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RESUMO 

 

Este trabalho de conclusão de curso apresenta uma abordagem inovadora para o ensino 

da matemática no Ensino Médio, utilizando a Teoria dos Grafos e o Algoritmo de Dijkstra para 

compreender problemas reais, como a escolha do caminho mais curto em aplicativos de carona, 

Waze, Google mapas, Apple mapas, dentre outros aplicativos semelhantes. O objetivo é tornar 

a matemática mais próxima do cotidiano dos alunos, mostrando como conceitos abstratos 

podem ser aplicados em situações práticas e relevantes. 

A partir da Teoria dos Grafos, os alunos podem modelar problemas como rotas de 

trânsito ou logística, enquanto o Algoritmo de Dijkstra lhes permite encontrar soluções 

eficientes para esses desafios. A proposta pedagógica sugerida inclui atividades interativas com 

mapas e grafos, estimulando os estudantes a participarem ativamente do processo de 

aprendizagem e a enxergarem a matemática como uma ferramenta prática e útil. 

A dissertação conclui que essa metodologia não apenas facilita a compreensão de 

conceitos matemáticos, mas também promove um ensino mais dinâmico e envolvente, 

incentivando os alunos a aplicarem o que aprendem para solucionar problemas reais de forma 

criativa e eficaz. 

 

Palavras-chave: Teoria dos Grafos, Algoritmo de Dijkstra, Ensino Médio, Matemática 

Aplicada, Educação Inovadora. 
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1 INTRODUÇÃO 

Uma das barreiras enfrentadas pelos estudantes do Ensino Médio é a quebra da 

conectividade entre a matemática e o cotidiano. Segundo Souza [20], os primeiros contatos com 

a matemática devem ser factuais e relacionados ao dia a dia do aluno, tornando o aprendizado 

envolvente. No entanto, quando chegam ao Ensino Médio, os estudantes muitas vezes percebem 

a matemática como uma disciplina abstrata e distante, sem propósito prático claro. 

Dessa forma, este trabalho visa reintroduzir essa conexão, utilizando a Teoria dos 

Grafos para compreender problemas cotidianos como o cálculo de rotas otimizadas em 

aplicativos de carona, tema que é altamente relevante no contexto atual de urbanização e 

desenvolvimento tecnológico. Por meio da aplicação do algoritmo de Dijkstra, pretende-se 

oferecer aos alunos uma oportunidade de explorar a matemática de forma aplicada, 

demonstrando como a abstração teórica pode ser usada para resolver desafios reais, como a 

escolha do caminho mais curto entre dois pontos em um mapa. 

Este trabalho está estruturado da seguinte forma: primeiro, discute-se a Teoria dos 

Grafos e suas aplicações práticas. Em seguida, apresenta-se o algoritmo de Dijkstra em detalhe, 

aplicando-o a problemas cotidianos. Finalmente, propõe-se uma abordagem pedagógica para o 

ensino do algoritmo no contexto do Ensino Médio.  

1.1 JUSTIFICATIVA 

De acordo com a Base Nacional Comum Curricular (BNCC), é essencial que os alunos 

desenvolvam competências que lhes permitam interpretar e solucionar problemas do cotidiano 

por meio de ferramentas matemáticas. A Teoria dos Grafos é uma dessas ferramentas, 

oferecendo um modo eficiente de modelar e resolver problemas relacionados à otimização de 

recursos, como a minimização de distâncias e custos. 

Assim, a necessidade de um ensino de matemática mais contextualizado está cada vez 

mais presente no debate educacional. Para Olgin [13]:  

“Para o Ensino Médio, considera-se que, para escolha de temas, é importante 

selecionar os que possibilitam aos estudantes perceberem a sua importância e seu 

impacto na Matemática e na sociedade, conforme as indicações do autor. 

Considerando que uma finalidade da Educação Básica é preparar o estudante para a 

vida em sociedade, para o trabalho, para o aprofundamento dos conhecimentos 

adquiridos, etc.” 
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Também segundo Doll Jr. [8], deve-se escolher os conteúdos a serem tratados no Ensino 

Médio a partir da análise de quatro aspectos, a saber: riqueza, recursão, relação e rigor. Em 

relação a riqueza, o autor trabalha a possibilidade de profundez do assunto, vislumbrando 

interpretações diversas para ele e procurando transformar os agentes da educação, tanto 

professores quanto alunos. 

Já na questão de recursão, para esse autor, o currículo deve prezar por uma comunicação 

intermitente entre os conteúdos que neles existem, podendo sempre haver um ciclo em que um 

conteúdo leve a outro. Dessa maneira, o aluno sempre poderá analisar e refletir sobre os 

conteúdos de maneiras diversas ao longo da jornada escolar. 

Quando Doll Jr. [8] fala a respeito do critério de relações, ele trata a respeito das 

possibilidades de o currículo se conectar, tanto com questões pedagógicas quanto com questões 

culturais dos alunos e da sociedade. 

Em relação ao rigor, ele entende que se deve abordar todas as possibilidades de 

interpretação e buscar, com perseverança, a determinação dos caminhos realizáveis para um 

processo de transformação, tanto do professor quanto do aluno 

Assim, neste trabalho, pretende-se mostrar também que o ensino da Teoria dos Grafos 

no Ensino Médio pode satisfazer tais critérios e oferecer aos estudantes uma abordagem 

inovadora, que promova o engajamento, o pensamento crítico e a aplicação prática dos 

conceitos matemáticos, alinhando-se aos objetivos educacionais atuais e contribuindo para uma 

formação mais completa e interdisciplinar dos alunos. 

1.2 OBJETIVOS 

1.2.1 Objetivo geral 

Demonstrar como a Teoria dos Grafos e, especificamente, o algoritmo de Dijkstra 

podem ser utilizados como ferramentas pedagógicas no Ensino Médio para resolver problemas 

práticos de otimização de rotas. 

1.2.2 Objetivos específicos 

Aplicar a Teoria dos Grafos em situações cotidianas, exemplificando seu uso na 

otimização de rotas simulando uma situação análoga a um aplicativo de carona. 
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Integrar o algoritmo de Dijkstra ao currículo do Ensino Médio, enfatizando sua 

relevância prática e estimulando o pensamento crítico. 

Esclarecer que a matemática não se resume apenas a contas e equações algébricas como 

é, algumas vezes, pensado por alunos do Ensino Médio. 
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2 TEORIA DOS GRAFOS 

2.1 BREVE APANHADO HISTÓRICO 

A Teoria dos Grafos tem origem na busca da solução de um problema que, dentre todos 

os que são trabalhados nesta área, ainda é o mais conhecido, que é o problema das pontes de 

Königsberg. Ele consiste no questionamento feito por Euler se era possível ou não, dentro da 

referida cidade, fazer um passeio por toda ela, começando e terminando no mesmo lugar, 

cruzando cada ponte que existia nesta cidade uma única vez. Nesta cidade havia um rio que a 

cortava, o rio Pregel. Neste rio havia duas ilhas, Kneiphof e Lomse, que eram ligadas à cidade 

por quatro pontes e duas pontes, respectivamente, além de uma ponte que as ligava, como 

mostra a figura a seguir. 

Figura 1 - Representação ilustrativa da cidade de Königsberg 

 

Fonte: Autoria própria 

 

Este problema pode ser modelado utilizando um conjunto de vértices e arestas e 

podemos desenhá-lo da seguinte forma: 

Figura 2 - Grafo modelando o problema das pontes de Königsberg 

 

Fonte: Autoria Própria 

Assim, perceba que basta estudar o grafo porque ele contém todas as informações 

necessárias para resolver o problema das pontes sem a necessidade de mapear geograficamente 
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a cidade, pois ele está representando as ilhas com os vértices A e B (amarelo e rosa, 

respectivamente) e as partes norte e sul da cidade estão correspondidas pelos vértices C e D 

(em verde e marrom), respectivamente. Além disso, as pontes são representadas pelas arestas 

do grafo (em azul).  

Desta maneira, perceba que as pontes que conectam a parte norte do continente e a ponte 

de Kneiphof (𝑝1 e 𝑝3), são representadas também pelas mesmas arestas no grafo. De igual 

modo, todas as outras arestas estão conectadas de acordo com sua respectiva ponte. Portanto, 

um caminho possível para sair da parte norte da cidade e chegar na ilha de Lomse, seria 

utilizando a ponte 𝑝1, para chegar em Kneiphof, depois utilizando a ponte 𝑝2 para chegar à 

parte sul da ilha e, por fim, utilizar a ponte 𝑝7 para chegar à ilha de Lomse. 

Figura 3 - Possível caminho 

 

Fonte: Autoria própria 

O grafo associado a esse caminho (em vermelho) seria:  

Figura 4 - Grafo do Possível caminho 

 

Fonte: Autoria própria 

 Assim, o estudo dos vértices e arestas é suficiente para determinar se é possível ou não 

atravessar todas as pontes uma única vez, como propôs Euler. Deste modo, por vezes, podemos 

reduzir problemas extremamente complexos a algum grafo e estudá-lo de maneira mais 

agradável. 
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2.2 DEFINIÇÕES BÁSICAS 

2.2.1 Grafos e Subgrafos 

2.2.1.1 Grafos 

Utilizando como pressuposto o fundamento estabelecido por Diestel em [7], o autor 

define grafo como o par 𝐺 = (𝑉, 𝐴), em que é satisfeita a relação que os elementos 𝑎 𝜖 𝐴 são, 

também, elementos do conjunto formado por pares dos elementos 𝑣 ∈ 𝑉, ou seja, podemos 

escrever 𝐴 ⊆ [𝑉]2. Assim sendo, os vértices são os elementos 𝑣 ∈ 𝑉 e as arestas são os 

elementos 𝑎 ∈ 𝐴.  

Por exemplo, na figura 2, podemos chamar os pontos A, B, C e D de vértices do grafo. 

Além disso, nota-se que as arestas são: 𝑝1(𝐴, 𝐶), 𝑝2(𝐴, 𝐷), 𝑝3(𝐴, 𝐶), 𝑝4(𝐴, 𝐷), 𝑝5(𝐴, 𝐵), 

𝑝6(𝐵, 𝐶), 𝑝7(𝐵, 𝐷). Note que temos dois pares de arestas que possuem o mesmo par de vértices, 

𝑝1(𝐴, 𝐶), 𝑝3(𝐴, 𝐶) e 𝑝2(𝐴, 𝐷), 𝑝4(𝐴, 𝐷). Sempre que isso ocorre, diz-se que estas arestas estão 

em paralelo. Da mesma maneira, um grafo pode possuir uma aresta em que o par de vértices 

que a define sejam ambos o mesmo vértice. Quando isso acontece, diz-se que esta aresta é um 

laço. 

Já Bondy e Murty, em [4], definem grafo como uma tripla ordenada 𝐺 =

(𝑉(𝐺), 𝐴(𝐺), 𝜓𝑔), onde os elementos desta tripla são o conjunto de vértices do grafo 𝐺, o 

conjunto de arestas do grafo 𝐺 e a função de incidência deste grafo, respectivamente. A função 

de incidência relaciona um par não ordenado de vértices a cada aresta do grafo 𝐺. Por exemplo, 

na figura 2, 𝜓𝑔(𝑝1) = 𝐴𝐶. Se um vértice está presente na relação de incidência de uma aresta, 

logo este vértice é incidente a tal aresta. Em outras palavras, diz-se que um vértice é incidente 

a uma aresta se a aresta o conecta a outro vértice no grafo. Diestel [7] define a incidência de 

maneira semelhante. para ele, um vértice é dito ser incidente a uma aresta se o vértice é um dos 

extremos dessa aresta.  

Segundo os autores, podemos definir alguns tipos de grafos de acordo com suas 

características: 

Grafo simples: Segundo Bondy e Murty [4], grafos simples são aqueles que não 

possuem laços ou arestas em paralelo. Já Diestel [7], define esse tipo de grafo apenas como 

grafo, nomeando os que possuem tais tipos de aresta como Hipergrafos. Neste trabalho, 

adotaremos a definição de Bondy e Murty. 
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Figura 5 - Exemplos de grafos simples 

 

Fonte: Rangel (2002) 

Grafo direcionado (dígrafo): Para Bondy e Murty [4], em um grafo direcionado 𝐷 =

(𝑉(𝐷), 𝐴(𝐷)), o conjunto de arestas 𝐴(𝐷) é um conjunto de pares ordenados de vértices, ou 

seja: 𝐴(𝐷) ⊆ {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉(𝐷)}, esses vértices 𝑢, 𝑣 não são necessariamente distintos. 

Neste caso, a aresta (𝑢, 𝑣) indica que há uma conexão direcionada do vértice 𝑢 para o 

vértice 𝑣. 

Figura 6 - Exemplos de grafos direcionados 

 

Fonte: H3Dema, 2016 

Grafo ponderado: Falando sobre grafo ponderado, Bondy e Murty [2] associa cada 

aresta 𝑒 ∈ 𝐸(𝐺) (ou (𝑢, 𝑣) ∈ 𝐴(𝐺), no caso de dígrafos) a um número real 𝑤(𝑒), que é chamado 

de peso. Este peso pode representar uma medida como distância, custo ou capacidade. Note que 

todo grafo pode ser considerado como ponderado, basta considerar 𝑤(𝑒) = 1 para todo 𝑒 ∈ 𝐸. 

Figura 7 - Exemplo de grafo ponderado 

 

Fonte: Evulpo, 2024 
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Diestel [7] também define a ordem de um grafo 𝐺 como sendo o número de vértices 

neste grafo e escreve-se |𝐺|. Se |𝐺| for um número natural, 𝐺 é um grafo finito, caso contrário, 

é infinito. 

No exemplo prático de um aplicativo de carona, um grafo ponderado pode ser modelado 

pelas ruas de uma cidade (arestas) e seus cruzamentos ou pontos de referência (vértices), onde 

o peso das arestas representa a distância ou o tempo necessário para percorrer cada rua, além 

de circunstâncias que envolvem o tráfego nesta localidade. Ao usar um grafo ponderado, 

podemos calcular qual caminho é o mais eficiente, em termos de distância ou tempo, para ir de 

um ponto A até um ponto B. 

2.2.1.2 Subgrafos: 

De acordo com Diestel [7], um subgrafo 𝐻 de um grafo 𝐺 = (𝑉(𝐺), 𝐴(𝐺)) é um grafo 

cujos conjuntos de vértices e arestas são subconjuntos dos conjuntos de vértices e arestas de 𝐺, 

respectivamente. Ou seja, 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) é um subgrafo de 𝐺 se 𝑉(𝐻) ⊆ 𝑉(𝐺) e 𝐴(𝐻) ⊆

𝐴(𝐺). Além disso, para uma aresta 𝑎𝑖 ∈ 𝐴(𝐻) ⊆ 𝐴(𝐺), os vértices terminais desta aresta devem 

estar presentes em 𝑉(𝐻), ou seja, seja 𝑎𝑖 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝐴(𝐻), então 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐻). 

Figura 8 - Subgrafo 

 

Fonte: Autoria própria 

2.2.2 Incidência e Adjacência 

2.2.2.1 Incidência 

A incidência é a relação entre os vértices e as arestas que os conectam. Um vértice 𝑣 é 

dito ser incidente a uma aresta 𝑒 se 𝑣 é um dos extremos de 𝑒, ou segundo Diestel [7], se 𝑣 ∈ 𝑒. 

Em outras palavras, se a aresta 𝑒 conecta os vértices 𝑢 e 𝑣, então 𝑢 e 𝑣 são incidentes a 𝑒 e 𝑒 é 

incidente a 𝑢 e 𝑣. O autor também define como o conjunto de todas as arestas 𝑒 ∈ 𝐸(𝐺) que 

são incidentes a 𝑣 como 𝐸(𝑣). 
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Uma ferramenta importante para representar essa relação é a matriz de incidência, que 

Bondy Murty [4] trabalha em seu livro. Se 𝐺 é um grafo com 𝑛 vértices e 𝑚 arestas, a matriz 

de incidência de 𝐺 é uma matriz 𝑛 × 𝑚 onde a entrada 𝑎𝑖𝑗 é igual ao número de vezes que o 

vértice 𝑣𝑖 é incidente à aresta 𝑒𝑗.  

Figura 9 - Matriz de Adjacência 

 

Fonte: Hermuche, 2019 

2.2.2.2 Adjacência 

Para Diestel [7], dois vértices 𝑢 e 𝑣 em um grafo 𝐺 são ditos adjacentes se existe uma 

aresta 𝑒 ∈ 𝐸(𝐺) que conecta 𝑢 e 𝑣. A adjacência é uma das relações mais fundamentais em um 

grafo, definindo quando dois vértices são vizinhos diretos.  

A matriz de adjacência é retratada por Bondy e Murty [4] como uma forma comum de 

representar a adjacência em grafos. Se 𝐺 tem 𝑛 vértices, a matriz de adjacência de 𝐺 é uma 

matriz 𝑛 × 𝑛 onde cada entrada 𝑎𝑖𝑗 pode ser definida como o número de arestas que são 

incidentes aos vértices 𝑣𝑖 e 𝑣𝑗  simultaneamente. 

Figura 10 - Matriz de incidência 

 

Fonte: Oliveira e Rangel, 2018 

2.2.3 Graus dos Vértices 
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O grau de um vértice em um grafo, segundo Diestel [7], é o número de arestas incidentes 

a ele. Formalmente, o grau de um vértice 𝑣 é denotado por 𝑑𝐺(𝑣) e é igual ao número de arestas 

que têm 𝑣 como um dos extremos no grafo 𝐺. Vale ressaltar que em um laço, o vértice 𝑣 é, ao 

mesmo tempo, as duas extremidades da aresta, sendo assim, em laço deve ser considerado como 

duas arestas para a contagem do grau do vértice. Além disso, no caso de dígrafos, também 

podemos definir o grau de entrada e de saída, que se referem, respectivamente, ao número de 

arestas que entram e saem de um vértice. Também se define o grau total de um grafo 𝐺 = (𝑉, 𝐸) 

como a soma de todos os graus dos vértices deste grafo. 

Aqui, podemos enunciar o primeiro teorema: 

Teorema 1: A soma dos graus de todos os vértices de um grafo 𝐺 = (𝑉, 𝐸) é igual ao 

dobro do número de arestas. 

∑ 𝑑𝐺(𝑣) = 2𝑒

𝑣 ∈ 𝑉

 

Prova: Como o grau de um vértice 𝑣𝑖 é o número de arestas que são incidentes a ele, 

isso significa que uma aresta 𝑒 ∈ 𝐸(𝐺) aumentará o grau total de um grafo em 2, visto que esta 

aresta é incidente a dois vértices. Além disso, se esta aresta for um laço, o grau do vértice 

também é aumentado em dois.  

Como cada aresta é contada duas vezes na soma dos graus, temos que a soma total é 

exatamente duas vezes o número total de arestas. Assim, podemos escrever: ∑ 𝑑𝐺(𝑣) = 2𝑒.𝑣 ∈ 𝑉  

□ 

 

2.2.4 Caminhos, Ciclos e Conectividade 

2.2.4.1 Caminhos 

Seja 𝐺 = (𝑉, 𝐸) um grafo. Um caminho em 𝐺 é uma sequência finita de vértices, não 

necessariamente distintos, 𝑃 = 𝑣0, 𝑣1, . . . , 𝑣𝑘, onde 𝑣𝑖 ∈ 𝑉 para 0 ≤ 𝑖 ≤ 𝑘 e {𝑣𝑖−1, 𝑣𝑖} ∈ 𝐸 

para 1 ≤ 𝑖 ≤ 𝑘. Cada par consecutivo de vértices 𝑣𝑖−1 e 𝑣𝑖 está conectado por uma aresta. 

Ademais, define-se 𝑤(𝑃), o comprimento do caminho 𝑃, como o somatório dos pesos de cada 

aresta do caminho, ou seja: 

𝑤(𝑃) = ∑ 𝑤({𝑣𝑖−1, 𝑣𝑖})

𝑘

𝑖=1
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Se todos os vértices 𝑣0, 𝑣1, . . . , 𝑣𝑘 são distintos, o caminho é chamado de caminho 

simples 

Figura 11 - Caminho simples 

 

Fonte: Autoria própria 

Figura 12 - Caminho não-simples 

 

Fonte: Autoria própria 

Nas figura 11, o grafo possui um caminho 𝑃1 = 𝐶, 𝐴, 𝐷, 𝐵 simples. Já a figura 12 possui 

grafo possui um caminho 𝑃2 = 𝐶, 𝐴, 𝐷, 𝐴, 𝐵 que não é simples. 

2.2.4.2 Ciclos 

Um ciclo em um grafo 𝐺 = (𝑉, 𝐸) é um caminho 𝐶 = 𝑣0, 𝑣1, . . . , 𝑣𝑘 tal que 𝑣0 = 𝑣𝑘 (ou 

seja, o caminho começa e termina no mesmo vértice) e, também, as arestas {𝑣𝑖−1, 𝑣𝑖} são 

distintas para 1 ≤ 𝑖 ≤ 𝑘. 
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Figura 13 - Ciclo 

 

Fonte: Autoria própria 

A figura acima possui o ciclo 𝑊 = 𝐶, 𝐴, 𝐷, 𝐵, 𝐶. 

O comprimento do ciclo é o número de arestas que compõem o ciclo, e o peso total do 

ciclo é dado pela soma dos pesos das arestas que formam o ciclo: 

𝑤(𝐶) = ∑ 𝑤({𝑣𝑖−1, 𝑣𝑖}) 𝑘
𝑖=1  com 𝑣0 = 𝑣𝑘. 

2.2.4.3 Conectividade e grafos conexos 

Dois vértices 𝑢, 𝑣 ∈ 𝑉(𝐺) são ditos conexos se existe um caminho que os contenha. 

Caso contrário, dizemos que eles estão em componentes conexas distintas de 𝐺. Dado um 

vértice 𝑢 de 𝐺, considere 𝑉(𝐶) o conjunto de todos os vértices de 𝑣 tal que existe um caminho 

ligando 𝑢 a 𝑣. O grafo 𝐺(𝐶) é dito ser a componente conexa de 𝐺 que contém 𝑢. Se sobrou 

algum outro vértice, repita o processo até ter decomposto o grafo em componentes conexas de 

𝐺. 

Um grafo 𝐺 é dito conexo se existir apenas uma componente conexa em 𝐺. 

Figura 14 - Componentes conexas em um grafo 

 

Fonte: Autoria própria 

O Grafo acima possui três componentes conexas. 
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2.2.5 Caminhos e Ciclos Eulerianos e Hamiltonianos 

2.2.5.1 Caminhos e Ciclos Eulerianos 

Lembrando do problema resolvido por Euler das pontes de Königsberg, ele provou que 

não era possível o desafio proposto. Desta maneira, define-se um caminho 𝑃 = 𝑣0, 𝑣1, . . . , 𝑣𝑘 

de 𝐺 como euleriano se, e somente se, atravessa cada aresta de 𝐺 exatamente uma única vez. 

Além disto, define-se, também, um ciclo 𝐶 = 𝑣0, 𝑣1, . . . , 𝑣𝑘, 𝑣0 de 𝐺 como euleriano se, e 

somente se, atravessa cada aresta de 𝐺 exatamente uma única vez.  Um grafo 𝐺 é dito euleriano 

se possuir um ciclo euleriano. 

Teorema 2: Um grafo conexo com pelo menos dois vértices é euleriano se e somente 

se, todos os vértices do grafo tenham grau par.   

Prova: Para isso, temos que dividir a prova em duas etapas: 

Etapa 1: Se 𝐺 = (𝑉, 𝐸) é um grafo Euleriano, então todos os vértices têm grau par. 

Etapa 2: Se 𝐺 = (𝑉, 𝐸) é um grafo conexo e todos os seus vértices têm grau par, então 

𝐺 é euleriano. 

Etapa 1: Seja 𝐺 = (𝑉, 𝐸) um grafo Euleriano, logo possui um ciclo Euleriano. 

Como 𝐺 é euleriano, todos os vértices precisam de, pelo menos, uma aresta de saída e 

outra de entrada. Seja um vértice 𝑣𝑖  tal que 𝑣𝑖 ∈ 𝑉(𝐺). Suponha 𝑑𝐺(𝑣𝑖) = 2𝑛 + 1 (ou seja, 

possuir grau ímpar), então ele possuirá  𝑛 arestas de entrada e 𝑛 + 1 arestas de saída ou  𝑛 

arestas de saída e 𝑛 + 1 arestas de entrada. Sendo assim, ao traçar um caminho pelo grafo, ou 

não conseguiremos sair deste vértice ou não conseguiremos voltar para ele, logo não 

conseguiremos concluir o ciclo euleriano. 

Essa contradição mostra que todos os vértices em um grafo euleriano devem ter grau 

par. Portanto, a primeira parte da prova está concluída. 

Etapa 2: Seja 𝐺 = (𝑉, 𝐸) um grafo conexo em que todos os seus vértices possuem grau 

par.  

Escolha um vértice 𝑣𝑖 ∈ 𝑉(𝐺) arbitrário como ponto de partida. 

Como todos os vértices têm grau par, sempre que você entrar em um vértice, há uma 

aresta não percorrida para sair. Isso garante que você pode completar um ciclo inicial e retornar 

a 𝑣𝑖. 

Construa um ciclo a partir de 𝑣𝑖 seguindo arestas ainda não percorridas, até retornar ao 

vértice 𝑣𝑖. 
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Se todas as arestas foram percorridas, então esse ciclo é um ciclo euleriano, e a prova 

está completa. 

Se ainda há arestas não percorridas, isso significa que o ciclo inicial não percorreu todas 

as arestas de 𝐺. Então escolha um vértice 𝑣 do ciclo inicial que ainda possua arestas não 

percorridas. Inicie um novo ciclo a partir de 𝑣 usando apenas as arestas não percorridas e que 

retorne a 𝑣. Como 𝑣 pertence ao ciclo inicial, é possível conectar esse novo ciclo ao ciclo inicial, 

formando um ciclo maior. Repita o processo até que todas as arestas tenham sido percorridas. 

No final, você terá percorrido todas as arestas exatamente uma vez, formando um ciclo 

euleriano que visita todos os vértices e retorna ao ponto de partida.  

Assim, conseguimos provar que se 𝐺 = (𝑉, 𝐸) é um grafo conexo e todos os seus 

vértices têm grau par, então 𝐺 é euleriano. □ 

Corolário 1: Um grafo conexo tem um caminho euleriano se, e somente se, ele tem, 

exatamente, dois vértices de grau ímpar. 

Prova: Para isso, temos que dividir a prova em duas etapas: 

Etapa 1: Se 𝐺 = (𝑉, 𝐸) é um grafo conexo e possui um caminho euleriano, então 𝐺 

possui exatamente dois vértices de grau ímpar 

Seja 𝐺 = (𝑉, 𝐸) um grafo conexo. Suponha que 𝑃 seja um caminho euleriano em 𝐺, que 

começa no vértice 𝑢 e termina no vértice 𝑣. Para cada vértice intermediário 𝑤 ≠ 𝑢, 𝑣 no 

caminho 𝑃, sempre que 𝑃 entra em 𝑤, ele também deve sair, garantindo que o grau de 𝑤 é par. 

Assim, todos os vértices intermediários em 𝑃 têm grau par. 

Como 𝑢 é o vértice inicial, haverá um momento em que o caminho passará por ele pela 

última vez e não retornará mais. Como 𝑢 é o vértice inicial, sempre que o caminho sai de 𝑢 o 

seu grau se torna ímpar. Assim sendo, 𝑢 deve ter grau ímpar, caso contrário, o caminho 

terminaria no próprio 𝑢.  

Da mesma maneira, como 𝑣 é o vértice final, haverá um momento em que o caminho 

passará por ele pela última vez e não sairá. Como 𝑣 é um vértice que não é o inicial, sempre 

que o caminho entra em 𝑢 o seu grau se torna ímpar. Assim sendo, 𝑢 deve ter grau ímpar, caso 

contrário, o caminho não terminaria em 𝑢. 

Como todos os vértices intermediários têm grau par e apenas os vértices 𝑢 e 𝑣 possuem 

grau ímpar, concluímos que em 𝐺 existem exatamente dois vértices de grau ímpar. 

Etapa 2: Se 𝐺 = (𝑉, 𝐸) é um grafo conexo e possui exatamente dois vértices de grau 

ímpar, então 𝐺 possui um caminho euleriano. 
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Sejam 𝑢 e 𝑣 os dois vértices de grau ímpar. Conecte estes dois pontos por uma nova 

aresta 𝑒. Agora, todo vértice possui grau par, logo existe um ciclo euleriano.  Ao remover a 

aresta 𝑒, obtemos um caminho 𝑃 em 𝐺 que começa em 𝑢 e termina em 𝑣. Esse caminho 𝑃 é um 

caminho euleriano em 𝐺 porque percorre todas as arestas de 𝐺 exatamente uma vez. □ 

2.2.5.2 Caminhos e ciclos Hamiltonianos 

Define-se caminho hamiltoniano em um grafo 𝐺 como um caminho que passe por todas 

os vértices do grafo 𝐺 exatamente uma única vez. Já um ciclo hamiltoniano em um grafo 𝐺 

define-se como um ciclo que passe por todas os vértices do grafo 𝐺 exatamente uma única vez 

e retorne ao vértice inicial. 

Segundo Bondy e Murty [4], esses ciclos são em homenagem a Hamilton que, em uma 

carta a seu amigo Graves, descreve um quebra-cabeça matemático. Segundo Santos [17], esse 

era o "Icosian Game", um jogo que utiliza um grafo dodecaédrico, no qual cada vértice 

representa uma cidade. O objetivo era que um viajante percorresse todas as 20 cidades, 

visitando cada uma apenas uma vez. 

Ainda segundo Bondy e Murty [4], um dos principais problemas que ainda precisam ser 

resolvidos da Teoria dos Grafos é encontrar boas condições para que um grafo seja 

hamiltoniano, diferente dos grafos eulerianos.  

2.2.6 Árvores  

Uma árvore é definida por Bondy e Murty [4] como um grafo conexo acíclico. Um grafo 

acíclico é definido como um grafo que não contém ciclos. Mais formalmente, um grafo 𝑇 =

(𝑉, 𝐸) é chamado de árvore se 𝑇 é conexo e acíclico. 

Figura 15 – Exemplo de árvore 

 

Fonte: Siaudzionis, 2024 
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Figura 16 - Exemplo de não-árvore 

 

Fonte: Santana e Santana, 2023 

Teorema 3: Se 𝑇 = (𝑉, 𝐸) é uma árvore, dois vértices quaisquer estão ligados por um 

único caminho. 

Prova: Por definição, sabemos que uma árvore T é um caminho sem ciclos. Suponha, 

por absurdo, que exista ao menos dois caminhos distintos em T que unam 𝑣𝑖  𝑒 𝑣𝑗 , vértices 

quaisquer desta árvore. 

Seja 𝑣𝑘 o primeiro vértice onde os dois caminhos se separam. Como os dois caminhos 

possuem  𝑣𝑗 , então existe ao menos um 𝑣𝑛 entre 𝑣𝑖  𝑒 𝑣𝑗 onde os dois caminhos voltam a se 

encontrar (na melhor das hipóteses,  𝑣𝑛 = 𝑣𝑗). 

Porém isso é um absurdo, pois acabamos de encontrar um ciclo nesta árvore. □ 

Além deste teorema, convidamos os professores e alunos mais empenhados a encontrar, 

no apêndice deste trabalho, um teorema o qual exibe diferentes definições do que é uma árvore, 

onde demonstramos que uma árvore também pode ser identificada como um grafo 𝑇 que é 

minimalmente conexo, i.e. 𝑇 é conexo mas 𝑇 − 𝑒 é desconexo para qualquer aresta 𝑒 ∈ 𝑇, e 

que, também, 𝑇 é maximalmente acíclico, i.e. 𝑇 não contém ciclos, mas  𝑇 + 𝑣𝑖𝑣𝑗   contém, para 

quaisquer dois vértices 𝑣𝑖, 𝑣𝑗  não adjacentes em T.  

 

 



25 
 

3 O PROBLEMA DO CAMINHO MAIS CURTO 

No mundo complexo e interconectado em que vivemos, a eficiência é fundamental para 

otimizar recursos, economizar tempo e reduzir custos. Um dos problemas mais universais que 

surgem em diversos aspectos da vida diária é o Problema do Caminho Mais Curto: encontrar a 

rota mais eficiente entre dois pontos. Esse problema não é apenas um conceito matemático 

abstrato, mas tem aplicações concretas que impactam diretamente nosso dia a dia, nossas 

indústrias e até a economia global. 

Considere um cenário simples: planejar o trajeto para o trabalho pela manhã. Pode 

parecer uma questão trivial, mas ao perguntar "Qual é o caminho mais rápido para chegar ao 

trabalho?", estamos lidando diretamente com o problema do caminho mais curto. A 

complexidade aumenta quando se consideram condições de trânsito em tempo real, vias 

fechadas ou a necessidade de fazer várias paradas ao longo do percurso. Ser capaz de determinar 

a rota mais eficiente pode resultar em economia de tempo, redução de estresse e menor consumo 

de combustível, benefícios que são importantes para qualquer pessoa que enfrenta o trânsito 

nas áreas urbanas. 

Vislumbrando exemplificar o problema do caminho mais curto, algumas situações 

foram criadas com várias especificidades. Dentre elas, podemos citar o Problema do Carteiro 

Chinês e o Problema do Caixeiro Viajante, que exemplificam algumas questões reais. 

3.1 PROBLEMA DO CARTEIRO CHINÊS 

Imagine um carteiro que precisa percorrer todas as ruas de um bairro para entregar 

correspondências, e ele quer fazer isso no menor tempo possível, sem precisar passar por uma 

rua mais de uma vez, a não ser que seja absolutamente necessário. Este é o Problema do Carteiro 

Chinês: encontrar o menor circuito que percorre todas as arestas de um grafo (representando 

ruas) pelo menos uma vez. Note que há similaridade deste problema com o encontrado por 

Euler na cidade de Königsberg. Na prática, a solução para este problema ajuda a otimizar rotas 

de serviços de entrega, coleta de lixo, ou qualquer situação em que seja necessário cobrir todas 

as conexões de uma rede. 

3.2 PROBLEMA DO CAIXEIRO VIAJANTE 

Outra variante é o Problema do Caixeiro Viajante, que se refere ao desafio de encontrar 

o caminho mais curto que passa por um conjunto de cidades (vértices) exatamente uma vez e 
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retorna à cidade de origem. Este problema é de grande importância em logística e planejamento 

de rotas, onde o objetivo é minimizar custos e tempo ao planejar viagens, entregas ou inspeções 

em várias localidades. Segundo Gê [10], a complexidade desse problema cresce 

exponencialmente com o aumento do número de cidades, fazendo com que novas estratégias 

para a resolução deste problema sejam elaboradas. 

Esses problemas ilustram a aplicação prática e a complexidade do problema do caminho 

mais curto em diferentes contextos do mundo real. O desenvolvimento de algoritmos eficientes, 

como o algoritmo de Dijkstra para rotas com menor custo e as técnicas para abordar o Problema 

do Caixeiro Viajante e o Problema do Carteiro Chinês, facilitam a maneira como enfrentamos 

esses desafios. 
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4 O ALGORITMO DE DIJKSTRA 

Segundo Barros [3], como resultado dos esforços para solucionar o problema do 

caminho mais curto, o holandês Edsger Dijkstra, em 1959, propôs um algoritmo, funcional para 

grafos ponderados com pesos não negativos, para encontrar não somente o caminho mais curto 

entre dois vértices em um grafo, mas o caminho mais curto entre um vértice e todos os outros 

vértices do referido grafo. 

Este algoritmo funciona de maneira bastante intuitiva. Imagine que você está em um 

ponto inicial em um grafo e deseja encontrar o caminho mais curto para todos os outros pontos. 

Você deve passar por todos os outros vértices sempre procurando o caminho menos custoso 

para visitar primeiro, fazendo assim com que poupe esforços para não recalcular a rota completa 

todas as vezes. 

Para isso, após definir o vértice inicial, utilizaremos uma tabela que terão as seguintes 

informações: Os vértices do grafo, o custo para chegar a um determinado vértice, o vértice 

predecessor, e a situação do vértice (visitado ou não visitado). 

O vértice inicial deve possuir custo 0, visto que não há esforço empenhado para 

movimentação no grafo. Os demais vértices, enquanto não forem analisados, possuem seu custo 

definindo como ∞ e substituiremos sempre que encontrarmos um caminho cujo peso seja 

menor. Além disso, a situação do vértice inicia como “não visitado” e só passa a ser “visitado” 

caso já tenhamos analisado todas as possibilidades de caminho deste vértice. 

Veja abaixo como podemos utilizar o algoritmo em um grafo ponderado: 

 

Figura 17 - Exemplo de grafo ponderado 

 

Fonte: Autoria Própria 

Primeiro, escolhemos o vértice que queremos encontrar a árvore de menores caminhos. 

Vamos iniciar pelo vértice 𝐴. 
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Fonte: Autoria Própria 

Agora, devemos analisar os caminhos diretos que existem entre o vértice 𝐴 e seus 

vizinhos. Dessa maneira, 𝑤(𝐴𝐵) = 2＜∞ e 𝑤(𝐴𝐶) = 7＜∞, portanto devemos substituir os 

valores na tabela e alterar o predecessor destes vértices. 

Fonte: Autoria Própria 

Em continuidade, devemos analisar agora o vértice de menor custo analisado até então. 

Desta maneira, devemos percorrer em direção ao vértice 𝐵 e mudar sua situação para “visitado”. 

O vértice 𝐵 possui 3 vizinhos ainda não visitados, como saímos do vértice 𝐴 e estamos 

utilizando o vértice 𝐵 como passagem, devemos calcular o custo do caminho de 𝐴 até os vértices 

como a soma dos custos de cada aresta. Então vamos atualizar estas novas informações. Temos:  

𝑤(𝐵𝐶) = 3＜7 ⇒ devemos analisar o caminho 𝑃 = 𝐴, 𝐵, 𝐶. 

𝑤(𝐴, 𝐵, 𝐶) = 𝑤(𝐴𝐵) + 𝑤(𝐵𝐷) = 2 + 3 = 5, logo o caminho mais curto para 𝐶 é 

passando por 𝐵. 

𝑤(𝐵𝐷) = 6＜∞ ⇒  𝑤(𝐴, 𝐵, 𝐷) = 𝑤(𝐴𝐵) + 𝑤(𝐵𝐷) = 2 + 6 = 8. 

𝑤(𝐵𝐸) = 5＜∞ ⇒  𝑤(𝐴, 𝐵, 𝐸) = 𝑤(𝐴𝐵) + 𝑤(𝐵𝐸) = 2 + 5 = 7. 

Atualizando a tabela temos: 

Tabela 3 - Terceiro passo do Algoritmo de Dijkstra do Grafo da figura 3 

Fonte: Autoria Própria 

Tabela 1 - Tabela inicial do Algoritmo de Dijkstra 

Vértice A B C D E 

Custo 0 ∞ ∞ ∞ ∞ 

Predecessor - - - - - 

Situação Visitado Não visitado Não visitado Não visitado Não visitado 

Tabela 2 - Segundo passo do Algoritmo de Dijkstra 

Vértice A B C D E 

Custo 0 2 7 ∞ ∞ 

Predecessor - A A - - 

Situação Visitado Não visitado Não visitado Não visitado Não visitado 

Vértice A B C D E 

Custo 0 2 5 8 7 

Predecessor - A B B B 

Situação Visitado Visitado Não visitado Não visitado Não visitado 



29 
 

 

 

Seguindo o Algoritmo, vamos analisar o próximo vértice de menor custo ainda não 

visitado, que é o vértice 𝐶, mudando sua situação para “visitado”. O vértice 𝐶 possui apenas 1 

vizinhos com situação “não visitado”, vamos analisar o caminho de 𝐴 até este vértice através 

de 𝐶. 

𝑤(𝐶𝐷) = 2 < 8 ⇒ devemos analisar o caminho 𝑃 = 𝐴, 𝐵, 𝐶, D. 

𝑤(𝐴, 𝐵, 𝐶, 𝐷) = 𝑤(𝐴, 𝐵, 𝐶) + 𝑤(𝐶𝐷) = 5 + 2 = 7, 

Como 7 < 8, atualizamos o custo e o predecessor de D na tabela. 

Tabela 4 - Quarto passo do Algoritmo de Dijkstra do Grafo da figura 3 

Fonte: Autoria Própria 

Como possuímos agora dois vértices não visitados que possuem o mesmo custo, 

podemos escolher arbitrariamente entre eles. Decidimos escolher analisar o vértice 𝐷, alterando 

sua situação. Dessa maneira, resta apenas um vértice com situação “não visitado”. 

𝑤(𝐷𝐸) = 4 < 7 ⇒ devemos analisar o caminho 𝑃 = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸. 

𝑤(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) = 𝑤(𝐴, 𝐵, 𝐶, 𝐷) + 𝑤(𝐷𝐸) = 7 + 4 = 11, como 𝑤(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) >

𝑤(𝐴, 𝐵, 𝐸), então mantemos o valor anterior para o custo do caminho. 

Tabela 5 - Quinto passo do Algoritmo de Dijkstra do Grafo da figura 3 

Fonte: Autoria Própria 

 

Agora vamos visitar o último vértice restante, porém como não há mais vértices a serem 

analisados, apenas mudamos a situação de 𝐸 e finalizamos a tabela. 

 

Vértice A B C D E 

Custo 0 2 5 7 7 

Predecessor - A B C B 

Situação Visitado Visitado Visitado Não visitado Não visitado 

Vértice A B C D E 

Custo 0 2 5 7 7 

Predecessor - A B C B 

Situação Visitado Visitado Visitado Visitado Não visitado 
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Tabela 6 - Sexto passo do Algoritmo de Dijkstra do Grafo da figura 3 

Fonte: Autoria Própria 

 

Assim, ao lermos a tabela, sabemos o custo total para chegar a determinado vértice 

partindo do vértice inicial, neste caso, o vértice 𝐴. Além disso, também sabemos o caminho que 

foi traçado até chegar a este vértice, através de seu predecessor e, também, como sabemos o 

predecessor de todos os vértices, basta fazer o caminho inverso para descobrir todo o caminho 

percorrido para chegar ao vértice desejado. 

Pode-se formalizar o algoritmo de Dijkstra da seguinte maneira: Dado um grafo 

ponderado 𝐺 = (𝑉, 𝐸) com função de peso 𝑤 ∶  𝐸 → ℝ≥0, e um vértice inicial 𝑠 ∈ 𝑉, o 

algoritmo de Dijkstra encontra o menor caminho de 𝑠 para todos os outros vértices de 𝐺. 

Para iniciar, define-se 𝛿(𝑠, 𝑣) como a menor distância entre os vértices 𝑠 e 𝑣. Também, 

para cada vértice, defina  𝑣 ∈ 𝑉, 𝑑(𝑣) = ∞ (distância inicial) e 𝑑(𝑠) = 0. Além disso, deve-se 

criar dois conjuntos de apoio para o algoritmo, um conjunto não vazio 𝑄 = 𝑉 de vértices ainda 

não visitados e um conjunto vazio 𝑆 para armazenar os vértices cujas menores distâncias já 

foram determinadas. 

Dessa maneira, o processo iterativo deve funcionar enquanto 𝑄 ≠ ∅ (𝑄 ainda não está 

vazio). Para iniciar, selecione um vértice 𝑢 ∈ 𝑄 tal que 𝑑(𝑢) seja mínimo. Após isso, remova  

𝑢 de 𝑄 e adicione 𝑢 ao conjunto 𝑆. Para cada vértice 𝑣 ∈ 𝑉 adjacente a 𝑢, se 𝑑(𝑣) > 𝑑(𝑢) +

𝑤(𝑢, 𝑣), então 𝑑(𝑣)  = 𝑑(𝑢) + 𝑤(𝑢, 𝑣). 

Desta maneira, a distância 𝑑(𝑣) armazenada para cada vértice 𝑣 será a menor distância 

do vértice 𝑠 até 𝑣. Porém, é preciso garantir matematicamente que esta correção na distância 

valerá para todas as iterações, ou seja, que 𝑑(𝑣) = 𝛿(𝑠, 𝑣). É possível provar isso por indução 

da seguinte maneira:  

No início do algoritmo, apenas o vértice 𝑠 está em 𝑆, e 𝑑(𝑠) = 0. Para todos os outros 

vértices, 𝑑(𝑣) = ∞, o que indica que ainda não foram visitados. 

Suponha que, após 𝑘 iterações, para todo 𝑣 ∈ 𝑆, 𝑑(𝑣) é a menor distância do vértice 𝑠 

ao vértice 𝑣, então 𝛿(𝑠, 𝑣) = 𝑑(𝑣) = 𝑑(𝑢) + 𝑤(𝑢, 𝑣). Agora é preciso provar que para um 

vértice 𝑢, o próximo vértice selecionado, 𝑑(𝑢) = 𝛿(𝑠, 𝑢) também é válido. 

Vértice A B C D E 

Custo 0 2 5 7 7 

Predecessor - A B C B 

Situação Visitado Visitado Visitado Visitado Visitado 
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Vamos supor, para obter uma contradição, que 𝑑(𝑢) > 𝛿(𝑠, 𝑢). Isso significa que existe 

um caminho mais curto 𝑃 de 𝑠 a 𝑢 com 𝛿(𝑠, 𝑢) como comprimento total. Se 𝑃 não passa por 

nenhum vértice de 𝑆 antes de chegar a 𝑢, isso contradiz a definição de 𝑑(𝑢) como a menor 

distância entre 𝑠 e 𝑢 entre todos os vértices em 𝑄, pois todos os menores caminhos entre 𝑠 e 

todos os vértices anteriores a 𝑢 já foram calculados e estes vértices estão em 𝑆. 

Agora, suponha, também por contradição, que 𝑃 passa por um vértice 𝑣 ∈ 𝑆 antes de 

chegar a 𝑢. Seja 𝑃 = (𝑠, … , 𝑣, 𝑢). Como 𝑣 ∈ 𝑆 e pela hipótese de indução 𝑑(𝑣) = 𝛿(𝑠, 𝑣), 

temos que 𝛿(𝑠, 𝑢) = 𝛿(𝑠, 𝑣) + 𝑤(𝑣, 𝑢). Pela maneira como o algoritmo de Dijkstra armazena 

as informações, quando o vértice 𝑣 foi visitado, o valor de 𝑑(𝑢) foi atualizado como 𝑑(𝑢) ≤

𝑑(𝑣) + 𝑤(𝑣, 𝑢) = 𝛿(𝑠, 𝑣) + 𝑤(𝑣, 𝑢) = δ(s, u).  

Mas isso contradiz a suposição de que 𝑑(𝑢) > 𝛿(𝑠, 𝑢). Portanto, tem-se que é 

verdadeira a afirmação 𝑑(𝑢) = 𝛿(𝑠, 𝑢). Dessa maneira, pode-se aplicar o algoritmo de Dijkstra 

com segurança matemática. 

Além de ser uma ferramenta teórica importante, o algoritmo de Dijkstra tem aplicações 

práticas no mundo moderno, especialmente em sistemas de navegação e planejamento de rotas. 

Por exemplo, ao traçar o caminho mais curto entre duas localizações em um aplicativo de 

carona, o algoritmo pode ser usado para determinar a rota mais rápida, levando em consideração 

fatores como trânsito, bloqueios de vias e desvios necessários. 
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5 APLICAÇÃO DO ALGORITMO DE DIJKSTRA EM PROBLEMAS 

COTIDIANOS SOBRE CAMINHOS OTIMIZADOS 

O algoritmo de Dijkstra é amplamente utilizado em diversos campos que exigem a 

otimização de rotas e caminhos mínimos. Sua aplicação abrange desde o planejamento de 

evacuações até a logística de transporte de mercadorias. A seguir, são destacados exemplos de 

suas aplicações práticas, com base em estudos acadêmicos recentes. 

5.1 OTIMIZAÇÃO DE ROTAS EM SISTEMA DE DELIVERY 

Em 2023 Cavalcante (ver [6]) mostra como o algoritmo de Dijkstra foi aplicado para 

otimizar rotas de sistemas de entrega delivery na cidade de Russas, Ceará. Utilizando o conceito 

de grafos, o estudo buscou aprimorar a eficiência das rotas de entrega, levando em consideração 

fatores como condições viárias, presença de semáforos e iluminação das vias. O grafo foi gerado 

a partir de cruzamentos e ruas do centro comercial da cidade, e, com base em entrevistas 

realizadas com entregadores locais, foram atribuídos pesos adicionais às arestas, considerando 

elementos como semáforos sequenciais, ruas mal iluminadas e vias em más condições. 

O uso do algoritmo de Dijkstra com essas ponderações adicionais permitiu que o sistema 

evitasse rotas problemáticas e gerasse rotas mais eficientes, resultando em uma melhoria 

significativa no tempo de entrega e aumento na segurança dos entregadores. Ao adaptar o 

algoritmo para considerar variáveis locais, o estudo demonstrou como o algoritmo de Dijkstra 

pode ser aplicado para resolver problemas práticos em pequenas cidades, oferecendo uma 

solução robusta e adaptada ao contexto específico de Russas. 

5.2 SEGURANÇA E PLANEJAMENTO DE EVACUAÇÃO 

Outra aplicação crucial do algoritmo de Dijkstra é em cenários de emergência. Silva 

(ver [19]) utilizou o algoritmo para otimizar rotas de evacuação em uma refinaria hipotética, 

simulando cenários de nuvem tóxica. O estudo demonstrou que o uso do algoritmo pode 

minimizar o tempo de evacuação e o risco individual durante o trajeto, oferecendo uma solução 

eficaz para o planejamento de emergências em áreas de alto risco. Essa abordagem é 

especialmente importante na indústria petroquímica, onde o planejamento adequado de 

evacuação pode salvar vidas (SILVA, 2017). 

Além destes problemas já bem documentados e analisados, também pode-se citar 

exemplos de situações vivenciadas pelos estudantes rotineiramente. 
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5.3 PLANEJAMENTO DE ROTAS ESCOLARES 

Um dos problemas mais comuns que os estudantes enfrentam é a escolha do melhor 

trajeto para ir à escola ou a outros locais importantes, como casas de amigos, clubes ou locais 

de estudo. Imagine que um estudante utiliza o transporte público ou mesmo uma bicicleta para 

se deslocar até a escola e deseja encontrar o caminho mais rápido ou mais curto. Nesse contexto, 

as ruas e avenidas da cidade podem ser modeladas como um grafo, onde os pontos de interesse, 

como a escola e outros destinos, correspondem aos vértices, e as ruas que conectam esses pontos 

são as arestas ponderadas pelas distâncias ou pelo tempo de deslocamento. 

Por exemplo, o estudante mora no ponto A, e a escola está no ponto E. Outras possíveis 

paradas no caminho, como a casa de um colega (ponto B) ou a praça (ponto C), também são 

vértices no grafo. As arestas entre esses vértices podem ser representadas pelas ruas que 

conectam esses locais, e o peso dessas arestas pode ser o tempo estimado de viagem em 

minutos. Utilizando o algoritmo de Dijkstra, o estudante pode calcular o caminho mais curto de 

sua casa (A) até a escola (E), considerando as diferentes opções de trajeto. O algoritmo pode 

ajudar a evitar congestionamentos ou escolher rotas com menos tempo de viagem. 

5.4 ESCOLHA DE ROTAS EM APLICATIVOS DE CARONA 

Outra aplicação direta do algoritmo de Dijkstra no cotidiano dos estudantes é o uso de 

aplicativos de carona, como Uber ou 99, que são amplamente utilizados para deslocamento. 

Esses aplicativos utilizam algoritmos semelhantes e mais robustos para calcular a rota mais 

eficiente entre o ponto de partida e o destino, considerando fatores como trânsito, bloqueios de 

ruas e a distância. 

Imagine que o grafo abaixo é uma representação de uma localidade onde o estudante 

vive e ele está em sua casa solicitando uma carona através de um desses aplicativos. 

Figura 18 - simulação de vizinhança 

 

Fonte: Autoria própria 
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Assim, se um estudante solicita uma carona de sua casa até um evento esportivo no 

ponto G, então durante o trajeto, o motorista pode precisar passar por outros pontos de interesse 

como um shopping (ponto F) ou uma estação de metrô (ponto D). O algoritmo de Dijkstra pode 

ser utilizado para determinar o caminho mais eficiente, levando em consideração o trânsito ou 

a necessidade de passar por esses pontos. 
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6 POR QUE ENSINAR TEORIA DOS GRAFOS NO ENSINO MÉDIO? 

De maneira simples, entende-se que a matemática na escola (principalmente no Ensino 

Médio), por diversas vezes, se distancia da vida do aluno. Um dos principais motivos para o 

investimento em tempo e trabalho da teoria de grafos para o Ensino Médio é tentar retornar a 

disciplina para um local de relevância no cotidiano prático do estudante. Também em virtude 

disso, Baldino [1] acredita que é necessário buscar metodologias diferentes das 

tradicionalmente utilizadas em sala de aula para o processo de aprendizagem da matemática. 

Segundo Pavanello [14], dois dos principais motivos para que a matemática seja 

ensinada na escola é que, primeiro, ela desenvolve o raciocínio e, segundo que ela está presente 

no cotidiano. Tendo isso em vista, um dos grandes questionamentos dos alunos de Ensino 

Médio em relação à matemática que é ensinada nesta fase educacional é sobre a utilização em 

suas vidas práticas dos conhecimentos desenvolvidos em sala de aula. Há um sentimento de 

distanciamento entre a matemática e a “vida real” na percepção dos estudantes, tal percepção 

os leva a um estado de desmotivação em aprender matemática.  

Com isso em mente, se vê que os Parâmetros Curriculares Nacionais (Brasil, 1998) 

traçam como objetivo do Ensino Médio no Brasil a combinação entre as áreas do conhecimento 

e a prática deles no dia a dia, fazendo com que o que se aprende na escola tenha significado e 

valor para o discente também fora do ambiente acadêmico, o levando a integrar seus 

desenvolvimentos cognitivos com as necessidades de sua sociedade, buscando o aprendizado 

contínuo em todas as esferas de sua vida.  

No contexto educacional brasileiro, a Base Nacional Comum Curricular (BNCC) 

estabelece diretrizes básicas com relação à educação completa do aluno de modo a promover a 

formação de habilidades interdisciplinares. Olhando para tais contextos, surge a necessidade de 

incluir o conceito de Teoria dos Grafos no currículo do Ensino Médio, não apenas por seu valor 

teórico inerente, mas porque forneceria aos alunos do Ensino Médio ferramentas eficazes para 

lidar com problemas da vida real. A justificativa e a postura apreciativa em relação à inclusão 

deste tema no planejamento curricular têm muito a ver com o exercício prático de resolver o 

problema do caminho mais curto por meio das aplicações do algoritmo de Dijkstra, que está em 

linha com os objetivos da BNCC. 

 A BNCC destaca a importância de desenvolver nos estudantes competências 

gerais, como o raciocínio lógico, a capacidade de resolver problemas complexos e a aplicação 

de conceitos matemáticos em situações cotidianas. Em suas primeira e quarta competências 

específicas de matemática, respectivamente, a BNCC cita:  
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“Utilizar estratégias, conceitos e procedimentos matemáticos para interpretar 

situações em diversos contextos, sejam atividades cotidianas, sejam fatos das Ciências 

da Natureza e Humanas, ou ainda questões econômicas ou tecnológicas, divulgados 

por diferentes meios, de modo a consolidar uma formação científica geral.” (BNCC, 

2018, pág. 523) 

“Compreender e utilizar, com flexibilidade e fluidez, diferentes registros de 

representação matemáticos (algébrico, geométrico, estatístico, computacional etc.), na 

busca de solução e comunicação de resultados de problemas, de modo a favorecer a 

construção e o desenvolvimento do raciocínio matemático.” (BNCC, 2018, pág. 523) 

A Teoria dos Grafos dá aos alunos a base necessária para modelar e solucionar uma 

ampla variedade de problemas que eles podem encontrar no cotidiano. Esses problemas podem 

se estender desde a otimização de rotas e o planejamento de redes de comunicação até a análise 

de redes sociais, evidenciando a amplitude e a relevância atual do tema. 

Quando estes conceitos são abordados sob a perspectiva prática do algoritmo de 

Dijkstra, oferecem aos alunos a oportunidade de explorar a matemática de forma aplicada, 

demonstrando como a abstração teórica pode ser utilizada para enfrentar desafios reais. Isso 

reforça a capacidade dos estudantes de perceber a matemática não apenas como uma disciplina 

acadêmica, mas como uma linguagem universal para a resolução de problemas. 

6.1 O ALGORITMO DE DIJKSTRA NO PROCESSO DE APRENDIZAGEM NO 

ENSINO MÉDIO 

Como dito anteriormente, em [6] vê-se a necessidade de encontrar novas formas para 

ensinar matemática no Ensino Médio, por isso o ensino da teoria de grafos, aliada ao algoritmo 

de Dijkstra pode ser uma ferramenta essencial para esse objetivo.  

O ensino do algoritmo de Dijkstra é especialmente importante quando nos deparamos 

com o problema do caminho mais curto, uma questão que está presente em diversas áreas do 

conhecimento e da vida moderna. Esse algoritmo, que permite encontrar o caminho mais 

eficiente entre dois pontos em um grafo, é uma ferramenta poderosa para abordar algumas 

adversidades do cotidiano, como o planejamento de rotas urbanas. Para isto, o algoritmo de 

Dijkstra pode ser usado para demonstrar aos alunos como sistemas de navegação (como GPS) 

determinam o caminho mais rápido entre dois locais, considerando fatores como tempo de 

viagem e distância, para isso, utilizando estas condições como os pesos das arestas em um grafo 

ponderado. 
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Além desse, outro exemplo importante é a otimização de rotas, seja de ônibus, de 

entregas de mercadorias ou serviços de emergência. Já no campo das telecomunicações, o 

algoritmo de Dijkstra foi utilizado por Barreto [2] para o planejamento e recomposição das 

redes de telecomunicações, com o objetivo de garantir a sobrevivência da rede frente a falhas e 

aumento de demanda. Estas aplicações mostram como os conceitos da Teoria dos Grafos se 

tornam ferramentas práticas na infraestrutura social e digital que sustenta o nosso mundo. 
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7 PROPOSTA DE ABORDAGEM PEDAGÓGICA PARA O ENSINO DO 

ALGORITMO DE DIJKSTRA DO ENSINO MÉDIO 

7.1 PUBLICO ALVO 

Este trabalho tem como intuito maior trazer o conhecimento da Teoria dos Grafos para 

alunos do Ensino Médio, preferencialmente do terceiro ano, que já possuem um conhecimento 

básico de matemática discreta e conceitos fundamentais de álgebra e geometria, porém pode 

ser adaptado para o ensino em outras turmas. 

7.2 MATERIAIS NECESSÁRIOS 

Com o intuito de ser um aprendizado mais interativo e dinâmico, tornando o aluno o 

ator principal do processo de aprendizagem, indica-se a utilização de mapas impressos da 

vizinhança da escola, pinos ou adesivos para marcar pontos de referência e esquinas, imagens 

(impressas ou digitais) de grafos, régua e barbante para medir o peso das arestas, lápis e papel 

para desenhar os grafos, computadores com acesso a ferramentas de visualização gráfica, como 

o GeoGebra, opcionalmente. 

7.3 ETAPAS DA PROPOSTA 

7.3.1 Apresentação do problema do caminho mais curto 

Primeiramente, divida a turma em grupos, de acordo com a necessidade da turma 

(aconselha-se grupos com não muitos integrantes, para que a experiência seja vivenciada de 

maneira integral por todos) e apresente aos alunos o mapa impresso das regiões circunvizinhas 

à escola, pedindo para que eles marquem com os pinos ou adesivos as esquinas e principais 

pontos de referência. Peça para que eles também meçam as medidas de distância entre os pontos 

marcados. Se houver curvas no trajeto, os alunos devem encontrar uma maneira de conseguir 

medir (seja por meio de aproximações poligonais, utilizando o barbante ou outro meio). 

Logo após, pergunte a eles qual seria o caminho mais curto entre dois pontos quaisquer 

e como eles poderiam garantir que este é, realmente, o caminho mais curto. Aproveite para 

enunciar a importância de encontrar o caminho mais curto (ou menos custoso) em diversas áreas 

da vida cotidiana. 
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Após um período de discussão a respeito do tema, apresente que há uma ferramenta 

matemática capaz de garantir a existência de um caminho mais curto e, também, de encontrá-

lo, não somente entre estes dois pontos, mas entre o ponto inicial e qualquer outro ponto 

desejado do mapa. 

7.3.2 Introdução Teórica 

Após os alunos entenderem o problema, deve-se, primeiramente, introduzir os conceitos 

teóricos da Teoria dos Grafos, definindo para os alunos os conceitos de vértices e arestas com 

exemplos do cotidiano, apresentando, após, os diversos tipos de grafos e suas definições. 

Atentar para os grafos ponderados e como eles podem se assemelhar aos mapas que estão 

impressos. Além disso, recomenda-se mostrar algumas situações da vida real que podem e já 

foram associadas a um grafo, como o problema das pontes de Königsberg, dentre outros. 

Por fim, anuncie a ferramenta que pode auxiliar a solucionar o problema proposto: O 

Algoritmo de Dijkstra. Neste momento, deve-se enunciar o Algoritmo de Dijkstra e fazer uma 

explicação sobre o funcionamento do algoritmo e de sua aplicação para resolver o problema do 

caminho mais curto. 

7.3.3 Aplicação Prática 

7.3.3.1 Construção do Grafo: 

Após a discussão teórica sobre grafos e sobre o Algoritmo de Dijkstra, os alunos devem 

modelar e representar o mapa e suas marcações como um grafo, com os vértices sendo as 

esquinas e pontos de referência e as arestas sendo as ruas que os conectam. Os pesos das arestas 

serão as distancias medidas nos mapas (um modelo simplificado). 

7.3.3.2 Aplicação do Algoritmo: 

Cada grupo deve se colocar como um motorista de aplicativo de caronas e buscar o 

melhor caminho possível (o menos custoso) para sair da escola e ir a um determinado ponto 

(escolhido pelo professor), pois recebeu um pedido de carona. Para isso, pergunte como o 

Algoritmo de Dijkstra poderia os ajudar e os oriente a utilizar o algoritmo para encontrar o 

menor caminho até este ponto. 
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7.3.4 Discussão dos Resultados 

Com base nas ideias de Pavanello [14] sobre a avaliação em matemática, que deve 

refletir a maneira pedagógica na forma como a matemática é aplicada em sala de aula, e visar 

o desenvolvimento crítico do aluno. Segundo Pavanello [14], os alunos não apenas devem saber 

executar o procedimento, mas, principalmente, devem construir o conhecimento de maneira 

que demonstrem uma compreensão do raciocínio matemático e de como ele se relaciona com 

sua vida, sendo capaz de, a partir daí, fazer abstrações que culminem na matemática como a 

conhecemos geralmente. 

Considerando tal perspectiva, após a confecção dos grafos e aplicação do algoritmo, os 

grupos apresentam seus grafos e os caminhos mais curtos encontrados e discutem eventuais 

diferenças nos resultados. A partir daí, elabore algumas situações: 

1) Partindo da escola, quais seriam os menores caminhos para todos os pontos do 

mapa? 

2) Em uma rua (necessária para o menor caminho entre a escola e o ponto escolhido) 

um buraco se formou e ela precisou ser interditada para a manutenção da prefeitura. 

A partir de agora, qual será o “novo” caminho mais curto para sair da escola e chegar 

ao ponto escolhido? 

3)  No pedido de carona, havia uma parada solicitada para um determinado ponto (fora 

do caminho mais curto), determine o menor caminho possível para chegar ao ponto 

terminal da carona, passando pelo ponto de parada.  

4) Pergunte o que aconteceria se houvesse vários caminhos com o mesmo peso. Como 

o algoritmo de Dijkstra lidaria com isso? Leve os alunos a discutirem a necessidade 

de critérios adicionais para desempate, como preferir rotas com menos paradas. 

5)  Proponha a criação de um “atalho” no mapa, como uma nova estrada ou via mais 

rápida, e pergunte se ele realmente oferece uma vantagem significativa no cálculo 

do caminho mais curto. Os alunos podem discutir como a inclusão de novas rotas 

afeta o grafo original. 

6) Discuta com os alunos se haveria diferença no cálculo do caminho mais curto se 

todos os pesos fossem retirados das arestas. A partir daí, como calcularíamos o novo 

caminho? Peça para que eles encontrem, se for necessário, um novo caminho mais 

curto. 
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Após essas perguntas, a depender de como a sala estaria desenvolvendo o raciocínio 

algorítmico, o professor poderia aprofundar a respeito dos temas com outras perguntas 

envolvendo grafos direcionais, por exemplo: 

1) Explore como a aplicação do algoritmo muda se as ruas forem unidirecionais ou 

bidirecionais. Peça aos alunos para adaptar seus grafos conforme essas condições. 

2) Em algumas cidades, ruas que antes eram de mão dupla podem se tornar de mão 

única. Peça aos alunos para modificar o grafo original, transformando algumas 

arestas bidirecionais em unidirecionais, e verificar como isso altera o caminho mais 

curto. Pergunte se, em certos casos, a mudança de direção pode causar uma grande 

diferença no tempo ou distância percorridos. 

3) Algumas vias podem ter restrições, como proibição de caminhões ou ônibus. 

Transforme essas vias em arestas direcionadas ou bloqueadas para certos tipos de 

veículos, e peça aos alunos para calcular o caminho mais curto para diferentes tipos 

de transporte, considerando essas restrições. 

4) Introduza a ideia de um grafo que muda ao longo do tempo. Por exemplo, em um 

determinado horário, uma via unidirecional pode voltar a ser bidirecional. Proponha 

uma simulação em que o caminho mais curto é recalculado várias vezes ao longo do 

dia, refletindo essas mudanças que podem ocorrer nas cidades e precisa ser calculado 

pelos aplicativos de carona. O objetivo seria avaliar como a direção de ruas 

influenciaria trajetos em diferentes momentos. 



 

8 CONCLUSÕES E PERSPECTIVAS 

Esta dissertação demonstrou como a Teoria dos Grafos e, em particular, o Algoritmo de 

Dijkstra podem ser poderosas ferramentas pedagógicas no Ensino Médio, conectando a 

matemática a situações práticas e cotidianas. Ao abordar o problema do caminho mais curto e 

utilizar aplicativos de carona como exemplo, foi possível criar uma ponte entre a abstração 

matemática e problemas do mundo real, mostrando aos alunos como a matemática pode ser 

aplicada de maneira tangível e útil. 

O ensino da matemática no Brasil ainda enfrenta o desafio de tornar-se mais atrativo e 

relevante para os estudantes, que muitas vezes percebem a disciplina como distante de suas 

vidas diárias. Ao integrar conceitos da Teoria dos Grafos no currículo do Ensino Médio, 

atendendo às diretrizes da BNCC, os educadores podem promover o desenvolvimento de 

competências cruciais, como o raciocínio lógico, a resolução de problemas complexos e o 

pensamento crítico. Além disso, o uso do Algoritmo de Dijkstra possibilita que os alunos vejam 

a matemática como uma ferramenta ativa na solução de problemas do cotidiano, como o 

planejamento de rotas, a logística de transporte e até a navegação por aplicativos de carona. 

A proposta pedagógica desenvolvida nesta dissertação destaca a importância de 

metodologias interativas e práticas, nas quais os alunos desempenham um papel ativo no 

processo de aprendizagem. Ao modelar situações reais como grafos e aplicar o Algoritmo de 

Dijkstra para resolver problemas, os estudantes não apenas compreendem os conceitos teóricos, 

mas também experimentam a matemática de uma forma concreta e envolvente. 

Em termos de perspectivas futuras, este trabalho sugere a expansão do uso da Teoria 

dos Grafos para outras áreas do Ensino Médio, ampliando o escopo de aplicações práticas e 

interdisciplinaridade com outras disciplinas, como geografia e física. 

Assim, conclui-se que a aplicação de uma abordagem prática e significativa, como a 

proposta nesta dissertação, não apenas melhora a aprendizagem da matemática, mas também 

motiva os alunos a explorarem novos conceitos e a utilizarem o conhecimento adquirido em 

suas vidas. A matemática, ao ser apresentada como uma ferramenta para solucionar problemas 

reais, pode ser ressignificada e ganhar novo valor no contexto educacional moderno. 
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APÊNDICE A –  

Seja 𝑇 = (𝑉, 𝐸) um grafo, onde 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, . . . . 𝑣𝑘} é o conjunto de vértices do 

grafo e 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, . . . . 𝑒𝑘}. 

Podemos Definir árvore como um grafo conexo que não possui ciclos. 

Teorema 4: As seguintes afirmativas são equivalentes para um grafo 𝑇: 

(𝑖)  𝑇 é uma árvore; 

(𝑖𝑖)  Quaisquer dois vértices em 𝑇 são unidos por um único caminho em 𝑇; 

(𝑖𝑖𝑖)  𝑇 é minimalmente conexo, i.e., 𝑇 é conexo, mas 𝑇 − 𝑒 é desconexo para                    

qualquer aresta 𝑒 ∈ 𝑇; 

(𝑖𝑣) 𝑇 é maximalmente acíclico, i.e., 𝑇 não contém ciclos, mas 𝑇 + 𝑣𝑖𝑣𝑗   contém, 

para quaisquer dois vértices 𝑣𝑖, 𝑣𝑗  não adjacentes em T. 

Vamos provar a equivalência de cada uma delas: 

(𝑖) → (𝑖𝑖):  

Por definição, sabemos que uma árvore 𝑇 é um caminho sem ciclos. 

Suponha, por absurdo, que exista ao menos dois caminhos distintos em 𝑇 que unam 

𝑣𝑖  𝑒 𝑣𝑗. 

Seja 𝑣𝑘 o primeiro vértice onde os dois caminhos se separam. 

Como os dois caminhos possuem  𝑣𝑗 , então existe ao menos um 𝑣𝑛 onde os dois 

caminhos voltam a se encontrar (na melhor das hipóteses,  𝑣𝑛 = 𝑣𝑗). 

Porém isso é um absurdo, pois acabamos de encontrar um ciclo nesta árvore. 

(𝑖𝑖) → (𝑖𝑖𝑖):  

Seja 𝑇 um grafo em que quaisquer dois vértices são unidos por um único caminho 𝑃, 

assim 𝑇 é conexo. 

Sejam 𝑣𝑗 , 𝑣𝑛 vértices vizinhos e 𝑒 a aresta que os une. 

Considerando 𝑇 − 𝑒, não há mais conexão entre 𝑣𝑗  e  𝑣𝑛.  

Logo, qualquer aresta 𝑒 retirada de T o torna desconexo. 

(𝑖𝑖𝑖) → (𝑖𝑣):  

Seja 𝑇 um grafo minimalmente conexo. 

Lema 1: Se uma aresta 𝑒 ∈ 𝐸(𝐺) está em um ciclo, então 𝐺 − 𝑒 tem o mesmo número 

de componentes conexas de 𝐺. 
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Vamos supor que uma aresta e está em um ciclo no grafo 𝐺, mas o grafo 𝐺 − 𝑒 não tem 

o mesmo número de componentes conexas que 𝐺. 

Vamos considerar que 𝐺 − 𝑒 tem mais componentes conexas do que 𝐺. 

Isso implicaria que a remoção da aresta e de 𝐺 teria dividido uma componente conexa 

em duas ou mais.  

Todo caminho que precisasse de 𝑒 poderia ser traçado por um caminho que faz uma 

volta no circuito, evitando 𝑒.  

Isso também contradiz a suposição inicial de que 𝐺 − 𝑒 tem mais componentes conexas 

do que 𝐺. 

Assim, podemos concluir que se uma aresta está em um ciclo, então 𝐺 − 𝑒 tem o mesmo 

número de componentes conexas que 𝐺. □ 

Pelo Lema 1, como 𝑇 é minimalmente conexo, logo 𝑇 não pode possuir ciclos. 

Sejam 𝑣𝑗 , 𝑣𝑛 vértices quaisquer desse grafo. 

Como 𝑇 é minimalmente conexo, logo existe caminho que une 𝑣𝑗  e  𝑣𝑛.  

Vamos adicionar uma nova aresta ao grafo para unir os dois vértices. 

Agora temos dois caminhos completamente distintos que unem os dois vértices ao grafo. 

Isso é um ciclo, logo, o grafo é maximalmente acíclico. 

(𝑖𝑣) → (𝑖): 

Seja 𝑇 um grafo maximalmente acíclico, ou seja, 𝑇 não contém ciclos, mas qualquer 

adição de uma aresta entre dois vértices não adjacentes criará um ciclo. 

Queremos mostrar que 𝑇 é uma árvore, ou seja, um grafo conexo sem ciclos. 

Para provar que 𝑇 é conexo, podemos usar a redução ao absurdo.  

Suponha que 𝑇 não seja conexo.  

Isso significaria que existem dois vértices 𝑣𝑖 , 𝑣𝑗 em 𝑇 que não estão conectados por um 

caminho.  

No entanto, como 𝑇 é maximalmente acíclico, adicionar uma aresta entre 𝑣𝑖 e 𝑣𝑗  

resultaria em um ciclo. Isso significa que 𝑣𝑖 e  𝑣𝑗  já seriam ligados em 𝑇.  

Portanto, 𝑇 deve ser conexo. 

Agora, suponha que 𝑇 contenha um ciclo.  

Isso implicaria que 𝑇 não seria maximalmente acíclico, pois teria um ciclo. 

Logo, se 𝑇 é maximalmente acíclico, então é uma árvore. 

Como (𝑖) → (𝑖𝑖) → (𝑖𝑖𝑖) → (𝑖𝑣) → (𝑖), então provamos que todas as afirmações são 

equivalentes. □ 
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