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RESUMO

A natureza intermitente e imprevisivel dos ventos impde desafios significativos a
operacdo, despacho e manutengdo de parques eolicos, motivo pelo qual métodos de
previsdo precisos tornam-se fundamentais para ganhos operacionais, como reducio de
custos, maior disponibilidade das turbinas e integragao segura da energia eolica na matriz
elétrica brasileira. Partindo desse problema, esta tese propde novos modelos de previsao
de poténcia eolica de curto prazo baseados em arquiteturas Transformer. Foram
desenvolvidos trés modelos originais — T2V-Transformer, T2V-Flowformer e T2V-
Flashformer — que integram a codificagao temporal Time2Vec e empregam mecanismos
alternativos de atencao (FlowAttention e FlashAttention) para reduzir a complexidade
computacional do FullAttention, mantendo ou ampliando a precisdo das previsoes. A
pesquisa foi conduzida com dados reais de turbinas edlicas localizadas no Nordeste do
Brasil, considerando diferentes condigdes sazonais e horizontes de previsdo de até 12
horas. Os resultados evidenciaram ganhos consistentes de desempenho, com os modelos
propostos superando os métodos de referéncia (ARIMA, MLP, LSTM e DLinear) em
grande parte dos cendrios avaliados, apresentando maior precisdo ¢ desempenho nas
métricas de avaliacdo utilizadas. A andlise de sensibilidade mostrou que a aplica¢ao do
Time2Vec na entrada do codificador gera impactos positivos expressivos, especialmente
nas variantes Flowformer e Flashformer. Adicionalmente, observou-se que melhorias
aparentemente pequenas se tornam relevantes quando acumuladas em longos periodos de
operac¢ao, resultando em beneficios concretos a eficiéncia energética e a confiabilidade
operacional. Do ponto de vista metodoldgico, este trabalho se destaca por apresentar a
primeira aplicagdo do mecanismo FlashAttention a previsdo de energia edlica, além da
primeira integracao conjunta de Time2Vec com multiplos mecanismos de atengdo nesse
contexto. A abordagem proposta combina robustez preditiva e viabilidade computacional,
oferecendo um procedimento metodoldgico que avanga o estado da arte em previsdo de
séries temporais edlicas e fornece subsidios praticos para uma gestdo mais inteligente e
sustentavel de parques eolicos.

Palavras-chave: Energia Eolica; Previsdo de Poténcia; Transformer; Time2Vec;
FlowAttention; FlashAttention; Séries Temporais.



ABSTRACT

The intermittent and unpredictable nature of wind imposes significant challenges on the
operation, dispatch, and maintenance of wind farms, making accurate forecasting
methods essential for achieving operational gains such as cost reduction, increased
turbine availability, and the secure integration of wind energy into the Brazilian electricity
grid. Addressing this problem, this thesis proposes new short-term wind power
forecasting models based on Transformer architectures. Three original models were
developed—T2V-Transformer, T2V-Flowformer, and T2V-Flashformer—which
integrate the Time2Vec temporal encoding and employ alternative attention mechanisms
(FlowAttention and FlashAttention) to reduce the computational complexity of
FullAttention while maintaining or enhancing predictive accuracy. The research was
conducted using real data from wind turbines located in Northeastern Brazil, considering
different seasonal conditions and forecasting horizons of up to 12 hours ahead. The results
demonstrated consistent performance gains, with the proposed models outperforming
reference methods (ARIMA, MLP, LSTM, and DLinear) in most evaluated scenarios,
achieving higher accuracy and superior performance across the assessment metrics. The
sensitivity analysis revealed that applying Time2Vec at the encoder input yields
substantial positive impacts, particularly in the Flowformer and Flashformer variants.
Additionally, seemingly small improvements were shown to become highly relevant
when accumulated over long periods of continuous operation, resulting in tangible
benefits for energy efficiency and operational reliability. From a methodological
perspective, this work stands out for presenting the first application of the FlashAttention
mechanism to wind power forecasting, as well as the first joint integration of Time2Vec
with multiple attention mechanisms in this context. The proposed approach combines
predictive robustness and computational feasibility, offering a methodological framework
that advances the state of the art in wind time-series forecasting and provides practical
support for more intelligent and sustainable wind farm management.

Keywords: Wind Energy; Power Forecast; Transformer; Time2Vec; FlowAttention;
FlashAttention; Time Series.
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1 INTRODUCAO

A energia edlica consolidou-se como um dos pilares centrais da transi¢do da
matriz energética global para fontes renovaveis, em virtude de seu crescimento acelerado
e continuo ao longo das ultimas décadas. Ao configurar-se como alternativa limpa e
sustentavel aos combustiveis fosseis, desempenha papel estratégico na mitigagdo das
emissdes de gases de efeito estufa e na redugdo dos impactos ambientais associados a
geracdo de eletricidade. A expansdo de sua utilizagdo evidencia um movimento global
direcionado tanto ao enfrentamento das mudangas climdticas quanto a promog¢ao da
seguranga energética em longo prazo (ELLABBAN; ABU-RUB; BLAABJERG, 2014; GIELEN
et al., 2019; LYDIA et al., 2014).

De acordo com o relatério mais recente da Global Wind Energy Council
(GWEC, 2025), a capacidade global de energia edlica atingiu 283 GW em 2012 ¢ 319
GW em 2013. Em 2017 e 2018, essa capacidade ja havia se elevado para
aproximadamente 540 GW e 591 GW, respectivamente. Essa expansdo tornou-se
ainda mais expressiva nos ultimos anos, alcangando cerca de 830 GW em 2021, 906
GW em 2022, 1.021 GW em 2023 e 1.136 GW em 2024. Projecdes futuras indicam
que a tendéncia de crescimento persistira, impulsionada por investimentos em novas
instalacoes e politicas energéticas de apoio. A Figura 1 ilustra a evolugdo historica do
total de instalagcdes (GW) de energia edlica ao longo dos anos, onde CAGR significa
Taxa de Crescimento Anual Composta.

A expectativa € que esse crescimento atinja 3 TW de capacidade edlica
acumulada até 2030. Esse tipo de energia renovavel se apresenta como uma solugdo
fundamental para atender as altas demandas por energia elétrica e mitigar os impactos
ambientais do planeta. Os cinco principais mercados globais para novas instalagdes

em 2024 foram: China, EUA, Brasil, india e Alemanha.
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Figura 1 - Desenvolvimento histérico do total de instalagdes (GW)
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Fonte: (GWEC, 2025).

Em 2024, o Brasil ocupou o quinto lugar no mundo em capacidade instalada total
de energia edlica (GWEC, 2025). Durante o mesmo ano, foram instalados 3,3 GW de
poténcia, e a edlica foi a segunda fonte que mais cresceu, representando 10,8% da nova
capacidade instalada no ano. A nova capacidade edlica instalada em 2024 fez a fonte
edlica atingir uma participa¢do de 16,1% (33,73 GW) da matriz elétrica brasileira,
conforme ilustrado na Figura 2, que apresenta a participagao de todas as fontes de geragao
na matriz elétrica brasileira no fim de 2024, de acordo com Associagdo Brasileira de
Energia Eélica E Novas Tecnologias (ABEEOLICA, 2024). A hidrelétrica representa
aproximadamente 49,4% (103,20 GW); biomassa 8,2% (17,1 GW); fotovoltaica 7,9%
(16,60 GW); gas natural 8,5% (17,81 GW); petrdleo 3,9% (8,13 GW); carvao mineral
1,7% (3,46 GW); nuclear 1,0% (1,99 GW). As fontes PCH e CGH representam
respectivamente Pequenas Centrais Hidrelétricas e Centrais Geradoras Hidrelétricas, com

aproximadamente 3,2% (6,70 GW).
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Com relagcdo a fonte eolica, somente a regido Nordeste representou
aproximadamente 92,2% de toda a energia e6lica produzida na matriz energética nacional

(ABEEOLICA, 2024).

Figura 2 - Matriz Energética Brasileira
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A energia edlica ¢é caracterizada pela conversdo de energia cinética, proveniente
do vento, em eletricidade. A forca dos ventos impulsiona as pas da turbina eolica, que
giram a uma determinada velocidade, e o gerador converte essa energia mecanica em
energia elétrica (HEIER, 2014). No nivel industrial, esse processo de conversdo ocorre

em larga escala, em parques eolicos onshore (em terra) e offshore (no mar).

1.1 Desafios a serem enfrentados

A geragdo de energia edlica envolve diversos desafios técnicos, operacionais e

cientificos que ainda precisam ser superados, entre os quais destacam-se:

r

1. Intermiténcia e Variabilidade: A produ¢do de energia edlica ¢ altamente
dependente da intensidade e constdncia do vento, que apresentam
comportamentos varidveis e imprevisiveis ao longo do tempo. Essas

flutuagdes podem resultar em periodos de baixa geracao, representando um
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desafio para a previsao precisa da producao e para a operagao eficiente da rede
elétrica, especialmente em momentos de transicdo rapida entre diferentes
niveis de geracao.

2. Custo Inicial e Investimento: O custo inicial de instalagdao de parques edlicos,
incluindo turbinas, infraestrutura e conexao a rede elétrica, pode ser alto.

3. Durabilidade e Manutengao: As turbinas edlicas exigem manuteng¢ao regular
e sua durabilidade pode ser afetada por condi¢des climaticas adversas, como
ventos fortes e corrosao salina em regides costeiras.

4. Impactos Ambientais e Ecologicos: Embora considerada uma fonte de energia
limpa, a instalagdo de parques edlicos pode impactar a vida selvagem
(especialmente aves e morcegos) e alterar os ecossistemas locais.

5. Riscos de Mercado e Regulatorios: A energia edlica pode ser influenciada por
mudangas nas politicas de subsidios, regulamentagdes ambientais e flutuagdes

nos pregos de mercado.

Para enfrentar estes desafios ¢ essencial o uso de previsdes precisas para otimizar
a produgdo de energia em parques edlicos, bem como o diagnostico eficiente de falhas
em componentes criticos do sistema, a fim de promover os melhores planos de operagao
e manutencdo (LEITE; ARAUJO; ROSAS, 2018; VEERS et al., 2019; YANG, W.; COURT;
JIANG, J., 2013). Esses desafios estdo relacionados a analise de dados para previsao e estdo
frequentemente presentes em parques eolicos onshore e offshore.

Para fazer previsoes precisas sobre a velocidade do vento, o potencial edlico a ser
explorado e a deteccdo de anomalias em componentes criticos de turbinas eolicas (TEs),
diversas técnicas, incluindo modelos de aprendizado profundo, podem ser empregadas
(este topico sera discutido com mais detalhes ao longo deste trabalho). A anélise de dados
¢ essencial para maximizar o desempenho e a confiabilidade de TEs, minimizando os
custos operacionais e os impactos ambientais. Com essa abordagem, torna-se possivel

tomar decisdes importantes e garantir a producao eficiente de energia.

1.2 Justificativa da Tese

A andlise de dados ¢ um elemento central para a previsdo do potencial edlico em

parques eolicos, uma vez que a producdo de energia estd diretamente associada a
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fendmenos atmosféricos altamente dindmicos e ndo estacionarios. Nesse contexto,
métodos tradicionais de previsdo frequentemente apresentam limitagdes na captura de
padrdes temporais complexos, variagdes abruptas e mudancas de regime caracteristicas
das séries de geragdo eolica. Assim, a escolha deste tema ¢ justificada pela necessidade
de desenvolver e investigar modelos capazes de representar de forma mais eficiente as
dependéncias temporais de curto prazo presentes nos dados de geracdo edlica, visando
aumentar a precisao e a robustez das previsdes em cenarios reais de operagao.

Neste trabalho, o foco estd na previsdao de curto prazo da poténcia edlica, em
horizontes que variam de poucas horas a frente, os quais sao particularmente relevantes
para a operagdo de parques eolicos e para a integracdo da energia edlica ao sistema
elétrico.

Este estudo fundamenta-se na aplicagdo de modelos de referéncia amplamente
discutidos na literatura cientifica, com foco principal em arquiteturas baseadas no
Transformer. Apesar das limitagcdes associadas ao alto custo computacional, a
complexidade do mecanismo de atengdo e a representacdo limitada de padrdes
multiescalares, os Transformers tém apresentado resultados consistentemente superiores
em tarefas de previsdo de séries temporais, incluindo aplica¢cdes em energia edlica. Essa
evidéncia, somada a sua capacidade de capturar dependéncias de longo alcance e padrdes
nao lineares, justifica a escolha dessas arquiteturas como base para o desenvolvimento e
aprimoramento dos modelos propostos neste trabalho.

Uma dessas limitagdes estd relacionada as codificagdes posicionais senoidais
fixas, que podem nao capturar de forma adequada caracteristicas tipicas da periodicidade
do vento, tais como:

e 0 ciclo diurno, no qual a velocidade do vento varia de maneira sistemdtica ao
longo do tempo;

e o0s padrdes sazonais irregulares, influenciados por frentes meteorologicas e
mudancas atmosféricas de maior escala;

e as flutuagdes multiescalares, nas quais ciclos curtos e longos interagem de
maneira nao linear, dificultando sua representacao por fun¢des senoidais estaticas.

Além disso, o elevado custo computacional dos Transformers pode resultar em
tempos de processamento que, dependendo da configuragdo, variam de alguns minutos
até varias horas por experimento — o que se torna particularmente critico quando a
periodicidade operacional exige atualizagdes frequentes das previsdes. Nesses cenarios,

um modelo cujo tempo de inferéncia ou treinamento ¢ maior que a janela de atualizagdo
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compromete sua aplicabilidade pratica em ambientes industriais. Soma-se a isso o fato de
que o Transformer e suas derivagdes, por se tratarem de modelos relativamente recentes,
podem funcionar como uma “caixa-preta”, dificultando a interpretagdo dos resultados em
aplicagoes reais.

Por fim, um detalhamento técnico aprofundado de todas as limitagdes
mencionadas — incluindo mecanismos de atencdo, codificagdes posicionais e custos
computacionais — ¢ apresentado na Se¢do 2 (Fundamentagao Tedrica).

Dessa forma, este trabalho busca mitigar essas limitagdes, com o objetivo
principal de aprimorar a precisdo da previsao da poténcia gerada por turbinas edlicas e,
simultaneamente, avaliar o desempenho de diferentes abordagens em comparacdo a
modelos classicos. Ademais, este estudo pretende fornecer uma referéncia para
pesquisadores e engenheiros quanto ao desempenho e potencial dessas arquiteturas
modernas em cenarios reais de previsao.

Em ultima andlise, ao elevar a acuracia das previsodes, pretende-se contribuir para
um planejamento operacional e de manutengdo mais eficiente, otimizar a producdo de
energia e maximizar os retornos economicos, promovendo uma gestao de parques eolicos

mais confiavel e sustentavel.

1.3 Potencial de Inovacao

Este estudo investiga a aplicagdo de modelos ainda nao explorados para a previsao
de poténcia em sistemas de geracdo eolica, adaptando-os para tarefas de séries temporais

com o objetivo de superar o desempenho de modelos consagrados na literatura cientifica.

Dessa forma, a pesquisa se caracteriza como uma das pioneiras na utilizagdo
desses modelos para previsdo de poténcia edlica. Ademais, trata-se do primeiro trabalho
que, além de propor novos modelos, apresenta uma revisao abrangente sobre a aplicagao

de arquiteturas baseadas em Transformers no contexto da energia eolica.
Os principais aspectos inovadores desta tese incluem:

1. Autilizagdo dos mecanismos de atengdo FlowAttention e Flashformer na previsao
de poténcia de turbinas edlicas, com busca sistematica de hiperparametros visando

a obtencdo da melhor configuracao preditiva possivel;
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2. Este estudo apresenta uma contribui¢do inédita na literatura consultada ao integrar
o Time2Vec a arquitetura Transformer, além da realizagdo de uma anélise de
sensibilidade com diferentes arranjos;

3. A avaliagdao do desempenho do Time2Vec combinado a distintos mecanismos de
atencao, com o objetivo de aprimorar a precisao e a eficiéncia preditiva nas tarefas
de previsao;

4. A realizagdo de um estudo de revisdo comparativo entre distintas derivagdes do

Transformer aplicadas a previsao de séries temporais, com analise quantitativa e

qualitativa dos resultados por meio de métricas de avaliagao.

1.4 Objetivo Geral

O objetivo geral da tese ¢ maximizar a eficiéncia produtiva de parques eolicos,
gerando previsdes precisas de oferta e disponibilidade de energia edlica, permitindo um
melhor planejamento da operacdo e manutencdo. O estudo se concentra em modelos de
referéncia, com énfase em arquiteturas baseadas em Transformers, e utiliza a analise de

séries temporais para estimar horizontes de previsao.

1.4.1 Objetivos Especificos

Os objetivos especificos da tese incluem:

1. Realizar uma revisdo qualitativa e quantitativa de modelos baseados em
Transformers aplicados & area de energia edlica, com o intuito de analisar os
resultados alcangados e avaliar os impactos efetivos desses modelos em tais
aplicacoes.

2. Propor modelos baseados em Transformers, testando diferentes mecanismos de
atencdo voltados a previsdo de poténcia edlica. O objetivo ¢ identificar quais
mecanismos proporcionam melhor desempenho preditivo, comparando-os com
modelos de referéncia e conduzindo uma otimizacao de hiperparametros para

determinar a configuracdo ideal de cada modelo.
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3. Conduzir uma andlise de sensibilidade sobre a integragdo do Time2Vec na
arquitetura Transformer, a fim de avaliar os arranjos que mais contribuem para o
aprimoramento preditivo em tarefas de previsdo de séries temporais, com foco
especifico na previsao de poténcia eolica.

4. Fornecer uma referéncia estruturada e orientadora para pesquisadores e
profissionais interessados no desenvolvimento e aplicagdo de modelos baseados

em Transformers voltados a previsdo de energia edlica.

1.5 Estrutura da Tese

Esta tese esta estruturada nos seguintes capitulos:

e No Capitulo 1, ¢ apresentada introducdo, juntamente com a justificativa da
tese, potencial de inovacdo, além do objetivo geral e especificos para o
desenvolvimento deste estudo;

e No Capitulo 2, ¢ apresentada a fundamentacao teorica, com foco principal
nas redes Transformers e na técnica Time2 Vec;

e No Capitulo 3, ¢ apresentado o estado da arte, abordando os topicos de
turbinas edlicas; analise de dados; séries temporais; e modelos de previsao;

e No Capitulo 4, ¢ detalhada a metodologia adotada neste estudo, abordando
a descricdio do problema; visdo geral da metodologia; andlise de
sensibilidade da integracao Time2Vec; modelos propostos; Estudos de Caso
1 e 2; e analise experimental,

e No Capitulo 5, sdo apresentados os resultados e discussdo da tese,
abordando os Estudos de Caso 1 e 2; o impacto da integracao Time2Vec no
desempenho dos modelos e o custo computacional;

e No Capitulo 6, sdo expostas as conclusdes finais do trabalho, ressaltando os
principais resultados alcangados.

e No Capitulo 7, sdo apresentadas as perspectivas futuras, voltadas a expansao e
ao aprimoramento dos modelos propostos neste estudo, com aplicagcdes
voltadas a previsdao de médio e longo prazo, bem como a outras areas da

literatura cientifica.
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2 FUNDAMENTACAO TEORICA

A fundamentacdo teoOrica € essencial para contextualizar e embasar o
desenvolvimento metodoldgico desta pesquisa. Nesta secdo, apresentam-se 0s conceitos,
técnicas e procedimentos que sustentam os modelos propostos, permitindo compreender
0s principios por tras das escolhas adotadas. Dessa forma, a fundamentacéo tedrica ndo
apenas explica as ferramentas e métodos utilizados, mas também estabelece o suporte
conceitual necessario para interpretar os resultados e justificar cada decisdo metodoldgica
adotada ao longo deste estudo.

2.1 Redes Transformers

O Transformer é um modelo inicialmente desenvolvido para tarefas de
Processamento de Linguagem Natural (Natural Language Processing — NLP)
(VASWANI et al., 2017), mas tem sido recentemente adaptada para problemas de
previsdo de séries temporais. O Transformer apresenta uma estrutura de camadas
codificador-decodificador, incorporando um mecanismo de auto atencdo e camadas
totalmente conectadas. Conforme ilustrado na Figura 3, o lado esquerdo do diagrama
representa a pilha do codificador, enquanto o lado direito representa a pilha do
decodificador. Cada codificador consiste em duas subcamadas principais: (I) um
mecanismo de auto atencdo multicabecas e (I11) uma rede neural feed-forward posicional.
Ambas as subcamadas sdo seguidas por conexdes residuais e normalizagdo de camadas
(Add & Norm'). As incorporacdes de entrada sdo combinadas com codificacOes
posicionais para reter informacGes de sequéncia antes de serem alimentadas no

codificador.

O decodificador, no lado direito da Figura 3, inclui trés subcamadas: (I) uma
camada mascarada de auto atengdo multicabegas que impede o decodificador de atender
a posicdes futuras, (I1) uma camada de aten¢do multicabecas sobre a saida do codificador
(permitindo a interacdo entre o codificador e o decodificador) e (111) uma rede neural feed-
forward. Da mesma forma, conexdes residuais e normalizacdo séo aplicadas apds cada
subcamada. As incorporacGes de saida também sdo combinadas com codificacdes

posicionais e deslocados para a direita para garantir a decodificacdo autorregressiva. Por
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fim, a saida do decodificador passa por uma transformacéo linear e uma camada softmax,
a qual normaliza os valores produzidos pelo modelo e os converte em uma distribuigédo
de probabilidades, permitindo a interpretacdo probabilistica das saidas e a selecdo da
predicdo mais provavel. Na literatura cientifica, esse modelo também é conhecido como

Transformer Vanilla, o primeiro Transformer introduzido na literatura.

Figura 3 - Arquitetura do Transformer Vanilla
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Fonte: Adaptado de Vaswani et al. (2017).

O mecanismo de auto atengdo no modelo Transformer é baseado nos vetores
Consulta (Q), Chave (K) e Valor (V), que apresenta representacdes de tokens

compactados da sequéncia de entrada. Esses vetores sdo organizados nas matrizes Q

e RV*ok . K € RV, and V € RN*Dv | Onde N denota o comprimento da
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sequéncia, Dk representa as dimensdes de Q e de K, e Dy corresponde a dimenséo de
V. A atencdo do produto escalar empregada pelo Transformer é definida de acordo

com a Equacéo (1):

Attention(Q, K,V) = softmax (%) %4 1)

O fator de escala \/D_K é introduzido para evitar a saturacédo da funcao softmax,
estabilizando os gradientes durante o treinamento ao reduzir a variancia dos valores
do produto escalar entre Q e K. Em vez de aplicar uma unica funcdo de atencéo, o
Transformer emprega um mecanismo de atencdo multicabeca, que permite ao modelo
capturar diversos padrdes relacionais entre tokens. Para atingir esse objetivo, as

matrizes originais Q, K,V sdo projetadas em subespagos de dimensdes inferiores
usando matrizes de peso treindveis W2 € RP»*Px Wk € RPm Pk e WY & RPm>Dy,

O célculo da atencéo para cada uma das cabecas H é entdo dado pela Equacéo (2):
head, = Attention(QW;°, KW,X e vw;") )

Posteriormente, as saidas de todas as cabecas de atencdo H sdo concatenadas

e projetadas de volta a dimensdo do recurso original D, usando uma matriz de

projecéo final W° € RMv *Pm  resultando na Equacdo (3):
MultiHead(Q,K,V) = Concat(head,, ..., head,)W° 3)

Este mecanismo permite que o modelo aprenda multiplas representacdes da
entrada, aprimorando sua capacidade de capturar dependéncias contextuais entre
tokens. Alguns estudos mostram em detalhes a taxonomia das redes Transformers,
bem como possiveis modificagcdes que podem ser feitas na arquitetura. Também é
possivel verificar o pré-treinamento dos modelos e suas respectivas aplicagdes (LIN,
T. etal., 2022).

Além das subcamadas de atencdo, cada camada do codificador e do



21

decodificador contém também uma subcamada de rede totalmente conectada,
conhecida como Position-wise Feed-Forward Network (FFN). Essa rede € aplicada
de forma independente e idéntica a cada posigao, consistindo em duas transformacdes

lineares separadas por uma ativagdo nao linear ReLU, conforme a Equacéo (4):
FFN(X) = ma.X(O, le + bl)WZ + bz (4)

As transformacdes lineares sdo compartilhadas entre as posi¢des, mas possuem
parametros distintos entre as camadas. Em termos equivalentes, essa operacdo pode ser
interpretada como duas convolugbes com tamanho de kernel igual a 1. No Transformer
original, a dimensionalidade de entrada e saida é d,,,,4.;=512, enquanto a camada interna
possui dimensionalidade d=2048, valores sugeridos no artigo “Attention Is All You
Need” (VASWANI et al., 2017). Esses valores podem ser ajustados de acordo com a
aplicagéo ou disponibilidade de recursos computacionais, permitindo maior flexibilidade
na configuracdo do modelo. O parametro d,,,qe; representa a dimensédo do vetor de
representacdo do modelo, isto é, o tamanho da incorporacdo em cada posicdo da
sequéncia. Enquanto d, corresponde a dimensdo da camada intermediaria da rede feed-
forward, responsavel por expandir e projetar as representagdes em um espaco de maior
capacidade antes de retorna-las a dimensao original.

Além do mecanismo de atencdo, o Transformer original emprega codificacbes
posicionais senoidais fixas (fixed sinusoidal positional encodings) para representar a
ordem dos elementos na sequéncia de entrada, como demonstrado na Figura 3. Essas
codificacdes sdo deterministicas e ndo aprendiveis, sendo definidas por fungbes seno

e cosseno de diferentes frequéncias, conforme as Equacdes 5 e 6:

. bos
PE(pOS'Zi) = sin (100002i/dmodel) (5)

_ pos
PE(pos,2i+1) = €Oos (100002i/dmodel) (6)

onde pos € a posicdo e i é a dimensdo. Cada dimensdo da codificacdo posicional
corresponde a uma senoide, cujos comprimentos de onda formam uma progressdo
geométrica de 2 a 10000 - 2 7. Segundo os autores, essa fungéo foi adotada para permitir
que o modelo aprenda facilmente a atender por posigdes relativas, uma vez que, para

qualquer deslocamento fixo k, PE,,,s.x pode ser representado como uma fungao linear
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de PE,,s (VASWANI et al., 2017).

Embora as codificacBes posicionais senoidais fixas sejam adequadas para
capturar padrdes temporais regulares, séries temporais de poténcia edlica apresentam
estruturas muito mais complexas, incluindo periodicidade diurna moderada,
sazonalidades irregulares influenciadas por frentes meteoroldgicas e flutuacGes
multiescalares decorrentes da interacdo entre ciclos de minutos, horas e dias. Essas
caracteristicas tornam a representacdo exclusivamente senoidal menos expressiva
para capturar a variabilidade inerente do vento, o que motiva o uso de incorporacdes
aprendiveis e, particularmente, a ado¢édo de fungbes temporais parametrizaveis, como
0 Time2Vec.

No contexto desta tese, 0 termo incorporacao refere-se a representacao vetorial
densa aprendivel que transforma a entrada continua da série temporal em um vetor
compativel com a dimensdo do modelo d,,,4¢;- Seguindo a formulacdo adotada na

literatura de Transformers para séries temporais (ZERVEAS et al., 2021; ZHOU et

al., 2021; WU et al., 2021), cada amostra temporal x, € R%n que é projetada para o

espaco interno do modelo por meio de uma camada linear aprendivel representado

pela Equacéo (7):

er = Wex, + b, (7)

onde W, € R%modet Xdin @ p, & R%model gi0 parametros ajustados durante o

treinamento. Formalmente, essa operacdo define uma aplicacdo linear ¢ :
Réin — R%model | que projeta cada observacio da série temporal para o espago vetorial
interno utilizado pelo Transformer. No caso particular de séries temporais univariadas
(d;;, = 1), essatransformagcéo reduz-se a uma projecio diretade R — R%model O vetor
e; representa, portanto, a incorporacdo resultante dessa projecdo; enquanto x; é a
observacao no instante t; W, é a matriz de projecdo que mapeia a entrada para o
espaco interno do modelo; b, representa o viés da projecdo. Diferentemente das
aplicacbes em NLP, em que incorporagfes representam relacdes semanticas entre
tokens, para séries temporais eles funcionam como uma transformagdo numérica que
captura escala, correlacdes e padrdes estatisticos das variaveis fisicas de entrada (por
exemplo, poténcia eolica, velocidade do vento e varidveis meteoroldgicas). A

codificagéo posicional senoidal é entdo adicionada a essa incorporac¢ao aprendivel,
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compondo o vetor final de entrada do Transformer, representado pela Equacéo (8):

z; = e; + PE(pos;) (8)

onde pos, indica a posi¢ado temporal correspondente ao instante t. A Eq. (8) incorpora
simultaneamente informacg6es sobre o valor da série e sua posicdo temporal. Esse
procedimento segue a pratica padrao em modelos Transformer aplicados a previsdo
de séries temporais continuas (ZERVEAS et al., 2021; ZHOU et al., 2021).

De acordo com a Equacdo (1), a atencgéo resulta do produto escalar (QK)T,
produzindo uma matriz de pontuacdo de tamanho N x N com custo computacional de
O(N?d). A funcéo softmax aplicada a O (N?) amplifica o problema da complexidade
quadratica. A medida que N aumenta, 0 nimero de operacdes necessarias cresce
quadraticamente, tornando o processamento de sequéncias longas dispendioso em
termos de tempo, computacdo e memdria. Isso se torna ainda mais critico em
aplicacBes de séries com limitacdo de tempo, particularmente para sequéncias de
entrada longas.

Dentre essas propostas, destaca-se o Informer (ZHOU, Haoyi et al., 2021),
desenvolvido para o processamento de séries temporais de longo alcance. O Informer adota
uma atencdo probabilistica esparsa, que amostra de forma seletiva os tokens mais
informativos da sequéncia, reduzindo a complexidade computacional da operacdo de
atencdo de O(N?) para O(N log N). Além disso, o modelo implementa técnicas de
compressdo de sequéncia e camadas convolucionais unidimensionais (1D),
responsaveis por realcar padrdes locais relevantes nos dados. Para manter a
representatividade das informagbes mais expressivas, o Informer utiliza o
MaxPooling como mecanismo de selec¢éo, preservando os valores mais significativos
e contribuindo para um aprendizado mais eficiente e robusto.

Outro exemplo é o Autoformer (WU, H. et al., 2021). Modelo desenvolvido
especificamente para tarefas de previsao de séries temporais, com énfase na captura de
padrdes sazonais e tendéncias de longo prazo. Diferentemente das abordagens baseadas
na atencgéo tradicional, o Autoformer introduz o mecanismo de Auto-Correlacdo, capaz
de identificar diretamente as dependéncias relevantes nas séries temporais, substituindo
o célculo explicito de atencdo entre todos os pares de tokens. Essa estratégia permite ao
modelo aproveitar de forma mais eficiente as repeticGes e periodicidades presentes nos

dados. Além disso, o Autoformer adota uma arquitetura codificador-decodificador livre
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de conex0es residuais, projetada para reduzir redundancias e melhorar a eficiéncia do
treinamento. Gragas a essas modificacOes estruturais, o modelo alcangca uma
complexidade computacional reduzida, na ordem de O (N log N).

Na literatura cientifica, além do Informer e do Autoformer, existem uma
infinidade de modelos desenvolvidas para trabalhar com aplicacbes de séries
temporais, como Pyraformer (LIU, S. et al., 2022); Crossformer (ZHANG, Yunhao;
YAN, Junchi, 2023); FEDformer (ZHOU, T. et al., 2022); LogSparse Transformer (LI,
Shiyang et al., 2019); Flowformer (WU, H. et al., 2022); entre outros. Cada um desses
modelos foi projetado para abordar limitacGes especificas do Transformer Vanilla,
demonstrando desempenho competitivo ou superior em tarefas de previsdo de séries
temporais. Na literatura cientifica, as variantes dos modelos Transformer sdo

reconhecidas sob o termo X-formers (TAY et al., 2023).

2.1.1 Flowformer

O Flowformer (WU, H. et al., 2022) foi desenvolvido para reduzir a complexidade
quadratica do mecanismo FullAttention. O modelo propds uma reformulacéo da atencéo
baseada em modelagem de fluxo continuo, mecanismo denominado FlowAttention.
Diferentemente da atencdo padréo, que calcula pesos discretos por meio de produtos
escalares entre vetores Q e K, o mecanismo FlowAttention interpreta o processo de
atencdo como um campo vetorial continuo de transporte de informac6es, no qual cada
token atua como uma fonte que envia informacao e um sumidouro que a recebe, conforme
ilustrado na Figura 4.

Nessa esquema, o fluxo de atencdo é representado como a capacidade de
transporte entre fontes e sumidouros, modelada pela funcdo S(Q,K), que define a
intensidade do fluxo entre tokens com base em suas representacdes Q e K. O diagrama
evidencia duas perspectivas complementares: (b) a Visualizacdo do Sumidouro, que
mostra como cada elemento receptor (R) agrega informagdes das fontes (V), e (c) a
Visualizagdo da Fonte, que descreve como cada elemento emissor distribui sua

contribuicédo para os receptores.

A atencdo é formulada como um problema de transporte, onde Q e K sdo tratados

como distribuicbes de probabilidade. A solu¢do 6tima para este problema define o
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mecanismo de atencdo, denominado FlowAttention. Por fim, o produto escalar S(Q,K) no
Transformador Vanilla é substituido por S=¢(Q)¢(KT), onde ¢(-) € uma projecéo nao
linear aplicada elemento a elemento. Devido as propriedades das redes de fluxo, ¢(:) é
escolhida como uma funcdo ndo negativa, de modo a garantir capacidades de fluxo
positivas e permitir a interpretacdo do mecanismo de atencao sob a perspectiva de redes
de fluxo. Uma escolha comum na literatura é ¢p() = ELU(x) + 1, onde ELU denota a
funcdo de ativacdo Exponential Linear Unit e x representa o vetor de entrada da projecéo
ndo linear, conforme adotado no Linear Transformer (KATHAROPOULOS et al., 2020),

embora outras projecfes ndo negativas também sejam admissiveis.

Essa reformulacdo melhora a eficiéncia computacional e a escalabilidade para
sequéncias longas, além de preservar de forma mais consistente as dependéncias globais
entre os elementos da sequéncia. O Flowformer demonstrou desempenho competitivo e,
em muitos casos, superior ao Transformer tradicional em tarefas de previsdo de séries
temporais e processamento dindmico de dados. Entretanto, sua aplicacdo em dominios
energéticos, como a previsdo de poténcia edlica, ainda é pouco explorada, representando

um campo promissor para estudos futuros.

Figura 4 - Vis8o da rede de fluxo para atencéo
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Fonte: Adaptado de Wu et al. (2022).
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2.1.2 Flashformer

O modelo é otimizado para previsdo de séries temporais e incorpora um
mecanismo de atencdo eficiente em memaria, com consciéncia de operacgdes de entrada e
saida (1/0 awareness). O uso do algoritmo FlashAttention (DAO et al., 2022) minimiza
0 numero de operacdes de leitura e escrita entre a High Bandwidth Memory (HBM),
conhecida como memoria de alta largura de banda, e a Static Random Access Memory
(SRAM), denominada memoria estatica de acesso aleatorio, presentes no chip da GPU.

Como ilustrado na Figura 5, o FlashAttention processa os tokens dentro de uma
janela deslizante, permitindo capturar dependéncias locais, essenciais em séries
temporais. O algoritmo adota uma estratégia de divisdo em blocos (tiling) para evitar a
materializacdo explicita da matriz de atencdo completa NxN na HBM, que possui acesso
relativamente mais lento. No loop externo (setas vermelhas), o FlashAttention itera sobre
blocos das matrizes K e V, carregando-0s na SRAM rapida on-chip. Dentro de cada bloco,
ocorre o loop interno (setas azuis), no qual segmentos da matriz Q sdo carregados para a
SRAM, e os resultados da atencdo sdo posteriormente gravados na HBM.

Embora a complexidade aritmética permaneca O(N 2), o FlashAttention reduz
substancialmente a complexidade de 1/O, limitando o trafego de memoria entre HBM e
SRAM. Heuristicamente, essa reducdo pode ser aproximada por O(N 2/M ), onde M
representa a capacidade efetiva da memoria on-chip. O ganho de eficiéncia exato depende
do tamanho dos blocos e da configuracdo de hardware.

Do ponto de vista pratico para previsdao de poténcia edlica, essa otimizagado

implica:

1. Menor laténcia na inferéncia, favorecendo aplicacdes que exigem atualizagdo em
escalas de minutos;

2. Maior estabilidade numérica e menor necessidade de memoria, permitindo treinar
modelos de maior profundidade ou sequéncias mais longas;

3. Capacidade de execugdo em hardware mais acessivel, diminuindo o custo
computacional de operagcdo em centros de controle de parques edlicos; e

4. Maior escalabilidade quando multiplas turbinas e janelas temporais precisam ser

processadas simultaneamente
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O FlashAttention pode substituir diretamente 0 mecanismo padrdo de
FullAttention no Transformer Vanilla. Neste trabalho, a variante do Transformer que

utiliza o FlashAttention é denominada Flashformer.

Figura 5 - Mecanismo FlashAttention
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Fonte: Adaptado de Dao et al. (2022).

2.1.3 Visao geral dos X-formers utilizados neste estudo

Conforme discutido anteriormente, o0s modelos analisados apresentam
caracteristicas distintas, principalmente em relacdo ao mecanismo de atencdo e a
complexidade computacional. A Tabela 1 resume brevemente essas diferengas. O
Transformer Vanilla apresenta complexidade quadratica com relacdo ao tamanho da
sequéncia, o que limita sua escalabilidade para séries temporais muito longas. O
Flowformer, por sua vez, utiliza 0 mecanismo FlowAttention para evitar a materializacdo
da matriz de atencdo completa, resultando em uma complexidade linear em N, ainda que
com constantes computacionais maiores devido as operacdes adicionais de normalizacao
continua. J& o Flashformer emprega o algoritmo FlashAttention, que mantém

complexidade aritmética quadratica, porém reduz significativamente os custos de 1/O,
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oferecendo maior eficiéncia pratica — principalmente em GPUs que exploram bem
hierarquias de memoria e paralelismo. Assim, a escolha do modelo mais adequado deve
considerar as caracteristicas da aplicacdo, o volume de dados e o0s recursos

computacionais disponiveis, equilibrando desempenho, custo e preciséo.

Tabela 1 - Resumo e visdo geral dos X-formers

Modelo Mecanismo de atencdo  Complexidade
Transformer FullAttention O(N?)
Flowformer FlowAttention O(N)
Flashformer FlashAttention O(N?/M )

'Complexidade aproximada, mais detalhes em Dao et al. (2022).

Fonte: Autoria prépria (2025).

Na energia edlica, existem diversos estudos que utilizam modelos baseados na arquitetura
Transformer, os quais sdo sistematicamente discutidos e referenciados na Se¢do 3.5.2. Em
(ZHANG, K.; LI, X.; SU, 2022), os autores propuseram o VMD-Transformer (VMD-TF),
modelo combinado com a Decomposigdo de Modos Variacionais (Variational Mode
Decomposition — VMD), para mitigar os efeitos da ndo estacionariedade da velocidade
do vento, decompondo os sinais em modos estaveis. Os resultados demonstraram que o
VMD-TF superou modelos como 0 VMD-ARIMA e 0 VMD-LSTM na previsdo de curto
prazo. Outro modelo proposto foi o FFTransformer (BENTSEN et al., 2023a), que
incorpora a decomposicao de sinais por meio de dois fluxos para analisar tendéncias e
componentes periddicos, a0 mesmo tempo em que captura relagdes espago-temporais. O
FFTransformer superou o LSTM e o MLP na previsdo de velocidade e poténcia do vento

em curto prazo.

Mais recentemente, o mecanismo FlowAttention foi utilizado em (DONG, Z. et al.,
2025), sendo proposto o modelo Wind-Mambaformer. O Mamba (GU; DAO, 2024) é uma
alternativa ao decodificador Transformer tradicional, projetado para minimizar o acimulo
de erros e aprimorar a adaptabilidade do modelo sob condi¢des variaveis. O Wind-
Mambaformer demonstrou desempenho superior na previsao de curto prazo de energia
de turbinas eolicas, em compara¢do com modelos de referéncia como CNN, LSTM e

outros modelos. Com relagdo ao FlashAttention, ainda nao existe na literatura cientifica
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aplicagdo para previsao de séries temporais na energia edlica, sendo esta tese o primeiro

trabalho a tratar desse tema.

2.2 Time2Vec: Aprendendo uma representacio vetorial do tempo

O Aprendizado de Caracteristicas (Featuring Learning) visa extrair
automaticamente representagdes informativas de dados brutos, aprimorando o
desempenho do modelo por meio da captura de estruturas e dependéncias subjacentes.
No contexto da previsao de séries temporais, o aprendizado de representagao temporal
desempenha um papel crucial ao permitir que os modelos entendam a periodicidade e a
dinamica temporal de forma eficaz. Dentre as abordagens existentes, o Time2Vec
(KAZEMI et al., 2019) se destaca como uma técnica simples, porém poderosa, para
codificacdo de informagdes relacionadas ao tempo. Ele fornece uma maneira sistematica
de representar componentes periddicos e nao periddicos de dados temporais, oferecendo
uma incorporagdo temporal mais rica e interpretavel para arquiteturas de redes neurais. O

Time2Vec adota trés propriedades principais:

1. Periodicidade: Captura padrdes periddicos e ndo periddicos nos dados.
2. Invariancia na escala temporal: A representagdo permanece consistente
independentemente das variacdes na escala temporal.
3. Simplicidade: A representacdo temporal foi projetada para ser simples o suficiente
para integracdo em varios modelos e arquiteturas.
Assim, em vez de aplicar o conjunto de dados diretamente ao modelo, os autores
propdem que a série temporal original seja transformada usando a seguinte representacao,

conforme a Equagao (9):

o (l)i'T+q)i' lfl:()
il={ oo L e ek 2

Onde k denota a dimensdo da fungdo Time2Vec, T € uma série temporal bruta, F denota
uma fungdo de ativacdo periddica e w e ¢ denotam um conjunto de parametros
aprendiveis. F ¢ uma fung¢do seno ou cosseno que permite ao algoritmo escolhido detectar

padrdes periddicos nos dados. Simultaneamente, o termo linear indica a progressdao do
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tempo e pode ser usado para capturar padroes nao periodicos na entrada que sao
dependentes do tempo. De acordo com a Figura 6, o Time2 Vec facilita a representagdo de
comportamentos especificos dentro de uma série temporal, com incorporagdes periodicas
capturando padrdes periddicos e incorporagdes nao periodicas abordando padrdes nao

periodicos.

Figura 6 - Representacdo do Time2Vec
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Fonte: Adaptado de Kazemi et al. (2019).

Time2Vec ¢ uma técnica poderosa que aprimora modelos de previsdo,
especialmente em problemas com varidveis temporais complexas. Sua principal
vantagem ¢ a forma como representa o tempo, permitindo que os modelos capturem
padrdes sazonais e periodicos de forma eficaz. Em vez de usar uma representacdo de
tempo simples ou linear, o Time2Vec utiliza fungdes trigonométricas para criar um vetor
que captura as nuances de periodicidade e sazonalidade nos dados. Outra caracteristica
importante do Time2Vec ¢ sua capacidade de expandir a entrada temporal, gerando
multiplas caracteristicas que representam o tempo em diferentes escalas. Isso proporciona
ao modelo uma compreensdo mais detalhada do contexto temporal, aprimorando seu

poder preditivo.

Ao integrar o Time2Vec, os modelos podem representar explicitamente a

informagao temporal como vetores aprendiveis, capturando padrdes sazonais e periddicos
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de forma mais expressiva do que codificagdes temporais tradicionais (como seno e
cosseno fixos). Em (GENG; WANG, B.; GAO, Q., 2023), essa representacdo foi
combinada com uma Rede Neural Convolucional Profunda (WDCNN) — responsével
por extrair caracteristicas locais e nao lineares dos dados — e com uma BiLSTM, que
modela as dependéncias temporais bidirecionais. Essa arquitetura hibrida mostrou que o
Time2Vec potencializa a capacidade do modelo em aprender relagcdes temporais
complexas, resultando em previsdes mais precisas de poténcia em sistemas hibridos

fotovoltaico-edlicos.

Em (COSTA, R. et al., 2023), os autores propuseram um modelo de previsdo de
energia fotovoltaica (FV) de curto prazo que integra o Time2Vec a arquitetura do
Transformer, bem como as linhas de base MLP e LSTM. Seus resultados mostraram

melhorias superiores a 20% em certos horizontes de previsao.
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3 ESTADO DA ARTE

Esta secdo apresenta uma revisdo critica dos principais conceitos, métodos e
avangos relevantes para previsdo de poténcia eodlica orientada por dados. Primeiro
descrevemos as caracteristicas e componentes das turbinas edlicas e as fontes de dados
mais comuns; em seguida discutimos propriedades das séries temporais na eolica e
técnicas de pré-processamento; por fim revisamos abordagens de previsdo — desde
modelos fisicos e estatisticos até métodos de Inteligéncia Artificial (IA) e variantes de
Transformers. O objetivo ¢ identificar lacunas metodologicas e motivar as escolhas

técnicas adotadas nesta tese.

3.1 Turbinas Eolicas

As TEs estdo disponiveis em diversos modelos e tipos, diferindo em tamanho,
orientagdo do eixo (vertical ou horizontal), nimero de pas, aerodinamica e outras
caracteristicas. O tipo mais comumente utilizado em parques e6licos apresenta um eixo
horizontal com trés pas, conforme ilustrado na Figura 7. Essas turbinas sdo
particularmente adequadas para geracdo de eletricidade em larga escala devido a sua
eficiéncia e estabilidade superiores. Suas dimensoes e capacidades de produgdo variam
significativamente, com didmetros de rotor variando de 50 a 100 metros, alturas de torre
entre 80 e 120 metros e capacidades de producao de 1 a3 MW (KHUDRIJOHARI; AZIM
A JALIL; FAIZAL MOHD SHARIFF, 2018; MCKENNA; OSTMAN V.D. LEYE;
FICHTNER, 2016). A Figura 7 ilustra os principais componentes das TEs, enquanto a
Tabela 2 explica os principais componentes que influenciam o potencial edlico e a

capacidade de produgao de energia.
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Figura 7 - Componentes principais de TEs para uso industrial
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Tabela 2 - Componentes que influenciam a produgdo de uma turbina eélica

Componente Funcio
Alinha a dire¢ao da turbina com a dire¢ao do vento, maximizando
Sistema de sua eficiéncia. A rotacdo ocorre por meio de um sistema
. automatizado, com engrenagens que ajustam a velocidade de
alinhamento ~ oy o1 . - .
rotagdo. Possibilidade de proteger a turbina em condigdes climaticas
(Yaw System) . , o i
adversas, orientando as pas de forma a minimizar a carga exercida
sobre a estrutura.
Gerador Converte a energia mecanica fornecida pelo rotor em energia
elétrico elétrica. Geralmente, utiliza-se um gerador sincrono ou assincrono,
que opera com base nos principios da indugdo eletromagnética.
AnemoOmetro Instrumento usado para medir a velocidade do vento.
Projetado para transferir energia mecénica do eixo de transmissao
Caixa de para o gerador, amplificando a velocidade de rotacdo. Fornece uma
engrenagens  interface adequada para absorver choques e vibragdes, garantindo
uma operacao suave e estavel.
Perfis aecrodindmicos responsaveis pela interagdo com o vento,
Pés convertendo a energia cinética do vento em energia mecanica no

eixo de transmissdo.

Sistemas de
passo

Controlar o angulo de inclinagdo das pas, permitindo a captura
maxima da quantidade de energia cinética do vento.

Fonte: Autoria propria (2025).

Cada um desses componentes envolve varidveis que podem ser monitoradas por

meio de diversos métodos de analise de dados. Dados de aplicacdo de energia eolica

podem ser coletados de diversas fontes em multiplos dominios.

3.2 Analise de Dados na Energia Eolica

A analise de dados é essencial para maximizar o desempenho e a confiabilidade

das TEs, minimizando 0s custos operacionais e 0s impactos ambientais. A partir desse

ponto, decisdes importantes podem ser tomadas, garantindo a producdo sustentavel e

eficiente da energia edlica. Nesse contexto, a analise de dados pode ser aplicada em

diferentes etapas do ciclo de vida das TEs, abrangendo desde a operacdo até a

manutencdo. A Figura 8 apresenta alguns possiveis usos da analise de dados em



35

aplicacdes de energia eolica. A manutencédo preditiva baseia-se na detec¢éo, diagnostico
e progndstico dos componentes das TEs. O diagndstico estd diretamente relacionado a
deteccdo, isolamento e identificacdo de uma condicdo de falha iminente ou incipiente,
enguanto o prognostico refere-se a capacidade de prever a vida util restante (Remaining
Useful Life — RUL) de um componente e seus limites de confianca ou nivel de incerteza
associados (LEITE; ARAUJO; ROSAS, 2018).

A previsdo de energia é baseada na anélise da curva de poténcia, que é
diretamente influenciada pelos recursos eolicos, permitindo a previsdo de poténcia
de TEs (LYDIA et al., 2014). A otimizacao de performance busca a maxima extracao
do recurso eodlico disponivel, ocorrendo em dois casos: 1) Controle de TEs, como o
controle do sistema de passo, que regula o angulo de ataque das pas do rotor,
permitindo a resposta aerodindmica das TEs de acordo com as condi¢fes do vento
(TIWARI; BABU, 2016); E 11) Controle “Wake”, que diz respeito ao controle de TEs
ao campo de fluxo previamente perturbado, buscando minimizar os efeitos de fluxos
turbulentos (ITALLO RIBEIRO DIAS DA SILVA et al., 2024; NASH; NOURI;
VASEL-BE-HAGH, 2021).

No ambito da anélise de dados em aplicacdes de turbinas edlicas, 0s impactos
ambientais podem ser avaliados por meio da andlise das vantagens e limitacdes da
energia edlica, auxiliando na tomada de decisdo para a mitigacao de efeitos adversos
(DAI et al.,, 2015). Além disso, a avaliacdo dos recursos incluem condicdes
geograficas, como topografia, obstaculos circundantes, orografia e rugosidade da
superficie (MURTHY; RAHI, 2017).
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Figura 8 - Analise de dados na energia eolica
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Fonte: Autoria propria (2025).

Os dados utilizados para o desenvolvimento de sistemas orientados a dados
em aplicacBes de energia eolica podem ser categorizados com base em suas origens,
caracteristicas e finalidades pretendidas. Este trabalho concentra-se em dados
meteorolégicos e de recursos edélicos, bem como em dados de parques eélicos e
turbinas. Os dados meteoroldgicos e de recursos eolicos sdo subdivididos em trés
categorias: 1) Mastros meteoroldgicos, utilizados em estacfes para medir temperatura
(termdmetro), velocidade do vento (anembmetro), pressdo atmosférica (bardmetro),
entre outros. (MOHRLEN et al., 2022); 1) Dados de sensoriamento remoto, que
consiste na coleta de dados e informacdes de uma regido especifica da superficie
terrestre sem a necessidade de contato direto (HASAGER et al., 2008); e I11) Dados
meteorolégicos histéricos que consistem em condicdes e caracteristicas de variaveis,
como vento, temperatura e pressao, durante um determinado periodo.

Os dados de usinas eélicas sdo frequentemente implementados com métodos de
diagnéstico de falhas de componentes diretamente relacionados a deteccéo, isolamento e
identificacdo de uma condicéo de falha iminente, que inclui: 1) Controle de Superviséo e
Aquisicdo de Dados (SCADA), que monitora de forma abrangente o status operacional
de TEs (BANGALORE; PATRIKSSON, 2018; TAUTZ-WEINERT; WATSON, 2017,
YANG, W.; COURT; JIANG, J., 2013); Il) Sensores de Monitoramento de Condigéo
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(CMS), que monitoram mais de perto componentes especificos (CRABTREE;
ZAPPALA; TAVNER, 2011; GARCIA MARQUEZ et al., 2012; QIAO; LU, D., 2015a,
2015b); E HI) Os registros de manutencdo referem-se a exploracdo de métodos de
engenharia de confiabilidade, que buscam economizar custos de forma impactante na
Operacédo e Manutencdo (O&M) de TEs (SHENG; O’CONNOR, 2023).

Para melhorar a eficiéncia produtiva dos sistemas de energia edlica, especialmente
no contexto da previsdo de séries temporais, € crucial superar os desafios associados a
complexidade dos dados e as condi¢Oes operacionais dinamicas. Nesse contexto, 0
desenvolvimento de modelos analiticos robustos € essencial para garantir sua
confiabilidade, eficiéncia e sustentabilidade. Esse cenario destaca a necessidade urgente
de modelos preditivos avancados capazes de extrair insights significativos de conjuntos
de dados complexos, particularmente em tarefas de previsdo e deteccdo de anomalias.
Para enfrentar esses desafios, aléem dos modelos estatisticos, inUmeras abordagens
baseadas em IA foram propostas na literatura.

Um dos elementos fundamentais na andlise de dados de energia edlica é o
tratamento de séries temporais, que representam medicdes coletadas ao longo do tempo
de diversas fontes, como sistemas SCADA, sensores meteorologicos e unidades de

monitoramento de condicdes.

3.3 Séries Temporais

A previsdo de séries temporais consiste em estimar valores futuros a partir de
observacdes historicas, as quais sdo interpretadas como realizacdes de um processo
estocéastico subjacente. Essas observagfes podem ser representadas em um espaco de
estados indexado por um parametro discreto ou continuo, conforme a natureza
temporal dos dados.

A adocdo de hipoteses como a estacionariedade fraca — na qual a media

permanece constante e a auto covariancia depende apenas do intervalo temporal entre

as observacdes — permite simplificar a modelagem estatistica e viabilizar o
desenvolvimento de métodos preditivos mais robustos (HORVATH; KOKOSZKA;
RICE, 2014).

Na previsdo da geracdo edlica, sdo utilizadas técnicas para prever a geracao

futura de energia por meio da amostragem de um sinal continuo p (¢) de transdutores,
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convertendo em uma série temporal discreta p: por meio de médias moveis em cada
passo de tempo At Na modelagem de séries temporais, os dados historicos sao
utilizados como entradas ou regressores, sendo estruturados em intervalos de tempo
definidos (ou multiplos destes) entre cada observacdo. O intervalo de amostragem é
uma caracteristica intrinseca da serie, enquanto o passo de previsdo constitui um
par@metro metodoldgico associado a estratégia preditiva adotada.

Outro pardmetro essencial € o horizonte de previsdo, que determina o ponto
futuro — em numero de intervalos de tempo — para o qual se deseja estimar o valor
da variavel de interesse. No contexto da energia edlica, as previsdes de curto prazo
geralmente abrangem escalas de minutos a horas, as de médio prazo estendem-se de
dias a semanas, e as de longo prazo correspondem a horizontes de meses a anos.

A abordagem estatistica para previsdo fundamenta-se na modelagem de
relacdes empiricas entre variaveis, utilizando informacdes histéricas da variavel de
interesse e suas caracteristicas autorregressivas para estimar o comportamento futuro
em um horizonte de previsdo k. A Equacdo (10) expressa esse modelo por meio de
uma funcdo que pode assumir forma de um modelo linear autorregressivo, em que pi
indica o valor da variavel p observada no enésimo instante de tempo; f, indica a

funcdo empirica desconhecida e &i corresponde ao termo de erro associado a predicao.

Prik = fu (D6, =1, P2, . . .) + &rx (10)

Em geral, a funcdo de previsdo da geracdo edlica consiste em uma relacdo néo
linear e pode ser estimada por modelos mais sofisticados que podem ser uma funcéo
de variaveis exdgenas. Tal modelo pode ser representado pela funcdo na Equacdo
(11). Essa fungdo tem como entradas os dados observados de um SCADA que
compde a série temporal de energia; dados de modelos de Previsdo Numérica do
Tempo (Numerical Weather Prediction — NWP), como previsbes de velocidade e
direcao do vento, temperatura e pressdo; € um conjunto de parametros O,
normalmente aproximados por meio de técnicas de aprendizado ou regressdo
(GALLEGO CASTILLO, 2013).

pivk = f(SCADA, NWP, ©) (11)
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A decomposicdo € uma técnica amplamente utilizada na analise de series
temporais para aprimorar o processamento de dados. Normalmente, as séries
temporais sdo divididas em trés componentes: tendéncia, sazonalidade e ruido. A
tendéncia representa os valores esperados a longo prazo, a sazonalidade captura
padrdes repetitivos a curto prazo e o ruido se refere a variagbes inesperadas e
aleatdrias. Os principais tipos estéo representados abaixo, com sua denominagdo em
inglés:

1. Classic Decomposition: Envolve a separacdo de uma série temporal em

componentes de tendéncia, sazonalidade e ruido, normalmente usando médias
moveis ou filtros (CLEVELAND, R. B. et al., 1990);

2. Variational Mode Decomposition (VMD): Decompde adaptativamente um sinal
em modos intrinsecos com base em principios variacionais, capturando as
oscilagdes do sinal (DRAGOMIRETSKIY; ZOSSO0, 2014);

3. Wavelet Transform: Analisa sinais em multiplas escalas ou resolucdes,
usando wavelets para capturar frequéncia e tempo, tornando-o ideal para
dados ndo estacionarios (RHIF et al., 2019);

4. Fast Fourier Transform (FFT): Converte um sinal do dominio do tempo
para o dominio da frequéncia, identificando frequéncias dominantes
(COOLEY; LEWIS; WELCH, P. D., 1969);

5. Empirical Modal Decomposition (EMD): Método que decompde um sinal
em um conjunto de fungdes de modo intrinseco (IMFs) e um residuo,
permitindo isolar os modos oscilatdrios presentes em sinais ndo estacionarios
e ndo lineares, sem a necessidade de uma base de fungdes predefinida
(TANAKA; MANDIC, 2007);

6. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN): Uma derivacdo aprimorada do EMD, amplamente
utilizada por utilizar multiplas instancias de ruido branco adaptativo para
melhorar a precisdo da decomposi¢ao do sinal, reduzindo problemas de
ruido. E especialmente eficaz para sinais nio lineares e nio estacionarios.
(HE, Yingying et al., 2024).

Para realizar previsdes de séries temporais, diversos modelos estdo disponiveis na

literatura cientifica. Esses modelos séo discutidos na se¢éo a seguir.
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3.4 Modelos de Previsao

Para enfrentar os desafios descritos na Secao 1.1, é crucial fazer previsdes precisas
sobre o potencial de geracdo de energia eolica. A literatura sobre previsdo de poténcia
edlica tradicionalmente organiza os métodos em trés grandes classes:

1. modelos fisicos, baseados na dinamica da atmosfera;
2. modelos estatisticos, que descrevem relagdes matematicas entre observacoes

passadas e futuras; e

3. modelos baseados em Inteligéncia Artificial (IA), capazes de capturar padrdes ndo

lineares complexos.

Essa taxonomia ¢ amplamente adotada tanto na industria quanto na comunidade
cientifica, pois cada classe atende a horizontes de previsdo, custos computacionais e
niveis de granularidade distintos. A seguir, apresentam-se essas trés classes de modelos
de forma estruturada, destacando suas caracteristicas, vantagens e limitagdes para

previsao de curto prazo.

3.4.1 Modelos Fisicos

Os modelos fisicos utilizados em previsao eodlica baseiam-se em modelos de NWP
(Numerical Weather Prediction), entre os quais o WRF (Weather Research and
Forecasting) ¢ o mais difundido na academia e na industria (CHAWLA et al., 2018;
VOYANT et al., 2012). Esses modelos constituem o padrdo operacional utilizado por
centros meteorologicos, empresas de energia e operadores do sistema elétrico, devido a
sua capacidade de representar a dinamica atmosférica em grande escala.

Essas abordagens baseiam-se na solucdo de equagdes diferenciais parciais que
descrevem os processos fisicos e dindmicos da atmosfera, como conservagdo de massa,
momento e energia. Para isso, integram varidveis meteoroldgicas fundamentais, incluindo
pressao atmosférica, umidade relativa, temperatura, radiacao solar e interacdes superficie-
atmosfera (ZHAO, J. et al., 2021a). Esses modelos sdo particularmente eficazes em
previsoes de médio e longo prazo, pois capturam adequadamente a evolucao de sistemas
meteoroldgicos de grande escala (CHANG, 2014). No entanto, apresentam limitagdes

importantes para previsao local e de curto prazo em parques edlicos:
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1. Resolugdo espacial restrita, que suaviza efeitos topograficos e microclimaticos;
2. Resolugao temporal limitada, geralmente de minutos a horas;
3. Alto custo computacional, decorrente do processamento de grandes dominios

atmosféricos; e

4. Sensibilidade as condi¢des iniciais, que pode amplificar incertezas em regides de
elevada variabilidade do vento.

Essas caracteristicas podem estar associadas as condigdes climaticas e
meteoroldgicas do Nordeste brasileiro. Em funcao dessas limitagdes, estudos recentes tém
explorado abordagens hibridas, seja com modelos estatisticos ou com modelos de 1A,
capazes de complementar ou substituir parcialmente as previsdes fisicas, oferecendo

maior eficiéncia computacional e adaptacdo a condigdes locais especificas.

3.4.2 Modelos Estatisticos

Os modelos estatisticos mais comumente usados para previsao na eolica incluem
média movel autorregressiva (ARMA) (ERDEM; SHL J., 2011), média movel integrada
autorregressiva (ARIMA) (AASIM; SINGH, S. N.; MOHAPATRA, 2019) ¢ ARIMA
fracionario (f~ARIMA) (KAVASSERI; SEETHARAMAN, 2009). Essas abordagens
baseiam-se em relagdes lineares entre observagdes passadas e futuras, assumindo que o
comportamento historico da varidvel contém informagao suficiente para descrever sua
evolucdo temporal.

Os modelos AR (AutoRegressive) representam o valor corrente de uma série como
uma combinag¢do linear de seus valores defasados, enquanto os modelos MA (Moving
Average) utilizam combinacdes lineares de erros passados. Assim, o modelo ARMA
combina ambas as estruturas, sendo adequado para séries aproximadamente estacionarias.
O modelo ARIMA estende essa formulagao ao introduzir um operador de diferenciagao,
permitindo lidar com tendéncias e eliminar ndo estacionaridades. J4 o modelo f~ARIMA
emprega diferenciagao fraciondria, possibilitando capturar dependéncias de longo alcance
com maior flexibilidade matematica.

Uma das formas de representar matematicamente o modelo ARIMA ¢ de acordo

com a Equagdo (12):
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a- B)dYt =c+ Z?:l ?;(1- B)dYt—i + Z?=1 0, €—j + € (12)

onde B representa o operador de defasagem, tal que By, =y;,_4; d é o grau de
diferenciagdo aplicado para remover tendéncia; p € ¢ sao, respectivamente, as ordens
autorregressivas (AR) e de média movel (MA); ¢ ¢ um termo constante (drift),
responsavel por introduzir uma tendéncia linear residual mesmo apds a diferenciacao; @;
e 6; sdo os coeficientes AR € MA; e €; € um termo de ruido branco com media zero e
variancia constante.

Apesar de sua eficiéncia em determinadas condigdes, esses modelos apresentam
limitacdes estruturais significativas. Por dependerem de suposi¢des de linearidade e
estacionariedade, tém desempenho restrito quando aplicados a séries de velocidade do
vento, que frequentemente exibem comportamentos ndo lineares, sazonalidades
complexas e alta variabilidade estocastica (Zhao et al., 2021b). Além disso, sua
capacidade de generalizagdo ¢ limitada em contextos dominados por multiplos fatores
meteoroldgicos e espaciais, que introduzem dindmicas ndo lineares dificeis de serem

capturadas por modelos lineares.
3.4.3 Modelos de Inteligéncia Artificial (IA)

Para superar essas limitacOes, a literatura recente tem apontado para a necessidade
de modelos de IA, capazes de representar de forma mais realista a dindmica intrinseca do
vento e suas interacfes com o ambiente atmosférico. Nos Gltimos anos, técnicas de 1A
tém desempenhado um papel central no aprimoramento da previsdo de poténcia edlica,
especialmente devido a sua capacidade de lidar com relacbes ndo lineares, padrdes
complexos e dependéncias temporais nos dados.

Modelos classicos, como o Multi-Layer Perceptron (MLP) (MARVUGLIA,;
MESSINEO, 2012) e as Redes Neurais Artificiais (ANN) (HE, Yaoyao; LI, Haiyan,
2018), foram amplamente utilizados nas primeiras abordagens baseadas em IA,
principalmente pela capacidade de modelar relagdes ndo lineares entre variaveis
meteoroldgicas e poténcia gerada. Entretanto, por ndo possuirem mecanismos
internos que tratem sequéncias temporais, esses modelos dependem de janelas fixas
de entrada e apresentam limitacdes na captura de dindmicas temporais mais longas.

Para lidar diretamente com dados sequenciais, surgiram as Recurrent Neural
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Networks (RNN) (CAO, Q.; EWING; THOMPSON, M. A., 2012), capazes de
representar dependéncias temporais por meio de estados recorrentes. No entanto,
problemas como gradientes explosivos e desvanecentes restringiam seu desempenho
em seéries longas.

Para mitigar essas limitacdes, arquiteturas avancadas como Long Short-Term
Memory (LSTM) (ZHANG, Zhendong et al., 2019) e Gated Recurrent Unit (GRU)
(SONG, J.; WANG, lJianzhou; LU, H., 2018) foram desenvolvidas, tornando-se
amplamente aplicadas em previsao edlica devido a sua maior capacidade de capturar
dependéncias de médio e longo prazo. ExtensGes como o BiLSTM (PENG, T. et al.,
2021) ampliam essa capacidade ao considerar dependéncias temporais em ambas as
direcdes.

Outras abordagens relevantes incluem Support Vector Regression (SVR) (HE et
al., 2021), Convolutional Neural Networks (CNN) (HARBOLA; COORS, 2019), que
extraem padrdes espaciais ou spatio-temporais, e redes com treinamento baseado em
Backpropagation (BPNN) (SONG; WANG; LU, 2018).

e MLP: modelos feed-forward e suas limita¢coes temporais

MLPs sao modelos de aprendizado profundo que consistem em multiplas camadas
de nos (neurdnios). Essas camadas sdo redes de feed-forward que aprendem pesos O e
mapeiam a entrada para a saida y = f(x|0) (Como ilustrado na Figura 9). A saida gera
uma estrutura em cadeia, onde multiplas camadas sdo empilhadas, dando profundidade

ao modelo. Portanto, a saida ¢ caracterizada pela Equagao (13) abaixo:

9= O™ PP x16.)]62) - [62)]On+1) (13)

Onde f™ representa a transformacio aplicada pela primeira camada oculta, com
peso 01, f@ pela segunda camada oculta, com peso 6,. f™ pela enésima camada
oculta, com peso 6,,. E f™*D para a wiltima camada oculta, com peso 6,,,,. A Equagio
(13) representa como a entrada x ¢ progressivamente transformada através das n camadas

ocultas e, finalmente, mapeada para a camada de saida  (TAUD; MAS, 2018).
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Figura 9 - Estrutura de uma MLP
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Fonte: Adaptado de Taud ¢ Mas (2018).

e LSTM e RNNs: Aprendizado sequencial e dependéncias de longo prazo

LSTM ¢ uma arquitetura de RNN projetada para aprendizado de sequéncias.
Diferentemente das RNNs tradicionais, as LSTMs sdo capazes de capturar dependéncias
de longo prazo, superando o problema do desvanecimento do gradiente (vanishing
gradient), que compromete o aprendizado eficaz durante o processo de retropropagacao.
Essa capacidade advém do uso de um mecanismo interno de portas de controle, que regula
o fluxo de informagdes ao longo do tempo. A porta de entrada determina quais
informacgdes sdao incorporadas ao estado de memoria; a porta de esquecimento define
quais informagdes devem ser descartadas; e a porta de saida seleciona os contetdos
relevantes a serem transmitidos para a proxima etapa de processamento. Essa estrutura
permite que a LSTM mantenha e atualize informagdes de forma seletiva, otimizando a
eficiéncia e a estabilidade do modelo durante o treinamento (YU, Y. et al., 2019). A Figura
10 ilustra a estrutura tipica de uma célula LSTM, em que x; representa a entrada no
instante de tempo ¢ (por exemplo, dados de uma série temporal), enquanto h, corresponde
ao estado oculto, que transporta informacgdes processadas de etapas anteriores da

sequéncia.
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Figura 10 - Estrutura de uma LSTM
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e Modelos lineares profundos: NLinear e DLinear

Diversos modelos baseados em aprendizado profundo sao discutidos na literatura
cientifica, entre eles o DLinear (ZENG et al., 2023). Nesse estudo, os autores questionam
a eficacia das arquiteturas Transformer na previsdo de séries temporais, destacando
limitagcdes como alto custo computacional, ineficiéncia e propensdao ao sobre ajuste
(overfitting), especialmente em séries de longa duragdo. Com o objetivo de investigar se
a complexidade dos Transformers € realmente necessaria, os autores propuseram duas
variantes simplificadas — NLinear e DLinear — que mantém a estrutura de redes neurais
profundas, mas substituem o mecanismo de ateng¢do por camadas lineares aplicadas ao
longo do eixo temporal. Esses modelos realizam a regressdo da série temporal por meio
de uma operacdo de soma ponderada, conforme ilustrado na Figura 11. A formulagdo

RT*L representa a camada linear aplicada

matematica ¢ dadapor X = WX;,emque W €
na dimensdo temporal, enquanto X; e X; correspondem, respectivamente, a entrada e a

previsdo da enésima variavel, respectivamente.
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Figura 11 - llustracéo basica de um modelo linear
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Fonte: Adaptado de Zeng ef al. (2023).

A principal diferenca entre os dois modelos estd na forma como tratam a série de
entrada. O NLinear aplica diretamente uma transformacdo linear sobre a sequéncia
original, sem qualquer pré-processamento adicional. J4 o DLinear realiza uma
decomposi¢do explicita da série temporal em dois componentes — tendéncia e
sazonalidade — e aplica uma camada linear independente a cada um deles. As saidas
dessas duas camadas sdo entdo combinadas para formar a previsdo final. Essa
decomposi¢do permite ao DLinear capturar padrdes de variacdo lenta e rapida de forma
mais interpretavel, ao mesmo tempo em que mantém a simplicidade e eficiéncia

computacional do modelo linear.

e Limitacdes gerais e motivacao para abordagens mais avancadas

Embora esses modelos tenham demonstrado sucesso na aprendizagem de néo
linearidades complexas e padrdes temporais, cada abordagem apresenta limitacfes
inerentes. As MLPs, por exemplo, sdo modelos essencialmente estaticos, incapazes de
capturar dependéncias temporais de forma direta, exigindo engenharia manual de
atributos para incorporar informacdes histéricas. Os modelos baseados em LSTM, apesar
de sua capacidade de manipular sequéncias, enfrentam dificuldades para representar
dependéncias de longo prazo e estdo sujeitos a altos custos computacionais, além de
demandarem ajuste cuidadoso de hiperparametros. Essa complexidade os torna menos
eficientes quando aplicados a grandes volumes de dados.

Por outro lado, abordagens lineares como o DLinear oferecem alta eficiéncia
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computacional e se mostram eficazes em cenarios nos quais os padrbes temporais
apresentam comportamento predominantemente linear. Entretanto, tais modelos possuem
capacidade representacional limitada, o que restringe seu desempenho na modelagem de
relacGes nao lineares complexas — caracteristicas frequentemente observadas em séries
temporais de energia edlica, que envolvem interacdes multivariadas e variabilidade
estocastica
Essas limitagdes motivaram o desenvolvimento de mecanismos capazes de:
1. Capturar relacdes de curto e longo prazo de forma simultanea;
2. Operar de maneira paralela;
3. Identificar automaticamente quais partes da sequéncia s&o mais relevantes.
Essas limitagcOes levaram ao desenvolvimento do mecanismo de atencao, ponto de

transicdo entre modelos recorrentes e arquiteturas totalmente paralelas.

e Evolucdo até o mecanismo de atencdo e transi¢ao para o Transformer.

Os mecanismos de atencdo foram introduzidos como alternativa aos modelos
recorrentes, permitindo que o modelo atribuisse pesos relativos aos elementos mais
relevantes de uma sequéncia sem depender de processamento sequencial. A formulacao
béasica da atencdo escalonada dot-product é apresentada na Secdo 2.1 deste trabalho

A consolidacdo da atencdo levou ao desenvolvimento do Transformer
(VASWANI et al., 2017), que elimina a recorréncia e avalia todas as relagdes temporais
de forma paralela, capturando dependéncias de curto e longo prazo com maior eficiéncia.
O uso de mdltiplas cabecas de atencdo (ver Equacdo 3 na Secdo 2.1) aprimora a
capacidade de identificar diferentes padrOes temporais. Por ndo possuir recorréncia
nativa, o Transformer utiliza codificadores posicionais para introduzir informacdes de
ordem temporal, apresentados na Figura 3 e formalizados pelas Equaces 5 e 6 da se¢do
anterior. Com o intuito de ampliar essa representacéo, este trabalho adota o Time2Vec,
conforme descrito na Segéo 2.2.

Historicamente, a evolugédo ocorre em duas etapas:

1. A atencdo é introduzida como componente adicional em modelos recorrentes;
2. Torna-se a base estrutural de uma arquitetura completa — o Transformer.
Essa progressdo cronologica fundamenta o uso de Transformers em previséo de

séries temporais e contextualiza sua aplicacdo neste trabalho.
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3.5 Aplicacao das redes Transformers

Para uma revisdo detalhada das aplica¢Oes das redes Transformer, realizou-se um
estudo de revisdo sistemético, fundamentado em uma metodologia estruturada que
assegura transparéncia, reprodutibilidade e rigor cientifico. Neste estudo, adotou-se uma
abordagem quantitativa e qualitativa combinada, seguindo as melhores préaticas para
revisdes sistematicas e alinhando-nos as diretrizes PRISMA quando aplicavel (PAGE et
al., 2021). O componente quantitativo consistiu em uma analise bibliométrica, que
emprega técnicas estatisticas e matematicas para descobrir tendéncias e padrdes de
pesquisa dentro de um dominio (DONTHU et al., 2021). Optou-se por esse método
porque é possivel identificar a dindmica de publicacdo dos estudos, topicos emergentes e
clusters de pesquisa no crescente campo de aplicagdes do Transformer. O componente
qualitativo envolveu uma analise de contetdo aprofundada dos estudos selecionados
(SOARES et al., 2018). Esta etapa foi essencial para avaliar criticamente as arquiteturas
do modelo, conjuntos de dados, procedimentos de avaliacao e resultados.

A combinacao dessas duas abordagens fornece uma ampla visao geral da evolugéo
da pesquisa e uma compreensao detalhada do desempenho e das limita¢ées do modelo. A
Figura 12 ilustra a metodologia de pesquisa dessa revisdo sistematica, destacando o
refinamento progressivo do conjunto de dados ao longo das trés etapas (Planejamento;
Coleta e identificacdo dos artigos; Relatdrio). Essa representacdo reforca a natureza
sistematica e transparente do processo de revisao, estruturada da seguinte forma:

Na etapa de planejamento, definiu-se o escopo da pesquisa e as palavras-chave a
serem utilizadas. Foram empregadas as expressdes “Transformers Networks” e seus
sinbnimos correspondentes, com o objetivo de abranger o maior conjunto possivel de
estudos relevantes. A base de dados Scopus foi selecionada por sua ampla cobertura
interdisciplinar, pelos recursos avancados de busca e pela extensa indexacdo de
periodicos revisados por pares, assegurando uma identificacdo abrangente da literatura
pertinente.

Na etapa de coleta e identificacdo, restringiu-se a busca por artigos de periodicos
revisados por pares, redigidos em inglés e publicados entre 2017 e 2025, considerando o
ano de introducdo do modelo Transformer. Foram excluidos resumos de conferéncias,
livros, teses e outras fontes ndo associadas a periodicos cientificos. A busca inicial

retornou 16.236 artigos (Etapa 1). Em seguida, foram incorporadas palavras-chave
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especificas do dominio, como “Wind Turbine”, “Wind Energy” e “Wind Speed”, bem
como seus sindnimos, resultando em um conjunto reduzido de 211 artigos (Etapa 2).

As strings completas utilizadas nas Etapas 1 e 2 encontram-se apresentadas no
Apéndice A, garantindo transparéncia, rastreabilidade e reprodutibilidade do processo de
busca.

Por fim, na etapa de relatorio, os titulos e resumos foram analisados de forma
criteriosa. Excluiram-se os trabalhos que: (1) ndo apresentavam avaliacdo objetiva de
desempenho de modelos baseados em Transformers; (2) tinham foco principal em
sistemas hibridos solar-e6licos ou em temas mais amplos de energia; e (3) ndo
demonstravam transparéncia metodologica. Apds essa triagem, 90 artigos permaneceram
para anélise aprofundada durante a avaliacdo qualitativa.

A abordagem metodologica qualitativa foi empregada para conduzir uma anélise
explicativa do estudo, que foi sistematicamente integrada aos 90 artigos identificados
durante a Etapa 3 (Fig. 12). Esse procedimento analitico teve como objetivo reforgar a
avaliagdo dos dados na fase de relatorio e discutir os resultados da pesquisa com mais
detalhes, levando, em ultima andlise, a conclusdes mais detalhadas sobre alguns dos

estudos identificados.



Figura 12 - Fluxograma do passo a passo metodoldgico da revisao de literatura
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3. Relatorio

Uma breve visdo das aplicacdes gerais foi realizada para analisar o dominio

potencial da analise de dados em TEs usando redes Transformer. Como resultado, é

possivel identificar os potenciais beneficios dessa rede neural em diversas areas da

sociedade.

3.5.1 Aplicacdes Gerais

A estratégia de busca realizada na Etapa 1 resultou em 16.236 artigos. A Figura

13 apresenta uma visdo geral das multiplas aplicacbes das redes Transformer em

diferentes dominios da sociedade, evidenciando as areas de estudo que adotaram essa

arquitetura em suas pesquisas. Ressalta-se que um mesmo artigo pode estar associado a

mais de uma area de aplicacdo. Em (HU, Zhaoyu et al., 2023), foi desenvolvido um

modelo para detecgdo de tumores cerebrais com base em imagens tridimensionais de
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ressonancia magnética. O estudo abrange areas como medicina e ciéncia da computacao.

Em (YU, Z. etal., 2022), os autores proporam um modelo para reidentificacdo de veiculos

em ambientes urbanos, abrangendo areas como engenharia, ciéncias da computacao e

ciéncias sociais.
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Figura 13 - Documentos por area tematica da Etapa 1
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B Artes e Humanidades B Engenharia Quimica B Outros

Fonte: Adaptado de SCOPUS (2025).

A Figura 14 ilustra o uso crescente de redes Transformer ao longo do tempo, com

um aumento notéavel entre 2021 e 2025. Essa tendéncia indica uma preferéncia crescente

pelo emprego dessa arquitetura de rede neural para solucionar desafios de anélise

preditiva de dados. Além disso, € possivel observar a notavel relevancia das redes

Transformer em diversas aplicagOes. Essas aplica¢des incluem classificacdo de imagens,

deteccdo e segmentacdo de objetos, geracdo de imagens e linguagem, processamento de

dados multimodais (incluindo texto, fala e imagem) e analise de dados de séries temporais
(KHAN, S. et al., 2022).
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Figura 14 - NUmero de estudos desenvolvidos a partir da Etapa 1 (2017-2025)
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Fonte: Adaptado de SCOPUS (2025).

3.5.2 Aplicacdes na Energia Eoélica

A estratégia de busca adotada nesta pesquisa resultou em 90 artigos na etapa final
de selecdo. A Figura 15 apresenta a distribuicdo desses trabalhos por tipo de desafio
identificado. A Tabela 3 apresenta uma amostra desses trabalhos, organizados em ordem
cronoldgica. Cada artigo aborda diferentes tipos de desafios, classificados em: (1)
previsdo da velocidade do vento; (Il) previsdo da poténcia edlica; e (I1l) deteccdo de
anomalias. Alguns estudos contemplam simultaneamente a previsdo da velocidade do
vento e da poténcia eolica. Todos os trabalhos analisados empregam metodologias
baseadas na coleta de dados de turbinas reais e em estudos experimentais. Em alguns
casos, 0s autores especificaram as fontes dos dados de entrada, obtidos por meio de
vibracBes (registradas por acelerémetros), sistemas SCADA ou anemdmetros. Nos
estudos em que essa informacéo ndo foi explicitada, os dados foram considerados como
operacionais. Por fim, a Gltima coluna da Tabela 3 indica o local de coleta dos dados

utilizados em cada pesquisa.

Durante a analise dos estudos identificados, observou-se que a arquitetura do
Transformer frequentemente requer modificagdes para lidar de forma eficaz com a

previsdo de séries temporais. Consequentemente, cada trabalho propde um modelo
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personalizado com validagdo experimental de sua abordagem. Um aprimoramento
comum envolve a integracdo de técnicas de decomposicdo, conforme comentado na
Secdo 3.3 desse estudo, para isolar componentes de tendéncia e sazonais, melhorando

assim a qualidade das entradas do modelo.

Outra abordagem recorrente consiste na utilizacdo de técnicas hibridas que
integram modelos baseados em grafos, tais como Grafos Espaco-Temporais (STGS),
Redes Neurais de Grafos (GNNs), Redes Convolucionais de Grafos (GCNs) e Redes de
Atencdo em Grafos (GATs). Os STGs possibilitam a representacdo conjunta das
dimensGes espaciais e temporais dos dados em uma estrutura de grafo, preservando a
topologia e a dindmica das relagdes entre 0s nds. As GNNSs, por sua vez, sdo projetadas
para processar esses dados estruturados, enquanto as GCNSs se especializam em capturar
correlagdes espaciais locais por meio de operacdes de convolucao sobre o grafo. As GATs
aprimoram esse processo incorporando mecanismos de atencdo que atribuem pesos
diferenciados aos vizinhos mais relevantes de cada nd. Ao integrar as dependéncias
espaciais extraidas pelos modelos baseados em grafos com a capacidade dos
Transformers de modelar relacdes temporais de longo alcance, as arquiteturas hibridas
resultantes oferecem uma estrutura robusta e eficiente para tarefas de previsao espaco-

temporal, como a estimativa de fluxo de trafego e o monitoramento de redes de sensores.

Figura 15 - Classificagdo dos 90 artigos incluidos na revisdo sistematica de acordo com o desafio
investigado: poténcia edlica, velocidade do vento, detec¢do de anomalias e desafios combinados.

Tipo de desafio

30 43

40
30 27
20 15
w =
0
1
B Poténcia edlica m Velocidade do vento
M Detecgdo de anomalias Poténcia edlica/Velocidade do vento

Fonte: Autoria propria (2025).
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N° Fonte Tipo de desafio Dados de entrada Local de coleta dos dados
1 (WANG, H.-K.; SONG, K.; CHENG, 2022) Poténcia etlica SCADA China
2 (ZHANG, K.; LI, X.; SU, 2022) Velocidade do vento Dados operacionais China
3 %V;Z\;\IG Lei; HE, Yigang; LI, Lie; et al, Poténcia edlica Dados operacionais China
4 (ZHOU, Haoxuan et al., 2022) Deteccdo de anomalias Dados de vibracao Canada
5 (QU, K. et al., 2022a) Poténcia edlica Dados operacionais China
6 (HUANG, Xiaohan; JIANG, A., 2022) Poténcia edlica Dados operacionais Espanha
7 (PAN et al., 2022) Velocidade do vento Dados operacionais Dinamarca
8 (WANG, Lei; HE, Yigang; LIU, Xiaoyan; et Poténcia edlica Dados operacionais China
al., 2022)
9 (zZHAetal, 2023a) Velocidade do-ventol g,y China
Poténcia e6lica
10 (TANG, W, LIU, C.; ZHANG, B., 2023) Deteccdo de anomalias SCADA China
11 (HUANG, S.; YAN, Chang; QU, Y., 2023a) Poténcia edlica SCADA China
12 (BOMMIDI; TEEPARTHI; KOSANA, Vel(A)cu_iade, 40 vento/ Dados operacionais EUA
2023) Poténcia e6lica
loci t _—
13 (BENTSEN et al., 2023a) Ve ?Cl(.iade, 40 vento/ Dados operacionais Mar do Norte (Noruega)
Poténcia edlica
14  (WANG, Yun et al., 2023) Velocidade do vento Dados operacionais Groelandia e EUA
15 (XIAO; HE, X.; LI, C., 2023) Poténcia edlica Dados operacionais Bélgica
16 (TIAN etal., 2023) Poténcia edlica Dados operacionais China e Espanha
17  (ZHENG, H. et al., 2023) Poténcia edlica Dados operacionais China
18 gngSs)u MENTO; MELO, DE; MOREIRA, 1 cidade do vento Anemometros Brasil
19  (XINXIN et al., 2023) Velocidade do vento Dados operacionais N4o especificado
20 (HU,J.etal., 2023) Poténcia edlica Dados operacionais Espanha e Austrélia
21 (WANG, Hai-Kun et al., 2023) Poténcia edlica Dados operacionais China
loci t _—
22 (BENTSEN et al., 2023b) Ve ?Cl(.iade, 40 vento/ Dados operacionais Mar do Norte (Noruega)
Poténcia edlica
23 (YU, Chengging et al., 2023) Velocidade do vento Dados operacionais China
24 (GONG, M. et al., 2023a) Poténcia edlica Dados operacionais Pagina virtual
25 (WEI, H.; WANG, W.; KAO, 2023) Poténcia edlica SCADA Turquia
2 L .
6 (LI, N. etal., 2023) Poténcia edlica Dados operacionais China
27  (CHEN, Yaoran et al., 2024) Velocidade do vento Dados operacionais Oceano Pacifico (EUA)
28 (BANetal., 2024) Velocidade do vento Dados operacionais China e paginas virtuais
29  (LIN, S. etal., 2024) Velocidade do vento Dados operacionais China
30 (TAOetal., 2024) Detecgdo de anomalias  CMS China
31 (SHI, Z. etal., 2024). Velocidade do vento Dados operacionais EUA, Groelandia e Antartida
(BOMMIDI;  TEEPARTHI;  DULLA . L
1 D EUA
32 MALLESHAM, 2024) Velocidade do vento ados operacionais U
33 (MOetal, 2024) Poténcia edlica Dados operacionais China
34 (WAN etal., 2024) Poténcia eolica SCADA China
35 (GAO,Y.etal, 2024) Velocidade do vento Dados operacionais China
36 (ZHENG, Y. etal., 2024) Deteccdo de anomalias SCADA China
37 (PARRI; TEEPARTHI, 2024) Velocidade do vento Dados operacionais EUA
38 (JIN, Z. et al., 2025) Velocidade do vento Dados operacionais China
39 (DONG, Z. et al., 2025) Poténcia eolica Dados operacionais China
. . — Estreito de Dover (Reino Unido e
40 (WANG, Zhongrui et al., 2025) Poténcia eolica Dados operacionais Frangla) ver (Rei '
41 (LENG et al., 2025) Velocidade do vento Dados operacionais EUA
42 (HONG et al., 2025) Poténcia eolica Dados operacionais China

Fonte: Autoria prépria (2025).
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Outra abordagem aplicada em modelos hibridos envolve o uso de aprendizado
multitarefa e multimodal, que permite explorar simultaneamente diferentes tarefas
relacionadas e integrar multiplas fontes de dados. O aprendizado multitarefa melhora a
generalizacdo e reduz o erro ao compartilhar informacdes entre tarefas principais e
auxiliares, enquanto o aprendizado multimodal combina variaveis meteoroldgicas e séries
temporais de poténcia, enriquecendo as representacfes e aumentando a precisdo preditiva
(WANG, Lei; HE, Yigang; LIU, Xiaoyan; et al., 2022; WANG, Zhongrui et al., 2025).

Além das dependéncias temporais, a geracdo eOlica também apresenta
dependéncias espaciais, uma vez que parques eolicos geograficamente proximos tendem
a ser influenciados por sistemas meteorolégicos semelhantes. Para modelar essas
interacdes espaciais dindmicas, alguns estudos adotam representacdes em grafo, nas quais
a similaridade entre parques é explicitamente quantificada. Nesse contexto, o kernel
gaussiano e o coeficiente de correlacdo de Pearson dindmico (PCC) séo utilizados para
capturar as relacdes espaciais dinamicas entre os parques eolicos, em que o PCC mede a
correlagdo temporal entre locais e o kernel gaussiano gera a matriz de similaridade usada
na construcdo do grafo espacial do modelo (WANG, Zhongrui et al., 2025).

Conforme apresentado na Tabela 4, as aplicacdes do Transformer e de suas
variantes na literatura abrangem tarefas como previséo de velocidade do vento, previséo
de poténcia edlica e deteccdo de anomalias. Considerando que o foco central deste
trabalho é a previsao de poténcia edlica, optou-se por aprofundar a discussdo nesse
dominio. A Tabela 4 sintetiza alguns dos estudos identificados que empregam
arquiteturas baseadas em Transformers ou em variantes hibridas, apresentando para cada
um o modelo proposto, as técnicas e componentes utilizados, o objetivo principal e suas
caracteristicas-chave.

Os modelos apresentados na Tabela 4 foram desenvolvidos com o objetivo de
aprimorar o desempenho da arquitetura Transformer na previsao de poténcia eélica. Esses
estudos também realizaram comparacdes entre 0s modelos propostos e abordagens
classicas amplamente utilizadas na literatura, empregando meétricas de avalia¢do
preditiva, tais como MAE, MSE e RMSE (detalhadas na Secdo 5 deste estudo). A Tabela
5 apresenta os resultados obtidos para alguns dos modelos propostos, em comparagao
com os modelos de referéncia, incluindo os horizontes de previsdo considerados e as

tabelas de referéncia dos estudos de onde esses resultados foram extraidos.
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Tabela 4 - Modelos propostos para previsdo de energia etlica

Modelo

Técnicas
/Componentes

Obijetivo principal

Caracteristicas-chave

Transformer (QU, K. et
al., 2022b)
CNN-Informer
(WANG, H.-K.; SONG,
K.; CHENG, 2022)
Transformer (WANG,
Lei; HE, Yigang; LI, Lie;
etal., 2022)

M2TNet (WANG, Lei;
HE,  Yigang; LIU,
Xiaoyan; et al., 2022)
MSIN (HUANG,
Xiaohan; JIANG, A,
2022)

Transformer (HUANG,
S.; YAN, Chang; QU,
Y., 2023b)
VMD-CAT (ZHENG,
H. et al., 2023)
IVMD-FE-Ad-
Informer (TIAN et al,,
2023)

IFORNLD (HU, J. et
al., 2023)

GCNInformer
(WANG, Hai-Kun et al.,
2023)

TCNInformer
(GONG, M. et al,
2023b)

EMD-
CCTransformer (LI, N.
etal., 2023)
Powerformer (MO et al.,
2024)

VM-MSI-GTTS
(WAN et al., 2024)
Wind-Mambaformer
(DONG, Z. et al., 2025)
M3STIN (WANG,

Zhongrui et al., 2025)

DPFMformer-MEC
(HONG et al., 2025)

Transformer padréo

CNN + Informer

Transformer padréo

Aprendizado multitarefa e

multiorigem baseado em Transformer

Informer + Retropropagacéo truncada

Transformer padréo

VMD + Transformer modificado

VMD aprimorado + Entropia Fuzzy +
Informer (com funcdo de perda
adaptativa)

Informer + Regressdo Ordinal +
Diversidade de Rétulos

GCN + Informer

TCN + Informer

EMD + Convolugdo Causal +

Transformer

Arquitetura Transformer modificada

VMD + Entrada em multiplas escalas
temporais + GRU + Transformer +
CNN + Rede Neural Totalmente
Conectada (FCN)

Estrutura do Transformer + Mamba +
mecanismo FlowAttention

Informer + GAT + Fusdo multimodal
+ Aprendizagem multitarefa + Kernel
gaussiano + PCC

Transformer + Mamba + FFT +
Funcdo de perda de frequéncia Kernel
(FK), Corregdo de erro ponderada por
coeficiente (MEC)

Melhorar a previsdo de curto prazo para varios
parques eélicos com dependéncias complexas

Aprimorar a previsdo de energia eélica por meio
da extracdo de caracteristicas espago-temporais

Melhorar a precisdo e a eficiéncia de previsdes
em mdltiplos estagios

Prever poténcia eélica em horizonte ultracurto
utilizando dados de maltiplas fontes

Melhorar a preciséo das previsdes de médio e
longo prazo

Melhorar a capacidade de generalizacdo do
modelo em previsoes

Capturar correlagdes entre padrdes de flutuacao
e segmentos histéricos

Reduzir a complexidade na previsdo de séries
temporais

Prever eventos de variagdo abrupta de poténcia
edlica (ramp events)

Aprimorar a modelagem de correlagdes entre
turbinas
Melhorar a caracteristicas
temporais

extracdo de

Melhorar a previsdo de curto prazo de poténcia
eélica

caracteristicas
complexidade

Aprimorar a extracdo de
temporais e
computacional
Melhorar previsdes multietapas capturando
dependéncias de curto e longo prazo

reduzir a

Melhorar previsdo de curto prazo de poténcia
edlica

Realizar previsdo de poténcia edlica offshore de
em mdltiplas
dependéncias

curto  prazo
considerando
temporais
Melhorar a previsao de poténcia eélica por meio
da extracdo de caracteristicas em mdltiplas
escalas e do uso de informagdes no dominio da
frequéncia

localizagdes,
espaciais e

Captura longas dependéncias e correlages
espaciais entre parques eolicos

Combina CNN para extracéo espacial e Informer
para modelagem temporal de longo alcance

Ajuste de hiperparametros; equilibra precisdo e
eficiéncia computacional

Integra camadas de extragdo de caracteristicas,
fusdo e predicéo; utiliza aprendizado multimodal
e multitarefa
Utiliza varidveis meteorolégicas e treinamento
truncado para aprimorar interpretabilidade e
desempenho
Estende o Transformer para lidar com entradas
generalizadas

Modelo hibrido de decomposicéo e atengdo que
aprimora a representacao temporal

Utiliza decomposicéo, entropia e perda adaptativa
para aprimorar o desempenho do Informer
Modelo de saidas
sequéncias,

multiplas
com melhor

para longas
desempenho  em
classificagao

Utiliza GCN para dependéncias espaciais e
Informer para dependéncias temporais
TCN captura dependéncias locais; Informer
captura padrdes de longo alcance

Combina decomposigéo com atencgéo causal para
modelagem de padrdes nao estacionarios

Integra varigveis meteoroldgicas como velocidade
e diregdo do vento, temperatura e pressdo

Utiliza decomposi¢do baseada em VMD; GRU
para dependéncias de curto prazo e Transformer
para longo prazo; CNN e FCN para predi¢o final

Utiliza o Mamba para capturar dependéncias de
longo prazo e o mecanismo FlowAttention para
reduzir a complexidade computacional

Integra GAT e Informer; explora correlagdes
tarefas auxiliares e fusdo

espaciais; usa

multimodal para maior precisdo e eficiéncia.

Integra Mamba e Transformer para eficiéncia e
modelagem global; decompde séries via FFT; usa
FK para aprendizado de alta frequéncia e MEC

para corregao de erro multivariavel

Fonte: Autoria propria (2025).



Tabela 5 - Resultados dos modelos propostos para a previséo de energia eolica

Fonte Modelos MAE MSE RMSE Horizonte de
previsdo
(QU, K. et al., 2022b) LSTM 110,2 Curto prazo
Transformer 81,0
(WANG, H.-K.; SONG, LSTM 0,815 1,156 10,748 Curto prazo
K.; CHENG, 2022) CNN-Informer 0,0064 0,007 0,0086
(WANG, Lei; HE, SLSTM 7,08 10,15 Curto
Yigang; LI, Lie; et al., Transformer 4,33 7,51
2022)
(WANG, Lei; HE, SVR 15,34 18,48 Curto prazo
Yigang; LIU, Xiaoyan; et M2TNet 8,33 11,66
al., 2022)
(HUANG, Xiaohan; LSTM 137,019 727,754 Curto prazo
JIANG, A., 2022) Informer 61,600 436,576
MSIN 41,701 307,553
(HUANG, S.; YAN, GRU 99,28 168,20 Curto prazo
Chang; QU, Y., 2023b) LSTM 86,20 149,91
Transformer 10,96 18,70
(ZHENG, H. etal., 2023) ARIMA 1,61 1,94 Curto prazo
VMD-CAT 0,79 0,93
(TIAN et al., 2023) LSTM 207,879 278,866 Curto prazo
MLP 361,476 478,394
IVMD-FE-Ad- 183,962 252,690
Informer
(HU, J. et al., 2023) LSTM-random 918,261 1,376 Curto prazo
IFORNLD-
random 789,224 1,273
(WANG, Hai-Kun et al., LSTM 0,445 0,592 0,769 Curto prazo
2023) GCNInformer 0,104 0,024 0,154
(GONG, M. etal., 2023b) GRU 0,399 0,298 0,546 Curto prazo
LSTM 0,405 0,342 0,569
TCN-Informer 0,229 0,108 0,329
(LI, N. etal., 2023) ARIMA 0,502 0,162 0,402 Curto prazo
EMD- 0,089 0,013 0,113
CCTransformer
(MO et al., 2024) LSTM 0,751 0,739 0,859 Curto prazo
Transformer 0,819 1,042 1,021
Powerformer 0,314 0,241 0,491
(WAN et al., 2024) LSTM 0,109 0,030 0,174 Curto prazo
Informer 0,085 0,019 0,137
VM-MSI-GTTS 0,062 0,011 0,104
(WANG, Zhongrui etal., g\/R 11,39 16,08 Curto prazo
2025) M3STIN 7,97 12,67
(HONG et al., 2025) LSTM 2,361 3,336 Curto prazo
DPFMformer- 0,2958 0,3218
MEC

Fonte: Autoria propria (2025).
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Nota: As métricas apresentadas na Tabela 5 ndo devem ser comparadas entre estudos distintos, uma vez
que cada trabalho adota conjuntos de dados, escalas, frequéncias temporais, metodologias de pré-
processamento e horizontes de previsdo proprios. Dessa forma, a Tabela 5 ndo tem como objetivo
estabelecer uma comparacéo direta entre valores absolutos de erro, mas sim sintetizar as comparag6es
internas realizadas por cada autor, evidenciando a relacdo de desempenho entre os modelos avaliados sob
as mesmas condic¢des experimentais em cada estudo.

De acordo com a Tabela 5, os modelos propostos apresentaram, de modo geral,
desempenho superior aos modelos de referéncia em todos os experimentos. Esse resultado
é evidenciado pelas métricas de avaliacdo, uma vez que menores valores de MAE, MSE
e RMSE indicam melhor desempenho preditivo. Outra informacdo importante é que 0s
erros apresentados na Tabela 5 estdo exatamente no formato coletado em cada estudo
correspondente. Portanto, os erros podem estar em formato absoluto ou percentual. E
importante destacar que os erros apresentados na Tabela 5 séo utilizados exatamente no
formato disponibilizado pelos estudos originais — podendo estar expressos em valores
absolutos ou percentuais — a fim de preservar a comparabilidade metodologica entre as
diferentes abordagens.

Para o Transformer, os modelos propostos performaram melhor que modelos
como LSTM, GRU, ARIMA, entre outros (QU, K. et al., 2022b) (HUANG, S.; YAN,
Chang; QU, Y., 2023b; QU, K. et al., 2022b; WANG, Lei; HE, Yigang; LI, Lie; et al.,
2022). Nos estudos que propuseram modelos hibridos, as abordagens desenvolvidas
também apresentaram desempenho superior aos modelos de referéncia, incluindo
ARIMA, SVR, GRU, MLP, LSTM e até mesmo o Transformer padrdo (GONG, M. et al.,
2023b; LI, N. et al., 2023; MO et al., 2024; ZHENG, H. et al., 2023). J& para os estudos
que utilizaram o Informer, os modelos propostos também superaram os modelos de
referéncia (GONG, M. et al., 2023b; HU, J. et al., 2023; HUANG, Xiaohan; JIANG, A.,
2022; TIAN et al., 2023; WAN et al., 2024; WANG, Hai-Kun et al., 2023; WANG, H.-
K.; SONG, K.; CHENG, 2022; WANG, Zhongrui et al., 2025).

Os estudos analisados evidenciam que os modelos baseados na arquitetura
Transformer apresentam desempenho notavel na previsdo de poténcia edlica a curto
prazo, mostrando-se altamente adequados para essa finalidade. Verifica-se, ainda, que
aprimoramentos estruturais na arquitetura desses modelos contribuem significativamente
para 0 aumento da capacidade preditiva. Além disso, 0 modelo Informer destacou-se
como uma alternativa promissora para séries temporais com grandes volumes de dados,
demonstrando, em alguns casos, desempenho superior ao Transformer padrao, conforme

observado nos trabalhos revisados. Algumas derivacfes do Transformer padrdo séo
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explicadas detalhadamente na Secéo 2.1 deste trabalho, como é o caso do Informer e do

Autoformer.

3.5.3 Discussio e Limitacoes

Os estudos analisados nesta revisdo indicam que os modelos baseados na
arquitetura Transformer sdo capazes de atribuir relevancia de forma adequada aos dados
de séries temporais por meio do mecanismo de atencdo, podendo ser adaptados para lidar
também com entradas espaco-temporais. Essas caracteristicas tornam essa arquitetura
especialmente promissora para aplicagdes em energia eélica. No entanto, ainda persistem
desafios para o aproveitamento pleno de seu potencial em contextos préaticos, sobretudo
quando se consideram dados reais e requisitos especificos do dominio. As principais
limitacOes identificadas sdo apresentadas a seguir:

1. Custo Computacional: Os Transformers possuem maior demanda
computacional, entendido aqui como maior tempo de processamento, maior
consumo de memoria e maior exigéncia de hardware durante a inferéncia. Esses
fatores podem dificultar seu uso em aplicacGes que demandam resposta rapida ou
operam sob restrigdes de processamento, como sistemas de previsao em parques
edlicos.

2. Codificacdo Temporal: A codificacdo posicional tradicional do Transformer
nem sempre captura adequadamente padrdes sazonais, ciclicos ou dindmicas
temporais ndo lineares observadas em séries reais, 0 que limita sua capacidade de
representar dependéncias temporais complexas. Por esse motivo, métodos mais
expressivos — como o Time2Vec — tornam-se essenciais para melhorar a
modelagem das estruturas temporais.

3. Riscos de Overfitting: A alta capacidade dos Transformers pode levar ao sobre
ajuste em conjuntos de dados limitados, exigindo o uso de técnicas de
regularizacdo e validagdo rigorosa para garantir robustez.

4. Interpretabilidade e Aplicacdo Industrial: Apesar dos mecanismos de atencéo,
os Transformers ainda funcionam como caixas-pretas, o que dificulta sua
aceitacdo em contextos industriais que exigem transparéncia e aplicabilidade

pratica.
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5. Requisitos de Dados: Muitos modelos necessitam da disponibilidade de dados

extensos e de alta qualidade; contudo, em ambientes reais, como parques eolicos,
0s dados podem ser ruidosos, incompletos ou limitados.

3.6 Lacunas Identificadas na Literatura

A partir da revisdo da literatura apresentada na secdo anterior, observa-se que

ainda persistem lacunas relevantes quanto ao uso da arquitetura Transformer na previséo

de energia edlica. Diante disso, este estudo propde-se a investigar alguns desses pontos

em aberto, os quais também se relacionam as limitag¢6es discutidas na Secdo 3.5.3 deste

trabalho. As principais lacunas abordadas séo apresentadas a seguir:

Custo Computacional: Grande parte do custo computacional do Transformer
decorre da complexidade quadratica do mecanismo FullAttention presente na
arquitetura original (Transformer Vanilla). Assim, este trabalho investiga
alternativas capazes de mitigar essa limitacdo por meio dos mecanismos
FlowAttention e FlashAttention, que visam reduzir a demanda de processamento
mantendo a eficiéncia preditiva.

Codificacdo Posicional: O Transformer Vanilla utiliza codificagdes posicionais
senoidais fixas, frequentemente insuficientes para representar dinamicas
temporais complexas. Com base nisso, este estudo propfe a integracdo de
codificacBes temporais aprendiveis, capazes de capturar de forma mais eficaz
sinais periddicos e comportamentos ciclicos, como ciclos diarios e sazonais. Para
essa integracdo, realiza-se uma analise de sensibilidade da adocdo da camada
temporal na arquitetura Transformer, com o objetivo de identificar o arranjo que
melhor favorece o desempenho do modelo.

Interpretabilidade: Apesar do elevado desempenho preditivo, os modelos
baseados em Transformer ainda apresentam desafios de interpretabilidade, pois o
funcionamento interno dos mecanismos de atencédo e das representacdes latentes
é complexo. Essa dificuldade € inerente a propria arquitetura. Embora existam
abordagens de interpretabilidade — como anélise de importancia, visualizacao de

atencdo e métodos pos-hoc —, sua aplicacdo em previsdo de energia edlica ainda
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é recente. Neste estudo, buscamos contribuir analisando o comportamento dos
modelos em dados reais de parques eélicos do Nordeste do Brasil, oferecendo
evidéncias empiricas que podem apoiar investigagdes futuras e servir de

referéncia para pesquisadores e profissionais da industria.

Ainda sobre as limitagdes descritas na Secdo 3.5.3, para reduzir o risco de
overfitting e melhorar a qualidade dos dados, este trabalho adota um conjunto de
procedimentos metodologicos de pré-processamento e modelagem. O detalhamento

dessas etapas € apresentado na Secao 4.
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4 METODOLOGIA

Esta secéo apresenta a metodologia adotada neste trabalho, descrevendo as etapas
de desenvolvimento, os modelos utilizados, os dados empregados e os procedimentos de

avaliacdo.

4.1 Motivacao e Formalizacio da Proposta

A previsao de energia e0lica de curto prazo apresenta desafios devido a natureza
estocastica e ndo estacionaria do comportamento do vento. Para abordar essas
caracteristicas, este estudo adota modelos baseados no Transformer com aplicagdo mais
adequada a dados de séries temporais. Conforme discutido ao longo desse trabalho, as
arquiteturas convencionais do Transformer enfrentam limitacGes relacionadas a
codificacdes posicionais fixas, consideravel complexidade computacional (especialmente
em termos de tempo de processamento), e interpretabilidade limitada. Além disso, essas
limitacOes caracterizam lacunas persistentes na literatura. Para superar essas limitacoes,
0s mecanismos FlowAttention e FlashAttention sdo usados para substituir o Full Attention
tradicional, reduzindo o custo computacional e melhorando a escalabilidade. Além disso,
uma camada de codificacdo Time2Vec € incorporada na entrada do modelo, para fornecer
uma representagcdo mais rica de padrdes temporais. Essas modificagdes visam aprimorar
a precisdo das previsoes e a eficiéncia computacional, a0 mesmo tempo em que fornecem
uma base sélida de resultados que pode servir como referéncia para pesquisas futuras e

aplicacdes no setor.

4.2 Visao Geral da Metodologia

Este estudo visa prever a energia edlica de curto prazo com base em dados
operacionais reais de turbinas edlicas, abordando os desafios da previsdo de energia

precisa e oportuna. Esta secdo detalha o processo metodoldgico adotado neste estudo,
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sendo representado pela Figura 16 que resume o processo metodologico utilizado.

A primeira etapa envolve a coleta de dados de turbinas edlicas em operacao por
meio do sistema de SCADA. Para garantir a qualidade dos dados, a segunda etapa envolve
procedimentos de pré-processamento e filtragem, incluindo limpeza de dados, remocao
de outliers e padronizacdo de séries temporais para reduzir o ruido e facilitar o
treinamento dos modelos. A remogéo de outliers foi realizada por meio de testes de
qualidade locais aplicados aos dados de energia eblica observados da turbina analisada.
Esses testes hierarquicos visam verificar a consisténcia fisica e estatistica da variavel e
detectar comportamentos anémalos de curto prazo, incluindo verificacdo de intervalo,
verificacdo de persisténcia e verificagdo de degrau de curto prazo. Os valores faltantes ou
removidos durante o processo foram tratados por interpolacdo linear, técnica adequada
para séries densas e de alta frequéncia como as geradas por sistemas SCADA. Esse
procedimento garante continuidade temporal e preserva a coeréncia global da série antes
do treinamento dos modelos. Essas etapas garantiram que o conjunto de dados estivesse
devidamente dimensionado e consistente para a variavel poténcia ativa (variavel alvo
deste trabalho). Finalmente, os dados processados sdo validados e preparados para uso na
etapa subsequente.

A terceira etapa concentra-se no ajuste e treinamento dos modelos empregados
neste estudo. Os modelos utilizados incluem ARIMA, MLP, LSTM, DLinear, T2V-MLP,
T2V-LSTM, T2V-DLinear, Transformer, Flowformer e Flashformer, bem como os
modelos propostos T2V-Transformer, T2V-Flowformer e T2V-Flashformer. O termo
T2V refere-se a incorporagdo da camada Time2Vec nos respectivos modelos. Além disso,
também foi utilizado o modelo de Persisténcia (DUTTA et al., 2017), frequentemente
usado como referéncia na previsao de séries temporais. Este modelo trivial pressupde que
o valor da variavel em um determinado instante t sera igual ao valor observado no instante
t — 1. Em outras palavras, a previsao para o proximo ponto da série ¢ o valor atualmente
observado. A terceira etapa envolve a divisdo do conjunto de dados em conjuntos de
treinamento, validagdo e teste, conforme ilustrado na Figura 16. Durante a fase de
treinamento, 0s modelos recebem dados e ajustam seus parametros por meio da
minimizacdo da funcdo de perda Erro Quadratico Médio (MSE), definida pela Equagéo
(14), utilizando o algoritmo de retropropagacdo do erro (backpropagation) para a

atualizacao dos pesos via método de otimizacao.
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Loss = —¥is,(vi — 91)° (14)

onde y; representa o valor real, y; representa o valor prevista, e n é nimero de amostras
no lote. Essa funcdo tem o objetivo de medir a diferenca quadratica média entre as
previsdes e os valores-alvo. Os otimizadores utilizados na fase de treinamento foram
Adam (KINGMA,; BA, 2014), Root Mean Square Propagation (RMSprop) (HINTON;
SRIVASTAVA; SWERSKY, 2012) e Stochastic Gradient Descent (SGD) (BOTTOU,
2010). O método de early stopping foi adotado para encerrar o treinamento assim que ndo
fossem observadas melhorias no desempenho do modelo. Em todas as simulagdes,
utilizou-se um critério de paciéncia de 5, considerando a evolugdo das previsdes em
relagdo aos valores-alvo.

Durante a fase de validacdo, a funcdo de perda MSE foi empregada
exclusivamente para a avaliagdo do desempenho do modelo, ndo havendo
retropropagacao do erro nem atualizagdo dos parametros. Adicionalmente, utilizou-se o
Optuna (AKIBA et al., 2019), biblioteca de busca de hiperparametros para identificar a
melhor configuracdo possivel para cada modelo (a explicacdo detalhada desta fase
encontra-se na Secdo 4.6). Na fase de teste, os modelos treinados e otimizados sdo
avaliados usando os dados de teste para analisar seu desempenho. O quarto estagio
envolve a previsdo e avaliacdo dos modelos, com base nas métricas descritas na Figura
16 para horizontes de referéncia de 6, 10 e 12 horas a frente. Para os modelos propostos,
uma analise de sensibilidade foi conduzida para determinar a configuracdo mais eficaz

para integrar 0 mecanismo Time2Vec na arquitetura do Transformer.
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Figura 16 - Representacdo do procedimento metodoldgico utilizado neste estudo
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Fonte: Autoria propria (2025).

4.3 Analise de Sensibilidade na Integracio Time2Vec

Para integrar o Time2Vec a arquitetura Transformer, foram avaliados trés
diferentes arranjos com o objetivo de identificar aquele que promove o melhor
desempenho na previsdo de energia eolica. A analise de sensibilidade dos arranjos
testados é apresentada na Figura 17, e cada configuracdo é detalhada a seguir.

1. Arranjo I: utiliza tanto o codificador quanto o decodificador, com Time2Vec
adicionado exclusivamente a entrada do codificador.

2. Arranjo I1: utiliza tanto o codificador quanto o decodificador, com Time2Vec
incorporado as entradas do codificador e do decodificador.

3. Arranjo I11: utiliza apenas o codificador, sem o decodificador, com Time2Vec
aplicado a entrada do codificador.

Até onde a literatura cientifica indica, esta é a primeira vez que uma analise de
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sensibilidade tdo especifica foi conduzida na integracdo do Time2Vec na arquitetura do
Transformer. Os resultados obtidos nos experimentos, conforme apresentados no
Apéndice B, indicam que o Arranjo | proporcionou as condi¢des mais favoraveis para o
desempenho do modelo. Esta configuracdo obteve o maior desempenho de acordo com
as métricas de avaliagdo empregadas neste estudo. Portanto, este foi o arranjo adotado
para os modelos propostos neste estudo. A adicdo do Time2Vec apenas no codificador
permitiu que o modelo aprendesse padrdes temporais de forma mais eficiente. O
decodificador, por sua vez, concentra-se em gerar a saida com base nessas representacoes,
sem a necessidade de incorporar informagfes temporais novamente. Essa abordagem,
portanto, evita complexidade desnecessaria, mantendo o desempenho otimizado. No
entanto, a remocéo do decodificador da arquitetura do modelo comprometeu a capacidade
do modelo de gerar previsdes adequadamente, visto que o decodificador é crucial para
transformar representacdes codificadas em saidas previsiveis. Portanto, os Arranjos Il e

111 foram desconsiderados neste estudo.

Figura 17 - Anélise de sensibilidade na integracdo da camada Time2Vec na arquitetura
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Fonte: Autoria propria (2025).

A camada Time2Vec substitui a camada original de codificacdo posicional do
Transformer no codificador. Esta camada foi descrita detalhadamente na Secédo 2.1 deste
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estudo. Assim, conforme o Arranjo I, a codificacdo posicional original do Transformer ¢é
mantida apenas na entrada do decodificador.

Para visualizar como cada série temporal é processada no modelo, as Figuras 18
e 19 apresentam o detalhamento da integracéo entre a camada Time2Vec e o Transformer
conforme os Estudos de Caso utilizados neste trabalho. O conjunto de dados para treino,
validacdo e teste de cada Estudo de Caso encontram-se na Se¢édo 4.5, bem como outras
informagdes importantes. Especificamente, a saida do Time2Vec concatena componentes
lineares e periddicas aprendidas pelo Time2Vec ao vetor de entrada na primeira camada
do codificador (Arranjo 1). Essa fusdo enriquece o vetor de entrada encaminhado ao
mecanismo de atencdo do codificador. As Figura 18 e 19 ilustram explicitamente:

1. A geragéo do vetor temporal pelo Time2Vec;
2. O fluxo resultante até o primeiro bloco do codificador do Transformer.

Em ambas as Figuras, o eixo x representa o indice temporal da janela de entrada,
contendo 60 horas selecionadas dentro do intervalo temporal referente ao conjunto de
treinamento de cada Estudo de Caso (ver Tabelas 6 e 7, Se¢éo 4.5). O eixo y representa a
amplitude das componentes aprendidas pela camada Time2Vec, isto €, as dimensdes do
vetor de entrada ap0s a transformacdo temporal. Dessa forma, as Figuras 18 e 19
documentam de forma clara como o Time2Vec é incorporado a arquitetura do

Transformer.

Figura 18 - Representacdo para o Estudo de Caso 1 (Cenério A) das dimensdes geradas pela
camada Time2Vec para uma janela de entrada de 60 horas, utilizada como incorporacgdo temporal na
entrada do Transformer

Incoporacao Time2Vec — Entrada para o codificador do Transformer

Amplitude das componentes Time2Vec

indice temporal da janela de entrada

Fonte: Autoria prépria (2025).
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Figura 19 - Representacdo para o Estudo de Caso 2 das dimensfes geradas pela camada
Time2Vec para uma janela de entrada de 60 horas, utilizada como incorporacdo temporal na entrada do
Transformer
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Fonte: Autoria propria (2025).

A camada Time2Vec também foi implementada nos modelos MLP, LSTM e
DLinear. Isso foi feito para verificar como a camada se comporta com outras arquiteturas
e avaliar seu potencial para melhorar o desempenho em uma variedade de tipos de
modelos. O modelo T2V-DLinear, que introduz a camada Time2Vec na arquitetura
DLinear, representa uma abordagem inovadora na literatura cientifica. Embora o foco
principal deste estudo seja a integracdo do Time2Vec em modelos baseados em
Transformer, o T2V-DLinear serve como um benchmark adicional para demonstrar a
versatilidade do Time2Vec em diferentes arquiteturas.

No contexto deste estudo, as componentes aprendidas apresentadas na Figura 20
correspondem as representacGes temporais produzidas pela camada Time2Vec para cada
instante da série, de uma forma mais ampla. Cada curva representa uma dimenséo distinta
desse vetor temporal, combinando componentes lineares e periodicos capazes de modelar
padrdes ciclicos, sazonais e tendéncias presentes nos dados de poténcia edlica. Embora
essas representacfes ndo sejam interpretaveis no sentido classico — como variaveis
fisicas explicitas —, elas fornecem uma estrutura temporal que o modelo utiliza para
identificar relacbes e dependéncias ao longo do tempo. A visualiza¢do permite observar

a variacdo dessas componentes no horizonte analisado, evidenciando como o Time2Vec

60
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captura oscilacdes e comportamentos recorrentes relevantes para a previsdo. A Figura 20
ilustra um segmento de trés dias da série temporal, compreendido entre 6 e 9 de janeiro
de 2019, referente a série temporal do Estudo de Caso 2.

Figura 20 - Representacfes de caracteristicas Time2Vec aprendidas para a série temporal de
energia edlica do Estudo de Caso 2
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Fonte: Autoria propria (2025).

4.4 Modelos Propostos

As alteracOes propostas para a arquitetura do Transformer referem-se ao Arranjo
I, mostrado na secdo anterior. Além disso, 0 mecanismo de atencgdo classico conhecido
como FullAttention foi substituido pelos mecanismos FlowAttention e FlashAttention. O
modelo proposto € ilustrado na Figura 21. Qualquer um desses mecanismos de atengéo
pode ser adotado. Os modelos que usam FullAttention, FlowAttention e FlashAttention
neste trabalho sdo chamados de T2V-Transformer, T2V-Flowformer e T2V-Flashformer,
respectivamente. Os modelos propostos cobriram a analise de sensibilidade descrita na
Secdo 4.3. Eles seguem a arquitetura classica de codificador-decodificador, com a
flexibilidade de modificar o mecanismo de atengdo, conforme ilustrado na Figura 21.

Vale destacar que a arquitetura proposta permite a implementacdo de diferentes

mecanismos de atencdo, o que reforca sua flexibilidade. Conforme novos mecanismos
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sdo desenvolvidos na literatura cientifica, eles podem ser incorporados ao modelo sem
necessidade de alteragdes estruturais profundas.

Na literatura cientifica, a integracdo do Time2Vec exclusivamente na entrada do
codificador do Transformer foi proposta em (VAJIRE et al., 2024), No entanto, esse
modelo difere dos propostos neste trabalho devido a modificacbes aplicadas ao
decodificador. Especificamente, 0os autores empregaram uma camada de Agrupamento
Médio Global (Global Average Pooling) seguida por uma camada dropout e uma camada

de saida densa, omitindo completamente o mecanismo de atencao.

Figura 21 - Arquitetura dos modelos propostos
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Fonte: Autoria prépria (2025).

4.5 Estudos de Caso

Para avaliar a robustez dos modelos propostos, foram conduzidos dois estudos de
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caso. O Estudo de Caso 1 refere-se aos dados operacionais de uma turbina eolica
localizada no Nordeste do Brasil, considerando dois cenérios distintos. O Estudo de Caso
2, por sua vez, baseia-se em dados operacionais de uma central edlica completa, também
situada na regido Nordeste do Brasil. Ambos o0s casos sdo descritos detalhadamente nas
SecOes 4.5.1e4.5.2.

A metodologia adotada neste trabalho inclui multiplos recortes temporais
intencionalmente distintos entre os estudos de caso — dois cenarios no Estudo de Caso 1
e um intervalo independente no Estudo de Caso 2 — com 0 objetivo de avaliar a
estabilidade e o desempenho dos modelos em diferentes regimes operacionais e sazonais.
Essa abordagem amplia a capacidade de generalizacdo dos experimentos, uma vez que 0s
modelos séo analisados em contextos temporais heterogéneos, e ndo apenas em um Unico
periodo fixo.

Em tarefas de previsdo de séries temporais, a preservacdo da ordenagédo
cronoldgica é fundamental para evitar vazamento de informacdo. Por esse motivo,
técnicas de validagdo cruzada aleatoria ndo foram aplicadas nesta tese. As divisdes
adotadas para cada conjunto de dados (treinamento, validacao e teste) foram definidas de
forma a garantir equilibrio entre quantidade de dados disponivel para aprendizado,
estabilidade no ajuste de hiperpardmetros e avaliagdo independente do desempenho.
Essas proporgOes estdo de acordo com estudos da literatura, conforme discutido nas
SecOes 4.5.1e4.5.2.

Além disso, o uso de Estudos de Caso com intervalos temporais distintos contribui
para atenuar o risco de que o desempenho observado esteja associado a caracteristicas
especificas de um tnico periodo. Dessa forma, a analise comparativa entre modelos torna-
se mais robusta. Considera-se ainda que o objetivo central desta tese é propor, analisar e
comparar arquiteturas derivadas de Transformers em cenarios realistas de previsao de
curto prazo, e nao avaliar diferentes estratégias de validacdo temporal. Assim, 0

delineamento experimental adotado mostra-se apropriado para o proposito da pesquisa.

4.5.1 Estudo de Caso 1

Os dados para este estudo foram obtidos de um parque edlico operacional
localizado no Nordeste do Brasil, no estado do Rio Grande do Norte. Embora o parque

edlico seja composto por multiplas turbinas edlicas, o Estudo de Caso 1 concentra-se nos
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dados de uma unica turbina com uma capacidade nominal de poténcia de
aproximadamente 2.300 kW. Os dados foram coletados pelo SCADA, entre janeiro de
2019 e outubro de 2020, totalizando 22 meses de observagdes com uma frequéncia de
amostragem de uma hora. Inicialmente a série temporal consistia em seis variaveis:

1. Carimbo de data e hora - referéncia de tempo para cada registro;

2. Velocidade do vento (m/s) — medida no anemémetro da turbina;

3. Poténcia ativa (kW) — poténcia elétrica de saida (variavel alvo);

4. Velocidade do rotor (rpm) — velocidade de rotacdo do rotor;

5. Angulo de inclinagio (°) — posi¢do angular das pés;

6. Posicdo da nacela (°) — orientacdo de guinada da turbina em relacdo a diregdo do

vento.

Como a variavel de interesse desta pesquisa € a poténcia ativa, todas as demais
variaveis foram desconsideradas durante a etapa de pré-processamento e filtragem. Apos
a padronizacdo da série temporal para frequéncia horéria, o conjunto de dados passou a
conter 16.080 linhas, das quais 58 apresentavam valores faltantes. Esses valores ausentes
foram tratados por meio do procedimento de interpolacdo descrito na Secdo 4.2,
garantindo a continuidade temporal da série antes do treinamento dos modelos.

Para avaliar a robustez preditiva dos modelos utilizados neste estudo, é essencial
avaliar seu desempenho em diferentes periodos de tempo. Isso evita que 0 modelo seja
restrito a padrbes especificos de uma Unica estacdo ou condicdo climética, aumentando
sua capacidade de generalizacdo para novas situacdes. Ao expor o modelo a variacdes
sazonais e mudangas na dinamica do vento ao longo do tempo, podemos avaliar melhor
sua adaptabilidade e desempenho em cenéarios do mundo real. Portanto, este estudo
considera duas condic¢des temporais distintas. O Cenario A representa a transicédo do verdo
para 0 outono, enquanto o Cenario B corresponde a transi¢do do inverno para a primavera.
Com base no calendario sazonal do Brasil, o conjunto de dados foi dividido em trés partes:
conjunto de treinamento, conjunto de validacao e conjunto de teste (ver Tabela 6).
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Tabela 6 - Viséo geral dos conjuntos de treinamento, validagdao e teste para cada cenario do
Estudo de Caso 1

Cenario A
Conjunto de treinamento  (01/01/2019) - (31/12/2019)
Conjunto de validagdo  (01/01/2020) — (29/02/2020)
Conjunto de teste (01/03/2020) — (30/04/2020)

Cenario B
Conjunto de treinamento  (01/07/2019) - (30/06/2020)
Conjunto de validagao  (01/07/2020) - (31/08/2020)
Conjunto de teste (01/09/2020) - (31/10/2020)

Fonte: Autoria prépria (2025).

A prética de alocar mais tempo para 0 conjunto de treinamento é amplamente
adotada na literatura cientifica. Por exemplo, (ZHA et al., 2023b) utilizou uma proporc¢éo
de 4:1:1 para os conjuntos de treinamento, validacéo e teste, enquanto (WANG, Lei; HE,
Yigang; LI, Lie; et al., 2022) empregou uma proporcao de 3:1:1. J& a proporc¢do de 6:1:1
foi adotada por (FU; WANG; JIN, 2025). Com base nisso, este estudo adota uma
proporcéo de 6:1:1, fornecendo mais dados para o conjunto de treinamento. Essa divisao
garante um equilibrio adequado entre aprendizado, ajuste de hiperparametros e avalia¢do
do modelo. Considerando que o horizonte maximo de previsao é de 12 horas a frente e 0s
dados sdo coletados de hora em hora, o periodo de 12 meses fornece uma quantidade
substancial de dados. Isso permite que os modelos capturem varios padrdes sazonais e
dindmicas de séries temporais, tornando o processo de treinamento mais robusto e eficaz.
Com a proporcdo de 6:1:1, tanto o conjunto de validagdo quanto o de teste contém 2 meses
de dados cada.

A Figura 22 ilustra a poténcia edlica da turbina edlica em estudo para os dois
cenarios propostos (A e B). A imagem superior corresponde ao Cenario A, enquanto a
imagem inferior corresponde ao Cenario B. Estes sdo dados reais de uma turbina eolica
atualmente em operagdo. O maior potencial edlico foi observado entre julho e dezembro
de 2019 e entre julho e outubro de 2020, enquanto o menor ocorreu entre janeiro e abril
de ambos os anos. Portanto, é evidente que os dois cenarios capturam condigdes temporais

distintas do parque e6lico em estudo.
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Figura 22 - Séries temporais da poténcia ativa para a turbina edlica do Estudo de Caso 1: Cenério
A (acima) e Cenério B (abaixo)

~——Treino
~—Validagido
~—— Teste

0

Jan 2019 Mar2019  Mai2019  Jul 2019  Set2019 Nov 2019 Jan2020 Mar2020 Mai 2020
Passo de tempo (horas)

~ Treino
~— Validagdo
— Teste

0

Jul2019  Set2019  Nov2019  Jan2020  Mar2020  Mai2020  Jul2020  Set2020  Nov 2020
Passo de tempo (horas)

Fonte: Autoria prépria (2025).

4.5.2 Estudo de Caso 2

Os dados para este estudo foram obtidos de um parque edlico localizado na
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Chapada do Araripe, regido que se estende entre os estados do Ceara, Pernambuco e Piaui.
Portanto, o parque e6lico explorado também se localiza no Nordeste do Brasil. Porém,
por apresentar-se em regido distante do parque edlico do Estudo de Caso 1, apresenta
diferencas geogréaficas e meteoroldgicas. Para o Estudo de Caso 2, apenas um cenario foi
considerado. O parque edlico tem poténcia nominal de aproximadamente 29,7 MW. Os
dados foram coletados também pelo sistema SCADA, entre agosto de 2019 até setembro
de 2020, totalizando 14 meses, com uma frequéncia de amostragem a cada 1 hora.

A base de dados continha apenas a variavel de poténcia ativa, totalizando 10.248
linhas, das quais 120 apresentavam valores ausentes. Esses valores faltantes foram
tratados por meio do procedimento de interpolagdo descrito na Sec¢éo 4.2, garantindo a
continuidade temporal da série antes do treinamento dos modelos.

A Tabela 7 apresenta a divisdo do conjunto de dados adotada neste estudo,
composta por 12 meses para o treinamento, 1 més para a validacdo e 1 més para o teste,
na proporcao de 12:1:1. Diferentemente do Estudo de Caso 1, que utiliza a proporcéo
6:1:1, essa proporgéo foi adotada com o objetivo de avaliar a robustez dos modelos frente
a diferentes proporcdes de dados para treinamento, validacéo e teste. Essa configuracédo
também foi adotada em estudos anteriores, como em Bispo Junior et al. (2025). O
treinamento foi realizado com dados do periodo de agosto de 2019 a julho de 2020,
enquanto os conjuntos de validacéo e teste correspondem aos meses de agosto e setembro
de 2020, respectivamente. Essa configuracdo visa assegurar maior disponibilidade de
dados para o treinamento dos modelos, preservando periodos mais curtos para a etapa de
validag&o e avaliacéo final.

A Figura 23 ilustra a série temporal de geracdo da usina e6lica considerada no
Estudo de Caso 2. Observa-se uma reducdo nos niveis de producdo entre os meses de
janeiro e abril, ao passo que o intervalo de junho a setembro apresenta 0s maiores valores
de poténcia nominal gerada. De modo analogo ao Estudo de Caso 1, as cores azul, laranja

e verde indicam, respectivamente, 0s conjuntos de treinamento, validagéo e teste.

Tabela 7 - Visdo geral dos conjuntos de treinamento, validacao e teste

Conjunto de treinamento  (01/08/2019) - (31/07/2020)
Conjunto de validagao (01/08/2020) — (31/08/2020)
Conjunto de teste (01/09/2020) — (30/09/2020)

Fonte: Autoria prépria (2025).
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Figura 23 - Série temporal da poténcia ativa da usina e6lica do Estudo de Caso 2
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Fonte: Autoria propria (2025).

4.6 Analise Experimental

A anélise experimental deste estudo foi estruturada em duas etapas distintas,
correspondentes aos Estudos de Caso 1 e 2. Todos 0s experimentos, bem como o
processamento dos dados e a implementacdo dos modelos, foram conduzidos em Python.

Para o Estudo de Caso 1, os experimentos foram realizados em ambiente PyTorch,
utilizando um sistema equipado com uma GPU Nvidia RTX A4000, de nivel profissional,
baseada na arquitetura Ampere, com 16 GB de VRAM, otimizada para tarefas de
aprendizado profundo e computagéo de alto desempenho.

No Estudo de Caso 2, os experimentos também foram conduzidos em PyTorch,
porém em um sistema com GPU Nvidia RTX 4060 Ti, com 8 GB de VRAM, adequada a
execucdo de tarefas de aprendizado profundo em configuracbes de menor custo
computacional.

Essa distingdo foi adotada com o objetivo de avaliar o custo computacional e a
viabilidade de implementacdo dos modelos propostos em diferentes contextos
experimentais.

Para ambos os casos, foi realizada uma busca por hiperparametros para cada
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modelo, utilizando o Optuna. O nimero de ensaios foi definido como 100 neste estudo,
com base em um equilibrio entre o custo computacional e a necessidade de exploracdo
suficiente do espaco de hiperparametros. Essa escolha est4 alinhada a recomendacéo de
(AKIBA et al., 2019), onde 100 ensaios foram utilizados em seu exemplo para a
otimizacdo de hiperparametros. Esse numero permite um bom equilibrio entre o
desempenho do modelo e o tempo disponivel para experimentacao.

Na andlise experimental de ambos os casos o batch size foi considerado 16. O
comprimento da sequéncia (seq len) foi incluido na busca de hiperparametros, com
valores variando de 6 a 180. Este intervalo foi escolhido para garantir que o modelo fosse
capaz de aprender dependéncias temporais tanto de curto quanto de longo alcance dentro
da série temporal, permitindo que o modelo capturasse tanto variagdes rapidas quanto
padrdes mais duradouros nas sequéncias de dados. A escolha de 6 a 180 como intervalo
de seq len busca equilibrar o aprendizado de padrdes temporais relevantes sem introduzir
complexidade desnecessaria. Sequéncias muito curtas poderiam ndo capturar padrdes de
longo alcance, enquanto sequéncias muito longas poderiam aumentar a complexidade
computacional sem agregar beneficio significativo. Vale ressaltar que, neste contexto, o
termo "longo prazo" se refere a capacidade do modelo de capturar dependéncias
temporais mais distantes dentro da janela de entrada, ndo ao horizonte méaximo de
previsdo, que permanece de 12 horas. O comprimento do rotulo (label len), definido como
metade do seq len, foi mantido constante em todos os cenarios para garantir uma

propor¢ao equilibrada entre entrada e saida.

Os horizontes de previsdo considerados — 6, 10 e 12 horas — estdo alinhados
com o foco deste estudo em previsdes de curto prazo, permitindo que os modelos
capturem com maior precisao a dinamica do futuro proximo da geragao de energia edlica.
A fungdo de ativacdo empregada foi a ReLU, que introduz ndo linearidade nas redes,
permitindo que os modelos aprendam padrdoes complexos nos dados e acelerando o
processo de treinamento ao evitar a saturagdo do gradiente. O dropout foi definido com

valor de 0,1. Essa técnica realiza a regularizagdo das redes neurais, evitando overfitting.

4.6.1 Estudo de Caso 1

Os resultados na busca de hiperpardmetros para o Estudo de Caso 1 séo
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representados pelas Tabelas 8 e 9, que mostram os parametros finais de cada modelo,
referenciando as melhores configuragdes encontradas para o Cenério A e o Cenério B,
respectivamente. Os modelos LSTM, MLP e DLinear foram treinados com 50 épocas.
Enquanto os modelos propostos e os X-formers foram treinados com 10 épocas. 1sso
demonstra que os modelos propostos e os X-formers convergem mais rapido do que os
modelos de referéncia, provavelmente devido aos seus mecanismos de atencéo eficientes
e capacidade superior de capturar padrées complexos. Consequentemente, eles alcangam
desempenho ideal em menos épocas, reduzindo o risco de overfitting.

De acordo com a Tabela 8, diferentes arquiteturas manipulam dados historicos de
maneiras unicas, e 0 comprimento da sequéncia varia com base na capacidade de cada
modelo de processar e extrair informacdes relevantes. O MLP tem o maior seq len, com
um valor de 104, enquanto o T2V-Transformer tem o menor, com um seq len de 32. Em
relacdo ao nimero de camadas, 0 MLP tem 3, e 0 T2V-MLP tem 2. Para 0 LSTM e 0
T2V-LSTM, o numero de camadas é 2 e 1, respectivamente. Ambos os modelos sdo
bidirecionais, o que significa que processam a sequéncia em duas dire¢des: do passado
para o futuro e do futuro para o passado. Essa bidirecionalidade permite que os modelos
capturem dependéncias temporais globais, alavancando informacg6es passadas e futuras,
0 que é essencial para prever padrdes complexos, como na previsao de energia eélica. Em
relagdo aos X-formers e aos modelos propostos, o Transformer e o T2V-Flashformer
apresentam um maior numero de camadas no codificador (3 e 2, respectivamente) do que
no decodificador (1 e 1, respectivamente). Para o T2V-Flowformer e o Flashformer, o
namero de camadas no codificador foi menor do que no decodificador, com 2 e 3,
respectivamente. Para o T2V-Transformer e o Flowformer, o nimero de camadas foi o
mesmo para o codificador e o decodificador. Para todos os modelos de benchmark, Adam
foi o melhor otimizador. Para os X-formers e os modelos propostos, RMSprop foi o
melhor otimizador. O maior d,,,,4.; para 0s modelos foi 256 para o T2V-Flashformer.
Enquanto o menor foi 32, para o T2V-Flowformer e o Flashformer. O maior
dsy foi 768 para o Transformer e o Flowformer. O menor foi 64 para o Flashformer. O
maior numero de cabecas foi 8 para o Flowformer. O menor valor foi 2, para o
Flashformer. Quanto maiores esses trés parametros, melhor o desempenho em tarefas
complexas, embora ao custo de maiores recursos computacionais. O oposto é verdadeiro
para valores menores.

Como mencionado anteriormente, um total de 100 ensaios foram realizados para

cada modelo na busca por hiperparametros usando o Optuna. As Tabelas 8 e 9 mostram



79

o tempo que cada modelo levou para apenas um ensaio. Esses valores indicam que 0s

modelos s&o aplicaveis e adequados para previsdes com 12 horas a frente. E possivel

observar que o maior tempo foi para o Transformer e o T2V-Transformer, devido a

complexidade quadratica do mecanismo FullAttention, conforme explicado na Secéo 2.1.

Para modelos com adicdo de Time2Vec, a funcdo de ativacao periodica, denotada por F

(de acordo com a Equacdo 9), foi selecionada para ser uma funcdo seno ou cosseno.

Portanto, a melhor configuracdo da fungdo para cada modelo é apresentada nas Tabelas

8e0.
Tabela 8 - Resultados finais da busca de hiperparametros para todos os modelos avaliados no
Estudo de Caso 1 (Cenério A)
A . T2V- T2V- T2V-
Parametro ARIMA MLP LSTM DLinear MLP LSTM DLinear
seq len 50 104 52 46 82 46 65
Camadas - 3 2 - 2 1 -
Camadas (44,206,234) 98 - (246,84) 149 ,
ocultas
Bidirecional - - Sim - - Sim -
Epocas - 50 50 50 50 50 50
Otimizador - Adam Adam Adam Adam Adam Adam
Fungéo - - - - cos sen sen
Tempo 18s 30s 26s 555 35s 32s 1min5s
Parametro Transformer Flowformer Flashformer T2V- T2V- T2V-
Transformer  Flowformer Flashformer
seq len 53 58 93 32 49 63
Camadas do
codificador 3 2 2 ! 2 2
Camadas do
decodificador ! 2 3 1 3 !
Epocas 10 10 10 10 10 10
Otimizador RMSprop RMSprop RMSprop RMSprop RMSprop RMSprop
Amodel 128 128 32 64 32 256
N° de cabecas 2 8 2 4 4 6
dsy 768 768 64 128 96 512
Funcéo - - - sen cos sen
Tempo 2min20s 2min5s 1min30s 2min34s 2min17s 1min50s

Fonte: Autoria propria (2025).

De acordo com a Tabela 9, 0 modelo com o maior seq len foi o T2V-Flowformer,

seguido pelo T2V-Flashformer. Isso significa que os modelos precisaram de mais dados
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historicos para fazer previsdes para o Cenario B. O nimero de camadas foi 1 para MLP
e T2V-MLP. Para LSTM e T2V-LSTM, o numero de camadas foi 1 e 2, respectivamente.
Ambos 0s modelos sdo bidirecionais, como na Abordagem A. O nimero de codificadores
foi maior que o decodificador para o Transformer e o T2V-Flashformer. Para os outros
modelos, o numero de camadas para o codificador e o decodificador foi 0 mesmo. O
modelo com a maior complexidade foi o T2V-Flashformer, com
dmoder, NUMero de cabegas e dy, iguais a 256, 8, 1536, respectivamente. Em seguida,
veio o Transformer, com d,,,q.;, heads e dgf iguais a 256, 6 e 1536, respectivamente. O
otimizador Adam foi aplicado a maioria dos modelos, enquanto o SGD foi aplicado ao
DLinear, e 0 RMSprop foi aplicado ao Transformer e ao Flowformer. De acordo com as
Tabelas 8 e 9, os valores dos parametros para 0s modelos variaram. Isso se explica pelo
fato de serem duas abordagens diferentes, considerando duas condi¢cdes temporais

distintas.

Tabela 9 - Resultados finais da busca de hiperparametros para todos os modelos avaliados no
Estudo de Caso 1 (Cenério B)

Parametro  ARIMA MLP LSTM DLinear -l\r/IZIYP ITSZ¥M D-I[izr:/ear
seq len 48 92 77 76 60 74 104
Camadas - 1 1 - 1 2 -
Coacfft‘;gs 246 144 . 197 148 .
Bidirecional - - Sim - - Sim -
Epocas - 50 50 50 50 50 50
Otimizador - Adam Adam Adam Adam Adam Adam
Funcéo - - - - cos sen cos
Tempo 20s 30s 26s 55s 35s 32s 1min5s
Parametro Transformer  Flowformer Flashformer TranTszf?)/lrmer FIO\—/rvi;/r-mer Flas;%c\)/r-mer
seq len 76 55 53 44 120 105
Sodificacor 3 ’ ' ' ? 3
Camadas do decodificador 2 2 1 1 2 1
Epocas 10 10 10 10 10 10
Otimizador RMSprop RMSprop Adam Adam Adam Adam
Amodel 256 64 64 64 128 256
N° de cabecas 6 8 8 6 2 8
dey 1536 192 192 384 512 1536
Funcéo - - - cos sen sen
Tempo 2min20s 2min5s 1min30s 2min34s 2minl7s  1min50s

Fonte: Autoria prépria (2025).
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4.6.2 Estudo de Caso 2

Os resultados na busca de hiperpardmetros para o Estudo de Caso 2 estdo
representados pela Tabela 10, que mostra os parametros finais de cada modelo,
referenciando as melhores configuracdes encontradas para este caso. Os modelos LSTM,
MLP e DLinear foram treinados com 50 épocas. Enquanto os modelos propostos e 0s X-
formers foram treinados com 10 épocas. Isso demonstra que 0os modelos propostos e 0s
X-formers convergem mais rapido do que os modelos de referéncia, refor¢cando aquilo
que foi discutido no Estudo de Caso 1. Consequentemente, eles alcancam desempenho
ideal em menos épocas, reduzindo o risco de overfitting.

De acordo com a Tabela 10, o0 modelo com maior valor do seq len foi o T2V-
Transformer, com 102 unidades, enquanto o menor valor foi observado no LSTM, com
18. Esse resultado indica que modelos com seq len mais elevado tendem a apresentar
maior capacidade de capturar padrdes temporais de longo prazo. Outros modelos com seq
len relativamente altos foram o T2V-Flowformer e o T2V-Flashformer, com valores de
90 e 72, respectivamente. Em relacdo ao nimero de camadas, 0 modelo MLP apresentou
trés, ao passo que os modelos LSTM, T2V-MLP e T2V-LSTM contaram com apenas
uma. Ademais, tanto o LSTM quanto o T2V-LSTM néo sdo bidirecionais.

Nos X-formers (Transformer, Flowformer e Flashformer), o nimero de camadas
variou entre 0s mdédulos codificador e decodificador. O Transformer apresentou 3
camadas em ambos os modulos; o Flowformer, 2 no codificador e 1 no decodificador; e
o Flashformer, 2 e 3, respectivamente. Nos modelos propostos, também foram observadas
variagdes: o T2V-Transformer apresentou 2 camadas no codificador e 1 no decodificador;
0 T2V-Flowformer, 2 e 3; e o T2V-Flashformer, 1 e 2, respectivamente. O otimizador
RMSprop foi aplicado aos modelos Transformer e T2V-Transformer, enquanto o DLinear
utilizou o SGD. Os demais modelos utilizaram o Adam.

Considerando o pardmetro d,,,qe;; 05 modelos Transformer e Flowformer
apresentaram o maior valor, igual a 512, enquanto o menor foi observado no T2V-
Flowformer, com 32. Para dy¢, 0 Transformer obteve o maior valor (2048), seguido pelo
T2V-Transformer (1536), sendo novamente o T2V-Flowformer o0 modelo com o menor
valor. Quanto ao numero de cabecas de atencdo, o T2V-Transformer apresentou o maior
valor (8), e o T2V-Flowformer, o menor (2). Dessa forma, conclui-se que os modelos

Transformer e T2V-Transformer demandam maior custo computacional, ao passo que o
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T2V-Flowformer se destaca por apresentar a configuragdo mais eficiente nesse aspecto.
Para a funcdo Time2Vec, os modelos T2V-LSTM, T2V-DLinear e T2V-

Transformer apresentaram a fungdo seno, enquanto 0s modelos T2V-MLP, T2V-

Flowformer e T2V-Flashformer apresentaram a funcdo cosseno.

Tabela 10 - Resultados finais da busca de hiperparametros para todos os modelos avaliados no

Estudo de Caso 2

Parametro ARIMA MLP LSTM DLinear IAZC/F; |_T52¥M DLZQ;W
seq len 50 58 18 23 39 28 37
Camadas - 3 1 - 1 1 -
Coacrﬂﬁigs - (194,187,130) 106 : 174 88 :
Bidirecional - - Né&o - - N&o -
Epocas - 50 50 50 50 50 50
Otimizador - Adam Adam SGD Adam Adam Adam
Fungéo - - - - oS sen sen
Tempo 17s 20s 23s 1min10s 36s 285 1min24s
Parametro Transformer  Flowformer Flashformer TranTszf?)/l:mer FIO\-/r\n%cX’ﬁer Flas:ﬁ(\)/r-mer
seq len 42 54 54 102 90 102
codificacor 3 ’ ’ ’ ? ?
decodificacor 3 ! 3 ' 3 ?
Epocas 10 10 10 10 10 10
Otimizador RMSprop Adam Adam RMSprop Adam Adam
drrodel 512 512 64 256 32 64
N° de cabecas 6 7 4 8 2 3
des 2048 1024 128 1536 96 192
Funcéo - - - sen oS sen
Tempo 1min45s 1min30s 56 s 1min50s 1min36s 1min22s

Fonte: Autoria prépria (2025).

A Tabela 10 apresenta o tempo de processamento de cada modelo para a execugéo

de um Unico ensaio. Esses resultados indicam que todos os modelos sdo aplicaveis e

adequados para previsées com horizonte de 12 horas a frente. Observa-se que o modelo

com maior tempo de processamento foi o T2V-Transformer, seguido pelo Transformer,

com aproximadamente 1 minuto e 45 segundos e 1 minuto e 10 segundos,

respectivamente. Por outro lado, os modelos Flowformer, Flashformer, T2V-Flowformer

e T2V-Flashformer apresentaram tempos inferiores, resultado da adog¢ao dos mecanismos

de atencdo FlowAttention e FlashAttention, que reduzem a complexidade quadratica
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caracteristica do FullAttention do Transformer convencional. Entre os modelos de
referéncia, o menor tempo de execugdo foi obtido pelo ARIMA, MLP e LSTM, com cerca
de 17, 20 e 23 segundos, respectivamente. Esses valores estdo em consonancia com 0s
resultados do Estudo de Caso 1, no qual os modelos baseados em Transformers e suas

variantes propostas também apresentaram maior tempo de treinamento.
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5 RESULTADOS E DISCUSSAO

Neste Capitulo sdo apresentados os resultados e a discussdo dos experimentos
computacionais de previsao de poténcia edlica realizados com os modelos propostos e 0s
modelos de benchmark, utilizando dados reais de parques edlicos localizados no Nordeste
do Brasil. Os experimentos foram conduzidos em dois casos distintos, denominados
Estudo de Caso 1 e Estudo de Caso 2, os quais diferem quanto as condi¢Bes
meteoroldgicas, configuracdo dos conjuntos de dados e as estratégias de avaliacdo
adotadas. Inicialmente, sdo analisados os indicadores de desempenho preditivo dos
modelos, seguidos por uma discussdo sobre os aspectos computacionais e sobre a
capacidade de generalizacdo sob diferentes condi¢des sazonais. Por fim, sdo destacadas
as principais implicagdes dos resultados obtidos e as limitacdes observadas.

As meétricas utilizadas para avaliar o desempenho dos modelos neste artigo foram
erro absoluto médio (Mean Absolute Error — MAE), raiz do erro quadratico médio (Root
Mean Squared Error — RMSE), melhoria em relagdo ao MAE de referéncia (Improvement
over Reference Mean Absolute Error — loR-MAE) e melhoria em relacdo ao RMSE de
referéncia (Improvement over Reference Root Mean Squared Error — IoR-RMSE). O
modelo de referéncia utilizado no céalculo do lIoR-MAE e do lIoR-RMSE é o modelo de
Persisténcia. As EquacBes (15) — (18) apresentam a formulacdo matematica

correspondente a cada uma delas:

1 ~
MAE = ;Z?:ﬂ}’i — ¥l (15)

RMSE = [LS1,0: - 90 (16)

MAEmodelo

IoR — MAE = (1 ) x 100% 17)

MAEreferéncia

RMSEmodelo

IoR — RMSE = (1 -
RMSEreferéncia

) x100% (18)

Onde n representa 0 numero de observacdes, y; sdo os valores observados e J; s&o 0s
valores previstos por cada modelo. O MAE e o RMSE de referéncia correspondem as
métricas obtidas do modelo de Persisténcia. Portanto, valores mais altos de I0R-MAE e

IoR-RMSE, juntamente com MAE e RMSE mais baixos, indicam melhor desempenho
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do modelo.

5.1 Estudo de Caso 1

De acordo com a Tabela 11, o modelo T2V-DLinear obteve o melhor desempenho
para as métricas MAE e loR-MAE no horizonte de 6 horas, com valores de 213,386 kW
e 12,35%, respectivamente, seguido pelo T2V-Transformer, que registrou um MAE de
214,096 kW e um loR-MAE de 12,06%. No horizonte de 10 horas, o T2V-Transformer
superou todos 0s modelos com um IoR-MAE de 14,56%. Posteriormente, o Flashformer
e 0 T2V-Flashformer alcancaram valores de loR-MAE de 13,88% e 13,83%,
respectivamente. Para o horizonte de 12 horas, os melhores resultados foram alcangados
pelo T2V-Transformer e pelo T2V-Flashformer, com valores de IoR-MAE de 13,55% e
13,30%, respectivamente. Os modelos ARIMA, MLP, LSTM e DLinear apresentaram
desempenho inferior, com valores de Io0R-MAE de 6,20%, 9,22%, 10,43% e 10,52%,
respectivamente. No geral, o T2V-Transformer demonstrou a maior consisténcia e o
melhor desempenho em todos os horizontes para as métricas MAE e loR-MAE, seguido
pelo T2V-Flashformer. Em relacdo as métricas RMSE e IoR-RMSE, os modelos T2V-
Transformer e T2V-Flashformer demonstraram desempenho superior.

Como observado na Tabela 11, no horizonte de 6 horas, o T2V-Transformer foi o
unico modelo a superar um loR-RMSE de 16%, atingindo 16,03%. O T2V-Flashformer,
por sua vez, atingiu um loR-RMSE de aproximadamente 14,98%. No horizonte de 10
horas, os valores de lo0R-RMSE foram de 17,85% para o T2V-Transformer e 16,58% para
0 T2V-Flashformer, enquanto para o horizonte de 12 horas, os valores de 10R-RMSE
foram de 17,73% para o T2V-Transformer e 16,67% para o T2V-Flashformer. Os
modelos ARIMA, MLP, LSTM e DLinear demonstraram desempenho inferior, atingindo
13,36%, 15,08%, 13,79% e 14,64%, respectivamente, para a mesma métrica e horizonte
de previsdo. Em geral, o T2V-Transformer apresentou o melhor desempenho para todos
0s horizontes, seguido pelo T2V-Flashformer para as métricas RMSE e I0R-RMSE.
Analisando os horizontes e as métricas de avaliacdo apresentados na Tabela 11, os
modelos T2V-Transformer e T2V-Flashformer demonstraram consisténcia e
confiabilidade, tornando-os as escolhas mais adequadas para previsdo de poténcia sob
esta abordagem. Embora o T2V-DLinear tenha alcangado o melhor desempenho para

MAE e IoR-MAE no horizonte de 6 horas, seu desempenho foi inconsistente em outros
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competitivo para as

métricas

RMSE e
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loR-RMSE.

Consequentemente, o T2V-DLinear ndo é tdo adequado para o Cenario A, em

comparacdo com os modelos T2V-Flashformer e T2V-Transformer.

Tabela 11 - Comparacdo do desempenho do modelo para diferentes horizontes de previsdo
(Cenério A)

MAE (kW) / IoR — MAE (%)

Modelo
6h 10 h 12h
Persisténcia 243,463 0 273,198 0 279,828 0
ARIMA 231,939 4,73 256,666 6,05 262,460 6,20
MLP 222349 8,67 245996 995 254,032 9,22
T2V-MLP 222,947 842 241,690 11,53 249,697 10,76
LSTM 225,592 7,34 248,002 922 250,645 1043
T2V-LSTM 218,730 10,16 249,981 8,49 252356 9,82
DLinear 218,137 10,40 239,555 12,31 250,375 10,52
T2V-DLinear 213,386 12,35 257,894 560 246,195 12,02
Transformer 224325 7,86 244365 10,55 254,115 9,18
T2V-Transformer 214,096 12,06 233,430 14,56 241,911 13,55
Flowformer 223,979 8,00 244266 10,59 249242 10,93
T2V-Flowformer 219,680 9,77 238,644 12,65 247,056 11,71
Flashformer 215,573 11,45 235273 13,88 246,213 12,01
T2V-Flashformer 214368 11,95 235402 13,83 242,598 13,30
Modelo RMSE (kW) / IoR — RMSE (%)
6h 10 h 12h
Persisténcia 342,520 0 378,050 0 384,270 0
ARIMA 300,042 12,40 326,909 13,52 332,916 13,36
MLP 294207 14,10 318,141 1584 326,291 15,08
T2V-MLP 297,990 12,99 324,162 14,25 330,686 13,94
LSTM 299486 12,56 325241 13,96 331262 13,79
T2V-LSTM 293,626 1427 320,027 15,35 326,267 15,09
DLinear 297,971 13,00 321,293 15,01 328,022 14,64
T2V-DLinear 298,052 12,98 327,494 13,37 324,737 15,49
Transformer 297,550 13,13 322,429 14,71 330,681 13,94
T2V-Transformer 287,613 16,03 310,545 17,85 316,146 17,73
Flowformer 208,385 12,88 322,098 14,80 326,549 15,02
T2V-Flowformer 296,478 13,44 320,958 15,10 327,351 14,81
Flashformer 295,377 13,76 321,323 15,00 329,660 14,21
T2V-Flashformer 291,201 14,98 315,353 16,58 320,213 16,67

Fonte: Autoria propria (2025).
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Observa-se que 0 modelo de Persisténcia apresenta valores nulos de IoR, uma vez
que este modelo é adotado como referéncia no célculo do indice de melhoria (IoR).
Assim, o IoR quantifica a melhoria relativa de cada modelo em relacdo a Persisténcia,
resultando, por definicdo, em valor zero para o proprio modelo de referéncia.

De acordo com a Tabela 12, os modelos T2V-Flashformer e T2V-Flowformer
alcancaram consistentemente o melhor desempenho em todos os horizontes de previséo
e métricas de avaliacdo. Para as metricas MAE e loR-MAE, o T2V-Flashformer produziu
os melhores resultados, com valores de loR-MAE de 18,23% para o horizonte de 6 horas
e 23,89% para o horizonte de 10 horas, enquanto o T2V-Flowformer seguiu de perto com
17,98% e 23,74% para 0s mesmos horizontes, respectivamente. No horizonte de 12 horas,
0 T2V-Flowformer e o T2V-Flashformer registraram valores de Io0R-MAE de 24,47% e
24,37%, respectivamente. Notavelmente, esses dois modelos foram os Unicos a exceder
23% de IoR-MAE no horizonte de 10 horas e 24% no horizonte de 12 horas. No horizonte
de previséo de 12 horas, 0s modelos ARIMA, MLP, LSTM e DLinear alcangaram valores
de IoR-MAE de 21,20%, 20,60%, 19,09% e 20,75%, respectivamente. Para as métricas
RMSE e IoR-RMSE, o T2V-Flashformer obteve o melhor desempenho no horizonte de
6 horas, com um loR-RMSE de 22,88%, seguido pelo T2V-Flowformer com 22,49%.
Para os horizontes de 10 e 12 horas, o T2V-Flowformer superou todos os outros modelos,
registrando valores de Io0R-RMSE de 27,64% e 27,84%, respectivamente, enquanto o
T2V-Flashformer obteve 27,34% e 27,45% para 0s mesmos horizontes. Os modelos
ARIMA, MLP, LSTM e DLinear apresentaram pior desempenho, com valores de
24,24%, 23,67%, 23,73% e 23,35% no horizonte de 10 horas, e 23,75%, 23,23%, 23,15%
e 23,06% no horizonte de 12 horas, respectivamente. Conforme mostrado na Tabela 12,
tanto o T2V-Flowformer quanto o T2V-Flashformer provaram ser os modelos mais
adequados para o Cenario B.

De acordo com a Figura 22, no Cenario B, o periodo de teste apresenta valores de
poténcia eolica mais elevados, com picos mais frequentes e intensos. 1sso indica maior
variabilidade e magnitude nos dados a serem previstos, aumentando a complexidade da
tarefa de previsdo. Consequentemente, os modelos apresentam valores maiores de erro
absoluto (MAE) e erro quadratico médio (RMSE) neste cenario em comparagao ao
Cenério A. No entanto, conforme demonstrado nas Tabelas 11 e 12, os valores de l10R-
MAE e Io0R-RMSE para os modelos avaliados neste estudo séo consistentemente maiores
no Cenario B. Isso sugere que, apesar do aumento dos erros absolutos devido as condi¢des

de teste mais desafiadoras, os modelos propostos superam o modelo de Persisténcia por
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uma margem maior. Portanto, as meétricas de IoR mais altas no Cenario B destacam a

robustez e a eficicia dos modelos em condic¢Bes de previsdo mais exigentes.

Tabela 12 - Comparacéo do desempenho do modelo para diferentes horizontes de previséo
(Cenério B)

MAE (kW) / IoR — MAE (%)

Modelo
6h 10 h 12h

Persisténcia 472842 0 534238 0 539987 0
ARIMA 391,420 17,22 420,801 21,23 425,504 21,20
MLP 401,633 15,05 422,769 20,86 428,720 20,60
T2V-MLP 399,556 15,06 421,157 21,16 425,582 21,18
LSTM 404,243 14,50 430,225 19,46 436,876 19,09
T2V-LSTM 406,040 14,12 430,061 19,50 427,028 20,91
DLinear 400,527 1529 423,949 20,64 427,896 20,75

T2V-DLinear 404,430 14,46 427,453 20,54 427,903 20,75
Transformer 402,317 14,91 427,499 19,90 433,263 19,76
T2V-Transformer 397,342 1597 425233 20,40 431,457 20,09

Flowformer 405,141 14,32 425,564 20,34 429,519 20,46
T2V-Flowformer 387,832 17,98 407,396 23,74 407,848 24,47
Flashformer 392,619 16,96 422,642 20,89 427,476 20,83

T2V-Flashformer 386,651 18,23 406,608 23,89 408,364 24,37

RMSE (kW) / IoR — RMSE (%)

Modelo
6h 10 h 12 h
Persisténcia 610,223 0 674,159 0 676,469 0
ARIMA 483,776 20,72 510,732 24,24 515,762 23,75
MLP 492236 19,33 514,570 23,67 519,293 23,25
T2V-MLP 496,024 18,71 513,812 23,78 514,389 23,95
LSTM 488,402 19,96 514,152 23,73 519,833 23,15
T2V-LSTM 497,665 18,44 521,738 22,60 516,666 23,62
DLinear 496,257 18,67 516,697 23,35 520,411 23,06

T2V-DLinear 496,896 18,57 514,842 23,63 517,046 23,56
Transformer 492,053 19,36 515,418 23,54 519,182 23,25
T2V-Transformer 484,898 20,54 512,338 24,00 519,001 23,28

Flowformer 492,491 19,29 512,717 23,95 511,864 24,33
T2V-Flowformer 472,943 22,49 487,814 27,64 488,135 27,84
Flashformer 481,754 21,05 511,446 24,13 514,838 23,89

T2V-Flashformer 470,586 22,88 489,812 27,34 490,786 27,45
Fonte: Autoria prépria (2025).

As Figuras 24 e 25 ilustram o desempenho dos modelos em diferentes horizontes
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de previsao, oferecendo uma visualizacdo abrangente das métricas MAE e RMSE. De
acordo com a Figura 24, para o Cenario A, é evidente que os modelos propostos
(especificamente T2V-Transformer e T2V-Flashformer) superaram os modelos de
referéncia, particularmente nos horizontes posteriores. Essa tendéncia é ainda mais
pronunciada no RMSE, onde o T2V-Transformer e o T2V-Flashformer demonstraram
consistentemente desempenho superior em quase todos os horizontes de previsdo, com a
diferenca de desempenho se tornando cada vez mais significativa além do horizonte de 4
horas.

De acordo com a Figura 25, para o Cenario B, os modelos propostos —
especificamente T2V-Flowformer e T2V-Flashformer — comegcam a superar
significativamente os modelos de benchmark ap6s o horizonte de 4 horas. Isso reflete
uma melhoria progressiva no desempenho da previsdo a medida que o horizonte de
previsdo aumenta. Embora no curtissimo prazo (por exemplo, horizonte 1) seu
desempenho possa inicialmente ficar atras dos modelos benchmark, como o modelo de
persisténcia, esse comportamento € provavelmente atribuivel a sua dependéncia da
codificacdo temporal via Time2Vec e mecanismos de atencao complexos, que sdo mais
eficazes na captura de dependéncias temporais latentes em horizontes ligeiramente mais
longos. Do horizonte trés em diante, no entanto, ambos os modelos exibem uma reducao
acentuada no erro de previsdo e superam consistentemente todos os modelos de base até
0 horizonte de 12 horas. Essas descobertas sugerem que as arquiteturas propostas sdo
particularmente adequadas para tarefas de previsdo de curto prazo envolvendo horizontes
de vérias horas, como os analisados neste estudo (ou seja, 6, 10 e 12 horas).

Analisando todos os modelos sem a adicdo de Time2Vec, observou-se que, para
0 Cenério A, o Flashformer demonstrou o melhor desempenho em termos da métrica
MAE em todos os horizontes. Para a métrica RMSE, o modelo com melhor desempenho
nos horizontes de 6, 10 e 12 horas foi 0 MLP. Flashformer, DLinear e Flowformer foram
outros modelos com bons desempenhos nos horizontes de 6, 10 e 12 horas. No Cenario
B, o Flashformer superou os demais modelos para a métrica MAE nos horizontes de 6,
10 e 12 horas. Para a mesma métrica, DLinear foi o segundo melhor desempenho nos
horizontes de 6 a 12 horas, enquanto o MLP ficou em segundo lugar em 10 horas. Em
relacdo a métrica RMSE, o Flashformer obteve o melhor desempenho nos horizontes de
6 e 10 horas, enquanto o Flowformer teve o melhor desempenho em 12 horas.
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Figura 24 - Visualizacdo das métricas de avaliacdo para diferentes horizontes de previsao da
poténcia edlica, para cada modelo avaliado neste estudo. MAE na parte superior, RMSE na parte inferior
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Figura 25 - Visualizagdo das métricas de avaliacdo para diferentes horizontes de previsao da
poténcia edlica, para cada modelo avaliado neste estudo. MAE na parte superior, RMSE na parte inferior
(Cenério B)
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5.1.1 Discussao Fisica dos Erros de Previsao

Além da andlise quantitativa baseada nas métricas MAE, RMSE, [oR-MAE ¢ IoR-
RMSE, ¢ fundamental interpretar os erros a luz da fisica do processo de geragdo de
energia eolica. A poténcia gerada por turbinas eolicas ¢ fortemente influenciada por
variacoes rapidas da velocidade do vento, especialmente durante eventos de rampa de
subida e descida de poténcia, os quais representam um dos maiores desafios para modelos
de previsao de curto prazo. As Figuras 26 e 27 apresentam os trés modelos propostos
neste trabalho em comparacdo com a poténcia edlica observada no Estudo de Caso 1,
considerando, respectivamente, os Cendrios A e B. Ambas as figuras apresenta uma janela

representativa de 24 horas.

De acordo com a Figura 26, observa-se que os maiores desvios entre as séries
ocorrem predominantemente durante eventos de rampa de descidas e subidas bruscas de
poténcia, especialmente no periodo entre aproximadamente 12:00 as 16:00 horas. Nessas
situacdes, a poténcia real apresenta variagdes abruptas e de alta frequéncia, associadas a
mudancas rapidas nas condigdes do vento e ao aumento da turbuléncia atmosférica,
fendomenos intrinsecamente dificeis de antecipar em horizontes de curto prazo. Os
modelos tendem a subestimar a poténcia, evidenciando uma limitagdo na captura da
inclinagdo negativa acentuada das rampas. Por outro lado, os modelos foram capazes de
capturar o comportamento de tendéncia da série temporal ao longo da janela de tempo
analisada, ainda que com pequenas defasagens temporais. Assim, os resultados
evidenciam que os erros de previsdo estdo mais fortemente associados aos eventos de
descidas e subidas abruptas de poténcia, os quais representam o principal fator limitante

para a reducao dos erros em aplicacdes operacionais de curto prazo.

De acordo com a Figura 27, observa-se que os maiores desvios entre as séries
ocorrem predominantemente durante os eventos de descidas e subidas abruptas de
poténcia, comportamento andlogo ao observado no Cenario A. Embora os modelos
consigam capturar adequadamente a tendéncia geral da série temporal, verifica-se a
ocorréncia de maiores erros nos instantes associados a variagdes rapidas da geragdo
edlica, especialmente durante quedas acentuadas de producgdo. Esse comportamento esta
relacionado a mudangas abruptas nas condi¢des do vento, como o aumento da turbuléncia
e a perda de persisténcia temporal, fendmenos intrinsecamente dificeis de antecipar em

horizontes de curto prazo.
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Figura 26 - Poténcia edlica observada e prevista em uma janela de 24 horas do Estudo de Caso 1
(Cenério A), entre 3 e 4 de marco de 2020
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Fonte: Autoria propria (2025).

Figura 27 - Poténcia edlica observada e prevista em uma janela de 24 horas do Estudo de Caso 1
(Cenério B), entre 25 e 26 de outubro de 2020
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5.1.2 Impacto da integracio do Time2Vec no desempenho dos modelos (Estudo de

Caso 1)

Em geral, a adi¢cdo do Time2Vec melhorou o desempenho dos modelos, conforme
ilustrado na Tabela 13 para os Cenarios A e B. Os valores sao expressos em porcentagens,
com numeros negativos indicando que a adi¢éo de Time2Vec ndao melhorou os modelos.
Para o Cenéario A, melhorias foram observadas em quase todos 0s horizontes e métricas
dos X-formers. Notavelmente, o Transformador T2V demonstrou ganhos significativos
nos horizontes de 6, 10 e 12 horas, alcancando uma melhoria de 4,56%, 4,47% e 4,80%
em relacdo ao Transformador em MAE e 3,34%, 3,69% e 4,40% em RMSE,
respectivamente. O T2V-Flowformer superou o Flowformer, com uma melhoria de
1,92%, 2,30% e 0,88% no MAE nos horizontes de 6, 10 e 12 horas. O T2V-Flashformer
apresentou melhorias consistentes em todos o0s horizontes e métricas, com uma melhoria
de 2,87% no RMSE no horizonte de 12 horas em comparacdo com o Flashformer. Em
comparacdo com os modelos de referéncia, os ganhos foram menos pronunciados. No
entanto, algumas melhorias foram observadas em horizontes e métricas especificos. Por
exemplo, 0 T2V-MLP superou 0 MLP nos horizontes de 10 e 12 horas na métrica MAE,
com melhorias de 1,75% e 1,70%, respectivamente. Por outro lado, para a métrica RMSE,
0 MLP superou consistentemente o T2V-MLP em todos os horizontes. O T2V-LSTM
apresentou desempenho superior ao LSTM em todos os horizontes da métrica RMSE. Da
mesma forma, o T2V-DLinear superou o DLinear no horizonte de 12 horas, tanto na
métrica MAE quanto na RMSE.

De acordo com a Tabela 13, para o Cenario B, a adi¢do do Time2Vec melhorou
todos os formadores de X. O T2V-Flashformer apresentou melhorias consistentes em
relagdo ao Flashformer em todas as métricas e horizontes, particularmente na métrica
MAE, com ganhos de 3,79% e 4,47% nos horizontes de 10 e 12 horas, respectivamente.
Para a métrica RMSE, as melhorias foram de 2,32%, 4,23% e 4,67% nos horizontes de 6,
10 e 12 horas, respectivamente. Da mesma forma, o T2V-Flowformer superou
consistentemente o Flowformer de referéncia em todas as métricas de avaliacdo e
horizontes de previsdo. Nos horizontes de 6, 10 e 12 horas, obteve melhorias notaveis,
com redugdes no MAE de 4,27%, 4,27% e 5,05%, e no RMSE de 3,97%, 4,86% e 4,96%,
respectivamente. Para os modelos de referéncia, as melhorias com a inclusdo do

Time2Vec foram menos pronunciadas, mas ainda presentes. O T2V-MLP superou
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consistentemente 0 MLP padréo em termos de MAE em todos os horizontes de previsao,
e também em RMSE, exceto no horizonte de 6 horas. O T2V-LSTM apresentou uma
melhora notavel em relagdo ao LSTM no horizonte de 12 horas para a métrica MAE
(2,25%). Em contraste, a integracdo do Time2Vec ao modelo DLinear ndo resultou em
ganhos significativos.

A incorporagdo do Time2Vec resultou em ganhos significativos de desempenho,
especialmente para arquiteturas X-former, evidenciando uma sinergia estrutural entre
embeddings temporais e modelos baseados em atencdo. Arquiteturas X-former dependem
inerentemente de codificacfes temporais ou posicionais para modelar dependéncias
sequenciais por meio de mecanismos de atencdo. O Time2Vec aprimora esse processo ao
fornecer uma representacdo continua, diferenciavel e periddica do tempo, o que aumenta
a capacidade do modelo de capturar dindmicas temporais além das codificacGes
posicionais fixas. Essa incorporacdo temporal enriquecida permite que o mecanismo de
atencdo alinhe as relacbes temporais de forma mais eficaz, aprimorando assim a
modelagem de dependéncia de curto e longo prazo. Em contraste, modelos como MLP,
LSTM e DLinear aprendem padrdes temporais principalmente por meio de recorréncia
interna, convolucdo ou projecdo linear, sem depender de incorporagbes temporais
explicitas. Consequentemente, eles sdo menos capazes de explorar a riqueza
representacional introduzida pelo Time2Vec, o que provavelmente explica as menores
melhorias de desempenho observadas em comparagdo com os modelos X-formers.

Os resultados apresentados nesta secdo demonstram que modelos baseados em
Transformer — particularmente aqueles aprimorados com Time2Vec — sédo altamente
eficazes para a previsdo de energia eo6lica, superando consistentemente modelos
estabelecidos na literatura em multiplos horizontes de previsdo. No Cenério A, 0s
modelos T2V-Transformer e T2V-Flashformer superaram todos os modelos de referéncia
(MLP, LSTM, DLinear, T2V-MLP, T2V-LSTM e T2V-DLinear) em praticamente todas
as métricas e horizontes avaliados. No Cenario B, os modelos T2V-Flowformer e T2V-
Flashformer também superaram os modelos de referéncia, confirmando sua robustez e

preciséo preditiva, conforme discutido ao longo desta tese.



96

Tabela 13 - Melhorias com a adi¢do do Time2Vec
Cenario A
MAE RMSE
Modelo 6h 10h 12h 6h 10h 12h
MLP 222349 245,996 254,032 294,207 318,141 326,291
T2V-MLP 222947 241,690 249,697 297,990 324,162 330,686
Melhoria (%) -0,27 1,75 1,70 -1,29 -1,89 -1,35
LSTM 225,592 248,002 250,645 299,486 325,241 331,262
T2V-LSTM 218,730 249,981 252,356 293,626 320,027 326,267
Melhoria (%) 3,04 -0,80 -0,68 1,96 1,60 1,51
DLinear 218,137 239,555 250,375 297,971 321,293 328,022
T2V-DLinear 213,386 257,894 246,195 298,052 327,494 324,737
Melhoria (%) 2,18 -7,66 1,67 -0,03 -1,93 1,00
Transformer 224,325 244365 254,115 297,550 322,429 330,681
T2V-Transformer 214,096 233,430 241,911 287,613 310,545 316,146
Melhoria (%) 4,56 4,47 4,80 3,34 3,69 4,40
Flowformer 223,979 244266 249242 298,385 322,098 326,549
T2V-Flowformer 219,680 238,644 247,056 296,478 320,958 327,351
Melhoria (%) 1,92 2,30 0,88 0,64 0,35 -0,25
Flashformer 215,573 235,273 246,213 295,377 321,323 329,660
T2V-Flashformer 214,368 235,402 242,598 291,201 315,353 320,213
Melhoria (%) 0,56 -0,05 1,47 1,41 1,86 2,87
Cenario B
MAE RMSE
Modelo 6h 10h 12h 6h 10h 12h
MLP 401,633 422,769 428,720 492,236 514,570 519,293
T2V-MLP 399,556 421,157 425,582 496,024 513,812 514,389
Melhoria (%) 0,52 0,38 0,73 -0,77 0,15 0,94
LSTM 404,243 430,225 436,876 488,402 514,152 519,833
T2V-LSTM 406,040 430,061 427,028 497,665 521,738 516,666
Melhoria (%) -0,44 0,04 2,25 -1,90 -1,48 0,61
DLinear 400,527 423,949 427,896 496,257 516,697 520,411
T2V-DLinear 404,430 427,453 427,903 496,896 514,842 517,046
Melhoria (%) -0,97 -0,83 -0,01 -0,13 0,36 0,65
Transformer 402,317 427,499 433,263 492,053 515,418 519,182
T2V-Transformer 397,342 425233 431,457 484,898 512,338 519,001
Melhoria (%) 1,24 0,53 0,42 1,45 0,60 0,03
Flowformer 405,141 425,564 429,519 492491 512,717 511,864
T2V-Flowformer 387,832 407,396 407,848 472,943 487,814 488,135
Melhoria (%) 4,27 4,27 5,05 3,97 4,86 4,64
Flashformer 392,619 422,642 427,476 481,754 511,446 514,838
T2V-Flashformer 386,651 406,608 408,364 470,586 489,812 490,786
Melhoria (%) 1,52 3,79 4,47 2,32 4,23 4,67

Fonte: Autoria prépria (2025).
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5.2 Estudo de Caso 2

De acordo com a Tabela 14, é possivel verificar o desempenho de cada modelo no
Estudo de Caso 2. Para as metricas MAE e lIoR-MAE, o modelo que apresentou o0 melhor
desempenho no horizonte de 6 horas foi o Transformer, seguido pelos modelos T2V-
Flowformer e T2V-Transformer, com valores de IoR-MAE de 57,55%, 56,42% e
56,06%, respectivamente. Nos horizontes de 10 e 12 horas, os melhores resultados foram
obtidos pelos modelos T2V-Transformer, T2V-Flashformer e T2V-Flowformer, cujos
IoR-MAE foram de aproximadamente 65,82%, 65,42% e 65,25% para 10 horas, e
66,80%, 66,62% e 66,39% para 12 horas.

Considerando as métricas RMSE e l1o0R-RMSE, o modelo Transformer também
apresentou o melhor desempenho no horizonte de 6 horas, seguido pelos modelos T2V-
Flashformer e T2V-Flowformer, com valores de I0R-RMSE de 54,25%, 53,86% e
53,42%, respectivamente. Para os horizontes de 10 e 12 horas, os modelos com melhor
desempenho foram o T2V-Flashformer e o T2V-Flowformer, com 1o0R-RMSE de 60,97%
e 60,79% para 10 horas, e 61,76% e 61,14% para 12 horas, respectivamente.

De acordo com a Tabela 14, observa-se que os modelos propostos superaram
praticamente todos os modelos de benchmark, com exce¢do do Transformer no horizonte
de 6 horas. Para os horizontes de 10 e 12 horas, os modelos propostos apresentaram 0s
melhores resultados. Assim, de forma geral, demonstraram maior consisténcia em todos
os horizontes analisados, sendo, portanto, mais indicados para a previsdo de poténcia
edlica no Estudo de Caso 2.

A Figura 28 apresenta uma viséo detalhada do desempenho de todos os modelos
ao longo dos diferentes horizontes, corroborando a conclusdo de que os modelos
propostos sdo os mais adequados, por apresentarem resultados superiores e consistentes

no Estudo de Caso 2.
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Tabela 14 - Comparacgéo do desempenho dos modelos para diferentes horizontes de previsdo
(Estudo de Caso 2)

MAE / IoR — MAE (%)

Modelo
6h 10 h 12h

Persisténcia 8.840 0 11.620 0 11.897 0
ARIMA 4530 48,75  4.582 60,56 4546 61,78
MLP 4051 54,17  4.349 62,56 4614 61,21
T2V-MLP 3.992 5484 4255 63,37 4422 62,82
LSTM 4.146 53,09  4.467 61,55 4.573 61,55
T2V-LSTM 4162 52,91 4.428 61,89 4592 61,39
DLinear 4349 50,80  4.337 62,67 4342 63,49
T2V-DLinear 4394 50,28  4.397 62,49 4274 64,07
Transformer 3752 5755  4.115 64,58 4439 62,68
T2V-Transformer  3.870 56,06  3.971 65,82 3.948 66,80
Flowformer 4090 53,73  4.207 63,79 4.146 65,14
T2V-Flowformer 3852 56,42  4.037 65,25 3.998 66,39
Flashformer 4061 54,06  4.235 63,55 4.255 64,23

T2V-Flashformer 3896 5592 4.017 65,42 3.971 66,62

RMSE / IoR — RMSE (%)

Modelo
6h 10 h 12 h

Persisténcia 11.135 0 13.509 0 13.720 0
ARIMA 5.583 49,85 5.628 58,33 5.596 59,21
MLP 5.334 52,09 5.746 57,46 5.995 56,30
T2V-MLP 5.178 53,50 5.427 59,82 5.565 59,43
LSTM 5.318 52,24 5.575 58,72 5.646 58,84
T2V-LSTM 5.343 52,01 5.621 58,39 5.806 57,68
DLinear 5.482 50,77 5.462 59,56 5.468 60,14

T2V-DLinear 5.509 50,52 5.462 59,56 5.381 60,77
Transformer 5.094 54,25 5.467 59,52 5.933 56,75
T2V-Transformer  5.261 52,75 5.321 60,61 5.396 60,67
Flowformer 5.348 51,96 5.452 59,63 5.422 60,48
T2V-Flowformer 5,186 53,42 5.296 60,79 5.331 61,14
Flashformer 5.318 52,24 5.549 58,92 5.616 59,06
T2V-Flashformer 5,136 53,86 5.273 60,97 5.245 61,76

Fonte: Autoria propria (2025).
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Figura 28 - Visualizagdo das métricas de avaliagdo para diferentes horizontes de previséo de
poténcia eolica, para cada modelo avaliado neste estudo. MAE na parte superior, RMSE na parte inferior
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Fonte: Autoria propria (2025).
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5.2.1 Discussao Fisica dos Erros de Previsao

Para a discussao fisica dos erros de previsdao do Estudo de Caso 2, a Figura 29
apresenta os trés modelos propostos neste trabalho em comparacdo com a poténcia edlica
real. Por meio dela observa-se que os maiores desvios entre as previsdes € a série
observada ocorrem predominantemente durante os eventos de rampa de descida de
poténcia. Nessas situacdes, a poténcia eodlica real apresenta redugdes abruptas associadas
a mudangcas rapidas nas condig¢des do vento, como a passagem de frentes atmosféricas ou
a intensificagdo da turbuléncia, fendmenos que sdo intrinsecamente dificeis de antecipar
com precisdo em horizontes de curto prazo. Os modelos propostos tendem a apresentar
uma superestimagdo temporaria da poténcia durante os periodos de queda acentuada,
como observado apds as 04:00 horas e no intervalo entre 08:00 e 12:00 horas, conforme

ilustrado na Figura 29.

Por outro lado, durante as rampas de subida de poténcia, observa-se que os
modelos conseguem capturar de forma mais consistente a tendéncia de crescimento da
geracgdo, ainda que com pequenas defasagens temporais, como observado apds as 16:00
horas. Esse comportamento indica que a informacao historica disponivel € suficiente para
antecipar aumentos graduais da velocidade do vento, enquanto as quedas abruptas
impdem maiores limitagdes preditivas devido a natureza estocéstica e altamente ndo

linear do escoamento atmosférico.

Como conclusdo, observa-se que a maior concentracdo de erro permanece
associada aos eventos de descida rapida de poténcia, evidenciando que tais eventos
representam o principal fator limitante para a reducdo dos erros de previsdo em curto
prazo. Esses resultados corroboram a interpretagao fisica do problema e reforcam que o
desempenho dos modelos ndo deve ser avaliado apenas por métricas globais, mas também
pela sua capacidade de acompanhar dinamicamente as rampas de poténcia, aspecto
crucial para aplicagdes operacionais e para o gerenciamento de sistemas elétricos com

elevada penetragao de energia eolica.
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Figura 29 - Poténcia edlica observada e prevista em uma janela de 24 horas do Estudo de Caso 2,
entre 27 e 28 de setembro de 2020
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Fonte: Autoria propria (2025).

5.2.2 Impacto da integracio do Time2Vec no desempenho dos modelos (Estudo de

Caso 2)

De forma anéloga ao Estudo de Caso 1, a adicdo do Time2Vec melhorou o
desempenho dos modelos de forma geral, conforme ilustrado na Tabela 15. Os valores
sdo expressos em porcentagens, com numeros negativos indicando que a adi¢do de

Time2Vec nao melhorou os modelos.

Para os X-formers, a incorporacdo do Time2Vec resultou em ganhos mais
expressivos no Flashformer, com melhorias de 5,15% e 6,67% nos horizontes de 10 e 12
horas para a métrica MAE, e de 4,97% ¢ 6,61% para a métrica RMSE nos respectivos
horizontes. No caso do Flowformer, as maiores melhorias ocorreram nos horizontes de 6
e 10 horas, alcangando 5,82% e 4,04% para MAE, e 3,03% e 2,86% para RMSE. J4 o
Transformer apresentou o maior ganho entre todos os modelos no horizonte de 12 horas,
com melhorias de 11,06% e 9,05% para as métricas MAE e RMSE, respectivamente.

Para os modelos de benchmark, e melhoria foi mais acentuada no modelo MLP,
com valores de 4,16% e 7,17% no horizonte de 12 horas para as métricas MAE e RMSE,

respectivamente. Para o modelo LSTM, a adi¢do do Time2Vec no geral ndo foi positiva.
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Ja para o DLinear, houve uma pequena melhoria para os horizontes finais, mas nada tao
acentuado em comparagdo com os X-formers.

Assim como no Estudo de Caso 1, a incorporagdo do Time2Vec resultou em
ganhos significativos de desempenho, especialmente nas arquiteturas X-former,
evidenciando uma sinergia estrutural entre as codificacdes temporais € 0s mecanismos de
atencdo. No Estudo de Caso 2, esse comportamento reforca as conclusdes apresentadas
na Secdo 5.1.2. Conforme discutido anteriormente, nas arquiteturas X-former, a
representacao temporal ¢ fundamental para capturar relagdes de dependéncia entre
instantes da série. O Time2Vec aprimora esse processo ao introduzir uma codificagao
continua e aprendivel do tempo, permitindo que o modelo identifique padrdes temporais
com maior precisdo. Dessa forma, sua utilizagdo mostra-se altamente recomendavel em

arquiteturas baseadas em atencao.

Tabela 15 - Melhorias com a adi¢do do Time2Vec (Estudo de Caso 2)

Modelo MAE RMSE

6h 10h 12h 6h 10h 12h
MLP 4,051  4.349 4.614 5334 5746  5.995
T2V-MLP 3.992  4.255 4.422 5178 5427 5565
Melhoria (%0) 1,46 2,16 4,16 2,92 5,55 7,17
LSTM 4,146  4.467 4,573 5318 5575 5.646
T2V-LSTM 4162 4428 4.592 5343 5.621 5.806
Melhoria (%0) -0,39 0,87 -0,42 -0,47 -0,83 -2,83
DLinear 4,349  4.337 4.342 5482 5462  5.468
T2V-DLinear 4394  4.397 4.274 5509 5462 5.381
Melhoria (%0) -1,03 -1,38 1,57 -0,49 0,00 1,59
Transformer 3.752 4115 4.439 5.094 5467  5.933
T2V-Transformer 3.870 3.971 3.948 5.261 5.321 5.396
Melhoria (%0) -3,14 3,50 11,06 -3,28 2,67 9,05
Flowformer 4.090 4.207 4.146 5.348 5.452 5.422
T2V-Flowformer 3.852  4.037 3.998 5.186 5.296 5.331
Melhoria (%) 5,82 4,04 3,57 3,03 2,86 1,68
Flashformer 4061 4.235 4.255 5.318 5.549 5.616
T2V-Flashformer 3.896  4.017 3.971 5136  5.273  5.245
Melhoria (%) 4,06 5,15 6,67 3,42 4,97 6,61

Fonte: Autoria propria (2025).
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5.3 Analise comparativa entre o Estudos de Caso 1 e 2

Como demonstrado nas Seg¢oes 5.1 (Tabelas 11 e 12) e 5.2 (Tabela 14), observa-
se uma diferenca significativa entre as melhorias obtidas em relagdo ao modelo de
Persisténcia nos dois estudos de caso. Considerando o IoR-RMSE como referéncia, no
Estudo de Caso 1 os ganhos situaram-se na faixa de 15% a aproximadamente 17% para o
Cenario A, e de 23% a aproximadamente 28% para o Cenario B. No Estudo de Caso 2,
as melhorias variaram entre 56% e aproximadamente 62%. Essa discrepancia indica que
os modelos propostos apresentaram um desempenho substancialmente superior no Estudo
de Caso 2. Essa diferenca pode estar associada a fatores intrinsecos de cada conjunto de
dados, como as caracteristicas do regime de ventos, o nivel de variabilidade temporal e a
qualidade das medi¢cdes SCADA, que influenciam diretamente a previsibilidade da série

temporal.

Além disso, o Estudo de Caso 2, por se referir a uma usina e6lica composta por
varias turbinas, tende a apresentar menor variabilidade relativa e maior estabilidade na
curva de poténcia agregada, o que favorece a aprendizagem dos padrdes pelos modelos
baseados em deep learning. Esse comportamento decorre do chamado efeito de
agregacao, no qual as flutuagdes individuais de poténcia entre as turbinas se compensam

parcialmente, resultando em uma série temporal mais suave e previsivel.

Em sintese, enquanto o Estudo de Caso 1 evidencia um ganho moderado em
relagdo a persisténcia, o Estudo de Caso 2 demonstra uma melhoria expressiva e
consistente, reforgando a robustez e a capacidade de generalizagdo dos modelos propostos

em cenarios com maior estabilidade operacional e qualidade de dados.

Para uma comparagdo mais equitativa entre os Estudos de Caso 1 e 2 existem as
métricas nMAE e nRMSE, que permitem normalizar os erros em relagdo a poténcia
nominal, tornando a avaliagdo independente da escala absoluta de cada sistema e6lico.
Dessa forma, as Equagdes (19) e (20) apresentam as expressdes utilizadas para o calculo

dessas métricas.

nMAE =2yn i3l 1009, (19)

1
n Pnom

5\ 2
nRMSE = |~y (222)" x 100% (20)

nom
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Onde B, para o Estudo de Caso 1 vale 2.300 kW e 29,7 MW para o Estudo de Caso 2.
A Tabela 16 apresenta os resultados para as métricas nMAE e nRMSE dos modelos deste
estudo, para ambos os Estudos de Caso. De forma andloga ao MAE e ao RMSE, as
métricas nMAE e nRMSE apresentam melhor desempenho quando assumem valores
menores. Para fins de simplificagdo, considerou-se o horizonte de 12 horas como

referéncia.

A Tabela 16 apresenta uma comparagdo mais equitativa entre os Estudos de Caso
1 e 2. Observa-se que os valores das métricas estdo mais proximos entre si, uma vez que
a normalizagdo padroniza os resultados, eliminando o efeito das diferentes poténcias

nominais de cada caso.

Tabela 16 - Valores de nMAE e nRMSE para os modelos avaliados no Estudo de Caso 1
(Cenério A e B) e Estudo de Caso 2, considerando o horizonte de previsdo de 12 horas

NMAE (%) NRMSE (%)

Modelo Estu,d.o de Casp 1 Estudo de Estu,d_o de Casp 1 Estudode

Cenario  Cenario Caso 2 Cenario  Cenario Caso 2
A B A B

Persisténcia 12,16 23,47 40,05 16,70 29,41 46,20
ARIMA 11,41 18,50 15,30 14,47 22,42 18,84
MLP 11,04 18,64 15,54 14,18 22,57 20,18
T2V-MLP 10,85 18,50 14,89 14,37 22,36 18,74
LSTM 10,89 18,99 15,40 14,40 22,60 19,01
T2V-LSTM 10,97 18,56 15,46 14,18 22,46 19,55
DLinear 10,88 18,60 14,62 14,26 22,62 18,41
T2V-DLinear 10,70 18,60 14,39 14,12 22,48 18,12
Transformer 11,04 18,83 14,94 14,37 22,57 19,98
T2V-Transformer 10,51 18,76 13,29 13,74 22,56 18,17
Flowformer 10,83 18,67 13,96 14,19 22,25 18,26
T2V-Flowformer 10,74 17,73 13,46 14,23 21,22 17,95
Flashformer 10,70 18,58 14,33 14,33 22,38 18,91
T2V-Flashformer 10,54 17,75 13,37 13,92 21,33 17,66

Fonte: Autoria propria (2025).

Para a métrica nMAE, os modelos T2V-Transformer, T2V-Flowformer e T2V-
Flashformer apresentaram respectivamente 10,51%, 10,74% e 10,54% para o Cenario A;

18,76%, 17,73% e 17,75% para o Cenario B; e 13,29%, 13,46% e 13,37% para o Estudo
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de Caso 2. J& para a métrica nRMSE, os modelos apresentaram respectivamente 13,74%,
14,23%, 13,92% para o Cenario A, 22,56%, 21,22% e 21,33% para o Cenario B; ¢
18,17%, 17,95% e 17,66% para o Estudo de Caso 2.

Em todos os cendrios avaliados, esses valores ndo apenas superam de forma
consistente os demais modelos, mas o fazem com estabilidade e regularidade ao longo de
praticamente todo o horizonte de previsdo. Embora as diferengas em relacdo a modelos
de referéncia como ARIMA, MLP, LSTM e DLinear variem entre 1% e 3%, esse intervalo
¢ altamente expressivo quando traduzido para a escala operacional dos sistemas
estudados.

No Estudo de Caso 2, por exemplo, uma diferenca de apenas 1% em nRMSE
corresponde a aproximadamente 297 kW de erro evitado em uma usina com poténcia
nominal de 29,7 MW. J4 uma diferenca de 3% representa cerca de 891 kW — quase 1
MW de erro a menos em cada horizonte de 12 horas. Como essas previsdes sdo realizadas
continuamente, essa reducao de erro tende a se acumular ao longo do tempo, resultando
em um ganho substancial de precisdo operacional, com impacto direto na gestdo
energética e no planejamento da producdo. Em ambientes operacionais onde decisdes de
despacho, compra e venda de energia e planejamento de manutencdo dependem de
estimativas confiaveis, essa melhoria se traduz em economia direta, melhor alocagdo de
recursos € maior previsibilidade da geragao.

Com o objetivo de avaliar a robustez estatistica dos resultados obtidos nos Estudos
de Caso 1 e 2, cada modelo proposto foi treinado e avaliado em 10 execucdes
independentes, utilizando diferentes seeds aleatorias. A Tabela 17 apresenta a média e o
desvio padrao da métrica [oR-RMSE obtidos a partir dessas multiplas execucdes para os
modelos avaliados no Estudo de Caso 1 (Cenarios A ¢ B) e no Estudo de Caso 2,
considerando um horizonte de previsdo de 12 h. Observa-se que o maior desvio padrao
ocorreu para o modelo T2V-Flowformer no Estudo de Caso 1 (Cenério B), com valor de
12,29, enquanto o menor foi observado para o T2V-Transformer no mesmo cenario, com
+0,47. De modo geral, os valores reduzidos de desvio padrdo indicam estabilidade dos
modelos frente a variacao das inicializagoes aleatdrias, evidenciando a robustez estatistica

das abordagens propostas.
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Tabela 17 - Média + desvio padrdo do lo0R-RMSE obtidos a partir de 10 execucdes
independentes para os modelos avaliados nos Estudos de Caso 1 (Cenérios A e B) e Estudo de Caso 2,
considerando horizonte de 12 h

Estudode Caso 1 Estudo de Caso 1

Modelo (Cenério A) (Cenario B) Estudo de Caso 2
T2V-Transformer 15,88 +1,71 23.53+0.47 60,17 + 0,81
T2V-Flowformer 13,58 + 1,22 25.63 £ 2.29 59,94 + 1,40
T2V-Flashformer 16,68 + 1,01 2491 +£1.98 60,06 + 1,15

Fonte: Autoria préopria (2025).

Para verificar se as melhorias observadas em relacao ao modelo de Persisténcia
sdo estatisticamente significativas, aplicaram-se o #-test pareado e o teste ndo paramétrico
de Wilcoxon sobre os valores da métrica RMSE, para todas as 10 seeds aleatdrias obtidas
nos experimentos realizados, considerando os trés contextos avaliados — Estudo de Caso
1 (Cenario A e Cenario B) e Estudo de Caso 2.

Para verificar se as melhorias observadas em relacao ao modelo de Persisténcia
sdo estatisticamente significativas, aplicaram-se o z-test pareado e o teste ndo paramétrico
de Wilcoxon sobre os valores agregados da métrica RMSE (um valor por execucao),
obtidos a partir das 10 seeds aleatdrias realizadas nos experimentos, considerando os trés
contextos avaliados — Estudo de Caso 1 (Cenario A e Cenario B) e Estudo de Caso 2. O
t-test pareado foi utilizado para comparar as médias das diferencas entre os resultados de
cada modelo e o modelo de Persisténcia. Ja o teste de Wilcoxon, de natureza nao
paramétrica, foi aplicado de forma complementar, dispensando o pressuposto de
normalidade e avaliando a significancia das diferencas com base nos postos ordenados
das observagdes. A aplicagdo combinada de ambos os testes aumenta a robustez da
analise, garantindo consisténcia mesmo diante de possiveis desvios de normalidade nos
dados. Os testes estatisticos foram implementados com a biblioteca SciPy do Python
(scipy.stats.ttest_rel e scipy.stats.wilcoxon), considerando um nivel de significancia de
5% (p < 0,05).

De acordo com a Tabela 18, observa-se que, no Estudo de Caso 2, os trés modelos
propostos apresentaram valores de p muito proximos tanto no z-test pareado quanto no
teste de Wilcoxon. Esse comportamento decorre do grande tamanho do efeito observado

em relacao ao modelo de Persisténcia, aliado a baixa variabilidade entre as execucoes, o
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que conduz a saturagdo dos valores de p abaixo ou préximo do limiar de 0,001 no teste
paramétrico e a valores muito proximos no teste ndo paramétrico. Assim, a coincidéncia
dos resultados nao indica equivaléncia de desempenho entre os modelos, mas sim que
todos apresentam melhorias estatisticamente significativas e robustas em relagao ao
modelo de Persisténcia. Além disso, a consisténcia entre os resultados dos dois testes
reforca a confiabilidade das conclusdes, comprovando que as melhorias observadas
refletem ganhos reais de desempenho. Resultados semelhantes entre o #-test € o teste de
Wilcoxon também sao relatados em cenarios onde as diferengas entre pares sao
homogéneas ¢ de mesma dire¢do (FAY; PROSCHAN, 2010; MEEK; OZGUR;
DUNNING, 2007).

Conforme evidenciado na Tabela 16, os modelos propostos (T2V-Transformer,
T2V-Flowformer e T2V-Flashformer) mantém o melhor desempenho, corroborando as

analises e conclusdes discutidas nas se¢des anteriores.

Tabela 18 - Valores de p obtidos nos testes estatisticos t-test e Wilcoxon aplicados a métrica
RMSE para os modelos avaliados nos Estudos de Caso 1 (Cenérios A e B) e Estudo de Caso 2,
considerando o horizonte de previsdo de 12 horas

Estudo de Caso 1

Estudo de Caso 2

Modelo Cenario A Cenéario B
p (t-test) p (Wilcoxon) p (t-test) p (Wilcoxon) p (t-test) p (Wilcoxon)
T2V-Transformer  <0.001 0.007 <0.001 0.002 <0.001 0.002
T2V-Flowformer ~ <0.001 0.007 0.026 0.026 <0.001 0.002
T2V-Flashformer  <0.001 0.001 0.021 0.021 <0.001 0.002

Fonte: Autoria propria (2025).

5.4 Analise comparativa de desempenho dos modelos, custo computacional e

escalabilidade

A Tabela 19 apresenta uma avaliacdo comparativa dos modelos de predigéo
utilizados neste estudo. Os modelos variam em sua sensibilidade a padrdes temporais,
com os X-formers geralmente exibindo uma alta capacidade de capturar tais
dependéncias. A adicdo do Time2Vec aumenta ainda mais essa sensibilidade, pois
codifica explicitamente informacgdes temporais. Neste estudo, os dados de series
temporais sdo alimentados diretamente em cada modelo. Embora o MLP n&o possua

memoria temporal inerente, 0 LSTM e o Transformer capturam dependéncias por meio
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de suas arquiteturas sequenciais — o LSTM por meio de sua memoria interna e o
Transformer por meio de mecanismos de auto atengéo, que se concentram dinamicamente
em passos de tempo relevantes. Os X-formers alavancam seus respectivos mecanismos
de atencédo para o aprendizado de representacdo temporal, enquanto o DLinear emprega
uma técnica de decomposicdo que auxilia na modelagem de séries temporais.

Em relacdo ao desempenho computacional, o tempo total de experimento para
cada modelo — compreendendo treinamento de mais de 100 tentativas e inferéncia
(geracao de predicdo) — foi medido usando as GPUs empregadas neste estudo, conforme
discutido na Secéo 4.6.

Para o Estudo de Caso 1, a GPU utilizada foi a Nvidia RTX A4000, com 16 GB
de VRAM. Conforme mostrado na Tabela 19, o T2V-Transformer teve o maior tempo de
experimento, aproximadamente 4 horas e 36 minutos para o Cenario A e 4 horas e 56
minutos para o Cenario B. Comparando os mecanismos de atencdo, FlowAttention e
FlashAttention apresentam custos computacionais menores que FullAttention,
demonstrando vantagens significativas tanto no Cenario A quanto no Cenario B. O
ARIMA teve o menor tempo de experimento, cerca de 24 minutos para o Cenario A e 28
minutos para o Cenario B. Pode-se observar que o Cenario B exigiu um pouco mais de
tempo para todos os modelos. Isso pode ser atribuido as diferencas no comportamento
temporal da série e as configuracdes de hiperparametros usadas. Modelos e dados com
padrdes temporais mais complexos normalmente requerem mais tempo de processamento
e treinamento.

Para o Estudo de Caso 2, a GPU utilizada foi a Nvidia RTX 4060 Ti, com 8 GB
de VRAM. De acordo com a Tabela 19, o T2V-Transformer apresentou 0 maior tempo
de experimento, com aproximadamente 3 horas e 3 minutos; seguido pelo Transformer
com aproximadamente 2 horas e 55 minutos. Como discutido no paragrafo anterior, 0s
mecanismos FlowAttention e FlashAttention demonstraram mais vantajosos neste
quesito especifico, com menor tempo de processamento em comparagdo com o0
FullAttention. Os modelos com menor tempo de processamento foram ARIMA, MLP e
LSTM, respectivamente com 15, 38 e 40 minutos.

Além disso, a inclusdo do Time2Vec na arquitetura dos modelos aumentou a
duracéo total dos experimentos, devido a computacgéo adicional necessaria para capturar
padrdes temporais especificos. O custo computacional de cada modelo foi avaliado com
base na duragéo total do experimento. Modelos com tempos de execugdo abaixo de 2

horas foram classificados como tendo baixo custo computacional, aqueles acima de 2
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horas e abaixo de 3 foram classificados como tendo custo moderado. E acima de 3 horas
como tendo alto custo. Finalmente, em relacdo a escalabilidade para grandes conjuntos
de dados, o MLP tem baixa escalabilidade devido a sua incapacidade de capturar
dependéncias temporais de forma eficaz (TAUD; MAS, 2018). O LSTM tem
escalabilidade moderada, pois processa sequéncias longas sequencialmente, o que pode
se tornar um gargalo para grandes conjuntos de dados (YU, Y. et al., 2019). O DLinear,
beneficiando-se de sua abordagem de decomposicdo linear, atinge alta escalabilidade
(ZENG et al., 2023). O Transformer tem escalabilidade moderada, pois sua complexidade
quadratica pode limitar sua eficiéncia para sequéncias muito longas (VASWANI et al.,
2017). Em contraste, o Flowformer e o Flashformer apresentam escalabilidade muito alta,
pois seus mecanismos de atencdo especializados sdo otimizados para sequéncias de séries
temporais longas, melhorando significativamente a eficiéncia computacional (DAO et al.,
2022; WU, H. et al., 2022).

Apesar das diferencas no custo computacional e na escalabilidade, todos os
modelos avaliados sdo viaveis para previsdes operacionais de curto prazo de energia
edlica com um horizonte de previsdo de 12 horas. Os tempos de experimento relatados
nesta subsecdo correspondem a 100 ensaios; em contraste, o tempo unitario de inferéncia
(laténcia média por predicdo), métrica determinante para aplicagdes em tempo real, é
substancialmente menor e é explicitamente apresentado nas Tabelas 8, 9 e 10,
confirmando a aplicabilidade pratica dos modelos propostos.”

Vale ressaltar que o tempo de processamento de cada modelo, considerando 100
ensaios, foi obtido com base na capacidade computacional dos equipamentos utilizados
neste estudo, conforme descrito detalhadamente na Segéo 4.6.
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Tabela 19 - Critérios de avaliagdo comparativa dos modelos considerando 100 ensaios. O tempo
unitario de inferéncia da melhor configuracédo é apresentado nas Tabelas 8, 9 e 10

Escalabilidade

Tempo total de experimento

Custo Computacional

Sensibilidade -, (100 ensaios)
Modelos a padrées Estratégia de para grandes Estudo de Caso 1 q Caso 1 q
P ; aprendizado conjuntos de Studo de L-aso Estudo aso Estudo
temporais dados Cenario  Cenario de Cenario  Cenario de
A B Caso 2 A B Caso 2
ARIMA Baixo Modellag_;em Baixo 24 min 28 min 15 min Baixo Baixo Baixo
estatistica
MLP Baixo Engenharia de Baixo 58 min  1h1min 38 min Baixo Baixo Baixo
recursos
T2V-MLP Moderado Engenharia de Baixo 1h 8min ! h_lO 56 min Baixo Baixo Baixo
recursos min
LSTM Moderado . Apr_e ndlzagem~ Moderado 53 min 58 min 40 min Baixo Baixo Baixo
implicita de padrdes
T2V-LSTM Alto . APrfendlzagem~ Moderado 1h 5min ! h.10 53 min Baixo Baixo Baixo
implicita de padrdes min
DLinear Moderado Modelagem Im-efi\r Alto 1 h.43 ! h.48 ! h.36 Baixo Baixo Baixo
com decomposicdo min min min
T2V-DLinear Alto Modelagem Im_ezz\r Alto 2h1min 2h6min ! h_52 Moderado Moderado  Baixo
com decomposicao min
Aprendizagem
4h1 4h2 2h
Transformer Alto baseada em Moderado . 0 . 6 .55 Alto Alto Moderado
. min min min
FullAttention
Aprendizagem
. 4h 4 h h
T2V-Transformer  Muito Alto baseada em Moderado . 36 . 56 3 . 3 Alto Alto Alto
. min 40 min 40 min
FullAttention
Aprendizagem .
. h4 4h 2h
Flowformer Alto baseada em Muito Alto 3. 3 3 min .33 Alto Alto Moderado
. min 20 20 min
FlowAttention
_ Aprendizagem _ _ 4h26 2 ha7
T2V-Flowformer  Muito Alto baseada em Muito Alto 4 h5min mi min Alto Alto Moderado
FlowAttention
Aprendizagem 2h43 2h8
Flashformer Alto baseada em Muito Alto . 3 h 6 min . Moderado Alto Moderado
. min min
FlashAttention
Aprendizagem
T2V-Flashformer  Muito Alto baseada em Muito Alto SmhiiS Smhii6 2nr1]ii5 Alto Alto Moderado

FlashAttention

Fonte: Autoria propria (2025).
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6 CONCLUSAO

Neste estudo, foram propostos trés novos modelos para a previséo de energia
edlica de curto prazo, aplicados a turbinas eolicas em operacdo localizadas na regido
Nordeste do Brasil. Para garantir uma analise de previsdo robusta e avaliar o desempenho
dos modelos sob diferentes condi¢es temporais, dois casos foram considerados. No
Estudo de Caso 1, realizou-se a previsdo para uma unica turbina edlica situada em um
parque edlico no estado do Rio Grande do Norte, com dois cenarios distintos: Cenario A,
abrangendo o periodo de verdo e outono, e Cenéario B, correspondente a transicdo do
inverno para a primavera. No Estudo de Caso 2, a analise de previsao foi realizada para
uma usina eolica completa, localizada na Chapada do Araripe — regido que se estende
entre os estados do Ceard, Pernambuco e Piaui —, considerando apenas um cenario.

Os modelos propostos integram a camada Time2Vec para aprimorar a
representacdo de padrdes temporais nos dados. Uma analise de sensibilidade foi realizada
com trés arranjos, identificando a configuracdo que otimizou o desempenho do modelo.
Os melhores resultados foram obtidos quando o Time2Vec foi aplicado apenas na entrada
do codificador (Arranjo 1), preservando a capacidade do decodificador de gerar saidas a
partir das representacdes codificadas.

Além disso, este estudo explorou mecanismos alternativos de atencdo,
substituindo o mecanismo FullAttention pelos mecanismos FlowAttention e
FlashAttention dos modelos Flowformer e Flashformer, com o objetivo de mitigar a
complexidade quadréatica da atencdo tradicional resultante do mecanismo Full Attention.
Este estudo trata-se da primeira aplicacdo do mecanismo FlashAttention a previsdo de
energia eolica, bem como da primeira integracdo do Time2Vec com multiplos
mecanismos de atencdo nesse contexto.

Os modelos propostos foram comparados com MLP, LSTM e DLinear — cada
um também testado com integragdo Time2Vec, além do ARIMA. No geral, os resultados
demonstram que a abordagem proposta melhora significativamente a precisao da previsdo
e a eficiéncia computacional, confirmando sua eficacia para a previsdo de energia eélica
de curto prazo.

Com base na metodologia proposta e nos resultados apresentados, podemos

destacar as principais conclusdes deste trabalho da seguinte forma:

1. O processo metodoldgico utilizado neste estudo provou ser altamente eficaz,
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incorporando pre-processamento, tratamento de dados e o uso do Optuna para
otimizacdo eficiente de hiperparametros. Essa abordagem ajudou a prevenir o
overfitting e identificou as melhores configuracdes possiveis de cada modelo.

. A metodologia proposta demonstrou sua eficacia na previsdo da poténcia de
turbinas edlicas, com os modelos apresentando melhorias substanciais em relacao
ao modelo de Persisténcia. Os resultados alcangados neste estudo contribuem para
0 avanco da area de previsdo de energia edlica, oferecendo referéncias valiosos
para a otimizagdo de modelos preditivos em aplicacdes de energia renovavel.

. A andlise de sensibilidade da integracdo do Time2Vec na arquitetura do
Transformer facilitou a identificagdo da configuracdo ideal para esta aplicagéo.
Essa adigdo foi particularmente vantajosa para os X-formers, com os modelos
Flowformer e Flashformer apresentando melhorias em praticamente todos 0s
cenarios.

Para o Estudo de Caso 1, no Cenario A, os modelos com melhor desempenho
foram o T2V-Transformer e o T2V-Flashformer, demonstrando maior
consisténcia em todos os horizontes e métricas. Para a tarefa de previsdo de 12
horas, esses modelos alcancaram valores de I0R-MAE de 13,55% e 13,30%,
respectivamente, superando o ARIMA (6,20 %), MLP (9,22%), LSTM (10,43%)
e DLinear (10,52%). Da mesma forma, na métrica Io0R-RMSE, o T2V-
Transformer e o T2V-Flashformer atingiram 17,73% e 16,67%, enquanto o
ARIMA, MLP, LSTM e DLinear obtiveram 13,36%, 15,08%, 13,79% e 14,64%,
respectivamente. No Cenério B, os modelos com melhor desempenho foram o
T2V-Flowformer e o T2V-Flashformer. Para o horizonte de 12 horas, eles
alcancaram valores de lo0R-MAE de 24,47% e 24,37%, superando ARIMA (21,20
%), MLP (20,60%), LSTM (19,09%) e DLinear (20,75%). Na métrica IoR-
RMSE, o T2V-Flowformer e o T2V-Flashformer atingiram 27,84% e 27,45%,
enquanto ARIMA, MLP, LSTM e DLinear obtiveram 23,75%, 23,23%, 23,15%
e 23,06%, respectivamente.

No Estudo de Caso 2, considerando o horizonte de 12 horas e a métrica loR-MAE,
0s modelos T2V-Transformer, T2V-Flashformer e T2V-Flowformer
apresentaram os melhores desempenhos, com valores de 66,80%, 66,62% e
66,39%, respectivamente, superando os modelos ARIMA, MLP, LSTM e
DLinear, que obtiveram 61,78%, 61,21%, 61,55% e 63,49%. Para a métrica IoR-

RMSE, destacaram-se os modelos T2V-Flashformer e T2V-Flowformer, com
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valores de 61,76% e 61,14%, respectivamente, superando ARIMA, MLP, LSTM
e DLinear, que apresentaram 59,21%, 56,30%, 58,84% e 60,14%.

6. Os mecanismos FlowAttention e FlashAttention demonstraram custos
computacionais menores em comparacdo com o FullAttention, conforme
evidenciado por tempos de teste mais curtos nos Estudos de Caso 1 e 2. Em
relagdo ao desempenho preditivo, para o Estudo de Caso 1, o T2V-Transformer
apresentou resultados superiores no Cenéario A. No Cenario B, no entanto, o T2V-
Flowformer e o T2V-Flashformer superaram o T2V-Transformer, sugerindo que
esses modelos sdo mais adequados para este contexto especifico. Para o Estudo
de Caso 2, os trés modelos apresentaram desempenho semelhante, com o T2V-
Transformer performando melhor na métrica MAE; enquanto na métrica RMSE
0s modelos T2V-Flowformer e T2V-Flashformer no geral performaram melhor.

7. Os modelos propostos sdo 0s mais adequados para este estudo, apresentando
consistentemente os melhores resultados em praticamente todas as métricas e
horizontes temporais. Ao superar 0s benchmarks em quase todos os cenarios, eles
representam um avanco significativo no estado da arte. Sua precisdo preditiva
aprimorada aumenta a eficiéncia operacional dos parques eolicos, otimizando as
estratégias de manutencdo e a confiabilidade geral. Além disso, contribuem para

um uso mais eficaz de recursos renovaveis, como a energia edlica.

Esta pesquisa apresenta uma abordagem robusta, com tempo de execugdo e
viabilidade aceitaveis para os modelos propostos, fornecendo previs@es de energia com
12 horas a frente no horizonte temporal. Com base na metodologia adotada, nos modelos
desenvolvidos e nos resultados alcangados, este trabalho pode contribuir para maximizar
a eficiéncia produtiva de parques eolicos. Além disso, ao integrar codificaces temporais
interpretaveis, como Time2Vec, em arquiteturas baseadas em atencao, este estudo ajuda
a reduzir a natureza de "caixa-preta” frequentemente associada ao modelo Transformer,

promovendo maior confianca e transparéncia em suas aplicacdes praticas.
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7 PERSPECTIVAS FUTURAS

Como perspectivas futuras, espera-se que os modelos desenvolvidos neste estudo
sejam aplicados a previsdo de energia edlica em horizontes de médio e longo prazo,
possibilitando uma avaliagdo mais abrangente de seu desempenho em diferentes escalas
temporais. Outra dire¢do promissora consiste na aplicagao desses modelos a parques
eolicos situados em distintas regides geograficas, de modo a verificar sua capacidade de
generalizagdo frente a diferentes regimes de vento e condi¢des climaticas.

Além disso, os modelos propostos podem ser explorados em outras tarefas
relacionadas a energia edlica, como a previsdo da velocidade do vento e a detec¢do de
anomalias em componentes criticos dos aerogeradores. Outra vertente relevante envolve
a integragdo de técnicas de decomposicao as arquiteturas desenvolvidas, uma vez que tais
abordagens podem potencializar a precisao e a robustez das previsoes.

As arquiteturas propostas também apresentam flexibilidade para adaptacdo a
novos mecanismos de atengdo — tanto os ja existentes quanto aqueles que venham a ser
desenvolvidos —, mantendo-se atualizadas frente a rapida evolucdo dos modelos de
aprendizado profundo. Por fim, ressalta-se que esses modelos possuem ampla
aplicabilidade na previsdo de séries temporais em diversos dominios, como finangas,

economia, saude e ciéncias climaticas.
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APENDICE A

As strings de busca utilizados na base Scopus para o estudo de revisao sistematica
descrito na Se¢do 3.5 encontram-se apresentados nos Quadros Al e A2.

Quadro A1l - String de busca utilizada na Etapa 1 da revisdo sistematica (SCOPUS)

TITLE-ABS-KEY ("transformers networks" OR "transformers model" OR "transformers architecture"
OR "crossformer" OR "autoformer" OR "pyraformer" OR "informer" OR "reformer" OR "fedformer"
OR "itransformer" OR "Non-stationary Transformers" OR "LogSparse Transformer" OR "PatchTST"
OR "flowformer" OR "FlashAttention" OR "iTransformer") AND NOT TITLE-ABS-KEY ("electrical
networks" OR "power transformers" OR "power transformer") AND ORIG-LOAD-DATE > 20241125
AND ( LIMIT-TO ( PUBSTAGE,"final" ) ) AND ( LIMIT-TO ( DOCTYPE,"ar" ) ) AND ( LIMIT-TO
(PUBYEAR,2017) OR LIMIT-TO (PUBYEAR,2018) OR LIMIT-TO (PUBYEAR,2019) OR LIMIT-
TO ( PUBYEAR,2020) OR LIMIT-TO ( PUBYEAR,2021) OR LIMIT-TO ( PUBYEAR,2022) OR
LIMIT-TO ( PUBYEAR,2023) OR LIMIT-TO ( PUBYEAR,2024) OR LIMIT-TO ( PUBYEAR,2025)
) AND ( LIMIT-TO ( LANGUAGE,"English" ) )

Fonte: Autoria propria (2025).

Quadro A2 - String de busca utilizada na Etapa 2 da revisdo sistematica (SCOPUS)

TITLE-ABS-KEY ("transformers networks" OR "transformers model" OR "transformers architecture"
OR '"crossformer" OR "autoformer" OR "pyraformer" OR "informer" OR "fedformer" OR
"itransformer" OR "Non-stationary Transformers" OR "LogSparse Transformer" OR "PatchTST" OR
"flashformer" OR "flashattention" OR "flowformer") AND TITLE-ABS-KEY("wind turbine" OR
"wind energy" OR "power forecast" OR "forecast wind" OR "wind power" OR "wind speed" OR "wind
turbine") AND NOT TITLE-ABS-KEY("electrical networks" OR "power transformers" OR "solar"
OR "diesel reformers") AND ORIG-LOAD-DATE > 20240903 AND ( LIMIT-TO (
PUBSTAGE,"final" ) ) AND ( LIMIT-TO ( DOCTYPE,"ar" ) ) AND ( LIMIT-TO ( PUBYEAR,2017)
OR LIMIT-TO ( PUBYEAR,2018) OR LIMIT-TO ( PUBYEAR,2019) OR LIMIT-TO (
PUBYEAR,2020) OR LIMIT-TO ( PUBYEAR,2021) OR LIMIT-TO ( PUBYEAR,2022) OR LIMIT-
TO (PUBYEAR,2023) OR LIMIT-TO ( PUBYEAR,2024) OR LIMIT-TO ( PUBYEAR,2025) ) AND
( LIMIT-TO ( LANGUAGE,"English" ) )

Fonte: Autoria propria (2025).
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APENDICE B

A analise de sensibilidade da incorporacdo do Time2Vec na arquitetura
Transformer considerou os Arranjos I, Il e Ill, conforme detalhado neste estudo. A
otimizacdo de hiperparametros usando o Optuna produziu as configuragdes mostradas nas
Tabelas B1 e B2 para os Cenarios A e B, respectivamente. Cada andlise incluiu a
avaliacdo de diferentes mecanismos de atencdo — FullAttention, FlowAttention e
FlashAttention — dentro dos respectivos Arranjos.

De acordo com a Tabela B1, o T2V-Transformer no Arranjo | utiliza apenas 1
camada de codificador e 1 de decodificador, enquanto os Arranjos Il e Il empregam 3
camadas cada. O Arranjo Il apresenta a menor dimensdo do modelo (d,,4e1 = 32),
seguido pelo Arranjo | (d,,0qe; = 64) € pelo Arranjo 1l (d,pqer = 128). O comprimento
da sequéncia (seq len) foi maior no Arranjo I, sugerindo uma capacidade aprimorada de
capturar dependéncias temporais de longo prazo. Para 0 modelo T2V-Flowformer, o
Arranjo | empregou valores menores tanto para d,qe; = 32 quanto para dgy= 96,
enquanto os Arranjos Il e Il utilizaram d 4., = 64 € df = 384. Esses valores mais altos
sugerem um custo computacional maior, pois levam a mais operacdes tanto no
mecanismo de atencdo quanto nas camadas de feed-forward, resultando,
consequentemente, em maiores demandas de inferéncia e treinamento. Para o modelo

T2V-Flashformer, o Arranjo | apresentou os maiores valores para dy,pge; = 256 € dgp=

512. Em contraste, os Arranjos Il e Il utilizaram valores de d,,,,4.; Valores de 64 e 32, e
dss valores de 256 e 96, respectivamente. Essas configuragGes indicam que o Arranjo |
incorre no maior custo computacional devido ao aumento do nimero de operagdes tanto
nos componentes de atencdo quanto nos de propagacao direta.

De acordo com a Tabela B2, para o T2V-Transformer, o Arranjo | foi configurado
com apenas 1 camada de codificador e 1 camada de decodificador, enquanto que o
Arranjo Il com 1 camada de codificador e 2 camadas de decodificador. J& o Arranjo I11
apresentou 3 camadas para ambos. Em termos de seq len, o Arranjo | apresentou o valor
de 44, ja o Arranjo Il apresentou o maior valor, com 92. O valor de d,,;,4.; foi mais alto
no Arranjo Il (128), ja para ds; 0 Arranjo | apresentou o maior valor (384). Para o T2V-
Flowformer, o Arranjo | apresentou o maior seq len (120). O nimero de camadas de
codificador e decodificador foi de 2 para ambos. O Arranjo Il utilizou 2 camadas para o

codificador e 1 camada para o decodificador, enquanto o Arranjo 11 possui 1 camada para
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ambos. O Arranjo | apresentou o maior valor para dpmeqe; € dff (128 € 512,
respectivamente); enquanto o Arranjo Il utilizou 64 e 256; e o Arranjo 11 utilizou 64 e
384, respectivamente, para estes parametros. Para o T2V-Flashformer, o Arranjo |
demonstrou maior capacidade de capturar padrdes temporais de longo prazo devido ao
seu maior seq len (105), enquanto os Arranjos Il e Il apresentaram 43 e 23,
respectivamente. Aleém disso, o Arranjo | apresentou valores mais altos para d,,pger, dr s
e numero de cabecas (256, 1536 e 8, respectivamente), indicando um custo computacional
maior em comparagdo com os Arranjos Il e IlI.

Em relacdo a sensibilidade aos hiperparametros, as variagdes do seq len, dogei
dsr, nmero de cabecas de atencdo e demais parametros demonstraram que o desempenho
do modelo ndo escala linearmente com o tamanho da arquitetura. Dimensfes de
incorporagdo e larguras de feed-forward maiores aumentaram o custo computacional, mas
ndo garantiram maior precisdo. De acordo com o0s valores dos hiperparametros
apresentados nas Tabelas B1 e B2, conclui-se que o projeto do arranjo exerce influéncia
mais significativa que a magnitude dos parametros. De modo geral, os Arranjos |
apresentaram melhor desempenho nos Cenéarios A e B, sendo adotados neste trabalho para
a arquitetura proposta.

Todos os modelos empregaram a funcdo de ativacdo ReLU, o que garantiu
convergéncia estavel entre os arranjos, reforcando que a interacdo entre a codificacdo
periddica do Time2Vec e 0s mecanismos de atencdo desempenha um papel mais decisivo
do que a escolha da funcdo de ativacdo. Para o Cenario A, o Arranjo | de todos 0os modelos
utilizou o RMSprop. Ja para o Cenério B, o Arranjo | de todos os modelos utilizaram o
Adam. Para o Arranjo Il, os modelos apresentaram um uso equilibrado de RMSprop e
Adam para ambos os Cenérios. J& 0 Arranjo Il para ambos o0s Cenarios, todos 0s modelos
utilizam o Adam, com exceg¢do do T2V-Flashformer no Cenéario B; nenhum utilizou SGD.
Uma taxa de dropout de 0,1 foi aplicada consistentemente em todas as configuracdes.
Essas descobertas destacam que os beneficios da escalabilidade dependem fortemente do
mecanismo de atengdo: o FlowAttention permanece eficiente com dimensionalidade
moderada, enquanto o FlashAttention torna-se mais sensivel ao crescimento de
pardmetros devido as suas operacgdes densas.

Em relacdo ao componente periddico do Time2Vec (seno versus cosseno), para o
T2V-Transformer no Cenario A, os Arranjos | e Il usam seno, enquanto o Arranjo 111 usa

cosseno; ja para o Cenario B, os Arranjos | e 111 usam cosseno, enquanto o Arranjo Il usa
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seno. Para o T2V-Flowformer no Cenario A, os Arranjos | e Il usam cosseno e 0 Arranjo

[11 usa seno; no Cenario B, o Arranjo | usa o seno, enquanto os Arranjos Il e 111 usam o

cosseno. Para o T2V-Flashformer, os Arranjos I e Il usam seno, enquanto o Arranjo IlI

usa cosseno (em ambos 0s cenarios).

Os resultados da Analise de Sensibilidade s&o apresentados nas Figuras B1 e B2.

A Figura B1 corresponde ao Cenario A e ilustra os resultados para os modelos T2V-

Transformer, T2V-Flowformer e T2V-Flashformer. A Figura B2 apresenta os resultados

correspondentes para o Cenadrio B. Em todos os casos, o Arranjo | produziu

consistentemente 0s menores erros de previsdo em todos os horizontes, indicando que

essa configuragcdo foi a mais adequada para as arquiteturas dos modelos. Portanto, o

Arranjo | foi adotado para as previsdes realizadas neste estudo.

Tabela B1- Analise de sensibilidade do Cenario A

Cenario A
T2V-Transformer T2V-Flowformer T2V-Flashformer
Parametro  Arranjo  Arranjo Arranjo Arranjo  Arranjo Arranjo Arranjo  Arranjo Arranjo
[ 1 11 [ 1 11 [ 1 11
seq len 32 23 15 49 22 27 63 18 13
%g‘g:?izzg? 1 3 3 2 2 3 2 2 3
Camadas do
decodificador 1 3 3 3 2 2 ! 2 2
Epocas 10 10 10 10 10 10 10 10 10
Otimizador RMSprop Adam Adam RMSprop  RMSprop Adam RMSprop  RMSprop Adam
F:t:‘\‘j:gage ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Amodel 64 128 32 32 64 64 256 64 32
Cg‘;e‘ézs 4 2 8 4 4 2 6 6 6
des 128 512 128 96 384 384 512 256 96
Funcéo sen sen cos cos cos sen sen sen cos

Fonte: Autoria propria (2025).
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Tabela B2- Analise de sensibilidade do Cenario B
Cenério B
T2V-Transformer T2V-Flowformer T2V-Flashformer
Parametro Arranjo  Arranjo Arranjo Arranjo  Arranjo Arranjo Arranjo  Arranjo Arranjo
I II III I II III I II III
seq len 44 92 25 120 44 22 105 43 23
Camadas do
codificador ! ! 3 2 2 ! 3 3 3
Camadas do
decodificador 2 3 2 1 ! 1 ! 2
Epocas 10 10 10 10 10 10 10 10 10
Otimizador Adam Adam Adam Adam RMSprop Adam Adam RMSprop RMSprop
F;Tf:;ie ReLU ReLU RelU ReLU RelU ReLU RelU ReLU RelU
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
dmodel 64 128 32 128 64 64 256 64 128
N¢ de cabecas 6 6 6 2 2 6 8 6 6
dff 384 256 128 512 256 384 1536 256 640
Funcao cos sen cos sen cos cos sen sen cos
Fonte: Autoria propria (2025).
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Figura B1 - Analise de sensibilidade para os modelos T2V-Transformer, T2V-Flowformer e T2V-
Flashformer (Cenério A)

280

220+

3504

300

2504

200

6 8

Forecast Horizon

6 8

Forecast Horizon

3 e

Forecast Horizon

bide

+ T2v-Transformer_Arrangement_I
* T2V-Transformer_Arrangement_II
+ T2v-Transformer_Arrangement_III
+ Persistence

T2V-Flowformer_Arrangement_I
T2v-Flowformer_Amrangement_IT
T2v-Flowformer_arrangement_ITT
Persistence

T2v-Flashformer_Arrangement_I
T2v-Flashformer_Arrangement_It
T2v-Flashformer_Arrangement_iii
Persistence

- (kw]

RMSE

- [kw)

RMSE

- [kw]

RMSE

= T2V-Transformer_Arrangement_I
= T2V-Transformer_Arrangement_II
+ T2V-Transformer_Arrangement_III
- Persistence

350

300

250

200

2 - 6 8 10 12
Forecast Horizon
* T2v-Flowformer_Arrangement_I
T2v-Flowformer_Arrangement_II
T2v-Flowformer_arrangement_I1l
@ Persistence

3s0

300

250

.
200 @
2 4 6 8 10 12
Forecast Horizon
+ T2v-Flashformer_Arrangement_I
- T2v-Flashformer_Arrangement_IT
+ T2v-Flashformer_Arrangement_III
--@- persistence

350

300

250

200

2 4 6 e 10 12

Forecast Horizon

Fonte: Autoria propria (2025).



MAE - [kW]

MAE - Tkw]

- [kw]

MAE

550

130

Figura B2 - Analise de sensibilidade para os modelos T2V-Transformer, T2V-Flowformer e T2V-
Flashformer (Cenério B).
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