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RESUMO

Resolver problemas de sensoriamento remoto (SR) € pratica importante na gestao de um
pais, principalmente aqueles com grandes extensdes continentais e reservas ambientais
(como o Brasil). Dentre as ferramentas de SR, o SAR (Synthetic Aperture Radar) tem
sido muito utilizado. Embora o sistema SAR imponha aos dados resultantes o efeito
do ruido speckle, ele produz imagens em alta resolucdo espacial e trabalha sob varias
condi¢des atmosféricas. Da literatura, evidencia-se que trabalhar com o atributo SAR
“poténcia de dispersdo total” (SPAN) de uma perspectiva estatistica pode ser muito pro-
missor. Em geral, esta tese avanga na proposi¢ao de um conjunto de ferramentas para o
processamento estatistico de imagens SAR considerando SPAN, como atributo de inte-
resse. Primeiramente, assume-se um retorno SAR bivariado induzido pelo SPAN segue
a distribuicdo gama bivariada de McKay (MBI'). Um modelo de regressdo harmonico
(munido pela transformada de Fourier bidimensional) € proposto para quantificar o efeito
de outras varidveis sobre a média do par aleatério considerando a dindmica espacial,
chamado MBI'R. Adicionalmente, uma ferramenta de sele¢cdo de modelo € proposta com
base na transformada de Mellin bivariada. Experimentos de Monte Carlo sao feitos a
fim de avaliar os estimadores propostos para os parametros do MBI'R. Uma aplicacao
a dados reais € realizada, evidenciando a importancia do ferramental proposto na des-
cricao de textura. Em segundo lugar, evidéncias sdo levantadas da dire¢do de descrever
um atributo razao a partir do SPAN que segue a distribui¢do Beta Tipo 3 modificada
(BT3, denotada por Betaé/ 2 (p,q)). Subsequentemente, quatro medidas de divergéncias
(Kullback-Leibler, Rényi, Bhattacharyya e Hellinger) sdo deduzidas e empregadas na
formulacdo tanto de testes de hipdtese como de detectores de bordas. Experimentos
Monte Carlo evidenciam bom desempenho dos testes para tamanhos amostrais peque-
nos e moderados, comparativamente ao teste da razao entre verossimilhangas. A partir
experimentos reais, o detector revelou transi¢cdes bem definidas entre classes, compara-

tivamente a outro detectores da literatura. Em terceiro lugar, o atributo do tipo razao



do SPAN (BT3 distribuido) € combinado ao método de contornos ativos na formulacdo
level set, resultando em um novo segmentador. Propde-se uma curva de evolugdo gene-
ralizada por meio do nexo Box-Cox, que tem o método da literatura como caso marginal.
Entdo, o atributo tipo razao € usado como input a nova proposicdao. Experimentos tanto
com dados simulados como reais evidenciam novos segmentadores que trabalham mais

rapidamente e com maior acurdcia do que os da literatura.

Palavras-chave: Divergéncias; Deteccdo de bordas; Contornos ativos (level set);
Box—Cox; Imagens SAR; Regressdao gama bivariada (MBI'R); SPAN; Transformada

de Mellin; Transformada de Fourier.



ABSTRACT

Solving remote sensing (SR) problems is an important aspect of managing a country,
especially those with large continental areas and environmental reserves, such as Brazil.
Among SR tools, Synthetic Aperture Radar (SAR) is widely used. Although the SAR
system introduces speckle noise into the resulting data, it produces images with high
spatial resolution and operates under various atmospheric conditions. From the recente
literature, it is shown that analyzing the SAR attribute "total scattering power"(SPAN)
from a statistical perspective is very promising. Overall, this thesis advances a set of
tools for the statistical processing of SAR images, considering SPAN as the attribute
of interest. First, a bivariate SAR return induced by SPAN is assumed to follow the
bivariate McKay gamma distribution (MBI'). A harmonic regression model using the
two-dimensional Fourier transform is proposed to quantify the effect of other variables on
the mean of the random pair while accounting for spatial dynamics; this model is called
MBI'R. Additionally, a model selection tool based on the bivariate Mellin transform is
proposed. Monte Carlo experiments are conducted to evaluate the proposed estimators
for the MBI'R parameters. An application to real data is presented, highlighting the
importance of the proposed tool for texture description. Second, evidence is gathered to
describe a ratio attribute from SPAN that follows the Modified Type 3 Beta distribution
(BT3, denoted by Beta;/ 2 (p,q)). Four divergence measures — Kullback-Leibler, Rényi,
Bhattacharyya, and Hellinger — are then derived and used to formulate both hypothesis
tests and edge detectors. Monte Carlo experiments show good test performance for small
and moderate sample sizes compared to the likelihood ratio test. In real experiments, the
detector revealed well-defined transitions between classes compared to other detectors
in the literature. Third, the ratio attribute of SPAN (distributed BT3) is combined with
the active contours method in the level set formulation, resulting in a new segmenter
for SAR images. A generalized evolution curve is proposed using the Box-Cox nexus,

which includes the method from the literature as a special case. The ratio attribute is



then used as input to the new evolution curve. Experiments with both simulated and real
SAR data show that the new segmenters operate more quickly and accurately than those

described in the literature.

Keywords: Active contours (level set); Bivariate Gamma regression (MBI'R); Box—Cox;

Divergences; Edge detection; Fourier transform; Mellin transform; SAR imagery; SPAN.
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1 Introducao

1.1 Problematizagao, revisao da literatura e contribuigoes
em geral

Os sistemas SAR (Synthetic Aperture Radar-SAR) se consolidaram como ferra-
mentas do sensoriamento remoto por aliarem producao de imagens em alta resolucdo
espacial, independéncia da iluminagdo solar e capacidade de trabalhar em condi¢des
meteoroldgicas adversas ( , ). A iluminacdo coerente empregada na aquisicao
de imagens SAR, introduz o speckle — ruido de natureza multiplicativa — que degrada
a interpretabilidade visual e requer a proposicao de novas metodologias estatisticas
que pressupdem gaussianidade e aditividade ( , ;

, ). Em configuracdes polarimétricas (Polarimetric SAR-PolSAR), a res-
posta dos alvos € descrita ou por vetores complexos (caso singlelook) ou por matrizes
complexas de retroespalhamento (caso multilook). Em ambos os casos, o processa-
mento € feito a partir de canais de polarizacdo (com emissdo horizontal H e recep¢ao
horizontal H, diga-se HH, ou variagcOes destes estados, HV, VH e VV). A partir dos
canais, obtém-se desagregacoes fisicas (p. ex., a decomposicdo de Pauli) e a poténcia
de dispersao total (SPAN), um sumarizador informativo dos mecanismos de espalha-
mento ( , ; , ). Entre as representacoes
polarimétricas, a decomposi¢ao de Pauli ¢ amplamente empregada para interpretar me-
canismos fundamentais de espalhamento — superficie, duplo bounce e volume — e para
derivar o SPAN ( , ; , ). Métodos base-
ados no SPAN tém sido propostos para caracterizacao de alvos em PolSAR, incluindo

testes munidos por divergéncias e distancias estocdsticas ( , ;



, ; , ). Em aplicacdes como ma-
peamento temdtico, detec¢do de alvos e monitoramento ambiental, autores ressaltam a
importancia do o SPAN em tarefas de classificacdo, detec¢do de mudangas, otimizagao
e segmentacdo em ambientes urbanos e vegetados, combinando medidas estatisticas e
de teoria da informagao ( , ; , ; , ;

, ; , ; , ). No contexto
de sensoriamento remoto, mapeamento temadtico refere-se a producdo de mapas que re-
presentam categorias especificas de interesse — como tipos de uso e cobertura do solo,
classes urbanas, corpos d’dgua ou formacdes vegetais — obtidas por técnicas de classifi-
cacdo aplicadas as imagens. Em SAR/PolSAR, esse processo € especialmente relevante
devido a capacidade do radar de discriminar propriedades fisicas, texturais e estruturais
da superficie, mesmo sob condi¢des climaticas adversas e auséncia de iluminagao solar,
tornando o SPAN um atributo fundamental para a caracteriza¢do e o monitoramento
multitemporal de superficies.

Um paradigma em Processamento de Imagens € resolver problemas de pOs-
processamento (tais como deteccdo de bordas e segmentacdo) a partir de supostos
estocdsticos alinhados com a fisica de formagao do tipo de imagem a ser trabalhado.
Esta tese tem o foco em imagens SAR cujos dados sdo afetados pelo ruido speckle.
Quando pensamos em distribuicdes/modelos para dados afetados pelo speckle,

( ) nos conduz a distribui¢do gama, tanto como distribui¢do principal para
intensidades (norma quadrada dos canais de polarizagdo complexos) em cendrios for-
temente homogéneos ( , ) como em um dos
fatores devido ao ruido speckle em modelagem multiplicativa ( , ;

, ).

No ambito da Teoria da Probabilidade e da Estatistica Matematica, o estudo de distri-

buicdes bivariadas e de transformacdes escalares delas derivadas tem recebido atencao

crescente, tanto no desenvolvimento tedrico quanto em aplicacdes avangadas ( ,



, ) como aplicadas ( , ). Entre as
familias bivariadas com marginais gama, destaca-se a distribuicao proposta por
( ) e posteriormente generalizada ao caso multivariado por
( ), amplamente conhecida como gama bivariada de McKay (MBI"). Essa distribu-

icdo tem motivado uma série de desenvolvimentos relevantes, entre os quais:

* Procedimentos de inferéncia estatistica especificos para seus parametros (

, )

Aplicagoes em variedade estocdstica e geometria da informacao (

* Formulacdo de medidas de distancia estocastica entre distribuigdes da mesma

familia ( , );

Propostas de modelos de regressdao multivariada estruturados no parametro de

forma ( , ).

Tal como introduzido por ( ), esta tese assume que
o estudo do atributo SPAN em imagens SAR deve partir do suposto: “intensidades SAR
devem seguir a distribuicilo MBI™. Neste contexto, investigam-se: (i) como analisar
padrdes em pares induzidos pelo SPAN de imagens SAR assistidos por outros canais,
lacuna aberta em ( ); (1) como mensurar discrepancia
(via teoria da informagdo, seguindo a abordagem de ( )
e determinar bordas entre duas amostras de atributos razao definidos a partir de MBI'(68);
(iii) como segmentar imagens SAR via atributos razdo combinado a curvas de evolugdo

em level set. Seguem os contextos e proposicoes desta tese.



Proposta 1

( ) introduziram a abordagem de fa-
zer inferéncia e processamento de imagem sobre o par aleatério Y =
(Intensidade do canal, SPAN). Neste contexto, a distribui¢do I" estd fisicamente
para o speckle na intensidade SAR multilook como a gama bivariada de McKay
( , ) surge a partir do par aleatério Y. Até aqui,
nao hd registro sobre proposi¢ao de regressao para modelagem de Y como resposta
no contexto de imagens SAR. E importante mencionar que ( )
tem proposto uma abordagem de regressao multivariada com resposta gama com
estrutura no parametro de forma. Esta abordagem foi aplicada a dados reais em
outro contexto (indice de desenvolvimento) e, pelo modo de reparametrizagao,
oferece algumas intratabilidades analiticas na reparametrizacdo. Nesta primeira
contribuicdo, propde-se uma nova abordagem para regressao gama bivariada com
estrutura na escala, capaz de agregar comportamento espacial por transformada
de Fourier bidimensional (2D) ( , ) e alinhada a forma-
¢ao fisica de imagens SAR. Vdrios resultados tedricos sao propostos para 0 novo
modelo; como p. ex., a Informacgdo de Fisher e um estimador iterativo em forma
fechada baseado no método de Scoring-Fisher para os parametros do modelo
de regressdo. Adicionalmente, motivado pelo trabalho de ( ) que
elabora um tratamento matemadtico para o desenvolvimento de inferéncia sobre
transformadas de integrais empiricas e no uso estatistico da transformada de Mellin
( ; ; : g

, ) em duas dimensdes ( , ), propde-se uma ferramenta de
selecdo de modelo. Experimentos de Monte Carlo sdo realizados para se quan-
tificar a performance dos estimadores dos parametros do modelo. Finalmente,
uma aplicagdo para dados reais ilustra o uso do modelo em imagens SAR e a sua

capacidade em descrever texturas distintas.




Proposta 2

Nesta proposta, coloca-se o foco distribucional numa transformagado escalar do
par aleatério da Proposta 1, 7 : (X1, X2) — X;/X; tal que (X, X2) ~ MBI'(6).
Em particular, introduz-se o uso da distribui¢do Beta Tipo 3 (BT3) modificada
no intervalo (0, 1/2) proposta por ( ) para descrever um
atributo razao do SPAN. Este caso é denotado por Beta;/ 2( p,q). A partir de
uma revisao da literatura, além da defini¢do, ndo hd desenvolvimento matema-
tico estatistico para BT3. Assim, inicialmente, uma investigacdo exploratdria
em dados reais € feita para associar tanto os parametros quanto algumas de suas
medidas tipo momentos derivadas nesta tese para analisar texturas em imagens
SAR. Aqui, expressdes em forma fechada sdo deduzidas para as divergéncias
de Kullback-Leibler e Rényi e para as distancias de Bhattacharyya e Hellinger.
Subsequentemente, quatro testes de hipdteses sao deduzidos, baseando-se nes-
tas medidas, para comparar duas amostras de atributos tipo razao do SPAN. O
desempenho do teste € quantificado por simulacdo Monte Carlo e alguns deles
mostram desempenho superior aquele fornecido pelo cldssico teste da razao entre
verossimilhanca. Finalmente, as estatisticas dos testes propostas sdo usadas como

detectores de borda, seguindo o paradigma usado por ( )e

(2021).




Proposta 3

Nesta proposta, o atributo razao SPAN e sua distribui¢cdo Betaé/ 2 (p, q) sdo usa-
dos em combinagdo com o método de level set para segmentacao (procura uma
particao 6tima) de imagens SAR seguindo a abordagem variacional dos livros
“Variational and Level Set Methods in Image Segmentation” (

, )e “Total Variational and Level Set Methods in
Image Science” ( , ). Na literatura de level set, o compo-
0p(x,y,t)/0t

[x,y] e tempo ¢ ocupa um papel crucial na deformacdo do level set para encon-

nente gradiente descendente ” no dominio espacial da imagem

trar a particdo Otima e € baseado na estatistica da razdo entre verossimilhancas
(RV), dentro e fora do objeto de interesse numa imagem. O avango neste capitulo
se concentra inicialmente em assumir uma estatistica generalizada no gradiente
descendente que tenha a quantidade cldssica RV como caso marginal. Esta ge-
neralizacdo € feita no que serd definido como “nexo Box-Cox”. Resultados de
simulacao e com dados reais obtidos de imagens SAR mostram que proposi¢do do
novo gradiente descendente produz um método de segmentagdo tanto com uma

convergéncia mais rdpida como com uma maior acurdcia em vdrias situagoes.

1.2 Objetivos

1.2.1  Objetivo geral
Propor e avaliar metodologia estatistica para processamento de atributos de imagens

SAR induzidos pelo SPAN que:

i
Modele adequadamente o par de atributos (Intensidade, SPAN) de modo condi-
cional (tal que permita quantificar tanto a influéncia de outros atributos como da

estrutura de dependéncia espacial capturada pela transformada de Fourier 2D), es-
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tendendo a abordagem introduzida por ( )e

(2023).
(ii)
Defina testes de hipdteses para identificacdo de contrastes e detectores de bordas
baseados em divergéncias de atributos tipo razao.
(iii)

Proponha um segmentador por contornos ativos e level set por meio de um nexo

Box-Cox para atributos tipo razao.

1.2.2 Objetivos especificos

Construir uma fundamentag@o multiplicativa do novo modelo de regressao MBI

para atributos bidimensionais induzidos pelo SPAN em imagens SAR;

Deduzir expressoes iterativas em forma fechada para os estimadores de maxima
verossimilhanca via método Scoring-Fisher dos parametros da regressio MBI
Particularmente, propor um novo estimador para o nimero de equivalente de looks,
que € uma drea bem definida na literatura ( ,

)

Introduzir e justificar a distribuicao Betaé/ 2 (p, q) ao lidar com o atributo razao do

SPAN em imagens SAR;

Deduzir vérias medidas tipo log-momento para lei Beta;/ 2 (p,g) bem como a
matriz informagao de Fisher e discutir sobre como obter os estimadores de maxima

verossimilhanca;

Deduzir e investigar medidas de divergéncias (Kullback-Leibler, Rényi, Hellinger
e Bhattacharyya) para distribui¢ao Betaé/ 2 (p,q). Formular procedimentos de
testes de hipdteses e detectores de bordas para comparar duas amostras do atributo

razdo do SPAN;
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Fundamentar estatisticamente a proposi¢do de um novo gradiente descendente no

uso de segmentacao por level set;

Conduzir estudos de simulacdo de Monte Carlo para avaliar o desempenho de

estimadores, testes e segmentadores propostos;

Aplicar as propostas desta tese ao processamento de imagens SAR.

1.3 Produtos da tese

Esta tese apresenta até o momento dois produtos:

* Artigo intitulado como “Edge detection in SAR images with modeling

for SPAN” e submetido ao Journal of Mathematical Imaging and Vision.

[Abstract] Synthetic aperture radar (SAR) is presented as an excellent instrument
for remote sensing. Among other things, it is capable of generating images with
high spatial resolution and working under different weather conditions. However,
SAR relies on coherent illumination, which causes the generated images to be
corrupted by speckle noise, requiring tailored modeling. In this paper, we first
introduce a modified type three beta distribution as a potential candidate for SAR
data as a function of the total scattering power (SPAN), an important feature in
the physics of SAR image processing. Based on this assumption, we propose
four distance measures that are used to define new hypothesis tests and boundary
detection in SAR images. A Monte Carlo simulation study is conducted to
quantify the performance of the new hypothesis tests in different scenarios. The
results show that the proposed tests are able to estimate the given nominal levels
(i.e. tests with a controlled false alarm rate), even for small sample sizes. Finally,

two applications are performed on real data whose detection results support our

proposal.
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* Artigo intitulado como  “Regression induced from SPAN: Mellin
transform and Texture extraction” e submetido ao Journal of the

Royal Statistical Society Series C.

[Abstract] Synthetic aperture radar (SAR) systems are an efficient means of tac-
kling remote sensing problems. In contrast, SAR images are subject to speckle
noise due to the use of coherent illumination during acquisition. This noise leads
to both a grainy interference on such images (which precludes their interpreta-
bility) as well as to a multiplicative and non-Gaussian nature of their data. This
work aims to investigate how bidimentional SAR return induced by SPAN and
supported in parallel by other features can be decoded and used to extract partners
in such images. To this end, in this paper we propose a new bivariate I'-McKay
regression (I'-McKayR) model for SAR images. We derive some of its mathe-
matical properties: score vector, Fisher information matrix, and tools for residual
analysis. The maximum likelihood estimation procedure for ['-McKayR parame-
ters is discussed and some asymptotic behaviors for its estimates are quantified

by Monte Carlo experiments. An application to real SAR images is performed

The results show that our modeling is a tool that can extract textures.

1.4 Divisdo do manuscrito

Este manuscrito estd organizado em trés capitulos centrais, cada um dedicado a um

bloco metodolégico-estético especifico.

* Capitulo 2 — Regressao induzida do SPAN: Transformada de Mellin e extra-

¢ao de textura.

* Capitulo 3 — Deteccao de bordas via divergéncias, SPAN e a distribuicio

Beta tipo 3 modificada.
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* Capitulo 4 — Evolucao estatistica da superficie para segmentacio em imagens

SAR.

* Capitulo 5 — Conclusoes.
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2 Regressao bivariada induzida do
SPAN: Transformada de Mellin e ex-

tracao de textura

A transformada de Mellin — cuja origem estd associada ao estudo de produtos e
razdes de varidveis positivas ( , ) — tem-se mostrado especialmente ade-
quada a andlise de dados SAR. Seu emprego nesse contexto foi introduzido por

( ), dando origem as chamadas estatisticas do tipo Mellin (Mellin-kind sta-
tistics, MKS). Calculadas no dominio logaritmico, as MKS permitem derivar momentos
e cumulantes associados a transformada de Mellin, fornecendo descritores uteis para
caracterizacdo radiométrica e para avaliacdo de aderéncia e selecdo de modelos (

). No ambito multivariado, extensOes bivariadas da transformada de Mellin foram
formalizadas por ( ) e aplicadas por ( ) na dedugdo
de propriedades cléssicas envolvendo produtos e razdes estatisticas, estabelecendo uma
ligacao natural entre técnicas univariadas e bivariadas. Resultados particulares envol-
vendo razdes e produtos de estatisticas de ordem — associadas as distribui¢des uniforme
e exponencial — bem como de normais bivariadas, foram apresentados em trabalhos
pioneiros como ( ), ( ), ( ), consolidando o papel
da transformada de Mellin como ferramenta analitica versatil para varidveis positivas.
Neste capitulo, introduz-se, pela primeira vez, a transformada de Mellin bivariada, a
partir da qual se estabelece a fundamentagdo tedrica que orienta a escolha dos modelos
considerados.

No contexto de SAR/PolSAR, modelos de regressao t€ém sido explorados para quan-



tificar relacOes entre canais e atributos fisicos ( , ;

, ). Quando multiplas respostas correlacionadas precisam ser
explicadas de forma conjunta, modelos de regressao multivariada oferecem uma estru-
tura natural para relacionar varidveis ( , ).

( )e ( ) tém derivado as regressoes

K-Bessel e g}’, ambas tendo como caso marginal a varidvel resposta gama, que € a
distribuicao para o speckle na intensidade multilook ( , ). Ao
elevar a modelagem para o caso de uma varidvel resposta bivariada, permanece uma
lacuna metodoldgica significativa no Ambito das aplicacdes em imagens SAR. Contudo,
( ) introduziram uma regressao gama baseada na distribui¢io gama

multivariada proposta por ( ), que tem a lei gama bivariada
de McKay como caso marginal. E correto pensar que o modelo de ( )
poderia ser aplicado para o fim de uma regressdo bivariada para descrever o speckle,

mas apontamos algumas questdes para seguir outro caminho:

* A reparametrizacdo usada por ( ) feita nos parametros “de
forma” tornam a deducao de propriedades analiticas importantes (como a matriz

informacao de Fisher) intratavel;

* A constru¢do do modelo de ( ) ndo leva em conta a formagado

fisica de imagens SAR, que é um carater multiplicativo ( ,

; , )

Neste capitulo, as frentes “transformada de Mellin bivariada” e “regressao bivariada”
sdo usadas no contexto da lei gama bivariada de McKay. Primeiro, motivamos e for-
malizamos o uso da transformada de Mellin para distribui¢des de produto relevantes em
SAR, destacando suas vantagens analiticas face as transformadas de Laplace/Fourier em
cendrios aditivos. Essa base permite qualificar a escolha da melhor op¢do de um modelo

de regressdo gama bivariado de McKay voltado a dados SAR. Para este fim, derivam-se
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propriedades matematicas (vetor escore, matriz de informacao de Fisher e abordagem
por anélise de residuos), discute-se a estimacao por maxima verossimilhanca e avalia-se,
via experimentos de Monte Carlo, o comportamento assintético dos estimadores. Por
fim, apresenta-se uma aplicacdo com dados reais, ilustrando como o modelo proposto
— justificado pela nova MKS — quantifica a relagdo entre o SPAN e outros atributos da
relacdo entre canais.

O capitulo € estruturado como segue. Na Secdo 2.1, revisa-se brevemente o uso da
transformada de Mellin na Estatistica para dados SAR, nos casos univariado e bivariado.
A Secdo 2.2 € dedicada as contribuicdes sobre a transformada de Mellin bivariada
para MBI'. Na Secdo 2.3, apresenta-se a regressao gama multivariada. Finalmente, a

Secdo 2.4 aborda os resultados numéricos.

2.1 Transformada de Mellin na Estatistica para dados

SAR

2.1.1 Estatistica do tipo Mellin: Caso univariado

A transformada de Mellin de uma fung¢ao de valor real f : R, — R é dada por

M(s) = MLF()1(s) = /0 1 f () de, @.1)

em que s € C é uma varidvel complexa. Sob certas condi¢cdes dadas em

( ), a transformada inversa de Mellin de M(s) € dada por
1 c+V-1-0
f(x) = / x*M(s)ds, 2.2)
2nV—1 Je—V-T-0

em que ¢ € um nimero real tal que a integral complexa ¢ tomada ao longo de uma linha

vertical no plano complexo, chamada de linha de Bromwich (ou linha fundamental),

16



V-1 € a unidade imagindria e a relacdo entre a transformada M(s) e f(x) é de natureza
reciproca entre si, formando um par { f(x), M(s)}.
Como apresentado por ( ), da Equacao (2.2),

segue-se a formula de Parseval dada por

1
2nV-1

o0 c+V—-1-00
/ F)g()dx = / MIg()1(1 = )MLF ()] (s)ds
0 c=V=T1-00

MLf > gl(s) = MLf1(s) M[g](s),

emque (fxg)(s) = fooo wl £(z/w) g(w) dw é a convolugdo tipo Mellin e M[ f(x)](s)
e M[g(x)](s) sdo as transformadas de Mellin das fun¢des f e g, funcgdes reais definidas
em (0, o), respectivamente. O ponto favordvel da formula de Parseval é a permuta de
integrais que nem sempre pode ser justificada.

Devido ao dominio da transformada de Mellin, ela pode ser aplicada as fungdes
de densidade de probabilidade (PDF) de varidveis aleatdrias positivas (como aquelas
para descrever intensidades e amplitudes SAR). Seja X > 0 uma varidvel aleatéria com
densidade fx(x), uma alternativa a func¢io caracteristica (FC) de X, E(e‘/__lx N, éaFC

tipo Mellin dada por

¢x(s) = E[X*'] = M[fx](s). (2.3)

Ela costuma ser usada para lidar com o produto de varidveis aleatdrias independentes,
enquanto Fourier lida com a soma ( , ).
A partir da expansdao em série de Maclaurin da funcao exponencial, pode-se mostrar

que ( ; )

(o)

ox(s)= 1 ;!l)rur[X], (24)

r=0

em que u,[X] = E[(logX)"]. A Equagao (2.4) indica que ¢x(s) pode ser expandido
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em termos de log-momentos e, portanto, os log-momentos podem ser obtidos de ¢x ()

por

dr
pr [X] = p - ¢x(s) 2.5)
S

s=1
A fungdo geradora de log-cumulante do tipo Mellin é definida como ¢x(s) =

log ¢x (). Essa funcdo pode ser expandida como

ox()= Y E= 0 1x1, (2.6)
r=0

r!

com os coeficientes k, [ X] chamados de log-cumulantes, desde que todos eles existam.

Os log-cumulantes sdo extraidos da Equacao (2.6), como

dr
ke [X] = —=ox(s) 2.7)
ds” s=1
As trés primeiras relagdes entre log-momentos e log-cumulantes sao
KI =1, Ko=po—p] € K3=p3— 3ty +24. (2.8)

Essas relacdes sao validas para log-momentos e log-cumulantes em geral.

2.1.2 Estatistica do tipo Mellin: Caso bivariado

Seja (X1, X») uma varidvel aleatéria bidimensional ou bivariada com densidade
f (x1,x2) e suporte no primeiro quadrante e zero nos demais. ( ) definiu a

transformada de Mellin de f (x;, x) como

M (s1,52) = M[f(x1,x2)] (51, 52) =/0 /0 7P () dody, (2.9)

€ sua inversa como
1 h+V-T1-c0 k+V=T-00
(2aV_1)2 /h—\/—_l-oo k—vTToo
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As condiges sob as quais as Equacdes (2.9) e (2.10) sdo validas foram discutidas
por ( ). A inversdo da transformada de Mellin quando a PDF € positiva em todo
o plano foi discutida por ( ). Dois casos especificos em que

podemos usar a Equagdo (2.9):

(i) Se Y = XX, a funcdo densidade de probabilidade (PDF) de Y, g(y), tem sua
transformada de Mellin dada por M[g(y)](s) = M(s,s);

(i) Se Z = X,/X,, a PDF de Z, h(z), tem a transformada de Mellin M[Ah(z2)](s) =
M(s,—s +2).

As extensdes das Equagoes (2.9) e (2.10) para o caso em que f (x1,x2) € positiva nos
quatro quadrantes, sdo dadas como segue. Denotando por M** (s, s2), M*™ (51, 52),
M~ (s1,52) e M~ (51, 52) a transformada de Mellin de f (x;, x2) nos quatro quadran-
tes, apos atribuir o sinal apropriado a varidvel negativa envolvida, as expressoes para a

transformada de Mellin de g(y) e h(z), podem ser reescritas como:

Mg(y) :y>0](s) =M"(s,s) + M (s,5),
Mlg(y) 1y <0](s) =M"(s,5) + M7 (s,5),

(2.11)
Mlg(y):z2>0](s) =M(s,—s+2)+ M (s,—s+2)

Mlg(y):z2<0](s) =M*"(s,—-s+2)+ M (s,—s+2)

2.2 Contribuicbes sobre transformada de Mellin bivariada

para a MBI’

2.2.1 Medidas exatas

Conforme aplicacdo a dados SAR feita por ( ), a

distribuicao gama bivariada de McKay ("MBI™) com parametro de forma aj,a; > 0Oe
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parametro de escala y > 0 tem densidade dada por:

1

fx,xs a1, 00,y) = 5

para O < x; < x;. Este caso é denotado por X = [X|, X] ~ MBI'(a, @z, y).

probs
99%
— 95%
— 80%
— 50%

Segundo suporte marginal

3 6 9 12
Primeiro suporte marginal

it (a)IM(a2)

@a;=7,5a=3,5ey=0,5.

Segundo suporte marginal

5

0

xﬁ”_l(xz —x1)%2 Lexp (—%) ,

probs
99%
— 95%
- 80%
— 50%

2 a4 6 8
Primeiro suporte marginal

®)a; =3,5,,=7,5ey=0,5.

probs
99%
- 95%
- 80%
— 50%

Segundo suporte marginal

Segundo suporte marginal

10 20 30 40 50
Primeiro suporte marginal

©a=7,5a =3,5ey=2.

0

probs
99%
— 95%
- 80%
— 50%

10 20 30
Primeiro suporte marginal

da; =3,5,a,=7,5ey=2.

Figura 1 — Curvas de nivel da densidade da distribui¢do gama bivariada de McKay.

(2.12)

As Figuras l1a—1d ilustram o comportamento das curvas de nivel da densidade da distri-

buicdo gama bivariada de McKay sob distintas combinacdes de pardmetros. O aumento

de @ amplia a dispersdo ao longo do eixo que descreve o primeiro suporte marginal,

enquanto maiores valores de a> produzem alongamento na dire¢do do eixo que descreve

o segundo suporte marginal. O incremento de vy intensifica a correlagdo positiva entre

as marginais, resultando em curvas mais alongadas ao longo da bissetriz do primeiro

quadrante. Observa-se, ainda, que o centréide da densidade desloca-se para valores
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mais altos de ambos os eixos a medida que a; e a; crescem, refletindo maior coeréncia
estatistica entre os retornos correlacionados, como esperado em contextos SAR.

As seguintes propriedades decorrem de sua defini¢ao da lei MBI
1 X1 ~T (al, %) e Xo~T (afz, %)
(i) X ={(X1,X2) : X2 £ X + Xo} ~ MBI'(a1,02,7) e X2 ~ (a1 + a2, ),
E(X)=y e, E(X2) =y (a1 + @),

Var(X;) = @) - y?, Var (X2) = (a1 + @2) - y*> e Cov(Xy, Xa) = vai /(e + a2),

em que E(-), Var(-) e Cov(-,-) sdo os operadores de valor esperado, variancia e

(iii)

covariancia, respectivamente.

Esse caso é denotado por X = [X1, X3] T ~ MBI'(ay, a2, y). ( ) demonstrou
que X ~ MBT (a1, ay,y) possui transformada de Mellin bivariada dada na Proposi¢ao

2.2.1.

Proposicao 2.2.1. Seja Z ~ MBI (a1, @3,y), com pardmetros, ay, a; e y, entdo:

751”2_2 I'(sy+a;—1)
I'ay) T'(si+a;+az-1)

Mupr(si, s2) = [(s1+s2+a1 +a2-2),

em que sy, s € C.

A demonstragdo desta Proposicao foi refeita considerando menos pré-requisitos, cons-
tando no Apéndice C.

( ) relacionaram essa distribui¢c@o a formacao fisica
observada em imagens SAR como segue. Os sistemas SAR polarimétricos registram a
amplitude e a fase dos sinais retroespalhados para interagdes com a polarizagdo linear
de recepgdo e transmissdo: HH, HV, VH e VV (H para polariza¢do horizontal e V para

polarizacdo vertical). O resultado € a matriz de dispersdo complexa:

Sun  Suv
S = , (2.13)

Sva Svv
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em que Sap € C significa o retorno devido a transmissdo A e a recep¢ao B. De acordo
com ( ), 0s componentes copolarizados Syy e Syy estdo correlacionados,
enquanto os componentes de polariacdo cruzadas Syy e Syv t€ém o mesmo nivel na
matriz de Sinclair. Neste trabalho, concentra-se a andlise em um par aleatorio obtido
a partir da soma de dois canais dos retornos PoISAR, cuja estrutura estatistica induz a
modelagem bivariada considerada.

Seja S € {[Suu, Svv]™, [Sun, Suv] ™, [Svv, Suv]T} € C? um vetor de dois canais
de polarizagdes complexas, em que (-) T denota o vetor de transposicdo. Entdo, a matriz

de covariancia polarimétrica pode ser escrita como

T := S; 7, (2.14)

SIE

L
—

1

em que s; é o i-6ésimo vetor de amostra de um look ¢ (-)* é o operador transposto

conjugado. A decomposicao espectral de T' € dada por
T = /116’181F + /lzeze;, (2.15)

em que A; sdo os i-€simos autovalores reais de T e e; sdo os autovetores ortonormais
correspondentes. A imagem da poténcia de dispersdo total (SPAN) pode ser definida

como a poténcia de retroespalhamento total a partir da Equacao (2.15); isto €,
SPAN := /7.1 + /7.2 =T + T, (216)

em que 7;; € a entrada (i, j) de T. Conforme descrito anteriormente, o recurso SPAN ¢

muito importante no processamento de imagens PoISAR.

( ) introduziram o uso da gama bivariada de McKay—ver detalhes sobre ela em
( ), ( )—para descrever as informacoes

obtidas de (771, SPAN) ou (732, SPAN).

Agora estamos em posi¢ao de apresentar uma reparametriza¢ao para a distribui¢cdo

22



MBI'. Aplicando [y = %, a;=L,ap = L] na Equacio (2.12), tem-se

LN\2L
m L
. _ M L-1 _ L-1 _
Flrx: L) = peSreye =) exp | —IuX2}- 2.17)

Note que o caso singlelook (L = 1) fica

1 —
fOrap) = —exp { =2}, (2.18)
p p

Ja o caso multilook de média unitaria €

L

fx1,x;L) = ( L )le_l(xz —x1)E exp{~Lxs}. (2.19)

I'(L)
Da Proposi¢do 2.2.1, vale-se o seguinte coroldrio.

Corolario 2.2.2. Seja (X1, X») um par aleatorio que segue a distribuicdo gama bivariada

McKay (M BT') reparametrizada, entdo sua transformada de Mellin é dada por

(5272 sy + L—1)

F(D) T(s s2L-1) G1¥s+2l=2) (2.20)

Mupr(si, s2) =

em que L é o niimero de 1ooks

2.3 Regressdo Gama Multivariada

A regressao gama multivariada (MGR-multivariate gama regression) é uma ex-
tensdo da regressdo gama univariada aplicada quando hd multiplas varidveis resposta
continuas e assimétricas, que seguem conjuntamente uma distribui¢cdo gama multivari-
ada ( , ). Essa abordagem ¢ ttil quando as respostas apresentam
dependéncia entre si, 0 que impede a modelagem isolada de cada uma sem perda de
informacao e interpretacao.

Seja Z; = (le, U Zlk)T o vetor de respostas para a [-ésima observagdo e z; =

(le, e le) o vetor de varidveis associadas, paral = 1,2,...,n. Assumindo que Z;
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segue uma distribuicdo gama multivariada conforme ( ),

este caso é denotadocomo Y; ~ I'(ay, - -+ , @k, 4y, -+ , Ak, y) tendo densidade dada por:
z1 =)t _ _
) == e (g — gy — A
Yok Hizl I'(e;)
exp{—[zx — (A1 + -+ A)]/v},
emque «; > 0,7 eRy,zis1+Ai <z (l =2,.. .,k),Zk < 00,41 < Zl,a']t =a+---+ag.
A reparametrizag¢do usada por ( ) para regressao gama tem média

e variancia dos componentes Y; dadas por:
E(Y) =ya; + A = wi(B) e Var(Yy) =y%ef, para i=1,2,...,k,

emque A7 = A1 + A2 +--- + A; € B; representa os coeficientes de regressio para a média
da i-€sima variavel. Para o nosso caso, assumem-se /l;f‘ =0,y = % ea; = L,Vi. Noque
segue, para fins de uso desta tese, a discussao serd reduzida ao caso bivariado.

Embora a distribui¢do do ( ) tenha mérito, pode-se ver dois pontos
que limitam sua aplicagdo direta a modelagem do par de atributos abordado por

(2023):

¢ Colocar a estrutura sistemdtica como fungdo de «; impde intratabilidades ana-
liticas; como, por exemplo, a mesma estrutura ficar como argumento da funcao

especial ['(x) = [;° e~ dt;

* A modelagem nio foi formulada levando em conta a formacao fisica multiplicativa

de imagens SAR ( , ; ; )-

No que segue, a primeira modelagem desta tese € apresentada.
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2.3.1 Modelo de regressao harménica espacial

Considere a reparametrizacdo ¥ = (Y1,Y2) ~ MBI'(a,a2,y) e (a1, az,y) —
(L,L,u/L), tal que L é o nimero de looks e u € uma média comum as duas varidveis
aleatdrias. Este caso tem transformada de Mellin bivariada reparametrizada dada no

Coroléario 2.2.2. A regressao para imagem SAR ¢ definida como segue.

SejaY : {1,...,M}x{l,...,N} — R2 uma imagem SAR cujo retorno é um par
induzido pelo SPAN, conforme ( ),
( ). Estamos em posicao de introduzir uma regressao harmonica.

Definiciio 2.3.1. Sejam {(Y1,Y2)[1,1] | x[1, 1]}, ..., {(Y1,Y2)[M,N] | x[M, N1} um

conjunto de pares MBI distribuidos tais que

Yi v
(i, j] = uli, j] X [i, /1, (2.21)
Yz —_—— Y(O)
sinal 2
———

ruido speckle

em que uli, j1 = g7 (nli, j1), nli,j1 = x[i, j1" B+ 7[i, j], g(-) : Ry — R é injetiva

e duas vezes continuamente diferenciavel, e [Yl(o) Y;O)]T[i,j] ~ MBT'(L,L,1/L) tem

FDP

0)r. (0 0 —Ly®
) {y( )[ () ( )]}L 1 Ly2

FO ) = Py <

, para 0 < y(0 <y, <oo.

L- ZLFZ(L)

Doravante, o Modelo (2.21) sera denominado regressao MBI (abreviadamente, MBI'R).

Uma possivel componente sistematica da MBI'R, inspirado na proposta de

( ), € dado por

P
g(uli, j1) = x[i, AT B+7li, j1 = Bo +Zﬁkxk[i,j]
M N . .
oty 2 s o (AR 2T e
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emque 87 = [Bo,B1,....Bpl, x"[i,j] = (Lxi[i, j],....xp[i, j]) € Bk, k, € a transfor-

mada de Fourier bidimensional (2D) para o sinal 2D 7, j] dada por ( , )
M N . .
_ .. 2r k] l 2r kz]
Brsa = 3, > wlis ] exp { - V=T (e + T2 L (2.23)

i=1 j=1
E importante mencionar que a componente sistematica dada em (2.22) é comumente
chamada de regressdo semi paramétrica. Neste contexto, os coeficientes dados na parte
nao paramétrica devem ser estimados. Contudo, no nosso caso, trataremos como modelo
harménico, pois a parte espacial presente em g(u[i, j]) — x[i, j] T B e representada por

decomposicao espectral via transformada de Fourier em 2D ( , ).

2.3.2 Novo critério de comparag¢do de modelos baseado em M ;pr

Nesta sec¢do, propde-se uma nova medida de discrepancia entre uma amostra inde-
pendente distribuida segundo MBI'R e sua versdo empirica. Com base nessa proposta, é
possivel escolher entre um modelo MBI (reparametrizado ou ndo) e o MBI'R para uma
base de dados SAR bidimensionais. Esta avaliagdo pode se dar tanto por inspecao visual
dos mapas estatisticos quanto por uma avaliacdo quantitativa. Essa nova ferramenta ¢
apresentada e discutida a seguir.

( ) propds um excelente tratamento matemadtico para obter inferén-
cia estatistica a partir de métodos de transformadas integrais empiricas. Nesta secao,
utiliza-se uma abordagem muito semelhante para derivar uma medida de discrepancia.
Considere, como forma de quantificar a discrepancia entre a amostra independente e a

suposicdo probabilistica, a quantidade: Para 6 € {(a1, a2,7v), (i, L), (B, L)},
T@ =MNG G 1 Molsr.s) - Myl 52) I aWsi. )
BeC

= MN% %B X | Mo (s1,52) = Mu(s1,82) I w(si, 52) dAsidAsy,  (2.24)
eC

em que w(sy,s2) é uma funcio de peso, || z ||>= z'z = R?[z] + J*[z] é a norma

quadrada de uma argumento complexo, R[-] € a parte real de um argumento, J|-]
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representa a parte imaginaria, 95(.) representa uma integral de linha (cf. ( ) e
/Y/(\D(sl, s7) € a transformada de Mellin bivariada tedrica ajustada (substituindo o vetor
de parametros @ pelo estimador consistente associado 5) sob a suposicdo probabilistica
P (como as de densidades nas Equacoes (2.12) e (2.17)). Para MBI'R, tomando E el

como estimadores consistentes de S e L, respectivamente, a Equagao (2.20) se reduz a

= - M
— I'(s;+s+2L-2) I'(s1+L -1 1 —~ ]81+852-2
Mop(si,s2) = (51452 ) T ) [ Zzg YxT[i, j1B)

ZS1+82—2F(Z) (s + 2L - 1) MN i=1 j=

(2.25)

e Mu(s1,82) = [MN]T'ZM > Yls‘_1 [i, j1Y5* '[i, j] é sua versdo empirica. Além
disso, dAy, e dA;, sdo elementos de drea no plano complexo associados as varidveis s
e 52, € B é um boreliano em C. Ver Apéndice D para detalhes.

Para computar a Equacdo (2.24), emprega-se integracdo numérica para a seguinte

expressdo: usando coordenadas polares s; = rjexp[V—161] e sp = roexp[V—-162] e a

fungdo de peso w(sy, s2) = exp| — (r? +7r3)],

T = NM/ /ZH/ /2ﬂr1rzexp{ +r2}

|| Mz)(rle\/__g‘, rze‘/__ez) — Mn(rle\/__gl, rze\/__gz) ||2 dr1d01dr2d92. (2.26)

Para ilustrar o critério determinado pelas Equacdes (2.25) e (2.26), considere uma
amostra observada com 1000 pontos gerada de (Y1,Y>) ~ MBI'(ay, @2, y). A Figura 2
exibe as curvas para 7 (@ +€, @, Z) empreto, 7 (@, @z +e, Z) emcinza, e T (a1, @y, L+
€) em cinza-claro. Em todos os casos, para € = 0, observa-se, como esperado, 7 (8) =~ 0
Para |e| # 0, o valor de 7 (0) cresce a medida que |e| se afasta de zero. Esse aumento é
mais significativo para a variacdo em | € menos expressivo em L.

No que segue, discutimos como estimar os parametros da MBI'R.
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1.0e-12 1.0e-12

7.5e-13 7.5e-13

= 5.0e-13 = 5.0e-13

25e-13 25e-13

0.0e400 = 0.0e400

5e-09 1.0e-10

7.5e-11

< = 5.0e-11

25e-11

06400 - 0.0e+00

10 05 0.0 05 1.0 1.0 05 0.0 05 1.0
0+e 0+e

Parametros: — 0 — Gz — Y Parametros: — Q1 — Gz — Y

©ar=3,ap=1ey=>5. da; =5 ay=4ey=3.

Figura 2 — Curvas do critério proposto entre a estatistica de Mellin para a distribuicio MBI e as transfor-
madas de Mellin empiricas.

2.3.3 Estimagéo dos parametros da regressdo gama de McKay

( ) mostraram que, se (X, Xp)[1,1],..., (X1, X2)[M,N]
€ uma amostra aleatéria com n(= MN) pontos de (X, X») ~ MBI (aj,az,v), 0s
estimadores de mdxima verossimilhanca (EMVs) para § = (a1, @2, y) sdo dados por:
definindo

M N
(p1(XD@2(X2)p3(X2 — X1)) = ZZ%(XH L jDe2(Xali, jDe3(X2[i, j1 = X1[i, j])
i=1 j=1
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para funcdes mensuraveis ¢;(-),

— <X2> — X1 lOgXl
=, - ~ v |~ MN
TTMN@+ay T <X @ N xox
€
) <X2 log Xz)(MN + <X1 log X; >) + (X3)(log X1>(1 + MN (log X3) — <X§(213%{)|(2>)
(0%)

7y (o) (log X, ><M> (X Tog Xo){ 1% ) — (log X1)(X; log Xa)

Sejam {(Y1,Y2)[1,1] | x[L1]},....{(Y1,Y2)[M,N] | x[M,N]} uma amos-
tra independente com n(= MN) pontos tal que {(Y1,Y2)[i,j] | x[i,j]} ~
(L, L,uli,j](B)/L). A fungdo de log-verossimilhanga associada para {[(y;1,y2) |

x;];i=1,...,n} sendo uma amostra observada, € dada por:
M N y i /]
(([L,B]) =2nLlogL - L - 2L log,u i,j] —2nlogI'(L)

M N M N
+(L—1){2210gy1u +ZZlog(yzzJ -nli b}, @27)

i=1 j=1 =1 j=1
emque u[i, j] = g~ " (x[i, /17 B). Note que acomponente sistematica em (2.22) tem duas
partes, uma paramétrica e uma nao paramétrica que serd representada via decomposicao
espectral. Vamos comecar com a estimagao de .

A funcgio escore associada, U([L,B]) = [UL, (LIE]T = [0¢/OL,0¢/0B7]T, tem

entradas:

hd (LlLZ

M N ]
U, =2nlogL +2n - ZZ}Z[[;’]] —ZZlogy[l Jl 2n‘P((g))
i=1 Jj ’

M N =Al4 N
+ZZIOgY1 i, jl +ZZlog(y2 L, j1 = yili, j]).

i=1 ]:1 i=1 ]=l



A partir de Uy |, _7 = 0, obtém-se

yz[” M N M N .
+22210g,ul] ZZlogyl[z,]]

L) i=1 j=1 i=1 j=1

2nflogL - ¥ Y] =
n[log D)

log(y2[i, j1 = y1li, j1).

M= ip=
1= EMZ

i=1 j=1
Usando log( )—‘P(O) ~ —i
gz (2~ 27’
1 1 M N 1 M N
f ;ZZlogyl I ] +ZZZlOg(y2 [ J )’I[I,J])
i=1 j=1 i=1 j=1
A yali PR
- ﬁ' . nzlogﬂ i, j].
i=1 j=1 i=1
Com isso,

Z:{liilog)}ll] +12210g(yzlj yl[l9.]])
n &4 n
LG nlijl 2 v h
_;ZZ /7 ;ZZIOg,u i, ] } , (2.28)

que € um estimador em forma fechada para o nimero de equivalentes de looks.

E importante mencionar que a proposi¢ao de um estimador para o nimero de
equivalentes de looks € uma drea bem definida no processamento de imagens

SAR; ver, por exemplo, ( ) e

x[i,]]
uli, jlg' (uli, j1)

M N .. .. .. M
_ yali, j1 opli, j1onli, j1
U =L 2 2 o i ante 71 op 2L;

:Lii wlijl 2 |\ _xlid]l _ | prgys
. pulis j12 - plinj1) g (uli, j1) ’

N
J=




em que

x[1,1]7

x[M,N]"

Y* = yZ[l’l] _ 2 yz[M,N] _ 2 !
p2(L,1] p[1, 1)\ w2 [M,N] M, NT)|

A matriz Hessiana,

2 2

U, U % —3£3€T
H([L,,B])=[ =

Up. Upp 3L0F 9P

tem componentes dados por

Up, =2n[L7" =W, Upg = U, =Y WX, e Upg = X WX

em que Wy = diag{w,[1,1],...,w2[M,N]}e

2 2plnjl), 8"l jD
pli, j12 - @i g1 | [g(uli, jDI?

1
[¢"(uli, jD]?

Assim, a matriz de informacao de Fisher é

WZ[Z’J] =

2 yaliJl
ulis j1 w2l j1

I([L,B)) = E{-H([L,BD} = - =

E(UrL) E(ULp) [KLL KLB
E(UpL) E(Upgp)

] , (2.29)
KpL Kpp

em que

1
KLL = 2I’l|:‘P((£)) — Z], KLp = KEL = 0p><1’ KB = LXTWIX

e Wi = diag{2/[u[1,11¢'(u[1,1D]?,....2/[u[M,N]g'(u[M,N])]*}. Observa-se
que a informacdo de Fisher € em blocos diagonais, o que facilita a obten¢do dos erros-

padrao dos estimadores de mdxima verossimilhanca.
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Finalmente, o EMV para o nimero de looks L é dado na Equacgdo (2.28), enquanto
aquele para 8 ndo tem formula fechada. Entretanto, usando o método Scoring-Fisher, o

EMV para B pode ser derivado pela seguinte identidades iterativas:

E(m) _ E(i) _ KZ;};(B\(i))Uﬁ(E(i))
= LO(X"WL(BD)X) [ ¢(BD) — X W (B))Y*(BD)], (2.30)

em que £(BD) = [LO1H(XTW,(BD)X)BD. Como critério de parada para a Equa-
¢a0 (2.30), adotou-se || E(iﬂ) - E(i) ||< € tal que € € um erro de precisiao pre-especificado,
emque || al|=VaTa.
Para estimar Sy, x, na Equacao (2.23), substitui-se 7[i, j] por 7[i, j| = g(Y[i, j]) —
xT[i, /1B, resultando na expressdo:
M

Briky = ZN:?[i,j] exp{— \/—_1(2712;6111' N 27111\€]2f)}’

i=1 j=1

em que Eé o ponto de convergéncia de {ﬁ(i);i =1,2,...}.

2.3.4 Analise de residuos para regressdo gama de McKay

Na proposicao de um modelo de regressao, a andlise de residuo € uma etapa funda-
mental. Esta etapa permite que tanto as suposi¢des do modelo sejam verificadas como
observagdes destoantes sejam identificadas. Na literatura de regressado, hd diversos tipos
de residuos, entre eles: residuo original, residuo padronizado, residuo de Cox—Snell,
residuo de desvio (deviance), entre outros ( , ;

, ).

Neste trabalho, utiliza-se o seguinte residuo de Pearson:

7 Yilij1-flij]
Ry [i, 7] :[ L =0 }
L Yalijl =2 li.j]
R \/; Alisj]

32



Considere discutir a distribui¢do assintotica do residuo marginal. De
~. . - . AT A P . - . =
(1989), segue-se que fili, j] = g~' (x[i, j1"B) ———— uli,j] = g7 (x[i,j1"B) se B

—~ —~ P
representa os EMVs e, portanto, {Y[i, j| — ul[i, j1}, {Yali, j] — 2 uli, j1} FYITEN 0,

em que “#” representa a convergéncia em probabilidade.
Adicionalmente, pelo Teorema de Slutsky ( , )
Yi[i. i L (Yo[i. i

Rili, j] ——— Z1 VL ( 1L 1) e Roli j] ——— Zy 2 || ( Lo 2),

M.N—eo ulis gl M.N—eo 2 \uli ]
em que “%” denota a convergéncia em distribui¢do. Logo E(Ry[i, j]) £ E(Zy) =
Oparak =1,2,

Var(Ri[i, j]) £ Var(Zy) = —5——Var(Yi[i, j]) = 1
k p*[i, /]
e
LCor(Y:[i, j1, Y2 [i, j1) _ V2

Cov(R1[i, j1, R2[i, j1) £ Cov(Zy, Z2) =

V242[i, j] (Var(vi[i, j1) Var(Vali, j])3 12 2
em que f,n(x) £ f(x) representa a quantidade assintota quando n e m sdo suficien-

temente grande. Finalmente, pelo Teorema Central do Limite ( ,

),
.. D 0 1Y
[l,J]L_)—o:Nz ,
oll¥ 4

Ry

R>

ou, como consequéncia de propriedades da normal multivariada,

Ol =21 {(n i, /] —ﬁ[i,j])z . (n [i.J] —ﬁ[i,j])(Yz[i,jl—zﬁ[i,j])

uli, j] uli, jl uli, j]
2
1wl -2a01) | o
+2( ] )} — X (2.31)

A Tabela 3 apresenta uma investigacdo numérica para entender o comportamento na

Equacao (2.31). Neste ponto, 1000 cendrios de Monte Carlo sdo gerados e, para cada
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um deles, gera-se uma amostra n-dimensional (para n = 49,81) de uma MBI'R (com
coeficientes de regressao By = 81 = 10) e obtém-se as avaliacdes da distancia quadrada
de Mahalanobis na Equagdo (2.31) a partir dos residuos de Pearson. Depois, € verificado
se os valores de Q[i, j] seguem uma distribuicao )(% usando do teste de Kolmogorov-
Smirnov ( , ). Como critério de avaliacdo, usam-se taxas de
rejeicdo de H : Os dados de Q[i, j] consistem em uma amostra observada de Q ~ )(%
, denotadas por aks, a um nivel de 5%. Quanto mais préxima de 5%, melhores sdo os
resultados. Pode-se observar da Tabela 3 que de fato este ultimo resultado é confidvel
para L suficientemente grande. Quando maior o tamanho de amostra, maior € o valor

de L requerido.

Tabela 3 — Estimativas (@gs) para o nivel nominal 5% do teste de Kolmogorov-Smirnov para testar Hj :
Os dados de Q[, j] vém de uma populacdo X§~

n(=NM) | Bo=p1| L | aks
49 10 | 1] 0.768
49 10 | 5] 0076
49 10 | 10 [[0.053]
81 10 | 1| 0947
81 10 | 5| 0087
81 10 |10 | 0.068
81 10 | 15| 0.059
81 10 |20 |[0.052]

2.4 Resultados Numéricos

O estudo numérico desta sec¢do € dividido em duas partes. Primeiro, experimentos
Monte Carlo sdo realizados para quantificar o desempenho dos EM Vs para os parametros
da MBI'R. Em seguida, a MBI'R € aplicada a dados reais para descricao de texturas em

pares (intensidade, SPAN) obtidos a partir de uma imagem SAR.
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2.4.1 Estudo de simulagao

Foi realizado um estudo de simulacdo de Monte Carlo com cinco mil réplicas para
quantificar o desempenho dos estimadores de maxima verossimilhanga. Para cada
réplica, as amostras observadas foram geradas a partir de pares aleatérios seguindo
a distribuicio MBI'R. Para a escolha dos parametros de simulacdo (8o, 31), foram
selecionadas quatro regides de uma imagem de San Francisco (EUA) — oceano, floresta,
area urbana e uma regido hibrida composta pelas trés anteriores — conforme ilustrado
na Figura 3 e cujos valores estdo apresentados nas Tabelas 4, 5 e 6. Adotou-se o nimero
de looks quatro (correspondente a imagem de San Francisco) e tamanhos amostrais em
{5x5,7x7,9%9,11x11, 13 x 13} (tamanhos comumente usados no processamento de
imagens SAR). Assumiu-se que os valores verdadeiros representam faixas de intensidade
SAR com diferentes texturas. As seguintes medidas foram utilizadas como critérios de
avaliac@o: viés e erro quadratico médio (EQM).

As Tabelas 4, 5 e 6 apresentam informacdes sobre o desempenho das estimativas.
De modo geral, as estimativas foram aceitdveis e produziram valores de EQM e viés
que diminuem com o aumento do tamanho amostral. Ao analisar o tipo de textura como
fonte de comparacdo, as estimativas dos coeficientes de regressdo exibem menores
EQMs para floresta, drea urbana e hibrida do que para oceano; ja as estimativas de
L apresentam menores valores para oceano do que para as demais texturas. Estes
resultados estdo alinhados com o que se espera fisicamente. Note que os parametros em
P estdo associados com o sinal conforme Equacao (2.21); enquanto, o L é relacionado ao
speckle, que € presente plenamente em cendrios homogéneos, oceano (

, ). Os resultados numéricos confirmam a superioridade do
cendrio com L = 4, em relacdo a L = 1 (caso singlelook) e L = 2: na textura oceénica, o
EQM de ,51 reduziu-se de 1514.91 para 264.94; na floresta, de 53.16 para 9.97; na érea
urbana, de 2.32 para 0.39; e na hibrida, de 5.90 para 1.27. Além disso, os vieses médios

de ,El apresentaram reducdes expressivas, passando de aproximadamente —0.043 para
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Figura 3 — Areas selecionadas para estimacio de pardmetros.

L = 1 para cerca de —0.014 em L = 4, o que representa uma diminuicao de quase
trés vezes. Esses resultados indicam que as estimativas tornaram-se mais centradas e
consistentes, evidenciando maior estabilidade numérica e menor tendéncia sistematica
nos parametros ajustados. Assim, os resultados sdo melhores para L = 4, constatando
0 que se provou matematicamente que os melhores resultados sdao quando L — oo

em (2.31).

2.4.2 Aplicagdo a dados reais

Nesta secdo, aplica-se a MBI'R para analisar um trecho de imagem SAR de
Sao Francisco obtidas por um sensor AIRSAR™ com niimero de looks quatro, L = 4. A
imagem utilizada na Figura 3 tem dimensao 150 X 150 e contém trés texturas claramente

definidas: oceano, floresta e drea urbana. A base de dados sobre a qual essa imagem se
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~ 0 radar AIRSAR (Airborne Synthe-
tic Aperture Radar) € uma ferramenta de
imagem apta a trabalhar em todas as con-
di¢des climdticas. Seus comprimentos de
onda mais longos também podiam penetrar
no dossel florestal e em dreas extremamente
secas, através de fina camada de areia e neve
seca. O Laboratério de Propulsdo a Jato
(JPL) projetou o AIRSAR e este serviu como
um banco de testes de tecnologia de radar da
National Aeronautics and Space Adminis-
tration (NASA). Como parte do Earth Sci-
ence Enterprise da NASA, o AIRSAR voou
pela primeira vez em 1988 e realizou sua
ultima missdo em 2004.

Figura 4 — Imagem do sistema AIRSAR.

apoia € descrita a seguir.

Sistemas PoISAR utilizam iluminac¢do coerente na aquisi¢cao de imagens e, como
consequéncia, os retornos multivariados sao afetados por ruido de speckle multidimen-
sional, o que dificulta o processamento (por exemplo, andlise de textura e classificagdo)
de imagens PolSAR. Para levar em conta o efeito desse ruido, adota-se o processamento
multilook como segue.

. . . T
Sejam zy,...,z, tais que z; = s g S%] ,parai = 1,...,L, como L

HH> “HV?

observacgdes em um dado pixel; entdo, os dados PolSAR multilook sdao definidos pela

matriz
O Dy o Dy ) o)
. L |$Same Saw) SaweSav) S Syy)
z - 1 . 1 0 o) 0 o) M) o) » 30
- Zzzizi - ZZ SavoSum) SpyvsSav) Spys Sy | (2.32)
i=1 i=1
Sy i) (S S (S Sy |

em que {(a,b) = ab*, Ya,b € C, é o produto interno entre a e b. A caracteristica

I, = L7 Zle(S(i),Séi)), para £ = HH,HV,VV, é conhecida como intensidade.
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Nesta aplicagdo, buscamos identificar padroes para o sinal em Y = (Igy, SPAN) =
(Iaw, Inu + lyy).

O objetivo principal desta aplicagdo é verificar em quais situagdes o uso da
MBI'R faz mais sentido do que o uso da MBI incondicional, com ou sem repara-
metrizagdo. Para isso, selecionamos janelas deslizantes (3 X 3) ao redor de cada pixel
(excluindo as bordas) e aplicamos, a cada uma dessas janelas, os modelos incondicionais
MBI'(a;, az,y) e MBI'(u, L), bem como os modelos condicionais MBI'R(u(f8), L).

A seguinte estrutura sistemdtica € utilizada para a MBI'R:

p(B)[i, j1 =B{Y [i, j] | R[{Sun, Svw) i, j1}
=Bo + B1R[(Sun, Svw) i, j1 + 7[i, j].

A seguir, analisamos o desempenho preditivo das duas abordagens reparametrizadas
e, entdo, as comparamos com o critério de Mellin proposto, 7~ (5).

A Figura 5 apresenta as imagens preditas. Em todos os casos, observa-se que o mapas
fornecem uma representacdo que se alinha com a dindmica das texturas da imagem; isto
¢, as trés texturas estdo bem delineadas.

A Figura 6 mostra comparagdes entre valores observados e ajustados para i e ()
por textura. Primeiro, um mapa de referéncia (ground truth) é mostrado na Figura 6a.
Em seguida, os ajustes (cujas curvas associadas: a tracejada clara representa a MBI'
sem reparametrizacdo, a tracejada escura representa a MBI reparametrizada e a linha
cheia, a MBI'R) em dreas de mar, floresta e urbana sao examinados nas Figuras 6b, 6¢ e
6d. Em todos os casos, a MBI'R apresenta desempenho superior ao da MBI".

A Tabela 7 apresenta os resultados da distancia de Kullback—Leibler (KL) (

, ) entre as distribuicdes empiricas das intensidades observadas e valores
preditos por texturas. O MBI'R (com regressor Fourier) apresentou as menores distan-
cias KL em todos os casos, evidenciando o melhor ajuste global aos dados observados.
O ganho de desempenho € particularmente expressivo em relacdo aos modelos sem o

termo de Fourier, isso se deve a incorporar estrutura de dependéncia espacial.

41



U
9.90e-01
9.70e-01
—_—

(a) u[i, j] s6 com intercepto.

.“I

(b) u[i, j] com regressor paramétrico. © /m com regressor semi-paramétrico
Figura 5 — Foram utilizados os canais HH e HH+VV; u = yL e g = exp{Bo + B1R(HHVV)}.

9.90e-01 9.90e-01

9.70e-01 9.60e-01

Tabela 7 — Distancias KL entre densidades empiricas de intensidades observadas e preditas nas texturas
de oceano, floresta e urbano da imagem AIRSAR de Sao Francisco.

Modelos Ajustados
Textura | MBI reparametrizada MBIl reparametlllzada MBIl repara:metrlzaqa
com Regressao com Regressao e Fourier
Oceano 0.1981 0.8603 0.0066
Floresta 0.1844 0.4848 0.0067
Urbano 0.3505 0.3512 0.0068
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density

)
channel HH
(b) Ajustes na regido ocednica — curva preta/u

(a) Imagem de Sao Francisco
vs. curva cinza/u(8)

density

20 25

0
channel HH

(c) Ajustes na regido de floresta — curva preta/u (d) Ajustes na regifio urbana — curva preta/y vs.
curva cinza/u(8)

vs. curva cinza/u(8)
Figura 6 — Ajustes por regido para a imagem de Sao Francisco.

A Figura 7 apresenta mapas nos quais o critério (2.26) € aplicado aos modelos
original, reparametrizado e de regressdo. Quanto maiores os valores de 7, melhor € o
modelo associado. Nota-se que o modelo original € mais adequado para descrever dreas

oceanicas, o que é esperado para cendrios sem sinal estrutural. Por outro lado, os modelos
reparametrizados foram superiores para texturas de floresta e urbana. A Figura 8a mostra
o modelo MBI (a1, a3,y) em pixels pretos quando apresenta melhor desempenho e

MBI'R(u, L) em pixels brancos. A Figura 8b mostra o modelo MBI'(a, @2,y) em
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pixels pretos quando € superior e MBI'R(u(8), L) em pixels brancos. A Figura 8c

mostra o modelo MBT'R (i, L) em pixels pretos quando é melhor e MBI'R (u(8), L) em

pixels brancos. Observa-se que MBI'R(u(8), L) supera MBI'R(u, L) nos cendrios em

que a textura € mais pronunciada (por exemplo, em florestas e dreas urbanas), superando

também a MBI'(a1,as,y). Para a regido oceanica, por outro lado, MBI'(a, a2, y)

apresentou os melhores resultados.

T
o 1650400
1.40e+00 1476400

1.15e400 1.18e400

@) (T;MCT (ay, a, 7))0-01 . (b) (%MGFRG,, (u, L))O'Ol

1.68e+00

1.29e+00

© (T ()

Figura 7 — Imagens de Sdo Francisco com valores da transformada de Mellin (7,,) para 7, °" (a1, a3, y),

TMORer (u, Ly e TR (g, 1),

(a) ﬂMGF(al >, @2, y) VS. (b) 7;LMGF(QI , @2, 7) VS. (C) ‘]:lMGFRep (H’ L) VS.
Ta O L), em que T, COUP(AL), em que  7MORr(ar)em  que
MGT MGT
7,77 (a1, 02,7) apa- 7,77 (a1,@2,7) apa-  gMGTrer () 1) apa-
rece em pixels pretos e rece em pixels pretos e rece em pixels pretos e
MGTge . MGTRep ; A .
T (L) em pixels 7,07 T(A,L) em pixels  gMOTrer 5oy em pixels
brancos. brancos.

brancos.

Figura 8 — Foram utilizados os canais HH e HH+VV, com a; = a2 = Le u = yL; i = exp{Bo +

BiR(HHVV)}.
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2.5 Consideragbes parciais da primeira contribuicao

A literatura recente tem mostrado que a distribui¢do gama bivariada de McKay para o
par (Intensidade, SPAN) ~ MBI'(a1, a2, y) — é um suposto interpretavel para atributos
induzidos pelo SPAN. Neste capitulo, avancou-se o trabalho de

( ), propondo o modelo MBI'R. Essa formulacao permitiu relacionar pares de
atributos induzidos pelo SPAN a regressores paramétricos (geométricos, radiométricos
ou contextuais) e padrao espacial extraido pela representacao de Fourier bidimensional.

Do ponto de vista inferencial, derivaram-se a matriz de informacdo de Fisher e um
estimador iterativo baseado no método de Scoring-Fisher. Em particular, apresentou-se
um novo estimador em forma fechada para o niimero de equivalente de looks. Introduziu-
se ainda um critério de selecao de modelo baseado na transformada de Mellin.

Experimentos sintéticos e numéricos advogam em favor do uso da MBI'R para
extracao de textura pela flexibilidade de incorporar vdrias fontes de variacdo e ter uma

relagdo com a fisica de formagao.
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3 Deteccao de bordas via divergéncias

entre atributos SPAN tipo razéo

Uma imagem SAR ¢ formada a partir da energia eletromagnética retroespalhada
pelos alvos na superficie terrestre, sendo construida por meio da combinagdo coerente
dos sinais transmitidos e recebidos ao longo da trajetéria do radar. Diferentemente de
uma imagem 6ptica RGB, que € derivada de sensores multiespectrais sensiveis a radiagao
refletida em bandas especificas do espectro visivel, as intensidades SAR dependem
diretamente das propriedades fisicas do alvo — rugosidade, umidade, orientacdo das
estruturas — e do angulo de incidéncia do feixe transmitido pelo sensor.

No modo polarimétrico, o radar transmite e recebe ondas eletromagnéticas em di-
ferentes estados de polarizacdo, tipicamente horizontal (H) e vertical (V). Os dados
PolSAR caracterizam o comportamento de espalhamento dos alvos e sdo originalmente
representados por um vetor complexo, contendo as componentes de polarizacdo me-
didas. Esse vetor pode ser reorganizado na forma de uma matriz de espalhamento de
polarizacdo S, cujos elementos correspondem as combinagdes transmissao—recepgao:
HH, HV, VHe VV ( , ; , ). Cada elemento da matriz
contém magnitude e fase, refletindo a natureza coerente do sistema SAR e permitindo
caracterizar fendOmenos como anisotropia, simetria € mecanismos de espalhamento.

Uma técnica eficaz para decompor imagens PolSAR € a decomposicdo bésica de
Pauli, que modela a matriz de espalhamento em trés estruturas: superficie rugosa,
volume e duplo salto. Esta decomposicao fornece uma imagem com informacdes sobre
a poténcia total de espalhamento, chamada de SPAN. A primeira estrutura é formada
pela recepcao de sinais eletromagnéticos no solo ou em dgua translicida, sendo sensivel

ao espalhamento do canal VV. A segunda estrutura é formada pela recepcdo de sinais



em folhas e galhos em um dossel florestal e € sensivel aos canais VH e HV. A ultima
estrutura € causada por edificios, troncos de drvores ou vegetacdo inundada e é mais
sensivel a um sinal polarizado HH ( , ).

Alguns autores t€ém usado o mapa de informacdes de SPAN para melhorar o desem-
penho de métodos de classificacio, otimizacao, deteccao de mudancas e segmentacao
para imagens PolSAR, por exemplo: Sensoriamento remoto de diferencas topogréfi-
cas entre montanhas e areas urbanas ( , ) e classificagdo de dados
de vegetacdo usando coeficiente de correlacdo e distancia euclidiana como medida de
similaridade ( , ). Recentemente, ( )
propuseram testes de hipdteses baseados em distancias estocdsticas para resolver proble-
mas de deteccao de mudancas, considerando a distribuicdo gamma bivariada de McKay
para descrever caracteristicas derivadas de SPAN. Este trabalho foi estendido por

(2023).

As propostas de ( )€ ( )
sdo interessantes, mas tem o foco no efeito da intensidade e do SPAN conjuntamente.
Nesta parte da tese, objetiva-se colocar a énfase num atributo escalar do SPAN, a taxa
razdo I/[I + SPAN] € (0, 1/2) para I como uma intensidade, denominada de atributo
SPAN tipo razdo. Inicia-se com uma discussdo probabilistica deste atributo a partir
da suposicao (I, SPAN) ~ MBI'. A distribui¢do resultante ¢ justificada em termos da
defini¢cdo do SPAN e uma discussdo de seus possiveis valores € elaborada. Derivam-
se quatro novas medidas de contraste, considerando as distancias de Kullback-Leibler,
Rényi, Bhattacharyya e Hellinger. Entdo, novos testes de hipdteses sdo propostos com
base em Teoria da Informacao para atributos SPAN tipo razdo. Quanto aos detectores de
borda também sao introduzidos. Estudos de simulacdo de Monte Carlo sdo feitos para
quantificar o desempenho dos testes propostos. Finalmente, duas aplicacdes a dados
SAR reais sdo realizadas para investigar as dreas da regido de Japaratinga, Alagoas,

Brasil e da baia de Sao Francisco, EUA.
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Este capitulo estd organizado da seguinte forma. A Sec¢do 3.1 contém uma discussao
justificando o uso de suposi¢des probabilisticas adotadas. A Secdo 3.2 apresenta o
método de estimagao usado neste trabalho. A Secdo 3.3 discute a contribui¢do tedrica
deste trabalho. A Secao 3.4 exibe os resultados numéricos. As principais contribui¢cdes

sdo resumidas na Secdo 3.5.

3.1 Usando a distribuicdo Beta tipo 3 modificada como
descritor da funcao do SPAN

Considere agora cada entrada da imagem descrita pelo par aleatério X[i, j] =
(X1[i, j1, X2[i, j]) = (Intensidade, SPAN) ~ MBI'(a1, a2,7y). Do ponto de vista te6-
rico, ( ) indicaram a importancia do atributo X, [, j| /(X1 [i, j]+
X5 [i, j]) apartir de X[i, j]. Nesta secdo, objetiva-se explorar sua importancia na fisica

de formacgdo de imagens SAR.

Definicao 3.1.1. ( ) mostraram que se [X|[i,j] :=
(Xili, j1, X2[i, 1] ~ MBI (a1, @2,7), entao Z[i, j] = Xili, j1/(Xi[i, j1 + X2[i, j1)

segue uma distribuicdo com PDF dada por

L LY A L C 2 U Vi
Beta(p, q) (1 —z[i, j])r+a

em que Beta(p,q) = [['(a)[’'(b)]/T"(a + b) é a funcdo beta e T'(a) é a funcdo gama.

fz(zli, jlip.q) = Lo,1/2)(zli, 1), (3.1)

Pelo que sabemos, essa distribuicdo ndo tem uma notacdo, entdo a denotamos como

. 1/2
Zli, j1 ~ Betay (p, q).

De agora em diante, assumimos [Z[i, j| = Intensidade[i, j]/(Intensidade[i, j] +
SPAN[i, j])] ~ Beta;/z(p, q). De acordo com ( ),

Beta(p +n,q)

E[Z"[i,j]] = 2r+nBeta(p, q)

2Fi(p+n,p+q;p+q+n;1/2),
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em que 2Fy(a,b;c;x) = X o{(a)i(b)r/(c)k} (xk/k!) é a fungdo hipergeométrica de
Gauss,néaordemde Ze (e)y =e(e+1) --- (e+k—1) significa o fatorial ascendente.

Como consequéncia, tem-se:

- p
E(Z[i,j]) = szl(p+1,p+q;p+q+l;l/2)

Var[Z[i, j]] = 4(p+q)2fp+q+1) [27P(p+ D(p+q@)2Fi(p+2,p+q;p +q+2;1/2)

4Pp(p+q+1DGF(p+2,p+q;p+q+2:1/2))%].

Casos= p=q=0.05 == p=q=0.5 == p=q=2 = p=q=5 Casas = (p.0)=(0.5,2)= (p,q)=(1,10)= (p,q)=(1.5,10)= (p,q)=(3,10)

10.0 \
|

N
n

W

=)
N
3

N

n
INd
(6]

Valores da Densidade Beta, 12
Valores da Densidade Beta, '
o
[S)

)
o

o

o

0.0 0.1 02 03 0.4 05 0.0 0.1 0.2 0.3 0.4 0.t
Suporte Suport
(a) Concentragdo ao centro para p e g grandes (b) Concentracio a esquerda
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Figura 9 — Gréficos para a densidade Beta;/ 2( P, q).
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A Figura 9 ilustra o comportamento da densidade Betaé/ 2 (p, q) para diferentes com-
binacgdes dos parametros (p, g), evidenciando como tais pardmetros controlam tanto a
assimetria quanto a regido de maior concentrac¢ao de probabilidade no intervalo (0, 1/2).
Quando p = ¢, a distribui¢@o tende a concentrar sua massa em torno da regido central,
tornando-se aproximadamente simétrica para valores elevados de p e g. Para p < ¢,
a probabilidade concentra-se na extremidade esquerda do intervalo, produzindo uma
distribuicao assimétrica voltada para valores menores. Por outro lado, quando p > ¢,
a massa de probabilidade desloca-se para a extremidade direita, resultando em uma

distribuicao assimétrica acentuada nessa direcao.

3.2 Inferéncia Estatistica

O estimador de méxima verossimilhanga (EMV) € obtido por maximizar a funcao
de verossimilhanca e satisfaz as propriedades consisténcia, eficiéncia e normalidade
assintdtica. Vamos deduzir um procedimento para obter os EMVs para os parametros
da distribui¢do Betaé/z(p,q). Considere Z[1,1],...,Z[M,N] como uma amostra
aleatdria (independente e identicamente distribuida) com n(= MN) pontos de Z ~

Beta;/z(p, q)ez[1,1],...,z[M, N]. A log-verossimilhanca associada tem a forma:

M N
t(p,q) —ZZIngz(z i, j1) = —nlogBeta(p,q) + (p = 1) ) > log(zli, 1)

i=1 j= i=1 j=1
M N M N
+(g=1) ) > log(1=2z[i,j1) = (p+q) Y D log(l = z[i, j1). (3.2)
i=1 j=1 i=1 j=1
A funcio escore, também conhecida como gradiente da funcao log-verossimilhanca,
¢ uma ferramenta valiosa para avaliar a sensibilidade das estimativas a pequenas al-
teracOes nos parametros, pois fornece informagdes sobre a dire¢do e a magnitude das

alteracdes necessdrias nos parametros ( , ). A funcgdo escore na
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discussao da Equacdo (3.2) é dada por:

U(p,q) = [Up, Uy]"

[(%’(p .q) 0l(p, q)],

dp =~ dq
em que
M N 1
Uy = -n[¥0(p) - ¥O(p + g)] +ijlgﬁ
e

M N
1 -2z
Uy = -n[¥0(q) - YO (p+ ] + Y Y tog L= 20I]

1 -
i=1 j=1 Zl‘]

em que PX) = d¥*11og'(x)/dx**!. Observe que, a partir de E[U,] = E[U,] = 0,
seguem-se as seguintes identidades: Seja Z[i, j] ~ Betaé/z(p, q),

Zli, j]

_ O,y _ O
—ZL. ]]} Y (p) - (p +q)

E {log

E{l 1-2Z]i, j]

T ]]} YO (q) - (p+q).

E, como consequéncia,

_ZU Tl _ o,y — o)
Bioe 12— w0 ) - w0,

No teorema a seguir, os valores esperados E[log Z[i, j]], E[log(1 — Z[i, j])] e
E[log(1 — 2Z[i, j])] s@o comprovados. Essas sdo etapas importantes na busca por

medidas de teoria da informacao.

Teorema 3.2.1. Seja Z|[i, j] ~ Beta;/ 2 (p,q), entdo as proximas identidades sdo verifi-

cadas:

Ez [log Z[i, j11 =[¥ O (p) =¥ (p + @)12F1 (p,p + q:p + 3 1/2)
1,0,0,0 0,0,1,0
+2F Y (o p+qip +q;1/2) +2F " (pop+ qip +411/2)

By, [log(1 - Z[i, j1)] =Ez [log Z[i, j11 + [¥'V (p + ¢) - ¥V (p)],
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Ez [log(1 - 2Z[i, j1)] =Bz, [log Z[i, j1] + [¥?(q) — ¥ (p)],

em que

d2Fy (a,b;c;2)
da

d2Fi (a,b;c;z)

2P0 (@ brerz) = dc

e ZFI(O’O’I’O) (a,b;c;z2) =

A prova desse teorema pode ser encontrada no Apéndice A.

A matriz de informagdes de Fisher (IF), por sua vez, quantifica a quantidade de
informacgOes contidas nos dados sobre os parametros de um modelo ou distribuicao.
Como tal, ela € determinada a partir da segunda derivada da log-verossimilhanca com
relacdo aos parametros e ndo apenas fornece a variabilidade das EVMs, mas também
permite o cdlculo de intervalos de confianca e a realizacao de testes de hipdteses. A

expressao da IF para Beta;/2 (p,q) é

_(pg) _9*(p.g)

Upp Upg ap? apd
K(p.q) = -E = W(P | 32; q) : (3.3)
Uyp Uyq ~ e 3qu’q

em que U, /n =P (p) =¥V (p +q), Upg/n = Uyp/n = =PV (p +q), e Uy /n =
YW (g) - (p +q).
Por fim, os EMVs para os parametros da Beta;/ 2( P, q) sao dado por:
p
= arg max [£(p, q)].
P,g€eR

A

ou, de forma equivalente, por solucdes do sistema nao linear

- 1 —2z[i, j]
YO@-¥O(p+g = - ZZ I—ZlJ]

M N
—~ 1
POP) - PO +9) = _ZZ 1—Zl]

i=1 :1

S
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A Figura 10a apresenta uma imagem Optica de parte da imagem AIRSAR de Sao
Francisco. Essa imagem serd discutida em detalhes. Ela exibe trés tipos de textura:
Oceano, Floresta e Urbana. Considere que se deseja entender a informagdo para a qual

/2 aponta. O mapa de p na Figura 10b mostra que o pardmetro p

cada parametro Beta;
tem uma relacdo com os tipos de texturas encontradas. A expressao E[log(Z[i, j]/(1 -
Z[i, j]))] na Figura 10c mostra que o mapa de p é suavizado usando a fun¢do digamma,
mas o reconhecimento dos tipos de textura € preservado. O mapa de g na Figura 10d
mostra que o parametro ¢ ndo tem relacao direta com a fisica de formagao das imagens
SAR, mas quando € suavizado pela funcdo digamma, obtém-se uma imagem que descreve
a dindmica da imagem Optica.

A partir da expresséo E[log(Z[i, j]/(1 = 2Z[i, j]))], depois de filtrar p e g usando
a fungdo digamma, obtemos o mapa na Figura 10f, que mostra a descri¢do da dindmica
da imagem de p sem o efeito de g. Nesse caso, o efeito da borda é mais pronunciado.
Como esperado dos mapas nas Figuras 10g e 10h para E(Z[i, j]) e CV(Z[i, j]) =
\/\m J/B(Z[i, j]), respectivamente, eles sdao capazes de detectar a mudanca de

textura na imagem examinada.
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Bhanil d.ts

(a) Imagem 6ptica de Sdo Francisco obtida de Google
Earth

-

(b) Mapa de p (c) Mapa de ¥ (p) —(d) Mapa de g (e) Mapa de ¥ (7) -
YO (p+7q) YO (p+7q)

(f) Mapa de ¥ (p) —(g) Mapa de E(Z) (h) Mapa de CV(Z)
YO @
Figura 10 — Mapas de EM Vs e algumas de suas funcdes.
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3.3 Divergéncias para a distribuicao Beta tipo 3 modifi-

cada em imagens SAR

Primeiro, apresentamos brevemente as medidas de divergéncia de Kullback-Leibler,
Rényi, Bhattacharyya e Hellinger. Essas medidas estocésticas sdo ferramentas impor-
tantes e amplamente usadas em vdrios campos, especialmente em inferéncia estatistica
e processamento de imagens. A ideia pioneira na teoria da informagao foi proposta por

( ), que introduziu uma medida logaritmica de informagao na comunicacao.
Mais tarde, ( ) formalizou essa ideia e definiu os conceitos de entropia
e informac¢do mitua. Por fim, o conceito de entropia relativa (mais tarde chamado de
divergéncia) foi introduzido por ( ).

As medidas de divergéncia escolhidas também foram usadas no processamento de
imagens. ( ) usou a distancia de Bhattacharyya como uma medida de
contraste relevante para imagens de radar. A divergéncia de Rényi foi usada por

( ) como um teste de hipétese direcionado para uma familia de modelos
exponenciais gerais. Algumas defini¢des e contribui¢cdes tedricas sdo apresentadas a
seguir.

A divergéncia de Kullback—Leibler pode ser interpretada como uma medida que
quantifica o qudo diferente uma distribuicdo de probabilidade € em relacdo a outra,
servindo como um critério para comparar modelos ou ajustar distribui¢des. Sejam Z; e
Z, duas varidveis aleatdrias (a partir de agora o termo [i, j] serd omitido da notacao por
questdo de simplicidade) com as PDFs f7,(z;61) e fz,(z; 02) e suporte comum Z C R.

A divergéncia de Z; com relacdo a Z, € definida por

_ f2,(z;01) | ' fz,(z:61)
Dx1L(Z || Z2) = Bz, [IOg —fzz(Z;Oz)] = /Z fz,(z;61) log 7, (0.0 dz, (3.4)

em que Ez [V(2)] = fZ V(z) fz,(z;61) dz denota a esperanca de uma fungdo inte-
gravel V() sob a distribui¢dao de Z;. Observa-se que a Equacdo (3.4) é sempre nao

negativa e s6 é zero se fz,(z;601) = fz,(z;62) para todos os z € Z. A divergéncia

55



Dx1.(Zy || Z2) quantifica a perda de informagdo — ou a ineficiéncia — incorrida ao se
modelar os dados segundo a distribui¢ao de Z, quando a verdadeira lei geradora é ade Z;
( , ). Também € conhecida na literatura como divergéncia da informacao ou

informacgdo discriminativa, destacando seu papel na comparacgado e distin¢do entre mo-

delos probabilisticos. ( ), ( )e
( ) apresentaram um trabalho sistemadtico e abrangente sobre a medida de divergén-
cia de Kullback-Leibler. Embora Dgp (- || -) seja chamada de "distancia"em alguns

artigos, ela ndo € uma distancia verdadeira entre distribuicdes porque nao € simétrica e
ndo satisfaz a desigualdade triangular. Neste trabalho, consideramos uma simetriza¢ao
dessa medida (entendida como uma medida de distdncia na distin¢do entre distribui¢cdes
de probabilidade ( , )): Dadas duas varidveis aleatdrias que t€m o mesmo

suporte, a distancia de Kullback-Leibler pode ser definida da seguinte forma:

1
dki(Z1,Z,) = E[DKL(ZI | Z2) + Dx1L(Z2 || Z1)]

1 f2,(2,01)
== ;01) — ;602)] log ————d&z. 3.5
5 00 - paonliog 5 as)
De acordo com ( , ), a divergéncia de Rényi € definida
como:
1 -
D(6116) = D212 = 57 /Z 72 (@ £ (). (3.6)

Essa divergéncia ndo € simétrica e uma versao simetrizada é dada por:

log /Z £ (2 £ (2)dz + log /z 1P £ (2)dz

B —
dR(Zl’ZZ) = Z(ﬁ—l)

(3.7)

A partir da distdncia de Rényi com ordem £ (dﬁ), podemos derivar as distancias de

Bhattacharyya (dp) e Hellinger (dy) dadas por:

(21, Z5) = ~log /Z VT @@ (3.8)
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(21, 22) = 1 - /Z Vo @ n @z, (3.9)

Para estudar a distribui¢do assintética das medidas (3.5) e (3.7)-(3.9),

( ) propds entendé-las como elementos de uma classe de divergéncias chamada
divergéncia (h, ¢). Essa classe € uma extensio da divergéncia ¢ proposta por
(1975)e (1966).

Em seguida, apresentamos um tratamento estatistico para o teste de hipdteses com
base nas distancias de Kullback-Leibler, Bhattacharyya, Hellinger e Rényi (com ordem

B).
A distancia (h, ¢) entre fz,(z;61) e fz,(z;62) tem a forma:

dy(61,62) = d}(Z1,Z2)

_ Jz,(z: 00\ _ J7,(2;01) ,
e (ERa )| - () e o0

emque ¢ : (0,00) — [0, c0) é uma fungao convexa, & : (0, c0) — [0, o) é uma fungdo

crescente com i(0) = 0, e as formas ndo determinadas assumem o valor zero. Uma
selecdo cuidadosa das funcdes h(y) e ¢(x) leva a medidas de divergéncia conhecidas,
como na Tabela 8.

Tabela 8 — Distancia (h, ¢) e suas fungdes s e ¢

Distancia (1, ¢) | h(y) | é(x)
Kullabck-Leibler v/2 (x = 1) log(x)

. 1By xB_B(x—1)—
Rényi (ordem f) ﬁlog(([g’—l)y+1),03y<# %{W,O<ﬁ<l
Bhattacharyya —log(1-y),0<y<1 —Vx+ 5t
Hellinger y/2 (Vx = 1)?

Se considerarmos a defini¢do das distancias em termos das funcdes £ € ¢ em conjunto
com os resultados propostos por ( ) sobre a convergéncia na distribui¢ao
das estatisticas baseadas na distancia (4, ¢) para a lei do qui-quadrado, o seguinte lema

se aplica.
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Lema 3.3.1. Vamos supor que as condicoes de regularidade propostas em

m
> m+n

( ,, p- 380) sejam aplicaveis. Se ——> 1€ (0,1) e 8y = 0, entao

(s~
2mn d¢ (01’02) D )
m+ 1 KD (0)p@ (1) mnoeo XM’

(3.11)

L . P HD "
em que fO(x) = d* f(x)/dx* é a derivada de k-ésima ordem de f(x), "= "denota
a convergéncia em distribuicdo, M é a dimensdo de 0;, m é o tamanho da primeira
amostra, n é o tamanho da segunda amostra, 61 é o EMV para 68| com base na primeira

"

amostra, 68, é o EMV para 8, com base na segunda amostra e "~ )(12‘4 "denota uma

variavel descrita pela distribuicdo qui-quadrada (com grau de liberdade M ).

Com base no Lema 3.3.1, € possivel derivar testes estatisticos de hipdteses para a

hipétese nula @; = 6,. Em particular, as seguintes estatisticas sdo levadas em conta:
ho~ o~ 2mny g, ~ ~
S¢(0x’ oy) = md¢(0x’ ey)’ (3.12)

em que v = 1/[h(V(0)¢P (1)] é uma constante que depende da distincia escolhida.
Para dg;, dﬁ, dp e dy, v assume os valores 1, 1/8, 4 e 4, respectivamente. Nesse
contexto, um teste de hipétese geral pode ser formulado e € apresentado na Observagao

332

Observacao 3.3.2. Se m e n forem grandes e r = S g(é}, 6/?;), entdo a hipotese nula é
0, = 0, pode ser rejeitada em um nivel n se P ()(IZVI > q) <n, em que r é a estatistica de

teste calculada a partir de amostras observadas e 1 é o nivel nominal especificado.

3.3.1 Contribuicbes tedricas: Nova medida de contraste e testes de

hipdtese para textura em imagens SAR

Esta secdo aborda algumas contribui¢cdes matemdticas a partir da suposicdo de que

Z, ~ Beta;/z(O,-) tal que 0; = (p;, q;) parai = 1,2.
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Proposicao 3.3.3. A divergéncia de Kullback-Leibler e a distancia entre Z| e Z; sdo,
respectivamente,

Dk1.(Z1||Z2) = h(p1,q1, P2, q2) + (P1 — p2)Bz [log(Z)] + (q1 — q2)Ez, [log(1 - 2Z)]

+ (p1+q1 - p2— q2)Ez [log(1 - Z)]

(plz;IPZ) {

+2F O (prpr+ quipr+ q1i1/2) +2Fi(prpr + it +41:1/2)
X ¥ (p1) = O (p1 + gD} = (o1 = P[P (p1) =¥ (p1 + )]

(412;1112) {

+2F 0D (o1 pr+ quipr + qis 1/2) +2Fi(pr, pr+ qis pr+ 413 1/2)

x [P (p1) - (p + ql)]} +(q1 - 2) [P (q1) -2 (p1)]

= h(p1.q1.p2.92) — (p1 — p2) log2 + 20D (o1 pr i pr+ g1 1/2)

PO (pipr 4 qiipr+q1:1/2)

- (q1—g2)log2 +

PO (o pr+ qiipr +q1:1/2)

+ — —
—(P1+611—p2—612)10g2+(p] 1P qz){

P
+2F 0D (o1 pr+ quipr + qis 1/2) +2Fi(pr, pr+qis pr+qi: 1/2)

x [P (p1) - (p + m)]} —(pr+a1-p2-a) [P (p) -V (p1 +q1)]. (3.13)

PO (g)) -2 (pp)] + PO (g2) -2 (p2)]

dx1(Z1,Z>) = @ [

(g2 —q1) [
2

(p2—P1+q2-q1)
+ s ¥ (1) =¥ (p2+42) + ¥ O (p2) - ¥ (p)],

em que h(pi1,qi1,p2,q2) =log[I'(p1 + q)T(p2)[(g2)] = log[T'(p2 + g2)T'(p1)T'(q1)].

Proposicao 3.3.4. Sejam 61 = (p1,q1) e 02 = (p2, q2) vetores dos parametros de duas
variaveis aleatorias, digamos Z| e Zy, que seguem a distribuicdo Beta;/ 2(p,q). A

distancia de Rényi entre Z1 e Z, é

(211 Z2) = 1 {log l B(p1+ g P(pa+q2)  T(Bpi+ (1-B)p2)
R 2(8-1) C(B(p1+q1) + (1 =B)(p2+q2) TA(p)I'F(p2)
o TBq1 + (1 —,3)612)] ol [ T (p1+ q)TP(p2 + q2)
IB(g1)TP(q2) L((1=8)(p1+q1) +B(p2+q2))
C((1=pB)p1+Bp2) I'((1 - pB)q: +ﬁ612)]}
C=B(p)TF(py) T B(qTB(q2) |)

(3.14)
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Proposicao 3.3.5. A distancia de Bhattacharyya entre Zy e Z; é:

+q1+pr+ +
dp(Z1, Z5) =log [F (Pl q1 2P2 612)] ~log [F (Pl 2p2)]

—log [F (QI ;qz)] - % {log[T"(p1 + q1)]
+log[['(p2 + g2)] —log[['(p1)] —log[T'(g1)]

— log[I'(p2)] —log[I"(g2)]} . (3.15)

Proposicao 3.3.6. A distincia de Hellinger entre Z| e Z; é:

[C(pi +q)T(p2 +g)]'?  T(2F2) r(43%)
I ) [T(p)T(p2)]1Y/2 [T(q1)T(g2)]'/?
(3.16)

du(Z1,22) =1 -

As provas das Proposicoes 3.3.3, 3.3.4, 3.3.5 e 3.3.6 podem ser encontradas nos
Apéndices A e B. As expressOes matematicas anteriores podem ser usadas em contextos
matematicos (geometria da informagao), de inferéncia e de processamento de imagens.
Neste trabalho, elas sdo usadas como testes de hipdteses e ferramentas para resolver a

deteccao de limites em imagens SAR.

CasoS= R-0.5== H == B == KL

o
w

o
H

o
o

Valores das distancias pa%té/ 2
o
N

[
=
o

-0.5 0.0 0.5 1.0
Suporte

1/2

Figura 11 — Graficos das medidas derivadas de Beta,'".

A Figura 11 apresenta as curvas das quatro medidas de divergéncia avaliadas ao

longo do suporte transformado dos pardmetros que varia no intervalo [—1,1]. Esse
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intervalo decorre da parametrizacdo do espago paramétrico da distribui¢ao Beta;/ Ze

m
um dominio simétrico, facilitando a comparac¢do entre as medidas.

Observa-se que todas as divergéncias atingem seus menores valores na regido central
do suporte (préxima de zero), indicando que, nessa faixa, as densidades comparadas sao
mais semelhantes. A medida que nos aproximamos das extremidades (x ~ =1 oux = 1),
as curvas passam a crescer, refletindo o aumento da discrepancia entre as distribuicoes
quando a varidvel assume valores menos provaveis ou mais sensiveis as diferencas nos
parametros.

A divergéncia de Kullback—Leibler (KL), representada pela curva roxa, apresenta
crescimento mais acentuado nas extremidades do suporte, evidenciando sua forte sensi-
bilidade a diferencas nas regides de cauda. J4 a divergéncia de Rényi com 8 = 0.5 (curva
azul) cresce de forma moderada, enquanto Bhattacharyya (verde) e Hellinger (amarelo)
exibem variagcdes mais suaves ao longo de todo o intervalo, mantendo valores inferiores
nas bordas.

Assim, o grafico permite visualizar de maneira clara como cada divergéncia reage
a diferencas paramétricas ao longo de todo o dominio dos parametros, o que contribui
para interpretar o comportamento distinto observado posteriormente nas simulacdes de
deteccao de borda.

A partir do Lema 3.3.1 e da Observacdo 3.3.2 em conjunto com as Proposi¢oes
3.3.3, 3.3.4, 3.3.5 e 3.3.6, podem ser aplicados cinco novos testes de hipdtese para a
distribuicao Beta;/ 2 (p,q), que convergem em distribui¢do para uma qui-quadrado com

dois graus de liberdade, apresentados na Observagao 3.3.7.

Observacao 3.3.7. Se 0; para i = 1,2 sdo estimadores consistentes para 0; e assintoti-
camente normais extraidos de uma amostra independente, de modo que cada variavel
esteja no intervalo (0, 1/2) e sob a hipotese nula H : 01 = 0, os seguintes resultados

sdo obtidos:
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(I) As estatisticas de Kullback-Leibler - Sy (-, -):

2mn

Skr(01,0,) = m+n)

~ ~ D
dkL(61,62) —— X3 (3.17)

(11) As estatisticas de Rényi com ordem 3 - S§(~, )):

~ o~ 2mn —~ ~ D
B B 2
\ =—— d — ¥, A

(I1l) As estatisticas de Bhattacharyya - Sg(-, -):

8mn
m+n

~ ~ ~ ~ D
S5(61.62) = ——dp(81.02) —— x;. (3.19)

(IV) As estatisticas de Hellinger - Sy (-, -):

mn

~ ~ 8 ~ - D
Sk (61,602) = ——du(61,62) —— x3. (3.20)

+n

3.3.2 Detectores de Borda

Um detector de bordas € um método de processamento de imagens destinado a
identificar regides onde ocorrem mudancas abruptas nas propriedades estatisticas ou
radiométricas dos pixels, indicando transi¢cdes significativas entre diferentes estruturas
ou objetos na cena. Os métodos de detec¢do usados neste trabalho funcionam em
trés estagios: (i) identificacdo do centroide da regido candidata (de forma automética,
semiautomdtica ou manual), (ii) identificacdo dos pontos de transi¢do pertencentes a
borda e (ii1) defini¢do do contorno usando um método de imputacao entre os pontos de
transicdo, como B-Splines, ( , ). Concentramos nossa analise nas
fases (ii) e (iii).

Suponha que haja uma regido de saida R com o centro de dados C. Os raios sdo
tracados de C para pontos fora de R. Eles tém a forma s = CP;, em que o angulo

entre os raios € é(s(i),s(i+1)), parai = 1,2,...,S5, em que S € o nimero de raios. A
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Figura 12 desenha um diagrama que ilustra a dinAmica da detec¢do. Por fim, os dados

sdo coletados em tiras finas ao redor desses raios.

Py

S

Figura 12 — Dindmica na detec¢do de borda.

e que ha duas populagdes:

Presumimos que os dados seguem uma distribuicao Beta;
uma dentro da borda com observacdes j) e outra fora da borda com observacdes
N — ;@ Podemos entio modelar as observacdes de N em torno do segmento s,

1 <i<Scomo

j 1/2 ] i 1O
Z]El) ~ Beta3/ (PY)’ qgl))a para k = 1’ cee a](l)’

(3.21)

z\" ~Beta)*(p{", ¢), parak =D +1,... NO.

A ideia principal é encontrar a j?-ésima borda no segmento s como o ponto que
fornece a melhor configuracdo com relagdo a uma regra de decisdo.
A seguir, apresentamos duas regras de decisdo diferentes, omitindo o indice (i) para

simplificar, ja que apenas uma faixa € considerada em cada iteragdo.
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3.3.2.1 Detectores baseados em Verossimilhanga

A log-verossimilhanga para a Equacdo (3.1), definindo Ii(k, j) = Ij _ ;3(k) e

.....

I (k, j) :=Ijjs1,...ny (k) de modo que I (x) = {1 (x € A), 0 (x ¢ A)}, é dada por:

J N
£(j) = D log fz,(z:01) + > 10g f,(2: 62) = —jlog Beta(p1, q1)
k=1 k=j+1

N
— (N — j) logBeta(pa, q2) + Z [(Pl - DIi(k, j) + (p2 = Da(k, j) | log zx
=1

+ 3 [(@1 = DIk, ) + (a2 = DIk, )| log(1 = 22,)

M= TV

[(Pl +qDi(k, j) + (p2 + Clz)l[z(k,j)] log(1 — zy).

>~
Il

1
( ) provou que um bom estimador, 7y, para o indice no segmento

correspondente ao ponto de transi¢ao € dado por
ML = arg max £()-

No entanto, esse método tem um alto custo computacional, pois precisa avaliar duas
fungdes de probabilidade para cada etapa de pesquisa, pois pode mostrar imprecisao se
uma log-verossimilhanga unitdria € atipica (uma parcela cujo SPAN tipo razdo para um

pixel seja um outlier, por exemplo)..

3.3.2.2 Detectores baseados em Distancia

Conforme discutido por ( ), as distancias derivadas
na secdo anterior podem ser dimensionadas para serem distribuidas assintoticamente
como estatisticas qui-quadradas:

2j(N—=j)vp

o610, 6:(N - ),

Sp(01(7), 02(N - j)) =
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em que 61(j) = [p1()).41())] € B2(N = j) = [P2(N ~ ). q2(N ~ )] sdo os EMVs
para 8y = (p1,q1) e 02 = (p2, g2), usando amostras aleatérias de tamanhos j e N — j,
respectivamente.

Portanto, propomos novos detectores para detectar borda nas intensidades de SAR,

buscando o ponto que maximiza a estatistica de teste entre os dois modelos, ou seja,
Jp = arg max Sp(61(5),02(N - j)) = arg max So(J),

em que D = {KL;B; H;R:}.

E importante notar que o custo computacional dos detectores baseados em distincia
cresce diretamente com o tamanho do segmento analisado. Para cada posicao j ao longo
do perfil de intensidades, o método exige a reestimacgdo dos parametros (p1, ¢1) € (p2, ¢2)
para amostras de tamanhos j e N — j, bem como o cédlculo da divergéncia correspondente.
Como esse procedimento deve ser repetido para todas as possiveis parti¢des, 0 custo
total resulta da soma dessas operacoes ao longo de todo o segmento. Comparativamente
ao método usando a log-verossimilhanga, o uso de distancias € menos custoso, o que
procede de uma observacdo analitica simples. Enquanto o uso de log-verossimilhanga
em um raio de tamanho N — 2j envolve N — 2j parcelas do tipo log f(Z[i,j];a), 0

detector baseado em distincia s6 requer avaliagdo dos estimadores na distancia analitica.

3.4 Resultados numéricos

3.4.1 Simulagéao

Supondo que os dados sejam descritos como retornos distribuidos da Beta;/ 2 (p,q),

as estimativas de MV para os pardmetros p e g sao consideradas com seus respectivos

erros padrio /Var[p] e y/Var[4] e, em seguida, o valor esperado, a variancia e o erro
padrdo de cada cendrio também sdo apresentados. Os cendrios considerados sdo da

regido da Costa de Japaratinga (Alagoas/BR) e foram registrados pelo Instituto Eletro-
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magnético de SAR (EMISAR) em banda L e quad-pol. Explicaremos isso em mais
detalhes na proxima se¢do. Os recursos de SAR Tyy/(Tyng + SPAN) foram obtidos de
uma imagem na Figura 16a por meio de agrupamento feito considerando os intervalos
(0,0,2),(0,2;0,4) e (0,4;0,5) denominados Cena 1, Cena 2 e Cena 3, respectivamente.

A Tabela 9 apresenta as estimativas dos parametros p e g para trés cenas reais, bem
como seus respectivos erros padrdo. Na Cena I, ambos os erros padrdao sdo bastante
reduzidos, indicando elevada precisdo das estimativas e sugerindo um comportamento
estatisticamente estavel dos dados. A Cena 2 exibe erros padrao superiores aos da Cena
1, refletindo menor precisdo e maior variabilidade inerente a regido analisada. J4 na
Cena 3, observa-se que o erro padrao associado a g € substancialmente inferior ao de p,
o que evidencia maior estabilidade na estimacao deste parametro. Além disso, os erros
padrdo dessa cena, embora ndo tdo baixos quanto os da Cena 1, permanecem reduzidos,
garantindo precisdo adequada as estimativas.

Tabela 9 — Valores estimados para p e g, erros padrio, valor esperado e varidncia para cenas reais

Regioes SAR | p | ¢ | Var[p] | YVar[q] | E[Z] | Var[Z]

Cena 1 1.1918 | 10.5572 | 0.0045 0.5150 | 0.0872 | 0.0042
Cena 2 6.9112 | 89949 | 0.1838 0.3167 | 0.2979 | 0.0035
Cena 3 6.6700 | 1.5411 0.1903 0.0079 | 0.4452 | 0.0018

Adicionalmente, a Cena 3 apresenta uma configuracdo paramétrica particularmente
favordvel: média mais elevada e variancia mais baixa em comparagdo as demais cenas.
Essa combinacio produz uma distribuicao mais concentrada em torno de valores centrais
altos, reduzindo a dispersao relativa dos dados. Como consequéncia, a estimagao dos
parametros — especialmente de ¢ — torna-se mais estdvel, o que justifica a superioridade
estatistica da Cena 3 em relacdo as demais regides consideradas.

Em sintese, os erros padrdao constituem uma medida fundamental da incerteza as-
sociada as estimativas dos parametros, de modo que valores reduzidos indicam maior

precisdo e estabilidade inferencial. A partir dessa interpretacao, torna-se possivel com-
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preender, de forma mais clara, as diferencas estruturais entre as trés cenas e o impacto
dessas diferencas na qualidade das estimativas obtidas.

A Figura 13 ilustra histogramas da densidade considerada para diferentes concen-
tracOes das trés cenas analisadas. Cada histograma evidencia o comportamento proba-
bilistico da varidvel, conforme indicado pelos eixos e pelas legendas que especificam a
direcdo da concentracdo (esquerda, centro e direita). J4 a Figura 14 apresenta as fun-
¢oes de distribuicao cumulativa empirica e ajustada para essas mesmas configuragdes,
permitindo visualizar a adequacdo do ajuste em cada cendrio e complementar a andlise

estatistica descrita anteriormente.

Histograma da Cena 1 Histograma da Cena 2 Histograma da Cena 3

Valores da razao SAR estudada Valores da razao SAR estudada Valores da razdo SAR estudada

(a) Concentracdo a esquerda. (b) Concentragdo ao centro. (c) Concentragdo a direita.

/

Figura 13 — Gréficos da densidade Beta; 2 para cada cena estudada.

Densidade Cumulativa empirica e ajustada da Cena 1 Densidade Cumulativa empirica e ajustada da Cena 2 Densidade Cumulativa empirica e ajustada da Cena 3

Densidade Cumulativa

Valores da razéo SAR estudada Valores da razéo SAR estudada Valores da razéo SAR estudada

(a) Maior concentragdo entre 0,0 (b) Maior concentracdo entre 0,2 (c) Maior concentracdo entre 0.4
e0,2 e0,4 e 0.5

/

Figura 14 — Gréficos da densidade cumulativa Beta; 2 para cada cena estudada.

Realizamos o teste de Kolmogorov—Smirnov para cada uma das trés cenas, com
o objetivo de avaliar a aderéncia do modelo Beta tipo 3 modificada as distribuigdes
empiricas observadas. Em todos os casos, o teste ndo rejeitou a hipétese nula (Hp) de

que os dados seguem essa distribui¢ao.
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Para a Cena 1, a estatistica obtida foi D = 0,0280, com p-valor igual a 0,8264,
indicando excelente concordancia entre o modelo tedrico e os dados observados. Na
Cena 2, obteve-se D = 0,0295 e p-valor 0,7767, novamente sem evidéncias para rejeitar
Hpy. Por fim, na Cena 3, o teste resultou em D = 0,0262, com p-valor 0,8819, sugerindo
ainda maior aderéncia entre a distribui¢cdo Beta tipo 3 modificada e os valores empiricos.

Esses resultados confirmam que, para todas as cenas analisadas, a distribui¢do Beta
tipo 3 modificada oferece um ajuste adequado, justificando seu uso como modelo pro-
babilistico nas etapas subsequentes deste trabalho.

De agora em diante, utilizamos os valores estimados para cada uma das trés cenas
reais como parametros de referéncia no estudo de simulacdo de Monte Carlo. Foram
geradas mil réplicas independentes para cada configuracdo analisada, variando-se o
tamanho da amostra no formato K X K, com K € {3,5,7,9,11, 15}, a fim de avaliar
o impacto da dimensao amostral sobre o desempenho das estatisticas de teste. Como
medidas de avalia¢do, adaptamos estimativas empiricas da dimensao do teste para niveis
nominais de 1%, 5% e 10%, considerando os testes baseados em Sk;, Sg.g (para
B =0,1;0,5;0,9), Sp e Sy. Os resultados completos encontram-se na Tabela ??, na
qual destacamos, em cores distintas, os melhores desempenhos dentro de cada cena.

De forma geral, observa-se que o comportamento dos testes varia substancialmente
conforme a medida de divergéncia, a cena considerada e o tamanho da amostra. As
Tabelas 10, 10 e 12 evidenciam que nenhuma medida apresenta desempenho universal-
mente superior: cada divergéncia destaca-se em configuragdes especificas, reforcando a
sensibilidade dos testes as caracteristicas da distribui¢ao subjacente.

A fim de sintetizar os resultados apresentados nas Tabelas anteriores, elaborou-se um
quadro resumindo, para cada nivel nominal e cada cena, quais medidas de divergéncia
obtiveram os melhores desempenhos. Essa sistematizacdo permite visualizar de forma
imediata quais distancias se destacaram em cada configuragao experimental, facilitando a

comparacao entre cenas e apoiando a selecao de medidas mais adequadas para aplicacdes
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Tabela 10 — Taxas de rejei¢do dos testes baseados em distancia sob Hy para nivel nominal de 1%. [l
Cena 1; ] Cena 2; ] Cena 3. Os valores destacados correspondem as melhores
taxas de rejeicdo em cada linha.

9 | 0009 | 0013 | 0015 | oo11 | [60100
25 | 0008 | 0.012 0.009 | 0011 | 0016
g | @ | oo | oo 0.005 | 0014 | 0012

81 | 0012 0012 | 0013 | 0011 | 0008

121 | 0004 | 0013 | 0007 | 0012 | 0013 | [0068
225 | o012 | [0610] | (00107 | 0.009 | 0.007 | [0:010'
9 | 0007 | J00H0] | o004 | o011 | 0012 | 0.009

25 0.015 0.012 0.013 0.011 0.014

g | o | QoL | oo | 006 | o013 10.007
g1 | J0010] | o012 | 0012 | 0007 | 0.007
121 | [0010 | 0013 | 0009 | 018 | o0.008

225 0.006 0.012 0.012 0.012 0.012

oo
o O

o =
SIS

9 | o011 | 0007 | 0006 | 0008 | 610700

25 | J0010] | o012 | 0016 | 0012 | 0011 | 0.007
RS [6608" | 0007 | 0014 | 0007 | 0013
g1 | J0I010] | [0:010] | 0.008 | 0009 | 0.005 | 0015
121 | [0010] | o009 | [016] | o012 | [0010] | o.o11

225 0.013 0.011 0.011 0.006 0.007

Tabela 11 — Taxas de rejeicdo dos testes baseados em distancia sob Hy para nivel nominal de 5%. [l
Cena 1; ] Cena 2; Bl Cena 3. Os valores destacados correspondem as melhores
taxas de rejeicdo em cada linha.

9 | o046 | 0041 | [0048] | 0052 | 0037 | 0.051
25 | 0044 | 0055 | 0.041 | 0.057 0.059
m|® 0055 | 0.055 | 0045 | 0057 | 0.062

81 | 0057 | 0045 | 0051 | 0.057 0.038
121 | 0047 | 0045 | 0046 | 0.058
225 | 0.051 0052 | 0.053 | 0044 | 0.059

0.035 | 0039 | 0052 | 0.040
25 | 0055 | 0052 | 0051 | 0040 | 0.035
g | v | 0o | o [05656] | o055 | 0053 | 0.046

81 | 0039 | JOI0&7 | 0052 | 0044 | [00FF | 0.052
121 | 0041 | 0046 | 0055 | 0053 | [01050] | 0.055
225 | [O0048] | 0.058 | 0054 | 0051 | 0062 | 0.055

o | Jo44 | 0039 | 0039 | 0029 | 0035 | 0.036
25 | [0048| | 0055 | 0054 | 0047 | 0.043 | 0055

. 49 0.034 0.055 0.039 0.053 0.058

81 | 0040 | [O644] | o056 | [0044 | 0040 | 0.061

121 | 0058 | 0061 | [0049] | 0.054 0.042
225 | 0061 | 0059 | [0.048 | 0044 | 0.045 | 0053




Tabela 12 — Taxas de rejeicdo dos testes baseados em distincia sob H; para nivel nominal de 10%. [l
Cena 1; ] Cena 2; ] Cena 3. Os valores destacados correspondem as melhores
taxas de rejeicdo em cada linha.

Cenas | N | dxr | a%' | a% | 4% | ds | du

9 | 008 | 0102 | 0090 | 0090 | 0.080 | [0:093]

25 | o107 | 0097 | o087 | 0687 | 0.085 | 0.106
g | o | o | 0104 ) odos {0093 | 0.104 | 0.112
81 | 0101 | 0093 | 0.103 | [0.098 | 0.090 | 0.089
121 | 0089 | [0098] | 0086 | 0.105 | 0.106 | 0.103
225 | 0.109 | [0:100] | 0.094 | 0.13 | 0.095 | 0.105
9 | 0086 | 0081 | o081 | o088 | 0000 | 65T
25 | 0098 | 0087 | 0103 | J0HGOY | 0.090 | o.101
g | o] 0o 0657 | o108 | 0.113 | 0.114 | 0.083

81 0.107 0.101 0.101 0.096 0.081

121 | 0089 | o108 | JOMO8] | o.104 | 0.112 | 0.095

225 0.086 0.107 0.093 0.104 0.108

9 0.086 0.071

25 0.109

. 49 0.113 0.092 0.094 0.114
81

0098
0.087 | 0083 | [0091] | 0084 | 0.082 | 0.123
0099

.085 0.067 0.074
112 0.096 0.092 0.102

121 | 0116 | 0.113 0.112 | 0.106 | 0.087
225 | J060° | 0.113 | 0.097 | 009 | 0.103 | 0.105

futuras. A Tabela 13 apresenta essa consolidagdo.

Tabela 13 — Resumo das medidas de divergéncia com melhor desempenho global por cendrio e nivel

nominal
Nivel nominal ‘ Cena 1 ‘ Cena 2 ‘ Cena 3
1% | Rényi (8 =0.5)/Rényi (8 =0.1) | Rényi (8 = 0.1)/ KL | Rényi (8 =0.1)/KL
5% | Bhattacharyya / KL | Rényi (8 = 0.1) | KL/Rényi (8 =10.9)
10% | Rényi (8 = 0.1) | Rényi (8 =0.9)/Rényi (8 =0.1) | Rényi (8=0.5)/KL

A andlise das taxas de rejeicdo sob a hipdtese nula permitiu comparar o com-
portamento de seis medidas de divergéncia aplicadas a discriminac¢do de parametros
associados a cenas SAR. Os resultados indicaram que o desempenho dos testes varia
de acordo com a estrutura das cenas, com o nivel nominal adotado e com o tamanho
amostral disponivel, de modo que nenhuma medida se destacou como universalmente

superior em todos 0s cendrios.

70



De modo geral, as divergéncias de Rényi apresentaram o maior nimero de melhores
desempenhos ao longo das diferentes combinagdes de cenas e niveis nominais. Em par-
ticular, as ordens 8 = 0.1 e 8 = 0.5 mostraram melhor comportamento, sugerindo que
essas configuragdes sdo adequadas para capturar diferencas moderadas entre distribui-
¢oes. Em contraste, a divergéncia de Kullback—Leibler exibiu resultados mais varidveis,
com bom desempenho principalmente em cenas com contrastes mais marcantes.

A distancia de Bhattacharyya destacou-se em alguns casos especificos, notadamente
no nivel nominal de 5% para a Cena 1, indicando que pode ser uma alternativa eficaz em
situacoes onde as diferencas entre regioes nao sdo abruptas. J4 a distancia de Hellinger
apresentou, de modo recorrente, valores inferiores aos das demais medidas, o que sugere
menor adequacdo as configuracdes analisadas.

O tamanho amostral também demonstrou papel relevante: valores maiores de N ten-
dem a produzir padrdes mais regulares nas taxas de rejei¢cdo. Entretanto, essa tendéncia
nao ocorreu de modo uniforme entre todas as divergéncias, reforcando que cada medida
responde de modo distinto as variacdes no nimero de observagoes.

Em sintese, os resultados evidenciam que:

* as divergéncias de Rényi, especialmente para § = 0.1 e 8 = 0.5, constituem

opgoes versateis e com bom desempenho em variados cendrios;

KL tende a ser mais apropriada quando ha maior contraste entre as regioes;

Bhattacharyya € uma alternativa relevante quando as separacdes entre as distribu-

icdes sao mais suaves;

Hellinger mostrou desempenho inferior no conjunto avaliado.

Essas conclusdes indicam que a escolha da medida de divergéncia deve ser adequada
ao contexto da aplicacdo, considerando caracteristicas da cena, nivel de significancia

adotado e tamanho amostral. O conjunto dos experimentos fornece, assim, um guia
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prético para a selecdo de medidas em tarefas de segmentagdo e detec¢do em imagens

SAR, contribuindo para modelos mais aderentes a estrutura real dos dados.

3.4.2 Aplicacdo a dados reais

Nesta secao, executamos dois aplicativos com dados reais. Inicialmente, aplicamos
nossas ferramentas a uma imagem AIRSAR de Sao Francisco, adquirida com nimero
de looks igual a quatro. Essa imagem apresenta trés texturas distintas: oceano, floresta
e area urbana. Em nosso estudo, interessa-nos avaliar o comportamento do detector ao
realizar a transicao entre as regides de mar e cidade.

A Figura 15a mostra o segmento selecionado e o limite estimado pelo método baseado
em log-verossimilhanca. Embora tal método apresente bom desempenho em diversos
cendrios, nesta aplicacdo ele produziu uma borda deslocada em rela¢do a borda real,
caracterizando uma estimativa sistematicamente desviada. Em contraste, os detectores
baseados em distancia, ilustrados na Figura 15b, apresentaram delineamentos mais
aderentes a estrutura verdadeira da imagem, fornecendo resultados visualmente mais
precisos do que o método de log-verossimilhanca.

Em seguida, aplicamos os métodos a uma segunda imagem, agora de dupla polariza-
¢do (VV=HV), exibida na Figura 16a, adquirida pelo satélite Sentinel-1 com resolu¢do
espacial de 7m x 14 m em 17 de abril de 2023, na regido de Japaratinga, Alagoas, Brasil.
O sensor fornece valores de intensidade para os canais VV e HV, ambos com aparéncia
equivalente a L = 3.

Assim como observado no experimento anterior com a imagem AIRSAR, a Fi-
gura 16b confirma novamente a superioridade dos detectores baseados em distancia.
Os contornos estimados por essas medidas apresentaram maior aderéncia as transicoes
estruturais da cena, enquanto o método baseado em log-verossimilhanga mostrou de-
sempenho inferior sob inspe¢do visual, reproduzindo o mesmo padrio ja evidenciado no

primeiro conjunto de dados.
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Figura 15 — Deteccdo da imagem de Sao Francisco/Califérnia, EUA.
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Figura 16 — Deteccdo da imagem da Costa de Japaratinga/Alagoas, Brasil.

3.5 Consideragbes parciais da segunda contribuicdo

Neste trabalho, propusemos trés avancos: a proposta de (i) uma possivel ligacdao
entre o Beta;/ 2 (p, q) e ainformacdo SPAN, (ii) quatro medidas de distancia e os testes

de hipéteses correspondentes e (iii) detectores de bordas para imagens SAR.
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2
/ pode ser usada como modelo para descrever

Estabelecemos que a distribuicao Beta;
os recursos construidos a partir do SPAN em (0, 1/2). Essa distribui¢do se ajusta tanto
aos dados reais quanto a formacdo fisica da imagem SAR. Com base na distribui¢do
Betaé/ 2 quatro distancias estocdsticas foram propostas e, como meio para a deducdo
tedrica das distancias, outras quantidades baseadas em momentos foram derivadas,
como E[log Z], E[log(1 — Z)] e E[log(1 — 2 Z)].

Em seguida, foram desenvolvidos testes de hipéteses. Além disso, foi desenvolvido
um método para determinar estimativas de maxima verossimilhanca para os parame-
tros Beta;/ 2. Em seguida, foi realizado um estudo de Monte Carlo para verificar o
desempenho dos testes propostos, que produzem bons resultados mesmo para amostras
pequenas.

Logo apds, propusemos detectores de borda para imagens SAR usadas para estudar
contornos em duas regides: Sdo Francisco (Califénia, EUA) e Costa de Japaratinga
(Alagoas, Brasil). Os resultados mostram que as ferramentas baseadas em distancia

superam a log-verossimilhancga.
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4 Evolucgao estatistica de superficie de
atributos SPAN tipo raz&o para seg-

mentacdo em imagens SAR

4.1 Segmentacao estatistica pela evolugcédo da superficie

O problema de segmentar uma estrutura ou objeto de interesse em uma imagem
bidimensional pode ser formulado como a busca por uma regido 6tima que separa o alvo
do restante da cena. A evolucdo de contornos ativos baseada na metodologia de level
sets constitui um paradigma consolidado para esse tipo de tarefa. A formulacao original
dos level sets é apresentada por ( ), enquanto ( )
introduzem uma abordagem por regioes que dispensa a extracdo explicita de bordas. Para
uma visdo abrangente de métodos estatisticos em formulacdes variacionais, consultar

( ). Além disso, ( ) propdem uma
unificacdo entre for¢cas de borda e de regido dentro desse arcaboucgo.

Com o intuito de estabelecer o embasamento tedrico necessdrio para a proposta

desenvolvida neste capitulo, organizamos a discussio em trés partes complementares.

4.1.1 Formulacdo Bayesiana para particionamento de imagem

Sejam Q ¢ Z? o dominio discreto da imagem, cujos elementos [x, y] representam a
posicdo de cada pixel na posicdo (x,y) e I [x,y] : Q — (0, %) um campo aleatdrio es-
calar (induzido pelo SPAN tipo razdo) seguindo a distribui¢do Beta;/ 2 (p,q). Conforme

( ), denote V = (Qgentro» L2fora, I) cOMO uma parti¢io bindria de

Q, em que I' = 0Qqenro = 0Q0ra € a interface entre a estrutura de interesse € o back-



ground. A segmentacdo pode ser formulada como estima¢cdo de maxima a posteriori

(MAP): Dado

Pr(V | I[x,y]) o Pr(Z[x,y] |V) x  Pr(V), (4.1)
———
Termo de dados Termo geométrico

procura-se V* = arg maxycz Pr(V | I [x,y]), em que Z € o conjunto de todas as pos-
siveis particdes. Intuitivamente, a solucdo 6tima deve ser simultaneamente compativel
com os dados.

A interface pode ser representada por uma fungdo ¢ : & — R cuja curva de nivel

zero define a fronteira ( , ):
I'={(x,y) €Q: ¢(x,y) =0}, Qgentro = {(x,y) €Q: ¢(x,y) >0} e

Qfora = {(X,y) €Q: ¢(X,y) < O}

Para evitar contornos serrilhados ou oscilantes, ¢ comum adotar interfaces como
curtas e suaves via penalizacdo de comprimento a partir da funcdo delta de Dirac

regularizada 6 ( , ):

Pr(o) < exp( v [ 5.(6) 19011 ds),

em que v > 0 é o peso de regularizacio, e V¢ € a normal a interface, ||Vo|| = \/(Ve, Vo)
¢ o comprimento da normal e {(x,y) = x "y é o produto interno.
Nas préximas secoes, a Equagdo (4.1) serd operacionalizada especificando (i) o termo

de dados coerente com SAR (Subsecdo 4.1.2) e (ii) a evolugdo variacional do level set

(Subsecdo 4.1.3).

41.2 Termo de dados

Considere uma discussao sobre Pr(Z [x,y] | V), a verossimilhanca condicional a

particdo representada por V. Admitindo independéncia condicional dentro de cada
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regido, a verossimilhanca associada ao problema é dada por:

L(o;]) = l_[ fdentro(-[[xa y])] |: l—l ffora(I[x’ y])
[x,¥] € Qdentro [x.y] € Qfora
X rl fborda(-[ [X, y])]’ (42)
[x,y]eT

em que 6 = (Pdentros Gaentror Ploras Grora) » £ = [T[1,1],...,T[M,N]|" e fyu(-) re-
presenta a densidade para V € {dentro, fora,borda}. No contexto desta tese (para
intensidade SAR escalar induzida da SPAN), faentro(*) € ffora(-) pertencem a familia
Betaé/z, com parametros fgentro = (Pdentros Gdentro) € Gfora = (Proras Gfora). Nas iteragdes
do método de level set a ser proposto, 0 parametro O gentro ou fora SEr4 €stimado por maxima
verossimilhanca nas regides induzidas como discutido no Capitulo 3.

Adicionalmente para a particdo I', utiliza-se o indicador cldssico de contornos ativos

geodésicos ( , ):

foorad T, ¥1) = T exp| = gl IVE[x,¥11I) |- tal que ga (1) = —— e & {1,2},

1+
4.3)

em que X : Q — R é um mapa de arestas para as intensidades SPAN, definido como
I [x.y1\*  (0Zlxy1)*
0x oy

J = exp| - gol IVE[x, y1lI) |dxdy.
[x,y]eT

4.1.3 Evolugdo da curva e técnicas de Level Set

As Subsecoes 4.1.1 e 4.1.2 levam a representacdo V com interface dirigida pela
curva de nivel ¢(x,y) = 0. No que se segue, a discussdo considera a evolugdo de ¢(-)
também no tempo, denotada por ¢(x, y,t), e o termo V é substituido por ¢(x, y,?) na

Equacao (4.1).
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A evolugdo do gradiente descendente do funcional E(¢) = —logPr(Z [x,y] |
¢) — logPr(¢) ( : ; : ;
, ) €

96 _  OE9)

ot op @4

em que E(¢) é a energia e (para as fungdes regularizadas de Heaviside H, e Dirac 6, e

pesos v, u, 8 > 0) pode ser escrito como

Termo de dados

E(¢) = _/Q [He(¢) log faenwo (£ [x,¥]) + (1 _H6(¢)) log fora(Z [x, ¥]) ] dxdy

|

vSe(9) VoIl + pgalllVEI) 6e() IVl - B /QHe(fb)ﬂ(x,y)] dxdy,

Termo de geométrico

4.5)

tal que v € o peso do comprimento da curva (que controla a suavidade global da borda), u
peso do termo geodésico (controla a aderéncia as bordas), 5 € o peso (controla a atragdo
para regido de interesse, centro radial) de A(x, y) que é o atrator ou fun¢do radial (uma

funcao auxiliar usada para distorcer a curva de nivel) dada por

1

Alx,y) = ,
) Vx —xc)2+ (v = yc)2 + 02

(4.6)

o > 0 é um parametro de regularizacdo (que evita singularidade quandox = xcey = yc¢)
e (xc, yc) € o centro de drea da curva em evolugao dirigida por ¢(-).

A variacdo da Equacido (4.4) resulta em

0
22 = 6e(9) [108 fanwo (7. Y1) = 108 foa (7T Y1) + BACx, ) + v | i)

+ udiv g (IVEI) 1) |- @47

Termo de geodésico
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Escrevendo n = V¢/||V¢|| e k = div(n), em que div(-) é o operador de divergéncia, o
termo geodésico da Equacao (4.7) decompde-se em u g, (||VZ||) « + u Vg (||[VZ]]) - n,
isto é, curvatura ponderada mais atracdo a bordas. A Figura 17 ilustra o funcionamento

do funcional de energia.

Vetor Gradiente

- - -

(xc,¥e)

Fonte: O Autor
Figura 17 — Energia da circunvizinhanca.

4.2 Proposta do gradiente descendente generalizado

4.2.1 O que esta na literatura

Na formulacdo Bayes—variacional de contornos ativos (Se¢des 4.1.1-4.1.3), a evo-
lucdo da fronteira como level set decorre do gradiente descendente do funcional que
agrega um termo de dados (verossimilhanga regional) e um termo geométrico (regula-
rizagdo por comprimento/curvatura). No caso cléssico baseado em regides, a evolugao
¢ baseada na log da razdo entre verossimilhangas ( , ;

, ) e Equacao (4.7); com reforco edge-based (geodésico),
usa-se um indicador de borda g, (||[VZ]]) ( , ); €,

quando h4 forma/centro conhecidos, adiciona-se um atrator radial (Se¢des 4.1.2, 4.1.3).
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Nessa linha, um gradiente de evolucao amplamente usado é

6_¢ _ f dentro(-[ [)C >y ] ; adentro)
- 6E(¢) log ffora(I [x’ y] 5 0fora)

ot
C (I [x,y] ;adentro’afora)

+ 5 ! + vdiv(—v¢ )
Vi —x0)2+ (y = ye)? Vel

, (4.8)

em que:

C (I [x,¥]; Odentros Oora) € 0 termo dos dados na curva de evolugao;

(xc, yc) € o centro do atrator radial; 8 > 0 € seu peso;

* v >0 é o peso de regularizacio por curvatura (« = div(V¢/||Ve||));

O¢ € a delta regularizada (coerente com H,);

e a curvatura média 2D tem a forma,

V¢ ) _ ¢xx¢§ - 2¢x¢y¢xy + ¢yy¢)25
Vel ((p)% + ¢§)3/2

em que ¢y = 0$/0x, ¢y = 8¢/Dy, pux = 02¢/Ox%, pyy = 87¢/0Y* € ¢y =
8¢ /dx0y.

k =di

)

A Equagdo (4.8) € alinhada com ( ), ( )

( ) e com o bloco radial (atrator) usado anteriormente.

Para usar a Equacao (4.8) no caso escalar induzido pelo SPAN, adotamos a densidade
da distribui¢@o Beta Tipo 3 modificada (dada na Defini¢cdo 3.1.1) com densidade

1 sP=1(1 = 2s)47!
Beta(p,q) (1 —s)P*4

f(s:ip.q) = L0,1/2)(5), 4.9)

emque s = s[x, y] € (0, %). Assim, o termo C (7 [x, ¥]; Odentro, Ofora) € dado por

Beta( Pfora> 4 fora)

C.Z.X, ;odnr,efr =1lo
( [ y] entre ? a) 8 Beta(pdentro, CIdentro)

+ (pdentro - pfora) log K

+ (Qdentro - Qfora) 10g(1 - 25) + (pfora + Gfora — Pdentro — Qdentro) 10g(1 - S) (4.10)
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e consiste exatamente no contraste utilizado por ( ) (ver também

Equacdo (4.10) adiante), de facil implementagdo numérica.

4.2.2 Nosso gradiente descendente generalizado (curvatura Box—

Cox)

Para controlar “mudancas abruptas de natureza probabilistica” e conectar suavemente

adiferenca de log-verossimilhancas ao regime de poténcias, adotamos o "nexo Box—Cox"

-1
A

alf() = . talque  limgi(f() = log £,

Nossa proposicao inicial € usar a medida

Ca(Z [x, y]; Odentro» Ofora) = g/l(fdentro (s; Hdentro)) - g/l(ffora(s; ofora))’ 4.1D)

que tem como caso limite C (7 [x, V]; @dentro» @fora), N2 Equacdo (4.8). A Figura 18 ilustra
a relacdo entre as curvas logaritmica e o nexo Box-Cox.
A partir da Equagdo (4.11), o funcional de energia (4.5) toma a forma

Termo de dados modificado

Ex(00) = = | [ He() g finT .31 + (1 = He(@) gl (715, 5]) | ddy

+ g/l(fdentro(S; Odentro)) - g/l(ﬁ’ora(S; Ofora)) . 4.12)

Termo geométrico

Incorporando o atrator radial A(x,y) = ((x — xc)? + (y - yc)z)_l/ 2 (regularizado na

prética) e a regularizagdo por curvatura, propde-se a curva de evolucao:

a .
% = 0e(9) |Ca(Z [x, ¥]; Odentros Ofora) + BA(x,y) + vdw(”g%)], (4.13)

que € a generalizacdo direta da Equacao (4.8). Adicionalmente, pode-se somar o refor¢o

geodésico edge-based via g,(||VZ]||) como na Se¢do 4.1.3.
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Fonte: O Autor
Figura 18 — Relagdo entre curvas.

4.3 Resultados numéricos

4.3.1 Discusséao inicial dos cenarios simulados

Nesta se¢do, alguns cendrios de simulacdo sao apresentados. A Figura 19a apresenta
o ground truth contendo uma imagem com duas regides, uma estrela u’[i, j] e o back-
ground uE i, j]. As Figuras 19b—19d apresentam contaminagdes do ground truth com

retorno:

o Wi, j] x CYi, j], pararegido interna,
Z[i,j] =
uEli, j1 + CE[i,j], pararegido externa,

em que u'[i,j] = 1e uP[i,j] =0e CV[i,j] ~ {U(O, 1/2), Betaé/z(pv, qv)} para

V € {I,E} definida da Tabela 14. Pode-se verificar que para todos cendrios a média da
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regido interna é maior do que aquela da regido externa, porém a variancia do background
(parte externa) é menor do que aquela do sinal aleatério interno. Essa suposicdo tem o
objetivo de deixar a parte externa mais incerta, contudo deixar a média do sinal interno
mais pronunciada. Quanto a mudanga dos cendrio de 1 para 3, pode-se notar que a
variancia da parte interna diminui e sua média aumenta. O esperado (como pode ser
analisado por inspec¢do visual) é que a deteccdo de segmentos seja mais trabalhosa no

primeiro cendrio do que nos demais.

Tabela 14 — Configuragdo dos cendrios para E(Z) e Var(Z)

Fora da Estrela Dentro da Estrela
|(pe, qx) | (B(2),Var(2))| |(pr.a1) | (B(2), Var[Z]) |

Cenarios

(0.1, 10) | (0.009058628,0.0006462572) | (5,5) | (0.326419956, 0.004809658)

(0.1, 10) | (0.009058628,0.0006462572) | (5,3) | (0.378184165,0.004265891)

(0.1,10) | (0.009058628,0.0006462572) | (5,1) | (0.450930764, 0.002246029)

Como medidas de avaliagdo de desempenho, adotaram-se:

* Acuracia: Avalia a proporcdo total de pixels corretamente classificados. Sua

férmula € dada por:

TP+TN

Acuracia = ,
TP+TN+FP+FN

em que

Verdadeiros Positivos (T P): pixels corretamente classificados como 1;

Verdadeiros Negativos (T'N): pixels corretamente classificados como 0;

Falsos Positivos (F P): pixels incorretamente classificados como 1;

Falsos Negativos (FN): pixels incorretamente classificados como O.

* Coeficiente de Similaridade de Dice (DSC): Mede a sobreposi¢do entre os conjun-

tos segmentado (S) e a verdade de referéncia (R), com valores entre O (nenhuma
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Valor

0.4

P 03
0.2
0.1

(a) Imagem Ground truth

Valor
1.00

0.75

0.50
0.25
0.00

1/2

(c) Cendrio-2: C! ~ Beta;/Q(S, 3)eCE ~ Beta,

Valor

0.75

0.50
0.25
0.00

(b) Cendrio-1: C ~ Beta}/*(5,5) e CF ~ Beta}/*(0.1, 10)

Valor
1.00

0.75

0.50
0.25
0.00

(0.1,10) (d) Cendrio-3: C' ~ Beta}/*(5,1) e CF ~ Beta}/*(0.1,10)

Fonte: O Autor
Figura 19 — Cendrios de simulacdo de uma estrela apresentando background e ground truth.

sobreposicao) e 1 (sobreposi¢do perfeita):

DSC
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+ Indice de Jaccard (IoU): Também conhecido como coeficiente de intersecio sobre

unido, mede a similaridade entre os conjuntos segmentado (S) e de referéncia (R),

variando entre O (nenhuma interse¢@o) e 1 (coincidéncia perfeita):

IoU
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4.3.2 Discussao dos resultados de simulagao

Neste estudo de simulagdo, avaliamos o desempenho dos métodos de segmentacao
aplicados a imagens artificiais cuja ground truth € apresentada na Figura 19a, composta
por um sinal deterministico em forma de estrela sobre um background homogéneo.
O objetivo central € verificar a capacidade dos algoritmos em recuperar corretamente
esse sinal, tanto em cendrios livres de ruido quanto na presenca de diferentes tipos de
contaminacdo (vide Figuras 19b—19d).

Para isso, comparamos duas abordagens de level set:

(I) o método clédssico da literatura, baseado na curvatura induzida pela log-

verossimilhanga ( , ); €

(II) a proposta introduzida neste capitulo, que utiliza a transformacdo de Box—Cox

definida na Equacao (4.11).
A segmentacio bindria € analisada em trés cendrios:
(i) imagem sem contaminacao (Figura 20);
(i) imagem contaminada por ruido Uniforme (0, 1/2) (Figura 21);
(ii1)) imagem contaminada pela distribuicao Beta;/ 2 (p,q), conforme Figuras 22 a 24.

Ao final, discutimos os resultados obtidos em cada cendrio e identificamos a abor-
dagem mais eficiente para cada tipo de contaminagdo.

Um aspecto fundamental na dindmica de métodos baseados em level sets € a escolha
do chute inicial para a funcio de nivel ¢. Tal escolha influencia ndo apenas a estabili-
dade da evolugao, mas também a capacidade do algoritmo de explorar adequadamente o
espago da imagem antes de se aproximar das fronteiras verdadeiras. Neste estudo, ado-
tamos como condi¢do inicial uma superficie de nivel simples, tipicamente um quadrado

ou retangulo centralizado, cuja regido positiva intercepta apenas uma parcela limitada
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da estrutura a ser segmentada. Esse procedimento, bastante difundido na literatura, evita
preconceitos geométricos indesejados e garante que o contorno evolua predominante-
mente guiado pelos contrastes estatisticos induzidos pelos modelos ajustados as regides
interna e externa. Além disso, um chute inicial regularizado reduz a probabilidade de
aprisionamento prematuro do contorno em minimos locais, favorecendo trajetérias de
evolucdo mais estdveis e consistentes ao longo das iteragoes.

Além disso, a evolucdo do contorno implicito foi conduzida por um esquema itera-
tivo do tipo level set, no qual a funcao de nivel ¢ € atualizada sucessivamente mediante
a acdo conjunta da curvatura regularizadora e do termo de forca derivado da diferenca
entre as log-verossimilhangas dos modelos ajustados as regides interna e externa. A cada
iteragdo, os parametros (p, ¢) de ambas as regides sdo estimados por maxima verossimi-
lhanga, e a forca de atragdo do contorno € modulada por um coeficiente A, que controla
o grau de ndo linearidade da transformacdo de Box—Cox aplicada a verossimilhanca. O
processo iterativo é executado por um nimero predefinido de iteracdes nije,, € 0 critério
de parada consiste no esgotamento dessas iteragdes, dado que a estabilidade numérica
da evolugdo € garantida pelo amortecimento imposto pelas func¢des regularizadas de
Heaviside e delta de Dirac.

No que se refere a condi¢do inicial, o contorno implicito € iniciado por uma fungdo de
nivel ¢ cuja regido positiva assume a forma de um retangulo ou quadrado centralizado
na imagem. Essa escolha, amplamente adotada na literatura de level sets, garante
que o contorno inicial seja suficientemente simples, conectado e distante das bordas
verdadeiras, permitindo uma expansao controlada até que o termo de for¢a direcione
a superficie de nivel para as descontinuidades estatisticas presentes na imagem. Além
disso, o uso de uma forma geométrica regular evita viéses iniciais e assegura que todo
o processo de segmentacao decorra da dinamica induzida pelos modelos estatisticos e
nao de artefatos do estado inicial.

Em termos de convergéncia, ambos os métodos avaliados apresentaram compor-

86



tamento estdvel, mas com diferencas relevantes no tempo necessdrio para atingir um
estado estaciondrio. O método cldssico baseado na log-verossimilhanga tende a con-
vergir mais rapidamente, pois sua for¢a de evolu¢ao depende de termos essencialmente
lineares no contraste estatistico entre as regides. J4 a abordagem com nexo Box—Cox,
por envolver um termo ndo linear amplificado pela transformagdo, pode produzir tra-
jetdrias de evolugc@o mais sensiveis aos valores de A e ao passo temporal, exigindo em
alguns casos um nimero superior de iteragdes para estabilizagao. Apesar disso, a maior
sensibilidade frequentemente resulta em fronteiras mais nitidas e robustas em cendrios
de contaminagdo complexa.

Do ponto de vista computacional, verifica-se que o método cldssico apresenta custo
relativamente baixo, uma vez que a for¢a de evolugdo deriva de operagdes simples sobre
log-densidades. Em contraste, 0 método com nexo Box—Cox exige o cdlculo, a cada
pixel e a cada iteracdo, de um termo nao linear do tipo {exp(1€(x)) — 1}/4, além de
demandar ajustes mais finos do parametro A para garantir estabilidade numérica. Como
consequéncia, seu custo computacional € mais elevado; contudo, esse aumento se traduz
em ganhos de robustez e qualidade da segmentacdo em diversos cendrios, sobretudo

quando ha heterogeneidade ou ruido estrutural significativo.
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(a) 1 iteracdoe A = 0.01 (c) literagdioe A =5 (d) 1 iteracdoe A = 10

(e) 2 iteracdes e 4 = 0.01 (f) 2 iteracdese 4 = 0.5 (g) 2 iteragdese 1 =5 (h) 2 iteracdes e 4 = 10

(k) 10 iteragcdes e A = 5 1) 10 iteracdes e 4 = 10

(m) 1 iteracio e log-(n)2 iteragdes e log-(0)5 iteracdes e log-(p) 10 iteragdes e log-
verossimilhanca verossimilhanga verossimilhanga verossimilhanga

Figura 20 — Imagem simulada de uma estrela e Segmentagdes Bindrias, sem contaminacdo, utilizando
Box-Cox e a log-verossimilhanca.

A Figura 20 apresenta os cendrios de segmentacdes bindrias, sem contaminagao,
utilizando o nexo Box-Cox e a log-verossimilhanga. Pode-se verificar que, para 4 = 5
e A = 10, o método proposto atinge uma Gtima segmentacao desde a primeira iteracao.
Para 4 = 0.01 e 4 = 0.5, 0 nexo Box-Cox tal como a literratura s6 funciona para mais

de 5 iteracoes.
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Tabela 15 — Resultados dos critérios de performance para 1 iteragdo, para a imagem simulada da estrela

original.
1 Acuricia | Acuracia Dice Dice Jaccard | Jaccard
(média) (dp) (média) (dp) (média) (dp)

10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0

1.0 | 0.91599 | 0.00014 | 0.78498 | 0.00028 | 0.64606 | 0.00037
0.8 | 091362 | 0.00014 | 0.78024 | 0.00028 | 0.63966 | 0.00037
0.5 | 091097 | 0.00007 | 0.77501 | 0.00013 | 0.63267 | 0.00018
0.1 | 091050 | 0.00000 | 0.77410 | 0.00000 | 0.63145 | 0.00000
LV | 0.91050 | 0.00000 | 0.77410 | 0.00000 | 0.63145 | 0.00000

Tabela 16 — Resultados dos critérios de performance para 2 iteragdes, para a imagem simulada da estrela

original.
2 Acurdcia | Acuricia Dice Dice Jaccard | Jaccard
(média) (dp) (média) (dp) (média) (dp)

10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0

1.0 | 0.99992 | 0.00006 | 0.99984 | 0.00014 | 0.99967 | 0.00028
0.8 | 0.95167 | 0.00096 | 0.88456 | 0.00256 | 0.79303 | 0.00412
0.5 | 0.92054 | 0.00008 | 0.79507 | 0.00022 | 0.65985 | 0.00030
0.1 | 091935 | 0.00005 | 0.79179 | 0.00011 | 0.65535 | 0.00015
LV | 091374 | 0.00005 | 0.78049 | 0.00000 | 0.64000 | 0.00000
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Tabela 17 — Resultados dos critérios de performance para 5 iteracdes, para a imagem simulada da estrela

original.
1 Acuricia | Acuracia Dice Dice | Jaccard | Jaccard
(média) (dp) (média) | (dp) | (média) (dp)
10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0
1.0 1 0 1 0 1 0
0.8 1 0 1 0 1 0
0.5 1 0 1 0 1 0
0.1 1 0 1 0 1 0
LV | 0.99999 0 0.99998 0 0.99995 0

Tabela 18 — Resultados dos critérios de performance para 10 iteragdes, para a imagem simulada da estrela

original.
1 Acurécia | Acuracia Dice Dice | Jaccard | Jaccard
(média) (dp) (média) | (dp) | (média) (dp)
10.0 1 0 1 0 1 0
9.0 1 0 1 0 1 0
8.0 1 0 1 0 1 0
7.0 1 0 1 0 1 0
6.0 1 0 1 0 1 0
5.0 1 0 1 0 1 0
4.0 1 0 1 0 1 0
3.0 1 0 1 0 1 0
2.0 1 0 1 0 1 0
1.0 1 0 1 0 1 0
0.8 1 0 1 0 1 0
0.5 1 0 1 0 1 0
0.1 1 0 1 0 1 0
LV 1 0 1 0 1 0

Os resultados das Tabelas 15—-18 mostram que, na maioria dos cendrios, as métricas
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Acurdcia, Dice e Jaccard atingem valores unitdrios, refletindo 6tima segmentacao da
estrela simulada. As excecdes ocorrem para poucas iteracoes njer = 1,2 e/ou valores
baixos de A (préximos de 0), nos quais as métricas caem para cerca de 0.91 em Acurdcia,
0.78 em Dice e 0.64 em Jaccard. A partir de njer > 5 (exceto para LV), o método

converge em todos os casos para desempenho esperado (LI et al., 2005; ZHANG et al.,

2010). Veé-se que tanto o desempenho quanto a velocidade de convergéncia do método
proposto sdo melhores.

n ‘W W n |

(a) literacioe 4 = 0.01  (b) I iteracioe 4 = 0.5 (c) literagioe 1 =5 (d) 1 iteracdoe A = 10

n vm n |

(e) 2 iteragdes e 4 = 0.01 (f) 2 iteragdese 4 = 0.5 (g) 2 iteragdese A =5 (h) 2 iteragdes e A = 10

n‘m

(m) 1 iteracdo e log-(n)2 iteragdes e log-(0)5 iteracdes e log-(p) 10 iteracdes e log-
verossimilhanca verossimilhanga verossimilhanga verossimilhanga

(D) 10 iteragdes e A = 10

Figura 21 — Imagem simulada de uma estrela e Segmenta¢des Bindrias, com contaminagéo (24 (0, 1/2)),
utilizando Box-Cox e a log-verossimilhanca.
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Discutiremos agora os resultados com contaminacdo. A Figura 21 apresenta os ce-
ndrios de segmentacdes bindrias, com contaminacao da uniforme U (0, 1/2), utilizando
o nexo Box-Cox e a log-verossimilhanca. Pode-se observar que € esperado um desem-
penho melhor e uma velocidade de convergéncia maior para o método proposto com

valores de A maiores.

Tabela 19 — Resultados dos critérios de performance para 1 iteragdo, para a imagem simulada da estrela
contaminada com a distribui¢do uniforme U/ (0, 1/2).

Acurécia | Acuricia Dice Dice Jaccard | Jaccard

£ (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.97301 | 0.00064 | 0.93866 | 0.00155 | 0.88441 | 0.00275
9.0 | 097176 | 0.00083 | 0.93563 | 0.00201 | 0.87905 | 0.00354
8.0 | 0.94388 | 0.00229 | 0.86339 | 0.00635 | 0.75967 | 0.00981
7.0 | 091301 | 0.00083 | 0.77107 | 0.00270 | 0.62744 | 0.00357
6.0 | 0.90457 | 0.00029 | 0.74320 | 0.00097 | 0.59134 | 0.00123
5.0 | 090592 | 0.00034 | 0.74775 | 0.00114 | 0.59713 | 0.00146
4.0 | 090783 | 0.00036 | 0.75411 | 0.00121 | 0.60528 | 0.00156
3.0 | 091058 | 0.00025 | 0.76319 | 0.00081 | 0.61706 | 0.00106
2.0 | 091434 | 0.00016 | 0.77538 | 0.00053 | 0.63316 | 0.00071
1.0 | 091827 | 0.00014 | 0.78789 | 0.00045 | 0.65001 | 0.00061
0.8 | 091896 | 0.00011 | 0.79005 | 0.00036 | 0.65296 | 0.00049
0.5 | 091662 | 0.00018 | 0.78602 | 0.00038 | 0.64747 | 0.00051
0.1 | 0.91050 | 0.00000 | 0.77410 | 0.00001 | 0.63146 | 0.00001
LV | 091050 | 0.00000 | 0.77410 | 0.00000 | 0.63145 | 0.00000
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Tabela 20 — Resultados dos critérios de performance para 2 iteracdes, para a imagem simulada da estrela
contaminada com a distribui¢do uniforme U (0, 1/2).

Acurédcia | Acurécia Dice Dice Jaccard Jaccard

4 mediay | @) | (médiay || @) | | (@media) | (@p)

10.0 | 0.97333 | 0.00056 | 0.93943 | 0.00135 | 0.88578 | 0.002399
9.0 | 097259 | 0.00075 | 0.93764 | 0.00182 | 0.88260 | 0.00323
8.0 | 097082 | 0.00067 | 0.93336 | 0.00163 | 0.87506 | 0.00287
7.0 | 0.96690 | 0.00049 | 0.92372 | 0.00122 | 0.85825 | 0.00211
6.0 | 0.95671 | 0.00080 | 0.89782 | 0.00209 | 0.81460 | 0.00345
5.0 | 094775 | 0.00072 | 0.87403 | 0.00195 | 0.77625 | 0.00308
4.0 | 0.93158 | 0.00090 | 0.82835 | 0.00265 | 0.70701 | 0.00387
3.0 | 090722 | 0.00036 | 0.75209 | 0.00120 | 0.60268 | 0.00154
2.0 | 091101 | 0.00030 | 0.76461 | 0.00099 | 0.61892 | 0.00129
1.0 | 091620 | 0.00022 | 0.78132 | 0.00070 | 0.64112 | 0.00094
0.8 | 091736 | 0.00018 | 0.78499 | 0.00057 | 0.64608 | 0.00077
0.5 | 091889 | 0.00009 | 0.78984 | 0.00028 | 0.65267 | 0.00038
0.1 | 091135 | 0.00008 | 0.77613 | 0.00018 | 0.63417 | 0.00025
LV | 091328 | 0.00017 | 0.78266 | 0.00050 | 0.64292 | 0.00067

Tabela 21 — Resultados dos critérios de performance para 5 iteragdes, para a imagem simulada da estrela
contaminada com a distribui¢ao uniforme U (0, 1/2).

Acurécia | Acuricia Dice Dice Jaccard | Jaccard

A (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.97391 | 0.00065 | 0.94083 | 0.00156 | 0.88827 | 0.00278
9.0 | 097390 | 0.00043 | 0.94080 | 0.00103 | 0.88822 | 0.00184
8.0 | 0.97182 | 0.00045 | 0.93578 | 0.00108 | 0.87931 | 0.00191
7.0 | 096915 | 0.00058 | 0.92928 | 0.00142 | 0.86790 | 0.00248
6.0 | 0.96514 | 0.00057 | 0.91933 | 0.00143 | 0.85071 | 0.00244
5.0 | 096240 | 0.00071 | 0.91244 | 0.00179 | 0.83899 | 0.00304
4.0 | 0.95950 | 0.00062 | 0.90504 | 0.00160 | 0.82656 | 0.00267
3.0 | 095797 | 0.00060 | 0.90111 | 0.00155 | 0.82003 | 0.00257
2.0 | 094147 | 0.00086 | 0.85670 | 0.00242 | 0.74933 | 0.00370
1.0 | 0.92404 | 0.00056 | 0.80574 | 0.00171 | 0.67469 | 0.00239
0.8 | 0.92546 | 0.00055 | 0.81009 | 0.00166 | 0.68080 | 0.00234
0.5 | 0.93143 | 0.00055 | 0.82792 | 0.00162 | 0.70638 | 0.00235
0.1 | 0.95934 | 0.00044 | 0.90463 | 0.00112 | 0.82587 | 0.00187
LV | 096877 | 0.00035 | 0.92847 | 0.00084 | 0.86649 | 0.00147
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Tabela 22 — Resultados dos critérios de performance para 10 iteragdes, para a imagem simulada da estrela
contaminada com a distribui¢do uniforme U (0, 1/2).

Acurécia | Acurdcia Dice Dice Jaccard | Jaccard

4 mediay | @p) | (medi) || @y | | média) | @p)

10.0 | 0.97419 | 0.00061 | 0.94150 | 0.00147 | 0.88948 | 0.00262
9.0 | 097412 | 0.00054 | 0.94134 | 0.00129 | 0.88918 | 0.00231
8.0 | 097244 | 0.00050 | 0.93729 | 0.00122 | 0.88198 | 0.00215
7.0 | 0.97032 | 0.00039 | 0.93213 | 0.00095 | 0.87290 | 0.00167
6.0 | 096834 | 0.00051 | 0.92727 | 0.00126 | 0.86441 | 0.00219
5.0 | 096750 | 0.00069 | 0.92519 | 0.00171 | 0.86081 | 0.00296
4.0 | 096748 | 0.00055 | 0.92516 | 0.00137 | 0.86075 | 0.00237
3.0 | 096920 | 0.00082 | 0.92939 | 0.00201 | 0.86810 | 0.00350
2.0 | 097139 | 0.00057 | 0.93473 | 0.00138 | 0.87746 | 0.00244
1.0 | 0.97429 | 0.00077 | 0.94173 | 0.00184 | 0.88988 | 0.00328
0.8 | 097710 | 0.00071 | 0.94844 | 0.00168 | 0.90194 | 0.00304
0.5 | 0.98479 | 0.00065 | 0.96634 | 0.00148 | 0.93488 | 0.00288
0.1 | 0.99425 | 0.00018 | 0.98754 | 0.00039 | 0.97538 | 0.00077
LV | 0.99507 | 0.00001 | 0.98933 | 0.00003 | 0.97889 | 0.00005

Os resultados das Tabelas 19-22 mostram que ha degradacdo moderada, sobretudo
com poucas iteracoes. Com njer = 1, por exemplo, a acurdcia média pode ficar em
torno de 0,91 no regime de A muito baixo (linha LV), enquanto combinacdes de A
maiores tendem a valores mais altos. A medida que njer aumenta, as métricas sobem
substancialmente e, com nj, = 10, alcancam patamar préximo de 0,99 para uma faixa
ampla de 4, mantendo desvios padrao pequenos, alinhada com a literatura em ruidos nao
gaussianos, ver ( ), ( ). Pelo resultado quantitativo
para altos valores de A e n;;,,, a verossimilhanca aparentemente funcionou melhor do que
a proposicao por causa do chute inicial da segmentacao. Isto pode ser visto analisando as
Figuras 211 e 21p. Note que a convergéncia do método baseado na log-verossimilhanca

nao descreve bem a geometria do sinal como método proposto.
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(a) 1iteracioe A = 0.01 (b) I iteragdoe 1 = 0.5 (c) literagdioe A =5 (d) 1 iteracdoe A = 10

(e) 2 iteracdes e 4 = 0.01 (f) 2 iteracdese 4 = 0.5 (g) 2 iteragdese 1 =5 (h) 2 iteracdes e 4 = 10

(i) 10 iteracdes e 4 = 0.01 (j) 10 iteracoese A = 0.5 (k) 10 iteracdes e 4 = 5 1) 10 iteracdes e 4 = 10

(m) 1 iteracio e log-(n)2 iteragdes e log-(0)5 iteracdes e log-(p) 10 iteragdes e log-
verossimilhanca verossimilhanga verossimilhanga verossimilhanga

Figura 22 — Imagem simulada de uma estrela e Segmentagdes Bindrias, com contaminagdo (p = g = 5),
utilizando Box-Cox e a log-verossimilhanga.

A Figura 22 apresenta os cendrios de segmentagdes bindrias, com contaminagdo da

1/2

Beta3

(5,5), utilizando o nexo Box-Cox e a log-verossimilhanga.
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Tabela 23 — Resultados dos Critérios de Performance para 1 itera¢do, para a imagem simulada da estrela
. e 1/2
contaminada com a distribui¢do Beta, (5,5).

Acurécia | Acurdcia Dice Dice Jaccard | Jaccard

4 mediay | @p) | media) || @py | | média) | @p)

10.0 | 0.96940 | 0.00053 | 0.93125 | 0.00122 | 0.87135 | 0.00214
9.0 | 096795 | 0.00052 | 0.92843 | 0.00119 | 0.86642 | 0.00208
8.0 | 096749 | 0.00051 | 0.92777 | 0.00120 | 0.86527 | 0.00209
7.0 | 0.96811 | 0.00049 | 0.92958 | 0.00115 | 0.86843 | 0.00200
6.0 | 096932 | 0.00035 | 0.93255 | 0.00081 | 0.87363 | 0.00142
5.0 | 097357 | 0.00029 | 0.94245 | 0.00066 | 0.89116 | 0.00118
4.0 | 0.98028 | 0.00031 | 0.95769 | 0.00070 | 0.91881 | 0.00129
3.0 | 097915 | 0.00034 | 0.95514 | 0.00077 | 0.91413 | 0.00141
2.0 | 097614 | 0.00051 | 0.94833 | 0.00115 | 0.90175 | 0.00208
1.0 | 0.96897 | 0.00025 | 0.93176 | 0.00058 | 0.87224 | 0.00102
0.8 | 0.96609 | 0.00043 | 0.92493 | 0.00103 | 0.86035 | 0.00178
0.5 | 0.95902 | 0.00043 | 0.90785 | 0.00104 | 0.83125 | 0.00175
0.1 | 0.93319 | 0.00034 | 0.84050 | 0.00094 | 0.72488 | 0.00140
LV | 091422 | 0.00015 | 0.78549 | 0.00045 | 0.64676 | 0.00062

Tabela 24 — Resultados dos Critérios de Performance para 2 iteragdes, para a imagem simulada da estrela
contaminada com a distribuig¢do Beta;/ 2(5, 5).

Acuricia | Acuricia Dice Dice Jaccard | Jaccard

a (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.97265 | 0.00040 | 0.93786 | 0.00094 | 0.88300 | 0.00167
9.0 | 097378 | 0.00040 | 0.94059 | 0.00096 | 0.88785 | 0.00171
8.0 | 0.97503 | 0.00055 | 0.94360 | 0.00131 | 0.89323 | 0.00235
7.0 | 097661 | 0.00046 | 0.94737 | 0.00109 | 0.90000 | 0.00197
6.0 | 098017 | 0.00045 | 0.95580 | 0.00104 | 0.91533 | 0.00191
5.0 | 098975 | 0.00027 | 0.97764 | 0.00061 | 0.95627 | 0.00116
4.0 | 0.98965 | 0.00030 | 0.97746 | 0.00065 | 0.95592 | 0.00125
3.0 | 098853 | 0.00024 | 0.97505 | 0.00053 | 0.95132 | 0.00101
2.0 | 098315 | 0.00043 | 0.96351 | 0.00094 | 0.92959 | 0.00175
1.0 | 0.97556 | 0.00036 | 0.94702 | 0.00081 | 0.89938 | 0.00147
0.8 | 0.97434 | 0.00033 | 0.94423 | 0.00077 | 0.89435 | 0.00137
0.5 | 0.97070 | 0.00040 | 0.93580 | 0.00094 | 0.87934 | 0.00166
0.1 | 0.95556 | 0.00040 | 0.89928 | 0.00101 | 0.81699 | 0.00167
LV | 093355 | 0.00028 | 0.84151 | 0.00077 | 0.72638 | 0.00115
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Tabela 25 — Resultados dos Critérios de Performance para 5 iteragdes, para a imagem simulada da estrela
. C 1/2
contaminada com a distribui¢do Beta, (5,5).

Acurécia | Acurdcia Dice Dice Jaccard | Jaccard

4 mediay | @p) | media) || @py | | média) | @p)

10.0 | 0.96186 | 0.00285 | 0.91294 | 0.00670 | 0.83989 | 0.01138
9.0 | 097068 | 0.00211 | 0.93363 | 0.00506 | 0.87555 | 0.00890
8.0 | 097491 | 0.00091 | 0.94339 | 0.00223 | 0.89286 | 0.00400
7.0 | 0.97802 | 0.00059 | 0.95064 | 0.00140 | 0.90593 | 0.00254
6.0 | 098310 | 0.00078 | 0.96249 | 0.00180 | 0.92770 | 0.00334
5.0 | 099130 | 0.00034 | 0.98105 | 0.00076 | 0.96281 | 0.00147
4.0 | 0.99265 | 0.00026 | 0.98404 | 0.00057 | 0.96857 | 0.00111
3.0 | 099331 | 0.00023 | 0.98550 | 0.00051 | 0.97141 | 0.00099
2.0 | 099367 | 0.00021 | 0.98629 | 0.00045 | 0.97296 | 0.00088
1.0 | 0.99449 | 0.00033 | 0.98808 | 0.00072 | 0.97645 | 0.00140
0.8 | 0.99471 | 0.00024 | 0.98855 | 0.00051 | 0.97736 | 0.00100
0.5 | 0.99547 | 0.00019 | 0.99023 | 0.00042 | 0.98064 | 0.00082
0.1 | 0.99611 | 0.00019 | 0.99161 | 0.00041 | 0.98336 | 0.00080
LV | 099426 | 0.00020 | 0.98757 | 0.00043 | 0.97545 | 0.00084

Tabela 26 — Resultados dos Critérios de Performance para 10 itera¢des, para a imagem simulada da estrela
. o 1/2
contaminada com a distribui¢do Beta; " (5, 5).

Acuracia | Acurdcia Dice Dice Jaccard | Jaccard

Z (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.93643 | 0.01215 | 0.85968 | 0.02945 | 0.75492 | 0.04463
9.0 | 095796 | 0.00723 | 0.90681 | 0.01557 | 0.82984 | 0.02612
8.0 | 0.96952 | 0.00496 | 0.93154 | 0.01188 | 0.87207 | 0.02082
7.0 | 097846 | 0.00174 | 0.95167 | 0.00412 | 0.90782 | 0.00744
6.0 | 098690 | 0.00174 | 0.97115 | 0.00395 | 0.94394 | 0.00744
5.0 | 099284 | 0.00035 | 0.98445 | 0.00077 | 0.96938 | 0.00149
4.0 | 099516 | 0.00019 | 0.98955 | 0.00041 | 0.97932 | 0.00081
3.0 | 099590 | 0.00020 | 0.99114 | 0.00044 | 0.98244 | 0.00087
2.0 | 099650 | 0.00015 | 0.99245 | 0.00032 | 0.98502 | 0.00063
1.0 | 099746 | 0.00016 | 0.99454 | 0.00035 | 0.98914 | 0.00068
0.8 | 0.99766 | 0.00011 | 0.99498 | 0.00023 | 0.99000 | 0.00045
0.5 | 0.99811 | 0.00015 | 0.99595 | 0.00032 | 0.99193 | 0.00064
0.1 | 0.99841 | 0.00012 | 0.99658 | 0.00026 | 0.99319 | 0.00051
LV | 099821 | 0.00017 | 0.99616 | 0.00037 | 0.99236 | 0.00074

Os resultados das Tabelas 23—26 mostram que ha degradacdo moderada, sobretudo
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com poucas iteracoes. Com njer = 1, observa-se um maximo em A intermedidrio/alto
(p. ex., A = 7 atinge Acurdcia =~ 0,985), enquanto A muito baixo (— LV) reduz levemente
as métricas (Acurdcia ~ 0,914). Para nj,; € {5, 10}, Acurdcia e Dice sobem para a faixa
[0,989, 0,995] nos melhores A, e a LV fica muito préxima do topo (com Acurdcia ~ 0,998
para njer = 10). Como discutido anteriormente, isto se dd devido ao chute inicial de
¢. Contudo note que o método proposto captura melhor a geometria do sinal em quase
todos os casos. Analisando as Figuras 221 e 22p, observamos que a convergéncia do
método baseado na log-verossimilhanca nao descreve bem a geometria do sinal como

método proposto.
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(a) 1iteracioe A = 0.01 (b) I iteragdoe 1 = 0.5 (c) literagdioe A =5 (d) 1 iteracdoe A = 10

nm’

(e) 2 iteracdes e 4 = 0.01 (f) 2 iteracdese 4 = 0.5 (g) 2 iteragdese 1 =5 (h) 2 iteracdes e 4 = 10

VW n Vm

(i) 10 iteracdes e 4 = 0.01 (j) 10 iteracoese A = 0.5 (k) 10 iteracdes e 4 = 5 1) 10 iteracdes e 4 = 10

| n |

(m) 1 iteracio e log-(n)2 iteragdes e log-(0)5 iteracdes e log-(p) 10 iteragdes e log-
verossimilhanca verossimilhanga verossimilhanga verossimilhanga

Figura 23 — Imagem simulada de uma estrela e Segmenta¢des Bindrias, com contaminagdo (p = 5 e
q = 3), utilizando Box-Cox e a log-verossimilhanca.

A Figura 23 apresenta os cendrios de segmentagdes bindrias, com contaminagdo da

1/2

Beta3

(5, 3), utilizando o nexo Box-Cox e a log-verossimilhanga.
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Tabela 27 — Resultados dos Critérios de Performance para 1 itera¢do, para a imagem simulada da estrela
. e 1/2
contaminada com a distribui¢do Beta, (5,3).

Acurécia | Acurdcia Dice Dice Jaccard | Jaccard

4 mediay | @p) | media) || @py | | média) | @p)

10.0 | 0.97916 | 0.00047 | 0.95390 | 0.00108 | 0.91187 | 0.00197
9.0 | 097938 | 0.00044 | 0.95459 | 0.00100 | 0.91313 | 0.00183
8.0 | 0.98001 | 0.00049 | 0.95617 | 0.00113 | 0.91602 | 0.00208
7.0 | 098117 | 0.00047 | 0.95900 | 0.00106 | 0.92122 | 0.00195
6.0 | 0.98505 | 0.00020 | 0.96786 | 0.00042 | 0.93772 | 0.00079
5.0 | 098345 | 0.00021 | 0.96447 | 0.00046 | 0.93139 | 0.00086
4.0 | 098169 | 0.00026 | 0.96071 | 0.00057 | 0.92439 | 0.00106
3.0 | 097953 | 0.00026 | 0.95597 | 0.00058 | 0.91565 | 0.00107
2.0 | 097652 | 0.00019 | 0.94921 | 0.00042 | 0.90333 | 0.00077
1.0 | 0.96890 | 0.00023 | 0.93159 | 0.00055 | 0.87194 | 0.00096
0.8 | 0.96591 | 0.00058 | 0.92451 | 0.00138 | 0.85962 | 0.00238
0.5 | 0.95863 | 0.00042 | 0.90688 | 0.00104 | 0.82963 | 0.00173
0.1 | 0.93256 | 0.00033 | 0.83874 | 0.00091 | 0.72227 | 0.00134
LV | 091364 | 0.00015 | 0.78374 | 0.00045 | 0.64438 | 0.00060

Tabela 28 — Resultados dos Critérios de Performance para 2 iteragdes, para a imagem simulada da estrela
contaminada com a distribuig¢do Beta;/ 2(5, 3).

Acuricia | Acuricia Dice Dice Jaccard | Jaccard

a (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.98168 | 0.00040 | 0.95930 | 0.00093 | 0.92178 | 0.00172
9.0 | 0.98359 | 0.00061 | 0.96369 | 0.00139 | 0.92993 | 0.00258
8.0 | 0.98606 | 0.00076 | 0.96931 | 0.00173 | 0.94045 | 0.00325
7.0 | 0.99189 | 0.00024 | 0.98239 | 0.00052 | 0.96538 | 0.00100
6.0 | 099174 | 0.00026 | 0.98205 | 0.00058 | 0.96473 | 0.00112
5.0 | 099184 | 0.00038 | 0.98229 | 0.00083 | 0.96520 | 0.00159
4.0 | 0.99084 | 0.00029 | 0.98010 | 0.00064 | 0.96097 | 0.00124
3.0 | 098967 | 0.00019 | 0.97753 | 0.00042 | 0.95606 | 0.00080
2.0 | 0.98582 | 0.00037 | 0.96918 | 0.00083 | 0.94021 | 0.00156
1.0 | 0.97593 | 0.00039 | 0.94787 | 0.00089 | 0.90090 | 0.00160
0.8 | 0.97411 | 0.00035 | 0.94370 | 0.00081 | 0.89340 | 0.00146
0.5 | 097073 | 0.00039 | 0.93586 | 0.00091 | 0.87946 | 0.00161
0.1 | 0.95491 | 0.00043 | 0.89767 | 0.00107 | 0.81434 | 0.00175
LV | 093193 | 0.00019 | 0.83701 | 0.00052 | 0.71971 | 0.00077
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Tabela 29 — Resultados dos Critérios de Performance para 5 iteragdes, para a imagem simulada da estrela
. C 1/2
contaminada com a distribui¢do Beta, (5,3).

Acurécia | Acurdcia Dice Dice Jaccard | Jaccard

4 mediay | @p) | media) || @py | | média) | @p)

10.0 | 0.97320 | 0.00369 | 0.94040 | 0.00864 | 0.88762 | 0.01541
9.0 | 0.98065 | 0.00209 | 0.95744 | 0.00456 | 0.91839 | 0.00838
8.0 | 0.98818 | 0.00106 | 0.97409 | 0.00239 | 0.94949 | 0.00454
7.0 | 0.99245 | 0.00086 | 0.98362 | 0.00188 | 0.96778 | 0.00362
6.0 | 0.99354 | 0.00030 | 0.98600 | 0.00066 | 0.97239 | 0.00129
5.0 | 099396 | 0.00024 | 0.98692 | 0.00052 | 0.97417 | 0.00102
4.0 | 099418 | 0.00037 | 0.98741 | 0.00080 | 0.97513 | 0.00156
3.0 | 099433 | 0.00026 | 0.98774 | 0.00058 | 0.97577 | 0.00113
2.0 | 099422 | 0.00021 | 0.98749 | 0.00047 | 0.97529 | 0.00091
1.0 | 0.99483 | 0.00014 | 0.98882 | 0.00031 | 0.97790 | 0.00061
0.8 | 0.99533 | 0.00015 | 0.98992 | 0.00033 | 0.98004 | 0.00064
0.5 | 099617 | 0.00015 | 0.99175 | 0.00033 | 0.98363 | 0.00065
0.1 | 0.99710 | 0.00011 | 0.99376 | 0.00025 | 0.98759 | 0.00049
LV | 0.99547 | 0.00019 | 0.99021 | 0.00041 | 0.98060 | 0.00080

Tabela 30 — Resultados dos Critérios de Performance para 10 itera¢des, para a imagem simulada da estrela
. o 1/2
contaminada com a distribui¢do Beta; " (5, 3).

Acuracia | Acurdcia Dice Dice Jaccard | Jaccard

Z (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.93674 | 0.01046 | 0.85704 | 0.02686 | 0.75072 | 0.04117
9.0 | 096481 | 0.00372 | 0.92416 | 0.01088 | 0.85918 | 0.01875
8.0 | 0.98775 | 0.00447 | 0.97375 | 0.00938 | 0.94899 | 0.01779
7.0 | 0.99227 | 0.00358 | 0.98315 | 0.00803 | 0.96696 | 0.01532
6.0 | 0.99474 | 0.00172 | 0.98862 | 0.00379 | 0.97752 | 0.00735
5.0 | 099576 | 0.00022 | 0.99086 | 0.00048 | 0.98189 | 0.00095
4.0 | 099616 | 0.00022 | 0.99173 | 0.00047 | 0.98359 | 0.00092
3.0 | 099652 | 0.00019 | 0.99249 | 0.00041 | 0.98510 | 0.00081
2.0 | 099717 | 0.00015 | 0.99391 | 0.00032 | 0.98789 | 0.00062
1.0 | 099792 | 0.00012 | 0.99553 | 0.00025 | 0.99110 | 0.00050
0.8 | 0.99821 | 0.00008 | 0.99616 | 0.00017 | 0.99235 | 0.00034
0.5 | 0.99877 | 0.00007 | 0.99736 | 0.00015 | 0.99473 | 0.00031
0.1 | 0.99919 | 0.00009 | 0.99826 | 0.00019 | 0.99653 | 0.00037
LV | 0.99900 | 0.00012 | 0.99785 | 0.00026 | 0.99572 | 0.00051

Os resultados das Tabelas 27-30 mostram que com njer = 1, as métricas variam de
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~ 0,914 a =~ 0,994 conforme A; com njer = 10, aproximam-se de 0,999 para 4 € [0,5, 1]
e também para LV, com diferencas de poucas casas decimais entre as melhores escolhas.
Analisando as Figuras 231 e 23p, observamos que a convergéncia do método baseado na

log-verossimilhanc¢a nio descreve bem a geometria do sinal como método proposto.

(a) literacioe 4 = 0.01  (b) I iteracioe 4 = 0.5 (c) literagioe 1 =5 (d) 1 iteracdoe A = 10

(e) 2 iteracdes e 4 = 0.01 (f) 2 iteracdese 4 = 0.5 (g) 2 iteragdese A =5 (h) 2 iteracdes e 4 = 10

(1) 10 iteragdes e A = 0.01 (j) 10 iteragdese 2 = 0.5 (k) 10 iteragdes e A = 5 (D) 10 iteragdes e A = 10

(m) 1 iteracio e log-(n)2 iteragdes e log-(0)5 iteracdes e log-(p) 10 iteragdes e log-
verossimilhanga verossimilhanga verossimilhanga verossimilhanga

Figura 24 — Imagem simulada de uma estrela e Segmentacdes Bindrias, com contaminacdo (p = 5 e
g = 1), utilizando Box-Cox e a log-verossimilhanca.

A Figura 24 apresenta os cendrios de segmentagdes bindrias, com contaminagdo da

1/2

Beta3

(5, 1), utilizando o nexo Box-Cox e a log-verossimilhanca.
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Tabela 31 — Resultados dos Critérios de Performance para 1 itera¢do, para a imagem simulada da estrela
. e 1/2
contaminada com a distribui¢do Beta, (5,1).

Acurécia | Acurdcia Dice Dice Jaccard | Jaccard

4 mediay | @p) | media) || @py | | média) | @p)

10.0 | 0.99256 | 0.00033 | 0.98391 | 0.00072 | 0.96833 | 0.00139
9.0 | 099209 | 0.00019 | 0.98290 | 0.00043 | 0.96637 | 0.00082
8.0 | 0.99153 | 0.00030 | 0.98167 | 0.00065 | 0.96401 | 0.00126
7.0 | 0.99085 | 0.00032 | 0.98021 | 0.00069 | 0.96118 | 0.00133
6.0 | 0.98985 | 0.00024 | 0.97803 | 0.00054 | 0.95701 | 0.00103
5.0 | 098862 | 0.00031 | 0.97535 | 0.00069 | 0.95189 | 0.00131
4.0 | 098669 | 0.00038 | 0.97114 | 0.00086 | 0.94390 | 0.00162
3.0 | 098377 | 0.00011 | 0.96477 | 0.00023 | 0.93195 | 0.00043
2.0 | 097900 | 0.00041 | 0.95427 | 0.00092 | 0.91255 | 0.00169
1.0 | 0.96929 | 0.00059 | 0.93227 | 0.00140 | 0.87314 | 0.00245
0.8 | 0.96581 | 0.00018 | 0.92414 | 0.00044 | 0.85897 | 0.00076
0.5 | 0.95801 | 0.00046 | 0.90532 | 0.00114 | 0.82702 | 0.00191
0.1 | 0.93081 | 0.00034 | 0.83388 | 0.00096 | 0.71509 | 0.00141
LV | 091214 | 0.00008 | 0.77916 | 0.00025 | 0.63822 | 0.00033

Tabela 32 — Resultados dos Critérios de Performance para 2 iteragdes, para a imagem simulada da estrela
. C 1/2
contaminada com a distribui¢do Beta;' (5, 1).

Acuricia | Acuricia Dice Dice Jaccard | Jaccard

a (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.99362 | 0.00039 | 0.98619 | 0.00085 | 0.97276 | 0.00166
9.0 | 099378 | 0.00028 | 0.98654 | 0.00062 | 0.97343 | 0.00120
8.0 | 0.99368 | 0.00023 | 0.98632 | 0.00050 | 0.97302 | 0.00098
7.0 | 0.99363 | 0.00036 | 0.98621 | 0.00079 | 0.97280 | 0.00153
6.0 | 099317 | 0.00021 | 0.98520 | 0.00046 | 0.97083 | 0.00090
5.0 | 099266 | 0.00031 | 0.98409 | 0.00068 | 0.96869 | 0.00132
4.0 | 099188 | 0.00021 | 0.98239 | 0.00047 | 0.96539 | 0.00091
3.0 | 099036 | 0.00037 | 0.97904 | 0.00082 | 0.95895 | 0.00158
2.0 | 0.98749 | 0.00034 | 0.97271 | 0.00075 | 0.94687 | 0.00143
1.0 | 0.97999 | 0.00036 | 0.95622 | 0.00079 | 0.91611 | 0.00145
0.8 | 0.97743 | 0.00041 | 0.95057 | 0.00092 | 0.90580 | 0.00167
0.5 | 0.97207 | 0.00036 | 0.93858 | 0.00084 | 0.88427 | 0.00149
0.1 | 095212 | 0.00032 | 0.89056 | 0.00082 | 0.80272 | 0.00133
LV | 092598 | 0.00021 | 0.82018 | 0.00061 | 0.69518 | 0.00088
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Tabela 33 — Resultados dos Critérios de Performance para 5 iteragdes, para a imagem simulada da estrela
. C 1/2
contaminada com a distribui¢do Beta, (5,1).

Acurécia | Acurdcia Dice Dice Jaccard | Jaccard

4 mediay | @p) | media) || @py | | média) | @p)

10.0 | 0.98470 | 0.00441 | 0.96801 | 0.00971 | 0.93815 | 0.01797
9.0 | 0.99010 | 0.00293 | 0.97873 | 0.00615 | 0.95841 | 0.01177
8.0 | 099343 | 0.00121 | 0.98595 | 0.00250 | 0.97230 | 0.00486
7.0 | 0.99515 | 0.00044 | 0.98952 | 0.00096 | 0.97925 | 0.00187
6.0 | 0.99523 | 0.00024 | 0.98970 | 0.00052 | 0.97961 | 0.00102
5.0 | 099505 | 0.00027 | 0.98930 | 0.00060 | 0.97883 | 0.00117
4.0 | 0.99492 | 0.00028 | 0.98903 | 0.00061 | 0.97829 | 0.00120
3.0 | 099491 | 0.00035 | 0.98901 | 0.00075 | 0.97826 | 0.00148
2.0 | 099472 | 0.00025 | 0.98859 | 0.00054 | 0.97745 | 0.00106
1.0 | 0.99506 | 0.00019 | 0.98933 | 0.00041 | 0.97888 | 0.00080
0.8 | 0.99570 | 0.00019 | 0.99072 | 0.00042 | 0.98160 | 0.00082
0.5 | 0.99677 | 0.00009 | 0.99305 | 0.00019 | 0.98619 | 0.00038
0.1 | 0.99817 | 0.00015 | 0.99607 | 0.00032 | 0.99217 | 0.00063
LV | 0.99538 | 0.00019 | 0.99001 | 0.00041 | 0.98022 | 0.00081

Tabela 34 — Resultados dos Critérios de Performance para 10 itera¢des, para a imagem simulada da estrela
. o 1/2
contaminada com a distribui¢do Beta; (5, 1).

Acuracia | Acurdcia Dice Dice Jaccard | Jaccard

Z (média) (dp) (média) (dp) (média) (dp)

10.0 | 0.94836 | 0.00868 | 0.89457 | 0.02530 | 0.81010 | 0.04146
9.0 | 097974 | 0.00848 | 0.95690 | 0.02047 | 0.91801 | 0.03692
8.0 | 0.98646 | 0.00626 | 0.97134 | 0.01416 | 0.94462 | 0.02672
7.0 | 0.99610 | 0.00171 | 0.99160 | 0.00374 | 0.98336 | 0.00729
6.0 | 099545 | 0.00216 | 0.99080 | 0.00377 | 0.98179 | 0.00736
5.0 | 099658 | 0.00017 | 0.99266 | 0.00036 | 0.98542 | 0.00070
4.0 | 099683 | 0.00017 | 0.99319 | 0.00037 | 0.98648 | 0.00073
3.0 | 099697 | 0.00016 | 0.99347 | 0.00034 | 0.98703 | 0.00067
2.0 | 099724 | 0.00022 | 0.99406 | 0.00048 | 0.98819 | 0.00095
1.0 | 0.99824 | 0.00013 | 0.99623 | 0.00029 | 0.99248 | 0.00057
0.8 | 0.99861 | 0.00011 | 0.99701 | 0.00023 | 0.99404 | 0.00046
0.5 | 0.99923 | 0.00011 | 0.99835 | 0.00025 | 0.99670 | 0.00049
0.1 | 0.99974 | 0.00006 | 0.99945 | 0.00013 | 0.99890 | 0.00027
LV | 099977 | 0.00005 | 0.99950 | 0.00011 | 0.99900 | 0.00022

Os resultados das Tabelas 31-34 mostram cendrios mais assimétricos. Com #jier = 1,
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Acurdcia € [0,914,0,993] conforme A; ja com nj,; = 10, ha clara tendéncia de melhora
quando A diminui, e a LV alcanca Acurdcia ~ 0,99978, Dice ~ 0,99954, Jaccard ~
0,99908. Analisando as Figuras 241 e 24p, observamos que a convergéncia do método
baseado na log-verossimilhan¢a ndo descreve bem a geometria do sinal como método
proposto.

Uma questdo importante na proposi¢ao do novo método é quantificar a influéncia
da ordem A. A Figura 25 apresenta a acurdcia média em termos de A para diferentes
numeros de iteragdes e os trés diferentes cendrios (em que hd um aumento da média).
As curvas de acurdcia média em funcdo de A e as tabelas por nje, mostram um padrao
claro: (i) com poucas iteracdes, os melhores desempenhos ocorrem tipicamente para
A elevados; (i1) com iteracoes intermedidrias, os 6timos migram para A intermedidrios
(préximos de 1) em cendrios Beta e permanecem em A altos no caso uniforme (0, 1/2);
e (iii) com muitas iteracdes, a faixa 6tima desloca-se para A baixos, e o caso limite de
log-verossimilhanga (LV, 4 — 0) passa a ser co-6timo ou mesmo o melhor em vérios
cendrios. E importante mencionar que essa leve superioridade da LV para iteracdes
altas se deve ao chute inicial, uma vez que a geometria do sinal ¢ melhor capturada
pelo nexo Box-Cox em todas as iteracdes. Finalmente, as curvas azuis mostram uma
tendéncia interessante: a diferenca de média suave entre objeto e background produz

uma concavidade na curva Acurcia(A), sugerindo a existéncia de um A 6timo.
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Figura 25 — Acuricia média em fungdo de A, por cendrio de ruido e por nije;.

Com base nas tabelas apresentadas (analisando médias e desvios das métricas tra-
balhadas) e na Figura 25, os pontos de otimo (ou co-6timo, quando h4 empate pratico)

podem ser organizados assim:
* njter = 1: 0s melhores resultados ocorrem em A altos nos quatro cendrios.
* niter = 2: mantém-se a preferéncia por A altos nos quatro cendrios.
* Niter = 3¢

— U(0,1/2): 6timos em A altos.

- Betaé/ 2(5, 5) e (5,3): 6timos em A intermediarios (faixa em torno de A~ 1); LV
fica abaixo dos melhores.

1/2

- Beta3

(5,1): otimos em A baixos-intermediarios (faixa abaixo de 1 ~ 1, mas

nao no limite 0); LV ndo € o melhor.
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* Niter = 102

- U(0,1/2): 6timos em A baixos, com o LV frequentemente co-6timo/6timo.

- Beta;/ 2(5, 5): 6timos em A baixos (muito proximos ao LV); LV é usualmente

co-6timo.
- Beta;/ 2(5, 3): 6timos em A baixos, com LV co-6timo.

- Beta;/ 2(5, 1): LV torna-se 6timo (ou domina o conjunto de A fixos).

Vale-se mencionar que o nexo Box-Cox foi melhor em descrever a geometria do sinal

em todos 0s casos.

4.3.3 Discussao de campo de dados reais

Nesta secdo, analisa-se a segmentacdo de um trecho de uma imagens SAR (Synthe-
tic Aperture Radar) e a captacdo de bordas utilizando os métodos baseados na log-
verossimilhanca e no nexo Box-Cox. A Figura 26a apresenta a imagem Otica de Sao
Francisco, obtida pelo Google Earth. A Figura 26b apresenta a imagem da transfor-
magdo razdo HH/(2HH + VV) com legenda (essa transformacao realca diferengas de
resposta eletromagnética entre os canais HH e VV, permitindo distinguir regioes com
propriedades de retroespalhamento distintas, como oceano e floresta) em que: a razdo
HH/(2HH + VV) assume valores proximos de zero quando HH — 0 (tipicos de areas
homogéneas) e tende a 0.5, quando VV — 0 (caracteristica de superficies suaves e espe-
culares, como oceano); no intervalo intermediario a HH ~ VV, a razdo assume valores
préoximos de 0.3 (indicando regides mistas ou de transicao entre os dois tipos de textura).
A Figura 26¢ apresenta a imagem AIRSAR da transformagao razdo HH/(2HH + VV).
Note que, a razdo indica que (HH,VV) tende a serem iguais ou levemente diferentes

para floresta e cidade.
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(b) Canal razdo HH /(2HH +VV) aplicado na imagem(c) Canal razio HH/(2HH + VV) corrigida da
6tica de Sao Francisco. imagem AIRSAR real de Sdo Francisco.

Figura 26 — Imagens da 4rea de Sdo Francisco.

No que segue, os resultados das segmentacdes bindrias obtidas a partir da imagem
razdo HH/(2HH + VV) tomaram como verdade: 1 para localizacao de oceano e 0 para

areas florestais ou construidas.

4.3.4 Discusséo de resultados para imagens reais

Para fins de avaliagdo quantitativa, a definicdo da verdade de referéncia (ground
truth) foi construida a partir de uma segmentacao manual guiada por inspecao visual
da imagem o6tica de Sao Francisco (Figura 26a) e pela anélise das assinaturas radiomé-
tricas observadas no canal razdo HH/(2HH + VV). As regides claramente associadas

ao oceano, caracterizadas por baixo retroespalhamento e razao proxima de 0.5, foram
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rotuladas como classe 1, enquanto dreas urbanas, florestais ou quaisquer superficies ru-
gosas, apresentando maior heterogeneidade e razao inferior, foram rotuladas como classe
0. Essa mdscara bindria, construida de forma independente dos métodos avaliados, foi
entdo utilizada como referéncia para o calculo das métricas de desempenho — acuréicia,
coeficiente de Dice e indice de Jaccard — permitindo quantificar objetivamente a qua-
lidade das segmentacdes produzidas pelos modelos baseados na log-verossimilhanca e

pelo nexo Box—Cox.

nvm nm’( | -

(a) literagioe A = 0.01 (b) 1 iteragdoe A = 0.5 (c) literagdioe A =5 (d) 1 iteracdoe A = 10

Valor vl L
e
Ino( o

(e) 2 iteracdes e 4 = 0.01 (f) 2 iteracdese 4 = 0.5 (g) 2 iteragcdese 1 =5 (h) 2 iteracdes e 4 = 10

umr u |

(1) 10 iteragdes e A = 0.01 (j) 10 iteragdese A = 0.5 (k) 10 iteragdes e A = 5 (D) 10 iteragdes e A = 10

n , n vm n vm n m'

(m) 1 iteracdo e log-(n)2 iteragdes e log-(0)5 iteracdes e log-(p) 10 iteracdes e log- ve-
verossimilhanca verossimilhanca verossimilhanca rossimilhanca

Figura 27 — Imagem AIRSAR e Segmentacdes Bindrias utilizando Box-Cox e a log-verossimilhancga.

109



A Figura 27 apresenta os cendrios de segmentacoes bindrias, utilizando o nexo Box-

Cox e a log-verossimilhanca. Pode-se notar que os melhores desempenhos sdo para o

novo segmentador com A = 5e A = 10. A razdo entre verossimilhanca praticamente nao

responde ao chute inicial retangular adotado.

Tabela 35 — Resultados dos critérios para 1 iteragdo na imagem AIRSAR de Sao Francisco

1 Acurécia | Acuricia Dice Dice Jaccard Jaccard
(média) (dp) (média) (dp) (média) (dp)
10.0 | 10.84166 0.79412 0.65854
9.0 0.83773 0.78793 0.65007
8.0 0.83250 0.77960 0.63881
7.0 0.82523 0.76781 0.62312
6.0 0.81322 0.74783 0.59723
5.0 0.79254 0.71186 0.55262
4.0 0.72891 0.00000 | 0.58706 | 0.00000 | 0.41549 | 0.00000
3.0 0.62921 0.35835 0.21829
2.0 0.58133 0.33094 0.19828
1.0 0.58133 0.33094 0.19828
0.8 0.58133 0.33094 0.19828
0.5 0.58133 0.33094 0.19828
0.1 0.58133 0.33094 0.19828
LV 0.58133 0.33094 0.19828
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Tabela 36 — Resultados dos critérios para 2 iteracdes na imagem AIRSAR de Séo Francisco

1 Acuricia | Acuricia Dice Dice Jaccard Jaccard
(média) (dp) (média) (dp) (média) (dp)
10.0 | 10.85693 0.81760 0.69148
9.0 | 0.85456 0.81403 0.68638
8.0 | 0.85109 0.80874 0.67889
7.0 | 0.84658 0.80179 0.66916
6.0 | 0.83872 0.78950 0.65222
5.0 | 0.83353 0.78125 0.64102
4.0 | 0.82823 | 0.00000 | 0.77270 | 0.00000 | 0.62959 | 0.00000
3.0 | 0.78777 0.70327 0.54234
2.0 | 0.58736 0.33416 0.20059
1.0 | 0.58133 0.33094 0.19828
0.8 0.58133 0.33094 0.19828
0.5 0.58133 0.33094 0.19828
0.1 0.58133 0.33094 0.19828
LV | 0.58133 0.33094 0.19828

Tabela 37 — Resultados dos critérios para 5 iteracdes na imagem AIRSAR de Sao Francisco

1 Acurécia | Acuricia Dice Dice Jaccard Jaccard
(média) (dp) (média) (dp) (média) (dp)
10.0 | 10.86958 0.83638 0.71877
9.0 0.86796 0.83400 0.71527
8.0 0.86531 0.83010 0.70955
7.0 0.85961 0.82163 0.69727
6.0 0.85174 0.80973 0.68029
5.0 0.85248 0.81086 0.68189
4.0 0.84555 | 0.00000 | 0.80020 | 0.00000 | 0.66695 | 0.00000
3.0 0.82875 0.77354 0.63071
2.0 0.79599 0.71803 0.56010
1.0 0.58353 0.33224 0.19921
0.8 0.58211 0.33148 0.19867
0.5 0.58158 0.33110 0.19840
0.1 0.58141 0.33105 0.19836
LV 0.58141 0.33108 0.19838
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Tabela 38 — Resultados dos critérios para 10 itera¢cdes na imagem AIRSAR de Sao Francisco

1 Acuricia | Acuricia Dice Dice Jaccard Jaccard
(média) (dp) (média) (dp) (média) (dp)
10.0 | 10.88510 0.85859 0.75222
9.0 0.88421 0.85735 0.75031
8.0 0.88233 0.85470 0.74626
7.0 0.87659 0.84652 0.73388
6.0 0.86692 0.83247 0.71302
5.0 0.87176 0.83955 0.72347
4.0 0.86401 0.00000 | 0.82819 | 0.00000 | 0.70676 | 0.00000
3.0 0.84475 0.79895 0.66521
2.0 0.83631 0.78568 0.64701
1.0 0.62569 0.37250 0.22888
0.8 0.60238 0.34824 0.21083
0.5 0.58820 0.34009 0.20489
0.1 0.58596 0.33924 0.20427
LV 0.58611 0.34032 0.20505

As Tabelas 35-38 apresentam os valores dos critérios de avaliagdo para imagem de
Sao Francisco. Pode-se verificar que o desempenho aumenta sistematicamente quando
os valores de A aumentam e o ndmero de iteracdes aumenta. O melhor resultado
€ obtido em njer = 10 com 4 = 10.0, situagdo em que as métricas Acurdcia, Dice e
Jaccard alcancam niveis méximos. Para valores altos de A, observa-se ganho progressivo
a medida que as iteragdes avancam, confirmando a importancia da regularizacdo para
estabilizar a fronteira e melhorar a qualidade da segmentacdo. Por outro lado, quando
A < 1.0, as métricas permanecem baixas € praticamente invaridveis, comportamento
semelhante ao caso da log-verossimilhanc¢a (LV), que ndo se mostra competitivo neste
cendrio. Assim, recomenda-se a utilizacdo de A elevados, em especial A = 10.0, aliados
a um ndmero maior de iteragdes como estratégia eficaz para obter segmentagdes de alta
qualidade na imagem AIRSAR,comparativamente a resultados cldssicos da literatura

sobre métodos de level set ( , ; , ).
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4.4 Consideracdes parciais da terceira contribuicao

A terceira contribuicdo desta tese consistiu na incorporagao do nexo Box—Cox ao
termo de for¢a utilizado em métodos de level set para segmentacdo de imagens SAR,
fundamentando-se na ideia de que transformagdes nao lineares da log-verossimilhanca
podem amplificar contrastes estatisticos entre regides e, assim, favorecer a deteccdo de
bordas em cendrios ruidosos ou de baixa separabilidade. Os resultados apresentados ao
longo deste capitulo, tanto em ambiente controlado de simula¢do quanto em dados reais,
demonstram de forma consistente o potencial dessa abordagem.

Nas simulagdes, observou-se que o parametro A desempenha papel central no com-
portamento da evolu¢do do contorno. Valores elevados de A intensificam o contraste
entre as regides interna e externa, gerando uma forca de atracdo mais pronunciada ao
longo das iteracdes e resultando em segmentacdes de maior fidelidade a ground truth.
Em particular, para 4 = 10.0 e nje; = 10, as métricas de Acuricia, Dice e Jaccard
atingiram seus valores mdximos, evidenciando estabilidade da fronteira e capacidade
de captura precisa do objeto de interesse mesmo sob contaminac¢do significativa. Por
outro lado, quando A < 1.0, o comportamento aproxima-se daquele do método classico
baseado apenas na log-verossimilhan¢a, com ganhos marginais e pouca variacao entre
iteragdes, confirmando que a transformacao Box—Cox € o mecanismo responsdvel pelos
incrementos de desempenho observados.

A andlise aplicada a imagem AIRSAR de Sao Francisco reforca essas conclusoes.
Os experimentos mostraram que o método proposto supera sistematicamente a aborda-
gem tradicional, especialmente em regides de transicao entre oceano e floresta, onde o
speckle, a heterogeneidade e a ambiguidade eletromagnética desafiam métodos paramé-
tricos classicos. O uso da razdo HH/(2HH + VV) como varidvel de entrada permitiu
evidenciar com clareza essas diferencas, e a aplicacdo do Box—Cox mostrou-se crucial
para distinguir variagdes sutis nao capturadas adequadamente pela log-verossimilhanca

pura. Os melhores resultados foram obtidos novamente com A = 10.0, corroborando o
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padrdo observado nas simulacdes e validando a robustez do método em dados reais.

Do ponto de vista computacional, verificou-se que o custo adicional imposto pelo
nexo Box—Cox é compensado pelos ganhos substanciais em qualidade de segmentacao.
Embora a abordagem cléssica seja ligeiramente mais rdpida, sua menor sensibilidade
estatistica resulta em segmentacdes inferiores em cendrios complexos. Em contraste, o
método com Box—Cox apresenta desempenho superior tanto em consisténcia quanto em
estabilidade da fronteira, justificando plenamente seu custo computacional, sobretudo
em aplicacdes de monitoramento ambiental, deteccao de alvos e andlise urbana, onde
precisdo e robustez sdo requisitos primordiais.

Em sintese, os resultados obtidos neste capitulo demonstram que a introdugao do nexo
Box—Cox constitui uma extensao efetiva e competitiva dos métodos tradicionais de level
set, proporcionando melhorias significativas na deteccdo de bordas em imagens SAR.
Essa contribui¢do consolida-se, portanto, como um avang¢o metodoldgico relevante,
capaz de ampliar o espectro de aplicagdes praticas em segmentagao estatistica de dados

de sensoriamento remoto.
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5 Conclusoes

§ No Capitulo 2 — intitulado ‘“/Regressdo induzida do SPAN:
Transformada de Mellin e extracdo de textura ”, justificou-se a razdo
de empregar a lei gama bivariada de McKay (MBI") para descrever o par (intensidade,
SPAN) afetado pelo speckle. Entdo, como uma extensdo ao trabalho de

( ), formulou-se um modelo de regressdo bivariada harmonica,

nominado como MBI'R, que conecta parametro fisico (nimero de equivalente de looks),
covaridveis (geométricas, radiométricas e contextuais) e padrdo espacial via transforma
de Fourier bidimensional. Uma medida de selecio de modelos € formulada com
base na transformada de Mellin bivariada bem como vdrias quantidades matematicas
sdo derivadas para calcular a matriz informacio de Fisher. A inferéncia por mdxima
verossimilhanca foi feita utilizando o método Scoring-Fisher, em que tanto o estimador
para os coeficientes de regressdao como para o nimero de equivalentes de looks tém
expressao em forma fechada. Comparativamente as versdes ndo condicionais propostas
em ( ), a regressdao bivariada apresentou ganho
superior em regides heterogéneas, em que a presenca do sinal € pronunciada.

§ No Capitulo 3 —intitulado “ Detecg¢do de bordas via divergéncias entre

atributos SPAN tipo razdo ”, deseja-se estudar o atributo

0,3),
X+Y€( 2)

tal que (X,Y) ~ MBI'. Pode-se mostra que Z segue a distribuicdo Beta;/ 2 (BT3),
a qual até entdo recebeu poucos estudos analiticos na literatura. Para suprir esta
lacuna, derivaram-se algumas propriedades matemdticas para Z e discutiu-se sobre
como fazer inferéncia a partir de uma amostra aleatéria de Z ~ Betaé/ 2. Adicio-

. . . . 1/2
nalmente, deduziram-se divergéncias em forma fechada entre varidveis Beta3/ (p,q)

(Kullback-Leibler, Rényi, Bhattacharyya e Hellinger). Subsequentemente, novos testes



de hipétese para duas amostras Beta;/ 2 (p, q) distribuidas foram formulados e detec-
tores de bordas via divergéncias para o atributo SPAN tipo razdo foram estruturados.
A partir de evidéncias numéricas (simuladas e em termos de dados SAR), o teste de
Kullback—Leibler produziu melhor performance do que a razdo entre verossimilhangas
e os detectores produziram resultados superiores aquele segundo a proposta de

(2006).

§ No Capitulo 4 — intitulado “ Evolucdo estatistica de superficie de
atributos SPAN tipo razdo para segmentacdo em imagens SAR”,
introduziu-se um curva de evolu¢do generalizada como base no nexo Box—Cox e
ela foi aplicada a atributos SPAN tipo razdo. Desta combina¢do um novo segmentador
por contornos ativos na formulagdo level set foi proposto. Os experimentos sintéticos
e reais revelaram que: (i) com poucas iteracdes, valores moderados/elevados de A
estabilizam mais rapidamente a evolu¢do, produzindo boas segmentacdes; (ii) com
iteracOes intermedidrias/altas, surge um platé de otimo em faixa ampla de A, no qual
as métricas de sobreposi¢do permanecem elevadas; e (ii1) regimes de A muito baixos
(incluindo métodos da literatura, como apresentado em ( )e

( )) tendem a um colapso de desempenho, praticamente independente do
ndmero de iteracoes.

§ Espera-se que, do desenvolvimento dos capitulos desta tese, os resultados sejam
utilizados tanto para realizar novos desdobramentos de pesquisa como para o uso da
modelagem de regressao, detectores e segmentadores em etapas de pds-processamento

para outras imagens (ndo necessariamente de SAR).
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§ Para trabalhos futuros, vemos trés frentes naturais de continuidade:

(i) Tedrica-1: Abordar outros termos ndao paramétricos na regressao, como a repre-

sentacdo por Wavelet.

(i1) Tedrica-2: Trabalho no contexto da andlise multivariada, seguindo a proposta

1/2

de uma distribui¢do bivariada Beta,

(2005).

, conforme sugerido por

(1i1) Modelagem: Extensdo da constru¢do bivariada a familias heavy—tailed relevantes

em SAR (K, G°, ).

(1iv) Otimizacdo: Deducdo de um A 6timo no uso do nexo Box-Cox em problemas de

contorno ativo.

(v) Tedrica-3: O uso de medidas de divergéncia no contexto do level set para de-

terminar contornos em imagens SAR, conforme descrito por

(2006).
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A Distancia de Kullback-Leibler

Demonstracdo. Sejam Z; ~ Beta;/ 2(191, qi)eZy ~ Beta;/ 2( P2, q») variaveis aleato-

rias. Da defini¢do de divergéncia de Kullback-Leibler, conclui-se que:

I'(p1+q1) U(p2)T(q2)
L(p2+4q2) U(p1)T(q1)

ZPl—Pz(l — zz)ch—éh

Dg1(Z1]|22) =log (1 = Z)P1+a1-p2=42

12
]+ ; le(Z)log[

h(p1.91.p2.92)

=h(p1,4q1,p2,q2) + (p1 — p2)Ez [log Z] + (q1 — q2)Ez, [log(1 =2 Z)]

—(p1+q1 — p2— q2)Ez [log(1 - Z)],

em que h(p1,q1,p2,92) = [[(p1 + q)T(p2)T'(q2)1/[T(p2 + g2)T'(p1)T'(q1)]. Por

deducdo andloga,

Di1(Z>11Z1) =h(p2,q2, P1,91) + (p2 — P1)Ez, [log Z] + (g2 — q1)Ez,[log(1 —2Z)]

- (p2+q2—p1—q1)Ez[log(l - Z)].

Seja Z ~ Beta;/ 2(p,q) com densidade fz(z). A seguinte identidade decorre de
fol/z fz(z)dz = 1:

VEON (2 V(1 (1=22)" . T(p)T(q)
LS =) ) e eg e

Realizando a derivagao de ambos os lados de (A.1) em relacdo a p, tem-se

1/2 z \77'(1-29)7"  T(p)'(q)
/o lOg(l —Z) (1 —z)r*a de= I'(p+aq)

(PO (p) -0 (p +g)].

Assim,

B [log m] =¥ (p) -¥0(p+q), (A2)



cujo resultado poderia ser obtido a partir do valor esperado da fun¢do escore ser zero,
conforme explicado na discussdo do texto. Considerando a derivagdo de ambos os lados
de (A.1) em relacdo a g, tem-se

1-27
1-Z

E [log ] =90 (g) —vO(p +¢). (A.3)

IL'(p+q) 2P~ 1(1-2z)97!
T(pI(g) (I-zrra

tomando a mudanga de varidvel 2z = t — 2dz = dt, tem-se

T(p+4q) (/271 (1 -1
T(pT(g) (—t/2)rra 27

1/2
E[log Z] :/o log(z)

1
E[log Z] :/0 log(t/2)

1 ' log(t/2) T
_ 1 og(¢/2) T'(p+q) (1 = a1 dy
20 Jo (1—1/2)P*1 T'(p)['(q)
fBeta(p,q)(t)
1 U og(r) ! 1
- 2_p [/0 (1 _ l/2)p+q fBeta(p,q)(t)dt - logz/o WfBeta(p,q)(t)dt s

(A.4)
em que fgera(p,q)(t) representa a densidade da distribui¢do Beta(p,q). Note que

/1 M f(t) dr - I'(p+n)(p+q)
o (L—1/2)p+a’Betalp.a)™  T(p)['(p + g + n)

Fi(p+n,p+q;p+q+n;1/2),
(A.S5)
em que n € Z. Derivando ambos os lados de (A.5) em termos de n, entdo

/1 log)" . 4 _Lp+n(p+g)
o (1—t/2)p+a”Betalpa)™  T(p)[(p +q +n)

X [zFl(l’o’o’O)(p +n,p+q;p+q+n;1/2)
+ ZFI(O’O’I’O)(p +n,p+q;p+q+n;1/2)

+oFi(p+mp+qp+qg+m1/2) (PP (p+n) -PO(p+q+n)],
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em que

_dF(a,b;c;5z)

_ daFy (a,b;c;2)
da B '

de

2P0 (4, b e z) e2F "% (a,b;¢;7)

Tomando n = 0,

L oot
/0 %f&m(p,q)(t)dt

1,0,0,0 0,0,1,0
=2F1( )(p,p+q;p+q;1/2)+zF1( "p.p+a:p+q:1/2)

+[¥O(p) =¥V (p+ Q) 12Fi(pp +q:p +4:1/2). (A.6)
Note que:
! 1
I =P
|, =i 00 =2 A7)

Aplicando (A.6) e (A.7) em (A.4),

1 0.0.0 0.0,1,0
E(log Z) =% [ZFI(I )(p,p +q;p+q;1/2) + 2F1( ! )(p,p +q;p+q;1/2)
+2F1(p.p +q:p +q:1/2) (PO (p) =¥ (p + ¢))| - log2. (A.8)
Aplicando (A.8) em (A.2), tem-se
1
E[log(1 - Z)] =55 zFfl’O’O’O) (p,p+q;p+q;1/2) + 2F1(0’0’1’0)(p,p +q;p+q;1/2)

+2F (p.p+a;p+q:1/2) (PO () — PO (p +q))| - log2

~[¥O(p) - ¥V (p +9)]. (A.9)
Aplicando (A.9) em (A.3),

1 1,0.0.0 00,10
E[log(1 -2Z)] =5 2F1( )(p,p+q;p+q;1/2)+zFf "p.p+aip+q:1/2)
+aF1 (p.p+q:p+q: 1/2) (PO (p) =¥ (p +q)) | - log2

+ ¥ (q) - ¥ (p)].
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Sejam 61 = (p1,q1) e 02 = (p2,q2) vetores de parametros das varidveis aleatdrias
1 1
Z, ~ Beta; (01) e Z; ~ Beta; (02), respectivamente. Derivaram-se

{Ezi [log Z], Ez [log(1 - Z)], Ez, [log(1 —2Z)] } parai = 1,2.
Assim, apds algumas manipulagcdes algébricas, tem-se:

1
dki.(Z1,Z>) = = | Dxr(Z1l|Z2) + Dxi(22||Z1) ]
2

1
= >{1(p1, 1. p2,42) = (P2, 42, p1, 41) + (p1 = p2) (B (l0g Z) — Bz, (10g 2)]

Ji1(pl,q1,p2,q2)
+ (1~ 42){Bz, [log(1 - 22)] ~ By, [log(1 - 22)1}
J2(plgl.p2.q2)
= (p1+q1 = P2~ 02){Bz, [log(1 - Z)] ~ Bz, [log(1 - 2)]}}.

J3(pl,ql,p2,42)

Apds algumas manipulagdes, tem-se que J2(p1, g1, P2, q2) = J3(p1,.4q1, P2, q2) €
(P1 = p2) [
2

= 20 01y 9O ()] + LI [0 g5) - Oy

( 2—p1+4gr — 1)
¢ 222 2(] 19O (py + 1) =¥ (p2 + g2) + ¥ (p2) - O (p1)],

dki(Z1,Z) = Ji(p1,q1,p2,92) = J2(p1,q1, P2, q2)]

em que

(1,0,0,0)

7o 1261 (p1.P1+quisp1 +q151/2)

J1(p1,q1, P2, 92) =
+2F Y (pipr+ qiipr + g1 1/2)

+2F1(p1,p1+quip1 +q13 172 PO (p1) =¥ O (p1 + q1)] —10g2]

1 (1,0,0,0)

0,0,1,0
=55 |20 (P2, P2 + 2 P2 + 23 1/2) +2F " (02, pa + 23 pa + 423 1/2)

+2F1(p2, p2 + q23 p2 + 423 1/2) [P (p2) = PO (p2 + q2)] + log 2]
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1 1,0,0,0
J2(p1,q1. 2. 42) = 55 0 (b by qispr+q131/2)

+ 2F1(0’0’1’O)(P1,P1 +4q1;p1+q151/2)
+2F 1 (p1,p1 +qusp1 + g3 1/2) [P0 (p1) =9 O (p; + ql)]] ~log2
~[¥O(g1) - PO (py)]

1 1,0,0,0 0,0,1,0
= |21 0 (D2, pa + a2 p2 + 423 1/2) +2F " (p, pa + 42 pa + 421/2)

T oom 1
+2F (P2, pa + q2: p2 + q2: 1/2) (PO (p2) =¥ (py + 612))] +1log?2

+ [P0 (g2) - PO (pa)].
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B Distancias de Reényi, Bhattacharyya

e Hellinger

Demonstracdo 1. A distancia de Rényi entre as varidveis aleatérias Z; ~

Betaé/2 (p1,q1) e Zy ~ Betaé/2 (p2,q2) € deduzida da seguinte forma:

1/2
P(2)f5.(2)dz

1
1z

+ log

1/2
log [ R ACTALOLE i

28-1)

d(21,2,) =

Note que, para 8 € (0, 1),

1/2 I( B 1-g
1- P1+4q1) C(p2+q2)
pi= [ om0 | Il
0 C(p)(q1) | [T (p2)T(q2)
y 1/2 Pri+(=Pra=1(] _ 27)par+(1-F)qx-1
0 (1 = 2)AP1+qD+(1=F)(p2+42)

_ P(pr+q T P(pa+q2)  T(Bpi+(1-pB)p2)
C(B(p1+q1) +(1=B)(p2+q2)) TE(p)I'=A(p»)
o LBq1 +(1-Bg2)

B(g)E(q2)

dz

1

D, = 1/ 7 U'(p1+q1) ]1_B [ I'(p2+q2) r
o 7 F(pI(q1) I'(p2)I'(g2)
y /1/2 ZI=Ppi+Bpa=1(] = 27)(1=Aa1+f4x-1
0 (1 = 2) A=A (p1+q1)+B(p2+q2)

_ I'B(p+q)TP(pa+q2)  T((1-PB)pi +Bp2)
I((1=pB)(p1+q1) +B(p2+q2)) T'F(p)IP(p2)
o L((1-p)q1 + Bq2)

I'=8(q1)IA(q2)

P(2)f5 (2)dz = l

dz




Assim,

log D +log D,
2(6-1)
_ 1 {log [ TP(p1+q)T' P(pa+g2)  T(Bpi+(1-p)p2)
2(8-1) C(B(p1+q1) + (1 =B)(p2+q2) TA(p)I'F(p2)
[(Bg1 + (1 —ﬁ)@)] R [ T'(p1+ q)TP(p2 + q2)
I'B(q1)T17#(q2) C((1-8)(p1+q1) +B(p2+q2))
U'((1=B)p1+Bp2) I'((1 = B)gi +ﬁ612)]}
C=A(p)IP(p2)  T1A(q1)TP(q2) '

d’g(21||22) =

]

Demonstracdo 2. A distancia de Bhattacharyya entre Z; e Z; é demonstrada da seguinte

forma:
1/2
dp(Z1||Z>) = —log f2,(2) f2,(2)dz .
0
A
Note que
:[F(P1+Q1) F(p2+q2)]1/2/1/2 ZPI pz_l(l_ .
L(p1)T(q1) T'(p2)T(q2) 0 (1- o 5i®
-1
_ [ T'(pi+q1) T(p2+q) ]1/2 I (Lpataiter)
F(pl)r(ch) F(pz)F(qz) F(F%)F(CII;%)
Portanto,

+q1+p2+
dB(Zl||Zz):logF(p1 q1 + P2 %)_logr(m Pz)

2
1
~togI" (L2 - S[1og I(p1 + an)

+log'(p2 + q2) —logI'(p1) — logI'(q1)

~logT"(p2) ~log I(2) |

124



Demonstracdo 3. A distancia de Hellinger entre Z; e Z, € dada da seguinte forma:

1/2
d(Z21122) =1 - /0 () fy(2)dz

A
=1- [F(Pl +41) T'(p2+q2) ]1/2 L — B
F(p)T(q1) I'(p2)I'(g2) (L) (4002)
A
_, [T+ aT(pa +g)]"? T(232) M%)
[(ArP2idte) [C(pOT(p2)]'2 [T(q1)T(g2)]'/?

125



C Proposicéo 2.2.1

Demonstragcdao. Faremos mudancgas apropriadas de varidveis para calcular corretamente
os novos limites de integracdo, substituindo a fun¢do expressa na Equagdo (2.12) na

expressao de M (s, s2), tem-se:

0 pxp
M = [ [ e an) ana (C.1)
0 0

Substituindo a funcdo f (xi,x2; a1, a2,y) e realizando as devidas simplificacoes,
tem-se:

X2

o rx) 1
_ si=1_s—1 a—1 _ a1 _— dx dx
M (s1,52) /0 /o N (7,cx1+ml“(0/1)1"(ozz)x1 (o -x) exp( Y )) o

1 0 X2 ) . X
_ sitap—2_s;—1 — -1 -2 dx;dx C2
yarael (o) I (az) /0 /O " & (2 =) o ( 4 ) o “

Logo,
_ 1 ® sr—1 X2 2 si+ap -2 a—-1
M (s1,8) = SaTaT (@) T (a) Jo x5’ exp —? ; X, (x2— x1) dx;[dx,. (C.3)
Defina,

00 X2
= / x;2_1 eXp (—%) [/ xilﬂh_z ()Cz— xl)az_l dxl] d)CQ. (C4)
0 0

I (x2381,01,02)

Considere inicialmente,

X2
I = / xilml_z (x2— x1)@ Ndx, (C.5)
0

) e, . X1 -~
Realizando a troca de varidveis u = — para x; fixo, entdo x,du = dxy,
X2



1 1
_ si+a =2 ax—1 ar—1 _ _Sitajtaz-2 s1+a;—=2 ar—1
I —/0 (ux2)* 70X (1 = u) ™ xodu = x,) /0 w1l - w)*? du

= xJ T Beta(s) + a1 — 1, @) (C.6)

Dai,

1 :/ x5 exp (—)2) 11 (x2; 51, @1, az)dx;
0 Y
= / x;‘+”+0"+0‘2_3 exp (—)2) Beta(s; + a1 — 1, a7)dxs
0 Y

o
_ X
= Beta(s; +a; — 1, a'z)/ x;1+52+(l’1+(l/2 3 exp (__2) dxs
0 Y

_F(S1+CZ1—1)F(C¥2)F(S1+S2+CL’1+C¥2—2)

= T(si+a1+as-1) (])sl+s2+(11+(1/2—2
Y

(C.7)

Portanto, realizando as substituicdes e simplificagdes necessdrias, valem-se:

1
1
yorrel(a)lM(as)
_ ,)/S1+S2—2 F(Sl + ay — 1)
F(aq) F(Sl + a1 +ay — 1)

Muypr(s1, s2) =

F(S] + 52 + a1 +CZ2—2). (CS)

O
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D Medida de selecao de modelo a par-

tir da Transformada de Mellin

Aqui, propde-se uma medida de modelos do tipo M BT, utilizando a Transformada
de Mellin. A abordagem descrita ¢ amplamente aplicdvel a dados SAR e outros cenérios
que envolvem distribui¢des em escala logaritmica, como imagens médicas.

Considere

T = n# | Mg, (s1.82) = Mu(s1.82) [|> AW (s1, 52)

=n- # | Mg, (51,52) = Mu(s1,52) |I> w(s1,52) dAs dAs,

ReC?

em que dAg| e dAs; sdo elementos de drea no plano complexo associados as varidveis

s1 € 2 e R € um boreliano. Em coordenadas cartesianas, tem-se:

$1 =511 +iS12 € 82 =521 +1is,

entao

dAs, =dsyp-dsi2 e dAg, =dsop - dsx.

Dai,

Tp=n- ///]W(Sll +isi2, 821 +i522)" || Mg (s11 +is12, 521 +i522)
D

. . 2
— My (s11 +is12, 521 +is22) ||© dspy dsi2 dsag dsoo.



Em coordenadas polares,

@1 6')2

S1 = rle’ € S = rge’

tem-se

dAs1 =ry- dr1 . d@l € dAS2 =ry: dl’z : d@z.

Dai,

‘7; =n- ////W(rleiﬁ)l’rzei@z)_ ” M@n(rlei®1’r2€i®2)

Wi Ry W2 Ry
- Mn(rleigl, 7‘26i®2) ||2 r dl’] d@] ra dl’z d@z,

emque Wi,W, € (0,2nr] e Ry, Ry € (0,00).
Uma possibilidade para a fungao peso w(sy, s2) é:
w(s1,52) =exp{— (s}s1 +s5s2)}
2 2 2 2
=exp{ — (5], + 5Ty + 53, +55) )

ou, em coordenadas polares,

w(st,s2) =exp{— (r +13)}.
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