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RESUMO 

Estudos anteriores demonstraram que os prebióticos podem influenciar a composição da 

microbiota intestinal, consequentemente impactando a regulação do humor. Este estudo 

teve como objetivo avaliar os efeitos dos prebióticos, especificamente 

frutooligossacarídeos (FOS) e galactooligossacarídeos (GOS) na neuroinflamação, 

depressão e comportamento semelhante à ansiedade em um modelo animal de 

obesidade induzida por dieta rica em gordura (HFD). Inicialmente, os camundongos 

foram divididos em dois grupos: um grupo controle em uma dieta padrão (n = 15) e um 

grupo em uma HFD por 18 semanas (n = 45). Na 13ª semana, o grupo HFD foi 

subdividido em grupos experimentais: controle (n = 15), HFD (n = 15), HFD recebendo 

prebióticos (n = 15) e HFD recebendo fluoxetina (n = 15). A partir da 13ª semana, o grupo 

HFD + Prebióticos e HFD + Fluoxetina permaneceram tanto a dieta rica em gordura 

quanto nos seus respectivos tratamentos diluídos na água potável até a 18ª semana. Na 

18ª semana, todos os camundongos foram submetidos a testes para avaliar o 

comportamento, incluindo o Teste de Suspensão da Cauda (TST), Teste de Natação 

Forçada (FST), Teste de respingo de sacarose (SST) e o Teste do Labirinto em Cruz 

(PMT), após os qual foram eutanasiados. Os camundongos do grupo HFD exibiram 

aumento no peso corporal, tamanho abdominal, glicemia, níveis de triglicerídeos, 

colesterol, insulina, índice HOMA (Homeostasis Model Assessment) e maior Interleucina 

(IL)-1β sérico em relação ao grupo controle. Esses camundongos obesos também 

apresentaram aumento no número de microglia e astrócitos, ativação da via TLR4 e 

níveis elevados de marcadores neuroinflamatórios como TNF-α, IL-1β e COX-2. Além 

disso, os camundongos obesos mostraram aumento na ativação da via IDO e diminuição 

nos níveis de receptores NMDA. Os marcadores de neurogênese e plasticidade 

sináptica, como PSD, SAP 102, CREB-p e BDNF, tiveram menores expressão proteica. 

O tratamento com FOS e GOS reverteu sintomas de depressão e ansiedade em 

camundongos submetidos à HFD. Essa melhora no comportamento resultou de uma 

redução na disbiose com um aumento nas bactérias produtoras de acetato (Bacteroides 

acidifaciens e Bacteroides dorei) e na permeabilidade intestinal, levando a uma 

diminuição na inflamação crônica periférica e central. Além disso, a modulação do eixo 

intestino-cérebro por FOS e GOS promoveu níveis elevados de acetato e GPR43 no 

cérebro. Este estudou mostrou que a suplementação com FOS e GOS melhorou o 

comportamento de animais obesos, reduzindo sintomas semelhantes a ansiedade e 

depressão mediante a modulação da microbiota, redução da inflamação e 

neuroproteção.  

Palavras-chaves: Ansiedade; Depressão; Microbiota Intestinal; Neuroinflamação; 
Prebióticos 
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ABSTRACT 

 
Previous research has shown that prebiotics can shape the gut microbiota composition, 

thereby influencing mood regulation. This study investigated the effects of prebiotics, 

specifically fructooligosaccharides (FOS) and galactooligosaccharides (GOS), on 

neuroinflammation, depression, and anxiety-like behaviors in mice fed a high-fat diet 

(HFD). Initially, mice were divided into two groups: a control group on a standard diet 

(n = 15) and an HFD group (n = 45) for 18 weeks. At the 13th week, the HFD group 

was further subdivided into three experimental groups: HFD only (n = 15), HFD with 

prebiotics (n = 15), and HFD with fluoxetine (n = 15). From the 13th week, the HFD + 

Prebiotics group received FOS and GOS alongside the HFD, while the HFD + 

Fluoxetine group received fluoxetine via drinking water. In the 18th week, behavioral 

assessments were conducted using the Tail Suspension Test (TST), Forced Swimming 

Test (FST), Sucrose Preference Test (SPT), and Plus Maze Test (PMT), followed by 

euthanasia for further analyses. Mice on the HFD showed increased body weight, 

abdominal size, blood glucose, triglycerides, cholesterol, insulin, HOMA index, and 

serum IL-1β levels. They also exhibited heightened microglial and astrocytic activity, 

activation of the TLR4 pathway, and elevated neuroinflammatory markers such as 

TNF-α, IL-1β, and COX-2. The obese mice displayed increased IDO pathway 

activation, reduced NMDA receptor levels, and lower expression of neurogenesis and 

synaptic plasticity markers, including PSD, SAP 102, CREB-p, and BDNF. Treatment 

with FOS and GOS alleviated depression and anxiety symptoms in HFD-fed mice by 

mitigating dysbiosis, increasing acetate-producing bacteria (e.g., B. acidifaciens and 

B. dorei), and improving intestinal permeability. This led to a decrease in chronic 

peripheral and central inflammation. Furthermore, the modulation of the gut-brain axis 

by prebiotics resulted in higher acetate and GPR43 levels in the brain, reduced pro-

inflammatory cytokines, and enhanced neuronal proliferation and survival pathways in 

the hippocampus and prefrontal cortex. 

 

 
Keywords: Anxiety; Depression; Gut microbiota; HFD; Neuroinflammation; Prebiotics
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1. INTRODUÇÃO 

A predisposição ao desenvolvimento de transtornos de humor, incluindo ansiedade 

e depressão, é influenciada por uma interação complexa entre fatores genéticos e 

ambientais. Dentre os fatores ambientais, destaca-se o impacto significativo de uma dieta 

rica em gorduras (em inglês, High Fat Diet - HFD) (Li et al., 2022). A busca por 

antidepressivos e ansiolíticos com início de ação mais rápido é essencial para melhorar a 

adesão ao tratamento. e reduzir os prejuízos associados ao atraso terapêutico. Contudo, 

os antidepressivos atualmente disponíveis apresentam limitações, com 10 a 30% dos 

pacientes com depressão mostrando resistência ao tratamento, caracterizada pela 

ausência de resposta positiva após o uso de diferentes classes de medicamentos em 

doses e períodos adequados (Beyer et al., 2024).  

A ingestão de uma dieta rica em gorduras está associada tanto a alterações 

metabólicas quanto a transtornos psiquiátricos. Estudos sugerem que a disfunção da 

neurotransmissão serotoninérgica no hipocampo pode ser um elo entre a HFD e a 

depressão (Hersey et al., 2021). Camundongos alimentados com HFD exibiram 

comportamentos depressivos relacionados ao acúmulo de lipídios nas células microgliais 

e à remodelação neuronal no hipocampo (HC) (Zhuang et al., 2022). Mais investigações 

são necessárias para esclarecer os mecanismos subjacentes a esses comportamentos. 

Interessantemente, além de comportamentos semelhantes à depressão em 

camundongos submetidos a HFD, o consumo de HFD contribui para distúrbios 

metabólicos, como obesidade, hiperinsulinemia e hiperglicemia  (Lam et al., 2021). O 

Peptídeo semelhante ao glucagon-1 (em inglês, Glucagon-like Peptide-1 – GLP-1) e seus 

análogos têm mostrado potencial terapêutico para tratar depressão e ansiedade 

(Anderberg et al., 2016; Y. K. Kim et al., 2020). Em modelos de camundongos, HFD 

resultou em menores níveis de GLP-1 plasmático (Anini & Brubaker, 2003), além de 

acelerar a degradação desse hormônio pela enzima dipeptidil peptidase-4 (DPP-4), 

reduzindo sua biodisponibilidade no sistema nervoso central (Lietzau et al., 2022). Além 

disso, o desbalanço do metabolismo lipídico provocada pelo consumo de HFD pode 

desempenhar um papel fundamental no surgimento de comportamentos depressivos e 

ansiosos. Investigações também estabeleceram uma conexão entre os níveis de lipídios 

no sangue e as vias fisiopatológicas associadas à depressão, conforme destacado por So 

e colaboradores (2021). 

A hipótese da depleção de monoaminas sugere que um desequilíbrio na 

neurotransmissão de 5-hidroxitriptamina (5-HT), por exemplo, pode desencadear a 

depressão (Elhwuegi, 2004). Contudo, revisões questionam esta teoria, indicando que 
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uma redução isolada de 5-HT pode não ser suficiente para justificar a fisiopatologia, 

sugerindo a existência de outros fatores (Jesulola et al., 2018; Slavich & Sacher, 2019). 

Estudos em humanos e roedores mostraram correlações entre obesidade, estado 

inflamatório elevado e depressão (McLachlan et al., 2023; Yu et al., 2023). Em 

camundongos alimentados com HFD, níveis elevados de citocinas pró-inflamatórias foram 

associados a mudanças na neuroplasticidade em regiões cerebrais como o córtex pré-

frontal e o hipocampo, influenciando os transtornos de humor (Fulton et al., 2022). 

O triptofano é um aminoácido essencial que atua como precursor na síntese de 

serotonina. No entanto, determinadas condições podem desviar sua rota biossintética para 

vias catabólicas. Por exemplo, o triptofano é convertido em N-formilquinurenina pela 

indoleamina 2,3-dioxigenase (IDO) e, em seguida, em L-quinurenina (KYN), que é 

transformada em 3-hidroxiquinurenina (3-HK) e, posteriormente, em ácido quinolínico 

(QUIN). Citocinas pró-inflamatórias e lipopolissacarídeos (LPS) podem ativar a via IDO 

(Réus et al., 2015), resultando na redução dos níveis de 5-HT e no aumento de 

subprodutos neurotóxicos, como o quinolonato (QUIN), que atua como agonista dos 

receptores N-metil-D-aspartato (NMDA), promovendo excitotoxicidade neuronal. Essa 

cascata inflamatória e neurotóxica contribui para a disfunção sináptica e está associada 

aos mecanismos fisiopatológicos da depressão e ansiedade (Braidy e Grant , 2017). 

Evidências acumuladas sugerem que a homeostase da microbiota intestinal está 

intimamente relacionada à função cerebral, promovendo o conceito do eixo intestino-

cérebro. Três mecanismos principais são identificados: regulação da resposta 

imunológica, influência no metabolismo [como ácidos graxos de cadeia curta (em inglês, 

Short Chain Fatty Acids – SCFAs)] e efeitos na sinalização neuronal (Morais et al., 2021). 

Dietas HFD causam disbiose, diminuindo a diversidade microbiana e comprometendo a 

função da barreira intestinal, permitindo a entrada de LPS na circulação e desencadeando 

neuroinflamação por meio da ativação de Receptores Semelhantes à Toll (em inglês, Toll 

Like Receptors – TLRs) microgliais (Fiebich et al., 2018). Intervenções como prebióticos e 

probióticos têm mostrado potencial para restaurar o equilíbrio intestinal, influenciando 

positivamente o comportamento e condições neurológicas (Ansari et al., 2023). FOS e 

GOS são frequentemente usados para estimular o crescimento de bactérias benéficas, 

apresentando efeitos sobre ansiedade e depressão em modelos animais (Burokas et al., 

2017). Pesquisas anteriores demonstraram que FOS e GOS podem melhorar a cognição 

em camundongos obesos por meio da modulação da via IRS/PI3K/AKT (de Paiva et al., 

2023). No entanto, ainda faltam estudos clínicos que explorem o uso de prebióticos em 

modelos de HFD para depressão e ansiedade. Neste trabalho, investigamos os 

mecanismos do tratamento com FOS e GOS na melhora desses comportamentos em um 
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modelo de obesidade induzida por dieta em camundongos C57BL/6. 

2. OBJETIVOS 

2.1 OBJETIVO GERAL 
 

Avaliar os efeitos dos frutoligossacarídeos e galactoligossacarídeos na 

modulação da neuroinflamação e cognição em modelo experimental de obesidade 

induzido por dieta em camundongos C57BL/6 adultos. 

2.2 OBJETIVOS ESPECÍFICOS 
 

Em um modelo obesidade induzido por dieta, investigar os efeitos do FOS e GOS sobre 

diversos parâmetros neurocomportamentais, metabólicos e moleculares, tais como: 

 

a) O comportamento semelhante à depressão e à ansiedade nos camundongos, mediante 

a testes comportamentais padronizados, como o teste do nado forçado e o labirinto em 

cruz elevado; 

 

b) Disbiose da microbiota intestinal do cólon, investigando a abundância relativa de 

principais espécies bacterianas por meio de técnicas de sequenciamento do 16S rRNA. 

 

c) O perfil lipídico, com quantificação das dos triglicerídeos, colesterol total e suas frações 

no soro dos camundongos, por métodos bioquímicos; 

 

d) As principais vias da neuroinflamação no hipocampo e córtex pré-frontal, por meio da 

quantificação de marcadores inflamatórios como TNF-α, IL-1β e COX-2 por meio de 

técnicas de biologia molecular e histológicas. 

 

e) A expressão de marcadores de plasticidade sináptica no hipocampo e córtex pré-frontal, 

tais como BDNF e p-CREB, por meio por análise de western-blot e imunohistoquímica. 
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3 JUSTIFICATIVA 

 
A obesidade é uma condição crônica cuja prevalência tem aumentado 

significativamente em todo o mundo nos últimos anos, especialmente devido a dietas 

hipercalóricas, consumo excessivo de alimentos ultraprocessados e o isolamento social 

da COVID-19, a qual agravou maus hábitos alimentares e aumentou os casos de 

depressão e ansiedade. A Organização Mundial de Saúde (OMS) afirma que, em 2025, a 

estimativa é de que 2,3 bilhões de adultos ao redor do mundo estejam acima do peso, 

sendo 700 milhões de indivíduos com obesidade (OMS., 2022). No Brasil, quase metade 

dos adultos (48%) terá obesidade até 2044, e mais 27% terão sobrepeso – assim, dentro 

de 20 anos, três quartos dos adultos brasileiros terão obesidade ou sobrepeso. Hoje, 56% 

dos adultos brasileiros têm obesidade ou sobrepeso (34% com obesidade e 22% com 

sobrepeso) (World Obesity, 2024). 

Estudos demonstram uma relação direta entre o consumo de dietas hiperlipídicas 

e desenvolvimento de transtornos de humor. Essa relação pode ser explicada, em parte, 

pelo aumento da inflamação crônica decorrente da obesidade, que causa neuroinflamação 

em várias estruturas cerebrais e impacta negativamente o sistema límbico. Evidências 

crescentes sugerem que o eixo microbiota-intestino-cérebro desempenha um papel 

fundamental na regulação das funções cerebrais, particularmente no processamento 

emocional, comportamento e cognição. A microbiota intestinal é crucial para o 

neurodesenvolvimento, influenciando a expressão gênica em regiões críticas do cérebro. 

Fatores como idade, sexo, uso de antibióticos e alimentação afetam sua composição, e a 

manutenção do equilíbrio da microbiota contribui para a homeostase e a integridade do 

organismo.  

Nesse contexto, os prebióticos têm demonstrado resultados promissores em 

modelos animais de depressão. Prebióticos, como FOS e GOS, promovem o crescimento 

de bactérias benéficas que ajudam a modular a inflamação e a melhorar as funções 

cerebrais por meio do eixo microbiota-intestino-cérebro. No entanto, ainda é pouco 

explorada a utilização de prebióticos na prevenção e tratamento de neuroinflamação e em 

condições de depressão e ansiedade comórbidas à obesidade. Esses achados apontam 

para a necessidade de mais estudos que investiguem como a modulação da microbiota 

pode ser uma abordagem terapêutica eficiente em casos de obesidade e suas 

complicações associadas.  
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4 REFERENCIAL TEÓRICO 

4.1 OBESIDADE: DEFINIÇÃO, FISIOPATOLOGIA E NEUROINFLAMAÇÃO 

As doenças não transmissíveis (DNTs) são responsáveis por mais de 70% das 

mortes prematuras em nível global. As DNTs associadas à nutrição inadequada têm 

um impacto significativo na mortalidade no Brasil, representando 71% de todas as 

mortes. As DNTs associadas à nutrição inadequada, como doenças cardiovasculares, 

diabetes tipo 2, cânceres – especialmente de cólon e obesidade, têm um impacto 

significativo na mortalidade no Brasil (Brasil. Ministério da Saúde, 2021). Dentre elas, 

a obesidade se destaca por reduzir a expectativa de vida em até 5 a 20 anos  (Who., 

2017). De acordo com a Organização Mundial da Saúde (OMS), a obesidade e o 

sobrepeso correspondem a um acúmulo excessivo de gordura corporal que pode 

afetar negativamente tanto a saúde física quanto a psicológica (Who, 2019). Contudo, 

essa definição não reflete toda a complexidade etiológica que caracteriza o fenótipo 

da obesidade (Hruby e Hu, 2015). 

Segundo um relatório da OMS divulgado em 2022, 2,5 bilhões de adultos com 

18 anos ou mais estavam acima do peso, incluindo mais de 890 milhões de adultos 

que viviam com obesidade. Isso corresponde a 43% dos adultos com 18 anos ou mais 

(43% dos homens e 44% das mulheres) que estavam acima do peso; um aumento em 

relação a 1990, quando 25% dos adultos com 18 anos ou mais estavam acima do 

peso. A prevalência de sobrepeso variou por região, de 31% na Região do Sudeste 

Asiático da OMS e na Região Africana a 67% na Região das Américas (WHO, 2022). 

No Brasil, a Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por 

Telefonia (VIGITEL), conduzida pelo Ministério da Saúde, registrou um aumento de 

96% na prevalência de obesidade nos últimos 15 anos, com os índices subindo de 

11,8% em 2006 para 22,4% em 2021(Brasil. Ministério da Saúde, 2022).   

A obesidade pode levar ao desenvolvimento de várias comorbidades, incluindo 

complicações respiratórias (Peters et al., 2018; Xanthopoulos & Tapia, 2017), 

hipertensão e outras doenças cardiovasculares (Csige et al., 2018; Piché et al., 2018), 

diabetes mellitus tipo II (Al-Goblan et al., 2014), alguns tipos de câncer (Iyengar et al., 

2016) e distúrbios psiquiátricos (Rajan e Menon, 2017).  Além disso, a obesidade e 

suas doenças associadas representam um grande fardo para os indivíduos, sociedade 

e economia, gerando custos elevados para os sistemas de saúde pública, além de 

aumentar a morbidade e a mortalidade (Nilson et al., 2020). 

O diagnóstico é previsto principalmente pelo Índice de Massa Corporal (IMC), 

calculando pela relação entre peso (kg) e altura ao quadrado (m²). De acordo com os 
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critérios da OMS, os valores do IMC são categorizados da seguinte forma: eutrofia 

(18,5–24,9 kg/m²), sobrepeso (25,0–29,9 kg/m²), obesidade grau I (30,0–34,9 kg/m²), 

obesidade grau II (35,0–39,9 kg/m²) e obesidade grau III (≥ 40 kg/m²) (Who, 2019). No 

entanto, um relatório mais recente orienta que o IMC deve ser utilizado apenas como 

um indicador populacional de risco à saúde, não sendo adequado para avaliação 

individual. A confirmação do excesso de adiposidade deve ser feita por métodos 

diretos de medição da gordura corporal, quando disponíveis, ou por pelo menos um 

parâmetro antropométrico (como circunferência da cintura, razão cintura-quadril ou 

razão cintura-altura), além do IMC, utilizando métodos validados e pontos de corte 

apropriados para idade, gênero e etnia. Em casos de IMC acima de 40 kg/m², a 

adiposidade excessiva pode ser presumida sem necessidade de confirmação 

adicional. Indivíduos com obesidade confirmada devem ser avaliados para obesidade 

clínica, cujo diagnóstico exige evidências de disfunção de órgãos ou tecidos 

associadas à obesidade (Rubino et al., 2025). 

A obesidade é uma doença multifatorial, e o principal fator para seu 

desenvolvimento é o desbalanceamento entre o consumo excessivo de calorias e sua 

baixa utilização (Blüher, 2019). Fatores intrínsecos, como o genótipo do indivíduo, 

juntamente com fatores extrínsecos, especialmente a dieta, podem contribuir para o 

surgimento da obesidade. Vários estudos clínicos e pré-clínicos identificaram formas 

monogênicas de obesidade, mas se sabe que também pode ser desencadeada por 

causas poligênicas (Hinney et al., 2010). Alterações genéticas que afetam a obesidade 

incluem modificações na expressão da leptina (LEP), um hormônio crucial no controle do 

apetite (ZHANG et al., 1994). Mutações no gene da LEP e em seu receptor (LEPR) estão 

diretamente associadas ao desenvolvimento de obesidade grave (Wasim et al., 2016). 

Além disso, outras alterações genéticas que interferem no sistema regulador do apetite 

incluem a pró-opiomelanocortina (POMC), o receptor de melanocortina 4 (MC4R), a 

carboxipeptidase (CPE), o receptor neurotrófico de tirosina quinase tipo 2 (TrkB) e o fator 

neurotrófico derivado do cérebro (BDNF), além dos fatores epigenéticos (Thaker, 2017). 

Diversos fatores extrínsecos, como aspectos ambientais e sociais, podem contribuir 

para um balanço energético positivo, favorecendo o desenvolvimento da obesidade. Entre 

esses fatores, destacam-se a alimentação emocional (Frayn et al., 2018), a privação de 

sono (Chaput e Dutil, 2016), efeitos adversos de medicamentos (Schwartz et al., 2004), o 

estresse (Razzoli et al., 2017) e o consumo excessivo de alimentos ricos em gordura 

(Moyer et al., 2016). O aumento do consumo da dieta ocidental, caracterizada por altos 

níveis de açúcar / gordura saturada e baixa ingestão de fibras, também está associado ao 

desenvolvimento de outras comorbidades, como doenças cardiovasculares (Dehghan et 
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al., 2017), diabetes tipo II (Heydemann, 2016) e doenças neuropsiquiátricas como 

depressão e ansiedade  (Liang et al., 2021) 

 O tecido adiposo tem sido amplamente estudado no contexto da obesidade, 

principalmente devido ao entendimento crescente de suas funções nos últimos anos. 

Localizado em várias regiões do corpo, o tecido adiposo pode ser classificado em 

subcutâneo, visceral e depósitos especializados, como nos linfonodos. Ele apresenta dois 

tipos celulares principais: o tecido adiposo marrom (TAM) e o tecido adiposo branco (TAB). 

O TAM, que se encontra principalmente em recém-nascidos e mamíferos hibernantes, 

desempenha a função de regular a temperatura corporal (Junqueira e Carneiro, 2017). Já 

o TAB, que antes era visto apenas como um simples reservatório de energia e protetor 

mecânico, é reconhecido como um regulador crucial de diversos processos fisiológicos e 

metabólicos, indo além de sua função de armazenamento de gordura (Fain, 2010; 

Kershaw e Flier, 2004). 

O TAB é responsável pela secreção de hormônios específicos, conhecidos como 

adipocinas, que desempenham funções essenciais tanto no metabolismo quanto na 

regulação imunológica (Ouchi et al., 2011). Dessa forma, a obesidade deixa de ser vista 

apenas como uma doença metabólica, passando a ser considerada também uma doença 

inflamatória crônica de baixo grau (Jong et al., 2014; Trayhurn e Wood, 2004). Embora o 

gatilho exato que desencadeia o processo inflamatório ainda não seja completamente 

compreendido, sabe-se que a deposição excessiva de ácidos graxos no TAB leva à 

hipertrofia das células adiposas, desencadeando uma série de eventos que resultam em 

um estado pró-inflamatório no organismo (Horwitz e Birk, 2023). 

A hipóxia e o estresse oxidativo no TAB parecem ser fatores-chave que 

desencadeiam a maior expressão de genes pró-inflamatórios, como os de Fator de 

Necrose Tumoral alfa (em inglês, Tumor Necrosis Factor Alpha - TNF-α), Interleucina-6 

(IL-6), Interleucina 1 beta (IL-1β) e Proteína C Reativa (PCR) (Lee et al., 2014). Esse 

processo contribui para a transformação do TAB em um tecido inflamatório, exacerbando 

o quadro de obesidade conforme ilustra a figura 1. Além disso, ácidos graxos, que se 

acumulam nas células adiposas, também desempenham um papel regulador na secreção 

de diversas citocinas em células T, ampliando ainda mais a resposta inflamatória  (Garcia 

et al., 2023). Portanto, a obesidade não é apenas uma questão de acúmulo de gordura, 

mas envolve uma complexa interação entre o TAB, os ácidos graxos e a regulação do 

sistema imunológico. 
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Figura 1. A inflamação do tecido adiposo branco e suas consequências 

neuroendócrino-metabólicas. 

Legenda: Uma combinação de predisposição genética, dieta inadequada e estilo 

de vida sedentário pode promover o aumento hipertrófico da massa do tecido adiposo 

branco, acompanhado pela infiltração de macrófagos. Esse processo resulta em um 

padrão anormal na produção e liberação de adipocinas. O aumento na liberação de leptina 

derivada do TAB compromete a sensibilidade dos tecidos à insulina, caracterizando a 

resistência à insulina (IR). AT: Adipose tissue (tecido adiposo); REOS:  Reactive Oxygen 

species (Espécies reativas de oxigênio); IL: Interleucina; TNF:Tumoral Necrose Factor 

(Fator de Necrose Tumoral); FFA: Free Fat Acid (Ácido Graxo de Cadeia Livre); DMT2: 

Diabetes Mellitus type 2 (Diabetes melitus tipo 2); NASH: Nonalcoholic steatohepatitis 

(Esteatohepatite não alcoólica); NAFLD:  Non-alcoholic fatty liver disease (Doença 

hepática gordurosa associada ao metabolismo). 

Fonte: Pagano et al., (2017) 

O recrutamento de macrófagos para o TAB, tanto em modelos animais quanto em 

humanos, contribui significativamente para o aumento do estado inflamatório sistêmico 

(Rosenbaum et al., 2008; Ross et al., 2003). No TAB, observa-se uma mudança no 

fenótipo dos macrófagos, que de M2, com propriedades anti-inflamatórias, se transformam 

em M1, um perfil mais pró-inflamatório, com a secreção exacerbada de TNF-α durante a 

obesidade (Lumeng et al., 2007). Esse processo é acompanhado pela redução na 
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produção de adipocinas anti-inflamatórias, como a adiponectina, que desempenha papéis 

importantes no controle do apetite e na modulação da inflamação (Pyrzak et al., 2010). O 

declínio da adiponectina contribui para a manutenção e agravamento do estado 

inflamatório crônico observado na obesidade, formando um ciclo vicioso que exacerba os 

efeitos prejudiciais da doença.  

A condição inflamatória crônica associada à obesidade tem repercussões 

alarmantes na saúde, estando diretamente relacionada ao surgimento de várias 

comorbidades, como diabetes tipo 2, câncer e doenças cardiovasculares, que afetam a 

qualidade de vida e pioram o prognóstico dos pacientes obesos conforme mostra a figura 

2 (Csige et al., 2018; Iyengar et al., 2016).  

Figura 2. Visão geral da obesidade, definição de obesidade e suas comorbidades 

Legenda: A prevalência global de sobrepeso ou obesidade aumentou em 27% na 

idade adulta e 47% na infância durante 33 anos. Este número ainda está aumentando, e 

a OMS estima que aumentará ainda mais. A obesidade é um fator de risco para várias 

doenças, notadamente diabetes mellitus tipo 2, doença hepática gordurosa associada ao 

metabolismo, doença cardiovascular e alguns tipos de câncer. BMI: Body Mass Index 

(Indice de Massa corporal).  

Fonte: Jin et al., (2023) 
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O aumento das citocinas pró-inflamatórias, como o TNF-α, contribui para o 

desenvolvimento da resistência à insulina, um dos principais fatores para o aparecimento 

do diabetes tipo 2 (Ruan & Lodish, 2003). Além disso, o TNF-α acelera o processo de 

aterosclerose, favorecendo a expressão de moléculas de adesão do endotélio (Antuna-

Puente et al., 2008). A IL-6, produzida também no tecido adiposo branco, está intimamente 

ligada à resistência insulínica, pois diminui a produção de adiponectina e seus receptores 

(Fantuzzi, 2005), e pode ainda estimular o crescimento de neoplasias, como no caso do 

câncer de próstata, onde ativa o receptor de androgênio, promovendo a sobrevivência e 

proliferação tumoral (Tindall e Lonergan, 2011). Além disso, a IL-6 aumenta a produção 

de PCR pelo fígado, agravando ainda mais o estado inflamatório da obesidade (Memoli et 

al., 2007).  

A obesidade, além de desencadear um processo inflamatório periférico, também 

influencia esta condição no sistema nervoso central. As citocinas pró-inflamatórias 

periféricas têm a capacidade de atravessar a barreira hematoencefálica (BHE) e alcançar 

diversas estruturas como hipocampo, córtex pré-frontal, amígdala e hipotálamo 

mediobasal, onde se localizam receptores específicos para esses mediadores 

inflamatórios (Sun et al., 2022). Esse processo pode estimular a ativação do fator nuclear 

kappa B (NF-κB) no hipotálamo, aumentando a permeabilidade da BHE e intensificando a 

entrada de citocinas e células inflamatórias no cérebro (Araujo et al., 2005; Lu et al., 2009). 

No tecido cerebral, as citocinas pró-inflamatórias ativam algumas vias neuroendócrinas, 

como o eixo Hipotálamo-Pituitária-Adrenal (HPA), afetando a função e o metabolismo de 

neurotransmissores, além de modificar a plasticidade neural, o que pode prejudicar 

funções do sistema límbico (Capuron e Castanon, 2011).  

Em modelos animais obesos ou alimentados com dietas hiperlipídicas, a produção 

de mediadores inflamatórios pelas células gliais, especialmente pela micróglia, é 

acentuada. A micróglia, principal tipo de macrófago residente no cérebro, desempenha 

funções protetoras, como a poda sináptica e o recrutamento de monócitos circulantes para 

conter danos teciduais (Gu et al., 2014; Nimmerjahn et al., 2005; Stentz e Kitabchi.,  2006). 

No entanto, a ativação crônica ou desregulada da micróglia pode se tornar prejudicial, 

agravando o estado inflamatório cerebral e contribuindo para o desenvolvimento de 

distúrbios neurológicos (Tremblay et al., 2011). Assim, a obesidade não apenas afeta o 

sistema metabólico, mas também tem impactos significativos na saúde cerebral, 

evidenciando a complexidade e a gravidade dessa condição. 

 Portanto, a obesidade transcende a definição simplista de acúmulo excessivo de 

gordura corporal, representando uma doença multifatorial com implicações metabólicas, 

inflamatórias e neurológicas. Sua prevalência crescente e os impactos profundos na saúde 
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física e mental sublinham a urgência de abordagens integradas para prevenção e 

tratamento, considerando fatores genéticos, ambientais e sociais. Compreender os 

mecanismos subjacentes à obesidade, como a interação entre tecido adiposo, inflamação 

e sistema nervoso central, é essencial para o desenvolvimento de estratégias terapêuticas 

mais eficazes.  

4.2  ANSIEDADE E DEPRESSÃO: FISIOPATOLOGIA ALÉM DOS 

NEUROTRANSMISSORES 

O transtorno depressivo maior (TDM) é uma condição mental amplamente 

disseminada, afetando cerca de 264 milhões de pessoas globalmente, o que o 

posiciona como o segundo maior responsável pela taxa de morbidade no mundo (Chan 

et al., 2024). Estima-se que ocorram aproximadamente 800.000 suicídios anuais, o que 

destaca o TDM como um desafio de grande magnitude para a saúde pública (Ruderfer 

et al., 2019). O TDM é marcado por uma disforia persistente, retardo psicomotor, 

insônia, anedonia, ideação suicida e uma redução significativa no bem-estar geral 

(Varghese et al., 2024). Além do TDM, os transtornos de ansiedade são condições 

psiquiátricas amplamente presentes e incapacitantes, afetando aproximadamente 10% 

da população mundial anualmente (WHO, 2017). Os transtornos de ansiedade são 

caracterizados por sintomas como preocupação excessiva, medos relacionados a 

situações sociais e de desempenho, ataques de pânico inesperados ou 

desencadeados, ansiedade antecipatória e comportamentos de evitação (Szuhany e 

Simon, 2022). A perda global de produtividade devido a transtornos de ansiedade e 

depressão é de aproximadamente US$ 1 trilhão por ano, um impacto que tende a 

crescer ao longo do tempo (Doran e Kinchin, 2017).  

Atualmente, os inibidores da recaptação de monoaminas são a classe de 

antidepressivos/ansiolíticos mais frequentemente prescrita (Miyazaki et al., 2018). No 

entanto, um grande desafio com esses medicamentos é o considerável atraso entre o 

efeito farmacológico inicial na função dos neurotransmissores monoaminérgicos (que 

pode levar vários dias) e a redução na gravidade dos sintomas clínicos (geralmente 

entre 3 a 8 semanas) (Liu et al., 2017). Interessantemente, metade dos pacientes 

depressivos apresentam uma melhora significativa com o uso de antidepressivos, 

podendo apresentar uma resposta clínica restrita e variável. Além disso, sabe-se que 

cerca de um terço das pessoas com transtorno depressivo maior (TDM) tem um 

prognostico ruim, desenvolvendo a chamada depressão resistente ao tratamento 

(DRT). Nesta condição, o paciente não apresenta uma melhora satisfatória mesmo 

após o uso adequado de dois antidepressivos diferentes.  Neste caso, pode-se atribuir 

a ineficácia do medicamento, intolerância aos efeitos colaterais ou outros fatores 
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ligados ao paciente e à própria doença. A resistência ao tratamento é um dos grandes 

problemas enfrentados pela psiquiatria já que está relacionada com a piora da 

qualidade de vida, maior taxa de suicídio e mais custos a saúde pública. Neste contexto, 

é importante pesquisas que visem novos psicofármacos mais eficientes e de ação mais 

rápida (Aleksandrova et al., 2017).  

A teoria das monoaminas sugere que a depressão e ansiedade sejam causadas por 

um desequilíbrio nos neurotransmissores monoaminérgicos, como serotonina, 

noradrenalina e dopamina, no cérebro. De fato, o desbalanço do metabolismo dos 

neurotransmissores pode desempenhar um papel fundamental na etiologia da 

depressão e ansiedade (Li et al., 2021). A serotonina (5-HT), amplamente distribuída 

por todo o sistema nervoso, está associada a diversos transtornos de saúde mental, 

como depressão, fobias e ansiedade, quando em níveis deficientes(De-Miguel & Trueta, 

2005). Nas últimas décadas, a hipótese da 5-HT tem sido central nas pesquisas sobre 

as causas subjacentes desses dois transtornos, com estudos sugerindo que pacientes 

deprimidos apresentam baixos níveis de 5-HT no cérebro e alterações nos receptores 

de serotonina (Maes et al., 2009). Além disso, a dopamina (DA), outro neurotransmissor 

crucial no sistema nervoso central, também desempenha um papel significativo na 

regulação do comportamento e na fisiopatologia da depressão. A dopamina atua como 

precursor da epinefrina e da norepinefrina (NE), e sua transmissão está intimamente 

relacionada ao desenvolvimento da depressão, com vários estudos mostrando que 

pacientes depressivos têm níveis elevados de transporte de DA, o que aumenta a 

eficiência dos neurônios pré-sinápticos na recaptação desse neurotransmissor (Duval 

et al., 2021; Salamone et al., 2022). Apesar de a teoria das monoaminas oferecer uma 

explicação para muitos casos de transtornos de ansiedade e depressão, ela não é 

totalmente abrangente nem justifica os casos de pacientes refratários aos tratamentos 

clássicos para esses transtornos. Outros mecanismos podem ajudar a compreender 

melhor a ansiedade e depressão, tais como a hiperatividade do eixo hipotálamo-

hipófise-adrenal (HPA) (Heim et al., 2008), citocinas inflamatórias e metabólitos 

endógenos (Felger e Lotrich, 2013) e, adicionalmente, o microbioma intestinal, o qual 

desempenha um papel crítico na depressão ao afetar o eixo intestino-cérebro (Evrensel 

e Ceylan, 2015).   

O estresse e os desafios agudos são fatores que podem desencadear o 

desenvolvimento do TDM e ansiedade. O papel do eixo HPA na resposta ao estresse é 

amplamente reconhecido, sendo essencial para a regulação dessa resposta nos 

mamíferos. Assim, alterações no eixo HPA durante a depressão podem refletir o 

impacto do estresse e influenciar a manifestação dos sintomas depressivos (Tan et al., 
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2021). O estresse provoca a liberação do hormônio liberador de corticotropina (CRH) 

pelo hipotálamo, o que leva à produção de hormônio adrenocorticotrófico (ACTH) pela 

hipófise, resultando em um aumento na secreção de glicocorticoides pelas glândulas 

adrenais. Esses glicocorticoides, por sua vez, se ligam aos seus receptores em diversos 

tecidos-alvo, incluindo o eixo HPA, onde atuam como inibidores do feedback, reduzindo 

a produção de ACTH na hipófise e de CRH no hipotálamo (Sukhareva, 2021). Na 

ansiedade, o eixo HPA se torna hiperativo em resposta ao estresse, o que resulta em 

condições como hipercortisolemia, perda de ritmicidade e níveis elevados de cortisol 

(Hinds e Sanchez, 2022). Distúrbios no eixo HPA, induzidos pelo estresse, têm sido 

associados à depressão devido ao aumento da produção de cortisol e à inibição 

insuficiente do feedback regulatório do receptor de glicocorticoide (Keller et al., 2016). 

Além disso, níveis elevados de cortisol têm sido relacionados à gravidade da depressão, 

especialmente nos casos de depressão melancólica (Mickey et al., 2018). Pacientes 

com depressão que não conseguem normalizar o eixo HPA após o tratamento tendem 

a apresentar piores resultados clínicos e prognósticos (Nandam et al., 2020). Contudo, 

estudos anteriores indicaram que tratamentos direcionados à regulação do eixo HPA, 

como os antagonistas do receptor de glicocorticoide, não são eficazes em aliviar os 

sintomas depressivos (Aubry, 2013). Interessantemente, estudos pré-clínicos sugerem 

que uma dieta rica em gorduras durante a gestação e a lactação impacta 

significativamente a atividade do eixo HPA na prole adulta, tanto em situações de 

repouso quanto sob estresse. As alterações induzidas pelo consumo materno de HFD 

não apenas influenciam a resposta ao estresse na vida adulta, mas também podem 

contribuir para o desenvolvimento de um fenótipo mais suscetível a distúrbios 

comportamentais e outros problemas de saúde na fase adulta (Lin et al., 2015; Niu et 

al., 2019; Sasaki et al., 2014).  

Embora a disfunção do eixo HPA e os níveis elevados de cortisol desempenhem um 

papel importante na fisiopatologia da depressão e da ansiedade, outros fatores também 

são essenciais para entender os mecanismos subjacentes à doença, como as 

neurotrofinas e a neurogênese. As evidências de redução dos níveis das neurotrofinas 

em várias áreas do cérebro, como o hipocampo, em pacientes com depressão, apoiam 

a hipótese de que a diminuição de fatores neurotróficos que regulam a plasticidade no 

cérebro adulto pode contribuir para o desenvolvimento da depressão (Park e Poo, 2013; 

Reichardt, 2006). Muitos estudos têm se concentrado no BDNF, que desempenha 

papéis cruciais em diferentes funções do sistema nervoso, como plasticidade sináptica, 

diferenciação, manutenção, crescimento neuronal e reparo (Binder e Scharfman, 2004). 

A teoria neurotrófica da depressão propõe que níveis reduzidos de BDNF no hipocampo 

estão relacionados à depressão induzida por estresse, e que esses níveis podem ser 
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elevados com o uso de antidepressivos (Martinowich et al., 2007). Além disso, 

descobriu-se que agentes que modulam o sistema BDNF produzem efeitos 

semelhantes aos dos antidepressivos (Zhang et al., 2019). Pesquisas crescentes 

indicam que os níveis de BDNF estão reduzidos no sangue periférico de pacientes com 

depressão, conforme observado em estudos post-mortem, e alguns relatos sugerem 

que o tratamento antidepressivo pode normalizar essa diminuição (Bocchio-Chiavetto 

et al., 2010; Satomura et al., 2011). Além disso, investigações em cérebros humanos 

post-mortem indicaram o envolvimento do BDNF na fisiopatologia de transtornos 

relacionados à ansiedade (Carola et al., 2008). Há também evidências de que a 

interação entre o BDNF e seu receptor está associada à depressão resistente ao 

tratamento (Satomura et al., 2011). A depleção de BDNF parece prejudicar a 

neurogênese, contribuindo para o desenvolvimento do TDM, e o tratamento 

antidepressivo pode atenuar os sintomas dessa condição ao aumentar os níveis de 

BDNF no cérebro. Neste contexto, estudos pré-clínicos têm demonstrado que o 

consumo de uma dieta rica em gorduras está fortemente associado à redução dos 

níveis de BDNF em regiões-chave do cérebro, como o hipocampo e o córtex pré-frontal. 

Esse efeito é mediado pela ativação da neuroinflamação, resultando em 

comportamentos semelhantes à depressão e ansiedade, além de déficits cognitivos 

significativos enquanto tratamentos que se baseiam no aumento da expressão de 

BDNF conseguem reverter os sintomas depressivos e ansiosos (Li et al., 2022; Zuo et 

al., 2024). 

Interessantemente, nas últimas duas décadas, a hipótese de que a inflamação 

desempenha um papel importante na patogênese e fisiopatologia da depressão e 

ansiedade se tornou cada vez mais relevante (Peirce e Alviña, 2019). Estudos 

revelaram que a depressão é mais prevalente em pacientes com doenças autoimunes 

ou infecciosas em comparação com a população geral (Jeon e Kim, 2017). Além disso, 

indivíduos sem diagnóstico de depressão podem manifestar sintomas depressivos 

quando expostos a citocinas, sendo que os antidepressivos ajudam a aliviar esse 

desconforto (Miller e Raison, 2016). Os marcadores inflamatórios periféricos não 

apenas influenciam o estado de ativação imunológica no SNC, impactando o 

comportamento, mas também podem servir como indicadores biológicos para avaliar a 

eficácia de terapias antidepressivas e ansiolíticas (Haroon et al., 2018). Em estudo 

longitudinal prospectivo, Li e colaboradores demonstraram que os níveis de TNF-α eram 

mais elevados em pacientes com TDM antes do tratamento em comparação com 

controles saudáveis. Após o tratamento com venlafaxina, observou-se uma redução 

significativa nos níveis de TNF-α, sendo que essa diminuição foi ainda mais 

pronunciada no grupo de pacientes que responderam positivamente ao tratamento (Li 
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et al., 2013). Além disso, Syed e colaboradores descobriram que os marcadores 

inflamatórios em pacientes com depressão não tratados eram mais elevados. 

Entretanto,  o tratamento antidepressivo reduziu a produção de citocinas inflamatórias 

e aumentou os níveis das anti-inflamatórias (Syed et al., 2018). Uma revisão sistemática 

e meta-análise sugeriu que os inibidores de citocinas, como os anticorpos monoclonais, 

podem ter efeito antidepressivo ao bloquear a ação das citocinas (Bavaresco et al., 

2020). Um desequilíbrio entre citocinas pró-inflamatórias e anti-inflamatórias pode, 

assim, contribuir para a fisiopatologia da depressão. 

O desequilíbrio entre citocinas pró-inflamatórias e anti-inflamatórias e o impacto da 

inflamação no SNC não se limitam à modulação de neurotransmissores e hormônios, 

mas também afetam as células gliais, como a micróglia e os astrócitos, que 

desempenham papéis cruciais na fisiopatologia da depressão e da ansiedade (Wang et 

al., 2022; Zhang et al., 2010). A ativação dessas células gliais em resposta à inflamação 

pode alterar a homeostase do SNC, afetando a comunicação neuronal, a plasticidade 

sináptica e a resposta ao estresse, agravando os sintomas depressivos e ansiosos. 

Estudos têm mostrado que a microglia, ao ser ativada, libera citocinas pró-inflamatórias 

que podem exacerbar a neuroinflamação, enquanto os astrócitos desempenham um 

papel fundamental na modulação do ambiente neuronal, afetando tanto a função 

sináptica quanto a neurogênese (Li et al., 2021; Prinz e Priller, 2014). Um estudo 

conduzido por Weng e colaboradores observou um aumento no número de microglia 

no córtex pré-frontal (PFC) de camundongos tratados com LPS por via intraperitoneal, 

o que também esteve associado ao agravamento do comportamento depressivo dos 

animais além do aumento expressão dos genes IL-1, IL-6 e TNF-α no PFC dos 

camundongos (Weng et al., 2019).  Além disso, um estudo pré-clínico relatou que os a 

ativação dos astrócitos estão envolvidos na patogênese da inflamação induzida por 

estresse, associando-os aos sintomas depressivos e ansiosos (Virmani et al., 2021). A 

ativação da micróglia e do astrócito, por meio da liberação excessiva de fatores pró-

inflamatórios e citotocinas, pode assim contribuir para o desenvolvimento gradual de 

comportamentos depressivos, destacando a relação entre a neuroinflamação e a 

manifestação de sintomas depressivos (Sochocka et al., 2016). Evidências sugerem 

que a ativação da micróglia é um fator crucial na desregulação da homeostase 

energética, agravando a resistência à insulina. Logo após a introdução de uma dieta 

rica em gordura, a micróglia hipotalâmica sofre alterações morfológicas e funcionais em 

resposta ao excesso de gorduras saturadas. Astrócitos e micróglia respondem 

rapidamente a sobrecarga inflamatória, desencadeando inflamação e exibindo gliose, 

possivelmente como uma tentativa de prevenir lesões neuronais (García-Cáceres et al., 

2013; Maldonado-Ruiz et al., 2017). No entanto, a exposição crônica à dieta rica em 
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gordura pode sobrecarregar a capacidade protetora da glia, tornando os danos e perdas 

neuronais inevitáveis. Um exemplo disso é a inflamação hipotalâmica prolongada 

induzida pela HFD, que leva ao aumento da gliose, associado ao aumento da apoptose 

neuronal no hipotálamo (Mendes et al., 2018).  Assim, a interação entre a inflamação 

periférica e a resposta das células gliais no SNC oferece uma nova perspectiva para 

entender os mecanismos subjacentes à depressão e à ansiedade, e para o 

desenvolvimento de terapias mais eficazes.  

Por fim, o excesso de citocinas pró-inflamatórias, tais como IL-1β e TNF-α, pode 

induzir a síntese da indoleamina 2,3-dioxigenase em células do sistema imunológico, 

como macrófagos e células dendríticas, o que altera consideravelmente a biossíntese 

das monoaminas, como serotonina e dopamina, que são essenciais para a regulação 

do humor e da função cognitiva (Xu et al., 2015). Além disso, a superexpressão da IDO 

redireciona o triptofano (Try) da via biossintética da serotonina para a produção de 

outros catabólitos do triptofano (denominados TRYCATs), que têm propriedades 

neuroativas associadas a sintomas depressivos (Raison et al., 2010). A figura 3 ilustra 

os principais destinos do triptofano no cérebro. 

Figura 3. Rotas metabólicas do Triptofano 

Legenda: Dependendo das necessidades do organismo e do estado inflamatório, o 

Try pode ser direcionado para a síntese de serotonina, que pode, posteriormente, ser 

convertida em melatonina. No entanto, quando a IDO estar superexpressa, o triptofano 

pode ser convertido em catabólitos, alguns dos quais possuem efeitos neurotóxicos. 

IDO: indoleamina 2,3-dioxigenase; TDO: triptofano 2,3-dioxigenase; KAT: quinurenina 

aminotransferase; KMO: quinurenina 3-monooxigenase; 3-OH-KYN: 3- 
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hidroxiquinurenina; 3-HAO: 3-ácido hidroxiantranílicooxigenase; QPRT: 

fosfolibosiltransferase de quinolinato; NaMN: mononucleotídeo de nicotinamida; 

NMNAT: nicotinamida mononucleotídicaadeniltransferase; NAD:Nicotinamida adenina 

dinucleótido; TH: triptofano-hidroxilase; 5-HTP: 5-hidroxi- L-triptofano; AADC: L-

aminoácido aromáticodescarboxilase; 5-HT: 5-hidroxitriptamina; 5-HIAA: ácido 5-

hidroxiindoleatico; MAO: monoamina oxidase; AA-NAT: N- acetiltransferase de 

aralquilamina; NAS: N-acetilserotonina; HIOMT:hidroxindol O- metiltransferase. 

Fonte: Chaves Filho et al., (2018) 

A 3-hidroxiquinurenina e o ácido quinolínico são dois exemplos de TRYCATs 

que, quando presentes em excesso, podem induzir a morte neuronal, como 

demonstrado em estudos sobre doenças neuropsiquiátricas e neurodegenerativas 

(Gulaj et al., 2010; Stone et al., 2012). De forma interessante, Gibney e colaboradores 

(2013) observaram que o processo neuroinflamatório foi capaz de induzir uma redução 

no BDNF, um aumento na expressão da IDO e uma ativação desregulada da micróglia 

no hipocampo de camundongos. Esses achados sugerem que a ativação da IDO, 

especialmente no hipocampo, tem um papel central na mediação dos efeitos no humor 

induzidos por citocinas. A ingestão excessiva de uma dieta rica em gordura pode elevar 

os níveis sanguíneos de LPS, e já foi relatado que indivíduos obesos apresentam 

concentrações de lipopolissacarídeo mais altas do que os indivíduos magros (Trøseid 

et al., 2013). Esse aumento contribui para o estado inflamatório crônico associado à 

obesidade, o que pode resultar em uma maior expressão da IDO e, consequentemente, 

um aumento na quantidade de TRYCATs (André et al., 2014). Assim, espera-se que a 

presença sistêmica de LPS seja um fator responsável pelos transtornos de humor tanto 

em animais quanto em humanos  (Deng et al., 2012; Grigoleit et al., 2011; Stevens et 

al., 2018; Sulakhiya et al., 2016; Yin et al., 2023).  

Essa influência da inflamação periférica sobre o cérebro pode ocorrer, em parte, 

por meio da modulação de neurotransmissores essenciais ao funcionamento neural. 

Nesse cenário, o glutamato, como principal neurotransmissor excitatório, desempenha 

um papel essencial na plasticidade sináptica e no humor (Zaghmi et al., 2022). Estudos 

sugerem que a depressão está intimamente ligada ao sistema glutamatérgico, com 

níveis elevados de glutamato observados no sangue e no cérebro de pacientes 

deprimidos (Chen et al., 2022; Li et al., 2019). Além disso, distúrbios na subunidade do 

receptor N-metil-D-aspartato (NMDAR) foram identificados como uma característica da 

depressão, e a inibição da função do NMDAR tem mostrado efeitos antidepressivos, 

além de proteger os neurônios do hipocampo contra alterações morfológicas induzidas 

pelo estresse (Gray et al., 2015; Musazzi et al., 2013). Além disso, alguns 
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antidepressivos têm efeitos semelhantes ao afetar a via AMPAR, sugerindo que a 

modulação do sistema glutamatérgico é uma estratégia promissora no tratamento da 

depressão (Gould et al., 2008). 

Figura 4. As possíveis vias de sinalização da inflamação 

 

Legenda: A depressão está relacionada a vários fatores, como desequilíbrios 

oxidante-antioxidante, disfunção mitocondrial e inflamação. A deficiência de serotonina 

e o estresse desempenham papéis críticos em sua etiologia. O eixo HPA, responsável 

pela resposta ao estresse, e a redução de fatores neurotróficos, como no hipocampo, 

contribuem para a doença. Além disso, distúrbios metabólicos e a interação entre 

microbiota-intestino-cérebro também influenciam o humor e o comportamento, 

impactando a atividade cerebral. BDNF: Brain-derived neurotrophic fator (Fator 

Neurotrófico Derivado do Cérebro); HPA Axis: Hypothalamic-pituitary-adrenal axis (Eixo 

Hipotálamo-Hipófise-Adrenal). 

Fonte: (Tian et al., 2022) 

Uma das conexões importantes entre a obesidade, depressão e ansiedade é a 

interação entre os fatores biológicos, comportamentais e ambientais. A obesidade é 
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frequentemente associada a condições psiquiátricas, como depressão e ansiedade, 

criando um ciclo vicioso no qual o desenvolvimento de uma condição pode agravar a 

outra (Jorm et al., 2003; Lorena et al., 2021). Estudos demonstram que a obesidade 

pode afetar a função do eixo HPA (Bose et al., 2009), aumentar a inflamação sistêmica 

e alterar a função do SNC (Lorena et al., 2021), fatores estes frequentemente 

envolvidos tanto na fisiopatologia da depressão quanto da ansiedade. Além disso, a 

ativação da neuroinflamação e a disfunção nas células gliais, como microglia e 

astrócitos, podem exacerbar a condição, promovendo alterações no comportamento e 

na resposta ao estresse (Ramirez et al., 2016; Stein et al., 2017). A obesidade pode, 

portanto, agravar os sintomas desses transtornos psiquiátricos, ao passo que a 

depressão e a ansiedade podem contribuir para comportamentos alimentares 

desregulados, perpetuando o ciclo de obesidade e agravamento dos sintomas de 

depressão e ansiedade (Amiri S; Behnezhad S, 2019). 

4.3  EIXO MICROBIOTA-INTESTINO-CÉREBRO E SUA INFLUÊNCIA NA 

DEPRESSÃO E ANSIEDADE 

Os seres humanos hospedam milhões de microrganismos, presentes tanto nas 

superfícies do corpo quanto nas cavidades. A interação entre humanos e 

microrganismos proporciona benefícios mútuos e é ecologicamente classificada como 

simbiose (Martin B; Schwab E, 2012). Diversas comunidades microbianas colonizam 

o trato respiratório, gastrointestinal e genital, desempenhando funções especializadas 

e com organização distinta (Lozupone et al., 2012). O termo mais apropriado para 

designar essas comunidades é "microbiota", já que expressões como "flora" ou 

"microflora" originalmente se referiam a plantas (Pace, 2009). 

A microbiota intestinal adulta é composta por mais de 100 trilhões de 

microrganismos, sendo a maioria pertencente ao domínio das bactérias, com 

predominância de colonização no cólon (10¹¹ - 10¹² células/ml) (Bermon et al., 2015). 

O intestino grosso, em especial o colón, é considerado a região mais favorável do trato 

gastrointestinal para o desenvolvimento de espécies microbianas, já que o estômago 

e o intestino delgado apresentam fatores que dificultam o crescimento desses 

organismos, como a presença de suco gástrico e sais biliares (Guarner e Malagelada, 

2003).  Estima-se que a microbiota intestinal humana seja composta por, pelo menos, 

1000 espécies bacterianas conhecidas, responsáveis pela codificação de mais de 3 

milhões de genes, o que corresponde a um número 100 vezes maior do que os genes 

do genoma humano (Bermon et al., 2015; Ley et al., 2006). 

Estudos moleculares revelaram que os principais táxons da microbiota intestinal 
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humana e de camundongos são Firmicutes, Bacteroidetes, Proteobacteria e 

Actinomycetes, correspondendo a 64%, 23%, 8% e 3% dessa microbiota, 

respectivamente. Mais de 90% dos táxons bacterianos pertencem a dois grandes filos: 

Bacteroidetes e Firmicutes (Ley et al., 2006; Zupancic et al., 2012). Além disso, 

análises de amostras fecais humanas identificaram táxons filogeneticamente 

relacionados ao filo Archaea, como o Methanobrevibacter smithii (Arumugam et al., 

2011). Também fazem parte dessa microbiota organismos eucariotos, como fungos, e 

até mesmo vírus, o que contribui para sua elevada diversidade (Qin et al., 2010). 

Alterações na composição dessa microbiota estão associadas a mudanças nas 

funções microbianas, podendo levar ao desenvolvimento de diversas doenças, como 

será discutido posteriormente. 

Por se tratar de uma relação simbiótica, os microrganismos hospedados no 

colón recebem continuamente um suprimento de água e nutrientes, enquanto, em 

contrapartida, proporcionam diversos benefícios à saúde humana (Bäckhed et al., 

2005). Esses benefícios, por exemplo, não são observados em camundongos livres 

de microrganismos, conhecidos como germ-free, que apresentam diferenças 

fisiológicas e anatômicas significativas em relação a animais com microbiota. Essas 

diferenças incluem maior necessidade nutricional, alterações no peso de órgãos como 

o coração, menor espessura da parede intestinal, menor número de linfonodos, entre 

outras (Bamola et al., 2017). A microbiota intestinal pode influenciar a homeostase de 

várias regiões do corpo, incluindo o SNC, com evidências sugerindo que ela pode 

modificar funções cerebrais levando a neuroinflamação. Neste sentido, o eixo 

intestino-cérebro é uma via de comunicação bidirecional complexa entre esses dois 

órgãos, envolvendo diversos intermediários, como hormônios, citocinas imunológicas 

e até sinais neurais (Rhee et al., 2009). Esse eixo é composto por fibras e neurônios 

do Sistema Nervoso Autônomo (SNA), pelo eixo HPA e pela microbiota intestinal. Os 

benefícios proporcionados pela microbiota podem ser agrupados em três principais 

funções: metabólicas, protetoras e neurotróficas (Silva et al., 2020). 

A microbiota intestinal desempenha um papel crucial na metabolização de 

componentes não digeríveis, como certos polissacarídeos. No intestino distal, os 

microrganismos fermentam esses carboidratos, resultando na produção de etanol, 

gases (como H₂, CO₂ e CH₄) e, principalmente, SCFA (Morrison e Preston, 2016; Ríos-

Covián et al., 2016). Os principais SCFA produzidos são acetato (2 carbonos), 

propionato (3 carbonos) e butirato (4 carbonos), que, além de serem metabolizados 

pelos colonócitos, exercem importantes efeitos metabólicos no organismo (Bloemen 

et al., 2009). Esses ácidos graxos são capazes de regular o metabolismo hepático de 
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lipídeos e glicose (Den Besten et al., 2015; Nishina e Freedland, 1990) e de reduzir os 

níveis de insulina por meio da ativação do Receptor de Ácidos Graxos Livres 2 (Free 

Fatty Acid Receptor 2 e 3 - FFAR2/3) também conhecidos por receptores acoplados a 

proteína G (GPR – 41, 43 e 109) (Silva et al., 2020). Os SCFA também têm a 

capacidade de exercer efeitos neuroendócrinos, auxiliando no controle do apetite e do 

consumo alimentar (Byrne et al., 2015; Chambers et al., 2015). Além disso, já se sabe 

que esses ácidos graxos podem regular o sistema imunológico e a resposta 

inflamatória de diversas maneiras, como por meio da inibição da ativação do NF-κB e 

da desacetilação das histonas (HDAc)(Arpaia et al., 2013; Lührs et al., 2002). 

A relação entre microbiota e imunidade está bem estabelecida e envolve várias 

vias importantes de sinalização. Além dos SCFA mencionados anteriormente, a 

microbiota desempenha um papel crucial na prevenção da invasão de diversos 

agentes patogênicos, como o Clostridium difficile (Hooper e Macpherson, 2010; 

Lawley et al., 2009). Isso ocorre devido à competição pela região da borda em escova 

no intestino e à oferta de nutrientes aos microrganismos. Além disso, algumas 

bactérias produzem substâncias antimicrobianas, como as bacteriocinas, que inibem 

o crescimento de outros microrganismos (Dobson et al., 2012). Interessante, a 

microbiota intestinal também desempenha um papel importante na proliferação das 

células epiteliais intestinais, visto que, em camundongos germ-free, as criptas 

intestinais são menores e apresentam menos células-tronco quando comparados aos 

animais normais (Sommer et al., 2015; Von Frieling et al., 2018). Os microrganismos 

também podem regular o desenvolvimento das células imunológicas T CD4+ para 

produzirem um perfil de citocinas Th17 nos folículos linfóides intestinais (Ivanov et al., 

2008). Por sua vez, animais germ-free apresentam os órgãos linfóides 

subdesenvolvidos, o que os torna mais suscetíveis a infecções (Fiebiger et al., 2016). 

Os SCFA produzidos da microbiota ativam células neuroendócrinas intestinais que 

produzem peptídeos reguladores do apetite como o GLP-1 (e o PYY (Peptídeo YY)) 

(De Silva A; Bloom S, 2012). 

Além da sinalização intestinal, a microbiota consegue influenciar a fisiologia 

cerebral, afetando a atividade de neurônios e células da glia tanto do intestino como 

do SNC por meio de várias conexões.  O processo inflamatório intestinal ativa as 

células gliais entéricas (EGCs), que compartilham similaridades com astrócitos e, após 

ativação, liberam citocinas pró-inflamatórias, como TNF-α, IL-1β e óxido nítrico 

(Seguella e Gulbransen, 2021). Além disso, o intestino inflamado de pacientes com 

barreira epitelial intestinal prejudicada está relacionado à diminuição dos níveis de 

Fator Neurotrófico Derivado da Glia produzido pelas EGCs, o que está associado à 
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redução da proteína juncional desmossômica desmogleína 2, aumento de p38 MAPK 

e citoqueratinas (Meir et al., 2019).  Essas citocinas ativam o nervo vago, o qual atua 

como principal mediador entre as inervações extrínsecas do intestino e o cérebro, 

além de encaminhar fibras parassimpáticas para o trato gastrointestinal (Beiroa et al., 

2014; Foster et al., 2017). Esta ativação do nervo vago modula o eixo HPA, 

estabelecendo uma conexão entre a inflamação intestinal e a resposta neuroendócrina 

ao estresse. O eixo HPA é uma via importante porque prepara o organismo 

fisicamente para situações de estresse. Entre suas várias funções, ele pode influenciar 

o trato gastrointestinal, afetando a permeabilidade intestinal e a inflamação (Czimmer 

et al., 2006; Zheng et al., 2013). No entanto, a ativação excessiva desse eixo está 

associada à perturbação da microbiota (Weerth, 2017) e alterações cerebrais 

(Jacobson, 2014). Por fim, a microbiota intestinal contribui para a regulação do eixo 

cérebro-intestino por meio do controle das citocinas inflamatórias (Desbonnet et al., 

2008), sensibilização do nervo vago (Bravo et al., 2011) e, como já mencionado, pela 

produção ou regulação de compostos neuroendócrinos (Burokas et al., 2017). 

Consequentemente, a alteração da microbiota leva a modificação da sinalização 

desse eixo está associada a doenças metabólicas, como obesidade e diabetes 

(Lartigue et al., 2011; Grasset et al., 2017) e a transtornos neuropsiquiátricos, como 

depressão e ansiedade (Cryan e O’Mahony, 2011; Grenham et al., 2011). 

Disbiose é definida como uma alteração na estrutura das comunidades 

microbianas residentes, acompanhada por uma diminuição na diversidade microbiana 

e um aumento de microrganismos patogênicos em relação à microbiota de indivíduos 

saudáveis (Petersen C; Round J, 2014). Diversos estudos demonstraram 

modificações na estrutura da microbiota em doenças inflamatórias intestinais, como a 

colite ulcerativa (Aas et al., 2003), diabetes (Karlsson et al., 2013), asma 

(Abrahamsson et al., 2014) e transtornos neuropsiquiátricas, como o autismo, 

depressão e ansiedade (Grochowska et al., 2018). Há vários fatores que podem 

causar a alteração da microbiota, incluindo a genética do indivíduo, infecções, terapias 

medicamentosas (especialmente com antibióticos) e dieta (Jumpertz et al., 2011; Kau 

et al., 2011; Penders et al., 2006).  

O consumo de dietas ricas em gorduras já mostrou modificar a estrutura da 

microbiota intestinal em humanos e modelos experimentais. Um exemplo disso é a 

alteração na proporção entre os filos Firmicutes e Bacteroidetes. Estudos 

documentaram que uma dieta hiperlipídica (35% a 45% de gordura) resulta em uma 

diminuição dos Bacteroidetes e um aumento dos Firmicutes (Hildebrandt et al., 2009; 

C. Zhang et al., 2012). Além disso, dietas ricas em lipídios reduzem a diversidade 
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microbiana em comparação com animais alimentados com dietas normais (Parks et 

al., 2013). Em humanos, a composição dietética também pode alterar a estrutura 

microbiana, aumentando a razão Firmicutes/Bacteroidetes e a diversidade (David et 

al., 2014; Di Filippo et al., 2013). Além das modificações mencionadas, as dietas 

ocidentais têm sido associadas ao aumento da permeabilidade intestinal por meio de 

mecanismos já descritos na literatura. Lam e colaboradores (2012) relataram que o 

consumo de uma dieta rica em gordura em camundongos C57BL-6 resultou em uma 

diminuição na expressão das proteínas de junção estreita no cólon proximal. Da 

mesma forma, Cani e colaboradores (2008) mostraram que dietas obesogênicas 

levavam à diminuição das proteínas da zona de oclusão e das junções apertadas (do 

inglês, tight junctions). A redução dessas proteínas pode ser regida por um processo 

de feedback negativo relacionado ao aumento das citocinas pró-inflamatórias na 

disbiose (Al-Sadi et al., 2010; Ye et al., 2006). Adicionalmente, a disbiose intestinal, 

leva à redução dos SFCAs, a qual está diretamente relacionada à diminuição da 

expressão de proteínas das junções intercelulares das células epiteliais intestinais, 

como a ocludina, a claudina e a zonula occludens (ZO-1). Esse comprometimento 

estrutural favorece o aumento da permeabilidade intestinal, permitindo a translocação 

de microrganismos e seus produtos para a circulação sistêmica, o que pode contribuir 

para processos inflamatórios e doenças associadas à disfunção da barreira intestinal 

(Ma et al., 2022). 

Em função do impacto das dietas hiperlipídicas no desenvolvimento de 

bactérias Gram-negativas, observa-se um aumento nos níveis de LPS no plasma de 

animais obesos (Kim et al., 2012). O LPS pode ser facilmente translocado para a 

circulação sistêmica, sendo reconhecido pelos TLR-4 tanto no intestino quanto na 

periferia, o que induz a ativação da via de sinalização NF-κB, responsável pela síntese 

de citocinas e quimiocinas pró-inflamatórias (Hawkesworth et al., 2013). Níveis 

elevados de LPS desempenham um papel chave no desenvolvimento de doenças 

crônicas, condição conhecida como endotoxemia metabólica (Cani et al., 2008; 

Ghanim et al., 2009). O TLR-4 também é expresso na micróglia no SNC, e sua 

ativação leva à produção de citocinas pró-inflamatórias como TNF-α e IL-1β, 

resultando em efeitos deletérios previamente mencionados (Beutler, 2000; Mrak e 

Griffin, 2005). A inflamação causada pelo LPS está diretamente relacionada, também, 

ao desenvolvimento de transtornos neuropsiquiátricos, como a depressão e ansiedade 

(André et al., 2014; Lee et al., 2018; Stevens et al., 2018). 

Em resumo, a microbiota intestinal desempenha um papel crucial na regulação do 

eixo intestino-cérebro e na manutenção da saúde geral. Sua alteração, conhecida como 
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disbiose, frequentemente resultante de fatores de estilo de vida, como dietas não 

saudáveis e estresse, está fortemente associada à obesidade e suas consequências 

adversas para o humor. Padrões alimentares saudáveis, como dietas ricas em fibras e 

vegetais, aumentam a diversidade da microbiota intestinal e promovem a integridade 

epitelial intestinal, a homeostase imunológica e a função normal do SNC por meio do 

eixo intestino-cérebro. Por outro lado, dietas ocidentais, ricas em açúcares simples e 

gorduras saturadas, tendem a reduzir a diversidade microbiana, promover inflamação e 

contribuir para a síndrome do intestino permeável. Esse padrão alimentar facilita a 

translocação de componentes bacterianos Gram-negativos, o que aumenta a inflamação 

periférica e gera neuroinflamação, resultando em alterações no SNC. Esse processo está 

bem ilustrado na figura 5, que exemplifica o impacto das dietas ocidentais na microbiota 

intestinal e nas consequências para o sistema nervoso. 

Figura 5. Relação entre a microbiota intestinal e o eixo intestino-cérebro na obesidade e 
nos transtornos mentais relacionados. 

 

 

 

 
Legenda: A microbiota intestinal desempenha um papel crucial na modulação do eixo 

intestino-cérebro e na manutenção da saúde humana. No entanto, a disbiose, que pode ser 

causada por fatores como dietas inconvenientes, é fortemente associada à obesidade e aos 

seus efeitos prejudiciais sobre o humor e a cognição. Dietas hiperlipídicas alteram a 

diversidade microbiana, promovem inflamação por meio da ativação do TLR-4 e 

comprometem a integridade epitelial intestinal, facilitando a translocação de toxinas 

bacterianas como o LPS. Esse processo intensifica ainda mais o estado inflamatório da 

obesidade, resultando em neuroinflamação e alterações cognitivas. Por outro lado, dietas ricas 

em fibras aumentam a diversidade da microbiota intestinal, contribuindo para a preservação 

da integridade do epitélio intestinal, a manutenção da imunidade normal e o equilíbrio saudável 
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do SNC. Activation= Ativação; Altered levels of neurotransmitters = Niveis alterados de 

neurotransmissores; Dysbiosis =Disbiose; Enterocytes= Enterócitos; Eubiosis = Eubiose; 

GABA= Ácido gama-aminobutírico; Gut microbiota = Microbiota intestinal; Healthy CNS 

Function= Função saudável do SNC; Healthy levels of inflammatory cells = Níveis saudáveis 

de células inflamatórias; Healthy diet = Dieta Saudável; Intestinal lumen= Lúmen intestinal; 

Microbial diversity= Diversidade microbiana; Modulation= Modulação Normal tight juntion= 

Tight juntion normal; Normal levels of neurotransmitters = Níveis normais de 

neurotransmissores; Physiologycal imune response= Resposta imune fisiológica; Prebiotics= 

Prebióticos, Probiotics= Probióticos; SCFA (Short Chain Fat Acids) = Ácidos graxos de cadeia 

curta; 5-HT = 5-hidroxitriptamina, 

Fonte: AGUSTÍ, A. et al. 2018 

 

De maneira geral, a dieta hiperlipídica está vinculada ao desenvolvimento tanto da 

obesidade quanto da disbiose, e ambos estão correlacionados ao aumento dos processos 

inflamatórios sistêmicos. Como demonstrado anteriormente, há uma conexão entre o 

intestino e o cérebro por meio de vias neurais, endócrinas e imunológicas, que, quando 

desreguladas, podem afetar estruturas cerebrais como hipocampo e córtex pré-frontal, as 

quais estão ligadas ao humor. Nesse contexto, a modulação da microbiota alterada, por 

meio de intervenções não farmacológicas, pode ser uma estratégia eficaz para reduzir a 

inflamação, auxiliando na prevenção e no tratamento de disfunções cognitivas e outras 

comorbidades associadas à obesidade. Em particular, é importante considerar elementos 

nutricionais com propriedades imunorreguladoras. 

4.4  SOLUÇÕES NATURAIS E ACESSÍVEIS: COMO OS PREBIÓTICOS MODULAM A 

SAÚDE? 

A microbiota desempenha um papel importante na regulação da imunidade, 

contribuindo para esclarecer a etiopatogenia e, até mesmo, atenuar os sintomas 

clássicos de doenças neurodegenerativas e comportamentais, como ansiedade, 

depressão e doença de Alzheimer (DA), entre outras (Collins et al., 2012). Além disso, 

diversos microrganismos presentes em alimentos podem interagir com o microbioma e 

com células do organismo, causando tanto efeitos benéficos quanto prejudiciais (Arora 

et al., 2013). Dentre esses microrganismos, destacam-se os probióticos, conhecidos 

por seus impactos positivos no organismo. De acordo com a Associação Científica 

Internacional para Probióticos e Prebióticos (ISAPP), probióticos são definidos como 

microrganismos vivos que, quando consumidos em quantidades adequadas, promovem 

benefícios à saúde do hospedeiro (Gibson et al., 2017).Essa ideia se baseia nas 

observações de Élie Metchnikoff em 1907, que associou o consumo de produtos lácteos 

fermentados à melhoria da saúde em populações de aldeias búlgaras (Mackowiak, 
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2013). 

Diversas espécies de bactérias são utilizadas como probióticos, sendo as mais 

comuns pertencentes aos gêneros Bifidobacterium (Ray et al., 2014) e Lactobacillus 

(Shokryazdan et al., 2014). Já o principal tipo de leveduras, destaca-se Saccharomyces 

boulardii (Kelesidis e Pothoulakis C, 2012). Estudos relatam inúmeros benefícios 

associados ao uso de probióticos, incluindo a redução da intolerância à lactose (Oak e 

Jha, 2019), melhoria da asma (Mennini et al., 2017), controle de disbiose (Ducatelle et 

al., 2015) e auxílio no manejo de doenças crônicas como diabetes e obesidade, por 

meio de mecanismos epigenéticos (Sun e Buys, 2016; Tonucci et al., 2017; Vähämiko 

et al., 2019). 

De forma semelhante aos probióticos, a definição de prebióticos foi inicialmente 

proposta por Gibson e Roberfroid no final do século XX, caracterizando-os como 

componentes alimentares não digeríveis pelo organismo humano, mas que oferecem 

benefícios à saúde ao serem metabolizados por bactérias específicas do cólon (Gibson 

e Roberfroid, 1995). Em 2004, Gibson e colaboradores (2004) estabeleceram três 

critérios essenciais para que um composto seja considerado prebiótico: ser resistente 

à acidez gástrica, à ação de enzimas humanas e não ser absorvido no trato 

gastrointestinal. Além disso, ele deve ser fermentado pela microbiota intestinal e 

promover o crescimento ou a atividade de bactérias benéficas. Posteriormente, 

observou-se que os prebióticos também podem ser aplicados em outras regiões do 

corpo, como pele e vagina, onde exercem efeitos positivos (Ouwehand et al., 2010; 

Reid, 2012). Em 2017, a ISAPP redefiniu o conceito de prebióticos como “um substrato 

utilizado seletivamente por microrganismos do hospedeiro, conferindo benefícios à 

saúde” (Gibson et al., 2017). Entre os prebióticos mais relevantes destacam-se os 

mananoligossacarídeos (MOS), xiloligossacarídeos (XOS), inulina, oligossacarídeos do 

leite humano (HMO), com ênfase especial nos Frutooligossacarídeose 

Galactooligossacarídeos (Gibson et al., 2017).  

A maioria dos prebióticos são de origem vegetal (Campbell et al., 1997) sendo o 

FOS encontrados em frutas, legumes e vegetais como Alcachofra de Jerusalém (10-

15% do peso seco), Batata yacon (3-19% do peso seco), Chicória (5-10% do peso 

seco), Alho (3,6-6% do peso seco), Alho-poró (2,4-8,0% do peso seco), Aspargos (2-

3% do peso seco), Cebola (1,1-7,5% do peso seco) e Trigo (1-4% do peso seco) 

(Macedo et al., 2020). Estas concentrações podem várias conforme o estágio de 

maturação do alimento e o tipo de preparo (cru, cozido ou fervido). No entanto, para 

obter os benefícios associados aos prebióticos relatados na literatura, como melhora 

na saúde intestinal e redução de inflamação, seria necessário consumir quantidades 
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elevadas de alimentos diariamente, o que é inviável. Em contrapartida, suplementos 

concentrados enriquecidos com prebióticos têm sido uma alternativa eficaz para atingir 

as quantidades adequadas. Por isso, a indústria alimentícia já consegue produzir e 

vender a forma isolada de alguns prebiótico, como o FOS.  

A obtenção comercial dos frutooligossacarídeos pode ser realizada a partir de fontes 

vegetais, por meio de extração direta ou por hidrólise enzimática da inulina. A inulina, 

presente em diversas plantas como a chicória e o alho-poró, é frequentemente utilizada 

devido à sua abundância e capacidade de ser transformada em FOS por ação de 

enzimas específicas. Esse processo é amplamente empregado na indústria alimentícia 

para a produção de ingredientes com propriedades prebióticas, que contribuem para a 

saúde intestinal. Neste caso, a síntese de FOS ocorre pela transfrutosilação de resíduos 

de sacarose, mediada pelas enzimas frutosiltransferases ou β-frutofuranosidases 

(Blanch et al., 2011). A estrutura dos produtos dessa reação depende da origem das 

enzimas utilizadas na síntese, as quais podem ser produzidas por fungos como 

Aureobasidium pullulans, Aspergillus niger, Aspergillus japonicus, Aspergillus foetidus, 

Aspergillus oryzae, Aspergillus sydowi, Fusarium oxysporum, Penicillium rugulosum e 

Scopulariopsis brevicaulis, por leveduras como Saccharomyces cerevisiae e por 

bactérias como Bacillus macerans (Antošová e M. Polakovlc, 2001). 

 Por sua vez, os galactooligossacarídeos são oligossacarídeos derivados da 

galactose e estão incluídos na categoria de oligossacarídeos não digeríveis (Non 

Digestible Oligosaccharides - NDO). Esses compostos possuem aprovação como 

aditivos alimentares FOSHU (Foods for Specified Health Use) - Órgão regulamentar de 

saúde Japão (Sanz Valero, 2009). Comercialmente, o GOS consiste em uma mistura 

de diferentes espécies de oligossacarídeos, podendo ser produzido por meio de uma 

reação de transgalactosilação entre lactose e a enzima β-galactosidase. Durante esse 

processo, os subprodutos gerados incluem glicose e galactose (Sanz Valero, 2009). A 

reação ocorre pela transferência de um resíduo de açúcar da porção glicona do 

substrato para outra molécula de lactose. Caso a transferência ocorra para uma 

molécula de água, o resultado será uma reação de hidrólise (Akiyama et al., 2001). A 

composição final do GOS comercial geralmente apresenta mais de 55% de 

oligossacarídeos, cerca de 20% de lactose, 20% de glicose e uma quantidade residual 

de galactose, sendo disponibilizado tanto em forma líquida quanto em pó (C. S. Chen 

et al., 2002). Diversas empresas como a NestléⓇ, BIOLIGOⓇ e BimunoⓇ, produzem o 

GOS a fim de que possam ser incluídos em alimentos como iogurte, pães, cereais e 

bebidas (Grimaldi et al., 2016). Prebióticos se destacam dos probióticos por 

estimularem diversas espécies benéficas, sendo mais eficazes em casos de disbiose 
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multiespécie (Gibson et al., 2004).  

Os FOS e GOS são classificados como prebióticos bifidogênicos devido à sua 

capacidade de estimular o crescimento de bactérias anaeróbias do gênero 

Bifidobacterium tanto em humanos quanto em animais (Liu et al., 2017; Mao et al., 2018; 

Martinez et al., 2013; Wingen et al., 2007). Além disso, esses compostos favorecem o 

desenvolvimento de bactérias gram-positivas produtoras de ácido lático, como 

Lactobacillus spp. (Goderska et al., 2008). A fermentação desses prebióticos por 

bactérias dos gêneros mencionados reduz o pH do cólon, inibindo o crescimento de 

bactérias patogênicas (Arboleya et al., 2016; Orrhage K; Nord C, 2000). De maneira 

geral, os FOS e GOS apresentam benefícios que vão além do trato gastrointestinal, 

impactando positivamente o sistema imunológico, o metabolismo ósseo e lipídico (Reid 

et al., 2017; Savignac et al., 2016; Soleimani et al., 2012; Vulevic et al., 2013; Weaver 

et al., 2011).  

Além dos efeitos periféricos, os probióticos também demonstram a capacidade 

de influenciar positivamente o SNC. Nesse contexto, Dinan, Stanton e Cryan (2015) 

introduziram o termo "psicobióticos" para descrever probióticos que oferecem 

benefícios à saúde mental. De forma semelhante, os prebióticos, ao promoverem o 

crescimento de bactérias benéficas, também podem ser classificados como 

psicobióticos (Sarkar et al., 2016). A literatura destaca diversos prebióticos com 

atividade psicobiótica, como a inulina (Smith et al., 2015), XOS (Chunchai et al., 2018), 

oligossacarídeos de leite humano, como a sialilactose (Oliveros et al., 2018; Sakai et 

al., 2006), e, principalmente, FOS e GOS(de Paiva et al., 2023). 

Diversos estudos pré-clínicos sugerem que a administração de prebióticos nas 

fases iniciais do desenvolvimento pode gerar efeitos neurológicos positivos na vida 

adulta, mediando esses benefícios por meio da redução de processos pró-inflamatórios 

e de ações diretas no SNC. Por exemplo, Williams e colaboradores (2016) 

demonstraram que ratos neonatos tratados com GOS entre 19 e 53 dias apresentaram 

maior expressão da subunidade N2A do receptor N-metil-d-aspartato (NMDAR), BDNF 

e sinaptofisina (SYN) no hipocampo, favorecendo a neurotransmissão e a plasticidade 

sináptica. Resultados semelhantes foram observados por Savignac e colaboradores 

(2013) que relataram maior expressão de BDNF e subunidades NMDAR (NR1 e NR2) 

no hipocampo e córtex frontal de camundongos alimentados com FOS e GOS por cinco 

semanas. Além disso, estudos apontam uma conexão entre a administração de GOS e 

alterações hormonais periféricas. A suplementação de GOS em ratos aumentou os 

níveis plasmáticos do hormônio intestinal PYY, sugerindo que a elevação da expressão 

de BDNF no cérebro pode ser mediada por esse hormônio. Mais recentemente, Gronier 
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e colaboradores (2018)  identificaram que a ingestão de GOS por três semanas em 

ratos Sprague-Dawley aumentou as respostas neuronais ao NMDA e mitigou os danos 

causados pelo antagonista farmacológico do receptor NMDA, HA-966, promovendo um 

efeito pró-cognitivo associado ao NMDA. 

Chen e colaboradores (2017) demonstraram que o FOS aumenta as 

concentrações de neurotransmissores como acetilcolina, serotonina e adrenalina, além 

de atenuar danos na região CA1 do hipocampo, reduzindo déficits cognitivos em 

modelos animais com DA. Em outro estudo com camundongos APP/PS1, Sun e 

colaboradores (2019) observaram que o tratamento com FOS por seis semanas 

melhorou a cognição, avaliada pelo desempenho no Labirinto Aquático de Morris, um 

efeito associado ao aumento dos níveis de SYN e da proteína de densidade pós-

sináptica (em inglês, Postsynaptic Density protein 95 - PSD-95), importantes para a 

plasticidade sináptica. Além disso, Burokas e colaboradores (2017) demonstraram que 

o tratamento com FOS e GOS por 3 semanas em camundongos C57BL/6 reverteu 

comportamentos semelhante a depressão e ansiedade em um modelo de estresse 

crônico, com redução dos níveis plasmáticos de corticosterona, aumento da expressão 

dos receptores de BDNF, GABAB1 e do GABAB2 no hipocampo, além de diminuição 

da expressão do receptor glicocorticoide no hipotálamo. No córtex pré-frontal, os 

prebióticos reduziram os níveis plasmáticos de triptofano e elevaram os níveis de 

serotonina  

Diante das evidências apresentadas, os prebióticos, em especial FOS e GOS, 

emergem como alternativas naturais e acessíveis para a modulação da microbiota 

intestinal, impactando positivamente não apenas a saúde gastrointestinal, mas também 

a função imunológica, metabólica e neurológica. A associação de FOS e GOS 

apresenta uma maior capacidade de estimular seletivamente o crescimento de 

microrganismos benéficos, como Lactobacilos e Bifidobactérias, e influenciar a 

comunicação entre o intestino e o cérebro reforça seu papel como aliados na promoção 

da saúde mental e na prevenção de doenças crônicas. Embora o consumo de 

prebióticos através da alimentação seja um caminho viável, evidências científicas sobre 

seu impacto específico na depressão e ansiedade quando comórbidas à obesidade são 

extremamente escassas. Considerando a complexa interação entre o eixo intestino-

cérebro e os mecanismos metabólicos envolvidos, pesquisas futuras nessa área podem 

oferecer novas perspectivas e esperança para o desenvolvimento de abordagens 

complementares no tratamento de pacientes que apresentam essas comorbidades. A 

investigação desses efeitos pode contribuir para estratégias terapêuticas mais 

integrativas, promovendo benefícios tanto para a saúde mental quanto para o equilíbrio 
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metabólico desses indivíduos. 

 
5 RESULTADOS E DISCUSSÃO 

Os resultados dessa tese estão apresentados na forma de artigo. 
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6. CONSIDERAÇÕES FINAIS 

No presente estudo, a intervenção com FOS e GOS promoveu melhorias significativas 

no comportamento dos animais obesos, revertendo sintomas associadas à obesidade, 

como comportamento semelhante a depressão e a ansiedade. Essa melhora foi atribuída 

ao aumento de bactérias acetogênicas, como produtoras de acetato, que desempenham 

papel crucial na restauração do equilíbrio do eixo microbiota-intestino-cérebro. O 

tratamento reduziu a disbiose intestinal e a permeabilidade da barreira intestinal, 

diminuindo a inflamação crônica periférica e central, o que impactou positivamente a 

neuroinflamação. 

Além disso, a administração de FOS e GOS resultou na modulação de vias 

moleculares relacionadas à plasticidade sináptica e neuroproteção. Houve redução dos 

níveis de marcadores pró-inflamatórios (como TNF-α, COX-2, TLR4 e CASP-3), que 

estão superexpressos na obesidade, e da imunoexpressão de marcadores gliais, como 

Iba-1 e GFAP, atenuando a microgliose e astrogliose no hipocampo. Paralelamente, o 

tratamento promoveu a fosforilação do CREB, aumentou a expressão de BDNF, NeuN 

e NGF, e restaurou os marcadores de plasticidade sináptica e neurogênese, como Ki67. 

Essas alterações refletiram em uma melhora funcional nos testes comportamentais: 

os animais tratados com prebióticos apresentaram maior número de alternâncias no 

labirinto em T, evidenciando a recuperação da memória de trabalho, e menor latência 

nos testes de aprendizado espacial. Assim, o FOS e GOS demonstraram não apenas 

promover a neuroproteção, mas também restaurar a função cognitiva, sendo potenciais 

aliados no tratamento de distúrbios cognitivos e emocionais associados à obesidade.
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7. SÚMULA CURRICULAR 
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• Participação em eventos, congressos, exposições e feiras 

I) 2021 

- Capacitação no Uso e Manejo de Animais de Laboratório em formato de ensino a distância, 
coordenado pela Central de Bioterismo do Instituto de Ciências Biomédicas (USP) (CH: 50h) 

- Minicurso online sobre Introdução a procedimentos experimentais em animais de 
laboratório promovido pelo Biotério do IAM/Fiocruz-PE (CH: 10h) 

- Participação como membro titular da banca examinadora do trabalho de conclusão do Curso 
de Ciências Biológicas intitulado “Tadalafil exerce efeitos antidepressivos através da 
modulação da morte e proliferação celular e neurotransmissão glutamatérgica em modelo 
murino de encefalomielite autoimune experimental (EAE)”. 

- Apresentação do trabalho intitulado “O Eixo A Influência Dos Prebióticos Sobre a Ansiedade e 
Depressão em Casos Clínicos” promovido pelo Núcleo de Estudos em Neurociências vinculado 
ao Departamento de Biofísica e Radiobiologia da Universidade Federal de Pernambuco, 
totalizando uma carga horária de uma (01) hora e sendo premiado com o 1o LUGAR. 

II) 2022  

- Ministrante da Oficina com o tema de Acesso venoso e arterial como parte integrante do II 
Workshop Formatec de Ciências Mortuárias (CH:10h). 

- Participante do curso de Avaliação Antropométrica na Prática Clínica (CH: 10h). 

- Apresentação do trabalho Avaliação da memória da cognição e ativação astrocítica em 
camundongos C57BL/6 wild type e LDL -/- submetido na 10a Semana de Biociências e 
Biotecnologia em Saúde e realizado em formato presencial na modalidade Apresentação Oral. 

- Apresentação do trabalho Frutooligossacarídeo e Galactooligossacarídeo melhoram 
neuroinflamação, cognição e comportamento semelhante a depressão em modelo animal 
de obesidade submetido na 10a Semana de Biociências e Biotecnologia em Saúde e realizado 
em formato presencial na modalidade Apresentação Oral. 

- Apresentação do trabalho Avaliação dos efeitos dos prebióticos (fruto-oligossacarídeos e 
galacto-oligossacarídeos) no metabolismo lipídico hepático em modelo animal, submetido 
no 1a Congresso de Fisiologia e Patologia e realizado em formato presencial na modalidade 
Apresentação Poster. 

- Encontro de Neuroimunomodulação (NIM) na qualidade de APRESENTADOR de trabalhos de 
pesquisa apresentados na modalidade oral e banner. 

- Palestrante sobre o tema "Punção venosa: Como perder o medo e realizar uma coleta sem 
erros? promovida pela UNINABUCO. 

- Apresentação do trabalho “Herdabilidade genética como fator de risco e expressão gênica 
variável na esquizofrenia“, submetido no VI Simpósio do Complexo Hospitalar da Universidade 
de Pernambuco, tendo como tema central, “Saúde Digital: desafios e oportunidades” e realizado 
em formato presencial na modalidade Apresentação Oral. 
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- Participação como membro titular da banca examinadora do trabalho de conclusão do Curso 
de Ciências Biológicas intitulado “Análises dos efeitos imunomodulatórios da 
Dietilcarbamazina (DEC) no encéfalo de modelo murino de Hepatite Autoimune 
Experimental”. 

- Participação como membro titular da banca examinadora do trabalho de conclusão do Curso 
de Ciências Biológicas intitulado “O papel dos genes CD80 e CD86 na Tireoidite de 
Hashimoto”. 

- Professor de Química, do projeto de extensão GRADAÇÃO (Pré-Vestibular da Inclusão), de 
maio a setembro de 2020, com carga horária de 60h. 

- Participação do curso básico de Leitura de Lâminas - da morfologia a liberação (CH: 10h). 

- Participação do Curso "NEUROBIOLOGIA DOS TRANSTORNOS MENTAIS" (CH: 40h). 

III) 2023 

- Apresentação do trabalho Potenciais biomarcadores para transtornos psiquiátricos: uma 
revisão de literatura, submetido na XXVIII Semana de Biomedicina: Scientia et Evolutio e 
realizado em formato presencial na modalidade categoria vídeo-pôster. 

- Apresentação do trabalho Quimiorresistência e o direcionamento terapêutico para o perfil 
metabólico de células cancerígenas, submetido na XXVIII Semana de Biomedicina: Scientia 
et Evolutio e realizado em formato presencial na modalidade categoria vídeo-pôster. 

- Participação como membro titular da banca examinadora do trabalho de conclusão de 
Residência intitulado “Residência em Atenção ao Câncer e Cuidados Paliativos”. 

- Ministrante do minicurso "Interpretação de Hemograma" no II WeBiom - Webinar de 
Biomedicina da UFPE, de forma online, contabilizando a carga horária de 4 horas. 

- Coorientação do trabalho de conclusão de Residência intitulado “Ação Do Frutoligossacarídeo 
e Galacto-Oligossacarídeo sobre a Depressão Comórbida em modelo animal de obesidade. 

- Palestrante na XXIX Semana da Biomedicina - Saúde e Desenvolvimento, com o tema 
“Influência do eixo microbiota-instetino-cérebro no desenvolvimento de doenças 
neuropsiquiátricas.  

IV) 2024 

- Apresentação do trabalho "Prebióticos melhoram o metabolismo lipídico e inflamação 
periférica no tecido adiposo via GPR43 em camundongos obesos", submetido na 12a 
Semana de Biociências e Biotecnologia em Saúde e realizado em formato presencial na 
modalidade Apresentação Banner. 

- Apresentação do trabalho "Frutooligossacarídeo e galactooligossacarídeo inibem a 
neuroinflamação hipotalâmica por meio da regulação da via de sinalização irs/pi3k/akt em 
modelo animal diabetes tipo 2 induzido por dieta", submetido na 12a Semana de Biociências 
e Biotecnologia em Saúde e realizado em formato presencial na modalidade Apresentação 
Banner. 

-  Participação como suplente do trabalho de conclusão do Curso de Ciências Biológicas intitulado 
“Efeitos de prebióticos sobre o comprometimento motor, neurodegeneração e 
neuroinflamação em modelo experimental de doença de parkinson”. 

- Apresentação do trabalho "Semaglutida atenua comportamentos semelhantes a ansiedade 
e a depressão e reverte o comprometimento cognitivo em um modelo de camundongo 
com diabetes mellitus tipo 2 por meio do eixo microbiota-intestino-cérebro", submetido na 
12a Semana de Biociências e Biotecnologia em Saúde e realizado em formato presencial na 
modalidade Apresentação Banner. 
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- Curso/evento Biossegurança (2ª Oferta) oferecido pela Fundação Oswaldo Cruz, por meio da 
Unidade Fiocruz Pernambuco com duração de 50 hora(s). 

- Parecerista do Programa Institucional de Bolsas de Iniciação Científica do edital 01/2024 da 
Afya – Faculdade de Ciências Médicas. 

- Apresentação do trabalho "Análogos de GLP-1 na doença de Parkinson: Uma 
revisão", submetido na IV Congresso de Neurofisiologia na modaliAas, J., Gessert, C. 
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