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RESUMO 

 

A natureza intermitente e imprevisível dos ventos impõe desafios significativos à 

operação, despacho e manutenção de parques eólicos, motivo pelo qual métodos de 

previsão precisos tornam-se fundamentais para ganhos operacionais, como redução de 

custos, maior disponibilidade das turbinas e integração segura da energia eólica na matriz 

elétrica brasileira. Partindo desse problema, esta tese propõe novos modelos de previsão 

de potência eólica de curto prazo baseados em arquiteturas Transformer. Foram 

desenvolvidos três modelos originais — T2V-Transformer, T2V-Flowformer e T2V-

Flashformer — que integram a codificação temporal Time2Vec e empregam mecanismos 

alternativos de atenção (FlowAttention e FlashAttention) para reduzir a complexidade 

computacional do FullAttention, mantendo ou ampliando a precisão das previsões. A 

pesquisa foi conduzida com dados reais de turbinas eólicas localizadas no Nordeste do 

Brasil, considerando diferentes condições sazonais e horizontes de previsão de até 12 

horas. Os resultados evidenciaram ganhos consistentes de desempenho, com os modelos 

propostos superando os métodos de referência (ARIMA, MLP, LSTM e DLinear) em 

grande parte dos cenários avaliados, apresentando maior precisão e desempenho nas 

métricas de avaliação utilizadas. A análise de sensibilidade mostrou que a aplicação do 

Time2Vec na entrada do codificador gera impactos positivos expressivos, especialmente 

nas variantes Flowformer e Flashformer. Adicionalmente, observou-se que melhorias 

aparentemente pequenas se tornam relevantes quando acumuladas em longos períodos de 

operação, resultando em benefícios concretos à eficiência energética e à confiabilidade 

operacional. Do ponto de vista metodológico, este trabalho se destaca por apresentar a 

primeira aplicação do mecanismo FlashAttention à previsão de energia eólica, além da 

primeira integração conjunta de Time2Vec com múltiplos mecanismos de atenção nesse 

contexto. A abordagem proposta combina robustez preditiva e viabilidade computacional, 

oferecendo um procedimento metodológico que avança o estado da arte em previsão de 

séries temporais eólicas e fornece subsídios práticos para uma gestão mais inteligente e 

sustentável de parques eólicos. 

Palavras-chave: Energia Eólica; Previsão de Potência; Transformer; Time2Vec; 

FlowAttention; FlashAttention; Séries Temporais. 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

The intermittent and unpredictable nature of wind imposes significant challenges on the 

operation, dispatch, and maintenance of wind farms, making accurate forecasting 

methods essential for achieving operational gains such as cost reduction, increased 

turbine availability, and the secure integration of wind energy into the Brazilian electricity 

grid. Addressing this problem, this thesis proposes new short-term wind power 

forecasting models based on Transformer architectures. Three original models were 

developed—T2V-Transformer, T2V-Flowformer, and T2V-Flashformer—which 

integrate the Time2Vec temporal encoding and employ alternative attention mechanisms 

(FlowAttention and FlashAttention) to reduce the computational complexity of 

FullAttention while maintaining or enhancing predictive accuracy. The research was 

conducted using real data from wind turbines located in Northeastern Brazil, considering 

different seasonal conditions and forecasting horizons of up to 12 hours ahead. The results 

demonstrated consistent performance gains, with the proposed models outperforming 

reference methods (ARIMA, MLP, LSTM, and DLinear) in most evaluated scenarios, 

achieving higher accuracy and superior performance across the assessment metrics. The 

sensitivity analysis revealed that applying Time2Vec at the encoder input yields 

substantial positive impacts, particularly in the Flowformer and Flashformer variants. 

Additionally, seemingly small improvements were shown to become highly relevant 

when accumulated over long periods of continuous operation, resulting in tangible 

benefits for energy efficiency and operational reliability. From a methodological 

perspective, this work stands out for presenting the first application of the FlashAttention 

mechanism to wind power forecasting, as well as the first joint integration of Time2Vec 

with multiple attention mechanisms in this context. The proposed approach combines 

predictive robustness and computational feasibility, offering a methodological framework 

that advances the state of the art in wind time-series forecasting and provides practical 

support for more intelligent and sustainable wind farm management. 

Keywords: Wind Energy; Power Forecast; Transformer; Time2Vec; FlowAttention; 

FlashAttention; Time Series. 
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1 INTRODUÇÃO 

 

A energia eólica consolidou-se como um dos pilares centrais da transição da 

matriz energética global para fontes renováveis, em virtude de seu crescimento acelerado 

e contínuo ao longo das últimas décadas. Ao configurar-se como alternativa limpa e 

sustentável aos combustíveis fósseis, desempenha papel estratégico na mitigação das 

emissões de gases de efeito estufa e na redução dos impactos ambientais associados à 

geração de eletricidade. A expansão de sua utilização evidencia um movimento global 

direcionado tanto ao enfrentamento das mudanças climáticas quanto à promoção da 

segurança energética em longo prazo (ELLABBAN; ABU-RUB; BLAABJERG, 2014; GIELEN 

et al., 2019; LYDIA et al., 2014).  

De acordo com o relatório mais recente da Global Wind Energy Council 

(GWEC, 2025), a capacidade global de energia eólica atingiu 283 GW em 2012 e 319 

GW em 2013. Em 2017 e 2018, essa capacidade já havia se elevado para 

aproximadamente 540 GW e 591 GW, respectivamente. Essa expansão tornou-se 

ainda mais expressiva nos últimos anos, alcançando cerca de 830 GW em 2021, 906 

GW em 2022, 1.021 GW em 2023 e 1.136 GW em 2024. Projeções futuras indicam 

que a tendência de crescimento persistirá, impulsionada por investimentos em novas 

instalações e políticas energéticas de apoio. A Figura 1 ilustra a evolução histórica do 

total de instalações (GW) de energia eólica ao longo dos anos, onde CAGR significa 

Taxa de Crescimento Anual Composta.  

A expectativa é que esse crescimento atinja 3 TW de capacidade eólica 

acumulada até 2030. Esse tipo de energia renovável se apresenta como uma solução 

fundamental para atender às altas demandas por energia elétrica e mitigar os impactos 

ambientais do planeta. Os cinco principais mercados globais para novas instalações 

em 2024 foram: China, EUA, Brasil, Índia e Alemanha. 
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Figura 1 - Desenvolvimento histórico do total de instalações (GW) 

 

Fonte: (GWEC, 2025). 

 

Em 2024, o Brasil ocupou o quinto lugar no mundo em capacidade instalada total 

de energia eólica (GWEC, 2025). Durante o mesmo ano, foram instalados 3,3 GW de 

potência, e a eólica foi a segunda fonte que mais cresceu, representando 10,8% da nova 

capacidade instalada no ano. A nova capacidade eólica instalada em 2024 fez a fonte 

eólica atingir uma participação de 16,1% (33,73 GW) da matriz elétrica brasileira, 

conforme ilustrado na Figura 2, que apresenta a participação de todas as fontes de geração 

na matriz elétrica brasileira no fim de 2024, de acordo com Associação Brasileira de 

Energia Eólica E Novas Tecnologias (ABEEÓLICA, 2024). A hidrelétrica representa 

aproximadamente 49,4% (103,20 GW); biomassa 8,2% (17,1 GW); fotovoltaica 7,9% 

(16,60 GW); gás natural 8,5% (17,81 GW); petróleo 3,9% (8,13 GW); carvão mineral 

1,7% (3,46 GW); nuclear 1,0% (1,99 GW). As fontes PCH e CGH representam 

respectivamente Pequenas Centrais Hidrelétricas e Centrais Geradoras Hidrelétricas, com 

aproximadamente 3,2% (6,70 GW).  
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Com relação a fonte eólica, somente a região Nordeste representou 

aproximadamente 92,2% de toda a energia eólica produzida na matriz energética nacional 

(ABEEÓLICA, 2024).  

 

Figura 2 - Matriz Energética Brasileira 

 

Fonte: Adaptado de ABEEÓLICA (2024). 

 

A energia eólica é caracterizada pela conversão de energia cinética, proveniente 

do vento, em eletricidade. A força dos ventos impulsiona as pás da turbina eólica, que 

giram a uma determinada velocidade, e o gerador converte essa energia mecânica em 

energia elétrica (HEIER, 2014). No nível industrial, esse processo de conversão ocorre 

em larga escala, em parques eólicos onshore (em terra) e offshore (no mar).  

 

1.1 Desafios a serem enfrentados 

 

A geração de energia eólica envolve diversos desafios técnicos, operacionais e 

científicos que ainda precisam ser superados, entre os quais destacam-se: 

1. Intermitência e Variabilidade: A produção de energia eólica é altamente 

dependente da intensidade e constância do vento, que apresentam 

comportamentos variáveis e imprevisíveis ao longo do tempo. Essas 

flutuações podem resultar em períodos de baixa geração, representando um 
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desafio para a previsão precisa da produção e para a operação eficiente da rede 

elétrica, especialmente em momentos de transição rápida entre diferentes 

níveis de geração. 

2. Custo Inicial e Investimento: O custo inicial de instalação de parques eólicos, 

incluindo turbinas, infraestrutura e conexão à rede elétrica, pode ser alto. 

3. Durabilidade e Manutenção: As turbinas eólicas exigem manutenção regular 

e sua durabilidade pode ser afetada por condições climáticas adversas, como 

ventos fortes e corrosão salina em regiões costeiras. 

4. Impactos Ambientais e Ecológicos: Embora considerada uma fonte de energia 

limpa, a instalação de parques eólicos pode impactar a vida selvagem 

(especialmente aves e morcegos) e alterar os ecossistemas locais. 

5. Riscos de Mercado e Regulatórios: A energia eólica pode ser influenciada por 

mudanças nas políticas de subsídios, regulamentações ambientais e flutuações 

nos preços de mercado. 

Para enfrentar estes desafios é essencial o uso de previsões precisas para otimizar 

a produção de energia em parques eólicos, bem como o diagnóstico eficiente de falhas 

em componentes críticos do sistema, a fim de promover os melhores planos de operação 

e manutenção (LEITE; ARAÚJO; ROSAS, 2018; VEERS et al., 2019; YANG, W.; COURT; 

JIANG, J., 2013). Esses desafios estão relacionados à análise de dados para previsão e estão 

frequentemente presentes em parques eólicos onshore e offshore.  

Para fazer previsões precisas sobre a velocidade do vento, o potencial eólico a ser 

explorado e a detecção de anomalias em componentes críticos de turbinas eólicas (TEs), 

diversas técnicas, incluindo modelos de aprendizado profundo, podem ser empregadas 

(este tópico será discutido com mais detalhes ao longo deste trabalho). A análise de dados 

é essencial para maximizar o desempenho e a confiabilidade de TEs, minimizando os 

custos operacionais e os impactos ambientais. Com essa abordagem, torna-se possível 

tomar decisões importantes e garantir a produção eficiente de energia. 

 

1.2 Justificativa da Tese 

 

A análise de dados é um elemento central para a previsão do potencial eólico em 

parques eólicos, uma vez que a produção de energia está diretamente associada a 
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fenômenos atmosféricos altamente dinâmicos e não estacionários. Nesse contexto, 

métodos tradicionais de previsão frequentemente apresentam limitações na captura de 

padrões temporais complexos, variações abruptas e mudanças de regime características 

das séries de geração eólica. Assim, a escolha deste tema é justificada pela necessidade 

de desenvolver e investigar modelos capazes de representar de forma mais eficiente as 

dependências temporais de curto prazo presentes nos dados de geração eólica, visando 

aumentar a precisão e a robustez das previsões em cenários reais de operação. 

Neste trabalho, o foco está na previsão de curto prazo da potência eólica, em 

horizontes que variam de poucas horas à frente, os quais são particularmente relevantes 

para a operação de parques eólicos e para a integração da energia eólica ao sistema 

elétrico. 

Este estudo fundamenta-se na aplicação de modelos de referência amplamente 

discutidos na literatura científica, com foco principal em arquiteturas baseadas no 

Transformer. Apesar das limitações associadas ao alto custo computacional, à 

complexidade do mecanismo de atenção e à representação limitada de padrões 

multiescalares, os Transformers têm apresentado resultados consistentemente superiores 

em tarefas de previsão de séries temporais, incluindo aplicações em energia eólica. Essa 

evidência, somada à sua capacidade de capturar dependências de longo alcance e padrões 

não lineares, justifica a escolha dessas arquiteturas como base para o desenvolvimento e 

aprimoramento dos modelos propostos neste trabalho.  

Uma dessas limitações está relacionada às codificações posicionais senoidais 

fixas, que podem não capturar de forma adequada características típicas da periodicidade 

do vento, tais como: 

 o ciclo diurno, no qual a velocidade do vento varia de maneira sistemática ao 

longo do tempo; 

 os padrões sazonais irregulares, influenciados por frentes meteorológicas e 

mudanças atmosféricas de maior escala; 

 as flutuações multiescalares, nas quais ciclos curtos e longos interagem de 

maneira não linear, dificultando sua representação por funções senoidais estáticas.  

Além disso, o elevado custo computacional dos Transformers pode resultar em 

tempos de processamento que, dependendo da configuração, variam de alguns minutos 

até várias horas por experimento — o que se torna particularmente crítico quando a 

periodicidade operacional exige atualizações frequentes das previsões. Nesses cenários, 

um modelo cujo tempo de inferência ou treinamento é maior que a janela de atualização 
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compromete sua aplicabilidade prática em ambientes industriais. Soma-se a isso o fato de 

que o Transformer e suas derivações, por se tratarem de modelos relativamente recentes, 

podem funcionar como uma “caixa-preta”, dificultando a interpretação dos resultados em 

aplicações reais. 

Por fim, um detalhamento técnico aprofundado de todas as limitações 

mencionadas — incluindo mecanismos de atenção, codificações posicionais e custos 

computacionais — é apresentado na Seção 2 (Fundamentação Teórica). 

Dessa forma, este trabalho busca mitigar essas limitações, com o objetivo 

principal de aprimorar a precisão da previsão da potência gerada por turbinas eólicas e, 

simultaneamente, avaliar o desempenho de diferentes abordagens em comparação a 

modelos clássicos. Ademais, este estudo pretende fornecer uma referência para 

pesquisadores e engenheiros quanto ao desempenho e potencial dessas arquiteturas 

modernas em cenários reais de previsão. 

Em última análise, ao elevar a acurácia das previsões, pretende-se contribuir para 

um planejamento operacional e de manutenção mais eficiente, otimizar a produção de 

energia e maximizar os retornos econômicos, promovendo uma gestão de parques eólicos 

mais confiável e sustentável. 

 

1.3 Potencial de Inovação 

 

Este estudo investiga a aplicação de modelos ainda não explorados para a previsão 

de potência em sistemas de geração eólica, adaptando-os para tarefas de séries temporais 

com o objetivo de superar o desempenho de modelos consagrados na literatura científica.  

Dessa forma, a pesquisa se caracteriza como uma das pioneiras na utilização 

desses modelos para previsão de potência eólica. Ademais, trata-se do primeiro trabalho 

que, além de propor novos modelos, apresenta uma revisão abrangente sobre a aplicação 

de arquiteturas baseadas em Transformers no contexto da energia eólica. 

Os principais aspectos inovadores desta tese incluem: 

1. A utilização dos mecanismos de atenção FlowAttention e Flashformer na previsão 

de potência de turbinas eólicas, com busca sistemática de hiperparâmetros visando 

à obtenção da melhor configuração preditiva possível; 
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2. Este estudo apresenta uma contribuição inédita na literatura consultada ao integrar 

o Time2Vec à arquitetura Transformer, além da realização de uma análise de 

sensibilidade com diferentes arranjos; 

3. A avaliação do desempenho do Time2Vec combinado a distintos mecanismos de 

atenção, com o objetivo de aprimorar a precisão e a eficiência preditiva nas tarefas 

de previsão;  

4. A realização de um estudo de revisão comparativo entre distintas derivações do 

Transformer aplicadas à previsão de séries temporais, com análise quantitativa e 

qualitativa dos resultados por meio de métricas de avaliação. 

 

1.4 Objetivo Geral 

 

O objetivo geral da tese é maximizar a eficiência produtiva de parques eólicos, 

gerando previsões precisas de oferta e disponibilidade de energia eólica, permitindo um 

melhor planejamento da operação e manutenção. O estudo se concentra em modelos de 

referência, com ênfase em arquiteturas baseadas em Transformers, e utiliza a análise de 

séries temporais para estimar horizontes de previsão. 

 

1.4.1 Objetivos Específicos 

 

Os objetivos específicos da tese incluem: 

1. Realizar uma revisão qualitativa e quantitativa de modelos baseados em 

Transformers aplicados à área de energia eólica, com o intuito de analisar os 

resultados alcançados e avaliar os impactos efetivos desses modelos em tais 

aplicações. 

2. Propor modelos baseados em Transformers, testando diferentes mecanismos de 

atenção voltados à previsão de potência eólica. O objetivo é identificar quais 

mecanismos proporcionam melhor desempenho preditivo, comparando-os com 

modelos de referência e conduzindo uma otimização de hiperparâmetros para 

determinar a configuração ideal de cada modelo. 
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3. Conduzir uma análise de sensibilidade sobre a integração do Time2Vec na 

arquitetura Transformer, a fim de avaliar os arranjos que mais contribuem para o 

aprimoramento preditivo em tarefas de previsão de séries temporais, com foco 

específico na previsão de potência eólica. 

4. Fornecer uma referência estruturada e orientadora para pesquisadores e 

profissionais interessados no desenvolvimento e aplicação de modelos baseados 

em Transformers voltados à previsão de energia eólica. 

 

1.5 Estrutura da Tese 

 

Esta tese está estruturada nos seguintes capítulos: 

 No Capítulo 1, é apresentada introdução, juntamente com a justificativa da 

tese, potencial de inovação, além do objetivo geral e específicos para o 

desenvolvimento deste estudo; 

 No Capítulo 2, é apresentada a fundamentação teórica, com foco principal 

nas redes Transformers e na técnica Time2Vec; 

 No Capítulo 3, é apresentado o estado da arte, abordando os tópicos de 

turbinas eólicas; análise de dados; séries temporais; e modelos de previsão; 

 No Capítulo 4, é detalhada a metodologia adotada neste estudo, abordando 

a descrição do problema; visão geral da metodologia; análise de 

sensibilidade da integração Time2Vec; modelos propostos; Estudos de Caso 

1 e 2; e análise experimental; 

 No Capítulo 5, são apresentados os resultados e discussão da tese, 

abordando os Estudos de Caso 1 e 2; o impacto da integração Time2Vec no 

desempenho dos modelos e o custo computacional; 

 No Capítulo 6, são expostas as conclusões finais do trabalho, ressaltando os 

principais resultados alcançados.  

 No Capítulo 7, são apresentadas as perspectivas futuras, voltadas à expansão e 

ao aprimoramento dos modelos propostos neste estudo, com aplicações 

voltadas à previsão de médio e longo prazo, bem como a outras áreas da 

literatura científica. 
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2 FUNDAMENTAÇÃO TEÓRICA 

 

A fundamentação teórica é essencial para contextualizar e embasar o 

desenvolvimento metodológico desta pesquisa. Nesta seção, apresentam-se os conceitos, 

técnicas e procedimentos que sustentam os modelos propostos, permitindo compreender 

os princípios por trás das escolhas adotadas. Dessa forma, a fundamentação teórica não 

apenas explica as ferramentas e métodos utilizados, mas também estabelece o suporte 

conceitual necessário para interpretar os resultados e justificar cada decisão metodológica 

adotada ao longo deste estudo. 

 

2.1 Redes Transformers 

 

O Transformer é um modelo inicialmente desenvolvido para tarefas de 

Processamento de Linguagem Natural (Natural Language Processing – NLP) 

(VASWANI et al., 2017), mas tem sido recentemente adaptada para problemas de 

previsão de séries temporais. O Transformer apresenta uma estrutura de camadas 

codificador-decodificador, incorporando um mecanismo de auto atenção e camadas 

totalmente conectadas. Conforme ilustrado na Figura 3, o lado esquerdo do diagrama 

representa a pilha do codificador, enquanto o lado direito representa a pilha do 

decodificador. Cada codificador consiste em duas subcamadas principais: (I) um 

mecanismo de auto atenção multicabeças e (II) uma rede neural feed-forward posicional. 

Ambas as subcamadas são seguidas por conexões residuais e normalização de camadas 

('Add & Norm'). As incorporações de entrada são combinadas com codificações 

posicionais para reter informações de sequência antes de serem alimentadas no 

codificador.  

O decodificador, no lado direito da Figura 3, inclui três subcamadas: (I) uma 

camada mascarada de auto atenção multicabeças que impede o decodificador de atender 

a posições futuras, (II) uma camada de atenção multicabeças sobre a saída do codificador 

(permitindo a interação entre o codificador e o decodificador) e (III) uma rede neural feed-

forward. Da mesma forma, conexões residuais e normalização são aplicadas após cada 

subcamada. As incorporações de saída também são combinadas com codificações 

posicionais e deslocados para a direita para garantir a decodificação autorregressiva. Por 
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fim, a saída do decodificador passa por uma transformação linear e uma camada softmax, 

a qual normaliza os valores produzidos pelo modelo e os converte em uma distribuição 

de probabilidades, permitindo a interpretação probabilística das saídas e a seleção da 

predição mais provável. Na literatura científica, esse modelo também é conhecido como 

Transformer Vanilla, o primeiro Transformer introduzido na literatura. 

 

Figura 3 - Arquitetura do Transformer Vanilla 

 
 Fonte: Adaptado de Vaswani et al. (2017). 

 

O mecanismo de auto atenção no modelo Transformer é baseado nos vetores 

Consulta (Q), Chave (K) e Valor (V), que apresenta representações de tokens 

compactados da sequência de entrada. Esses vetores são organizados nas matrizes 𝑄 

∈ RN×Dk , 𝐾 ∈ RN×Dk , and 𝑉 ∈ RN×DV , Onde 𝑁 denota o comprimento da 
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sequência, Dk representa as dimensões de Q e de K, e DV corresponde a dimensão de 

V. A atenção do produto escalar empregada pelo Transformer é definida de acordo 

com a Equação (1): 

 

               Attention(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝐷𝐾
) 𝑉                                 (1) 

 

O fator de escala √𝐷𝐾 é introduzido para evitar a saturação da função softmax, 

estabilizando os gradientes durante o treinamento ao reduzir a variância dos valores 

do produto escalar entre 𝑄 e 𝐾. Em vez de aplicar uma única função de atenção, o 

Transformer emprega um mecanismo de atenção multicabeça, que permite ao modelo 

capturar diversos padrões relacionais entre tokens. Para atingir esse objetivo, as 

matrizes originais 𝑄, 𝐾, 𝑉 são projetadas em subespaços de dimensões inferiores 

usando matrizes de peso treináveis WQ ∈ RDm×Dk , WK ∈ RDm×Dk , e WV ∈ RDm×DV. 

O cálculo da atenção para cada uma das cabeças H é então dado pela Equação (2): 

 

                          ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 e 𝑉𝑊𝑖

𝑉)                      (2) 

 

Posteriormente, as saídas de todas as cabeças de atenção H são concatenadas 

e projetadas de volta à dimensão do recurso original Dm usando uma matriz de 

projeção final W 0 ∈ RHDV ×Dm , resultando na Equação (3): 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊0                 (3) 

 

Este mecanismo permite que o modelo aprenda múltiplas representações da 

entrada, aprimorando sua capacidade de capturar dependências contextuais entre 

tokens. Alguns estudos mostram em detalhes a taxonomia das redes Transformers, 

bem como possíveis modificações que podem ser feitas na arquitetura. Também é 

possível verificar o pré-treinamento dos modelos e suas respectivas aplicações (LIN, 

T. et al., 2022). 

Além das subcamadas de atenção, cada camada do codificador e do 
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decodificador contém também uma subcamada de rede totalmente conectada, 

conhecida como Position-wise Feed-Forward Network (FFN). Essa rede é aplicada 

de forma independente e idêntica a cada posição, consistindo em duas transformações 

lineares separadas por uma ativação não linear ReLU, conforme a Equação (4): 

 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                         (4) 

 

As transformações lineares são compartilhadas entre as posições, mas possuem 

parâmetros distintos entre as camadas. Em termos equivalentes, essa operação pode ser 

interpretada como duas convoluções com tamanho de kernel igual a 1. No Transformer 

original, a dimensionalidade de entrada e saída é 𝑑𝑚𝑜𝑑𝑒𝑙=512, enquanto a camada interna 

possui dimensionalidade 𝑑𝑓𝑓=2048, valores sugeridos no artigo “Attention Is All You 

Need” (VASWANI et al., 2017). Esses valores podem ser ajustados de acordo com a 

aplicação ou disponibilidade de recursos computacionais, permitindo maior flexibilidade 

na configuração do modelo. O parâmetro 𝑑𝑚𝑜𝑑𝑒𝑙 representa a dimensão do vetor de 

representação do modelo, isto é, o tamanho da incorporação em cada posição da 

sequência. Enquanto 𝑑𝑓𝑓 corresponde à dimensão da camada intermediária da rede feed-

forward, responsável por expandir e projetar as representações em um espaço de maior 

capacidade antes de retorná-las à dimensão original.  

Além do mecanismo de atenção, o Transformer original emprega codificações 

posicionais senoidais fixas (fixed sinusoidal positional encodings) para representar a 

ordem dos elementos na sequência de entrada, como demonstrado na Figura 3. Essas 

codificações são determinísticas e não aprendíveis, sendo definidas por funções seno 

e cosseno de diferentes frequências, conforme as Equações 5 e 6: 

 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄ )                               (5) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄ )                                 (6) 

 

onde 𝑝𝑜𝑠 é a posição e i é a dimensão. Cada dimensão da codificação posicional 

corresponde a uma senoide, cujos comprimentos de onda formam uma progressão 

geométrica de 2𝜋 a 10000 ⋅ 2 𝜋. Segundo os autores, essa função foi adotada para permitir 

que o modelo aprenda facilmente a atender por posições relativas, uma vez que, para 

qualquer deslocamento fixo k, 𝑃𝐸𝑝𝑜𝑠+𝑘 pode ser representado como uma função linear 
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de 𝑃𝐸𝑝𝑜𝑠 (VASWANI et al., 2017). 

Embora as codificações posicionais senoidais fixas sejam adequadas para 

capturar padrões temporais regulares, séries temporais de potência eólica apresentam 

estruturas muito mais complexas, incluindo periodicidade diurna moderada, 

sazonalidades irregulares influenciadas por frentes meteorológicas e flutuações 

multiescalares decorrentes da interação entre ciclos de minutos, horas e dias. Essas 

características tornam a representação exclusivamente senoidal menos expressiva 

para capturar a variabilidade inerente do vento, o que motiva o uso de incorporações 

aprendíveis e, particularmente, a adoção de funções temporais parametrizáveis, como 

o Time2Vec. 

No contexto desta tese, o termo incorporação refere-se à representação vetorial 

densa aprendível que transforma a entrada contínua da série temporal em um vetor 

compatível com a dimensão do modelo 𝑑𝑚𝑜𝑑𝑒𝑙. Seguindo a formulação adotada na 

literatura de Transformers para séries temporais (ZERVEAS et al., 2021; ZHOU et 

al., 2021; WU et al., 2021), cada amostra temporal 𝑥𝑡 ∈ 𝑅𝑑𝑖𝑛 que é projetada para o 

espaço interno do modelo por meio de uma camada linear aprendível representado 

pela Equação (7): 

 

𝑒𝑡 = 𝑊𝑒𝑥𝑡 + 𝑏𝑒                                                    (7) 

 

onde 𝑊𝑒 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙  × 𝑑𝑖𝑛 e 𝑏𝑒 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙  são parâmetros ajustados durante o 

treinamento. Formalmente, essa operação define uma aplicação linear 𝜙 ∶

R𝑑𝑖𝑛 →  𝑅𝑑𝑚𝑜𝑑𝑒𝑙 ,  que projeta cada observação da série temporal para o espaço vetorial 

interno utilizado pelo Transformer. No caso particular de séries temporais univariadas 

(𝑑𝑖𝑛 = 1), essa transformação reduz-se a uma projeção direta de 𝑅 →  𝑅𝑑𝑚𝑜𝑑𝑒𝑙  . O vetor 

𝑒𝑡 representa, portanto, a incorporação resultante dessa projeção; enquanto 𝑥𝑡 é a 

observação no instante 𝑡; 𝑊𝑒 é a matriz de projeção que mapeia a entrada para o 

espaço interno do modelo; 𝑏𝑒 representa o viés da projeção. Diferentemente das 

aplicações em NLP, em que incorporações representam relações semânticas entre 

tokens, para séries temporais eles funcionam como uma transformação numérica que 

captura escala, correlações e padrões estatísticos das variáveis físicas de entrada (por 

exemplo, potência eólica, velocidade do vento e variáveis meteorológicas). A 

codificação posicional senoidal é então adicionada a essa incorporação aprendível, 
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compondo o vetor final de entrada do Transformer, representado pela Equação (8): 

 

𝑧𝑡 = 𝑒𝑡 + 𝑃𝐸(𝑝𝑜𝑠𝑡)                                                    (8) 

 

onde 𝑝𝑜𝑠𝑡 indica a posição temporal correspondente ao instante 𝑡. A Eq. (8) incorpora 

simultaneamente informações sobre o valor da série e sua posição temporal. Esse 

procedimento segue a prática padrão em modelos Transformer aplicados à previsão 

de séries temporais contínuas (ZERVEAS et al., 2021; ZHOU et al., 2021). 

De acordo com a Equação (1), a atenção resulta do produto escalar (𝑄𝐾)𝑇, 

produzindo uma matriz de pontuação de tamanho 𝑁 𝑥 𝑁 com custo computacional de  

𝑂(𝑁2𝑑). A função softmax aplicada a 𝑂(𝑁2) amplifica o problema da complexidade 

quadrática. À medida que N aumenta, o número de operações necessárias cresce 

quadraticamente, tornando o processamento de sequências longas dispendioso em 

termos de tempo, computação e memória. Isso se torna ainda mais crítico em 

aplicações de séries com limitação de tempo, particularmente para sequências de 

entrada longas.  

Dentre essas propostas, destaca-se o Informer (ZHOU, Haoyi et al., 2021), 

desenvolvido para o processamento de séries temporais de longo alcance. O Informer adota 

uma atenção probabilística esparsa, que amostra de forma seletiva os tokens mais 

informativos da sequência, reduzindo a complexidade computacional da operação de 

atenção de 𝑂(𝑁2) para 𝑂(𝑁 log 𝑁). Além disso, o modelo implementa técnicas de 

compressão de sequência e camadas convolucionais unidimensionais (1D), 

responsáveis por realçar padrões locais relevantes nos dados. Para manter a 

representatividade das informações mais expressivas, o Informer utiliza o 

MaxPooling como mecanismo de seleção, preservando os valores mais significativos 

e contribuindo para um aprendizado mais eficiente e robusto.  

Outro exemplo é o Autoformer (WU, H. et al., 2021). Modelo desenvolvido 

especificamente para tarefas de previsão de séries temporais, com ênfase na captura de 

padrões sazonais e tendências de longo prazo. Diferentemente das abordagens baseadas 

na atenção tradicional, o Autoformer introduz o mecanismo de Auto-Correlação, capaz 

de identificar diretamente as dependências relevantes nas séries temporais, substituindo 

o cálculo explícito de atenção entre todos os pares de tokens. Essa estratégia permite ao 

modelo aproveitar de forma mais eficiente as repetições e periodicidades presentes nos 

dados. Além disso, o Autoformer adota uma arquitetura codificador-decodificador livre 
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de conexões residuais, projetada para reduzir redundâncias e melhorar a eficiência do 

treinamento. Graças a essas modificações estruturais, o modelo alcança uma 

complexidade computacional reduzida, na ordem de 𝑂(𝑁 log 𝑁).  

Na literatura científica, além do Informer e do Autoformer, existem uma 

infinidade de modelos desenvolvidas para trabalhar com aplicações de séries 

temporais, como Pyraformer (LIU, S. et al., 2022); Crossformer (ZHANG, Yunhao; 

YAN, Junchi, 2023); FEDformer (ZHOU, T. et al., 2022); LogSparse Transformer (LI, 

Shiyang et al., 2019); Flowformer (WU, H. et al., 2022); entre outros. Cada um desses 

modelos foi projetado para abordar limitações específicas do Transformer Vanilla, 

demonstrando desempenho competitivo ou superior em tarefas de previsão de séries 

temporais. Na literatura científica, as variantes dos modelos Transformer são 

reconhecidas sob o termo X-formers (TAY et al., 2023). 

 

2.1.1 Flowformer 

 

O Flowformer (WU, H. et al., 2022) foi desenvolvido para reduzir a complexidade 

quadrática do mecanismo FullAttention. O modelo propôs uma reformulação da atenção 

baseada em modelagem de fluxo contínuo, mecanismo denominado FlowAttention. 

Diferentemente da atenção padrão, que calcula pesos discretos por meio de produtos 

escalares entre vetores Q e K, o mecanismo FlowAttention interpreta o processo de 

atenção como um campo vetorial contínuo de transporte de informações, no qual cada 

token atua como uma fonte que envia informação e um sumidouro que a recebe, conforme 

ilustrado na Figura 4.  

Nessa esquema, o fluxo de atenção é representado como a capacidade de 

transporte entre fontes e sumidouros, modelada pela função S(Q,K), que define a 

intensidade do fluxo entre tokens com base em suas representações Q e K. O diagrama 

evidencia duas perspectivas complementares: (b) a Visualização do Sumidouro, que 

mostra como cada elemento receptor (R) agrega informações das fontes (V), e (c) a 

Visualização da Fonte, que descreve como cada elemento emissor distribui sua 

contribuição para os receptores.  

A atenção é formulada como um problema de transporte, onde Q e K são tratados 

como distribuições de probabilidade. A solução ótima para este problema define o 
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mecanismo de atenção, denominado FlowAttention. Por fim, o produto escalar S(Q,K) no 

Transformador Vanilla é substituído por S=𝜙(𝑄)𝜙(𝐾𝑇), onde 𝜙(·) é uma projeção não 

linear aplicada elemento a elemento. Devido às propriedades das redes de fluxo, 𝜙(·) é 

escolhida como uma função não negativa, de modo a garantir capacidades de fluxo 

positivas e permitir a interpretação do mecanismo de atenção sob a perspectiva de redes 

de fluxo. Uma escolha comum na literatura é 𝜙(·)  = 𝐸𝐿𝑈(𝑥)  +  1, onde ELU denota a 

função de ativação Exponential Linear Unit e 𝑥 representa o vetor de entrada da projeção 

não linear, conforme adotado no Linear Transformer (KATHAROPOULOS et al., 2020), 

embora outras projeções não negativas também sejam admissíveis. 

Essa reformulação melhora a eficiência computacional e a escalabilidade para 

sequências longas, além de preservar de forma mais consistente as dependências globais 

entre os elementos da sequência. O Flowformer demonstrou desempenho competitivo e, 

em muitos casos, superior ao Transformer tradicional em tarefas de previsão de séries 

temporais e processamento dinâmico de dados. Entretanto, sua aplicação em domínios 

energéticos, como a previsão de potência eólica, ainda é pouco explorada, representando 

um campo promissor para estudos futuros. 

 

Figura 4 - Visão da rede de fluxo para atenção 

 

Fonte: Adaptado de Wu et al. (2022). 
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2.1.2 Flashformer 

 

O modelo é otimizado para previsão de séries temporais e incorpora um 

mecanismo de atenção eficiente em memória, com consciência de operações de entrada e 

saída (I/O awareness). O uso do algoritmo FlashAttention (DAO et al., 2022) minimiza 

o número de operações de leitura e escrita entre a High Bandwidth Memory (HBM), 

conhecida como memória de alta largura de banda, e a Static Random Access Memory 

(SRAM), denominada memória estática de acesso aleatório, presentes no chip da GPU. 

Como ilustrado na Figura 5, o FlashAttention processa os tokens dentro de uma 

janela deslizante, permitindo capturar dependências locais, essenciais em séries 

temporais. O algoritmo adota uma estratégia de divisão em blocos (tiling) para evitar a 

materialização explícita da matriz de atenção completa N×N na HBM, que possui acesso 

relativamente mais lento.  No loop externo (setas vermelhas), o FlashAttention itera sobre 

blocos das matrizes K e V, carregando-os na SRAM rápida on-chip. Dentro de cada bloco, 

ocorre o loop interno (setas azuis), no qual segmentos da matriz Q são carregados para a 

SRAM, e os resultados da atenção são posteriormente gravados na HBM. 

Embora a complexidade aritmética permaneça O(N 2), o FlashAttention reduz 

substancialmente a complexidade de I/O, limitando o tráfego de memória entre HBM e 

SRAM. Heuristicamente, essa redução pode ser aproximada por O(N 2/M ), onde M 

representa a capacidade efetiva da memória on-chip. O ganho de eficiência exato depende 

do tamanho dos blocos e da configuração de hardware. 

Do ponto de vista prático para previsão de potência eólica, essa otimização 

implica: 

1. Menor latência na inferência, favorecendo aplicações que exigem atualização em 

escalas de minutos; 

2. Maior estabilidade numérica e menor necessidade de memória, permitindo treinar 

modelos de maior profundidade ou sequências mais longas; 

3. Capacidade de execução em hardware mais acessível, diminuindo o custo 

computacional de operação em centros de controle de parques eólicos; e 

4. Maior escalabilidade quando múltiplas turbinas e janelas temporais precisam ser 

processadas simultaneamente 
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O FlashAttention pode substituir diretamente o mecanismo padrão de 

FullAttention no Transformer Vanilla. Neste trabalho, a variante do Transformer que 

utiliza o FlashAttention é denominada Flashformer. 

 

 

Figura 5 - Mecanismo FlashAttention 

 

Fonte: Adaptado de Dao et al. (2022). 

 

2.1.3 Visão geral dos X-formers utilizados neste estudo 

 

Conforme discutido anteriormente, os modelos analisados apresentam 

características distintas, principalmente em relação ao mecanismo de atenção e à 

complexidade computacional. A Tabela 1 resume brevemente essas diferenças. O 

Transformer Vanilla apresenta complexidade quadrática com relação ao tamanho da 

sequência, o que limita sua escalabilidade para séries temporais muito longas. O 

Flowformer, por sua vez, utiliza o mecanismo FlowAttention para evitar a materialização 

da matriz de atenção completa, resultando em uma complexidade linear em N, ainda que 

com constantes computacionais maiores devido às operações adicionais de normalização 

contínua. Já o Flashformer emprega o algoritmo FlashAttention, que mantém 

complexidade aritmética quadrática, porém reduz significativamente os custos de I/O, 
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oferecendo maior eficiência prática — principalmente em GPUs que exploram bem 

hierarquias de memória e paralelismo. Assim, a escolha do modelo mais adequado deve 

considerar as características da aplicação, o volume de dados e os recursos 

computacionais disponíveis, equilibrando desempenho, custo e precisão. 

 

Tabela 1 - Resumo e visão geral dos X-formers 

Modelo Mecanismo de atenção Complexidade 

Transformer FullAttention O(N 2) 

Flowformer FlowAttention O(N ) 

Flashformer FlashAttention O(N 2/M )¹ 

1Complexidade aproximada, mais detalhes em Dao et al. (2022). 

Fonte: Autoria própria (2025). 

 

Na energia eólica, existem diversos estudos que utilizam modelos baseados na arquitetura 

Transformer, os quais são sistematicamente discutidos e referenciados na Seção 3.5.2. Em 

(ZHANG, K.; LI, X.; SU, 2022), os autores propuseram o VMD-Transformer (VMD-TF), 

modelo combinado com a Decomposição de Modos Variacionais (Variational Mode 

Decomposition – VMD), para mitigar os efeitos da não estacionariedade da velocidade 

do vento, decompondo os sinais em modos estáveis. Os resultados demonstraram que o 

VMD-TF superou modelos como o VMD-ARIMA e o VMD-LSTM na previsão de curto 

prazo. Outro modelo proposto foi o FFTransformer (BENTSEN et al., 2023a), que 

incorpora a decomposição de sinais por meio de dois fluxos para analisar tendências e 

componentes periódicos, ao mesmo tempo em que captura relações espaço-temporais. O 

FFTransformer superou o LSTM e o MLP na previsão de velocidade e potência do vento 

em curto prazo.  

Mais recentemente, o mecanismo FlowAttention foi utilizado em (DONG, Z. et al., 

2025), sendo proposto o modelo Wind-Mambaformer. O Mamba (GU; DAO, 2024) é uma 

alternativa ao decodificador Transformer tradicional, projetado para minimizar o acúmulo 

de erros e aprimorar a adaptabilidade do modelo sob condições variáveis. O Wind-

Mambaformer demonstrou desempenho superior na previsão de curto prazo de energia 

de turbinas eólicas, em comparação com modelos de referência como CNN, LSTM e 

outros modelos. Com relação ao FlashAttention, ainda não existe na literatura científica 
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aplicação para previsão de séries temporais na energia eólica, sendo esta tese o primeiro 

trabalho a tratar desse tema. 

 

2.2 Time2Vec: Aprendendo uma representação vetorial do tempo 

 

O Aprendizado de Características (Featuring Learning) visa extrair 

automaticamente representações informativas de dados brutos, aprimorando o 

desempenho do modelo por meio da captura de estruturas e dependências subjacentes. 

No contexto da previsão de séries temporais, o aprendizado de representação temporal 

desempenha um papel crucial ao permitir que os modelos entendam a periodicidade e a 

dinâmica temporal de forma eficaz. Dentre as abordagens existentes, o Time2Vec 

(KAZEMI et al., 2019) se destaca como uma técnica simples, porém poderosa, para 

codificação de informações relacionadas ao tempo. Ele fornece uma maneira sistemática 

de representar componentes periódicos e não periódicos de dados temporais, oferecendo 

uma incorporação temporal mais rica e interpretável para arquiteturas de redes neurais. O 

Time2Vec adota três propriedades principais: 

1. Periodicidade: Captura padrões periódicos e não periódicos nos dados. 

2. Invariância na escala temporal: A representação permanece consistente 

independentemente das variações na escala temporal. 

3. Simplicidade: A representação temporal foi projetada para ser simples o suficiente 

para integração em vários modelos e arquiteturas. 

Assim, em vez de aplicar o conjunto de dados diretamente ao modelo, os autores 

propõem que a série temporal original seja transformada usando a seguinte representação, 

conforme a Equação (9): 

 

t2v(𝜏)[𝑖] = {
ωi  ⋅  τ +  ϕi,             if i =  0

    𝐹 (ωi  ⋅  τ +  ϕi),            if 1 ≤  i ≤  k
                       (9) 

 

Onde 𝑘 denota a dimensão da função Time2Vec, 𝜏 é uma série temporal bruta, 𝐹 denota 

uma função de ativação periódica e 𝜔 e 𝜙 denotam um conjunto de parâmetros 

aprendíveis. 𝐹 é uma função seno ou cosseno que permite ao algoritmo escolhido detectar 

padrões periódicos nos dados. Simultaneamente, o termo linear indica a progressão do 
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tempo e pode ser usado para capturar padrões não periódicos na entrada que são 

dependentes do tempo. De acordo com a Figura 6, o Time2Vec facilita a representação de 

comportamentos específicos dentro de uma série temporal, com incorporações periódicas 

capturando padrões periódicos e incorporações não periódicas abordando padrões não 

periódicos. 

 

Figura 6 - Representação do Time2Vec 

 

Fonte: Adaptado de Kazemi et al. (2019). 

 

Time2Vec é uma técnica poderosa que aprimora modelos de previsão, 

especialmente em problemas com variáveis temporais complexas. Sua principal 

vantagem é a forma como representa o tempo, permitindo que os modelos capturem 

padrões sazonais e periódicos de forma eficaz. Em vez de usar uma representação de 

tempo simples ou linear, o Time2Vec utiliza funções trigonométricas para criar um vetor 

que captura as nuances de periodicidade e sazonalidade nos dados. Outra característica 

importante do Time2Vec é sua capacidade de expandir a entrada temporal, gerando 

múltiplas características que representam o tempo em diferentes escalas. Isso proporciona 

ao modelo uma compreensão mais detalhada do contexto temporal, aprimorando seu 

poder preditivo.   

Ao integrar o Time2Vec, os modelos podem representar explicitamente a 

informação temporal como vetores aprendíveis, capturando padrões sazonais e periódicos 
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de forma mais expressiva do que codificações temporais tradicionais (como seno e 

cosseno fixos). Em (GENG; WANG, B.; GAO, Q., 2023), essa representação foi 

combinada com uma Rede Neural Convolucional Profunda (WDCNN) — responsável 

por extrair características locais e não lineares dos dados — e com uma BiLSTM, que 

modela as dependências temporais bidirecionais. Essa arquitetura híbrida mostrou que o 

Time2Vec potencializa a capacidade do modelo em aprender relações temporais 

complexas, resultando em previsões mais precisas de potência em sistemas híbridos 

fotovoltaico-eólicos.  

Em (COSTA, R. et al., 2023), os autores propuseram um modelo de previsão de 

energia fotovoltaica (FV) de curto prazo que integra o Time2Vec à arquitetura do 

Transformer, bem como às linhas de base MLP e LSTM. Seus resultados mostraram 

melhorias superiores a 20% em certos horizontes de previsão. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

3 ESTADO DA ARTE 

 

Esta seção apresenta uma revisão crítica dos principais conceitos, métodos e 

avanços relevantes para previsão de potência eólica orientada por dados. Primeiro 

descrevemos as características e componentes das turbinas eólicas e as fontes de dados 

mais comuns; em seguida discutimos propriedades das séries temporais na eólica e 

técnicas de pré-processamento; por fim revisamos abordagens de previsão — desde 

modelos físicos e estatísticos até métodos de Inteligência Artificial (IA) e variantes de 

Transformers. O objetivo é identificar lacunas metodológicas e motivar as escolhas 

técnicas adotadas nesta tese. 

 

3.1 Turbinas Eólicas 

 

As TEs estão disponíveis em diversos modelos e tipos, diferindo em tamanho, 

orientação do eixo (vertical ou horizontal), número de pás, aerodinâmica e outras 

características. O tipo mais comumente utilizado em parques eólicos apresenta um eixo 

horizontal com três pás, conforme ilustrado na Figura 7. Essas turbinas são 

particularmente adequadas para geração de eletricidade em larga escala devido à sua 

eficiência e estabilidade superiores. Suas dimensões e capacidades de produção variam 

significativamente, com diâmetros de rotor variando de 50 a 100 metros, alturas de torre 

entre 80 e 120 metros e capacidades de produção de 1 a 3 MW (KHUDRI JOHARI; AZIM 

A JALIL; FAIZAL MOHD SHARIFF, 2018; MCKENNA; OSTMAN V.D. LEYE; 

FICHTNER, 2016). A Figura 7 ilustra os principais componentes das TEs, enquanto a 

Tabela 2 explica os principais componentes que influenciam o potencial eólico e a 

capacidade de produção de energia. 

 

 

 

 

 



33 
 

Figura 7 - Componentes principais de TEs para uso industrial 

 

Fonte: (MCKENNA; OSTMAN V.D. LEYE; FICHTNER, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Fundação 

2. Conexão à rede elétrica 

3. Torre 

4. Escada de acesso 

5. Sistema de alinhamento (Yaw System) 

6. Nacelle 

7. Gerador elétrico 

8. Anemômetro 

9. Freio elétrico ou mecânico 

10. Caixa de engrenagens  

11. Pás do rotor 

12. Controle de passo e alinhamento das pás  

(Pitch System) 

13. Rotor hub 
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Tabela 2 - Componentes que influenciam a produção de uma turbina eólica 

Componente Função 

Sistema de 

alinhamento 

(Yaw System) 

Alinha a direção da turbina com a direção do vento, maximizando 

sua eficiência. A rotação ocorre por meio de um sistema 

automatizado, com engrenagens que ajustam a velocidade de 

rotação. Possibilidade de proteger a turbina em condições climáticas 

adversas, orientando as pás de forma a minimizar a carga exercida 

sobre a estrutura. 

 

 

 

 

Gerador 

elétrico 

Converte a energia mecânica fornecida pelo rotor em energia 

elétrica. Geralmente, utiliza-se um gerador síncrono ou assíncrono, 

que opera com base nos princípios da indução eletromagnética. 

 

 

 

Anemômetro Instrumento usado para medir a velocidade do vento. 
 

 

Caixa de 

engrenagens 

Projetado para transferir energia mecânica do eixo de transmissão 

para o gerador, amplificando a velocidade de rotação. Fornece uma 

interface adequada para absorver choques e vibrações, garantindo 

uma operação suave e estável. 

 

 

 

 

Pás 

Perfis aerodinâmicos responsáveis pela interação com o vento, 

convertendo a energia cinética do vento em energia mecânica no 

eixo de transmissão. 

 

 

 

Sistemas de 

passo 

Controlar o ângulo de inclinação das pás, permitindo a captura 

máxima da quantidade de energia cinética do vento. 

 

 

 
Fonte: Autoria própria (2025). 

 

Cada um desses componentes envolve variáveis que podem ser monitoradas por 

meio de diversos métodos de análise de dados. Dados de aplicação de energia eólica 

podem ser coletados de diversas fontes em múltiplos domínios. 

 

3.2 Análise de Dados na Energia Eólica 

 

A análise de dados é essencial para maximizar o desempenho e a confiabilidade 

das TEs, minimizando os custos operacionais e os impactos ambientais. A partir desse 

ponto, decisões importantes podem ser tomadas, garantindo a produção sustentável e 

eficiente da energia eólica. Nesse contexto, a análise de dados pode ser aplicada em 

diferentes etapas do ciclo de vida das TEs, abrangendo desde a operação até a 

manutenção. A Figura 8 apresenta alguns possíveis usos da análise de dados em 
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aplicações de energia eólica. A manutenção preditiva baseia-se na detecção, diagnóstico 

e prognóstico dos componentes das TEs. O diagnóstico está diretamente relacionado à 

detecção, isolamento e identificação de uma condição de falha iminente ou incipiente, 

enquanto o prognóstico refere-se à capacidade de prever a vida útil restante (Remaining 

Useful Life – RUL) de um componente e seus limites de confiança ou nível de incerteza 

associados (LEITE; ARAÚJO; ROSAS, 2018).  

A previsão de energia é baseada na análise da curva de potência, que é 

diretamente influenciada pelos recursos eólicos, permitindo a previsão de potência 

de TEs (LYDIA et al., 2014). A otimização de performance busca a máxima extração 

do recurso eólico disponível, ocorrendo em dois casos: I) Controle de TEs, como o 

controle do sistema de passo, que regula o ângulo de ataque das pás do rotor, 

permitindo a resposta aerodinâmica das TEs de acordo com as condições do vento 

(TIWARI; BABU, 2016); E  II) Controle “Wake”, que diz respeito ao controle de TEs 

ao campo de fluxo previamente perturbado, buscando minimizar os efeitos de fluxos 

turbulentos (ITALLO RIBEIRO DIAS DA SILVA et al., 2024; NASH; NOURI; 

VASEL-BE-HAGH, 2021).  

No âmbito da análise de dados em aplicações de turbinas eólicas, os impactos 

ambientais podem ser avaliados por meio da análise das vantagens e limitações da 

energia eólica, auxiliando na tomada de decisão para a mitigação de efeitos adversos 

(DAI et al., 2015). Além disso, a avaliação dos recursos incluem condições 

geográficas, como topografia, obstáculos circundantes, orografia e rugosidade da 

superfície (MURTHY; RAHI, 2017). 
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Figura 8 - Análise de dados na energia eólica 

 

Fonte: Autoria própria (2025). 

 

Os dados utilizados para o desenvolvimento de sistemas orientados a dados 

em aplicações de energia eólica podem ser categorizados com base em suas origens, 

características e finalidades pretendidas. Este trabalho concentra-se em dados 

meteorológicos e de recursos eólicos, bem como em dados de parques eólicos e 

turbinas. Os dados meteorológicos e de recursos eólicos são subdivididos em três 

categorias: I) Mastros meteorológicos, utilizados em estações para medir temperatura 

(termômetro), velocidade do vento (anemômetro), pressão atmosférica (barômetro), 

entre outros. (MÖHRLEN et al., 2022); II) Dados de sensoriamento remoto, que 

consiste na coleta de dados e informações de uma região específica da superfície 

terrestre sem a necessidade de contato direto (HASAGER et al., 2008); e III) Dados 

meteorológicos históricos que consistem em condições e características de variáveis, 

como vento, temperatura e pressão, durante um determinado período. 

Os dados de usinas eólicas são frequentemente implementados com métodos de 

diagnóstico de falhas de componentes diretamente relacionados à detecção, isolamento e 

identificação de uma condição de falha iminente, que inclui: I) Controle de Supervisão e 

Aquisição de Dados (SCADA), que monitora de forma abrangente o status operacional 

de TEs (BANGALORE; PATRIKSSON, 2018; TAUTZ‐WEINERT; WATSON, 2017; 

YANG, W.; COURT; JIANG, J., 2013); II) Sensores de Monitoramento de Condição 
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(CMS), que monitoram mais de perto componentes específicos (CRABTREE; 

ZAPPALÁ; TAVNER, 2011; GARCÍA MÁRQUEZ et al., 2012; QIAO; LU, D., 2015a, 

2015b); E III) Os registros de manutenção referem-se à exploração de métodos de 

engenharia de confiabilidade, que buscam economizar custos de forma impactante na 

Operação e Manutenção (O&M) de TEs (SHENG; O’CONNOR, 2023).  

Para melhorar a eficiência produtiva dos sistemas de energia eólica, especialmente 

no contexto da previsão de séries temporais, é crucial superar os desafios associados à 

complexidade dos dados e às condições operacionais dinâmicas. Nesse contexto, o 

desenvolvimento de modelos analíticos robustos é essencial para garantir sua 

confiabilidade, eficiência e sustentabilidade. Esse cenário destaca a necessidade urgente 

de modelos preditivos avançados capazes de extrair insights significativos de conjuntos 

de dados complexos, particularmente em tarefas de previsão e detecção de anomalias. 

Para enfrentar esses desafios, além dos modelos estatísticos, inúmeras abordagens 

baseadas em IA foram propostas na literatura. 

Um dos elementos fundamentais na análise de dados de energia eólica é o 

tratamento de séries temporais, que representam medições coletadas ao longo do tempo 

de diversas fontes, como sistemas SCADA, sensores meteorológicos e unidades de 

monitoramento de condições. 

 

3.3 Séries Temporais 

 

A previsão de séries temporais consiste em estimar valores futuros a partir de 

observações históricas, as quais são interpretadas como realizações de um processo 

estocástico subjacente. Essas observações podem ser representadas em um espaço de 

estados indexado por um parâmetro discreto ou contínuo, conforme a natureza 

temporal dos dados.  

A adoção de hipóteses como a estacionariedade fraca — na qual a média 

permanece constante e a auto covariância depende apenas do intervalo temporal entre 

as observações — permite simplificar a modelagem estatística e viabilizar o 

desenvolvimento de métodos preditivos mais robustos (HORVÁTH; KOKOSZKA; 

RICE, 2014).  

Na previsão da geração eólica, são utilizadas técnicas para prever a geração 

futura de energia por meio da amostragem de um sinal contínuo p (t) de transdutores, 
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convertendo em uma série temporal discreta pt por meio de médias móveis em cada 

passo de tempo ∆t. Na modelagem de séries temporais, os dados históricos são 

utilizados como entradas ou regressores, sendo estruturados em intervalos de tempo 

definidos (ou múltiplos destes) entre cada observação. O intervalo de amostragem é 

uma característica intrínseca da série, enquanto o passo de previsão constitui um 

parâmetro metodológico associado à estratégia preditiva adotada.  

Outro parâmetro essencial é o horizonte de previsão, que determina o ponto 

futuro — em número de intervalos de tempo — para o qual se deseja estimar o valor 

da variável de interesse. No contexto da energia eólica, as previsões de curto prazo 

geralmente abrangem escalas de minutos a horas, as de médio prazo estendem-se de 

dias a semanas, e as de longo prazo correspondem a horizontes de meses a anos. 

A abordagem estatística para previsão fundamenta-se na modelagem de 

relações empíricas entre variáveis, utilizando informações históricas da variável de 

interesse e suas características autorregressivas para estimar o comportamento futuro 

em um horizonte de previsão k. A Equação (10) expressa esse modelo por meio de 

uma função que pode assumir forma de um modelo linear autorregressivo, em que pi 

indica o valor da variável p observada no enésimo instante de tempo; fu indica a 

função empírica desconhecida e εi corresponde ao termo de erro associado à predição. 

 

pt+k = fu (pt, pt−1, pt−2, . . .) + εt+k (10) 

 

Em geral, a função de previsão da geração eólica consiste em uma relação não 

linear e pode ser estimada por modelos mais sofisticados que podem ser uma função 

de variáveis exógenas. Tal modelo pode ser representado pela função na Equação 

(11). Essa função tem como entradas os dados observados de um SCADA que 

compõe a série temporal de energia; dados de modelos de Previsão Numérica do 

Tempo (Numerical Weather Prediction – NWP), como previsões de velocidade e 

direção do vento, temperatura e pressão; e um conjunto de parâmetros Θ, 

normalmente aproximados por meio de técnicas de aprendizado ou regressão 

(GALLEGO CASTILLO, 2013). 

 

pt+k = f (SCADA, NWP, Θ) (11) 
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A decomposição é uma técnica amplamente utilizada na análise de séries 

temporais para aprimorar o processamento de dados. Normalmente, as séries 

temporais são divididas em três componentes: tendência, sazonalidade e ruído. A 

tendência representa os valores esperados a longo prazo, a sazonalidade captura 

padrões repetitivos a curto prazo e o ruído se refere a variações inesperadas e 

aleatórias. Os principais tipos estão representados abaixo, com sua denominação em 

inglês: 

1. Classic Decomposition: Envolve a separação de uma série temporal em 

componentes de tendência, sazonalidade e ruído, normalmente usando médias 

móveis ou filtros (CLEVELAND, R. B. et al., 1990); 

2. Variational Mode Decomposition (VMD): Decompõe adaptativamente um sinal 

em modos intrínsecos com base em princípios variacionais, capturando as 

oscilações do sinal (DRAGOMIRETSKIY; ZOSSO, 2014); 

3. Wavelet Transform: Analisa sinais em múltiplas escalas ou resoluções, 

usando wavelets para capturar frequência e tempo, tornando-o ideal para 

dados não estacionários (RHIF et al., 2019); 

4. Fast Fourier Transform (FFT): Converte um sinal do domínio do tempo 

para o domínio da frequência, identificando frequências dominantes 

(COOLEY; LEWIS; WELCH, P. D., 1969); 

5. Empirical Modal Decomposition (EMD): Método que decompõe um sinal 

em um conjunto de funções de modo intrínseco (IMFs) e um resíduo, 

permitindo isolar os modos oscilatórios presentes em sinais não estacionários 

e não lineares, sem a necessidade de uma base de funções predefinida 

(TANAKA; MANDIC, 2007); 

6. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN): Uma derivação aprimorada do EMD, amplamente 

utilizada por utilizar múltiplas instâncias de ruído branco adaptativo para 

melhorar a precisão da decomposição do sinal, reduzindo problemas de 

ruído. É especialmente eficaz para sinais não lineares e não estacionários. 

(HE, Yingying et al., 2024). 

Para realizar previsões de séries temporais, diversos modelos estão disponíveis na 

literatura científica. Esses modelos são discutidos na seção a seguir. 
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3.4 Modelos de Previsão 

 

Para enfrentar os desafios descritos na Seção 1.1, é crucial fazer previsões precisas 

sobre o potencial de geração de energia eólica. A literatura sobre previsão de potência 

eólica tradicionalmente organiza os métodos em três grandes classes: 

1. modelos físicos, baseados na dinâmica da atmosfera; 

2. modelos estatísticos, que descrevem relações matemáticas entre observações 

passadas e futuras; e 

3. modelos baseados em Inteligência Artificial (IA), capazes de capturar padrões não 

lineares complexos. 

Essa taxonomia é amplamente adotada tanto na indústria quanto na comunidade 

científica, pois cada classe atende a horizontes de previsão, custos computacionais e 

níveis de granularidade distintos. A seguir, apresentam-se essas três classes de modelos 

de forma estruturada, destacando suas características, vantagens e limitações para 

previsão de curto prazo. 

 

3.4.1 Modelos Físicos 

 

Os modelos físicos utilizados em previsão eólica baseiam-se em modelos de NWP 

(Numerical Weather Prediction), entre os quais o WRF (Weather Research and 

Forecasting) é o mais difundido na academia e na indústria (CHAWLA et al., 2018; 

VOYANT et al., 2012). Esses modelos constituem o padrão operacional utilizado por 

centros meteorológicos, empresas de energia e operadores do sistema elétrico, devido à 

sua capacidade de representar a dinâmica atmosférica em grande escala. 

Essas abordagens baseiam-se na solução de equações diferenciais parciais que 

descrevem os processos físicos e dinâmicos da atmosfera, como conservação de massa, 

momento e energia. Para isso, integram variáveis meteorológicas fundamentais, incluindo 

pressão atmosférica, umidade relativa, temperatura, radiação solar e interações superfície-

atmosfera (ZHAO, J. et al., 2021a). Esses modelos são particularmente eficazes em 

previsões de médio e longo prazo, pois capturam adequadamente a evolução de sistemas 

meteorológicos de grande escala (CHANG, 2014). No entanto, apresentam limitações 

importantes para previsão local e de curto prazo em parques eólicos: 
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1. Resolução espacial restrita, que suaviza efeitos topográficos e microclimáticos; 

2. Resolução temporal limitada, geralmente de minutos a horas; 

3. Alto custo computacional, decorrente do processamento de grandes domínios 

atmosféricos; e 

4. Sensibilidade às condições iniciais, que pode amplificar incertezas em regiões de 

elevada variabilidade do vento. 

Essas características podem estar associadas as condições climáticas e 

meteorológicas do Nordeste brasileiro. Em função dessas limitações, estudos recentes têm 

explorado abordagens híbridas, seja com modelos estatísticos ou com modelos de IA, 

capazes de complementar ou substituir parcialmente as previsões físicas, oferecendo 

maior eficiência computacional e adaptação a condições locais específicas. 

 

3.4.2 Modelos Estatísticos 

 

Os modelos estatísticos mais comumente usados para previsão na eólica incluem 

média móvel autorregressiva (ARMA) (ERDEM; SHI, J., 2011), média móvel integrada 

autorregressiva (ARIMA) (AASIM; SINGH, S. N.; MOHAPATRA, 2019) e ARIMA 

fracionário (f-ARIMA) (KAVASSERI; SEETHARAMAN, 2009). Essas abordagens 

baseiam-se em relações lineares entre observações passadas e futuras, assumindo que o 

comportamento histórico da variável contém informação suficiente para descrever sua 

evolução temporal. 

Os modelos AR (AutoRegressive) representam o valor corrente de uma série como 

uma combinação linear de seus valores defasados, enquanto os modelos MA (Moving 

Average) utilizam combinações lineares de erros passados. Assim, o modelo ARMA 

combina ambas as estruturas, sendo adequado para séries aproximadamente estacionárias. 

O modelo ARIMA estende essa formulação ao introduzir um operador de diferenciação, 

permitindo lidar com tendências e eliminar não estacionaridades. Já o modelo f-ARIMA 

emprega diferenciação fracionária, possibilitando capturar dependências de longo alcance 

com maior flexibilidade matemática. 

Uma das formas de representar matematicamente o modelo ARIMA é de acordo 

com a Equação (12): 
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(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + ∑ ∅𝑖
𝑝
𝑖=1 (1 − 𝐵)𝑑𝑦𝑡−𝑖 + ∑ 𝜃𝑗

𝑞
𝑗=1 𝜖𝑡−𝑗 + 𝜖𝑡           (12) 

 

onde 𝐵 representa o operador de defasagem, tal que 𝐵𝑦𝑡 = 𝑦𝑡−1; d é o grau de 

diferenciação aplicado para remover tendência; p e q são, respectivamente, as ordens 

autorregressivas (AR) e de média móvel (MA); c é um termo constante (drift), 

responsável por introduzir uma tendência linear residual mesmo após a diferenciação; ∅𝑖 

e  𝜃𝑗   são os coeficientes AR e MA; e 𝜖𝑡 é um termo de ruído branco com média zero e 

variância constante.  

Apesar de sua eficiência em determinadas condições, esses modelos apresentam 

limitações estruturais significativas. Por dependerem de suposições de linearidade e 

estacionariedade, têm desempenho restrito quando aplicados a séries de velocidade do 

vento, que frequentemente exibem comportamentos não lineares, sazonalidades 

complexas e alta variabilidade estocástica (Zhao et al., 2021b). Além disso, sua 

capacidade de generalização é limitada em contextos dominados por múltiplos fatores 

meteorológicos e espaciais, que introduzem dinâmicas não lineares difíceis de serem 

capturadas por modelos lineares. 

 

3.4.3 Modelos de Inteligência Artificial (IA) 

 

Para superar essas limitações, a literatura recente tem apontado para a necessidade 

de modelos de IA, capazes de representar de forma mais realista a dinâmica intrínseca do 

vento e suas interações com o ambiente atmosférico. Nos últimos anos, técnicas de IA 

têm desempenhado um papel central no aprimoramento da previsão de potência eólica, 

especialmente devido à sua capacidade de lidar com relações não lineares, padrões 

complexos e dependências temporais nos dados. 

Modelos clássicos, como o Multi-Layer Perceptron (MLP) (MARVUGLIA; 

MESSINEO, 2012) e as Redes Neurais Artificiais (ANN) (HE, Yaoyao; LI, Haiyan, 

2018), foram amplamente utilizados nas primeiras abordagens baseadas em IA, 

principalmente pela capacidade de modelar relações não lineares entre variáveis 

meteorológicas e potência gerada. Entretanto, por não possuírem mecanismos 

internos que tratem sequências temporais, esses modelos dependem de janelas fixas 

de entrada e apresentam limitações na captura de dinâmicas temporais mais longas. 

Para lidar diretamente com dados sequenciais, surgiram as Recurrent Neural 
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Networks (RNN) (CAO, Q.; EWING; THOMPSON, M. A., 2012), capazes de 

representar dependências temporais por meio de estados recorrentes. No entanto, 

problemas como gradientes explosivos e desvanecentes restringiam seu desempenho 

em séries longas. 

Para mitigar essas limitações, arquiteturas avançadas como Long Short-Term 

Memory (LSTM) (ZHANG, Zhendong et al., 2019) e Gated Recurrent Unit (GRU) 

(SONG, J.; WANG, Jianzhou; LU, H., 2018) foram desenvolvidas, tornando-se 

amplamente aplicadas em previsão eólica devido à sua maior capacidade de capturar 

dependências de médio e longo prazo. Extensões como o BiLSTM (PENG, T. et al., 

2021) ampliam essa capacidade ao considerar dependências temporais em ambas as 

direções. 

Outras abordagens relevantes incluem Support Vector Regression (SVR) (HE et 

al., 2021), Convolutional Neural Networks (CNN) (HARBOLA; COORS, 2019), que 

extraem padrões espaciais ou spatio-temporais, e redes com treinamento baseado em 

Backpropagation (BPNN) (SONG; WANG; LU, 2018). 

 

 MLP: modelos feed-forward e suas limitações temporais 

 

MLPs são modelos de aprendizado profundo que consistem em múltiplas camadas 

de nós (neurônios). Essas camadas são redes de feed-forward que aprendem pesos Ө e 

mapeiam a entrada para a saída 𝑦 ≈ 𝑓(𝑥|Ө) (Como ilustrado na Figura 9). A saída gera 

uma estrutura em cadeia, onde múltiplas camadas são empilhadas, dando profundidade 

ao modelo. Portanto, a saída é caracterizada pela Equação (13) abaixo: 

 

𝑦̂ = 𝑓(𝑛+1)(𝑓(𝑛)(… 𝑓(2)(𝑓(1)(𝑥|Ө1)|Ө2) … |Ө𝑛)|Ө𝑛+1)                       (13) 

 

Onde 𝑓(1) representa a transformação aplicada pela primeira camada oculta, com 

peso Ө1, 𝑓(2) pela segunda camada oculta, com peso Ө2. 𝑓(𝑛) pela enésima camada 

oculta, com peso Ө𝑛. E 𝑓(𝑛+1) para a última camada oculta, com peso Ө𝑛+1. A Equação 

(13) representa como a entrada x é progressivamente transformada através das n camadas 

ocultas e, finalmente, mapeada para a camada de saída 𝑦̂ (TAUD; MAS, 2018). 
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Figura 9 - Estrutura de uma MLP 

 

Fonte: Adaptado de Taud e Mas (2018). 

 

 LSTM e RNNs: Aprendizado sequencial e dependências de longo prazo 

 

LSTM é uma arquitetura de RNN projetada para aprendizado de sequências. 

Diferentemente das RNNs tradicionais, as LSTMs são capazes de capturar dependências 

de longo prazo, superando o problema do desvanecimento do gradiente (vanishing 

gradient), que compromete o aprendizado eficaz durante o processo de retropropagação. 

Essa capacidade advém do uso de um mecanismo interno de portas de controle, que regula 

o fluxo de informações ao longo do tempo. A porta de entrada determina quais 

informações são incorporadas ao estado de memória; a porta de esquecimento define 

quais informações devem ser descartadas; e a porta de saída seleciona os conteúdos 

relevantes a serem transmitidos para a próxima etapa de processamento. Essa estrutura 

permite que a LSTM mantenha e atualize informações de forma seletiva, otimizando a 

eficiência e a estabilidade do modelo durante o treinamento (YU, Y. et al., 2019). A Figura 

10 ilustra a estrutura típica de uma célula LSTM, em que 𝑥𝑡 representa a entrada no 

instante de tempo t (por exemplo, dados de uma série temporal), enquanto ℎ𝑡 corresponde 

ao estado oculto, que transporta informações processadas de etapas anteriores da 

sequência. 
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Figura 10 - Estrutura de uma LSTM 

 

Fonte: Adaptado de Bentsen et al. (2023a) 

 

 Modelos lineares profundos: NLinear e DLinear 

 

Diversos modelos baseados em aprendizado profundo são discutidos na literatura 

científica, entre eles o DLinear (ZENG et al., 2023). Nesse estudo, os autores questionam 

a eficácia das arquiteturas Transformer na previsão de séries temporais, destacando 

limitações como alto custo computacional, ineficiência e propensão ao sobre ajuste 

(overfitting), especialmente em séries de longa duração. Com o objetivo de investigar se 

a complexidade dos Transformers é realmente necessária, os autores propuseram duas 

variantes simplificadas — NLinear e DLinear — que mantêm a estrutura de redes neurais 

profundas, mas substituem o mecanismo de atenção por camadas lineares aplicadas ao 

longo do eixo temporal. Esses modelos realizam a regressão da série temporal por meio 

de uma operação de soma ponderada, conforme ilustrado na Figura 11. A formulação 

matemática é dada por 𝑋̂ = 𝑊𝑋𝑖, em que 𝑊 𝜖 𝑅𝑇 𝑥 𝐿 representa a camada linear aplicada 

na dimensão temporal, enquanto 𝑋𝑖 e 𝑋̂𝑖 correspondem, respectivamente, à entrada e à 

previsão da enésima variável, respectivamente. 
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Figura 11 - Ilustração básica de um modelo linear 

 

Fonte: Adaptado de Zeng et al. (2023). 

 

A principal diferença entre os dois modelos está na forma como tratam a série de 

entrada. O NLinear aplica diretamente uma transformação linear sobre a sequência 

original, sem qualquer pré-processamento adicional. Já o DLinear realiza uma 

decomposição explícita da série temporal em dois componentes — tendência e 

sazonalidade — e aplica uma camada linear independente a cada um deles. As saídas 

dessas duas camadas são então combinadas para formar a previsão final. Essa 

decomposição permite ao DLinear capturar padrões de variação lenta e rápida de forma 

mais interpretável, ao mesmo tempo em que mantém a simplicidade e eficiência 

computacional do modelo linear. 

 

 Limitações gerais e motivação para abordagens mais avançadas 

 

Embora esses modelos tenham demonstrado sucesso na aprendizagem de não 

linearidades complexas e padrões temporais, cada abordagem apresenta limitações 

inerentes. As MLPs, por exemplo, são modelos essencialmente estáticos, incapazes de 

capturar dependências temporais de forma direta, exigindo engenharia manual de 

atributos para incorporar informações históricas. Os modelos baseados em LSTM, apesar 

de sua capacidade de manipular sequências, enfrentam dificuldades para representar 

dependências de longo prazo e estão sujeitos a altos custos computacionais, além de 

demandarem ajuste cuidadoso de hiperparâmetros. Essa complexidade os torna menos 

eficientes quando aplicados a grandes volumes de dados. 

Por outro lado, abordagens lineares como o DLinear oferecem alta eficiência 



47 
 

computacional e se mostram eficazes em cenários nos quais os padrões temporais 

apresentam comportamento predominantemente linear. Entretanto, tais modelos possuem 

capacidade representacional limitada, o que restringe seu desempenho na modelagem de 

relações não lineares complexas — características frequentemente observadas em séries 

temporais de energia eólica, que envolvem interações multivariadas e variabilidade 

estocástica 

Essas limitações motivaram o desenvolvimento de mecanismos capazes de: 

1. Capturar relações de curto e longo prazo de forma simultânea; 

2. Operar de maneira paralela; 

3. Identificar automaticamente quais partes da sequência são mais relevantes. 

Essas limitações levaram ao desenvolvimento do mecanismo de atenção, ponto de 

transição entre modelos recorrentes e arquiteturas totalmente paralelas. 

 

 Evolução até o mecanismo de atenção e transição para o Transformer. 

 

Os mecanismos de atenção foram introduzidos como alternativa aos modelos 

recorrentes, permitindo que o modelo atribuísse pesos relativos aos elementos mais 

relevantes de uma sequência sem depender de processamento sequencial. A formulação 

básica da atenção escalonada dot-product é apresentada na Seção 2.1 deste trabalho 

A consolidação da atenção levou ao desenvolvimento do Transformer 

(VASWANI et al., 2017), que elimina a recorrência e avalia todas as relações temporais 

de forma paralela, capturando dependências de curto e longo prazo com maior eficiência. 

O uso de múltiplas cabeças de atenção (ver Equação 3 na Seção 2.1) aprimora a 

capacidade de identificar diferentes padrões temporais. Por não possuir recorrência 

nativa, o Transformer utiliza codificadores posicionais para introduzir informações de 

ordem temporal, apresentados na Figura 3 e formalizados pelas Equações 5 e 6 da seção 

anterior. Com o intuito de ampliar essa representação, este trabalho adota o Time2Vec, 

conforme descrito na Seção 2.2. 

Historicamente, a evolução ocorre em duas etapas: 

1. A atenção é introduzida como componente adicional em modelos recorrentes; 

2. Torna-se a base estrutural de uma arquitetura completa — o Transformer. 

Essa progressão cronológica fundamenta o uso de Transformers em previsão de 

séries temporais e contextualiza sua aplicação neste trabalho. 
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3.5 Aplicação das redes Transformers 

 

Para uma revisão detalhada das aplicações das redes Transformer, realizou-se um 

estudo de revisão sistemático, fundamentado em uma metodologia estruturada que 

assegura transparência, reprodutibilidade e rigor científico. Neste estudo, adotou-se uma 

abordagem quantitativa e qualitativa combinada, seguindo as melhores práticas para 

revisões sistemáticas e alinhando-nos às diretrizes PRISMA quando aplicável (PAGE et 

al., 2021). O componente quantitativo consistiu em uma análise bibliométrica, que 

emprega técnicas estatísticas e matemáticas para descobrir tendências e padrões de 

pesquisa dentro de um domínio (DONTHU et al., 2021). Optou-se por esse método 

porque é possível identificar a dinâmica de publicação dos estudos, tópicos emergentes e 

clusters de pesquisa no crescente campo de aplicações do Transformer. O componente 

qualitativo envolveu uma análise de conteúdo aprofundada dos estudos selecionados 

(SOARES et al., 2018). Esta etapa foi essencial para avaliar criticamente as arquiteturas 

do modelo, conjuntos de dados, procedimentos de avaliação e resultados.  

A combinação dessas duas abordagens fornece uma ampla visão geral da evolução 

da pesquisa e uma compreensão detalhada do desempenho e das limitações do modelo. A 

Figura 12 ilustra a metodologia de pesquisa dessa revisão sistemática, destacando o 

refinamento progressivo do conjunto de dados ao longo das três etapas (Planejamento; 

Coleta e identificação dos artigos; Relatório). Essa representação reforça a natureza 

sistemática e transparente do processo de revisão, estruturada da seguinte forma: 

Na etapa de planejamento, definiu-se o escopo da pesquisa e as palavras-chave a 

serem utilizadas. Foram empregadas as expressões “Transformers Networks” e seus 

sinônimos correspondentes, com o objetivo de abranger o maior conjunto possível de 

estudos relevantes. A base de dados Scopus foi selecionada por sua ampla cobertura 

interdisciplinar, pelos recursos avançados de busca e pela extensa indexação de 

periódicos revisados por pares, assegurando uma identificação abrangente da literatura 

pertinente. 

Na etapa de coleta e identificação, restringiu-se a busca por artigos de periódicos 

revisados por pares, redigidos em inglês e publicados entre 2017 e 2025, considerando o 

ano de introdução do modelo Transformer. Foram excluídos resumos de conferências, 

livros, teses e outras fontes não associadas a periódicos científicos. A busca inicial 

retornou 16.236 artigos (Etapa 1). Em seguida, foram incorporadas palavras-chave 
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específicas do domínio, como “Wind Turbine”, “Wind Energy” e “Wind Speed”, bem 

como seus sinônimos, resultando em um conjunto reduzido de 211 artigos (Etapa 2). 

As strings completas utilizadas nas Etapas 1 e 2 encontram-se apresentadas no 

Apêndice A, garantindo transparência, rastreabilidade e reprodutibilidade do processo de 

busca. 

Por fim, na etapa de relatório, os títulos e resumos foram analisados de forma 

criteriosa. Excluíram-se os trabalhos que: (1) não apresentavam avaliação objetiva de 

desempenho de modelos baseados em Transformers; (2) tinham foco principal em 

sistemas híbridos solar-eólicos ou em temas mais amplos de energia; e (3) não 

demonstravam transparência metodológica. Após essa triagem, 90 artigos permaneceram 

para análise aprofundada durante a avaliação qualitativa. 

A abordagem metodológica qualitativa foi empregada para conduzir uma análise 

explicativa do estudo, que foi sistematicamente integrada aos 90 artigos identificados 

durante a Etapa 3 (Fig. 12). Esse procedimento analítico teve como objetivo reforçar a 

avaliação dos dados na fase de relatório e discutir os resultados da pesquisa com mais 

detalhes, levando, em última análise, a conclusões mais detalhadas sobre alguns dos 

estudos identificados. 
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Figura 12 - Fluxograma do passo a passo metodológico da revisão de literatura 

 

Fonte: Autoria própria (2025). 

 

Uma breve visão das aplicações gerais foi realizada para analisar o domínio 

potencial da análise de dados em TEs usando redes Transformer. Como resultado, é 

possível identificar os potenciais benefícios dessa rede neural em diversas áreas da 

sociedade. 

 

3.5.1 Aplicações Gerais 

 

A estratégia de busca realizada na Etapa 1 resultou em 16.236 artigos. A Figura 

13 apresenta uma visão geral das múltiplas aplicações das redes Transformer em 

diferentes domínios da sociedade, evidenciando as áreas de estudo que adotaram essa 

arquitetura em suas pesquisas. Ressalta-se que um mesmo artigo pode estar associado a 

mais de uma área de aplicação. Em (HU, Zhaoyu et al., 2023), foi desenvolvido um 

modelo para detecção de tumores cerebrais com base em imagens tridimensionais de 
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ressonância magnética. O estudo abrange áreas como medicina e ciência da computação. 

Em (YU, Z. et al., 2022), os autores proporam um modelo para reidentificação de veículos 

em ambientes urbanos, abrangendo áreas como engenharia, ciências da computação e 

ciências sociais. 

 

Figura 13 - Documentos por área temática da Etapa 1 

 

Fonte: Adaptado de SCOPUS (2025). 

 

A Figura 14 ilustra o uso crescente de redes Transformer ao longo do tempo, com 

um aumento notável entre 2021 e 2025. Essa tendência indica uma preferência crescente 

pelo emprego dessa arquitetura de rede neural para solucionar desafios de análise 

preditiva de dados. Além disso, é possível observar a notável relevância das redes 

Transformer em diversas aplicações. Essas aplicações incluem classificação de imagens, 

detecção e segmentação de objetos, geração de imagens e linguagem, processamento de 

dados multimodais (incluindo texto, fala e imagem) e análise de dados de séries temporais 

(KHAN, S. et al., 2022). 

 

 

 

 

7587

6817

1961 1849 1748 1608 1536
1303 1184 1130

5615

0

1000

2000

3000

4000

5000

6000

7000

8000

Ciência da Computação Engenharia Física e Astronomia Ciências Sociais

Matemática Energia Ciência dos Materiais Medicina

Artes e Humanidades Engenharia Química Outros



52 
 

Figura 14 - Número de estudos desenvolvidos a partir da Etapa 1 (2017-2025) 

 

Fonte: Adaptado de SCOPUS (2025). 

 

3.5.2 Aplicações na Energia Eólica 

 

A estratégia de busca adotada nesta pesquisa resultou em 90 artigos na etapa final 

de seleção. A Figura 15 apresenta a distribuição desses trabalhos por tipo de desafio 

identificado. A Tabela 3 apresenta uma amostra desses trabalhos, organizados em ordem 

cronológica. Cada artigo aborda diferentes tipos de desafios, classificados em: (I) 

previsão da velocidade do vento; (II) previsão da potência eólica; e (III) detecção de 

anomalias. Alguns estudos contemplam simultaneamente a previsão da velocidade do 

vento e da potência eólica. Todos os trabalhos analisados empregam metodologias 

baseadas na coleta de dados de turbinas reais e em estudos experimentais. Em alguns 

casos, os autores especificaram as fontes dos dados de entrada, obtidos por meio de 

vibrações (registradas por acelerômetros), sistemas SCADA ou anemômetros. Nos 

estudos em que essa informação não foi explicitada, os dados foram considerados como 

operacionais. Por fim, a última coluna da Tabela 3 indica o local de coleta dos dados 

utilizados em cada pesquisa. 

Durante a análise dos estudos identificados, observou-se que a arquitetura do 

Transformer frequentemente requer modificações para lidar de forma eficaz com a 

previsão de séries temporais. Consequentemente, cada trabalho propõe um modelo 
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personalizado com validação experimental de sua abordagem. Um aprimoramento 

comum envolve a integração de técnicas de decomposição, conforme comentado na 

Seção 3.3 desse estudo, para isolar componentes de tendência e sazonais, melhorando 

assim a qualidade das entradas do modelo. 

Outra abordagem recorrente consiste na utilização de técnicas híbridas que 

integram modelos baseados em grafos, tais como Grafos Espaço-Temporais (STGs), 

Redes Neurais de Grafos (GNNs), Redes Convolucionais de Grafos (GCNs) e Redes de 

Atenção em Grafos (GATs). Os STGs possibilitam a representação conjunta das 

dimensões espaciais e temporais dos dados em uma estrutura de grafo, preservando a 

topologia e a dinâmica das relações entre os nós. As GNNs, por sua vez, são projetadas 

para processar esses dados estruturados, enquanto as GCNs se especializam em capturar 

correlações espaciais locais por meio de operações de convolução sobre o grafo. As GATs 

aprimoram esse processo incorporando mecanismos de atenção que atribuem pesos 

diferenciados aos vizinhos mais relevantes de cada nó. Ao integrar as dependências 

espaciais extraídas pelos modelos baseados em grafos com a capacidade dos 

Transformers de modelar relações temporais de longo alcance, as arquiteturas híbridas 

resultantes oferecem uma estrutura robusta e eficiente para tarefas de previsão espaço-

temporal, como a estimativa de fluxo de tráfego e o monitoramento de redes de sensores. 

 

Figura 15 - Classificação dos 90 artigos incluídos na revisão sistemática de acordo com o desafio 

investigado: potência eólica, velocidade do vento, detecção de anomalias e desafios combinados. 

 

Fonte: Autoria própria (2025). 
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Tabela 3 - Alguns dos artigos identificados na pesquisa 

Nº Fonte Tipo de desafio Dados de entrada Local de coleta dos dados 

1 (WANG, H.-K.; SONG, K.; CHENG, 2022) Potência eólica SCADA China 

2 (ZHANG, K.; LI, X.; SU, 2022) Velocidade do vento Dados operacionais China 

3 
(WANG, Lei; HE, Yigang; LI, Lie; et al., 

2022) 
Potência eólica Dados operacionais China 

4 (ZHOU, Haoxuan et al., 2022) Detecção de anomalias Dados de vibração Canada 

5 (QU, K. et al., 2022a) Potência eólica Dados operacionais China 

6 (HUANG, Xiaohan; JIANG, A., 2022) Potência eólica Dados operacionais Espanha 

7 (PAN et al., 2022) Velocidade do vento Dados operacionais Dinamarca 

8 
(WANG, Lei; HE, Yigang; LIU, Xiaoyan; et 

al., 2022) 
Potência eólica Dados operacionais China 

9 (ZHA et al., 2023a) 
Velocidade do vento/ 

Potência eólica 
SCADA China 

10 (TANG, W.; LIU, C.; ZHANG, B., 2023) Detecção de anomalias SCADA China 

11 (HUANG, S.; YAN, Chang; QU, Y., 2023a) Potência eólica SCADA China 

12 
(BOMMIDI; TEEPARTHI; KOSANA, 

2023) 

Velocidade do vento/ 

Potência eólica 
Dados operacionais EUA 

13 (BENTSEN et al., 2023a) 
Velocidade do vento/ 

Potência eólica 
Dados operacionais Mar do Norte (Noruega) 

14 (WANG, Yun et al., 2023) Velocidade do vento Dados operacionais Groelândia e EUA 

15 (XIAO; HE, X.; LI, C., 2023) Potência eólica Dados operacionais Bélgica 

16 (TIAN et al., 2023) Potência eólica Dados operacionais China e Espanha 

17 (ZHENG, H. et al., 2023) Potência eólica Dados operacionais China 

18 
(NASCIMENTO; MELO, DE; MOREIRA, 

2023) 
Velocidade do vento Anemômetros Brasil 

19 (XINXIN et al., 2023) Velocidade do vento Dados operacionais Não especificado  

20 (HU, J. et al., 2023) Potência eólica Dados operacionais Espanha e Austrália 

21 (WANG, Hai‐Kun et al., 2023) Potência eólica Dados operacionais China 

22 (BENTSEN et al., 2023b) 
Velocidade do vento/ 

Potência eólica 
Dados operacionais Mar do Norte (Noruega) 

23 (YU, Chengqing et al., 2023) Velocidade do vento Dados operacionais China 

24 (GONG, M. et al., 2023a) Potência eólica Dados operacionais Página virtual 

25 (WEI, H.; WANG, W.; KAO, 2023) Potência eólica SCADA Turquia 

26 

 
(LI, N. et al., 2023) Potência eólica Dados operacionais China 

27 (CHEN, Yaoran et al., 2024) Velocidade do vento Dados operacionais Oceano Pacífico (EUA) 

28 (BAN et al., 2024) Velocidade do vento Dados operacionais China e páginas virtuais 

29 (LIN, S. et al., 2024) Velocidade do vento Dados operacionais China 

30 (TAO et al., 2024) Detecção de anomalias CMS China 

31 (SHI, Z. et al., 2024). Velocidade do vento Dados operacionais EUA, Groelândia e Antártida 

32 
(BOMMIDI; TEEPARTHI; DULLA 

MALLESHAM, 2024) 
Velocidade do vento Dados operacionais EUA 

33 (MO et al., 2024) Potência eólica Dados operacionais China 

34 (WAN et al., 2024) Potência eólica SCADA China 

35 (GAO, Y. et al., 2024) Velocidade do vento Dados operacionais China 

36 (ZHENG, Y. et al., 2024) Detecção de anomalias SCADA China 

37 (PARRI; TEEPARTHI, 2024) Velocidade do vento Dados operacionais EUA 

38 (JIN, Z. et al., 2025) Velocidade do vento Dados operacionais China 

39 (DONG, Z. et al., 2025) Potência eólica Dados operacionais China 

40 (WANG, Zhongrui et al., 2025) Potência eólica Dados operacionais 
Estreito de Dover (Reino Unido e 

França) 

41 (LENG et al., 2025) Velocidade do vento Dados operacionais EUA 

42 (HONG et al., 2025) Potência eólica Dados operacionais China 

Fonte: Autoria própria (2025). 
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Outra abordagem aplicada em modelos híbridos envolve o uso de aprendizado 

multitarefa e multimodal, que permite explorar simultaneamente diferentes tarefas 

relacionadas e integrar múltiplas fontes de dados. O aprendizado multitarefa melhora a 

generalização e reduz o erro ao compartilhar informações entre tarefas principais e 

auxiliares, enquanto o aprendizado multimodal combina variáveis meteorológicas e séries 

temporais de potência, enriquecendo as representações e aumentando a precisão preditiva 

(WANG, Lei; HE, Yigang; LIU, Xiaoyan; et al., 2022; WANG, Zhongrui et al., 2025).  

Além das dependências temporais, a geração eólica também apresenta 

dependências espaciais, uma vez que parques eólicos geograficamente próximos tendem 

a ser influenciados por sistemas meteorológicos semelhantes. Para modelar essas 

interações espaciais dinâmicas, alguns estudos adotam representações em grafo, nas quais 

a similaridade entre parques é explicitamente quantificada. Nesse contexto, o kernel 

gaussiano e o coeficiente de correlação de Pearson dinâmico (PCC) são utilizados para 

capturar as relações espaciais dinâmicas entre os parques eólicos, em que o PCC mede a 

correlação temporal entre locais e o kernel gaussiano gera a matriz de similaridade usada 

na construção do grafo espacial do modelo (WANG, Zhongrui et al., 2025). 

Conforme apresentado na Tabela 4, as aplicações do Transformer e de suas 

variantes na literatura abrangem tarefas como previsão de velocidade do vento, previsão 

de potência eólica e detecção de anomalias. Considerando que o foco central deste 

trabalho é a previsão de potência eólica, optou-se por aprofundar a discussão nesse 

domínio. A Tabela 4 sintetiza alguns dos estudos identificados que empregam 

arquiteturas baseadas em Transformers ou em variantes híbridas, apresentando para cada 

um o modelo proposto, as técnicas e componentes utilizados, o objetivo principal e suas 

características-chave. 

Os modelos apresentados na Tabela 4 foram desenvolvidos com o objetivo de 

aprimorar o desempenho da arquitetura Transformer na previsão de potência eólica. Esses 

estudos também realizaram comparações entre os modelos propostos e abordagens 

clássicas amplamente utilizadas na literatura, empregando métricas de avaliação 

preditiva, tais como MAE, MSE e RMSE (detalhadas na Seção 5 deste estudo). A Tabela 

5 apresenta os resultados obtidos para alguns dos modelos propostos, em comparação 

com os modelos de referência, incluindo os horizontes de previsão considerados e as 

tabelas de referência dos estudos de onde esses resultados foram extraídos. 

 



56 
 

Tabela 4 - Modelos propostos para previsão de energia eólica 

Modelo Técnicas 

/Componentes 

Objetivo principal Características-chave 

Transformer (QU, K. et 

al., 2022b) 

Transformer padrão Melhorar a previsão de curto prazo para vários 

parques eólicos com dependências complexas 

Captura longas dependências e correlações 

espaciais entre parques eólicos 

CNN-Informer 

(WANG, H.-K.; SONG, 

K.; CHENG, 2022) 

CNN + Informer Aprimorar a previsão de energia eólica por meio 

da extração de características espaço-temporais 

Combina CNN para extração espacial e Informer 

para modelagem temporal de longo alcance 

Transformer (WANG, 

Lei; HE, Yigang; LI, Lie; 

et al., 2022) 

Transformer padrão Melhorar a precisão e a eficiência de previsões 

em múltiplos estágios 

Ajuste de hiperparâmetros; equilibra precisão e 

eficiência computacional 

M2TNet (WANG, Lei; 

HE, Yigang; LIU, 

Xiaoyan; et al., 2022) 

Aprendizado multitarefa e 

multiorigem baseado em Transformer 

Prever potência eólica em horizonte ultracurto 

utilizando dados de múltiplas fontes 

Integra camadas de extração de características, 

fusão e predição; utiliza aprendizado multimodal 

e multitarefa 

MSIN (HUANG, 

Xiaohan; JIANG, A., 

2022) 

Informer + Retropropagação truncada Melhorar a precisão das previsões de médio e 

longo prazo 

Utiliza variáveis meteorológicas e treinamento 

truncado para aprimorar interpretabilidade e 

desempenho 

Transformer (HUANG, 

S.; YAN, Chang; QU, 

Y., 2023b) 

Transformer padrão Melhorar a capacidade de generalização do 

modelo em previsões 

Estende o Transformer para lidar com entradas 

generalizadas 

VMD-CAT (ZHENG, 

H. et al., 2023) 

VMD + Transformer modificado Capturar correlações entre padrões de flutuação 

e segmentos históricos 

Modelo híbrido de decomposição e atenção que 

aprimora a representação temporal 

IVMD-FE-Ad- 

Informer (TIAN et al., 

2023) 

VMD aprimorado + Entropia Fuzzy + 

Informer (com função de perda 

adaptativa) 

Reduzir a complexidade na previsão de séries 

temporais 

Utiliza decomposição, entropia e perda adaptativa 

para aprimorar o desempenho do Informer 

IFORNLD (HU, J. et 

al., 2023) 

Informer + Regressão Ordinal + 

Diversidade de Rótulos 

Prever eventos de variação abrupta de potência 

eólica (ramp events) 

Modelo de múltiplas saídas para longas 

sequências, com melhor desempenho em 

classificação 

GCNInformer 

(WANG, Hai‐Kun et al., 

2023) 

GCN + Informer Aprimorar a modelagem de correlações entre 

turbinas 

Utiliza GCN para dependências espaciais e 

Informer para dependências temporais 

TCNInformer 

(GONG, M. et al., 

2023b) 

TCN + Informer Melhorar a extração de características 

temporais 

TCN captura dependências locais; Informer 

captura padrões de longo alcance 

EMD- 

CCTransformer (LI, N. 

et al., 2023) 

EMD + Convolução Causal + 

Transformer 

Melhorar a previsão de curto prazo de potência 

eólica 

Combina decomposição com atenção causal para 

modelagem de padrões não estacionários 

Powerformer (MO et al., 

2024) 

Arquitetura Transformer modificada Aprimorar a extração de características 

temporais e reduzir a complexidade 

computacional 

Integra variáveis meteorológicas como velocidade 

e direção do vento, temperatura e pressão 

VM-MSI-GTTS  

(WAN et al., 2024) 

VMD + Entrada em múltiplas escalas 

temporais + GRU + Transformer + 

CNN + Rede Neural Totalmente 

Conectada (FCN) 

Melhorar previsões multietapas capturando 

dependências de curto e longo prazo 

Utiliza decomposição baseada em VMD; GRU 

para dependências de curto prazo e Transformer 

para longo prazo; CNN e FCN para predição final 

 

Wind-Mambaformer 

(DONG, Z. et al., 2025) 

Estrutura do Transformer + Mamba + 

mecanismo FlowAttention 

Melhorar previsão de curto prazo de potência 

eólica 

Utiliza o Mamba para capturar dependências de 

longo prazo e o mecanismo FlowAttention para 

reduzir a complexidade computacional 

M3STIN (WANG, 

Zhongrui et al., 2025) 

Informer + GAT + Fusão multimodal 

+ Aprendizagem multitarefa + Kernel 

gaussiano + PCC 

Realizar previsão de potência eólica offshore de 

curto prazo em múltiplas localizações, 

considerando dependências espaciais e 

temporais  

Integra GAT e Informer; explora correlações 

espaciais; usa tarefas auxiliares e fusão 

multimodal para maior precisão e eficiência. 

DPFMformer-MEC 

(HONG et al., 2025) 

Transformer + Mamba + FFT + 

Função de perda de frequência Kernel 

(FK), Correção de erro ponderada por 

coeficiente (MEC) 

Melhorar a previsão de potência eólica por meio 

da extração de características em múltiplas 

escalas e do uso de informações no domínio da 

frequência 

Integra Mamba e Transformer para eficiência e 

modelagem global; decompõe séries via FFT; usa 

FK para aprendizado de alta frequência e MEC 

para correção de erro multivariável 

Fonte: Autoria própria (2025). 
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Tabela 5 - Resultados dos modelos propostos para a previsão de energia eólica 

Fonte Modelos MAE MSE RMSE Horizonte de 

previsão 

(QU, K. et al., 2022b) LSTM 

Transformer 

110,2 

81,0 

  Curto prazo 

(WANG, H.-K.; SONG, 

K.; CHENG, 2022) 

LSTM 

CNN-Informer 

0,815 

0,0064 

1,156 

0,007 

10,748 

0,0086 

Curto prazo 

(WANG, Lei; HE, 

Yigang; LI, Lie; et al., 

2022) 

SLSTM 

Transformer 

7,08 

4,33 

 10,15 

7,51 

Curto 

(WANG, Lei; HE, 

Yigang; LIU, Xiaoyan; et 

al., 2022) 

SVR 

M2TNet 

15,34 

8,33 

 

 

18,48 

11,66 

Curto prazo 

(HUANG, Xiaohan; 

JIANG, A., 2022) 

LSTM 

Informer 

MSIN 

137,019 

61,600 

41,701 

 727,754 

436,576 

307,553 

Curto prazo 

(HUANG, S.; YAN, 

Chang; QU, Y., 2023b) 

GRU 

LSTM 

Transformer 

99,28 

86,20 

10,96 

 168,20 

149,91 

18,70 

Curto prazo 

(ZHENG, H. et al., 2023) ARIMA 

VMD-CAT 

1,61 

0,79 

 1,94 

0,93 

Curto prazo 

(TIAN et al., 2023) LSTM 

MLP 

IVMD-FE-Ad- 

Informer 

207,879 

361,476 

183,962 

 278,866 

478,394 

252,690 

Curto prazo 

(HU, J. et al., 2023) LSTM-random 

IFORNLD-

random 

918,261 

 

789,224 

 1,376 

 

1,273 

Curto prazo 

(WANG, Hai‐Kun et al., 

2023) 

LSTM 

GCNInformer 

0,445 

0,104 

0,592 

0,024 

0,769 

0,154 

Curto prazo 

(GONG, M. et al., 2023b) GRU 

LSTM 

TCN-Informer 

0,399 

0,405 

0,229 

0,298 

0,342 

0,108 

0,546 

0,569 

0,329 

Curto prazo 

(LI, N. et al., 2023) ARIMA 

EMD- 

CCTransformer 

0,502 

0,089 

0,162 

0,013 

0,402 

0,113 

Curto prazo 

(MO et al., 2024) LSTM 

Transformer 

Powerformer 

0,751 

0,819 

0,314 

0,739 

1,042 

0,241 

0,859 

1,021 

0,491 

Curto prazo 

(WAN et al., 2024) LSTM 

Informer 

VM-MSI-GTTS  

0,109 

0,085 

0,062 

0,030 

0,019 

0,011 

0,174 

0,137 

0,104 

Curto prazo 

(WANG, Zhongrui et al., 

2025) 

SVR 

M3STIN 

11,39 

7,97 

 16,08 

12,67 

Curto prazo 

(HONG et al., 2025) LSTM 

DPFMformer-

MEC 

2,361 

0,2958 

 3,336 

0,3218 

Curto prazo 

Fonte: Autoria própria (2025). 
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Nota: As métricas apresentadas na Tabela 5 não devem ser comparadas entre estudos distintos, uma vez 

que cada trabalho adota conjuntos de dados, escalas, frequências temporais, metodologias de pré-

processamento e horizontes de previsão próprios. Dessa forma, a Tabela 5 não tem como objetivo 

estabelecer uma comparação direta entre valores absolutos de erro, mas sim sintetizar as comparações 

internas realizadas por cada autor, evidenciando a relação de desempenho entre os modelos avaliados sob 

as mesmas condições experimentais em cada estudo. 

 

De acordo com a Tabela 5, os modelos propostos apresentaram, de modo geral, 

desempenho superior aos modelos de referência em todos os experimentos. Esse resultado 

é evidenciado pelas métricas de avaliação, uma vez que menores valores de MAE, MSE 

e RMSE indicam melhor desempenho preditivo. Outra informação importante é que os 

erros apresentados na Tabela 5 estão exatamente no formato coletado em cada estudo 

correspondente. Portanto, os erros podem estar em formato absoluto ou percentual. É 

importante destacar que os erros apresentados na Tabela 5 são utilizados exatamente no 

formato disponibilizado pelos estudos originais — podendo estar expressos em valores 

absolutos ou percentuais — a fim de preservar a comparabilidade metodológica entre as 

diferentes abordagens.  

Para o Transformer, os modelos propostos performaram melhor que modelos 

como LSTM, GRU, ARIMA, entre outros (QU, K. et al., 2022b) (HUANG, S.; YAN, 

Chang; QU, Y., 2023b; QU, K. et al., 2022b; WANG, Lei; HE, Yigang; LI, Lie; et al., 

2022). Nos estudos que propuseram modelos híbridos, as abordagens desenvolvidas 

também apresentaram desempenho superior aos modelos de referência, incluindo 

ARIMA, SVR, GRU, MLP, LSTM e até mesmo o Transformer padrão (GONG, M. et al., 

2023b; LI, N. et al., 2023; MO et al., 2024; ZHENG, H. et al., 2023). Já para os estudos 

que utilizaram o Informer, os modelos propostos também superaram os modelos de 

referência (GONG, M. et al., 2023b; HU, J. et al., 2023; HUANG, Xiaohan; JIANG, A., 

2022; TIAN et al., 2023; WAN et al., 2024; WANG, Hai‐Kun et al., 2023; WANG, H.-

K.; SONG, K.; CHENG, 2022; WANG, Zhongrui et al., 2025). 

Os estudos analisados evidenciam que os modelos baseados na arquitetura 

Transformer apresentam desempenho notável na previsão de potência eólica a curto 

prazo, mostrando-se altamente adequados para essa finalidade. Verifica-se, ainda, que 

aprimoramentos estruturais na arquitetura desses modelos contribuem significativamente 

para o aumento da capacidade preditiva. Além disso, o modelo Informer destacou-se 

como uma alternativa promissora para séries temporais com grandes volumes de dados, 

demonstrando, em alguns casos, desempenho superior ao Transformer padrão, conforme 

observado nos trabalhos revisados. Algumas derivações do Transformer padrão são 
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explicadas detalhadamente na Seção 2.1 deste trabalho, como é o caso do Informer e do 

Autoformer. 

 

 

3.5.3 Discussão e Limitações 

 

Os estudos analisados nesta revisão indicam que os modelos baseados na 

arquitetura Transformer são capazes de atribuir relevância de forma adequada aos dados 

de séries temporais por meio do mecanismo de atenção, podendo ser adaptados para lidar 

também com entradas espaço-temporais. Essas características tornam essa arquitetura 

especialmente promissora para aplicações em energia eólica. No entanto, ainda persistem 

desafios para o aproveitamento pleno de seu potencial em contextos práticos, sobretudo 

quando se consideram dados reais e requisitos específicos do domínio. As principais 

limitações identificadas são apresentadas a seguir:  

1. Custo Computacional: Os Transformers possuem maior demanda 

computacional, entendido aqui como maior tempo de processamento, maior 

consumo de memória e maior exigência de hardware durante a inferência. Esses 

fatores podem dificultar seu uso em aplicações que demandam resposta rápida ou 

operam sob restrições de processamento, como sistemas de previsão em parques 

eólicos. 

2. Codificação Temporal: A codificação posicional tradicional do Transformer 

nem sempre captura adequadamente padrões sazonais, cíclicos ou dinâmicas 

temporais não lineares observadas em séries reais, o que limita sua capacidade de 

representar dependências temporais complexas. Por esse motivo, métodos mais 

expressivos — como o Time2Vec — tornam-se essenciais para melhorar a 

modelagem das estruturas temporais. 

3. Riscos de Overfitting: A alta capacidade dos Transformers pode levar ao sobre 

ajuste em conjuntos de dados limitados, exigindo o uso de técnicas de 

regularização e validação rigorosa para garantir robustez. 

4. Interpretabilidade e Aplicação Industrial: Apesar dos mecanismos de atenção, 

os Transformers ainda funcionam como caixas-pretas, o que dificulta sua 

aceitação em contextos industriais que exigem transparência e aplicabilidade 

prática. 
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5. Requisitos de Dados: Muitos modelos necessitam da disponibilidade de dados 

extensos e de alta qualidade; contudo, em ambientes reais, como parques eólicos, 

os dados podem ser ruidosos, incompletos ou limitados. 

 

3.6 Lacunas Identificadas na Literatura 

 

A partir da revisão da literatura apresentada na seção anterior, observa-se que 

ainda persistem lacunas relevantes quanto ao uso da arquitetura Transformer na previsão 

de energia eólica. Diante disso, este estudo propõe-se a investigar alguns desses pontos 

em aberto, os quais também se relacionam às limitações discutidas na Seção 3.5.3 deste 

trabalho. As principais lacunas abordadas são apresentadas a seguir: 

 Custo Computacional: Grande parte do custo computacional do Transformer 

decorre da complexidade quadrática do mecanismo FullAttention presente na 

arquitetura original (Transformer Vanilla). Assim, este trabalho investiga 

alternativas capazes de mitigar essa limitação por meio dos mecanismos 

FlowAttention e FlashAttention, que visam reduzir a demanda de processamento 

mantendo a eficiência preditiva. 

 Codificação Posicional: O Transformer Vanilla utiliza codificações posicionais 

senoidais fixas, frequentemente insuficientes para representar dinâmicas 

temporais complexas. Com base nisso, este estudo propõe a integração de 

codificações temporais aprendíveis, capazes de capturar de forma mais eficaz 

sinais periódicos e comportamentos cíclicos, como ciclos diários e sazonais. Para 

essa integração, realiza-se uma análise de sensibilidade da adoção da camada 

temporal na arquitetura Transformer, com o objetivo de identificar o arranjo que 

melhor favorece o desempenho do modelo. 

 Interpretabilidade: Apesar do elevado desempenho preditivo, os modelos 

baseados em Transformer ainda apresentam desafios de interpretabilidade, pois o 

funcionamento interno dos mecanismos de atenção e das representações latentes 

é complexo. Essa dificuldade é inerente à própria arquitetura. Embora existam 

abordagens de interpretabilidade — como análise de importância, visualização de 

atenção e métodos pós-hoc —, sua aplicação em previsão de energia eólica ainda 
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é recente. Neste estudo, buscamos contribuir analisando o comportamento dos 

modelos em dados reais de parques eólicos do Nordeste do Brasil, oferecendo 

evidências empíricas que podem apoiar investigações futuras e servir de 

referência para pesquisadores e profissionais da indústria. 

Ainda sobre as limitações descritas na Seção 3.5.3, para reduzir o risco de 

overfitting e melhorar a qualidade dos dados, este trabalho adota um conjunto de 

procedimentos metodológicos de pré-processamento e modelagem. O detalhamento 

dessas etapas é apresentado na Seção 4. 
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4 METODOLOGIA 

 

Esta seção apresenta a metodologia adotada neste trabalho, descrevendo as etapas 

de desenvolvimento, os modelos utilizados, os dados empregados e os procedimentos de 

avaliação. 

 

4.1 Motivação e Formalização da Proposta 

 

A previsão de energia eólica de curto prazo apresenta desafios devido à natureza 

estocástica e não estacionária do comportamento do vento. Para abordar essas 

características, este estudo adota modelos baseados no Transformer com aplicação mais 

adequada a dados de séries temporais. Conforme discutido ao longo desse trabalho, as 

arquiteturas convencionais do Transformer enfrentam limitações relacionadas a 

codificações posicionais fixas, considerável complexidade computacional (especialmente 

em termos de tempo de processamento), e interpretabilidade limitada. Além disso, essas 

limitações caracterizam lacunas persistentes na literatura. Para superar essas limitações, 

os mecanismos FlowAttention e FlashAttention são usados para substituir o FullAttention 

tradicional, reduzindo o custo computacional e melhorando a escalabilidade. Além disso, 

uma camada de codificação Time2Vec é incorporada na entrada do modelo, para fornecer 

uma representação mais rica de padrões temporais. Essas modificações visam aprimorar 

a precisão das previsões e a eficiência computacional, ao mesmo tempo em que fornecem 

uma base sólida de resultados que pode servir como referência para pesquisas futuras e 

aplicações no setor. 

 

4.2 Visão Geral da Metodologia 

 

Este estudo visa prever a energia eólica de curto prazo com base em dados 

operacionais reais de turbinas eólicas, abordando os desafios da previsão de energia 

precisa e oportuna. Esta seção detalha o processo metodológico adotado neste estudo, 
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sendo representado pela Figura 16 que resume o processo metodológico utilizado.  

A primeira etapa envolve a coleta de dados de turbinas eólicas em operação por 

meio do sistema de SCADA. Para garantir a qualidade dos dados, a segunda etapa envolve 

procedimentos de pré-processamento e filtragem, incluindo limpeza de dados, remoção 

de outliers e padronização de séries temporais para reduzir o ruído e facilitar o 

treinamento dos modelos. A remoção de outliers foi realizada por meio de testes de 

qualidade locais aplicados aos dados de energia eólica observados da turbina analisada. 

Esses testes hierárquicos visam verificar a consistência física e estatística da variável e 

detectar comportamentos anômalos de curto prazo, incluindo verificação de intervalo, 

verificação de persistência e verificação de degrau de curto prazo. Os valores faltantes ou 

removidos durante o processo foram tratados por interpolação linear, técnica adequada 

para séries densas e de alta frequência como as geradas por sistemas SCADA. Esse 

procedimento garante continuidade temporal e preserva a coerência global da série antes 

do treinamento dos modelos. Essas etapas garantiram que o conjunto de dados estivesse 

devidamente dimensionado e consistente para a variável potência ativa (variável alvo 

deste trabalho). Finalmente, os dados processados são validados e preparados para uso na 

etapa subsequente.  

A terceira etapa concentra-se no ajuste e treinamento dos modelos empregados 

neste estudo. Os modelos utilizados incluem ARIMA, MLP, LSTM, DLinear, T2V-MLP, 

T2V-LSTM, T2V-DLinear, Transformer, Flowformer e Flashformer, bem como os 

modelos propostos T2V-Transformer, T2V-Flowformer e T2V-Flashformer. O termo 

T2V refere-se à incorporação da camada Time2Vec nos respectivos modelos. Além disso, 

também foi utilizado o modelo de Persistência (DUTTA et al., 2017), frequentemente 

usado como referência na previsão de séries temporais. Este modelo trivial pressupõe que 

o valor da variável em um determinado instante t será igual ao valor observado no instante 

t − 1. Em outras palavras, a previsão para o próximo ponto da série é o valor atualmente 

observado. A terceira etapa envolve a divisão do conjunto de dados em conjuntos de 

treinamento, validação e teste, conforme ilustrado na Figura 16. Durante a fase de 

treinamento, os modelos recebem dados e ajustam seus parâmetros por meio da 

minimização da função de perda Erro Quadrático Médio (MSE), definida pela Equação 

(14), utilizando o algoritmo de retropropagação do erro (backpropagation) para a 

atualização dos pesos via método de otimização. 

 



64 
 

𝐿𝑜𝑠𝑠 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                                         (14) 

 

onde 𝑦𝑖 representa o valor real, 𝑦̂𝑖 representa o valor prevista, e n é número de amostras 

no lote. Essa função tem o objetivo de medir a diferença quadrática média entre as 

previsões e os valores-alvo. Os otimizadores utilizados na fase de treinamento foram 

Adam (KINGMA; BA, 2014), Root Mean Square Propagation (RMSprop) (HINTON; 

SRIVASTAVA; SWERSKY, 2012) e Stochastic Gradient Descent (SGD) (BOTTOU, 

2010). O método de early stopping foi adotado para encerrar o treinamento assim que não 

fossem observadas melhorias no desempenho do modelo. Em todas as simulações, 

utilizou-se um critério de paciência de 5, considerando a evolução das previsões em 

relação aos valores-alvo.  

Durante a fase de validação, a função de perda MSE foi empregada 

exclusivamente para a avaliação do desempenho do modelo, não havendo 

retropropagação do erro nem atualização dos parâmetros. Adicionalmente, utilizou-se o 

Optuna (AKIBA et al., 2019), biblioteca de busca de hiperparâmetros para identificar a 

melhor configuração possível para cada modelo (a explicação detalhada desta fase 

encontra-se na Seção 4.6). Na fase de teste, os modelos treinados e otimizados são 

avaliados usando os dados de teste para analisar seu desempenho. O quarto estágio 

envolve a previsão e avaliação dos modelos, com base nas métricas descritas na Figura 

16 para horizontes de referência de 6, 10 e 12 horas à frente. Para os modelos propostos, 

uma análise de sensibilidade foi conduzida para determinar a configuração mais eficaz 

para integrar o mecanismo Time2Vec na arquitetura do Transformer. 
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Figura 16 - Representação do procedimento metodológico utilizado neste estudo 

 

Fonte: Autoria própria (2025). 

 

4.3 Análise de Sensibilidade na Integração Time2Vec 

 

Para integrar o Time2Vec à arquitetura Transformer, foram avaliados três 

diferentes arranjos com o objetivo de identificar aquele que promove o melhor 

desempenho na previsão de energia eólica. A análise de sensibilidade dos arranjos 

testados é apresentada na Figura 17, e cada configuração é detalhada a seguir. 

1. Arranjo I: utiliza tanto o codificador quanto o decodificador, com Time2Vec 

adicionado exclusivamente à entrada do codificador. 

2. Arranjo II: utiliza tanto o codificador quanto o decodificador, com Time2Vec 

incorporado às entradas do codificador e do decodificador. 

3. Arranjo III: utiliza apenas o codificador, sem o decodificador, com Time2Vec 

aplicado à entrada do codificador. 

Até onde a literatura científica indica, esta é a primeira vez que uma análise de 
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sensibilidade tão específica foi conduzida na integração do Time2Vec na arquitetura do 

Transformer. Os resultados obtidos nos experimentos, conforme apresentados no 

Apêndice B, indicam que o Arranjo I proporcionou as condições mais favoráveis para o 

desempenho do modelo. Esta configuração obteve o maior desempenho de acordo com 

as métricas de avaliação empregadas neste estudo. Portanto, este foi o arranjo adotado 

para os modelos propostos neste estudo. A adição do Time2Vec apenas no codificador 

permitiu que o modelo aprendesse padrões temporais de forma mais eficiente. O 

decodificador, por sua vez, concentra-se em gerar a saída com base nessas representações, 

sem a necessidade de incorporar informações temporais novamente. Essa abordagem, 

portanto, evita complexidade desnecessária, mantendo o desempenho otimizado. No 

entanto, a remoção do decodificador da arquitetura do modelo comprometeu a capacidade 

do modelo de gerar previsões adequadamente, visto que o decodificador é crucial para 

transformar representações codificadas em saídas previsíveis. Portanto, os Arranjos II e 

III foram desconsiderados neste estudo. 

 

Figura 17 - Análise de sensibilidade na integração da camada Time2Vec na arquitetura 

Transformer 

 

Fonte: Autoria própria (2025). 

 

A camada Time2Vec substitui a camada original de codificação posicional do 

Transformer no codificador. Esta camada foi descrita detalhadamente na Seção 2.1 deste 
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estudo. Assim, conforme o Arranjo I, a codificação posicional original do Transformer é 

mantida apenas na entrada do decodificador. 

Para visualizar como cada série temporal é processada no modelo, as Figuras 18 

e 19 apresentam o detalhamento da integração entre a camada Time2Vec e o Transformer 

conforme os Estudos de Caso utilizados neste trabalho. O conjunto de dados para treino, 

validação e teste de cada Estudo de Caso encontram-se na Seção 4.5, bem como outras 

informações importantes. Especificamente, a saída do Time2Vec concatena componentes 

lineares e periódicas aprendidas pelo Time2Vec ao vetor de entrada na primeira camada 

do codificador (Arranjo I). Essa fusão enriquece o vetor de entrada encaminhado ao 

mecanismo de atenção do codificador. As Figura 18 e 19 ilustram explicitamente: 

1. A geração do vetor temporal pelo Time2Vec; 

2. O fluxo resultante até o primeiro bloco do codificador do Transformer. 

Em ambas as Figuras, o eixo x representa o índice temporal da janela de entrada, 

contendo 60 horas selecionadas dentro do intervalo temporal referente ao conjunto de 

treinamento de cada Estudo de Caso (ver Tabelas 6 e 7, Seção 4.5). O eixo y representa a 

amplitude das componentes aprendidas pela camada Time2Vec, isto é, as dimensões do 

vetor de entrada após a transformação temporal. Dessa forma, as Figuras 18 e 19 

documentam de forma clara como o Time2Vec é incorporado a arquitetura do 

Transformer. 

 

Figura 18 - Representação para o Estudo de Caso 1 (Cenário A) das dimensões geradas pela 

camada Time2Vec para uma janela de entrada de 60 horas, utilizada como incorporação temporal na 

entrada do Transformer 

 

Fonte: Autoria própria (2025). 
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Figura 19 - Representação para o Estudo de Caso 2 das dimensões geradas pela camada 

Time2Vec para uma janela de entrada de 60 horas, utilizada como incorporação temporal na entrada do 

Transformer 

 

Fonte: Autoria própria (2025). 

 

A camada Time2Vec também foi implementada nos modelos MLP, LSTM e 

DLinear. Isso foi feito para verificar como a camada se comporta com outras arquiteturas 

e avaliar seu potencial para melhorar o desempenho em uma variedade de tipos de 

modelos. O modelo T2V-DLinear, que introduz a camada Time2Vec na arquitetura 

DLinear, representa uma abordagem inovadora na literatura científica. Embora o foco 

principal deste estudo seja a integração do Time2Vec em modelos baseados em 

Transformer, o T2V-DLinear serve como um benchmark adicional para demonstrar a 

versatilidade do Time2Vec em diferentes arquiteturas. 

No contexto deste estudo, as componentes aprendidas apresentadas na Figura 20 

correspondem às representações temporais produzidas pela camada Time2Vec para cada 

instante da série, de uma forma mais ampla. Cada curva representa uma dimensão distinta 

desse vetor temporal, combinando componentes lineares e periódicos capazes de modelar 

padrões cíclicos, sazonais e tendências presentes nos dados de potência eólica. Embora 

essas representações não sejam interpretáveis no sentido clássico — como variáveis 

físicas explícitas —, elas fornecem uma estrutura temporal que o modelo utiliza para 

identificar relações e dependências ao longo do tempo. A visualização permite observar 

a variação dessas componentes no horizonte analisado, evidenciando como o Time2Vec 
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captura oscilações e comportamentos recorrentes relevantes para a previsão. A Figura 20 

ilustra um segmento de três dias da série temporal, compreendido entre 6 e 9 de janeiro 

de 2019, referente a série temporal do Estudo de Caso 2. 

 

Figura 20 - Representações de características Time2Vec aprendidas para a série temporal de 

energia eólica do Estudo de Caso 2 

 

Fonte: Autoria própria (2025). 

 

4.4 Modelos Propostos 

 

As alterações propostas para a arquitetura do Transformer referem-se ao Arranjo 

I, mostrado na seção anterior. Além disso, o mecanismo de atenção clássico conhecido 

como FullAttention foi substituído pelos mecanismos FlowAttention e FlashAttention. O 

modelo proposto é ilustrado na Figura 21. Qualquer um desses mecanismos de atenção 

pode ser adotado. Os modelos que usam FullAttention, FlowAttention e FlashAttention 

neste trabalho são chamados de T2V-Transformer, T2V-Flowformer e T2V-Flashformer, 

respectivamente. Os modelos propostos cobriram a análise de sensibilidade descrita na 

Seção 4.3. Eles seguem a arquitetura clássica de codificador-decodificador, com a 

flexibilidade de modificar o mecanismo de atenção, conforme ilustrado na Figura 21. 

Vale destacar que a arquitetura proposta permite a implementação de diferentes 

mecanismos de atenção, o que reforça sua flexibilidade. Conforme novos mecanismos 
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são desenvolvidos na literatura científica, eles podem ser incorporados ao modelo sem 

necessidade de alterações estruturais profundas. 

Na literatura científica, a integração do Time2Vec exclusivamente na entrada do 

codificador do Transformer foi proposta em (VAJIRE et al., 2024), No entanto, esse 

modelo difere dos propostos neste trabalho devido a modificações aplicadas ao 

decodificador. Especificamente, os autores empregaram uma camada de Agrupamento 

Médio Global (Global Average Pooling) seguida por uma camada dropout e uma camada 

de saída densa, omitindo completamente o mecanismo de atenção.  

 

Figura 21 - Arquitetura dos modelos propostos 

 

Fonte: Autoria própria (2025). 

 

4.5 Estudos de Caso 

 

Para avaliar a robustez dos modelos propostos, foram conduzidos dois estudos de 



71 
 

caso. O Estudo de Caso 1 refere-se aos dados operacionais de uma turbina eólica 

localizada no Nordeste do Brasil, considerando dois cenários distintos. O Estudo de Caso 

2, por sua vez, baseia-se em dados operacionais de uma central eólica completa, também 

situada na região Nordeste do Brasil. Ambos os casos são descritos detalhadamente nas 

Seções 4.5.1 e 4.5.2. 

A metodologia adotada neste trabalho inclui múltiplos recortes temporais 

intencionalmente distintos entre os estudos de caso — dois cenários no Estudo de Caso 1 

e um intervalo independente no Estudo de Caso 2 — com o objetivo de avaliar a 

estabilidade e o desempenho dos modelos em diferentes regimes operacionais e sazonais. 

Essa abordagem amplia a capacidade de generalização dos experimentos, uma vez que os 

modelos são analisados em contextos temporais heterogêneos, e não apenas em um único 

período fixo. 

Em tarefas de previsão de séries temporais, a preservação da ordenação 

cronológica é fundamental para evitar vazamento de informação. Por esse motivo, 

técnicas de validação cruzada aleatória não foram aplicadas nesta tese. As divisões 

adotadas para cada conjunto de dados (treinamento, validação e teste) foram definidas de 

forma a garantir equilíbrio entre quantidade de dados disponível para aprendizado, 

estabilidade no ajuste de hiperparâmetros e avaliação independente do desempenho. 

Essas proporções estão de acordo com estudos da literatura, conforme discutido nas 

Seções 4.5.1 e 4.5.2. 

Além disso, o uso de Estudos de Caso com intervalos temporais distintos contribui 

para atenuar o risco de que o desempenho observado esteja associado a características 

específicas de um único período. Dessa forma, a análise comparativa entre modelos torna-

se mais robusta. Considera-se ainda que o objetivo central desta tese é propor, analisar e 

comparar arquiteturas derivadas de Transformers em cenários realistas de previsão de 

curto prazo, e não avaliar diferentes estratégias de validação temporal. Assim, o 

delineamento experimental adotado mostra-se apropriado para o propósito da pesquisa. 

 

4.5.1 Estudo de Caso 1 

 

Os dados para este estudo foram obtidos de um parque eólico operacional 

localizado no Nordeste do Brasil, no estado do Rio Grande do Norte. Embora o parque 

eólico seja composto por múltiplas turbinas eólicas, o Estudo de Caso 1 concentra-se nos 
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dados de uma única turbina com uma capacidade nominal de potência de 

aproximadamente 2.300 kW. Os dados foram coletados pelo SCADA, entre janeiro de 

2019 e outubro de 2020, totalizando 22 meses de observações com uma frequência de 

amostragem de uma hora. Inicialmente a série temporal consistia em seis variáveis: 

1. Carimbo de data e hora - referência de tempo para cada registro; 

2. Velocidade do vento (m/s) — medida no anemômetro da turbina; 

3. Potência ativa (kW) — potência elétrica de saída (variável alvo); 

4. Velocidade do rotor (rpm) — velocidade de rotação do rotor; 

5. Ângulo de inclinação (°) — posição angular das pás; 

6. Posição da nacela (°) — orientação de guinada da turbina em relação à direção do 

vento. 

Como a variável de interesse desta pesquisa é a potência ativa, todas as demais 

variáveis foram desconsideradas durante a etapa de pré-processamento e filtragem. Após 

a padronização da série temporal para frequência horária, o conjunto de dados passou a 

conter 16.080 linhas, das quais 58 apresentavam valores faltantes. Esses valores ausentes 

foram tratados por meio do procedimento de interpolação descrito na Seção 4.2, 

garantindo a continuidade temporal da série antes do treinamento dos modelos. 

Para avaliar a robustez preditiva dos modelos utilizados neste estudo, é essencial 

avaliar seu desempenho em diferentes períodos de tempo. Isso evita que o modelo seja 

restrito a padrões específicos de uma única estação ou condição climática, aumentando 

sua capacidade de generalização para novas situações. Ao expor o modelo a variações 

sazonais e mudanças na dinâmica do vento ao longo do tempo, podemos avaliar melhor 

sua adaptabilidade e desempenho em cenários do mundo real. Portanto, este estudo 

considera duas condições temporais distintas. O Cenário A representa a transição do verão 

para o outono, enquanto o Cenário B corresponde à transição do inverno para a primavera. 

Com base no calendário sazonal do Brasil, o conjunto de dados foi dividido em três partes: 

conjunto de treinamento, conjunto de validação e conjunto de teste (ver Tabela 6). 
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Tabela 6 - Visão geral dos conjuntos de treinamento, validação e teste para cada cenário do 

Estudo de Caso 1 

Cenário A 

Conjunto de treinamento (01/01/2019) - (31/12/2019) 

Conjunto de validação (01/01/2020) – (29/02/2020) 

Conjunto de teste (01/03/2020) – (30/04/2020) 

Cenário B 

Conjunto de treinamento (01/07/2019) - (30/06/2020) 

Conjunto de validação (01/07/2020) - (31/08/2020) 

Conjunto de teste (01/09/2020) - (31/10/2020) 

Fonte: Autoria própria (2025). 

 

A prática de alocar mais tempo para o conjunto de treinamento é amplamente 

adotada na literatura científica. Por exemplo, (ZHA et al., 2023b) utilizou uma proporção 

de 4:1:1 para os conjuntos de treinamento, validação e teste, enquanto (WANG, Lei; HE, 

Yigang; LI, Lie; et al., 2022) empregou uma proporção de 3:1:1. Já a proporção de 6:1:1 

foi adotada por (FU; WANG; JIN, 2025). Com base nisso, este estudo adota uma 

proporção de 6:1:1, fornecendo mais dados para o conjunto de treinamento. Essa divisão 

garante um equilíbrio adequado entre aprendizado, ajuste de hiperparâmetros e avaliação 

do modelo. Considerando que o horizonte máximo de previsão é de 12 horas à frente e os 

dados são coletados de hora em hora, o período de 12 meses fornece uma quantidade 

substancial de dados. Isso permite que os modelos capturem vários padrões sazonais e 

dinâmicas de séries temporais, tornando o processo de treinamento mais robusto e eficaz. 

Com a proporção de 6:1:1, tanto o conjunto de validação quanto o de teste contêm 2 meses 

de dados cada. 

A Figura 22 ilustra a potência eólica da turbina eólica em estudo para os dois 

cenários propostos (A e B). A imagem superior corresponde ao Cenário A, enquanto a 

imagem inferior corresponde ao Cenário B. Estes são dados reais de uma turbina eólica 

atualmente em operação. O maior potencial eólico foi observado entre julho e dezembro 

de 2019 e entre julho e outubro de 2020, enquanto o menor ocorreu entre janeiro e abril 

de ambos os anos. Portanto, é evidente que os dois cenários capturam condições temporais 

distintas do parque eólico em estudo. 
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Figura 22 - Séries temporais da potência ativa para a turbina eólica do Estudo de Caso 1: Cenário 

A (acima) e Cenário B (abaixo) 

 

 

Fonte: Autoria própria (2025). 

 

4.5.2 Estudo de Caso 2 

 

Os dados para este estudo foram obtidos de um parque eólico localizado na 
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Chapada do Araripe, região que se estende entre os estados do Ceará, Pernambuco e Piauí. 

Portanto, o parque eólico explorado também se localiza no Nordeste do Brasil. Porém, 

por apresentar-se em região distante do parque eólico do Estudo de Caso 1, apresenta 

diferenças geográficas e meteorológicas. Para o Estudo de Caso 2, apenas um cenário foi 

considerado. O parque eólico tem potência nominal de aproximadamente 29,7 MW. Os 

dados foram coletados também pelo sistema SCADA, entre agosto de 2019 até setembro 

de 2020, totalizando 14 meses, com uma frequência de amostragem a cada 1 hora.  

A base de dados continha apenas a variável de potência ativa, totalizando 10.248 

linhas, das quais 120 apresentavam valores ausentes. Esses valores faltantes foram 

tratados por meio do procedimento de interpolação descrito na Seção 4.2, garantindo a 

continuidade temporal da série antes do treinamento dos modelos. 

A Tabela 7 apresenta a divisão do conjunto de dados adotada neste estudo, 

composta por 12 meses para o treinamento, 1 mês para a validação e 1 mês para o teste, 

na proporção de 12:1:1. Diferentemente do Estudo de Caso 1, que utiliza a proporção 

6:1:1, essa proporção foi adotada com o objetivo de avaliar a robustez dos modelos frente 

a diferentes proporções de dados para treinamento, validação e teste. Essa configuração 

também foi adotada em estudos anteriores, como em Bispo Junior et al. (2025). O 

treinamento foi realizado com dados do período de agosto de 2019 a julho de 2020, 

enquanto os conjuntos de validação e teste correspondem aos meses de agosto e setembro 

de 2020, respectivamente. Essa configuração visa assegurar maior disponibilidade de 

dados para o treinamento dos modelos, preservando períodos mais curtos para a etapa de 

validação e avaliação final.  

A Figura 23 ilustra a série temporal de geração da usina eólica considerada no 

Estudo de Caso 2. Observa-se uma redução nos níveis de produção entre os meses de 

janeiro e abril, ao passo que o intervalo de junho a setembro apresenta os maiores valores 

de potência nominal gerada. De modo análogo ao Estudo de Caso 1, as cores azul, laranja 

e verde indicam, respectivamente, os conjuntos de treinamento, validação e teste. 

 

Tabela 7 - Visão geral dos conjuntos de treinamento, validação e teste 

Conjunto de treinamento (01/08/2019) - (31/07/2020) 

Conjunto de validação (01/08/2020) – (31/08/2020) 

Conjunto de teste (01/09/2020) – (30/09/2020) 

Fonte: Autoria própria (2025). 
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Figura 23 - Série temporal da potência ativa da usina eólica do Estudo de Caso 2 

 

Fonte: Autoria própria (2025). 

 

4.6 Análise Experimental 

 

A análise experimental deste estudo foi estruturada em duas etapas distintas, 

correspondentes aos Estudos de Caso 1 e 2. Todos os experimentos, bem como o 

processamento dos dados e a implementação dos modelos, foram conduzidos em Python.  

Para o Estudo de Caso 1, os experimentos foram realizados em ambiente PyTorch, 

utilizando um sistema equipado com uma GPU Nvidia RTX A4000, de nível profissional, 

baseada na arquitetura Ampere, com 16 GB de VRAM, otimizada para tarefas de 

aprendizado profundo e computação de alto desempenho. 

No Estudo de Caso 2, os experimentos também foram conduzidos em PyTorch, 

porém em um sistema com GPU Nvidia RTX 4060 Ti, com 8 GB de VRAM, adequada à 

execução de tarefas de aprendizado profundo em configurações de menor custo 

computacional. 

Essa distinção foi adotada com o objetivo de avaliar o custo computacional e a 

viabilidade de implementação dos modelos propostos em diferentes contextos 

experimentais. 

Para ambos os casos, foi realizada uma busca por hiperparâmetros para cada 
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modelo, utilizando o Optuna. O número de ensaios foi definido como 100 neste estudo, 

com base em um equilíbrio entre o custo computacional e a necessidade de exploração 

suficiente do espaço de hiperparâmetros. Essa escolha está alinhada à recomendação de 

(AKIBA et al., 2019), onde 100 ensaios foram utilizados em seu exemplo para a 

otimização de hiperparâmetros. Esse número permite um bom equilíbrio entre o 

desempenho do modelo e o tempo disponível para experimentação. 

Na análise experimental de ambos os casos o batch size foi considerado 16. O 

comprimento da sequência (seq len) foi incluído na busca de hiperparâmetros, com 

valores variando de 6 a 180. Este intervalo foi escolhido para garantir que o modelo fosse 

capaz de aprender dependências temporais tanto de curto quanto de longo alcance dentro 

da série temporal, permitindo que o modelo capturasse tanto variações rápidas quanto 

padrões mais duradouros nas sequências de dados. A escolha de 6 a 180 como intervalo 

de seq len busca equilibrar o aprendizado de padrões temporais relevantes sem introduzir 

complexidade desnecessária. Sequências muito curtas poderiam não capturar padrões de 

longo alcance, enquanto sequências muito longas poderiam aumentar a complexidade 

computacional sem agregar benefício significativo. Vale ressaltar que, neste contexto, o 

termo "longo prazo" se refere à capacidade do modelo de capturar dependências 

temporais mais distantes dentro da janela de entrada, não ao horizonte máximo de 

previsão, que permanece de 12 horas. O comprimento do rótulo (label len), definido como 

metade do seq len, foi mantido constante em todos os cenários para garantir uma 

proporção equilibrada entre entrada e saída.  

Os horizontes de previsão considerados — 6, 10 e 12 horas — estão alinhados 

com o foco deste estudo em previsões de curto prazo, permitindo que os modelos 

capturem com maior precisão a dinâmica do futuro próximo da geração de energia eólica. 

A função de ativação empregada foi a ReLU, que introduz não linearidade nas redes, 

permitindo que os modelos aprendam padrões complexos nos dados e acelerando o 

processo de treinamento ao evitar a saturação do gradiente. O dropout foi definido com 

valor de 0,1. Essa técnica realiza a regularização das redes neurais, evitando overfitting. 

 

4.6.1 Estudo de Caso 1 

 

Os resultados na busca de hiperparâmetros para o Estudo de Caso 1 são 
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representados pelas Tabelas 8 e 9, que mostram os parâmetros finais de cada modelo, 

referenciando as melhores configurações encontradas para o Cenário A e o Cenário B, 

respectivamente. Os modelos LSTM, MLP e DLinear foram treinados com 50 épocas. 

Enquanto os modelos propostos e os X-formers foram treinados com 10 épocas. Isso 

demonstra que os modelos propostos e os X-formers convergem mais rápido do que os 

modelos de referência, provavelmente devido aos seus mecanismos de atenção eficientes 

e capacidade superior de capturar padrões complexos. Consequentemente, eles alcançam 

desempenho ideal em menos épocas, reduzindo o risco de overfitting. 

De acordo com a Tabela 8, diferentes arquiteturas manipulam dados históricos de 

maneiras únicas, e o comprimento da sequência varia com base na capacidade de cada 

modelo de processar e extrair informações relevantes. O MLP tem o maior seq len, com 

um valor de 104, enquanto o T2V-Transformer tem o menor, com um seq len de 32. Em 

relação ao número de camadas, o MLP tem 3, e o T2V-MLP tem 2. Para o LSTM e o 

T2V-LSTM, o número de camadas é 2 e 1, respectivamente. Ambos os modelos são 

bidirecionais, o que significa que processam a sequência em duas direções: do passado 

para o futuro e do futuro para o passado. Essa bidirecionalidade permite que os modelos 

capturem dependências temporais globais, alavancando informações passadas e futuras, 

o que é essencial para prever padrões complexos, como na previsão de energia eólica. Em 

relação aos X-formers e aos modelos propostos, o Transformer e o T2V-Flashformer 

apresentam um maior número de camadas no codificador (3 e 2, respectivamente) do que 

no decodificador (1 e 1, respectivamente). Para o T2V-Flowformer e o Flashformer, o 

número de camadas no codificador foi menor do que no decodificador, com 2 e 3, 

respectivamente. Para o T2V-Transformer e o Flowformer, o número de camadas foi o 

mesmo para o codificador e o decodificador. Para todos os modelos de benchmark, Adam 

foi o melhor otimizador. Para os X-formers e os modelos propostos, RMSprop foi o 

melhor otimizador. O maior 𝑑𝑚𝑜𝑑𝑒𝑙 para os modelos foi 256 para o T2V-Flashformer. 

Enquanto o menor foi 32, para o T2V-Flowformer e o Flashformer. O maior  

𝑑𝑓𝑓 foi 768 para o Transformer e o Flowformer. O menor foi 64 para o Flashformer. O 

maior número de cabeças foi 8 para o Flowformer. O menor valor foi 2, para o 

Flashformer. Quanto maiores esses três parâmetros, melhor o desempenho em tarefas 

complexas, embora ao custo de maiores recursos computacionais. O oposto é verdadeiro 

para valores menores. 

Como mencionado anteriormente, um total de 100 ensaios foram realizados para 

cada modelo na busca por hiperparâmetros usando o Optuna. As Tabelas 8 e 9 mostram 
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o tempo que cada modelo levou para apenas um ensaio. Esses valores indicam que os 

modelos são aplicáveis e adequados para previsões com 12 horas a frente. É possível 

observar que o maior tempo foi para o Transformer e o T2V-Transformer, devido à 

complexidade quadrática do mecanismo FullAttention, conforme explicado na Seção 2.1. 

Para modelos com adição de Time2Vec, a função de ativação periódica, denotada por 𝐹 

(de acordo com a Equação 9), foi selecionada para ser uma função seno ou cosseno. 

Portanto, a melhor configuração da função para cada modelo é apresentada nas Tabelas 

8 e 9. 

 

Tabela 8 - Resultados finais da busca de hiperparâmetros para todos os modelos avaliados no 

Estudo de Caso 1 (Cenário A) 

Parâmetro ARIMA MLP LSTM DLinear 
T2V- 

MLP 

T2V- 

LSTM 

T2V-

DLinear 

seq len 50 104 52 46 82 46 65 

Camadas - 3 2 - 2 1 - 

Camadas 

ocultas 
- (44,206,234) 98 - (246,84) 149 - 

Bidirecional - - Sim - - Sim - 

Épocas - 50 50 50 50 50 50 

Otimizador - Adam Adam Adam Adam Adam Adam 

Função - - - - cos sen sen 

Tempo 18 s 30 s 26 s 55 s 35 s 32 s 1 min 5 s 

        

Parâmetro Transformer Flowformer Flashformer 
T2V-

Transformer 

T2V-

Flowformer 

T2V-

Flashformer 

seq len 53 58 93 32 49 63 

Camadas do  

codificador 
3 2 2 1 2 2 

Camadas do 

decodificador 
1 2 3 1 3 1 

Épocas 10 10 10 10 10 10 

Otimizador RMSprop RMSprop RMSprop RMSprop RMSprop RMSprop 

𝑑𝑚𝑜𝑑𝑒𝑙  128 128 32 64 32 256 

Nº de cabeças 2 8 2 4 4 6 

𝑑𝑓𝑓 768 768 64 128 96 512 

Função - - - sen cos sen 

Tempo 2 min 20 s 2 min 5 s 1 min 30 s 2 min 34 s 2 min 17 s 1 min 50 s 

 

Fonte: Autoria própria (2025). 

 

De acordo com a Tabela 9, o modelo com o maior seq len foi o T2V-Flowformer, 

seguido pelo T2V-Flashformer. Isso significa que os modelos precisaram de mais dados 
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históricos para fazer previsões para o Cenário B. O número de camadas foi 1 para MLP 

e T2V-MLP. Para LSTM e T2V-LSTM, o número de camadas foi 1 e 2, respectivamente. 

Ambos os modelos são bidirecionais, como na Abordagem A. O número de codificadores 

foi maior que o decodificador para o Transformer e o T2V-Flashformer. Para os outros 

modelos, o número de camadas para o codificador e o decodificador foi o mesmo. O 

modelo com a maior complexidade foi o T2V-Flashformer, com  

𝑑𝑚𝑜𝑑𝑒𝑙, número de cabeças e 𝑑𝑓𝑓 iguais a 256, 8, 1536, respectivamente. Em seguida, 

veio o Transformer, com 𝑑𝑚𝑜𝑑𝑒𝑙, heads e 𝑑𝑓𝑓 iguais a 256, 6 e 1536, respectivamente. O 

otimizador Adam foi aplicado à maioria dos modelos, enquanto o SGD foi aplicado ao 

DLinear, e o RMSprop foi aplicado ao Transformer e ao Flowformer. De acordo com as 

Tabelas 8 e 9, os valores dos parâmetros para os modelos variaram. Isso se explica pelo 

fato de serem duas abordagens diferentes, considerando duas condições temporais 

distintas. 

 

Tabela 9 - Resultados finais da busca de hiperparâmetros para todos os modelos avaliados no 

Estudo de Caso 1 (Cenário B) 

Parâmetro ARIMA MLP LSTM DLinear 
T2V- 

MLP 

T2V- 

LSTM 

T2V- 

DLinear 

seq len 48 92 77 76 60 74 104 

Camadas - 1 1 - 1 2 - 

Camadas 

ocultas 
- 246 144 - 197 148 - 

Bidirecional - - Sim - - Sim - 

Épocas - 50 50 50 50 50 50 

Otimizador - Adam Adam Adam Adam Adam Adam 

Função - - - - cos sen cos 

Tempo 20 s 30 s 26 s 55 s 35 s 32 s 1 min 5 s 

        

Parâmetro Transformer Flowformer Flashformer 
T2V-

Transformer 

T2V- 

Flowformer 

T2V- 

Flashformer 

seq len 76 55 53 44 120 105 

Camadas do  

codificador 
3 2 1 1 2 3 

Camadas do decodificador 2 2 1 1 2 1 

Épocas 10 10 10 10 10 10 

Otimizador RMSprop RMSprop Adam Adam Adam Adam 

𝑑𝑚𝑜𝑑𝑒𝑙  256 64 64 64 128 256 

Nº de cabeças 6 8 8 6 2 8 

𝑑𝑓𝑓 1536 192 192 384 512 1536 

Função - - - cos sen sen 

Tempo 2 min 20 s 2 min 5 s 1 min 30 s 2 min 34 s 2 min 17 s 1 min 50 s 

Fonte: Autoria própria (2025). 
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4.6.2 Estudo de Caso 2 

 

Os resultados na busca de hiperparâmetros para o Estudo de Caso 2 estão 

representados pela Tabela 10, que mostra os parâmetros finais de cada modelo, 

referenciando as melhores configurações encontradas para este caso. Os modelos LSTM, 

MLP e DLinear foram treinados com 50 épocas. Enquanto os modelos propostos e os X-

formers foram treinados com 10 épocas. Isso demonstra que os modelos propostos e os 

X-formers convergem mais rápido do que os modelos de referência, reforçando aquilo 

que foi discutido no Estudo de Caso 1. Consequentemente, eles alcançam desempenho 

ideal em menos épocas, reduzindo o risco de overfitting.  

De acordo com a Tabela 10, o modelo com maior valor do seq len foi o T2V-

Transformer, com 102 unidades, enquanto o menor valor foi observado no LSTM, com 

18. Esse resultado indica que modelos com seq len mais elevado tendem a apresentar 

maior capacidade de capturar padrões temporais de longo prazo. Outros modelos com seq 

len relativamente altos foram o T2V-Flowformer e o T2V-Flashformer, com valores de 

90 e 72, respectivamente. Em relação ao número de camadas, o modelo MLP apresentou 

três, ao passo que os modelos LSTM, T2V-MLP e T2V-LSTM contaram com apenas 

uma. Ademais, tanto o LSTM quanto o T2V-LSTM não são bidirecionais. 

Nos X-formers (Transformer, Flowformer e Flashformer), o número de camadas 

variou entre os módulos codificador e decodificador. O Transformer apresentou 3 

camadas em ambos os módulos; o Flowformer, 2 no codificador e 1 no decodificador; e 

o Flashformer, 2 e 3, respectivamente. Nos modelos propostos, também foram observadas 

variações: o T2V-Transformer apresentou 2 camadas no codificador e 1 no decodificador; 

o T2V-Flowformer, 2 e 3; e o T2V-Flashformer, 1 e 2, respectivamente. O otimizador 

RMSprop foi aplicado aos modelos Transformer e T2V-Transformer, enquanto o DLinear 

utilizou o SGD. Os demais modelos utilizaram o Adam. 

Considerando o parâmetro 𝑑𝑚𝑜𝑑𝑒𝑙, os modelos Transformer e Flowformer 

apresentaram o maior valor, igual a 512, enquanto o menor foi observado no T2V-

Flowformer, com 32. Para 𝑑𝑓𝑓, o Transformer obteve o maior valor (2048), seguido pelo 

T2V-Transformer (1536), sendo novamente o T2V-Flowformer o modelo com o menor 

valor. Quanto ao número de cabeças de atenção, o T2V-Transformer apresentou o maior 

valor (8), e o T2V-Flowformer, o menor (2). Dessa forma, conclui-se que os modelos 

Transformer e T2V-Transformer demandam maior custo computacional, ao passo que o 
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T2V-Flowformer se destaca por apresentar a configuração mais eficiente nesse aspecto.  

 Para a função Time2Vec, os modelos T2V-LSTM, T2V-DLinear e T2V-

Transformer apresentaram a função seno, enquanto os modelos T2V-MLP, T2V-

Flowformer e T2V-Flashformer apresentaram a função cosseno.  

 

Tabela 10 - Resultados finais da busca de hiperparâmetros para todos os modelos avaliados no 

Estudo de Caso 2 

Parâmetro ARIMA MLP LSTM DLinear 
T2V- 

MLP 

T2V- 

LSTM 

T2V-

DLinear 

seq len 50 58 18 23 39 28 37 

Camadas - 3 1 - 1 1 - 

Camadas 

ocultas 
- (194,187,130) 106 - 174 88 - 

Bidirecional - - Não - - Não - 

Épocas - 50 50 50 50 50 50 

Otimizador - Adam Adam SGD Adam Adam Adam 

Função - - - - cos sen sen 

Tempo 17 s 20 s 23 s 1 min 10 s 36 s 28 s 1 min 24 s 

        

Parâmetro Transformer Flowformer Flashformer 
T2V-

Transformer 

T2V-

Flowformer 

T2V-

Flashformer 

seq len 42 54 54 102 90 102 

Camadas do  

codificador 
3 2 2 2 2 2 

Camadas do 

decodificador 
3 1 3 1 3 2 

Épocas 10 10 10 10 10 10 

Otimizador RMSprop Adam Adam RMSprop Adam Adam 

𝑑𝑚𝑜𝑑𝑒𝑙  512 512 64 256 32 64 

Nº de cabeças 6 7 4 8 2 3 

𝑑𝑓𝑓 2048 1024 128 1536 96 192 

Função - - - sen cos sen 

Tempo 1 min 45 s 1 min 30 s 56 s 1 min 50 s 1 min 36 s 1 min 22 s 

Fonte: Autoria própria (2025). 

 

A Tabela 10 apresenta o tempo de processamento de cada modelo para a execução 

de um único ensaio. Esses resultados indicam que todos os modelos são aplicáveis e 

adequados para previsões com horizonte de 12 horas à frente. Observa-se que o modelo 

com maior tempo de processamento foi o T2V-Transformer, seguido pelo Transformer, 

com aproximadamente 1 minuto e 45 segundos e 1 minuto e 10 segundos, 

respectivamente. Por outro lado, os modelos Flowformer, Flashformer, T2V-Flowformer 

e T2V-Flashformer apresentaram tempos inferiores, resultado da adoção dos mecanismos 

de atenção FlowAttention e FlashAttention, que reduzem a complexidade quadrática 
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característica do FullAttention do Transformer convencional. Entre os modelos de 

referência, o menor tempo de execução foi obtido pelo ARIMA, MLP e LSTM, com cerca 

de 17, 20 e 23 segundos, respectivamente. Esses valores estão em consonância com os 

resultados do Estudo de Caso 1, no qual os modelos baseados em Transformers e suas 

variantes propostas também apresentaram maior tempo de treinamento. 
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5 RESULTADOS E DISCUSSÃO 

 

Neste Capítulo são apresentados os resultados e a discussão dos experimentos 

computacionais de previsão de potência eólica realizados com os modelos propostos e os 

modelos de benchmark, utilizando dados reais de parques eólicos localizados no Nordeste 

do Brasil. Os experimentos foram conduzidos em dois casos distintos, denominados 

Estudo de Caso 1 e Estudo de Caso 2, os quais diferem quanto às condições 

meteorológicas, configuração dos conjuntos de dados e às estratégias de avaliação 

adotadas. Inicialmente, são analisados os indicadores de desempenho preditivo dos 

modelos, seguidos por uma discussão sobre os aspectos computacionais e sobre a 

capacidade de generalização sob diferentes condições sazonais. Por fim, são destacadas 

as principais implicações dos resultados obtidos e as limitações observadas. 

As métricas utilizadas para avaliar o desempenho dos modelos neste artigo foram 

erro absoluto médio (Mean Absolute Error – MAE), raiz do erro quadrático médio (Root 

Mean Squared Error – RMSE), melhoria em relação ao MAE de referência (Improvement 

over Reference Mean Absolute Error – IoR-MAE) e melhoria em relação ao RMSE de 

referência (Improvement over Reference Root Mean Squared Error – IoR-RMSE). O 

modelo de referência utilizado no cálculo do IoR-MAE e do IoR-RMSE é o modelo de 

Persistência. As Equações (15) – (18) apresentam a formulação matemática 

correspondente a cada uma delas: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1                                                      (15) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)²𝑛

𝑖=1                                               (16) 

𝐼𝑜𝑅 − 𝑀𝐴𝐸 = (1 −
𝑀𝐴𝐸𝑚𝑜𝑑𝑒𝑙𝑜

𝑀𝐴𝐸𝑟𝑒𝑓𝑒𝑟ê𝑛𝑐𝑖𝑎
)  𝑥 100%                       (17) 

𝐼𝑜𝑅 − 𝑅𝑀𝑆𝐸 = (1 −
𝑅𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙𝑜

𝑅𝑀𝑆𝐸𝑟𝑒𝑓𝑒𝑟ê𝑛𝑐𝑖𝑎
)  𝑥 100%                       (18) 

 

Onde 𝑛 representa o número de observações, 𝑦𝑖 são os valores observados e  𝑦̂𝑖 são os 

valores previstos por cada modelo. O MAE e o RMSE de referência correspondem às 

métricas obtidas do modelo de Persistência. Portanto, valores mais altos de IoR-MAE e 

IoR-RMSE, juntamente com MAE e RMSE mais baixos, indicam melhor desempenho 
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do modelo. 

 

5.1 Estudo de Caso 1 

 

De acordo com a Tabela 11, o modelo T2V-DLinear obteve o melhor desempenho 

para as métricas MAE e IoR-MAE no horizonte de 6 horas, com valores de 213,386 kW 

e 12,35%, respectivamente, seguido pelo T2V-Transformer, que registrou um MAE de 

214,096 kW e um IoR-MAE de 12,06%. No horizonte de 10 horas, o T2V-Transformer 

superou todos os modelos com um IoR-MAE de 14,56%. Posteriormente, o Flashformer 

e o T2V-Flashformer alcançaram valores de IoR-MAE de 13,88% e 13,83%, 

respectivamente. Para o horizonte de 12 horas, os melhores resultados foram alcançados 

pelo T2V-Transformer e pelo T2V-Flashformer, com valores de IoR-MAE de 13,55% e 

13,30%, respectivamente. Os modelos ARIMA, MLP, LSTM e DLinear apresentaram 

desempenho inferior, com valores de IoR-MAE de 6,20%, 9,22%, 10,43% e 10,52%, 

respectivamente. No geral, o T2V-Transformer demonstrou a maior consistência e o 

melhor desempenho em todos os horizontes para as métricas MAE e IoR-MAE, seguido 

pelo T2V-Flashformer. Em relação às métricas RMSE e IoR-RMSE, os modelos T2V-

Transformer e T2V-Flashformer demonstraram desempenho superior.  

Como observado na Tabela 11, no horizonte de 6 horas, o T2V-Transformer foi o 

único modelo a superar um IoR-RMSE de 16%, atingindo 16,03%. O T2V-Flashformer, 

por sua vez, atingiu um IoR-RMSE de aproximadamente 14,98%. No horizonte de 10 

horas, os valores de IoR-RMSE foram de 17,85% para o T2V-Transformer e 16,58% para 

o T2V-Flashformer, enquanto para o horizonte de 12 horas, os valores de IoR-RMSE 

foram de 17,73% para o T2V-Transformer e 16,67% para o T2V-Flashformer. Os 

modelos ARIMA, MLP, LSTM e DLinear demonstraram desempenho inferior, atingindo 

13,36%, 15,08%, 13,79% e 14,64%, respectivamente, para a mesma métrica e horizonte 

de previsão. Em geral, o T2V-Transformer apresentou o melhor desempenho para todos 

os horizontes, seguido pelo T2V-Flashformer para as métricas RMSE e IoR-RMSE. 

Analisando os horizontes e as métricas de avaliação apresentados na Tabela 11, os 

modelos T2V-Transformer e T2V-Flashformer demonstraram consistência e 

confiabilidade, tornando-os as escolhas mais adequadas para previsão de potência sob 

esta abordagem. Embora o T2V-DLinear tenha alcançado o melhor desempenho para 

MAE e IoR-MAE no horizonte de 6 horas, seu desempenho foi inconsistente em outros 
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horizontes e menos competitivo para as métricas RMSE e IoR-RMSE. 

Consequentemente, o T2V-DLinear não é tão adequado para o Cenário A, em 

comparação com os modelos T2V-Flashformer e T2V-Transformer. 

 

Tabela 11 - Comparação do desempenho do modelo para diferentes horizontes de previsão 

(Cenário A) 

Modelo 
MAE (kW) / 𝐈𝐨𝐑 − 𝐌𝐀𝐄 (%) 

 
6 h  10 h  12 h   

Persistência 243,463 0 273,198 0 279,828 0 
 

ARIMA 231,939 4,73 256,666 6,05 262,460 6,20  

MLP 222,349 8,67 245,996 9,95 254,032 9,22 
 

T2V-MLP 222,947 8,42 241,690 11,53 249,697 10,76  

LSTM 225,592 7,34 248,002 9,22 250,645 10,43 
 

T2V-LSTM 218,730 10,16 249,981 8,49 252,356 9,82 
 

DLinear 218,137 10,40 239,555 12,31 250,375 10,52 
 

T2V-DLinear 213,386 12,35 257,894 5,60 246,195 12,02  

Transformer 224,325 7,86 244,365 10,55 254,115 9,18 
 

T2V-Transformer 214,096 12,06 233,430 14,56 241,911 13,55 
 

Flowformer 223,979 8,00 244,266 10,59 249,242 10,93 
 

T2V-Flowformer 219,680 9,77 238,644 12,65 247,056 11,71  

Flashformer 215,573 11,45 235,273 13,88 246,213 12,01 
 

T2V-Flashformer 214,368 11,95 235,402 13,83 242,598 13,30 
 

Modelo 
RMSE (kW) / 𝐈𝐨𝐑 − 𝐑𝐌𝐒𝐄 (%) 

 
6 h   10 h   12 h    

Persistência 342,520 0 378,050 0 384,270 0  

ARIMA 300,042 12,40 326,909 13,52 332,916 13,36  

MLP 294,207 14,10 318,141 15,84 326,291 15,08  

T2V-MLP 297,990 12,99 324,162 14,25 330,686 13,94  

LSTM 299,486 12,56 325,241 13,96 331,262 13,79  

T2V-LSTM 293,626 14,27 320,027 15,35 326,267 15,09  

DLinear 297,971 13,00 321,293 15,01 328,022 14,64  

T2V-DLinear 298,052 12,98 327,494 13,37 324,737 15,49  

Transformer 297,550 13,13 322,429 14,71 330,681 13,94  

T2V-Transformer 287,613 16,03 310,545 17,85 316,146 17,73  

Flowformer 298,385 12,88 322,098 14,80 326,549 15,02  

T2V-Flowformer 296,478 13,44 320,958 15,10 327,351 14,81  

Flashformer 295,377 13,76 321,323 15,00 329,660 14,21  

T2V-Flashformer 291,201 14,98 315,353 16,58 320,213 16,67  

Fonte: Autoria própria (2025). 
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Observa-se que o modelo de Persistência apresenta valores nulos de IoR, uma vez 

que este modelo é adotado como referência no cálculo do índice de melhoria (IoR). 

Assim, o IoR quantifica a melhoria relativa de cada modelo em relação à Persistência, 

resultando, por definição, em valor zero para o próprio modelo de referência. 

De acordo com a Tabela 12, os modelos T2V-Flashformer e T2V-Flowformer 

alcançaram consistentemente o melhor desempenho em todos os horizontes de previsão 

e métricas de avaliação. Para as métricas MAE e IoR-MAE, o T2V-Flashformer produziu 

os melhores resultados, com valores de IoR-MAE de 18,23% para o horizonte de 6 horas 

e 23,89% para o horizonte de 10 horas, enquanto o T2V-Flowformer seguiu de perto com 

17,98% e 23,74% para os mesmos horizontes, respectivamente. No horizonte de 12 horas, 

o T2V-Flowformer e o T2V-Flashformer registraram valores de IoR-MAE de 24,47% e 

24,37%, respectivamente. Notavelmente, esses dois modelos foram os únicos a exceder 

23% de IoR-MAE no horizonte de 10 horas e 24% no horizonte de 12 horas. No horizonte 

de previsão de 12 horas, os modelos ARIMA, MLP, LSTM e DLinear alcançaram valores 

de IoR-MAE de 21,20%, 20,60%, 19,09% e 20,75%, respectivamente. Para as métricas 

RMSE e IoR-RMSE, o T2V-Flashformer obteve o melhor desempenho no horizonte de 

6 horas, com um IoR-RMSE de 22,88%, seguido pelo T2V-Flowformer com 22,49%. 

Para os horizontes de 10 e 12 horas, o T2V-Flowformer superou todos os outros modelos, 

registrando valores de IoR-RMSE de 27,64% e 27,84%, respectivamente, enquanto o 

T2V-Flashformer obteve 27,34% e 27,45% para os mesmos horizontes. Os modelos 

ARIMA, MLP, LSTM e DLinear apresentaram pior desempenho, com valores de 

24,24%, 23,67%, 23,73% e 23,35% no horizonte de 10 horas, e 23,75%, 23,23%, 23,15% 

e 23,06% no horizonte de 12 horas, respectivamente. Conforme mostrado na Tabela 12, 

tanto o T2V-Flowformer quanto o T2V-Flashformer provaram ser os modelos mais 

adequados para o Cenário B. 

De acordo com a Figura 22, no Cenário B, o período de teste apresenta valores de 

potência eólica mais elevados, com picos mais frequentes e intensos. Isso indica maior 

variabilidade e magnitude nos dados a serem previstos, aumentando a complexidade da 

tarefa de previsão. Consequentemente, os modelos apresentam valores maiores de erro 

absoluto (MAE) e erro quadrático médio (RMSE) neste cenário em comparação ao 

Cenário A. No entanto, conforme demonstrado nas Tabelas 11 e 12, os valores de IoR-

MAE e IoR-RMSE para os modelos avaliados neste estudo são consistentemente maiores 

no Cenário B. Isso sugere que, apesar do aumento dos erros absolutos devido às condições 

de teste mais desafiadoras, os modelos propostos superam o modelo de Persistência por 
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uma margem maior. Portanto, as métricas de IoR mais altas no Cenário B destacam a 

robustez e a eficácia dos modelos em condições de previsão mais exigentes. 

 

Tabela 12 - Comparação do desempenho do modelo para diferentes horizontes de previsão 

(Cenário B) 

Modelo 
MAE (kW) / 𝐈𝐨𝐑 − 𝐌𝐀𝐄 (%) 

 
6 h   10 h   12 h    

Persistência 472,842 0 534,238 0 539,987 0 
 

ARIMA 391,420 17,22 420,801 21,23 425,504 21,20  

MLP 401,633 15,05 422,769 20,86 428,720 20,60 
 

T2V-MLP 399,556 15,06 421,157 21,16 425,582 21,18 
 

LSTM 404,243 14,50 430,225 19,46 436,876 19,09 
 

T2V-LSTM 406,040 14,12 430,061 19,50 427,028 20,91  

DLinear 400,527 15,29 423,949 20,64 427,896 20,75 
 

T2V-DLinear 404,430 14,46 427,453 20,54 427,903 20,75 
 

Transformer 402,317 14,91 427,499 19,90 433,263 19,76 
 

T2V-Transformer 397,342 15,97 425,233 20,40 431,457 20,09  

Flowformer 405,141 14,32 425,564 20,34 429,519 20,46 
 

T2V-Flowformer 387,832 17,98 407,396 23,74 407,848 24,47 
 

Flashformer 392,619 16,96 422,642 20,89 427,476 20,83 
 

T2V-Flashformer 386,651 18,23 406,608 23,89 408,364 24,37 
 

Modelo 
RMSE (kW) / 𝐈𝐨𝐑 − 𝐑𝐌𝐒𝐄 (%) 

 
6 h   10 h   12 h    

Persistência 610,223 0 674,159 0 676,469 0  

ARIMA 483,776 20,72 510,732 24,24 515,762 23,75  

MLP 492,236 19,33 514,570 23,67 519,293 23,25  

T2V-MLP 496,024 18,71 513,812 23,78 514,389 23,95  

LSTM 488,402 19,96 514,152 23,73 519,833 23,15  

T2V-LSTM 497,665 18,44 521,738 22,60 516,666 23,62  

DLinear 496,257 18,67 516,697 23,35 520,411 23,06  

T2V-DLinear 496,896 18,57 514,842 23,63 517,046 23,56  

Transformer 492,053 19,36 515,418 23,54 519,182 23,25  

T2V-Transformer 484,898 20,54 512,338 24,00 519,001 23,28  

Flowformer 492,491 19,29 512,717 23,95 511,864 24,33  

T2V-Flowformer 472,943 22,49 487,814 27,64 488,135 27,84  

Flashformer 481,754 21,05 511,446 24,13 514,838 23,89  

T2V-Flashformer 470,586 22,88 489,812 27,34 490,786 27,45  

Fonte: Autoria própria (2025). 

 

As Figuras 24 e 25 ilustram o desempenho dos modelos em diferentes horizontes 
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de previsão, oferecendo uma visualização abrangente das métricas MAE e RMSE. De 

acordo com a Figura 24, para o Cenário A, é evidente que os modelos propostos 

(especificamente T2V-Transformer e T2V-Flashformer) superaram os modelos de 

referência, particularmente nos horizontes posteriores. Essa tendência é ainda mais 

pronunciada no RMSE, onde o T2V-Transformer e o T2V-Flashformer demonstraram 

consistentemente desempenho superior em quase todos os horizontes de previsão, com a 

diferença de desempenho se tornando cada vez mais significativa além do horizonte de 4 

horas.  

De acordo com a Figura 25, para o Cenário B, os modelos propostos — 

especificamente T2V-Flowformer e T2V-Flashformer — começam a superar 

significativamente os modelos de benchmark após o horizonte de 4 horas. Isso reflete 

uma melhoria progressiva no desempenho da previsão à medida que o horizonte de 

previsão aumenta. Embora no curtíssimo prazo (por exemplo, horizonte 1) seu 

desempenho possa inicialmente ficar atrás dos modelos benchmark, como o modelo de 

persistência, esse comportamento é provavelmente atribuível à sua dependência da 

codificação temporal via Time2Vec e mecanismos de atenção complexos, que são mais 

eficazes na captura de dependências temporais latentes em horizontes ligeiramente mais 

longos. Do horizonte três em diante, no entanto, ambos os modelos exibem uma redução 

acentuada no erro de previsão e superam consistentemente todos os modelos de base até 

o horizonte de 12 horas. Essas descobertas sugerem que as arquiteturas propostas são 

particularmente adequadas para tarefas de previsão de curto prazo envolvendo horizontes 

de várias horas, como os analisados neste estudo (ou seja, 6, 10 e 12 horas). 

Analisando todos os modelos sem a adição de Time2Vec, observou-se que, para 

o Cenário A, o Flashformer demonstrou o melhor desempenho em termos da métrica 

MAE em todos os horizontes. Para a métrica RMSE, o modelo com melhor desempenho 

nos horizontes de 6, 10 e 12 horas foi o MLP. Flashformer, DLinear e Flowformer foram 

outros modelos com bons desempenhos nos horizontes de 6, 10 e 12 horas. No Cenário 

B, o Flashformer superou os demais modelos para a métrica MAE nos horizontes de 6, 

10 e 12 horas. Para a mesma métrica, DLinear foi o segundo melhor desempenho nos 

horizontes de 6 a 12 horas, enquanto o MLP ficou em segundo lugar em 10 horas. Em 

relação à métrica RMSE, o Flashformer obteve o melhor desempenho nos horizontes de 

6 e 10 horas, enquanto o Flowformer teve o melhor desempenho em 12 horas. 
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Figura 24 - Visualização das métricas de avaliação para diferentes horizontes de previsão da 

potência eólica, para cada modelo avaliado neste estudo. MAE na parte superior, RMSE na parte inferior 

(Cenário A) 

 

 

Fonte: Autoria própria (2025). 
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Figura 25 - Visualização das métricas de avaliação para diferentes horizontes de previsão da 

potência eólica, para cada modelo avaliado neste estudo. MAE na parte superior, RMSE na parte inferior 

(Cenário B) 

 

 

Fonte: Autoria própria (2025). 
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5.1.1 Discussão Física dos Erros de Previsão 

 

Além da análise quantitativa baseada nas métricas MAE, RMSE, IoR-MAE e IoR-

RMSE, é fundamental interpretar os erros à luz da física do processo de geração de 

energia eólica. A potência gerada por turbinas eólicas é fortemente influenciada por 

variações rápidas da velocidade do vento, especialmente durante eventos de rampa de 

subida e descida de potência, os quais representam um dos maiores desafios para modelos 

de previsão de curto prazo. As Figuras 26 e 27 apresentam os três modelos propostos 

neste trabalho em comparação com a potência eólica observada no Estudo de Caso 1, 

considerando, respectivamente, os Cenários A e B. Ambas as figuras apresenta uma janela 

representativa de 24 horas.  

De acordo com a Figura 26, observa-se que os maiores desvios entre as séries 

ocorrem predominantemente durante eventos de rampa de descidas e subidas bruscas de 

potência, especialmente no período entre aproximadamente 12:00 às 16:00 horas. Nessas 

situações, a potência real apresenta variações abruptas e de alta frequência, associadas a 

mudanças rápidas nas condições do vento e ao aumento da turbulência atmosférica, 

fenômenos intrinsecamente difíceis de antecipar em horizontes de curto prazo. Os 

modelos tendem a subestimar a potência, evidenciando uma limitação na captura da 

inclinação negativa acentuada das rampas. Por outro lado, os modelos foram capazes de 

capturar o comportamento de tendência da série temporal ao longo da janela de tempo 

analisada, ainda que com pequenas defasagens temporais. Assim, os resultados 

evidenciam que os erros de previsão estão mais fortemente associados aos eventos de 

descidas e subidas abruptas de potência, os quais representam o principal fator limitante 

para a redução dos erros em aplicações operacionais de curto prazo. 

De acordo com a Figura 27, observa-se que os maiores desvios entre as séries 

ocorrem predominantemente durante os eventos de descidas e subidas abruptas de 

potência, comportamento análogo ao observado no Cenário A. Embora os modelos 

consigam capturar adequadamente a tendência geral da série temporal, verifica-se a 

ocorrência de maiores erros nos instantes associados a variações rápidas da geração 

eólica, especialmente durante quedas acentuadas de produção. Esse comportamento está 

relacionado a mudanças abruptas nas condições do vento, como o aumento da turbulência 

e a perda de persistência temporal, fenômenos intrinsecamente difíceis de antecipar em 

horizontes de curto prazo. 
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Figura 26 - Potência eólica observada e prevista em uma janela de 24 horas do Estudo de Caso 1 

(Cenário A), entre 3 e 4 de março de 2020 

 

Fonte: Autoria própria (2025). 

 

Figura 27 - Potência eólica observada e prevista em uma janela de 24 horas do Estudo de Caso 1 

(Cenário B), entre 25 e 26 de outubro de 2020 

 

Fonte: Autoria própria (2025). 
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5.1.2 Impacto da integração do Time2Vec no desempenho dos modelos (Estudo de 

Caso 1) 

 

Em geral, a adição do Time2Vec melhorou o desempenho dos modelos, conforme 

ilustrado na Tabela 13 para os Cenários A e B. Os valores são expressos em porcentagens, 

com números negativos indicando que a adição de Time2Vec não melhorou os modelos. 

Para o Cenário A, melhorias foram observadas em quase todos os horizontes e métricas 

dos X-formers. Notavelmente, o Transformador T2V demonstrou ganhos significativos 

nos horizontes de 6, 10 e 12 horas, alcançando uma melhoria de 4,56%, 4,47% e 4,80% 

em relação ao Transformador em MAE e 3,34%, 3,69% e 4,40% em RMSE, 

respectivamente. O T2V-Flowformer superou o Flowformer, com uma melhoria de 

1,92%, 2,30% e 0,88% no MAE nos horizontes de 6, 10 e 12 horas. O T2V-Flashformer 

apresentou melhorias consistentes em todos os horizontes e métricas, com uma melhoria 

de 2,87% no RMSE no horizonte de 12 horas em comparação com o Flashformer. Em 

comparação com os modelos de referência, os ganhos foram menos pronunciados. No 

entanto, algumas melhorias foram observadas em horizontes e métricas específicos. Por 

exemplo, o T2V-MLP superou o MLP nos horizontes de 10 e 12 horas na métrica MAE, 

com melhorias de 1,75% e 1,70%, respectivamente. Por outro lado, para a métrica RMSE, 

o MLP superou consistentemente o T2V-MLP em todos os horizontes. O T2V-LSTM 

apresentou desempenho superior ao LSTM em todos os horizontes da métrica RMSE. Da 

mesma forma, o T2V-DLinear superou o DLinear no horizonte de 12 horas, tanto na 

métrica MAE quanto na RMSE. 

De acordo com a Tabela 13, para o Cenário B, a adição do Time2Vec melhorou 

todos os formadores de X. O T2V-Flashformer apresentou melhorias consistentes em 

relação ao Flashformer em todas as métricas e horizontes, particularmente na métrica 

MAE, com ganhos de 3,79% e 4,47% nos horizontes de 10 e 12 horas, respectivamente. 

Para a métrica RMSE, as melhorias foram de 2,32%, 4,23% e 4,67% nos horizontes de 6, 

10 e 12 horas, respectivamente. Da mesma forma, o T2V-Flowformer superou 

consistentemente o Flowformer de referência em todas as métricas de avaliação e 

horizontes de previsão. Nos horizontes de 6, 10 e 12 horas, obteve melhorias notáveis, 

com reduções no MAE de 4,27%, 4,27% e 5,05%, e no RMSE de 3,97%, 4,86% e 4,96%, 

respectivamente. Para os modelos de referência, as melhorias com a inclusão do 

Time2Vec foram menos pronunciadas, mas ainda presentes. O T2V-MLP superou 
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consistentemente o MLP padrão em termos de MAE em todos os horizontes de previsão, 

e também em RMSE, exceto no horizonte de 6 horas. O T2V-LSTM apresentou uma 

melhora notável em relação ao LSTM no horizonte de 12 horas para a métrica MAE 

(2,25%). Em contraste, a integração do Time2Vec ao modelo DLinear não resultou em 

ganhos significativos. 

A incorporação do Time2Vec resultou em ganhos significativos de desempenho, 

especialmente para arquiteturas X-former, evidenciando uma sinergia estrutural entre 

embeddings temporais e modelos baseados em atenção. Arquiteturas X-former dependem 

inerentemente de codificações temporais ou posicionais para modelar dependências 

sequenciais por meio de mecanismos de atenção. O Time2Vec aprimora esse processo ao 

fornecer uma representação contínua, diferenciável e periódica do tempo, o que aumenta 

a capacidade do modelo de capturar dinâmicas temporais além das codificações 

posicionais fixas. Essa incorporação temporal enriquecida permite que o mecanismo de 

atenção alinhe as relações temporais de forma mais eficaz, aprimorando assim a 

modelagem de dependência de curto e longo prazo. Em contraste, modelos como MLP, 

LSTM e DLinear aprendem padrões temporais principalmente por meio de recorrência 

interna, convolução ou projeção linear, sem depender de incorporações temporais 

explícitas. Consequentemente, eles são menos capazes de explorar a riqueza 

representacional introduzida pelo Time2Vec, o que provavelmente explica as menores 

melhorias de desempenho observadas em comparação com os modelos X-formers. 

Os resultados apresentados nesta seção demonstram que modelos baseados em 

Transformer — particularmente aqueles aprimorados com Time2Vec — são altamente 

eficazes para a previsão de energia eólica, superando consistentemente modelos 

estabelecidos na literatura em múltiplos horizontes de previsão. No Cenário A, os 

modelos T2V-Transformer e T2V-Flashformer superaram todos os modelos de referência 

(MLP, LSTM, DLinear, T2V-MLP, T2V-LSTM e T2V-DLinear) em praticamente todas 

as métricas e horizontes avaliados. No Cenário B, os modelos T2V-Flowformer e T2V-

Flashformer também superaram os modelos de referência, confirmando sua robustez e 

precisão preditiva, conforme discutido ao longo desta tese. 
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Tabela 13 - Melhorias com a adição do Time2Vec 

Cenário A 

  MAE  RMSE 

Modelo 6h 10h 12h  6h 10h 12h 

MLP 222,349 245,996 254,032  294,207 318,141 326,291 

T2V-MLP 222,947 241,690 249,697  297,990 324,162 330,686 

Melhoria (%) -0,27 1,75 1,70  -1,29 -1,89 -1,35 

LSTM 225,592 248,002 250,645  299,486 325,241 331,262 
T2V-LSTM 218,730 249,981 252,356  293,626 320,027 326,267 

Melhoria (%) 3,04 -0,80 -0,68  1,96 1,60 1,51 

DLinear 218,137 239,555 250,375  297,971 321,293 328,022 
T2V-DLinear 213,386 257,894 246,195  298,052 327,494 324,737 
Melhoria (%) 2,18 -7,66 1,67  -0,03 -1,93 1,00 

Transformer 224,325 244,365 254,115  297,550 322,429 330,681 

T2V-Transformer 214,096 233,430 241,911  287,613 310,545 316,146 

Melhoria (%) 4,56 4,47 4,80  3,34 3,69 4,40 

Flowformer 223,979 244,266 249,242  298,385 322,098 326,549 

T2V-Flowformer 219,680 238,644 247,056  296,478 320,958 327,351 

Melhoria (%) 1,92  2,30 0,88  0,64 0,35 -0,25 

Flashformer 215,573 235,273 246,213  295,377 321,323 329,660 

T2V-Flashformer 214,368 235,402 242,598  291,201 315,353 320,213 

Melhoria (%) 0,56 -0,05 1,47  1,41 1,86 2,87 

                                 Cenário B 

  MAE  RMSE 

Modelo 6h 10h 12h  6h 10h 12h 

MLP 401,633 422,769 428,720  492,236 514,570 519,293 

T2V-MLP 399,556 421,157 425,582  496,024 513,812 514,389 
Melhoria (%) 0,52 0,38 0,73  -0,77 0,15 0,94 

LSTM 404,243 430,225 436,876  488,402 514,152 519,833 
T2V-LSTM 406,040 430,061 427,028  497,665 521,738 516,666 

Melhoria (%) -0,44 0,04 2,25  -1,90 -1,48 0,61 

DLinear 400,527 423,949 427,896  496,257 516,697 520,411 
T2V-DLinear 404,430 427,453 427,903  496,896 514,842 517,046 
Melhoria (%) -0,97 -0,83 -0,01  -0,13 0,36 0,65 

Transformer 402,317 427,499 433,263  492,053 515,418 519,182 

T2V-Transformer 397,342 425,233 431,457  484,898 512,338 519,001 

Melhoria (%) 1,24 0,53 0,42  1,45 0,60 0,03 

Flowformer 405,141 425,564 429,519  492,491 512,717 511,864 

T2V-Flowformer 387,832 407,396 407,848  472,943 487,814 488,135 

Melhoria (%) 4,27 4,27 5,05  3,97 4,86 4,64 

Flashformer 392,619 422,642 427,476  481,754 511,446 514,838 

T2V-Flashformer 386,651 406,608 408,364  470,586 489,812 490,786 

Melhoria (%) 1,52 3,79 4,47   2,32 4,23 4,67 

Fonte: Autoria própria (2025). 
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5.2 Estudo de Caso 2 

 

De acordo com a Tabela 14, é possível verificar o desempenho de cada modelo no 

Estudo de Caso 2. Para as métricas MAE e IoR-MAE, o modelo que apresentou o melhor 

desempenho no horizonte de 6 horas foi o Transformer, seguido pelos modelos T2V-

Flowformer e T2V-Transformer, com valores de IoR-MAE de 57,55%, 56,42% e 

56,06%, respectivamente. Nos horizontes de 10 e 12 horas, os melhores resultados foram 

obtidos pelos modelos T2V-Transformer, T2V-Flashformer e T2V-Flowformer, cujos 

IoR-MAE foram de aproximadamente 65,82%, 65,42% e 65,25% para 10 horas, e 

66,80%, 66,62% e 66,39% para 12 horas.  

Considerando as métricas RMSE e IoR-RMSE, o modelo Transformer também 

apresentou o melhor desempenho no horizonte de 6 horas, seguido pelos modelos T2V-

Flashformer e T2V-Flowformer, com valores de IoR-RMSE de 54,25%, 53,86% e 

53,42%, respectivamente. Para os horizontes de 10 e 12 horas, os modelos com melhor 

desempenho foram o T2V-Flashformer e o T2V-Flowformer, com IoR-RMSE de 60,97% 

e 60,79% para 10 horas, e 61,76% e 61,14% para 12 horas, respectivamente. 

De acordo com a Tabela 14, observa-se que os modelos propostos superaram 

praticamente todos os modelos de benchmark, com exceção do Transformer no horizonte 

de 6 horas. Para os horizontes de 10 e 12 horas, os modelos propostos apresentaram os 

melhores resultados. Assim, de forma geral, demonstraram maior consistência em todos 

os horizontes analisados, sendo, portanto, mais indicados para a previsão de potência 

eólica no Estudo de Caso 2.  

A Figura 28 apresenta uma visão detalhada do desempenho de todos os modelos 

ao longo dos diferentes horizontes, corroborando a conclusão de que os modelos 

propostos são os mais adequados, por apresentarem resultados superiores e consistentes 

no Estudo de Caso 2. 
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Tabela 14 - Comparação do desempenho dos modelos para diferentes horizontes de previsão 

(Estudo de Caso 2) 

Modelo 
MAE / 𝐈𝐨𝐑 − 𝐌𝐀𝐄 (%) 

 
6 h  10 h  12 h   

Persistência 8.840 0 11.620 0 11.897 0 
 

ARIMA 4.530 48,75 4.582 60,56 4.546 61,78  

MLP 4.051 54,17 4.349 62,56 4.614 61,21  

T2V-MLP 3.992 54,84 4.255 63,37 4.422 62,82  

LSTM 4.146 53,09 4.467 61,55 4.573 61,55 
 

T2V-LSTM 4.162 52,91 4.428 61,89 4.592 61,39 
 

DLinear 4.349 50,80 4.337 62,67 4.342 63,49  

T2V-DLinear 4.394 50,28 4.397 62,49 4.274 64,07  

Transformer 3.752 57,55 4.115 64,58 4.439 62,68 
 

T2V-Transformer 3.870 56,06 3.971 65,82 3.948 66,80 
 

Flowformer 4.090 53,73 4.207 63,79 4.146 65,14  

T2V-Flowformer 3.852 56,42 4.037 65,25 3.998 66,39 
 

Flashformer 4.061 54,06 4.235 63,55 4.255 64,23 
 

T2V-Flashformer 3.896 55,92 4.017 65,42 3.971 66,62 
 

Modelo 
RMSE / 𝐈𝐨𝐑 − 𝐑𝐌𝐒𝐄 (%) 

 
6 h   10 h   12 h    

Persistência 11.135 0 13.509 0 13.720 0  

ARIMA 5.583 49,85 5.628 58,33 5.596 59,21  

MLP 5.334 52,09 5.746 57,46 5.995 56,30  

T2V-MLP 5.178 53,50 5.427 59,82 5.565 59,43  

LSTM 5.318 52,24 5.575 58,72 5.646 58,84  

T2V-LSTM 5.343 52,01 5.621 58,39 5.806 57,68  

DLinear 5.482 50,77 5.462 59,56 5.468 60,14  

T2V-DLinear 5.509 50,52 5.462 59,56 5.381 60,77  

Transformer 5.094 54,25 5.467 59,52 5.933 56,75  

T2V-Transformer 5.261 52,75 5.321 60,61 5.396 60,67  

Flowformer 5.348 51,96 5.452 59,63 5.422 60,48  

T2V-Flowformer 5.186 53,42 5.296 60,79 5.331 61,14  

Flashformer 5.318 52,24 5.549 58,92 5.616 59,06  

T2V-Flashformer 5.136 53,86 5.273 60,97 5.245 61,76  

Fonte: Autoria própria (2025). 
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Figura 28 - Visualização das métricas de avaliação para diferentes horizontes de previsão de 

potência eólica, para cada modelo avaliado neste estudo. MAE na parte superior, RMSE na parte inferior 

(Estudo de Caso 2) 

 

 

Fonte: Autoria própria (2025). 
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5.2.1 Discussão Física dos Erros de Previsão 

 

Para a discussão física dos erros de previsão do Estudo de Caso 2, a Figura 29 

apresenta os três modelos propostos neste trabalho em comparação com a potência eólica 

real. Por meio dela observa-se que os maiores desvios entre as previsões e a série 

observada ocorrem predominantemente durante os eventos de rampa de descida de 

potência. Nessas situações, a potência eólica real apresenta reduções abruptas associadas 

a mudanças rápidas nas condições do vento, como a passagem de frentes atmosféricas ou 

a intensificação da turbulência, fenômenos que são intrinsecamente difíceis de antecipar 

com precisão em horizontes de curto prazo. Os modelos propostos tendem a apresentar 

uma superestimação temporária da potência durante os períodos de queda acentuada, 

como observado após as 04:00 horas e no intervalo entre 08:00 e 12:00 horas, conforme 

ilustrado na Figura 29. 

Por outro lado, durante as rampas de subida de potência, observa-se que os 

modelos conseguem capturar de forma mais consistente a tendência de crescimento da 

geração, ainda que com pequenas defasagens temporais, como observado após as 16:00 

horas. Esse comportamento indica que a informação histórica disponível é suficiente para 

antecipar aumentos graduais da velocidade do vento, enquanto as quedas abruptas 

impõem maiores limitações preditivas devido à natureza estocástica e altamente não 

linear do escoamento atmosférico. 

Como conclusão, observa-se que a maior concentração de erro permanece 

associada aos eventos de descida rápida de potência, evidenciando que tais eventos 

representam o principal fator limitante para a redução dos erros de previsão em curto 

prazo. Esses resultados corroboram a interpretação física do problema e reforçam que o 

desempenho dos modelos não deve ser avaliado apenas por métricas globais, mas também 

pela sua capacidade de acompanhar dinamicamente as rampas de potência, aspecto 

crucial para aplicações operacionais e para o gerenciamento de sistemas elétricos com 

elevada penetração de energia eólica. 
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Figura 29 - Potência eólica observada e prevista em uma janela de 24 horas do Estudo de Caso 2, 

entre 27 e 28 de setembro de 2020 

 

Fonte: Autoria própria (2025). 

 

5.2.2 Impacto da integração do Time2Vec no desempenho dos modelos (Estudo de 

Caso 2) 

 

De forma análoga ao Estudo de Caso 1, a adição do Time2Vec melhorou o 

desempenho dos modelos de forma geral, conforme ilustrado na Tabela 15. Os valores 

são expressos em porcentagens, com números negativos indicando que a adição de 

Time2Vec não melhorou os modelos.  

Para os X-formers, a incorporação do Time2Vec resultou em ganhos mais 

expressivos no Flashformer, com melhorias de 5,15% e 6,67% nos horizontes de 10 e 12 

horas para a métrica MAE, e de 4,97% e 6,61% para a métrica RMSE nos respectivos 

horizontes. No caso do Flowformer, as maiores melhorias ocorreram nos horizontes de 6 

e 10 horas, alcançando 5,82% e 4,04% para MAE, e 3,03% e 2,86% para RMSE. Já o 

Transformer apresentou o maior ganho entre todos os modelos no horizonte de 12 horas, 

com melhorias de 11,06% e 9,05% para as métricas MAE e RMSE, respectivamente. 

Para os modelos de benchmark, e melhoria foi mais acentuada no modelo MLP, 

com valores de 4,16% e 7,17% no horizonte de 12 horas para as métricas MAE e RMSE, 

respectivamente. Para o modelo LSTM, a adição do Time2Vec no geral não foi positiva. 
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Já para o DLinear, houve uma pequena melhoria para os horizontes finais, mas nada tão 

acentuado em comparação com os X-formers.  

Assim como no Estudo de Caso 1, a incorporação do Time2Vec resultou em 

ganhos significativos de desempenho, especialmente nas arquiteturas X-former, 

evidenciando uma sinergia estrutural entre as codificações temporais e os mecanismos de 

atenção. No Estudo de Caso 2, esse comportamento reforça as conclusões apresentadas 

na Seção 5.1.2. Conforme discutido anteriormente, nas arquiteturas X-former, a 

representação temporal é fundamental para capturar relações de dependência entre 

instantes da série. O Time2Vec aprimora esse processo ao introduzir uma codificação 

contínua e aprendível do tempo, permitindo que o modelo identifique padrões temporais 

com maior precisão. Dessa forma, sua utilização mostra-se altamente recomendável em 

arquiteturas baseadas em atenção. 

 

Tabela 15 - Melhorias com a adição do Time2Vec (Estudo de Caso 2) 

Modelo 
MAE   RMSE 

6h 10h 12h   6h 10h 12h 

MLP 4.051 4.349 4.614  5.334 5.746 5.995 

T2V-MLP 3.992 4.255 4.422  5.178 5.427 5.565 

Melhoria (%) 1,46 2,16 4,16  2,92 5,55 7,17 

LSTM 4.146 4.467 4.573  5.318 5.575 5.646 

T2V-LSTM 4.162 4.428 4.592  5.343 5.621 5.806 

Melhoria (%) -0,39 0,87 -0,42  -0,47 -0,83 -2,83 

DLinear 4.349 4.337 4.342  5.482 5.462 5.468 

T2V-DLinear 4.394 4.397 4.274  5.509 5.462 5.381 

Melhoria (%) -1,03 -1,38 1,57  -0,49 0,00 1,59 

Transformer 3.752 4.115 4.439  5.094 5.467 5.933 

T2V-Transformer 3.870 3.971 3.948  5.261 5.321 5.396 

Melhoria (%) -3,14 3,50 11,06  -3,28 2,67 9,05 

Flowformer 4.090 4.207 4.146  5.348 5.452 5.422 

T2V-Flowformer 3.852 4.037 3.998  5.186 5.296 5.331 

Melhoria (%) 5,82 4,04 3,57  3,03 2,86 1,68 

Flashformer 4.061 4.235 4.255  5.318 5.549 5.616 

T2V-Flashformer 3.896 4.017 3.971  5.136 5.273 5.245 

Melhoria (%) 4,06 5,15 6,67   3,42 4,97 6,61 

Fonte: Autoria própria (2025). 
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5.3 Análise comparativa entre o Estudos de Caso 1 e 2 

 

Como demonstrado nas Seções 5.1 (Tabelas 11 e 12) e 5.2 (Tabela 14), observa-

se uma diferença significativa entre as melhorias obtidas em relação ao modelo de 

Persistência nos dois estudos de caso. Considerando o IoR-RMSE como referência, no 

Estudo de Caso 1 os ganhos situaram-se na faixa de 15% a aproximadamente 17% para o 

Cenário A, e de 23% a aproximadamente 28% para o Cenário B. No Estudo de Caso 2, 

as melhorias variaram entre 56% e aproximadamente 62%. Essa discrepância indica que 

os modelos propostos apresentaram um desempenho substancialmente superior no Estudo 

de Caso 2. Essa diferença pode estar associada a fatores intrínsecos de cada conjunto de 

dados, como as características do regime de ventos, o nível de variabilidade temporal e a 

qualidade das medições SCADA, que influenciam diretamente a previsibilidade da série 

temporal.  

Além disso, o Estudo de Caso 2, por se referir a uma usina eólica composta por 

várias turbinas, tende a apresentar menor variabilidade relativa e maior estabilidade na 

curva de potência agregada, o que favorece a aprendizagem dos padrões pelos modelos 

baseados em deep learning. Esse comportamento decorre do chamado efeito de 

agregação, no qual as flutuações individuais de potência entre as turbinas se compensam 

parcialmente, resultando em uma série temporal mais suave e previsível.  

Em síntese, enquanto o Estudo de Caso 1 evidencia um ganho moderado em 

relação à persistência, o Estudo de Caso 2 demonstra uma melhoria expressiva e 

consistente, reforçando a robustez e a capacidade de generalização dos modelos propostos 

em cenários com maior estabilidade operacional e qualidade de dados. 

Para uma comparação mais equitativa entre os Estudos de Caso 1 e 2 existem as 

métricas nMAE e nRMSE, que permitem normalizar os erros em relação à potência 

nominal, tornando a avaliação independente da escala absoluta de cada sistema eólico. 

Dessa forma, as Equações (19) e (20) apresentam as expressões utilizadas para o cálculo 

dessas métricas. 

 

n𝑀𝐴𝐸 =
1

𝑛
∑

|𝑦𝑖−𝑦̂𝑖|

𝑃𝑛𝑜𝑚
 𝑛

𝑖=1  x 100 %                                              (19) 

𝑛𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

𝑦𝑖−𝑦̂𝑖

𝑃𝑛𝑜𝑚
)

2
𝑛
𝑖=1  𝑥  100%                                       (20) 



104 
 

 

Onde 𝑃𝑛𝑜𝑚 para o Estudo de Caso 1 vale 2.300 kW e 29,7 MW para o Estudo de Caso 2. 

A Tabela 16 apresenta os resultados para as métricas nMAE e nRMSE dos modelos deste 

estudo, para ambos os Estudos de Caso. De forma análoga ao MAE e ao RMSE, as 

métricas nMAE e nRMSE apresentam melhor desempenho quando assumem valores 

menores. Para fins de simplificação, considerou-se o horizonte de 12 horas como 

referência. 

A Tabela 16 apresenta uma comparação mais equitativa entre os Estudos de Caso 

1 e 2. Observa-se que os valores das métricas estão mais próximos entre si, uma vez que 

a normalização padroniza os resultados, eliminando o efeito das diferentes potências 

nominais de cada caso.  

 

Tabela 16 - Valores de nMAE e nRMSE para os modelos avaliados no Estudo de Caso 1 

(Cenário A e B) e Estudo de Caso 2, considerando o horizonte de previsão de 12 horas 

Modelo 

nMAE (%)   nRMSE (%) 

Estudo de Caso 1 
Estudo de 

Caso 2 

 Estudo de Caso 1 
Estudo de 

Caso 2 
Cenário 

A 

Cenário 

B 
 Cenário 

A 

Cenário 

B 

Persistência 12,16 23,47 40,05  16,70 29,41 46,20 

ARIMA 11,41 18,50 15,30  14,47 22,42 18,84 

MLP 11,04 18,64 15,54  14,18 22,57 20,18 

T2V-MLP 10,85 18,50 14,89  14,37 22,36 18,74 

LSTM 10,89 18,99 15,40  14,40 22,60 19,01 

T2V-LSTM 10,97 18,56 15,46  14,18 22,46 19,55 

DLinear 10,88 18,60 14,62  14,26 22,62 18,41 

T2V-DLinear 10,70 18,60 14,39  14,12 22,48 18,12 

Transformer 11,04 18,83 14,94  14,37 22,57 19,98 

T2V-Transformer 10,51 18,76 13,29  13,74 22,56 18,17 

Flowformer 10,83 18,67 13,96  14,19 22,25 18,26 

T2V-Flowformer 10,74 17,73 13,46  14,23 21,22 17,95 

Flashformer 10,70 18,58 14,33  14,33 22,38 18,91 

T2V-Flashformer 10,54 17,75 13,37   13,92 21,33 17,66 
Fonte: Autoria própria (2025). 

 

Para a métrica nMAE, os modelos T2V-Transformer, T2V-Flowformer e T2V-

Flashformer apresentaram respectivamente 10,51%, 10,74% e 10,54% para o Cenário A; 

18,76%, 17,73% e 17,75% para o Cenário B; e 13,29%, 13,46% e 13,37% para o Estudo 
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de Caso 2. Já para a métrica nRMSE, os modelos apresentaram respectivamente 13,74%, 

14,23%, 13,92% para o Cenário A, 22,56%, 21,22% e 21,33% para o Cenário B; e 

18,17%, 17,95% e 17,66% para o Estudo de Caso 2.  

Em todos os cenários avaliados, esses valores não apenas superam de forma 

consistente os demais modelos, mas o fazem com estabilidade e regularidade ao longo de 

praticamente todo o horizonte de previsão. Embora as diferenças em relação a modelos 

de referência como ARIMA, MLP, LSTM e DLinear variem entre 1% e 3%, esse intervalo 

é altamente expressivo quando traduzido para a escala operacional dos sistemas 

estudados.  

No Estudo de Caso 2, por exemplo, uma diferença de apenas 1% em nRMSE 

corresponde a aproximadamente 297 kW de erro evitado em uma usina com potência 

nominal de 29,7 MW. Já uma diferença de 3% representa cerca de 891 kW — quase 1 

MW de erro a menos em cada horizonte de 12 horas. Como essas previsões são realizadas 

continuamente, essa redução de erro tende a se acumular ao longo do tempo, resultando 

em um ganho substancial de precisão operacional, com impacto direto na gestão 

energética e no planejamento da produção. Em ambientes operacionais onde decisões de 

despacho, compra e venda de energia e planejamento de manutenção dependem de 

estimativas confiáveis, essa melhoria se traduz em economia direta, melhor alocação de 

recursos e maior previsibilidade da geração. 

Com o objetivo de avaliar a robustez estatística dos resultados obtidos nos Estudos 

de Caso 1 e 2, cada modelo proposto foi treinado e avaliado em 10 execuções 

independentes, utilizando diferentes seeds aleatórias. A Tabela 17 apresenta a média e o 

desvio padrão da métrica IoR-RMSE obtidos a partir dessas múltiplas execuções para os 

modelos avaliados no Estudo de Caso 1 (Cenários A e B) e no Estudo de Caso 2, 

considerando um horizonte de previsão de 12 h. Observa-se que o maior desvio padrão 

ocorreu para o modelo T2V-Flowformer no Estudo de Caso 1 (Cenário B), com valor de 

±2,29, enquanto o menor foi observado para o T2V-Transformer no mesmo cenário, com 

±0,47. De modo geral, os valores reduzidos de desvio padrão indicam estabilidade dos 

modelos frente à variação das inicializações aleatórias, evidenciando a robustez estatística 

das abordagens propostas.  
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Tabela 17 - Média ± desvio padrão do IoR-RMSE obtidos a partir de 10 execuções 

independentes para os modelos avaliados nos Estudos de Caso 1 (Cenários A e B) e Estudo de Caso 2, 

considerando horizonte de 12 h 

Modelo 
Estudo de Caso 1 

(Cenário A) 

Estudo de Caso 1 

(Cenário B) 
Estudo de Caso 2 

T2V-Transformer 15,88 ± 1,71 23.53 ± 0.47 60,17 ± 0,81 

T2V-Flowformer 13,58 ± 1,22 25.63 ± 2.29 59,94 ± 1,40 

T2V-Flashformer 16,68 ± 1,01 24.91 ± 1.98 60,06 ± 1,15 

Fonte: Autoria própria (2025). 

 

Para verificar se as melhorias observadas em relação ao modelo de Persistência 

são estatisticamente significativas, aplicaram-se o t-test pareado e o teste não paramétrico 

de Wilcoxon sobre os valores da métrica RMSE, para todas as 10 seeds aleatórias obtidas 

nos experimentos realizados, considerando os três contextos avaliados — Estudo de Caso 

1 (Cenário A e Cenário B) e Estudo de Caso 2. 

Para verificar se as melhorias observadas em relação ao modelo de Persistência 

são estatisticamente significativas, aplicaram-se o t-test pareado e o teste não paramétrico 

de Wilcoxon sobre os valores agregados da métrica RMSE (um valor por execução), 

obtidos a partir das 10 seeds aleatórias realizadas nos experimentos, considerando os três 

contextos avaliados — Estudo de Caso 1 (Cenário A e Cenário B) e Estudo de Caso 2. O 

t-test pareado foi utilizado para comparar as médias das diferenças entre os resultados de 

cada modelo e o modelo de Persistência. Já o teste de Wilcoxon, de natureza não 

paramétrica, foi aplicado de forma complementar, dispensando o pressuposto de 

normalidade e avaliando a significância das diferenças com base nos postos ordenados 

das observações. A aplicação combinada de ambos os testes aumenta a robustez da 

análise, garantindo consistência mesmo diante de possíveis desvios de normalidade nos 

dados. Os testes estatísticos foram implementados com a biblioteca SciPy do Python 

(scipy.stats.ttest_rel e scipy.stats.wilcoxon), considerando um nível de significância de 

5% (p < 0,05). 

De acordo com a Tabela 18, observa-se que, no Estudo de Caso 2, os três modelos 

propostos apresentaram valores de p muito próximos tanto no t-test pareado quanto no 

teste de Wilcoxon. Esse comportamento decorre do grande tamanho do efeito observado 

em relação ao modelo de Persistência, aliado à baixa variabilidade entre as execuções, o 
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que conduz à saturação dos valores de p abaixo ou próximo do limiar de 0,001 no teste 

paramétrico e a valores muito próximos no teste não paramétrico. Assim, a coincidência 

dos resultados não indica equivalência de desempenho entre os modelos, mas sim que 

todos apresentam melhorias estatisticamente significativas e robustas em relação ao 

modelo de Persistência. Além disso, a consistência entre os resultados dos dois testes 

reforça a confiabilidade das conclusões, comprovando que as melhorias observadas 

refletem ganhos reais de desempenho. Resultados semelhantes entre o t-test e o teste de 

Wilcoxon também são relatados em cenários onde as diferenças entre pares são 

homogêneas e de mesma direção (FAY; PROSCHAN, 2010; MEEK; OZGUR; 

DUNNING, 2007). 

Conforme evidenciado na Tabela 16, os modelos propostos (T2V-Transformer, 

T2V-Flowformer e T2V-Flashformer) mantêm o melhor desempenho, corroborando as 

análises e conclusões discutidas nas seções anteriores.  

 

Tabela 18 - Valores de p obtidos nos testes estatísticos t-test e Wilcoxon aplicados à métrica 

RMSE para os modelos avaliados nos Estudos de Caso 1 (Cenários A e B) e Estudo de Caso 2, 

considerando o horizonte de previsão de 12 horas 

Modelo 

Estudo de Caso 1   
Estudo de Caso 2 

Cenário A Cenário B  

p (t-test) p (Wilcoxon) p (t-test) p (Wilcoxon)   p (t-test) p (Wilcoxon) 

T2V-Transformer <0.001 0.007 <0.001 0.002  <0.001 0.002 

T2V-Flowformer <0.001 0.007 0.026 0.026  <0.001 0.002 

T2V-Flashformer <0.001 0.001 0.021 0.021   <0.001 0.002 

        
Fonte: Autoria própria (2025). 

 

5.4 Análise comparativa de desempenho dos modelos, custo computacional e 

escalabilidade  

 

A Tabela 19 apresenta uma avaliação comparativa dos modelos de predição 

utilizados neste estudo. Os modelos variam em sua sensibilidade a padrões temporais, 

com os X-formers geralmente exibindo uma alta capacidade de capturar tais 

dependências. A adição do Time2Vec aumenta ainda mais essa sensibilidade, pois 

codifica explicitamente informações temporais. Neste estudo, os dados de séries 

temporais são alimentados diretamente em cada modelo. Embora o MLP não possua 

memória temporal inerente, o LSTM e o Transformer capturam dependências por meio 
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de suas arquiteturas sequenciais — o LSTM por meio de sua memória interna e o 

Transformer por meio de mecanismos de auto atenção, que se concentram dinamicamente 

em passos de tempo relevantes. Os X-formers alavancam seus respectivos mecanismos 

de atenção para o aprendizado de representação temporal, enquanto o DLinear emprega 

uma técnica de decomposição que auxilia na modelagem de séries temporais. 

Em relação ao desempenho computacional, o tempo total de experimento para 

cada modelo — compreendendo treinamento de mais de 100 tentativas e inferência 

(geração de predição) — foi medido usando as GPUs empregadas neste estudo, conforme 

discutido na Seção 4.6.  

Para o Estudo de Caso 1, a GPU utilizada foi a Nvidia RTX A4000, com 16 GB 

de VRAM. Conforme mostrado na Tabela 19, o T2V-Transformer teve o maior tempo de 

experimento, aproximadamente 4 horas e 36 minutos para o Cenário A e 4 horas e 56 

minutos para o Cenário B. Comparando os mecanismos de atenção, FlowAttention e 

FlashAttention apresentam custos computacionais menores que FullAttention, 

demonstrando vantagens significativas tanto no Cenário A quanto no Cenário B. O 

ARIMA teve o menor tempo de experimento, cerca de 24 minutos para o Cenário A e 28 

minutos para o Cenário B. Pode-se observar que o Cenário B exigiu um pouco mais de 

tempo para todos os modelos. Isso pode ser atribuído às diferenças no comportamento 

temporal da série e às configurações de hiperparâmetros usadas. Modelos e dados com 

padrões temporais mais complexos normalmente requerem mais tempo de processamento 

e treinamento. 

Para o Estudo de Caso 2, a GPU utilizada foi a Nvidia RTX 4060 Ti, com 8 GB 

de VRAM. De acordo com a Tabela 19, o T2V-Transformer apresentou o maior tempo 

de experimento, com aproximadamente 3 horas e 3 minutos; seguido pelo Transformer 

com aproximadamente 2 horas e 55 minutos. Como discutido no parágrafo anterior, os 

mecanismos FlowAttention e FlashAttention demonstraram mais vantajosos neste 

quesito específico, com menor tempo de processamento em comparação com o 

FullAttention. Os modelos com menor tempo de processamento foram ARIMA, MLP e 

LSTM, respectivamente com 15, 38 e 40 minutos.  

Além disso, a inclusão do Time2Vec na arquitetura dos modelos aumentou a 

duração total dos experimentos, devido à computação adicional necessária para capturar 

padrões temporais específicos. O custo computacional de cada modelo foi avaliado com 

base na duração total do experimento. Modelos com tempos de execução abaixo de 2 

horas foram classificados como tendo baixo custo computacional, aqueles acima de 2 
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horas e abaixo de 3 foram classificados como tendo custo moderado. E acima de 3 horas 

como tendo alto custo. Finalmente, em relação à escalabilidade para grandes conjuntos 

de dados, o MLP tem baixa escalabilidade devido à sua incapacidade de capturar 

dependências temporais de forma eficaz (TAUD; MAS, 2018). O LSTM tem 

escalabilidade moderada, pois processa sequências longas sequencialmente, o que pode 

se tornar um gargalo para grandes conjuntos de dados (YU, Y. et al., 2019). O DLinear, 

beneficiando-se de sua abordagem de decomposição linear, atinge alta escalabilidade 

(ZENG et al., 2023). O Transformer tem escalabilidade moderada, pois sua complexidade 

quadrática pode limitar sua eficiência para sequências muito longas (VASWANI et al., 

2017). Em contraste, o Flowformer e o Flashformer apresentam escalabilidade muito alta, 

pois seus mecanismos de atenção especializados são otimizados para sequências de séries 

temporais longas, melhorando significativamente a eficiência computacional (DAO et al., 

2022; WU, H. et al., 2022). 

Apesar das diferenças no custo computacional e na escalabilidade, todos os 

modelos avaliados são viáveis para previsões operacionais de curto prazo de energia 

eólica com um horizonte de previsão de 12 horas. Os tempos de experimento relatados 

nesta subseção correspondem a 100 ensaios; em contraste, o tempo unitário de inferência 

(latência média por predição), métrica determinante para aplicações em tempo real, é 

substancialmente menor e é explicitamente apresentado nas Tabelas 8, 9 e 10, 

confirmando a aplicabilidade prática dos modelos propostos." 

Vale ressaltar que o tempo de processamento de cada modelo, considerando 100 

ensaios, foi obtido com base na capacidade computacional dos equipamentos utilizados 

neste estudo, conforme descrito detalhadamente na Seção 4.6. 
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Tabela 19 - Critérios de avaliação comparativa dos modelos considerando 100 ensaios. O tempo 

unitário de inferência da melhor configuração é apresentado nas Tabelas 8, 9 e 10 

Modelos 

Sensibilidade 

a padrões 

temporais 

Estratégia de 

aprendizado 

Escalabilidade 

para grandes 

conjuntos de 

dados 

Tempo total de experimento   

(100 ensaios) 
Custo Computacional 

Estudo de Caso 1 Estudo 

de 

Caso 2 

Caso 1 Estudo 

de  

Caso 2 

Cenário 

A 

Cenário 

B 

Cenário 

A 

Cenário 

B 

ARIMA Baixo 
Modelagem 

estatística 
Baixo 24 min 28 min 15 min Baixo Baixo Baixo 

MLP Baixo 
Engenharia de 

recursos 
Baixo 58 min  1 h 1 min  38 min Baixo Baixo Baixo 

T2V-MLP Moderado 
Engenharia de 

recursos 
Baixo 1h 8min  

1 h 10 

min 
56 min Baixo Baixo Baixo 

LSTM Moderado 
Aprendizagem 

implícita de padrões 
Moderado 53 min  58 min  40 min Baixo Baixo Baixo 

T2V-LSTM Alto 
Aprendizagem 

implícita de padrões 
Moderado 1h 5min 

1 h 10 

min 
53 min Baixo Baixo Baixo 

DLinear Moderado 
Modelagem linear 

com decomposição 
Alto 

1 h 43 

min  

1 h 48 

min  

1 h 36 

min 
Baixo Baixo Baixo 

T2V-DLinear Alto 
Modelagem linear 

com decomposição 
Alto 2 h 1 min  2 h 6 min  

1 h 52 

min 
Moderado Moderado Baixo 

Transformer Alto 

Aprendizagem 

baseada em 

FullAttention 

Moderado 
4 h 10 

min 

4 h 26 

min  

2 h 55 

min 
Alto Alto Moderado 

T2V-Transformer Muito Alto 

Aprendizagem 

baseada em 

FullAttention 

Moderado 
4 h 36 

min 40  

4 h 56 

min 40  

3 h 3 

min 
Alto Alto Alto 

Flowformer Alto 

Aprendizagem 

baseada em 

FlowAttention 

Muito Alto 
3 h 43 

min 20  

4 h 3 min 

20  

2 h 33 

min 
Alto Alto Moderado 

T2V-Flowformer Muito Alto 

Aprendizagem 

baseada em 

FlowAttention 

Muito Alto 4 h 5 min 
4 h 26 

min 

2 h 47 

min 
Alto Alto Moderado 

Flashformer Alto 

Aprendizagem 

baseada em 

FlashAttention 

Muito Alto 
2 h 43 

min 
3 h 6 min  

2 h 8 

min 
Moderado Alto Moderado 

T2V-Flashformer Muito Alto 

Aprendizagem 

baseada em 

FlashAttention 

Muito Alto 
3 h 18 

min 

3 h 36 

min  

2 h 25 

min 
Alto Alto Moderado 

Fonte: Autoria própria (2025). 
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6 CONCLUSÃO 

 

Neste estudo, foram propostos três novos modelos para a previsão de energia 

eólica de curto prazo, aplicados a turbinas eólicas em operação localizadas na região 

Nordeste do Brasil. Para garantir uma análise de previsão robusta e avaliar o desempenho 

dos modelos sob diferentes condições temporais, dois casos foram considerados. No 

Estudo de Caso 1, realizou-se a previsão para uma única turbina eólica situada em um 

parque eólico no estado do Rio Grande do Norte, com dois cenários distintos: Cenário A, 

abrangendo o período de verão e outono, e Cenário B, correspondente à transição do 

inverno para a primavera. No Estudo de Caso 2, a análise de previsão foi realizada para 

uma usina eólica completa, localizada na Chapada do Araripe — região que se estende 

entre os estados do Ceará, Pernambuco e Piauí —, considerando apenas um cenário. 

Os modelos propostos integram a camada Time2Vec para aprimorar a 

representação de padrões temporais nos dados. Uma análise de sensibilidade foi realizada 

com três arranjos, identificando a configuração que otimizou o desempenho do modelo. 

Os melhores resultados foram obtidos quando o Time2Vec foi aplicado apenas na entrada 

do codificador (Arranjo I), preservando a capacidade do decodificador de gerar saídas a 

partir das representações codificadas. 

Além disso, este estudo explorou mecanismos alternativos de atenção, 

substituindo o mecanismo FullAttention pelos mecanismos FlowAttention e 

FlashAttention dos modelos Flowformer e Flashformer, com o objetivo de mitigar a 

complexidade quadrática da atenção tradicional resultante do mecanismo FullAttention. 

Este estudo trata-se da primeira aplicação do mecanismo FlashAttention à previsão de 

energia eólica, bem como da primeira integração do Time2Vec com múltiplos 

mecanismos de atenção nesse contexto. 

Os modelos propostos foram comparados com MLP, LSTM e DLinear — cada 

um também testado com integração Time2Vec, além do ARIMA. No geral, os resultados 

demonstram que a abordagem proposta melhora significativamente a precisão da previsão 

e a eficiência computacional, confirmando sua eficácia para a previsão de energia eólica 

de curto prazo. 

Com base na metodologia proposta e nos resultados apresentados, podemos 

destacar as principais conclusões deste trabalho da seguinte forma: 

1. O processo metodológico utilizado neste estudo provou ser altamente eficaz, 
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incorporando pré-processamento, tratamento de dados e o uso do Optuna para 

otimização eficiente de hiperparâmetros. Essa abordagem ajudou a prevenir o 

overfitting e identificou as melhores configurações possíveis de cada modelo. 

2. A metodologia proposta demonstrou sua eficácia na previsão da potência de 

turbinas eólicas, com os modelos apresentando melhorias substanciais em relação 

ao modelo de Persistência. Os resultados alcançados neste estudo contribuem para 

o avanço da área de previsão de energia eólica, oferecendo referências valiosos 

para a otimização de modelos preditivos em aplicações de energia renovável. 

3. A análise de sensibilidade da integração do Time2Vec na arquitetura do 

Transformer facilitou a identificação da configuração ideal para esta aplicação. 

Essa adição foi particularmente vantajosa para os X-formers, com os modelos 

Flowformer e Flashformer apresentando melhorias em praticamente todos os 

cenários. 

4. Para o Estudo de Caso 1, no Cenário A, os modelos com melhor desempenho 

foram o T2V-Transformer e o T2V-Flashformer, demonstrando maior 

consistência em todos os horizontes e métricas. Para a tarefa de previsão de 12 

horas, esses modelos alcançaram valores de IoR-MAE de 13,55% e 13,30%, 

respectivamente, superando o ARIMA (6,20 %), MLP (9,22%), LSTM (10,43%) 

e DLinear (10,52%). Da mesma forma, na métrica IoR-RMSE, o T2V-

Transformer e o T2V-Flashformer atingiram 17,73% e 16,67%, enquanto o 

ARIMA, MLP, LSTM e DLinear obtiveram 13,36%, 15,08%, 13,79% e 14,64%, 

respectivamente. No Cenário B, os modelos com melhor desempenho foram o 

T2V-Flowformer e o T2V-Flashformer. Para o horizonte de 12 horas, eles 

alcançaram valores de IoR-MAE de 24,47% e 24,37%, superando ARIMA (21,20 

%), MLP (20,60%), LSTM (19,09%) e DLinear (20,75%). Na métrica IoR-

RMSE, o T2V-Flowformer e o T2V-Flashformer atingiram 27,84% e 27,45%, 

enquanto ARIMA, MLP, LSTM e DLinear obtiveram 23,75%, 23,23%, 23,15% 

e 23,06%, respectivamente. 

5. No Estudo de Caso 2, considerando o horizonte de 12 horas e a métrica IoR-MAE, 

os modelos T2V-Transformer, T2V-Flashformer e T2V-Flowformer 

apresentaram os melhores desempenhos, com valores de 66,80%, 66,62% e 

66,39%, respectivamente, superando os modelos ARIMA, MLP, LSTM e 

DLinear, que obtiveram 61,78%, 61,21%, 61,55% e 63,49%. Para a métrica IoR-

RMSE, destacaram-se os modelos T2V-Flashformer e T2V-Flowformer, com 



113 
 

valores de 61,76% e 61,14%, respectivamente, superando ARIMA, MLP, LSTM 

e DLinear, que apresentaram 59,21%, 56,30%, 58,84% e 60,14%. 

6. Os mecanismos FlowAttention e FlashAttention demonstraram custos 

computacionais menores em comparação com o FullAttention, conforme 

evidenciado por tempos de teste mais curtos nos Estudos de Caso 1 e 2. Em 

relação ao desempenho preditivo, para o Estudo de Caso 1, o T2V-Transformer 

apresentou resultados superiores no Cenário A. No Cenário B, no entanto, o T2V-

Flowformer e o T2V-Flashformer superaram o T2V-Transformer, sugerindo que 

esses modelos são mais adequados para este contexto específico. Para o Estudo 

de Caso 2, os três modelos apresentaram desempenho semelhante, com o T2V-

Transformer performando melhor na métrica MAE; enquanto na métrica RMSE 

os modelos T2V-Flowformer e T2V-Flashformer no geral performaram melhor.  

7. Os modelos propostos são os mais adequados para este estudo, apresentando 

consistentemente os melhores resultados em praticamente todas as métricas e 

horizontes temporais. Ao superar os benchmarks em quase todos os cenários, eles 

representam um avanço significativo no estado da arte. Sua precisão preditiva 

aprimorada aumenta a eficiência operacional dos parques eólicos, otimizando as 

estratégias de manutenção e a confiabilidade geral. Além disso, contribuem para 

um uso mais eficaz de recursos renováveis, como a energia eólica. 

Esta pesquisa apresenta uma abordagem robusta, com tempo de execução e 

viabilidade aceitáveis para os modelos propostos, fornecendo previsões de energia com 

12 horas a frente no horizonte temporal. Com base na metodologia adotada, nos modelos 

desenvolvidos e nos resultados alcançados, este trabalho pode contribuir para maximizar 

a eficiência produtiva de parques eólicos. Além disso, ao integrar codificações temporais 

interpretáveis, como Time2Vec, em arquiteturas baseadas em atenção, este estudo ajuda 

a reduzir a natureza de "caixa-preta" frequentemente associada ao modelo Transformer, 

promovendo maior confiança e transparência em suas aplicações práticas. 
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7 PERSPECTIVAS FUTURAS 

 

Como perspectivas futuras, espera-se que os modelos desenvolvidos neste estudo 

sejam aplicados à previsão de energia eólica em horizontes de médio e longo prazo, 

possibilitando uma avaliação mais abrangente de seu desempenho em diferentes escalas 

temporais. Outra direção promissora consiste na aplicação desses modelos a parques 

eólicos situados em distintas regiões geográficas, de modo a verificar sua capacidade de 

generalização frente a diferentes regimes de vento e condições climáticas. 

Além disso, os modelos propostos podem ser explorados em outras tarefas 

relacionadas à energia eólica, como a previsão da velocidade do vento e a detecção de 

anomalias em componentes críticos dos aerogeradores. Outra vertente relevante envolve 

a integração de técnicas de decomposição às arquiteturas desenvolvidas, uma vez que tais 

abordagens podem potencializar a precisão e a robustez das previsões. 

As arquiteturas propostas também apresentam flexibilidade para adaptação a 

novos mecanismos de atenção — tanto os já existentes quanto aqueles que venham a ser 

desenvolvidos —, mantendo-se atualizadas frente à rápida evolução dos modelos de 

aprendizado profundo. Por fim, ressalta-se que esses modelos possuem ampla 

aplicabilidade na previsão de séries temporais em diversos domínios, como finanças, 

economia, saúde e ciências climáticas. 
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APÊNDICE A 

 

As strings de busca utilizados na base Scopus para o estudo de revisão sistemática 

descrito na Seção 3.5 encontram-se apresentados nos Quadros A1 e A2. 

 

Quadro A1 - String de busca utilizada na Etapa 1 da revisão sistemática (SCOPUS) 

 

 

 

 

 

 

Fonte: Autoria própria (2025). 

 

Quadro A2 - String de busca utilizada na Etapa 2 da revisão sistemática (SCOPUS) 

 

 

 

 

 

 

 

Fonte: Autoria própria (2025). 

 

 

 

 

 

 

 

 

TITLE-ABS-KEY("transformers networks" OR "transformers model" OR "transformers architecture" 

OR "crossformer" OR "autoformer" OR "pyraformer" OR "informer" OR "reformer" OR "fedformer" 

OR "itransformer" OR "Non-stationary Transformers" OR "LogSparse Transformer" OR "PatchTST" 

OR "flowformer" OR "FlashAttention" OR "iTransformer") AND NOT TITLE-ABS-KEY("electrical 

networks" OR "power transformers" OR "power transformer") AND ORIG-LOAD-DATE > 20241125 

AND ( LIMIT-TO ( PUBSTAGE,"final" ) ) AND ( LIMIT-TO ( DOCTYPE,"ar" ) ) AND ( LIMIT-TO 

( PUBYEAR,2017) OR LIMIT-TO ( PUBYEAR,2018) OR LIMIT-TO ( PUBYEAR,2019) OR LIMIT-

TO ( PUBYEAR,2020) OR LIMIT-TO ( PUBYEAR,2021) OR LIMIT-TO ( PUBYEAR,2022) OR 

LIMIT-TO ( PUBYEAR,2023) OR LIMIT-TO ( PUBYEAR,2024) OR LIMIT-TO ( PUBYEAR,2025) 

) AND ( LIMIT-TO ( LANGUAGE,"English" ) ) 

TITLE-ABS-KEY("transformers networks" OR "transformers model" OR "transformers architecture" 

OR "crossformer" OR "autoformer" OR "pyraformer" OR "informer" OR "fedformer" OR 

"itransformer" OR "Non-stationary Transformers" OR "LogSparse Transformer" OR "PatchTST" OR 

"flashformer" OR "flashattention" OR "flowformer") AND TITLE-ABS-KEY("wind turbine" OR 

"wind energy" OR "power forecast" OR "forecast wind" OR "wind power" OR "wind speed" OR "wind 

turbine") AND NOT TITLE-ABS-KEY("electrical networks" OR "power transformers" OR "solar" 

OR "diesel reformers") AND ORIG-LOAD-DATE > 20240903 AND ( LIMIT-TO ( 

PUBSTAGE,"final" ) ) AND ( LIMIT-TO ( DOCTYPE,"ar" ) ) AND ( LIMIT-TO ( PUBYEAR,2017) 

OR LIMIT-TO ( PUBYEAR,2018) OR LIMIT-TO ( PUBYEAR,2019) OR LIMIT-TO ( 

PUBYEAR,2020) OR LIMIT-TO ( PUBYEAR,2021) OR LIMIT-TO ( PUBYEAR,2022) OR LIMIT-

TO ( PUBYEAR,2023) OR LIMIT-TO ( PUBYEAR,2024) OR LIMIT-TO ( PUBYEAR,2025) ) AND 

( LIMIT-TO ( LANGUAGE,"English" ) ) 
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APÊNDICE B 

 

 A análise de sensibilidade da incorporação do Time2Vec na arquitetura 

Transformer considerou os Arranjos I, II e III, conforme detalhado neste estudo. A 

otimização de hiperparâmetros usando o Optuna produziu as configurações mostradas nas 

Tabelas B1 e B2 para os Cenários A e B, respectivamente. Cada análise incluiu a 

avaliação de diferentes mecanismos de atenção — FullAttention, FlowAttention e 

FlashAttention — dentro dos respectivos Arranjos.  

De acordo com a Tabela B1, o T2V-Transformer no Arranjo I utiliza apenas 1 

camada de codificador e 1 de decodificador, enquanto os Arranjos II e III empregam 3 

camadas cada. O Arranjo III apresenta a menor dimensão do modelo (𝑑𝑚𝑜𝑑𝑒𝑙  = 32), 

seguido pelo Arranjo I (𝑑𝑚𝑜𝑑𝑒𝑙  = 64) e pelo Arranjo II (𝑑𝑚𝑜𝑑𝑒𝑙  = 128). O comprimento 

da sequência (seq len) foi maior no Arranjo I, sugerindo uma capacidade aprimorada de 

capturar dependências temporais de longo prazo. Para o modelo T2V-Flowformer, o 

Arranjo I empregou valores menores tanto para 𝑑𝑚𝑜𝑑𝑒𝑙  = 32 quanto para 𝑑𝑓𝑓= 96, 

enquanto os Arranjos II e III utilizaram 𝑑𝑚𝑜𝑑𝑒𝑙  = 64 e 𝑑𝑓𝑓= 384. Esses valores mais altos 

sugerem um custo computacional maior, pois levam a mais operações tanto no 

mecanismo de atenção quanto nas camadas de feed-forward, resultando, 

consequentemente, em maiores demandas de inferência e treinamento. Para o modelo 

T2V-Flashformer, o Arranjo I apresentou os maiores valores para 𝑑𝑚𝑜𝑑𝑒𝑙  = 256 e 𝑑𝑓𝑓= 

512. Em contraste, os Arranjos II e III utilizaram valores de 𝑑𝑚𝑜𝑑𝑒𝑙 valores de 64 e 32, e 

𝑑𝑓𝑓 valores de 256 e 96, respectivamente. Essas configurações indicam que o Arranjo I 

incorre no maior custo computacional devido ao aumento do número de operações tanto 

nos componentes de atenção quanto nos de propagação direta. 

De acordo com a Tabela B2, para o T2V-Transformer, o Arranjo I foi configurado 

com apenas 1 camada de codificador e 1 camada de decodificador, enquanto que o 

Arranjo II com 1 camada de codificador e 2 camadas de decodificador. Já o Arranjo III 

apresentou 3 camadas para ambos. Em termos de seq len, o Arranjo I apresentou o valor 

de 44, já o Arranjo II apresentou o maior valor, com 92. O valor de 𝑑𝑚𝑜𝑑𝑒𝑙 foi mais alto 

no Arranjo II (128), já para 𝑑𝑓𝑓 o Arranjo I apresentou o maior valor (384). Para o T2V-

Flowformer, o Arranjo I apresentou o maior seq len (120). O número de camadas de 

codificador e decodificador foi de 2 para ambos. O Arranjo II utilizou 2 camadas para o 

codificador e 1 camada para o decodificador, enquanto o Arranjo III possui 1 camada para 
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ambos. O Arranjo I apresentou o maior valor para 𝑑𝑚𝑜𝑑𝑒𝑙 e 𝑑𝑓𝑓 (128 e 512, 

respectivamente); enquanto o Arranjo II utilizou 64 e 256; e o Arranjo III utilizou 64 e 

384, respectivamente, para estes parâmetros. Para o T2V-Flashformer, o Arranjo I 

demonstrou maior capacidade de capturar padrões temporais de longo prazo devido ao 

seu maior seq len (105), enquanto os Arranjos II e III apresentaram 43 e 23, 

respectivamente. Além disso, o Arranjo I apresentou valores mais altos para 𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑓𝑓 

e número de cabeças (256, 1536 e 8, respectivamente), indicando um custo computacional 

maior em comparação com os Arranjos II e III. 

Em relação à sensibilidade aos hiperparâmetros, as variações do seq len,  𝑑𝑚𝑜𝑑𝑒𝑙, 

𝑑𝑓𝑓, número de cabeças de atenção e demais parâmetros demonstraram que o desempenho 

do modelo não escala linearmente com o tamanho da arquitetura. Dimensões de 

incorporação e larguras de feed-forward maiores aumentaram o custo computacional, mas 

não garantiram maior precisão. De acordo com os valores dos hiperparâmetros 

apresentados nas Tabelas B1 e B2, conclui-se que o projeto do arranjo exerce influência 

mais significativa que a magnitude dos parâmetros. De modo geral, os Arranjos I 

apresentaram melhor desempenho nos Cenários A e B, sendo adotados neste trabalho para 

a arquitetura proposta. 

Todos os modelos empregaram a função de ativação ReLU, o que garantiu 

convergência estável entre os arranjos, reforçando que a interação entre a codificação 

periódica do Time2Vec e os mecanismos de atenção desempenha um papel mais decisivo 

do que a escolha da função de ativação. Para o Cenário A, o Arranjo I de todos os modelos 

utilizou o RMSprop. Já para o Cenário B, o Arranjo I de todos os modelos utilizaram o 

Adam. Para o Arranjo II, os modelos apresentaram um uso equilibrado de RMSprop e 

Adam para ambos os Cenários. Já o Arranjo III para ambos os Cenários, todos os modelos 

utilizam o Adam, com exceção do T2V-Flashformer no Cenário B; nenhum utilizou SGD. 

Uma taxa de dropout de 0,1 foi aplicada consistentemente em todas as configurações. 

Essas descobertas destacam que os benefícios da escalabilidade dependem fortemente do 

mecanismo de atenção: o FlowAttention permanece eficiente com dimensionalidade 

moderada, enquanto o FlashAttention torna-se mais sensível ao crescimento de 

parâmetros devido às suas operações densas. 

Em relação ao componente periódico do Time2Vec (seno versus cosseno), para o 

T2V-Transformer no Cenário A, os Arranjos I e II usam seno, enquanto o Arranjo III usa 

cosseno; já para o Cenário B, os Arranjos I e III usam cosseno, enquanto o Arranjo II usa 
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seno. Para o T2V-Flowformer no Cenário A, os Arranjos I e II usam cosseno e o Arranjo 

III usa seno; no Cenário B, o Arranjo I usa o seno, enquanto os Arranjos II e III usam o 

cosseno. Para o T2V-Flashformer, os Arranjos I e II usam seno, enquanto o Arranjo III 

usa cosseno (em ambos os cenários). 

Os resultados da Análise de Sensibilidade são apresentados nas Figuras B1 e B2. 

A Figura B1 corresponde ao Cenário A e ilustra os resultados para os modelos T2V-

Transformer, T2V-Flowformer e T2V-Flashformer. A Figura B2 apresenta os resultados 

correspondentes para o Cenário B. Em todos os casos, o Arranjo I produziu 

consistentemente os menores erros de previsão em todos os horizontes, indicando que 

essa configuração foi a mais adequada para as arquiteturas dos modelos. Portanto, o 

Arranjo I foi adotado para as previsões realizadas neste estudo. 

 

Tabela B1- Análise de sensibilidade do Cenário A 

Cenário A 

Parâmetro 

T2V-Transformer T2V-Flowformer T2V-Flashformer 

Arranjo  

I 

Arranjo  

II 

Arranjo  

III 

Arranjo 

 I 

Arranjo  

II 

Arranjo  

III 

Arranjo 

 I 

Arranjo 

 II 

Arranjo  

III 

seq len 32 23 15 49 22 27 63 18 13 

Camadas do 

codificador 
1 3 3 2 2 3 2 2 3 

Camadas do 

decodificador 
1 3 3 3 2 2 1 2 2 

Épocas 10 10 10 10 10 10 10 10 10 

Otimizador RMSprop Adam Adam RMSprop RMSprop Adam RMSprop RMSprop Adam 

Função de 

ativação 
ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU 

Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

𝑑𝑚𝑜𝑑𝑒𝑙  64 128 32 32 64 64 256 64 32 

Nº de 

cabeças 
4 2 8 4 4 2 6 6 6 

𝑑𝑓𝑓 128 512 128 96 384 384 512 256 96 

Função sen sen cos cos cos sen sen sen cos 

Fonte: Autoria própria (2025). 
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Tabela B2- Análise de sensibilidade do Cenário B 

Cenário B 

Parâmetro 

T2V-Transformer T2V-Flowformer T2V-Flashformer 

Arranjo  

I 

Arranjo  

II 

Arranjo 

III 

Arranjo 

 I 

Arranjo  

II 

Arranjo 

III 

Arranjo  

I 

Arranjo  

II 

Arranjo 

III 

seq len 44 92 25 120 44 22 105 43 23 

Camadas do 

codificador 
1 1 3 2 2 1 3 3 3 

Camadas do 

decodificador 
1 2 3 2 1 1 1 1 2 

Épocas 10 10 10 10 10 10 10 10 10 

Otimizador Adam Adam Adam Adam RMSprop Adam Adam RMSprop RMSprop 

Função de 

ativação 
ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU 

Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

𝑑𝑚𝑜𝑑𝑒𝑙  64 128 32 128 64 64 256 64 128 

Nº de cabeças 6 6 6 2 2 6 8 6 6 

𝑑𝑓𝑓 384 256 128 512 256 384 1536 256 640 

Função cos sen cos sen cos cos sen sen cos 

Fonte: Autoria própria (2025). 
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Figura B1 - Análise de sensibilidade para os modelos T2V-Transformer, T2V-Flowformer e T2V-

Flashformer (Cenário A) 

 

 

 

 

Fonte: Autoria própria (2025). 
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Figura B2 - Análise de sensibilidade para os modelos T2V-Transformer, T2V-Flowformer e T2V-

Flashformer (Cenário B). 

 

 

 

Fonte: Autoria própria (2025). 
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