema das pontes de Kénigsberg

Fonte: Autoria Prépria

Assim, perceba que basta estudar o grafo porque ele contém todas as informacoes

necessarias para resolver o problema das pontes sem a necessidade de mapear geograficamente
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a cidade, pois ele estd representando as ilhas com os vértices A e B (amarelo e rosa,
respectivamente) e as partes norte e sul da cidade estdo correspondidas pelos vértices C e D
(em verde e marrom), respectivamente. Além disso, as pontes sdo representadas pelas arestas
do grafo (em azul).

Desta maneira, perceba que as pontes que conectam a parte norte do continente e a ponte
de Kneiphof (p; e p3), s@o representadas também pelas mesmas arestas no grafo. De igual
modo, todas as outras arestas estdo conectadas de acordo com sua respectiva ponte. Portanto,
um caminho possivel para sair da parte norte da cidade e chegar na ilha de Lomse, seria
utilizando a ponte p,, para chegar em Kneiphof, depois utilizando a ponte p, para chegar a

parte sul da ilha e, por fim, utilizar a ponte p, para chegar a ilha de Lomse.

Figura 3 - Possivel caminho

Fonte: Autoria prépria

O grafo associado a esse caminho (em vermelho) seria:

Figura 4 - Grafo do Possivel caminho

Fonte: Autoria prépria

Assim, o estudo dos Vértices e arestas é suficiente para determinar se € possivel ou ndo
atravessar todas as pontes uma Unica vez, como prop0s Euler. Deste modo, por vezes, podemos
reduzir problemas extremamente complexos a algum grafo e estuda-lo de maneira mais
agradavel.
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2.2 DEFINICOES BASICAS
2.2.1 Grafos e Subgrafos
2.2.1.1 Grafos

Utilizando como pressuposto o fundamento estabelecido por Diestel em [7], o autor
define grafo como o par G = (V, A), em que ¢é satisfeita a relacdo que os elementos a € A s&o,
também, elementos do conjunto formado por pares dos elementos v € V, ou seja, podemos
escrever A € [V]%. Assim sendo, os Vvértices sdo os elementos v € V e as arestas sdo 0s
elementos a € A.

Por exemplo, na figura 2, podemos chamar os pontos A, B, C e D de vértices do grafo.
Além disso, nota-se que as arestas sdo: p;(4,C), p,(4,D), p3(A4,C), ps(A,D), ps(4,B),
pe(B, C), p7(B, D). Note que temos dois pares de arestas que possuem 0 mesmo par de vertices,
p1(4,0), p3(4,C) ep,(A,D), ps(A, D). Sempre que isso ocorre, diz-se que estas arestas estao
em paralelo. Da mesma maneira, um grafo pode possuir uma aresta em que o par de vértices
gue a define sejam ambos 0 mesmo Vvértice. Quando isso acontece, diz-se que esta aresta € um
laco.

Ja& Bondy e Murty, em [4], definem grafo como uma tripla ordenada G =
(V(G),A(G),4), onde os elementos desta tripla sdo o conjunto de vértices do grafo G, o
conjunto de arestas do grafo G e a funcdo de incidéncia deste grafo, respectivamente. A fungéo
de incidéncia relaciona um par ndo ordenado de vértices a cada aresta do grafo G. Por exemplo,
na figura 2, ¥4 (p;) = AC. Se um Vértice esta presente na relacéo de incidéncia de uma aresta,
logo este vértice é incidente a tal aresta. Em outras palavras, diz-se que um vértice é incidente
a uma aresta se a aresta 0 conecta a outro vértice no grafo. Diestel [7] define a incidéncia de
maneira semelhante. para ele, um vértice é dito ser incidente a uma aresta se o vértice € um dos
extremos dessa aresta.

Segundo os autores, podemos definir alguns tipos de grafos de acordo com suas
caracteristicas:

Grafo simples: Segundo Bondy e Murty [4], grafos simples sdo aqueles que nao
possuem lagos ou arestas em paralelo. J& Diestel [7], define esse tipo de grafo apenas como
grafo, nomeando 0s que possuem tais tipos de aresta como Hipergrafos. Neste trabalho,

adotaremos a definigdo de Bondy e Murty.
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Figura 5 - Exemplos de grafos simples

) =

Fonte: Rangel (2002)

Grafo direcionado (digrafo): Para Bondy e Murty [4], em um grafo direcionado D =
(V(D),A(D)), o conjunto de arestas A(D) é um conjunto de pares ordenados de vértices, ou
seja: A(D) < {(u,v) | u,v € V(D)}, esses vértices u, v ndo sdo necessariamente distintos.

Neste caso, a aresta (u, v) indica que h4d uma conex&o direcionada do vértice u para o

vértice v.

Figura 6 - Exemplos de grafos direcionados

Fonte: H3Dema, 2016

Grafo ponderado: Falando sobre grafo ponderado, Bondy e Murty [2] associa cada
arestae € E(G) (ou (u,v) € A(G), no caso de digrafos) aum namero real w(e), que é chamado
de peso. Este peso pode representar uma medida como distancia, custo ou capacidade. Note que

todo grafo pode ser considerado como ponderado, basta considerar w(e) = 1 paratodo e € E.

Figura 7 - Exemplo de grafo ponderado

Fonte: Evulpo, 2024
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Diestel [7] também define a ordem de um grafo G como sendo o ndmero de vertices
neste grafo e escreve-se |G|. Se |G| for um nimero natural, G é um grafo finito, caso contrério,
é infinito.

No exemplo pratico de um aplicativo de carona, um grafo ponderado pode ser modelado
pelas ruas de uma cidade (arestas) e seus cruzamentos ou pontos de referéncia (vértices), onde
0 peso das arestas representa a distancia ou o tempo necessario para percorrer cada rua, além
de circunstancias que envolvem o trafego nesta localidade. Ao usar um grafo ponderado,
podemos calcular qual caminho é o mais eficiente, em termos de distancia ou tempo, para ir de

um ponto A até um ponto B.
2.2.1.2 Subgrafos:

De acordo com Diestel [7], um subgrafo H de um grafo G = (V(G), A(G)) é um grafo
cujos conjuntos de Vértices e arestas sdo subconjuntos dos conjuntos de vértices e arestas de G,
respectivamente. Ou seja, H = (V(H),E(H)) é um subgrafo de G se V(H) € V(G) e A(H) <
A(G). Além disso, paraumaarestaa; € A(H) < A(G), 0s vértices terminais desta aresta devem
estar presentes em V(H), ou seja, seja a; = (v;, v;) € A(H), entdo v;, v; € V(H).

Figura 8 - Subgrafo

—

Fonte: Autoria prépria

2.2.2 Incidéncia e Adjacéncia
2.2.2.1 Incidéncia

A incidéncia é a relacdo entre os vértices e as arestas que 0s conectam. Um vértice v é
dito ser incidente a uma aresta e se v € um dos extremos de e, ou segundo Diestel [7],se v € e.
Em outras palavras, se a aresta e conecta 0s vertices u e v, entdo u e v sdo incidentesae e e é
incidente a u e v. O autor também define como o conjunto de todas as arestas e € E(G) que

séo incidentes a v como E (v).
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Uma ferramenta importante para representar essa relacdo é a matriz de incidéncia, que
Bondy Murty [4] trabalha em seu livro. Se G é um grafo com n vértices e m arestas, a matriz
de incidéncia de G € uma matriz n X m onde a entrada a;; € igual ao nimero de vezes que 0
vértice v; € incidente a aresta e;.

Figura 9 - Matriz de Adjacéncia

Matriz Adj. =

_ o O O
e e I e B
o O = =
O == O

Fonte: Hermuche, 2019

2.2.2.2 Adjacéncia

Para Diestel [7], dois vértices u e v em um grafo G sdo ditos adjacentes se existe uma
aresta e € E(G) que conecta u e v. A adjacéncia é uma das relagcdes mais fundamentais em um
grafo, definindo quando dois vértices sdo vizinhos diretos.

A matriz de adjacéncia é retratada por Bondy e Murty [4] como uma forma comum de
representar a adjacéncia em grafos. Se G tem n vértices, a matriz de adjacéncia de G é uma
matriz n X n onde cada entrada a;; pode ser definida como o nimero de arestas que sdo
incidentes aos vértices v; e v; simultaneamente.

Figura 10 - Matriz de incidéncia

Fonte: Oliveira e Rangel, 2018

2.2.3 Graus dos Vértices
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O grau de um vértice em um grafo, segundo Diestel [7], € o nimero de arestas incidentes
aele. Formalmente, o grau de um vértice v é denotado por d; (v) e é igual ao nimero de arestas
que tém v como um dos extremos no grafo G. Vale ressaltar que em um lago, o vértice v é, a0
mesmo tempo, as duas extremidades da aresta, sendo assim, em lago deve ser considerado como
duas arestas para a contagem do grau do vértice. Além disso, no caso de digrafos, também
podemos definir o grau de entrada e de saida, que se referem, respectivamente, ao numero de
arestas que entram e saem de um vértice. Também se define o grau total de um grafo G = (V,E)
como a soma de todos os graus dos veértices deste grafo.

Aqui, podemos enunciar o primeiro teorema:

Teorema 1: A soma dos graus de todos os vertices de um grafo G = (V,E) é igual ao

dobro do nimero de arestas.

2 de(v) = 2e

vVEV

Prova: Como o grau de um vértice v; € o nUmero de arestas que sao incidentes a ele,
isso significa que uma aresta e € E(G) aumentard o grau total de um grafo em 2, visto que esta
aresta € incidente a dois vértices. Além disso, se esta aresta for um laco, o grau do vértice
também é aumentado em dois.

Como cada aresta é contada duas vezes na soma dos graus, temos que a soma total é
exatamente duas vezes o nimero total de arestas. Assim, podemos escrever: Y., ¢y dg (V) = 2e.

O

2.2.4 Caminhos, Ciclos e Conectividade
2.2.4.1 Caminhos

Seja ¢ = (V, E) um grafo. Um caminho em G é uma sequéncia finita de vértices, no
necessariamente distintos, P = v, vy,...,v, Onde v; €V para 0 <i <k e {v;_, v} EE
para 1 < i < k. Cada par consecutivo de vertices v;_, € v; esta conectado por uma aresta.
Ademais, define-se w(P), o comprimento do caminho P, como o somatorio dos pesos de cada

aresta do caminho, ou seja:

k
w(P) = > w(viy, vi)
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Se todos os vértices vy, vq,..., v, Sa0 distintos, o caminho é chamado de caminho
simples

Figura 11 - Caminho simples

Fonte: Autoria prépria

Figura 12 - Caminho ndo-simples

Fonte: Autoria prépria

Nas figura 11, o grafo possui um caminho P; = C, A, D, B simples. Ja a figura 12 possui

grafo possui um caminho P, = C, A, D, A, B que ndo é simples.

2.2.4.2 Ciclos

Um ciclo em um grafo G = (V, E) é um caminho C = v,, v4,..., v tal que vy, = v, (OU
seja, 0 caminho comecga e termina no mesmo Vértice) e, tambem, as arestas {v;_,,v;} sdo

distintas para1 < i < k.
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Figura 13 - Ciclo

Fonte: Autoria prépria
A figura acima possui o ciclo W = C,A,D, B, C.
O comprimento do ciclo é o numero de arestas que compdem o ciclo, e o peso total do
ciclo é dado pela soma dos pesos das arestas que formam o ciclo:

w(C) = XiL w({vi—1, vi}) com vy = vy
2.2.4.3 Conectividade e grafos conexos

Dois vértices u, v € V(G) sdo ditos conexos se existe um caminho que os contenha.
Caso contrario, dizemos que eles estdo em componentes conexas distintas de G. Dado um
vértice u de G, considere V(C) o conjunto de todos os vértices de v tal que existe um caminho
ligando u a v. O grafo G(C) é dito ser a componente conexa de G que contém u. Se sobrou
algum outro vértice, repita 0 processo até ter decomposto o grafo em componentes conexas de
G.

Um grafo G é dito conexo se existir apenas uma componente conexa em G.

Figura 14 - Componentes conexas em um grafo

Fonte: Autoria propria

O Grafo acima possui trés componentes conexas.
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2.2.5 Caminhos e Ciclos Eulerianos e Hamiltonianos

2251 Caminhos e Ciclos Eulerianos

Lembrando do problema resolvido por Euler das pontes de Kénigsberg, ele provou que
ndo era possivel o desafio proposto. Desta maneira, define-se um caminho P = v, v4,..., Uk
de G como euleriano se, e somente se, atravessa cada aresta de G exatamente uma Unica vez.
Além disto, define-se, também, um ciclo C = vy, v4,..., v, vy de G como euleriano se, e
somente se, atravessa cada aresta de G exatamente uma Unica vez. Um grafo G é dito euleriano
se possuir um ciclo euleriano.

Teorema 2: Um grafo conexo com pelo menos dois vértices € euleriano se e somente
se, todos os vértices do grafo tenham grau par.

Prova: Para isso, temos que dividir a prova em duas etapas:

Etapa 1: Se G = (V, E) é um grafo Euleriano, entdo todos os vértices tém grau par.

Etapa 2: Se G = (V, E) € um grafo conexo e todos 0s seus vértices tém grau par, entao
G é euleriano.

Etapa 1: Seja G = (V, E)) um grafo Euleriano, logo possui um ciclo Euleriano.

Como G ¢ euleriano, todos os vértices precisam de, pelo menos, uma aresta de saida e
outra de entrada. Seja um vértice v; tal que v; € V(G). Suponha d;(v;) = 2n + 1 (ou seja,
possuir grau impar), entdo ele possuird n arestas de entrada e n + 1 arestas de saida ou n
arestas de saida e n + 1 arestas de entrada. Sendo assim, ao tracar um caminho pelo grafo, ou
ndo conseguiremos sair deste vértice ou ndo conseguiremos voltar para ele, logo néo
conseguiremos concluir o ciclo euleriano.

Essa contradi¢cdo mostra que todos os vértices em um grafo euleriano devem ter grau
par. Portanto, a primeira parte da prova esta concluida.

Etapa 2: Seja G = (V, E) um grafo conexo em que todos 0s seus vértices possuem grau
par.

Escolha um vértice v; € V() arbitrario como ponto de partida.

Como todos o0s veértices tém grau par, sempre que VOcé entrar em um veértice, ha uma
aresta ndo percorrida para sair. I1sso garante que vocé pode completar um ciclo inicial e retornar
av;.

Construa um ciclo a partir de v; seguindo arestas ainda ndo percorridas, até retornar ao

vertice v;.
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Se todas as arestas foram percorridas, entéo esse ciclo € um ciclo euleriano, e a prova
esta completa.

Se ainda ha arestas ndo percorridas, isso significa que o ciclo inicial ndo percorreu todas
as arestas de G. Entdo escolha um vértice v do ciclo inicial que ainda possua arestas nédo
percorridas. Inicie um novo ciclo a partir de v usando apenas as arestas nao percorridas e que
retorne a v. Como v pertence ao ciclo inicial, é possivel conectar esse novo ciclo ao ciclo inicial,
formando um ciclo maior. Repita 0 processo até que todas as arestas tenham sido percorridas.
No final, vocé terd percorrido todas as arestas exatamente uma vez, formando um ciclo
euleriano que visita todos 0s Vértices e retorna ao ponto de partida.

Assim, conseguimos provar que se G = (V,E) é um grafo conexo e todos 0s seus
veértices tém grau par, entdo G € euleriano. o

Corolario 1: Um grafo conexo tem um caminho euleriano se, e somente se, ele tem,
exatamente, dois vértices de grau impar.

Prova: Para isso, temos que dividir a prova em duas etapas:

Etapa 1: Se G = (V,E) é um grafo conexo e possui um caminho euleriano, entdo G
possui exatamente dois vértices de grau impar

Seja G = (V, E) um grafo conexo. Suponha que P seja um caminho euleriano em G, que
comeca no vértice u e termina no vértice v. Para cada Vvértice intermediario w # u,v no
caminho P, sempre que P entra em w, ele também deve sair, garantindo que o grau de w é par.
Assim, todos os vértices intermediarios em P tém grau par.

Como u € o vértice inicial, havera um momento em que o caminho passara por ele pela
ultima vez e ndo retornard mais. Como u € o vértice inicial, sesmpre que o caminho sai de u 0
seu grau se torna impar. Assim sendo, u deve ter grau impar, caso contrario, o0 caminho
terminaria no proprio u.

Da mesma maneira, como v € o vértice final, haverd um momento em que o caminho
passara por ele pela ultima vez e ndo saird. Como v € um vertice que ndo é o inicial, sempre
que o caminho entra em u 0 seu grau se torna impar. Assim sendo, u deve ter grau impar, caso
contrario, o caminho ndo terminaria em u.

Como todos os vértices intermediarios tém grau par e apenas 0s Vértices u e v possuem
grau impar, concluimos que em G existem exatamente dois vértices de grau impar.

Etapa 2: Se G = (V,E) é um grafo conexo e possui exatamente dois vertices de grau

impar, entdo G possui um caminho euleriano.
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Sejam u e v os dois vértices de grau impar. Conecte estes dois pontos por uma nova
aresta e. Agora, todo vértice possui grau par, logo existe um ciclo euleriano. Ao remover a
aresta e, obtemos um caminho P em G que comeca em u e termina em v. Esse caminho P é um

caminho euleriano em G porque percorre todas as arestas de G exatamente uma vez. o

2.2.5.2 Caminhos e ciclos Hamiltonianos

Define-se caminho hamiltoniano em um grafo G como um caminho que passe por todas
os Vértices do grafo G exatamente uma Unica vez. Ja um ciclo hamiltoniano em um grafo G
define-se como um ciclo que passe por todas os vértices do grafo G exatamente uma Unica vez
e retorne ao vértice inicial.

Segundo Bondy e Murty [4], esses ciclos sdo em homenagem a Hamilton que, em uma
carta a seu amigo Graves, descreve um quebra-cabeca matemaético. Segundo Santos [17], esse
era 0 "lcosian Game", um jogo que utiliza um grafo dodecaédrico, no qual cada vértice
representa uma cidade. O objetivo era que um viajante percorresse todas as 20 cidades,
visitando cada uma apenas uma vez.

Ainda segundo Bondy e Murty [4], um dos principais problemas que ainda precisam ser
resolvidos da Teoria dos Grafos é encontrar boas condicdes para que um grafo seja

hamiltoniano, diferente dos grafos eulerianos.

2.2.6 Arvores

Uma érvore é definida por Bondy e Murty [4] como um grafo conexo aciclico. Um grafo
aciclico é definido como um grafo que ndo contém ciclos. Mais formalmente, um grafo T =

(V,E) é chamado de arvore se T € conexo e aciclico.

Figura 15 — Exemplo de arvore

Fonte: Siaudzionis, 2024
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Figura 16 - Exemplo de ndo-arvore

Fonte: Santana e Santana, 2023

Teorema 3: Se T = (V, E) € uma arvore, dois vértices quaisquer estdo ligados por um
Unico caminho.

Prova: Por defini¢do, sabemos que uma arvore T é um caminho sem ciclos. Suponha,
por absurdo, que exista ao menos dois caminhos distintos em T que unam v; e v;, Vértices
quaisquer desta arvore.

Seja v, 0 primeiro vértice onde os dois caminhos se separam. Como 0s dois caminhos
possuem wv;, entdo existe a0 menos um v, entre v; e v; onde 0s dois caminhos voltam a se
encontrar (na melhor das hipéteses, v, = v;).

Porém isso ¢ um absurdo, pois acabamos de encontrar um ciclo nesta arvore. o

Além deste teorema, convidamos os professores e alunos mais empenhados a encontrar,
no apéndice deste trabalho, um teorema o qual exibe diferentes defini¢des do que é uma arvore,
onde demonstramos que uma arvore também pode ser identificada como um grafo T que é
minimalmente conexo, i.e. T é conexo mas T — e € desconexo para qualquer aresta e € T, e
que, também, T € maximalmente aciclico, i.e. T ndo contém ciclos, mas T + v;v; contém, para

quaisquer dois Vvértices v;, v; ndo adjacentesem T.
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3 O PROBLEMA DO CAMINHO MAIS CURTO

No mundo complexo e interconectado em que vivemos, a eficiéncia é fundamental para
otimizar recursos, economizar tempo e reduzir custos. Um dos problemas mais universais que
surgem em diversos aspectos da vida diaria é o Problema do Caminho Mais Curto: encontrar a
rota mais eficiente entre dois pontos. Esse problema nédo é apenas um conceito matematico
abstrato, mas tem aplicagdes concretas que impactam diretamente nosso dia a dia, nossas
indUstrias e até a economia global.

Considere um cenério simples: planejar o trajeto para o trabalho pela manha. Pode
parecer uma questdo trivial, mas ao perguntar "Qual € o caminho mais rapido para chegar ao
trabalho?", estamos lidando diretamente com o problema do caminho mais curto. A
complexidade aumenta quando se consideram condi¢Ges de transito em tempo real, vias
fechadas ou a necessidade de fazer varias paradas ao longo do percurso. Ser capaz de determinar
a rota mais eficiente pode resultar em economia de tempo, reducéo de estresse e menor consumo
de combustivel, beneficios que sdo importantes para qualquer pessoa que enfrenta o transito
nas reas urbanas.

Vislumbrando exemplificar o problema do caminho mais curto, algumas situacfes
foram criadas com varias especificidades. Dentre elas, podemos citar o Problema do Carteiro

Chinés e o Problema do Caixeiro Viajante, que exemplificam algumas questdes reais.

3.1 PROBLEMA DO CARTEIRO CHINES

Imagine um carteiro que precisa percorrer todas as ruas de um bairro para entregar
correspondéncias, e ele quer fazer isso no menor tempo possivel, sem precisar passar por uma
rua mais de umavez, a ndo ser que seja absolutamente necessario. Este é o Problema do Carteiro
Chinés: encontrar 0 menor circuito que percorre todas as arestas de um grafo (representando
ruas) pelo menos uma vez. Note que ha similaridade deste problema com o encontrado por
Euler na cidade de Konigsberg. Na pratica, a solugdo para este problema ajuda a otimizar rotas
de servicos de entrega, coleta de lixo, ou qualquer situacdo em que seja necessario cobrir todas

as conexoes de uma rede.

3.2 PROBLEMA DO CAIXEIRO VIAJANTE

Outra variante é o Problema do Caixeiro Viajante, que se refere ao desafio de encontrar

0 caminho mais curto que passa por um conjunto de cidades (vértices) exatamente uma vez e
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retorna a cidade de origem. Este problema é de grande importancia em logistica e planejamento
de rotas, onde o objetivo é minimizar custos e tempo ao planejar viagens, entregas ou inspec¢des
em vaérias localidades. Segundo Gé [10], a complexidade desse problema cresce
exponencialmente com o aumento do numero de cidades, fazendo com que novas estratégias
para a resolucgéo deste problema sejam elaboradas.

Esses problemas ilustram a aplicagdo prética e a complexidade do problema do caminho
mais curto em diferentes contextos do mundo real. O desenvolvimento de algoritmos eficientes,
como o algoritmo de Dijkstra para rotas com menor custo e as técnicas para abordar o Problema
do Caixeiro Viajante e o Problema do Carteiro Chinés, facilitam a maneira como enfrentamos

esses desafios.
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4 O ALGORITMO DE DIJKSTRA

Segundo Barros [3], como resultado dos esforgos para solucionar o problema do
caminho mais curto, o holandés Edsger Dijkstra, em 1959, prop6s um algoritmo, funcional para
grafos ponderados com pesos ndo negativos, para encontrar nao somente 0 caminho mais curto
entre dois vértices em um grafo, mas o caminho mais curto entre um vertice e todos 0s outros
vértices do referido grafo.

Este algoritmo funciona de maneira bastante intuitiva. Imagine que vocé estd em um
ponto inicial em um grafo e deseja encontrar o caminho mais curto para todos 0s outros pontos.
Vocé deve passar por todos 0s outros vértices sempre procurando o caminho menos custoso
para visitar primeiro, fazendo assim com que poupe esforcgos para néo recalcular a rota completa
todas as vezes.

Para isso, apos definir o vértice inicial, utilizaremos uma tabela que terdo as seguintes
informacdes: Os vértices do grafo, o custo para chegar a um determinado vértice, o veértice
predecessor, e a situacdo do vértice (visitado ou ndo visitado).

O Vértice inicial deve possuir custo 0, visto que ndo ha esforco empenhado para
movimentacdo no grafo. Os demais vértices, enquanto ndo forem analisados, possuem seu custo
definindo como oo e substituiremos sempre que encontrarmos um caminho cujo peso seja
menor. Além disso, a situacao do vértice inicia como “ndo visitado” e s passa a ser “visitado”
caso ja tenhamos analisado todas as possibilidades de caminho deste vértice.

Veja abaixo como podemos utilizar o algoritmo em um grafo ponderado:

Figura 17 - Exemplo de grafo ponderado

Fonte: Autoria Propria

Primeiro, escolhemos o vértice que queremos encontrar a arvore de menores caminhos.

Vamos iniciar pelo vértice A.
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Tabela 1 - Tabela inicial do Algoritmo de Dijkstra

Vértice A B C D E

Custo 0 0 ol 0 00

Predecessor - - - - -
Situacéo Visitado Né&o visitado Né&o visitado N&o visitado Nao visitado

Fonte: Autoria Propria
Agora, devemos analisar os caminhos diretos que existem entre o vértice A e seus
vizinhos. Dessa maneira, w(AB) = 2 <o e w(AC) = 7 <oo, portanto devemos substituir os

valores na tabela e alterar o predecessor destes vértices.
Tabela 2 - Segundo passo do Algoritmo de Dijkstra

Vértice A B C D E

Custo 0 2 7 o o0

Predecessor - A A - -
Situacdo Visitado N&o visitado  Nao visitado N&o visitado Na&o visitado

Fonte: Autoria Propria

Em continuidade, devemos analisar agora o veértice de menor custo analisado até entéo.
Desta maneira, devemos percorrer em dire¢do ao vertice B ¢ mudar sua situagdo para “visitado”.

O vértice B possui 3 vizinhos ainda ndo visitados, como saimos do vértice A e estamos
utilizando o vértice B como passagem, devemos calcular o custo do caminho de A até os vértices
como a soma dos custos de cada aresta. Entdo vamos atualizar estas novas informacdes. Temos:

w(B(C) = 3 <7 = devemos analisar o caminho P = A, B, C.

w(4,B,C) =w(AB) + w(BD) =2+ 3 =5, logo o caminho mais curto para C é
passando por B.

w(BD) = 6 <o = w(A,B,D) = w(AB) + w(BD) = 2+ 6 = 8.

w(BE) =5<o0 = w(4,B,E) =w(4B) + w(BE) =2 +5=17.

Atualizando a tabela temos:

Tabela 3 - Terceiro passo do Algoritmo de Dijkstra do Grafo da figura 3

Vertice A B C D E

Custo 0 2 5 8 7

Predecessor - A B B B
Situagéo Visitado Visitado N&o visitado  N&o visitado  Nao visitado

Fonte: Autoria Propria
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Seguindo o Algoritmo, vamos analisar o proximo vértice de menor custo ainda nédo
visitado, que é o vértice C, mudando sua situagdo para “visitado”. O vértice C possui apenas 1
vizinhos com situac¢do “ndo visitado”, vamos analisar o caminho de A até este vértice através
de C.

w(CD) = 2 < 8 = devemos analisar o caminho P = A4, B, C, D.
w(4,B,C,D) =w(4,B,C) +w(CD)=5+2=17,

Como 7 < 8, atualizamos o custo e o predecessor de D na tabela.
Tabela 4 - Quarto passo do Algoritmo de Dijkstra do Grafo da figura 3

Vertice A B C D E

Custo 0 2 5 7 7

Predecessor - A B C B
Situagéo Visitado Visitado Visitado N&o visitado  Na&o visitado

Fonte: Autoria Propria
Como possuimos agora dois vértices ndo visitados que possuem 0 mesmo custo,
podemos escolher arbitrariamente entre eles. Decidimos escolher analisar o vértice D, alterando
sua situagdo. Dessa maneira, resta apenas um vértice com situacao “nao visitado”.

w(DE) = 4 < 7 = devemos analisar o caminho P = A,B,C, D, E.
w(4,B,C,D,E) =w(4,B,C,D) + w(DE) =7+ 4 =11, como w(4,B,C,D,E) >

w(4, B, E), entdo mantemos o valor anterior para o custo do caminho.
Tabela 5 - Quinto passo do Algoritmo de Dijkstra do Grafo da figura 3

Veértice A B C D E

Custo 0 2 5 7 7

Predecessor - A B C B
Situagéo Visitado Visitado Visitado Visitado N&o visitado

Fonte: Autoria Propria

Agora vamos visitar o ultimo vértice restante, porém como néo ha mais veértices a serem

analisados, apenas mudamos a situacdo de E e finalizamos a tabela.
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Tabela 6 - Sexto passo do Algoritmo de Dijkstra do Grafo da figura 3

Vértice A B C D E

Custo 0 2 5 7 7

Predecessor - A B C B
Situacéo Visitado Visitado Visitado Visitado Visitado

Fonte: Autoria Propria

Assim, ao lermos a tabela, sabemos o custo total para chegar a determinado veértice
partindo do Vvértice inicial, neste caso, o vértice A. Além disso, também sabemos o caminho que
foi tracado até chegar a este vértice, através de seu predecessor e, também, como sabemos o
predecessor de todos os vértices, basta fazer o caminho inverso para descobrir todo o caminho
percorrido para chegar ao vertice desejado.

Pode-se formalizar o algoritmo de Dijkstra da seguinte maneira: Dado um grafo
ponderado G = (V,E) com fungdo de peso w: E — R,,, € um Vvértice inicial s€V, o
algoritmo de Dijkstra encontra 0 menor caminho de s para todos 0s outros vértices de G.

Para iniciar, define-se & (s, v) como a menor distancia entre os vértices s e v. Também,
para cada vértice, defina v € V, d(v) = oo (distancia inicial) e d(s) = 0. Além disso, deve-se
criar dois conjuntos de apoio para o algoritmo, um conjunto nao vazio Q = V de vértices ainda
ndo visitados e um conjunto vazio S para armazenar 0s Vértices cujas menores distancias ja
foram determinadas.

Dessa maneira, 0 processo iterativo deve funcionar enquanto Q # @ (Q ainda nédo esta
vazio). Para iniciar, selecione um vértice u € Q tal que d(u) seja minimo. Apos isso, remova
u de Q e adicione u ao conjunto S. Para cada vértice v € V adjacente a u, se d(v) > d(u) +
w(u,v), entdo d(v) = du) + w(u,v).

Desta maneira, a distancia d(v) armazenada para cada veértice v sera a menor distancia
do vértice s até v. Porém, é preciso garantir matematicamente que esta correcdo na distancia
valera para todas as iterages, ou seja, que d(v) = &(s, v). E possivel provar isso por inducéo
da seguinte maneira:

No inicio do algoritmo, apenas o Vértice s estd em S, e d(s) = 0. Para todos 0s outros
vertices, d(v) = oo, 0 que indica que ainda n&o foram visitados.

Suponha que, apoés k iteracOes, para todo v € S, d(v) é a menor distancia do vertice s
ao vértice v, entdo 5(s,v) = d(v) = d(u) + w(u, v). Agora & preciso provar que para um

vertice u, 0 proximo vértice selecionado, d(u) = §(s,u) também é valido.
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VVamos supor, para obter uma contradicédo, que d(u) > §(s, u). Isso significa que existe
um caminho mais curto P de s a u com §(s,u) como comprimento total. Se P ndo passa por
nenhum Vvértice de S antes de chegar a u, isso contradiz a defini¢cdo de d(u) como a menor
distancia entre s e u entre todos os vertices em @, pois todos 0s menores caminhos entre s e
todos os vértices anteriores a u ja foram calculados e estes vértices estdo em S.

Agora, suponha, também por contradi¢do, que P passa por um vertice v € S antes de
chegar a u. Seja P = (s, ..., v,u). Como v € S e pela hipotese de inducdo d(v) = §(s,v),
temos que §(s,u) = 6(s,v) + w(v,u). Pela maneira como o algoritmo de Dijkstra armazena
as informacdes, quando o veértice v foi visitado, o valor de d(u) foi atualizado como d(u) <
dw) +w,u) =46(s,v) + w(v,u) = 8(s,u).

Mas isso contradiz a suposi¢cdo de que d(u) > &(s,u). Portanto, tem-se que é
verdadeira a afirmacgéo d(u) = §(s,u). Dessa maneira, pode-se aplicar o algoritmo de Dijkstra
com seguranga matematica.

Além de ser uma ferramenta teérica importante, o algoritmo de Dijkstra tem aplicagdes
praticas no mundo moderno, especialmente em sistemas de navegacao e planejamento de rotas.
Por exemplo, ao tracar o caminho mais curto entre duas localizagcbes em um aplicativo de
carona, o algoritmo pode ser usado para determinar a rota mais rapida, levando em consideracéo

fatores como transito, bloqueios de vias e desvios necessarios.
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5 APLICACAO DO ALGORITMO DE DIJKSTRA EM PROBLEMAS
COTIDIANOS SOBRE CAMINHOS OTIMIZADOS

O algoritmo de Dijkstra é amplamente utilizado em diversos campos que exigem a
otimizacdo de rotas e caminhos minimos. Sua aplicacdo abrange desde o planejamento de
evacuacoes até a logistica de transporte de mercadorias. A seguir, sdo destacados exemplos de

suas aplicagOes préaticas, com base em estudos académicos recentes.
5.1 OTIMIZAC}AO DE ROTAS EM SISTEMA DE DELIVERY

Em 2023 Cavalcante (ver [6]) mostra como o algoritmo de Dijkstra foi aplicado para
otimizar rotas de sistemas de entrega delivery na cidade de Russas, Ceara. Utilizando o conceito
de grafos, o estudo buscou aprimorar a eficiéncia das rotas de entrega, levando em consideracao
fatores como condicdes viarias, presenca de seméaforos e iluminacgéo das vias. O grafo foi gerado
a partir de cruzamentos e ruas do centro comercial da cidade, e, com base em entrevistas
realizadas com entregadores locais, foram atribuidos pesos adicionais as arestas, considerando
elementos como seméaforos sequenciais, ruas mal iluminadas e vias em mas condigdes.

O uso do algoritmo de Dijkstra com essas ponderacdes adicionais permitiu que o sistema
evitasse rotas problematicas e gerasse rotas mais eficientes, resultando em uma melhoria
significativa no tempo de entrega e aumento na seguranca dos entregadores. Ao adaptar o
algoritmo para considerar variaveis locais, o estudo demonstrou como o algoritmo de Dijkstra
pode ser aplicado para resolver problemas praticos em pequenas cidades, oferecendo uma
solucdo robusta e adaptada ao contexto especifico de Russas.

5.2 SEGURANCA E PLANEJAMENTO DE EVACUACAO

Outra aplicacdo crucial do algoritmo de Dijkstra é em cenarios de emergéncia. Silva
(ver [19]) utilizou o algoritmo para otimizar rotas de evacuagdo em uma refinaria hipotética,
simulando cenarios de nuvem toxica. O estudo demonstrou que o uso do algoritmo pode
minimizar o tempo de evacuacéo e o risco individual durante o trajeto, oferecendo uma solucéo
eficaz para o planejamento de emergéncias em areas de alto risco. Essa abordagem é
especialmente importante na industria petroquimica, onde o planejamento adequado de
evacuacdo pode salvar vidas (SILVA, 2017).

Além destes problemas ja bem documentados e analisados, também pode-se citar

exemplos de situagdes vivenciadas pelos estudantes rotineiramente.
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5.3 PLANEJAMENTO DE ROTAS ESCOLARES

Um dos problemas mais comuns que os estudantes enfrentam é a escolha do melhor
trajeto para ir a escola ou a outros locais importantes, como casas de amigos, clubes ou locais
de estudo. Imagine que um estudante utiliza o transporte publico ou mesmo uma bicicleta para
se deslocar até a escola e deseja encontrar o caminho mais rapido ou mais curto. Nesse contexto,
as ruas e avenidas da cidade podem ser modeladas como um grafo, onde os pontos de interesse,
como a escola e outros destinos, correspondem aos Vertices, e as ruas que conectam esses pontos
sdo as arestas ponderadas pelas distancias ou pelo tempo de deslocamento.

Por exemplo, o estudante mora no ponto A, e a escola esta no ponto E. Outras possiveis
paradas no caminho, como a casa de um colega (ponto B) ou a praca (ponto C), também s&o
vértices no grafo. As arestas entre esses vértices podem ser representadas pelas ruas que
conectam esses locais, e 0 peso dessas arestas pode ser o tempo estimado de viagem em
minutos. Utilizando o algoritmo de Dijkstra, o estudante pode calcular o caminho mais curto de
sua casa (A) até a escola (E), considerando as diferentes opc¢des de trajeto. O algoritmo pode

ajudar a evitar congestionamentos ou escolher rotas com menos tempo de viagem.
5.4 ESCOLHA DE ROTAS EM APLICATIVOS DE CARONA

Outra aplicacéo direta do algoritmo de Dijkstra no cotidiano dos estudantes é o uso de
aplicativos de carona, como Uber ou 99, que sdo amplamente utilizados para deslocamento.
Esses aplicativos utilizam algoritmos semelhantes e mais robustos para calcular a rota mais
eficiente entre o ponto de partida e o destino, considerando fatores como transito, bloqueios de
ruas e a distancia.

Imagine que o grafo abaixo é uma representacdo de uma localidade onde o estudante

vive e ele esta em sua casa solicitando uma carona através de um desses aplicativos.

Figura 18 - simulacdo de vizinhanca

Fonte: Autoria propria
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Assim, se um estudante solicita uma carona de sua casa até um evento esportivo no
ponto G, entéo durante o trajeto, 0 motorista pode precisar passar por outros pontos de interesse
como um shopping (ponto F) ou uma estacao de metrd (ponto D). O algoritmo de Dijkstra pode
ser utilizado para determinar o caminho mais eficiente, levando em consideragéo o transito ou

a necessidade de passar por esses pontos.
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6 POR QUE ENSINAR TEORIA DOS GRAFOS NO ENSINO MEDIO?

De maneira simples, entende-se que a matematica na escola (principalmente no Ensino
Médio), por diversas vezes, se distancia da vida do aluno. Um dos principais motivos para o
investimento em tempo e trabalho da teoria de grafos para o Ensino Médio ¢é tentar retornar a
disciplina para um local de relevancia no cotidiano préatico do estudante. Também em virtude
disso, Baldino [1] acredita que é necessario buscar metodologias diferentes das
tradicionalmente utilizadas em sala de aula para o processo de aprendizagem da matematica.

Segundo Pavanello [14], dois dos principais motivos para que a matematica seja
ensinada na escola é que, primeiro, ela desenvolve o raciocinio e, segundo que ela esta presente
no cotidiano. Tendo isso em vista, um dos grandes questionamentos dos alunos de Ensino
Médio em relacdo a matematica que é ensinada nesta fase educacional é sobre a utilizacdo em
suas vidas préaticas dos conhecimentos desenvolvidos em sala de aula. H& um sentimento de
distanciamento entre a matematica ¢ a “vida real” na percep¢do dos estudantes, tal percepcéo
os leva a um estado de desmotivacdo em aprender matematica.

Com isso em mente, se vé que os Parametros Curriculares Nacionais (Brasil, 1998)
tracam como objetivo do Ensino Médio no Brasil a combinacéo entre as reas do conhecimento
e a pratica deles no dia a dia, fazendo com que o que se aprende na escola tenha significado e
valor para o discente também fora do ambiente académico, o levando a integrar seus
desenvolvimentos cognitivos com as necessidades de sua sociedade, buscando o aprendizado
continuo em todas as esferas de sua vida.

No contexto educacional brasileiro, a Base Nacional Comum Curricular (BNCC)
estabelece diretrizes basicas com relacdo a educacdo completa do aluno de modo a promover a
formagé&o de habilidades interdisciplinares. Olhando para tais contextos, surge a necessidade de
incluir o conceito de Teoria dos Grafos no curriculo do Ensino Médio, ndo apenas por seu valor
teorico inerente, mas porque forneceria aos alunos do Ensino Médio ferramentas eficazes para
lidar com problemas da vida real. A justificativa e a postura apreciativa em relagédo a incluséo
deste tema no planejamento curricular tém muito a ver com o exercicio pratico de resolver o
problema do caminho mais curto por meio das aplica¢des do algoritmo de Dijkstra, que estd em
linha com os objetivos da BNCC.

A BNCC destaca a importancia de desenvolver nos estudantes competéncias
gerais, como o raciocinio légico, a capacidade de resolver problemas complexos e a aplicacao
de conceitos matematicos em situagdes cotidianas. Em suas primeira e quarta competéncias

especificas de matematica, respectivamente, a BNCC cita:
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“Utilizar estratégias, conceitos e procedimentos matematicos para interpretar
situagBes em diversos contextos, sejam atividades cotidianas, sejam fatos das Ciéncias
da Natureza e Humanas, ou ainda questdes econdmicas ou tecnologicas, divulgados
por diferentes meios, de modo a consolidar uma formagao cientifica geral.” (BNCC,
2018, pag. 523)

“Compreender e utilizar, com flexibilidade e fluidez, diferentes registros de
representacdo matematicos (algébrico, geométrico, estatistico, computacional etc.), na
busca de solucdo e comunicacdo de resultados de problemas, de modo a favorecer a

construgdo e o desenvolvimento do raciocinio matematico.” (BNCC, 2018, pag. 523)

A Teoria dos Grafos da aos alunos a base necessaria para modelar e solucionar uma
ampla variedade de problemas que eles podem encontrar no cotidiano. Esses problemas podem
se estender desde a otimizacédo de rotas e o planejamento de redes de comunicacéo até a analise
de redes sociais, evidenciando a amplitude e a relevancia atual do tema.

Quando estes conceitos sao abordados sob a perspectiva pratica do algoritmo de
Dijkstra, oferecem aos alunos a oportunidade de explorar a matemética de forma aplicada,
demonstrando como a abstracdo tedrica pode ser utilizada para enfrentar desafios reais. 1sso
reforca a capacidade dos estudantes de perceber a matematica ndo apenas como uma disciplina

académica, mas como uma linguagem universal para a resolucdo de problemas.

6.1 O ALGORITMO DE DIJKSTRA NO PROCESSO DE APRENDIZAGEM NO
ENSINO MEDIO

Como dito anteriormente, em [6] vé-se a necessidade de encontrar novas formas para
ensinar matematica no Ensino Médio, por isso 0 ensino da teoria de grafos, aliada ao algoritmo
de Dijkstra pode ser uma ferramenta essencial para esse objetivo.

O ensino do algoritmo de Dijkstra é especialmente importante quando nos deparamos
com o problema do caminho mais curto, uma questdo que esta presente em diversas areas do
conhecimento e da vida moderna. Esse algoritmo, que permite encontrar 0 caminho mais
eficiente entre dois pontos em um grafo, € uma ferramenta poderosa para abordar algumas
adversidades do cotidiano, como o planejamento de rotas urbanas. Para isto, o algoritmo de
Dijkstra pode ser usado para demonstrar aos alunos como sistemas de navegacgao (como GPS)
determinam o caminho mais rapido entre dois locais, considerando fatores como tempo de
viagem e distancia, para isso, utilizando estas condi¢cdes como 0s pesos das arestas em um grafo

ponderado.
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Além desse, outro exemplo importante é a otimizacdo de rotas, seja de 6nibus, de
entregas de mercadorias ou servicos de emergéncia. Ja no campo das telecomunicagdes, 0
algoritmo de Dijkstra foi utilizado por Barreto [2] para o planejamento e recomposicao das
redes de telecomunicacdes, com o objetivo de garantir a sobrevivéncia da rede frente a falhas e
aumento de demanda. Estas aplicacbes mostram como os conceitos da Teoria dos Grafos se

tornam ferramentas préaticas na infraestrutura social e digital que sustenta 0 nosso mundo.
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7 PROPOSTA DE ABORDAGEM PEDAGOGICA PARA O ENSINO DO
ALGORITMO DE DIJKSTRA DO ENSINO MEDIO

7.1 PUBLICO ALVO

Este trabalho tem como intuito maior trazer o conhecimento da Teoria dos Grafos para
alunos do Ensino Médio, preferencialmente do terceiro ano, que ja possuem um conhecimento
basico de matemaética discreta e conceitos fundamentais de algebra e geometria, porém pode

ser adaptado para 0 ensino em outras turmas.

7.2 MATERIAIS NECESSARIOS

Com o intuito de ser um aprendizado mais interativo e dinamico, tornando o aluno o
ator principal do processo de aprendizagem, indica-se a utilizagdo de mapas impressos da
vizinhanca da escola, pinos ou adesivos para marcar pontos de referéncia e esquinas, imagens
(impressas ou digitais) de grafos, régua e barbante para medir o peso das arestas, lapis e papel
para desenhar os grafos, computadores com acesso a ferramentas de visualizacéo grafica, como

0 GeoGebra, opcionalmente.

7.3 ETAPAS DA PROPOSTA

7.3.1 Apresentacdo do problema do caminho mais curto

Primeiramente, divida a turma em grupos, de acordo com a necessidade da turma
(aconselha-se grupos com ndo muitos integrantes, para que a experiéncia seja vivenciada de
maneira integral por todos) e apresente aos alunos o mapa impresso das regides circunvizinhas
a escola, pedindo para que eles marquem com 0s pinos ou adesivos as esquinas e principais
pontos de referéncia. Peca para que eles também mecam as medidas de distancia entre os pontos
marcados. Se houver curvas no trajeto, os alunos devem encontrar uma maneira de conseguir
medir (seja por meio de aproximacdes poligonais, utilizando o barbante ou outro meio).

Logo apds, pergunte a eles qual seria 0 caminho mais curto entre dois pontos quaisquer
e como eles poderiam garantir que este €, realmente, 0 caminho mais curto. Aproveite para
enunciar a importancia de encontrar o caminho mais curto (ou menos custoso) em diversas areas

da vida cotidiana.
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Ap6s um periodo de discussdo a respeito do tema, apresente que hd uma ferramenta
matematica capaz de garantir a existéncia de um caminho mais curto e, também, de encontré-
lo, ndo somente entre estes dois pontos, mas entre o ponto inicial e qualquer outro ponto

desejado do mapa.

7.3.2 Introducao Tedrica

Ap0s os alunos entenderem o problema, deve-se, primeiramente, introduzir os conceitos
teodricos da Teoria dos Grafos, definindo para os alunos os conceitos de vértices e arestas com
exemplos do cotidiano, apresentando, apds, os diversos tipos de grafos e suas definicdes.
Atentar para os grafos ponderados e como eles podem se assemelhar aos mapas que estéo
impressos. Além disso, recomenda-se mostrar algumas situac@es da vida real que podem e ja
foram associadas a um grafo, como o problema das pontes de Kdénigsberg, dentre outros.

Por fim, anuncie a ferramenta que pode auxiliar a solucionar o problema proposto: O
Algoritmo de Dijkstra. Neste momento, deve-se enunciar o Algoritmo de Dijkstra e fazer uma
explicacdo sobre o funcionamento do algoritmo e de sua aplicacdo para resolver o problema do

caminho mais curto.

7.3.3 Aplicacdo Prética

7.3.3.1 Construcédo do Grafo:

Apos a discussdo tedrica sobre grafos e sobre o Algoritmo de Dijkstra, os alunos devem
modelar e representar 0 mapa e suas marca¢gdes como um grafo, com os vértices sendo as
esquinas e pontos de referéncia e as arestas sendo as ruas que os conectam. Os pesos das arestas

serdo as distancias medidas nos mapas (um modelo simplificado).

7.3.3.2 Aplicacéo do Algoritmo:

Cada grupo deve se colocar como um motorista de aplicativo de caronas e buscar o
melhor caminho possivel (0 menos custoso) para sair da escola e ir a um determinado ponto
(escolhido pelo professor), pois recebeu um pedido de carona. Para isso, pergunte como o
Algoritmo de Dijkstra poderia os ajudar e os oriente a utilizar o algoritmo para encontrar o

menor caminho até este ponto.



40

7.3.4 Discussao dos Resultados

Com base nas ideias de Pavanello [14] sobre a avaliagdo em matematica, que deve
refletir a maneira pedagogica na forma como a matematica é aplicada em sala de aula, e visar
o desenvolvimento critico do aluno. Segundo Pavanello [14], os alunos ndo apenas devem saber
executar o procedimento, mas, principalmente, devem construir o conhecimento de maneira
que demonstrem uma compreensdo do raciocinio matematico e de como ele se relaciona com
sua vida, sendo capaz de, a partir dai, fazer abstracBes que culminem na matematica como a
conhecemos geralmente.

Considerando tal perspectiva, apés a confeccao dos grafos e aplicacdo do algoritmo, o0s
grupos apresentam seus grafos e os caminhos mais curtos encontrados e discutem eventuais
diferencas nos resultados. A partir dai, elabore algumas situacoes:

1) Partindo da escola, quais seriam 0s menores caminhos para todos os pontos do

mapa?

2) Em uma rua (necessaria para 0 menor caminho entre a escola e o ponto escolhido)
um buraco se formou e ela precisou ser interditada para a manutencéao da prefeitura.
A partir de agora, qual serd o “novo” caminho mais curto para sair da escola e chegar
ao ponto escolhido?

3) No pedido de carona, havia uma parada solicitada para um determinado ponto (fora
do caminho mais curto), determine o menor caminho possivel para chegar ao ponto
terminal da carona, passando pelo ponto de parada.

4) Pergunte o que aconteceria se houvesse varios caminhos com o mesmo peso. Como
0 algoritmo de Dijkstra lidaria com isso? Leve os alunos a discutirem a necessidade
de critérios adicionais para desempate, como preferir rotas com menos paradas.

5) Proponha a criagdo de um “atalho” no mapa, como uma nova estrada ou via mais
rapida, e pergunte se ele realmente oferece uma vantagem significativa no célculo
do caminho mais curto. Os alunos podem discutir como a inclusdo de novas rotas
afeta o grafo original.

6) Discuta com os alunos se haveria diferenga no calculo do caminho mais curto se
todos os pesos fossem retirados das arestas. A partir dai, como calculariamos o novo
caminho? Peca para que eles encontrem, se for necessario, um novo caminho mais

curto.
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Ap0s essas perguntas, a depender de como a sala estaria desenvolvendo o raciocinio

algoritmico, o professor poderia aprofundar a respeito dos temas com outras perguntas

envolvendo grafos direcionais, por exemplo:

1)

2)

3)

4)

Explore como a aplicacdo do algoritmo muda se as ruas forem unidirecionais ou
bidirecionais. Pec¢a aos alunos para adaptar seus grafos conforme essas condigdes.
Em algumas cidades, ruas que antes eram de médo dupla podem se tornar de méao
Unica. Peca aos alunos para modificar o grafo original, transformando algumas
arestas bidirecionais em unidirecionais, e verificar como isso altera o caminho mais
curto. Pergunte se, em certos casos, a mudanca de dire¢do pode causar uma grande
diferenca no tempo ou distancia percorridos.

Algumas vias podem ter restricdes, como proibicdo de caminhdes ou 6nibus.
Transforme essas vias em arestas direcionadas ou blogueadas para certos tipos de
veiculos, e peca aos alunos para calcular o caminho mais curto para diferentes tipos
de transporte, considerando essas restrigdes.

Introduza a ideia de um grafo que muda ao longo do tempo. Por exemplo, em um
determinado horario, uma via unidirecional pode voltar a ser bidirecional. Proponha
uma simulagdo em que o caminho mais curto é recalculado varias vezes ao longo do
dia, refletindo essas mudancas que podem ocorrer nas cidades e precisa ser calculado
pelos aplicativos de carona. O objetivo seria avaliar como a dire¢cdo de ruas

influenciaria trajetos em diferentes momentos.



8 CONCLUSOES E PERSPECTIVAS

Esta dissertacdo demonstrou como a Teoria dos Grafos e, em particular, o Algoritmo de
Dijkstra podem ser poderosas ferramentas pedagodgicas no Ensino Médio, conectando a
matematica a situacdes praticas e cotidianas. Ao abordar o problema do caminho mais curto e
utilizar aplicativos de carona como exemplo, foi possivel criar uma ponte entre a abstracdo
matematica e problemas do mundo real, mostrando aos alunos como a matematica pode ser
aplicada de maneira tangivel e util.

O ensino da matematica no Brasil ainda enfrenta o desafio de tornar-se mais atrativo e
relevante para os estudantes, que muitas vezes percebem a disciplina como distante de suas
vidas diérias. Ao integrar conceitos da Teoria dos Grafos no curriculo do Ensino Médio,
atendendo as diretrizes da BNCC, os educadores podem promover o desenvolvimento de
competéncias cruciais, como o raciocinio légico, a resolucdo de problemas complexos e o
pensamento critico. Além disso, o uso do Algoritmo de Dijkstra possibilita que os alunos vejam
a matematica como uma ferramenta ativa na solucdo de problemas do cotidiano, como o
planejamento de rotas, a logistica de transporte e até a navegacao por aplicativos de carona.

A proposta pedagdgica desenvolvida nesta dissertacdo destaca a importancia de
metodologias interativas e préaticas, nas quais os alunos desempenham um papel ativo no
processo de aprendizagem. Ao modelar situagdes reais como grafos e aplicar o Algoritmo de
Dijkstra para resolver problemas, os estudantes ndo apenas compreendem os conceitos tedricos,
mas também experimentam a matematica de uma forma concreta e envolvente.

Em termos de perspectivas futuras, este trabalho sugere a expansdo do uso da Teoria
dos Grafos para outras areas do Ensino Médio, ampliando o escopo de aplicacbes préaticas e
interdisciplinaridade com outras disciplinas, como geografia e fisica.

Assim, conclui-se que a aplicacdo de uma abordagem prética e significativa, como a
proposta nesta dissertacdo, ndo apenas melhora a aprendizagem da matemaética, mas também
motiva os alunos a explorarem novos conceitos e a utilizarem o conhecimento adquirido em
suas vidas. A matematica, ao ser apresentada como uma ferramenta para solucionar problemas

reais, pode ser ressignificada e ganhar novo valor no contexto educacional moderno.
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APENDICE A —

SejaT = (V,E) um grafo, onde V = {v,,v,, V3, Vy,.... v} € 0 cOnjunto de vértices do
grafoe E = {e;,e5,€3,€4,.... €1}

Podemos Definir arvore como um grafo conexo que ndo possui ciclos.

Teorema 4: As seguintes afirmativas sdo equivalentes para um grafo T':

(i) T éumaérvore;

(it)  Quaisquer dois vértices em T séo unidos por um Unico caminho em T’

(iti) T é minimalmente conexo, i.e., T € conexo, mas T —e é desconexo para
qualquer arestae € T;

(iv) T € maximalmente aciclico, i.e., T ndo contém ciclos, mas T + v;v; contém,
para quaisquer dois vértices v;, v; ndo adjacentes em T.

Vamos provar a equivaléncia de cada uma delas:

() - (ii):

Por definigcdo, sabemos que uma arvore T € um caminho sem ciclos.

Suponha, por absurdo, que exista ao menos dois caminhos distintos em T que unam
Vi e vj.

Seja vy, 0 primeiro vértice onde os dois caminhos se separam.

Como os dois caminhos possuem wv;, entdo existe a0 menos um v, onde os dois
caminhos voltam a se encontrar (na melhor das hipéteses, v, = v;).

Porém isso € um absurdo, pois acabamos de encontrar um ciclo nesta arvore.

(i) - (iii):

Seja T um grafo em que quaisquer dois vértices sdo unidos por um Gnico caminho P,
assim T é conexo.

Sejam v;, v, Vértices vizinhos e e a aresta que os une.

Considerando T — e, ndo ha mais conexdo entre v; e vj,.

Logo, qualquer aresta e retirada de T o torna desconexo.

(iii) = (iv):

Seja T um grafo minimalmente conexo.

Lema 1: Se uma aresta e € E(G) estd em um ciclo, entdo G — e tem 0 mesmo numero

de componentes conexas de G.
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Vamos supor que uma aresta e estd em um ciclo no grafo G, mas o grafo G — e ndo tem
0 mesmo numero de componentes conexas que G.

Vamos considerar que G — e tem mais componentes conexas do que G.

Isso implicaria que a remocdo da aresta e de G teria dividido uma componente conexa
em duas ou mais.

Todo caminho que precisasse de e poderia ser tragcado por um caminho que faz uma
volta no circuito, evitando e.

Isso também contradiz a suposicdo inicial de que G — e tem mais componentes conexas
do que G.

Assim, podemos concluir que se uma aresta estd em um ciclo, entdo G — e tem 0 mesmo
namero de componentes conexas que G. o

Pelo Lema 1, como T é minimalmente conexo, logo T ndo pode possuir ciclos.

Sejam v;, v, Vértices quaisquer desse grafo.

Como T é minimalmente conexo, logo existe caminho que une v; e vj,.

Vamos adicionar uma nova aresta ao grafo para unir os dois vértices.

Agora temos dois caminhos completamente distintos que unem os dois veértices ao grafo.

Isso é um ciclo, logo, o grafo é maximalmente aciclico.

(iv) = (i):

Seja T um grafo maximalmente aciclico, ou seja, T ndo contém ciclos, mas qualquer
adicdo de uma aresta entre dois vértices ndo adjacentes criara um ciclo.

Queremos mostrar que T € uma arvore, ou seja, um grafo conexo sem ciclos.

Para provar que T é conexo, podemos usar a reducdo ao absurdo.

Suponha que T n&o seja conexo.

Isso significaria que existem dois vertices v;, v; em T que n&do estdo conectados por um
caminho.

No entanto, como T € maximalmente aciclico, adicionar uma aresta entre v; e v;
resultaria em um ciclo. Isso significa que v; e v; ja seriam ligados em T.

Portanto, T deve ser conexo.

Agora, suponha que T contenha um ciclo.

Isso implicaria que T ndo seria maximalmente aciclico, pois teria um ciclo.

Logo, se T é maximalmente aciclico, entdo é uma arvore.

Como (i) — (ii) = (iii) = (iv) = (i), entdo provamos que todas as afirmacdes sdo

equivalentes. o
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