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RESUMO

As infeccBes flngicas, especialmente as causadas por Candida spp., representam um
desafio critico em unidades de terapia intensiva, estando associadas a elevadas taxas de mor-
talidade (40-60%). Esse cendrio é agravado pela lentid3o e pela baixa sensibilidade (~50%) do
atual padrao-ouro de diagnéstico, a hemocultura. Com o objetivo de superar essas limitaces,
esta tese propde, desenvolve e valida um novo Framework para a identificacao de microrganis-
mos a partir da anélise de Compostos Organicos Volateis (VOCs). Essa abordagem estabelece
um fluxo de trabalho sistematico que contempla: (i) o desenvolvimento de um protocolo para
experimentacdo e aquisicdo de dados com Narizes Eletronicos (E-nose); (ii) a construcdo e
preparacao de bases de dados de VOCs de Candida, tanto com isolados de cultura quanto
em caldo de sangue; (iii) a aplicacdo e avaliacdo de modelos de classificacdo tradicionais e
de séries temporais; e (iv) a concep¢do de uma arquitetura pioneira de explicabilidade (XAl)
baseada em um ensemble de técnicas, voltada a assegurar a transparéncia das predicoes. A
eficacia do Framework foi validada na diferenciacao de espécies de Candida em diferentes con-
textos, incluindo cultura e caldo de sangue. Os resultados atestam a robustez da abordagem,
com os modelos de classificacdo alcancando acuracias de 97,46% na abordagem com cultura e
08,18% no contexto com caldo de sangue. Nesse sentido, a principal contribuicdo desta tese é
a criacdo de um framework computacional que integra uma arquitetura inédita de ensemble de
explicabilidade, baseada na combinacdo de multiplos métodos, a fim de fornecer interpretacdes
consistentes e multifacetadas das decises do modelo. A validacao dessa abordagem, por meio
de estudos de ablacdo e sensibilidade, confirma seu potencial para aumentar a confianca nos
resultados e favorecer a adoc3o clinica da solucdo. Assim, o Framework consolida-se como uma
contribuicdo metodoldgica significativa para a ciéncia da computacdo, com impacto direto e

relevante na salde.

Palavras-chaves: Compostos Organicos Volateis, Inteligéncia Artificial Explicavel, Anélise de

Séries Temporais, Biomarcadores, Nariz Eletronico, E-nose, Infeccdes por Candida spp.



ABSTRACT

Fungal infections, especially those caused by Candida spp., represent a critical challenge
in intensive care units, being associated with high mortality rates (40-60%). This scenario
is aggravated by the slowness and low sensitivity (~50%) of the current gold standard for
diagnosis, the blood culture. To overcome these limitations, this thesis proposes, develops,
and validates a new Framework for the identification of microorganisms based on the analysis
of Volatile Organic Compounds (VOCs). This approach establishes a systematic workflow that
includes: (i) the development of a protocol for experimentation and data acquisition with Elec-
tronic Noses (E-noses); (ii) the construction and preparation of databases of Candida VOCs,
from both culture isolates and in blood broth; (iii) the application and evaluation of tradi-
tional and time-series classification models; and (iv) the design of a pioneering explainability
(XAl) architecture based on an ensemble of techniques, aimed at ensuring the transparency
of predictions. The effectiveness of the Framework was validated in the differentiation of Can-
dida species in different contexts, including culture and blood broth. The results attest to the
robustness of the approach, with the classification models achieving accuracies of 97.46% in
the culture-based approach and 98.18% in the blood broth context. In this sense, the main
contribution of this thesis is the creation of a computational framework that integrates a novel
explainability ensemble architecture, based on the combination of multiple methods, in order
to provide consistent and multifaceted interpretations of the model's decisions. The validation
of this approach, through ablation and sensitivity studies, confirms its potential to increase
confidence in the results and favor the clinical adoption of the solution. Thus, the Framework
is established as a significant methodological contribution to computer science, with a direct

and relevant impact on healthcare.

Keywords: Volatile Organic Compounds, Explainable Artificial Intelligence, Time Series Anal-

ysis, Biomarkers, Electronic Nose, E-nose, Candida Infections.
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1 INTRODUCTION

Computational intelligence, driven by advances in machine learning and Artificial Intelli-
gence (Al), has been consolidating itself as a transformative pillar for several areas of knowl-
edge. In the health field, in particular, the application of computational techniques has opened
new frontiers in the diagnosis, treatment, and monitoring of diseases. The ability to analyze
large volumes of complex data and identify subtle patterns, often imperceptible to human
analysis, offers unprecedented potential for the creation of clinical decision support systems
that are faster, more accurate, and accessible (FAIYAZUDDIN et al., 2025; FURIZAL; MA'ARIF;
RIFALDI, 2023).

One of the most critical challenges in the health area is the diagnosis of infectious dis-
eases, where speed and accuracy are direct determinants of the patient’s outcome. Traditional
diagnostic methods, although established, often face limitations such as high cost, the need
for complex laboratory infrastructure, and, crucially, the long time to obtain results. This
delay represents a window of vulnerability, especially in intensive care environments, where
therapeutic decisions need to be made in a matter of hours, not days (GILL et al., 2023).

To address this gap, a promising frontier in computing applied to health lies in the fusion of
Al with advanced sensing technologies (CHEN et al., [2024)). The analysis of volatile biomarkers,
for example, emerges as a non-invasive approach for the detection of pathologies. In this
context, the Electronic Noses (E-Noses) — a device that combines an array of chemical sensors
with pattern recognition algorithms — represents a powerful computational tool, capable
of generating multidimensional and temporal data from “olfactory signatures” of biological
samples (FARRAIA et al), 2019). The computational challenge, therefore, lies in developing
robust methodologies to extract significant knowledge from this raw data and translate it into

interpretable and reliable diagnoses.

1.1 MOTIVATION

To validate and demonstrate the potential of a new computational approach, it is essential
to apply it to a high-impact problem with well-defined limitations. Invasive fungal infections
(IFls), especially those caused by Candida spp., represent precisely this scenario. These infec-

tions are a serious problem in Intensive Care Units (ICUs), with mortality rates ranging from
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40% to 60% (LI et al., [2018).

One of the reasons contributing to high mortality rates is the clinical challenge in recog-
nizing and diagnosing Invasive Fungal Infections (IFls) during the initial stages of treatment
(PAPPAS et al., 2018a)). According to Barantsevich and Barantsevich (2022), traditional culture-
based methods typically require 2 to 7 days to determine results, which is a critical limitation
given the severity of the pathology (BARANTSEVICH; BARANTSEVICH, 2022). Research indicates
that a delay of more than 12 hours in initiating appropriate therapy can significantly increase
mortality chances, highlighting the urgent need for diagnostics-driven antifungal stewardship
to manage these infections effectively (VERGIDIS et al., 2016; |CHAKRABARTI et al., [2022]).

Currently, blood culture is the gold-standard method for the laboratory diagnosis of can-
didemia, by isolating the etiological agent for identification (BEYDA; ALAM; GAREY, 2013).
However, there are other methods based on the identification of Volatile Organic Compounds
(VOCGs) that can be used to identify these fungal agents, such as: Gas Chromatography-Mass
Spectrometry (GC-MS), Solid-Phase Microextraction (SPME), Simultaneous Distillation-Extraction
(SDE), and Selected lon Flow Tube Mass Spectrometry (SIFT-MS) (MORATH; HUNG; BEN-
NETT., [2012).

The need for a diagnostic method that is at the same time fast, accurate, and low-cost
is, therefore, urgent and evident. This complex problem, which involves the analysis of subtle
biological signals to differentiate multiple pathogen species, serves as the ideal use case for
the development and validation of a new computational paradigm (WU et al., 2022).

One of the still little-explored methods, but with great growth potential, is the Electronic
Noses, or E-Noses, as it is also called. This technology combines a set of gas sensors and
Artificial Intelligence (Al) to recognize VOC patterns and classify the “olfactory fingerprints”
released by these compounds. This technology is already used in several areas, such as food
safety, agricultural applications, and in the field of disease diagnosis (MATYSIK; HERBARTH;
MUELLER., 2009)) apud (MORATH; HUNG; BENNETT., 2012).

Given the above, it is understood that there is a great challenge in the rapid identification
of fungi in hospitalized patients and in clinical conditions that require extra care (FILHO,
2009), (PAPPAS et al., [2016)). In response to this challenge, this thesis proposes, develops, and
validates the Framework DiagNose.Al, an original and complete computational methodology
for the identification of microorganisms from the analysis of Volatile Organic Compounds
(VOCGs). Instead of a one-off application, the Framework establishes a systematic workflow

that integrates five essential pillars:
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(1) Experimental Protocol and Data Acquisition: The definition of a standardized process

for collecting data from culture and blood broth samples with Electronic Noses.

(I1) Data Engineering: The methodology for building and making available robust databases
on VOCs (Volatile Organic Compounds) collected by the electronic nose, aiming to

foster research in this area.

(I11) VOC Mapping: Creation of a database relating the VOCs emitted by different Candida
species and identified by the gas sensors. of Candida and the VOCs detected by different

types of gas sensors;

(IV) Predictive Modeling: The systematic application of classification models, using time

series and traditional models, to ensure maximum accuracy.

(V) Explainable Al (XAl): The development of a pioneering Ensemble XAl architecture,
designed to provide transparent and reliable explanations, crucial for adoption in high-

risk environments such as medicine (WANG et al., | 2020a)).

Thus, the motivation for this work presents itself in two complementary dimensions: on
one hand, the clinical urgency for faster and more effective diagnostic methods for fungal
infections; on the other, the scientific opportunity to propose a complete and innovative com-
putational methodology. The DiagNose.Al Framework emerges precisely at the intersection of
these challenges, offering a solution that not only responds to a concrete demand in healthcare
but also contributes in an original and systematic way to the advancement of applied Artificial

Intelligence.

1.2 OBJECTIVES

In this section, the objectives related to the construction of this project are defined, divided

into General Objective and Specific Objectives.

1.2.1 General Objective

The general objective of this project is to propose, develop, and validate the Framework
DiagNose.Al, an innovative and complete computational methodology for the identification of

microorganisms, using species of Candida spp. as the main focus. The Framework integrates



24

the analysis of volatile organic compounds (VOCs) through Electronic Noses with Al models

and a novel Explainable Artificial Intelligence (XAl) architecture based on an Ensemble, aiming

to ensure a fast, accurate, and interpretable diagnosis.

1.2.2 Specific Objectives

The specific objectives of this thesis, which support the pillars of the DiagNose.Al Frame-

work, are:

1.3

To define and validate an experimental protocol for the acquisition of Volatile Organic
Compounds (VOCs) data with Electronic Noses, applicable to both culture media and

blood broth samples;

To build and characterize two new time series databases, detailing the VOC profiles

for the studied Candida species;

To map VOCs by means of a database of the VOCs emitted by candida and identified

by the gas sensors;

To systematically develop and evaluate the performance of classification models,
with an emphasis on time series, for the accurate identification of microorganisms from

the generated data;

To validate the end-to-end effectiveness of the DiagNose.Al Framework through
its application in the classification of different Candida species in different scenarios,

demonstrating its potential for clinical impact.

To design and evaluate a pioneering Explainable Artificial Intelligence (XAl) architec-
ture, based on an ensemble of methods, to provide robust and multifaceted explanations

for the model’s predictions;

ORGANIZATION OF THIS THESIS

The structure of this work will be organized as follows: Chapter 2 will present the The-

oretical Foundation, providing a brief explanation of the main topics that guide the project.

Chapter 3 will detail the Related Works, with emphasis on initiatives aimed at the Identification
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of Fungi, the use of E-noses in the detection of volatile compounds, and explainability methods
focused on XAl Ensembles. Next, Chapter 4 will describe the Materials and Methods (THE
DIAGNOSE.Al FRAMEWORK: DEVELOPMENT AND METHODOLOGY) used for the im-
plementation of the proposed solution. The Results and discussions (VALIDATION OF THE
DIAGNOSE.Al FRAMEWORK: RESULTS AND DISCUSSIONS) on the development will be
addressed in Chapter 5. Chapter 6 will present the main Conclusions reached so far in this
investigation. Finally, Chapter 7 (MAIN CONTRIBUTIONS AND FUTURE PERSPECTIVES)

will discuss the main milestones of the project and some Future Perspectives for this work.
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2 THEORETICAL FOUNDATION

This chapter provides a brief explanation of fungi, with an emphasis on Candida spp.,
and the main methods used for its identification. Additionally, it will cover information on the
use of the Electronic Noses and the most currently used Artificial Intelligence and time series
techniques in this context. Furthermore, the context of the main explainability methods will

also be discussed.

2.1 THE KINGDOM OF FUNGI

From a historical and scientific point of view, it can be said that fungi have not had a very
relevant role in the past. Initially studied by botanists, little was said about this category of
microorganisms, being studied together with and classified within the plant kingdom. Fungi
were classified into their own kingdom only a few decades ago, as they possess functional and
morphological characteristics very distinct from their kingdom of origin and from any other
existing one. Named the Fungi Kingdom, it is estimated that there are between 2.2 and 3.8
million species in all of nature, among them, only 144,000 have been properly described and
classified (ARAGJO, [2021)). Nowadays, fungi are considered the largest group of eukaryotes
among all kingdoms. However, the scarcity of specialists and the late start of studies focused
on this kingdom still make it largely unknown, with only an approximate knowledge of 8% of
the total Funga supposed for the entire world being estimated, complicating studies aimed at
understanding the group’s evolution (ARAGJO| 2021).

To better understand the characteristics of a fungus, according to |Aradjo (2021)), it is
important to comprehend the phylogenetic scenario of the kingdom itself. Although the history
of mycology is directly linked to botanists, the Fungi Kingdom is, in terms of evolution,
closer to animals than to plants. In biology, there is a supergroup called Opisthokonta, which
includes some species of the Animalia Kingdom, other eukaryotes, and the fungi themselves
(ARAGJO, [2021)). This supergroup is represented especially by two major categories, Holozoa
and Holomycota, which differ according to their forms of digestion. Both lineages seek their
food in the environment (they are heterotrophic), which eliminates any kinship with plants
(ARAGJO, [2021)).

Unlike the members of the Animalia Kingdom belonging to Holozoa, which perform internal
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digestion by ingesting food and then carrying out the degradation and absorption of nutrients
in the body, fungi belonging to Holomycota perform this process externally, subsequently
absorbing only the nutrients. This action is called heterotrophy by absorption and is considered
one of the most relevant characteristics of the Fungi Kingdom, considering that, to perform
this process, fungi release digestive enzymes, which chemically modify the surrounding area.
The result of this action ends up being a great ecological contribution of fungi to nature, as
they modify the soil biomass, allowing a portion of lifeless organic matter to re-emerge in the
future (ARAGJO, 2021).

Given the above, the existence of a great diversity of fungi with relevant importance for
living beings and the environment is clear (AGUIRRE et al., 2016). However, amidst all this
diversity, there are also fungi that can be a problem for humans, such as some yeasts found
in the human body itself that, in case of low immunity, can spread and reach regions where
they cannot be hosted (MIOTTO et al}, 2004). One of these fungi is Candida spp., one of the

subjects of this study, addressed in more detail in the next Section.

2.1.1 The genus Candida

According to |Sarma e Upadhyay| (2017)), fungi have emerged as one of the main causes of
diseases in humans, mainly affecting patients hospitalized for long periods or with a compro-
mised immune system (PAPPAS et al., 2018b). The genus Candida is responsible for about 80%
of the fungal infections already reported, representing a great challenge for health professionals
in various clinical areas, given the diagnostic and therapeutic difficulties of infections caused
by this agent (COLOMBO; GUIMARAES), [2003)).

In this sense, C. albicans, as well as C. glabrata, C. krusei, C. tropicalis, and C. parap-
silosis are responsible for a large part of hospital-acquired infections, primarily affecting the
oral (superficial) or vaginal regions of patients. Depending on the conditions, the fungus can
come into contact with the bloodstream, causing deep infections in the body (DADAR et al.,
2018; WHALEY et al., [2017)). C. albicans, for example, is part of the human microflora and is
commonly found in the gastrointestinal, respiratory, and genitourinary tracts. In general, it is a
harmless fungus, but it can become opportunistic in immunocompromised or immunodeficient
individuals (SARMA; UPADHYAY, 2017; DADAR et al., [2018)).

Among the non-Candida albicans Candida (NCAC) types, one of the species that also

causes great concern is C. parapsilosis, which causes 17 to 50% of fungemia according to
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Whaley et al.| (2017) and 46% according to another study |Corona et al. (2011), especially
in babies and newborns. This species can also create tenacious biofilms on central venous
catheters and other clinically implanted equipment in patients undergoing invasive medical
procedures (T6TH et al., 2019). Another NCAC that draws the attention of health professionals
is C. krusei. This species shows high resistance to some drugs and causes a high mortality
rate, ranging from 20% to 67% (SM et al., 2019; NAVARRO-ARIAS et al., 2019). Historically, the
main cases of C. krusei are reported in neonates, people with pathogens in intra-abdominal
abscesses, endocarditis, infectious arthritis, urethral obstruction, esophagitis, eye infections,
cancer patients, and bone marrow transplant recipients (SAMARANAYAKE et al., (1994).

Regarding identification, it is usually possible to differentiate Candida isolates in cultures
through methods that involve the germ tube test, chlamydospore formation, and the fermen-
tation and digestion of sugars (Figure[1]) (ALAM et al, [2014). According to /Alam et al.| (2014),
the germ tube test has a rapid identification time for C. albicans (between 2 and 4 hours), but
it requires well-trained professionals for identification and is not precise, given that about 5%
of C. albicans isolates do not produce germ tubes, while on the other hand, some isolates of
C. tropicalis also have the ability to produce them. The type of agar used and the temperature
can also influence the identification and differentiation of some species, as some grow better
with specific types of agar and at known temperatures (ALAM et al., 2014).

Given the complications these tests bring regarding precision in interpretation, new ways for
the presumptive identification of yeasts were developed. Different chromogenic media aimed
at the isolation and detection of Candida species have been created. These techniques are
based on the analysis of different colored colonies with diverse shapes that imply the cleavage
of chromogenic substrates by species-specific enzymes. Examples of commercially used chro-
mogenic agars today include Tween 80 Corn Meal agar, cornmeal agar, CHROMagar Candida,
Fluroplate, Candichrom, Pagano-Levin agar, Costa-de Lourdes Branco and albicans ID agar,
CHROMagar, and BiGGY agar. Figure [2| demonstrates the growth morphology on Tween 80
Corn Meal for different Candida species (ALAM et al., [2014)).

In this sense, among the main methods currently available for the identification of Can-
dida spp., are polymerase chain reaction (PCR) assays, (1—3)-/-D-glucan (BDG) (CLANCY;
NGUYEN, 2013), and loop-mediated isothermal amplification (LAMP) (FALLAHI et al., 2020),
with the first two being considered the gold standards for Candida identification today. How-
ever, as previously seen, most of these methods have sensitivity issues and are very expensive,

making their use unfeasible in some regions.
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Figure 1 — Demonstration of budding (marked with solid arrows) and yeast form (dashed arrow) in Candida
albicans

Source: [ALAM et al] (2014)

Another major problem associated with these methods is the time required to obtain results
(which can take from 2 to 7 days). This directly harms the treatment of patients and reinforces
the need for the creation of new methods that can make this process more efficient
, . Another factor that raises an alarm about the damage caused by this fungus is the
economic one. Studies show that in the United States alone, a total of US$ 4.6 billion was
recently spent on direct medical costs related to hospitalizations for fungal diseases. Candida
infections alone (26,735 hospitalizations) were responsible for a cost of US$ 1.4 billion to the
American coffers, not including unrecognized fungal diseases and expenses with unnecessary

exams, medical procedures, and improper treatments, until a correct diagnosis of the fungal

infection was identified (TERRERO-SALCEDO; MARGARET], [2020)).

It is therefore evident that the diversity of fungal species and the limitations of conventional
diagnostic methods represent a critical gap in the clinical environment. It is precisely in this

gap that the intersection of biology and computer science offers a promising solution. Fungal
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Figure 2 — Use of Tween 80 Corn Meal agar (CMA) to verify the growth morphology of different Candida
species. (a) C. albicans, (b) C. glabrata, (c) C. parapsilosis, (d) C. krusei, (€) C. Kefyr, and (f)
C. tropicalis

Source: |ALAM et al| (2014)

metabolism, which results in the emission of Volatile Organic Compounds (VOCs), generates
chemical "signatures" that can be captured by technologies like Electronic Noses, producing
data in the form of time series, allowing their analysis through different Artificial Intelligence

methods.

2.1.2 Process of obtaining colonies and culture media

To better understand the process of obtaining colonies and culture media, [Trovao e Pereira.|

(2019) explain that fungi are generally separated by plating a previously collected sample. This
sample is derived from the material where the presence of fungi is to be identified, such as
soil, liquid, air, or a specific surface sample. This material is placed on a Petri dish with
the appropriate culture medium for its growth. The plating process can be done in different
ways, such as by diluting the sample in water, for example, or by using a low-concentration

saline solution, which should then be distributed on the plate that will be used for the culture

(TROV3O; PEREIRAJ [2019). Thus, it can be said that the preparation of culture media can

be done by adding its components to distilled water or by solubilizing commercial lyophilized

media, followed by sterilization in an autoclave for about 15 minutes at a pressure of 1 ATM
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and a temperature of 121 °C (TROV3O; PEREIRA., 2019).

In the same context, after a rapid cooling of the medium, avoiding complete solidification,
antibiotics can be used to prevent the growth of unwanted bacteria, which are meticulously
spread over the Petri dish. This entire procedure needs to be performed in a flow hood (left
part of Figure[3]), already sterilized with ultraviolet light and alcohol, not allowing external con-
tamination, under total aseptic conditions. After the complete cooling of the culture medium
in the Petri dishes, a 5-day reservation period for the medium is indicated to ensure that there
is no contamination of any kind. At the end of this period, the plates will be ready for use in

the inoculation or propagation of the colonies (right part of Figure (3).

Figure 3 — Example of a laminar flow hood on the left and a set of culture media in the drying process on the
right

Source: [TROV3O; PEREIRA (2019)

Among culture media, there is a usual classification used to describe them as "rich,"
"generic," and "poor," related to the nutrient concentrations of each. In general, poor media
are manipulated to instigate the formation of sexual structures in media that do not easily
sporulate. Such incitement is based on the concept that the accumulation of nitrogen and
carbon sources and the cultivation temperature encourage the mode of reproduction, whether
asexual or sexual. One of the possibilities of cultivation in poor media, aiming to influence
sporulation, can be the cultivation in a medium whose surface has been placed over part of
the organism it parasitizes. In this context, this methodology allows for in situ laboratory
growth and the visualization of reproductive formations. In addition, external factors such as

pH, temperature, humidity, and light must be considered, as they can affect the growth of
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fungi, as well as the probable more energetic sporulation of some species, which can create a
predominance of these over those with less sporulation or slower growth (TROViZO; PEREIRA.,

2019).

2.1.3 Handling samples: preservation and propagation of cultures

In biology, the area responsible for studies related to the mycological diagnosis of fungal
infections is called Medical Mycology. It is based on the correct execution of the processing
and collection of clinical specimens. The entire context related to the preservation, transport,
and handling of clinical material is of great relevance in obtaining efficient and reliable results
(MOLINARO; CAPUTO; AMENDOEIRA., 2012).

In the mycological context, there are some techniques used for handling and propagating

cultures, the most common being:

» Serial dilution - A common technique that can be performed in different scenarios,
such as the separation of two fungal strains mixed in a tube or plate, the counting of
colonies in a sample, the separation of fungi from soil and liquid substrates, and the

definition of inoculum quality in fermentation processes or liquids.

» Fungal seeding (propagation) technique - This method is used for the identification
of filamentous fungi through their morphological characteristics, using inoculation on

plates. It is a well-developed and widely used axenic culture (pure cultures) technique.

» Microscopy - In this case, a direct examination of a part of the colony is performed.
This procedure is carried out using a sterilized needle or an L-shaped platinum loop,

used to cut the colony and place it on the slide.

Based on the above, a greater emphasis will be given to the fungal seeding or propagation
technique. In this procedure, after acquiring the varieties of cultures separated by plating, they
must be kept in pure cultures by propagation, or as it is also called, “subculturing”. This action
refers to the inoculation of a minimal fraction of the fungus on Petri dishes using fresh culture
medium. To perform the spreading, scalpels or inoculation loops, a Bunsen burner, and parafilm
can be used, all in a flow hood under total aseptic conditions (TROVaO; PEREIRA., 2019). For
subculturing, the scalpel or inoculation loop is first placed in the flame of the Bunsen burner

until it changes color and becomes incandescent. After that, one must wait for the metal to
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cool (to avoid deteriorating the structures due to heat), to transfer the mycelium or yeast to a
new medium, already with the corresponding agar. If it is necessary to repeat the process, the

scalpel or inoculation loop must again be exposed to the flame of the Bunsen burner, in order

to always maintain correct sterilization of the sample handling material (TROV3O; PEREIRA.,

2019)). An example of this process can be seen in Figure

Figure 4 — a) Seeding with inoculation loop; b) Sterilization of scalpel; c) Seeding with scalpel; d) Seeding
in new culture medium; e) Subcultured Petri dish after propagation

Source: [TROV30; PEREIRA.| (2019)

Regarding the preservation of cultures, it can be done by different types of mechanisms and
for the desired length of time. For periods of many months, cooling the culture can be done at
4°C; however, for a more prolonged preservation period, another procedure must be used, such
as lyophilization or the use of liquid nitrogen. In this sense, preserving cultures at 4°C tends to
be done in two ways. The first corresponds to cooling colonies between 5 and 7 days at 4°C,
while the second option is to subculture the culture in a solid medium tube, adding mineral oil
until the surface of the colony is completely covered, followed by subsequent cooling at 4°C.
For this culture to be used at another time, it is necessary to subculture the colony in a new

culture medium and incubate it for a period of 5 to 7 days at approximately 25°C, and the

procedure should be redone if the colony loses vitality (TROVAO; PEREIRA., [2019).

One of the widely used enriched media in microbiology is "blood broth" — a base broth
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(e.g., BHI or peptone-based medium) to which sterile defibrinated blood is added in defined
proportions (blood:broth ratio usually between 1:5 and 1:10, adjusted according to the exper-
imental objective). The base medium must be prepared and sterilized by autoclaving (121 °C,
15 min) and, after cooling to approximately 40-45 °C, the sterile blood is added, avoiding
violent shaking that could cause hemolysis. These precautions preserve the integrity of the red
blood cells and plasma factors necessary for the growth of fastidious microorganisms, including
species of the genus Candida. (FALCONER; HAMMOND:; GILLESPIE, [2020; BUXTON, [2016])

The handling of blood broth must occur under strictly aseptic conditions (hood/laminar
flow) and the final medium must be gently homogenized, refrigerated, and used within a
short period due to its limited shelf life. In clinical practice and experimental protocols, the
blood:broth ratio is a critical parameter: for example, ratios close to 1:10 are often used in
adults, while in pediatric samples with reduced volumes, higher ratios (e.g., up to 1:100)
are tested without substantial loss of sensitivity. Recent literature on the optimization of
blood cultures and recovery methods reinforces the need for rigor in preparation and handling
to ensure microbiological recovery and experimental reproducibility. (FALCONER; HAMMOND;
GILLESPIE, 2020; [BUXTON, [2016))

A detailed understanding of cultivation methodologies, both in solid (plating) and liquid
(blood broth) media, is fundamental, as these protocols establish the basis for generating the
distinct datasets analyzed in this project. Critical parameters such as the composition of the
culture medium, the incubation temperature, or the blood:broth ratio in the case of blood
broth, directly influence fungal metabolism and, consequently, the profile of emitted Volatile
Organic Compounds (VOCs). Since these VOCs are the "signature" that the Electronic Noses
aims to identify, rigor in the standardization of these procedures — regardless of the sample
type — is an indispensable prerequisite to ensure the generation of consistent and high-
fidelity data, essential for the training and validation of Artificial Intelligence models capable

of performing an accurate and reliable classification.

2.1.4 Laboratory methodologies for fungal identification

In recent decades, remarkable progress has been noted in the field of fungal identification
and detection. New techniques are emerging with the aim of improving the recognition time
of these microorganisms, which have brought both social and financial problems (MARCOS;

PINCUS, [2013). As briefly mentioned, the early diagnosis of fungal infections is extremely
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important for the execution of an efficient treatment by the medical team. However, there are
numerous factors that can hinder this process, such as the reduction in the number of clinical
mycologists, diagnosis time, associated costs, and issues of sensitivity and specificity of the
method to be used. Another important factor is that the diagnosis of these agents must meet
the needs related to the constant emergence of new variants. These are generally found in
cases related to patients with immune deficiency, common in countries that demand a high
level of medical care and do not have the adequate resources for a correct diagnosis (KOZEL;
WICKES., 2014)).

Within this context, among the more traditional approaches to fungal identification are: di-
rect microscopic examination of clinical samples, histopathology, culture, and serology. Among
the emerging technologies, molecular diagnosis and the detection of antigens in clinical sam-
ples can be mentioned (KOZEL; WICKES., 2014). All these approaches require the use of people
with a high level of specific training in mycological handling. Furthermore, the growth in the
number of fungi identified by clinical mycologists in recent years increases the need for the
development of new, more efficient methods than those traditionally used (KOZEL; WICKES.,
2014). Below is a brief description of the most used and most promising methods in fungal

identification today.

2.1.4.1 Culture-based fungal identification

Despite being a less sensitive and time-consuming method, the isolation of a fungal
pathogen by culture remains the gold standard for the diagnosis of Invasive Fungal Infec-
tions (IFI) in most situations, playing a very important role in providing in vitro sensitivity
data. Therefore, when discussing the future of fungal diagnostic media, this method still re-
quires attention. In recent years, a series of studies have been combining ways to improve
the performance and application of fungal culture through two special research categories:
surveillance fungal culture and identification techniques using proteomics (MALDI-TOF MS)
(TERRERO-SALCEDO; MARGARET), [2020).

Over the years, studies have proven the good utility of the surveillance culture-based ap-
proach for patients at risk of acquiring an IFl. As an example, the study reported in [Terrero-
Salcedo e Margaret| (2020) apud (HONG et al., 2017)) can be cited, in which the results indicate
that, although 80% of mycology laboratories do not routinely perform mycology tests on sam-

ples from patients with cystic fibrosis, the inclusion of selective fungal culture media doubled
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the yield of clinically important fungi, when compared to isolated routine bacterial culture
conditions. This report may indicate that current procedures for evaluating the diagnosis of
infectious diseases may fail in the identification in vulnerable patients (TERRERO-SALCEDO;
MARGARET, [2020)).

Regarding identification methods, proteomic detection with MALDI-TOF MS is still a
widely used method. However, it can be time-consuming and laborious, heavily dependent on
the experience of the clinical mycologists responsible for handling the samples. Even the most
skilled experts can have difficulty in identification, as not all clinically important molds can be
accurately identified using only phenotypic methods. For this reason, many clinical mycology
laboratories are subject, to a certain extent, to DNA sequencing as the current gold standard
for the identification of fungi.

Although the most reported use of sequencing for the identification of fungal pathogens
has improved, there are still many limitations to this method. For example, the process of
accurately identifying fungi to the species level using sequencing still has its limitations. The
use of sequencing information from multiple genetic targets in a recognition algorithm needs
to be used several times to enable accurate distinction between species. In addition, there are
problems regarding the cost of the tests, the limited commercial availability of the technology
in laboratories, and problems related to the databases used to compare the sequencing results
(TERRERO-SALCEDO; MARGARET, 2020). Considering these limitations, the approach proposed
in this project is even more promising, as it opens new perspectives for identification combined

with reduced costs, ease of portability, greater transparency, and high levels of accuracy.

2.1.5 Volatile Organic Compounds (VOCs)

According to [Morath, Hung e Bennett.| (2012)), Volatile Organic Compounds (VOCs) are
carbon-based solids and liquids that enter a gaseous state at a temperature of approximately 20
°C, having low solubility in water. In this regard, about 250 VOCs have been identified based on
fungi, through mixing with components such as simple hydrocarbons, heterocycles, aldehydes,
ketones, alcohols, phenols, thioesters and derivatives, as well as benzene and cyclohexane
derivatives. Fungal volatiles can be derived from both secondary and primary metabolism
pathways.

Among the main methods used in the identification of fungal VOCs, some have gained

prominence, they are:
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= Gas Chromatography-Mass Spectrometry (GC-MS): one of the most used meth-
ods due to its powerful separation of volatiles and highly sensitive detection, but it is

not used for the identification of new compounds;

= Solid-Phase Microextraction (SPME): used for reducing preparation time by com-
pacting the extraction, concentration, and introduction steps into a unified stage, making

it more sensitive than other methods;

= Simultaneous Distillation-Extraction (SDE): a method that combines steam dis-
tillation and solvent extraction, commonly used to analyze the VOCs of Penicillium
roqueforti in comparison with SPME. However, it has proven inadequate over the years

as it could not define a complete volatile profile;

= Selected lon Flow Tube Mass Spectrometry (SIFT-MS): provides rapid and broad-
spectrum detection of VOC characteristics in slightly complex gas compounds. It is
generally used for studies of VOCs generated by Aspergillus, Candida, Mucor, Fusarium,

and Cryptococcus species;

= Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): performs the ioniza-
tion of organic molecules in their gaseous state through their reaction with H30+ and
can be used for the identification of fungal VOCs. Some of its main features include the
ability for fine-scale time detection and response, near-real-time analysis without sample

separation, derivatization, or concentration, with its sensitivity being comparable to the

GC-MS method;

» Electronic Noses - E-Noses: A still little-explored method, but very promising for the
identification of volatile fungal compounds. This type of technology combines a set of
gas sensors and artificial intelligence for the recognition of VOC patterns and "smell
fingerprints." It is already being used in different areas, such as food safety, agricultural

applications, and in the field of disease diagnosis.

In the context of identifying VOCs of Candida spp., the work developed by [Hertel et al.
(2018b)) sought to identify whether it is possible for Specific Volatile Organic Compounds
(SVOCs) to be found in patients with oral candidiasis, through breath analysis, for the de-

velopment of a new diagnostic tool. In the context of the work, samples were collected from
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20 individuals, 10 with Candida spp. and 10 without the presence of the fungus. These sam-
ples were analyzed by gas chromatography and mass spectrometry. As a result, a total of
143 VOCs were identified in the collections made in both categories of individuals, but the
volatiles found did not contain specific signatures, generally known to be emitted by Can-
dida spp. in vitro. However, some patterns were identified containing nine volatile compounds
(2-methyl-2-butanol, hexanal, longifolene, methyl acetate, 1-heptene, acetophenone, decane,
3-methyl-1-butanol, chlorobenzene), where characteristic changes were identified at the time
after antifungal therapy.

Furthermore, in the research led by |Perl et al.| (2011)), an innovative method for identi-
fying volatile organic compounds was demonstrated, which uses a multi-capillary column ion
mobility spectrometer (MCC-IMS) and was evaluated in the study for the identification of
VOCs in the headspace of A. fumigatus and four Candida species, namely Candida albicans,
Candida parapsilosis, Candida glabrata, and Candida tropicalis, being validated for A. fumi-
gatus and C. albicans through the currently best-known method for this type of purpose,
GC/MS. With the use of the GC/MS method on the samples, isoamyl alcohol, cyclohexanone,
3-octanone, phenylethyl alcohol, p_0642_1/p_683_1, and p_705_3 were identified as dis-
criminating volatiles, while with the use of the method proposed by the authors, the MCC-IMS,
3-octanone and phenylethyl alcohol were identified. Some substances were not correctly de-
tected by the MCC-IMS method, namely isoamyl alcohol and cyclohexanone. In a general
context, the MCC-IMS method becomes an important and viable alternative according to the
authors, due to its feasibility for rapid analysis and complex gas mixtures, eliminating the need
for pre-concentration or sample preparation, in addition to not depending on the water vapor
content and certain configurations. In this sense, it was possible to discriminate fungi at the
genus level of the germs analyzed by the volatile metabolic profile, affirming its efficiency for
VOC detection. However, discrimination at the species level for Candida species is not yet
feasible by the method.

Given this, with the intention of conducting a small survey of the most commonly found
VOCs in variations of Candida spp., a brief investigation was made in the literature on works
involving the description of volatiles of this fungus. Table 1| describes all the volatiles found in
the articles and also in the VOC database platform[t]

The reported information is of great importance for the construction of Electronic Noses

that use sensors directly related to the VOCs identified for the reported Candida species. All

1 https://bicinformatics.charite.de/mvoc/index.php?site=ergebnis
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Table 1 — List of VOCs related to some Candida species found in the survey conducted in this study

VOCs Candida Species VOCs Candida Species
Decane (DEC) C. glabrata, C. parapsilosis, Tyrosol C. auris
C. tropicalis, C. albicans
Methyl Acetate, C. glabrata, C. parapsilosis, Palmitelaidic C. auris
1HE: 1-Heptene C. tropicalis, C. albicans Acid
(MET)
2-Methyl-2- C. glabrata, C. parapsilosis, 1-Dodecanol C. albicans
Butanol (2ME) C. tropicalis, C. albicans
Hexanal (HEX) C. glabrata, C. parapsilosis, E-Nerolidol C. albicans
C. tropicalis, C. albicans
Longifolene C. glabrata, C. parapsilosis, E-Farnesol C. albicans
(LON) C. tropicalis, C. albicans
1-Heptene, Ace- C. glabrata, C. parapsilosis, Ethyl Hexanoate C. sake 41E
tophenone (ACE) C. tropicalis, C. albicans
Chlorobenzene C. glabrata, C. parapsilosis, 3-Methylbutyl C. sake 41E
(CHL) C. tropicalis, C. albicans Pentanoate
2-Phenylethanol ~ C. glabrata, C. parapsilosis, Methylpropyl 2- C. sake 41E
C. tropicalis, C. albicans Hexanoate
Cyclohexanone C. glabrata, C. parapsilosis, 3,7-Dimethyl-6- C. sake 41E
C. tropicalis, C. albicans Octen-1-0I
3-Methyl-2- C. albicans Methylbutyl  3- C. sake 41E
Butanone Hexanoate
1-Hexanol C. tropicalis Phenylethyl ~ 2- C. sake 41E
Acetate
P-Xylene C. krusei 3-Methylbutyl C. sake 41E
Cyclopentanecar-
boxylate
2-Octanone C. krusei 6-Octen-1-0l, C. sake 41E
3,7-Dimethyl-,
Propionate
N-Butyl Acetate  C. krusei 3-Methylbutyl C. sake 41E
Octanoate
2-Heptanone C. krusei, C. kodamaea 3-Methyl-L- C. kodamaea ohmeri
ohmeri Butanol
Benzyl Alcohol C. auris 2-Methyl-L- C. kodamaea ohmeri
Butanol

3-Methyl-1-
Butanol (3ME) -
Isoamyl Alcohol

C. glabrata, C. parapsilosis,
C. tropicalis, C. albicans, C.
auris, C. kodamaea ohmeri

Phenylethyl Alco-
hol

C. auris, C. sake 41E

this information was filtered from a set of studies ((WONGCHOOSUK; LUTZ; KERDCHAROEN.,

2009a)), (ALVAREZ et al., 2019), (ARRARTE et al,, 2017a)), (SEMREEN et al, 2019), (HERTEL et
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al., [2018b)) obtained through the mentioned literature investigation.

Understanding the VOC profiles emitted by each fungal species is, therefore, the funda-
mental premise on which the entire work is based, being crucial for the VOC mapping stage
carried out by the XAl Ensemble and for the understanding of similarities between the different
VOC profiles emitted by the Candida species. In this context, the data engineering stage of
the Framework DiagNose.Al assumes the responsibility of structuring this information, both
in the construction of databases that correlate the volatiles to the microorganisms and in its

preparation for analysis by Artificial Intelligence models.

2.1.6 Electronic Noses: Digital Olfaction Technology

From ancient China to modern medicine, olfaction has been one of the mechanisms used to
identify diseases. Some pathologies, such as those caused by fungi, have "olfactory signatures"
that, although not normally identified by the human nose, can be detected by electronic gas
sensors (GAS). These sensors are the basis for the construction of Electronic Noses (E-noses),
devices developed to mimic the human olfactory capability, identifying and distinguishing com-
plex odors through an array of semi-selective sensors (HAYASAKA et al., 2020; [LIMA et al., [2019)).

An E-nose analyzes gas mixtures through its array of sensors sensitive to Volatile Organic
Compounds (VOCs), identifying patterns related to the components emitted into the air (SAIDI
et al,, 2020). With a relatively low cost and small size, this technology has been introduced
in various fields, such as air quality analysis, monitoring of toxic gases, assistance in medical
diagnoses, and quality testing in beverages and food (CHEN et al., 2019} [ZHAN et al., [2020; LI
et al., [2017)). Currently, Electronic Noses are widely used due to their speed, convenience, and
objectivity.

However, the raw data generated by these sensors is a complex, high-dimensional temporal
signal. The transformation of these signals into a meaningful classification or diagnosis is
directly dependent on advanced computational methods for analysis and pattern identification

(WANG et al., 2020a)).

2.1.7 Artificial Intelligence for Olfactory Pattern Recognition

The interpretation of complex data from an E-nose is fundamentally a pattern recognition

challenge. The objective is to identify a unique “olfactory signature” in the sensor signals
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that corresponds to a specific condition, such as the presence of a microorganism. Artificial
Intelligence (Al), and more specifically Machine Learning, provides the necessary toolkit to
automate this task, allowing algorithms to learn how to map VOC signals to a diagnostic
result from previously labeled data (GANCARZ et al., 2019).

Different algorithms, such as Artificial Neural Networks (ANN), Support Vector Machines
(SVM), and Ensemble methods (e.g., Random Forest), have been successfully applied to
classify E-nose data in various scenarios, such as identifying food quality and predicting diseases
(CAYA et al., 2020; IKUSBANDHINI; WIJAYA; HIDAYAT ., [2021; TURPPA et al., 2019).

Despite their high predictive accuracy, many machine learning models, especially the more
complex ones like deep neural networks, operate as "black boxes". Their internal decision-
making processes are not inherently transparent, making it difficult for human experts to
understand why a particular prediction was made (ADADI; BERRADA, 2018 RUDIN, 2019). This
lack of interpretability is a significant barrier to adoption in critical domains like medicine,
where reliability, safety, and verifiability are non-negotiable.

This context presents two fundamental challenges that this thesis addresses. First, the
need to select machine learning models that are intrinsically suited to the temporal nature
of the E-nose sensor data, which leads to the exploration of time-series classifiers. Second,
the critical need to overcome the "black box" problem by developing methods for eXplainable
Artificial Intelligence (XAl) to ensure the model's transparency and reliability, a topic that will

be further explored in subsection [2.1.9]

2.1.8 Time Series

In the world of data, it is often possible, when studying an event, to find datasets where
its instances are constructed according to the order of time. This type of ordered sequence
of observations over time is described as a Time Series (TS). Examples of this type of data
collection include daily closing stock prices, monthly unemployment numbers, quarterly crime
rates in a given region, and annual birth rates (all have time as a determining variable). In this
sense, it can be said that the essential attribute of a TS is the correlation of its observations.
A large part of conventional statistical methods, based on random samples, requires different
techniques and are not applicable (WEI, |2013).

According to Vasconcelos (2022)), there are three basic patterns in relation to Time Series:

trend, seasonality, and cycle. In the case of a trend, it occurs when it is identified that the
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data increases or decreases over time, and there may be scenarios where the trend changes its
direction, such as going from a growing trend to a decreasing one. In the case of series that
remain constant over time, it is said that there is no trend.

Regarding seasonality, it occurs in cases where the series is influenced by seasonal aspects,
such as semester, month, week, or even events with a known period of occurrence. In this way,
cyclical changes occur at unknown times. That is, seasonal changes are equivalent to cycli-
cal movements completed within a year, while cyclical variations are complementary cyclical
movements in intervals longer than one year (VASCONCELOS, 2022).

In addition to the variations already mentioned, there are also irregular elements, character-
ized by movements that cannot be explained by trends or cycles. These unregulated variations
occur occasionally and influence the increase or decrease of the series’ values. The factors
responsible for their occurrence can range from occasional customs surcharges to unexpected
wars (VASCONCELOS, 2022). To illustrate these behaviors, Figure [5| presents a composition of

a time series, highlighting the observed, trend, seasonality, and random values.

Figure 5 — Example of a Time Series decomposition into components of observed values, seasonality, trend,
and randomness

[y
wv
o]
2
>
- O _|
w M
wv
e
° \JMW
2_
|
N
)
<Dl
5 &
S
B oo
2__
E_
>
2
= v
o
& o
wv
3 v
w
(=
(=3
(ea)
E —
o
= o
5
=
T T T T T T T
2003 2004 2005 2006 2007 2008 2009
Time

Source: WEI| (2013)

In this sense, fields such as engineering, sciences, sociology, and statistics have encountered
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time series and have been conducting analyses for problem mitigation. In this process, after
choosing a suitable group of models, it is possible to estimate parameters, analyze their rele-
vance to the data, and enable the use of the most aligned model to improve the understanding
of the procedure that creates the series. With an efficient model implemented and selected,
it can be used in different ways, according to the application for which it is being developed
(VASCONCELOS, 2022).

These developed models can be used for different purposes, such as, for example, a sum-
mary description of the data. In some cases, it is important to identify the presence of seasonal
components and remove them, to avoid confusing them with long-term trends, which is usually
identified as seasonal adjustment. Still in this same context, other uses of time series models
can include the separation or filtering of noise from signals, forecasting future values of a series
(predicting sales or population data, for example), and managing future values of a given series
by changing parameters (VASCONCELOS, 2022).

Among the main attributes of a time series, besides being stochastic (dependent on or
resulting from a random variable), it must also be stationary, which means that the entire
process needs to be in harmony with respect to a certain mean and with constant variance.
When a series is not stationary, it only allows for the analysis of its behavior at a specific time,
not allowing its use for other time fractions, not being very useful for making predictions. In
this sense, a time series will rarely be stationary, and it should be converted to this format
when necessary (VASCONCELOS, 2022).

Regarding the analysis of time series to verify how future observations can be influenced by
the past, the coefficients of the sample autocorrelation function (ACF) and the sample partial
autocorrelation function (PACF) are calculated with their respective lags. These coefficients
need to alternate between the confidence interval (Cl) of the ACF and PACF statistics, except

for the first lag (MERELLES et al., 2019). In this sense, the Cl can be calculated as follows:

CI=—% (2.1)

Where:
Cl = confidence interval;
t, = value of the Student’s t-statistic with N-1 degrees of freedom;

N = sample size.
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In this context, the ACF provides a basis for linear dependence in the series, that is, the
way one observation can influence future ones. On the other hand, the PACF brings the level of
direct linear association between instances divided by K periods. Through the ACF, it is possible
to perceive the following characteristics of Time Series: seasonality, randomness, correlation,
and stationarity. As for the trend, it can be identified through a series graph (VASCONCELOS,
2022).

In the scenario of time series, the order of the data is paramount, since, for this type
of data, neighboring values are dependent, and the focus of the analyses is related to these
dependencies. In most studies, TS are used to make predictions of the series in real time. This
is done by using a past time period to predict a future occurrence. In this work, the time series
models will be used for the classification of TS and not for prediction. In other words, Machine
Learning (ML) models will be used to learn, using as a basis Time Series already with their
respective labels, so that they can be classified when new instances are put to the test.

The sequential nature of the data generated by the E-nose makes the Time Series approach
the most suitable for analysis, allowing the capture of dynamic patterns that could be lost in a
static analysis. For this reason, the systematic application and evaluation of TS classification
models form the analytical core of the Framework DiagNose.Al, seeking better accuracy in the

distinction between species.

2.1.9 Explainability (XAl) Methods in Machine Learning

The high performance of Machine Learning models has made great strides in recent years.
However, there are still some challenges regarding the clarity of their learning process. The
lack of interpretability of the results of these algorithms can be a problem in fields where it
is essential to understand the results for decision-making, such as healthcare and autonomous
systems (RUDIN, |2019)). For these reasons, the need arose for the implementation of techniques
that, in some way, would allow a better understanding and interpretability of these models
known as "black-boxes." This field of research was titled eXplainable Al (XAl), which has as
its main objective to solve the interpretability problems of Machine Learning models, extracting
insights through their behavior.

In this field of research, a large part of the studies are developed to improve the inter-

pretation of computer vision and Natural Language Processing (NLP) models (RUDIN| 2019;



45

GUIDOTTI et al., 2019). In the field of images, for example, the methods have shown relevant
results, being able to highlight important regions in the images that had greater weight in the
decision-making process, without it being necessary to be a domain expert to understand the
method’s explanation for the result returned by the model. However, the same cannot be said
for the explainability methods used for time series classification, where they generally require
a greater level of technical understanding of what is being explained(RUDIN, 2019).

Visually, it is simpler for a human to understand an image or text than the signals that
are generated by time series. In general, a certain expertise or additional method is needed to
explain this data (even before they have gone through any kind of model). A study by Rudin
(2019) highlights that more research focused on the explainability of Time Series should
be done, especially when it comes to technical systems, the medical domain, and business
applications. The same study emphasizes that, since 2019, the number of studies focused on
XAl for Time Series has been growing, which strengthens the development of new methods
that can fill the existing gaps in this field today.

According to Rudin (2019), /Adadi e Berrada (2018), it is possible to categorize XAl meth-
ods based on two main criteria, Ante-Hoc and Post-Hoc models. Ante-Hoc groups models that
are natively interpretable, as their training structure presents a certain transparency in their
decision-making process, such as a decision tree. Despite this, this interpretability does not
necessarily make the model explainable, as in some cases, it still requires a certain expertise
to understand the report of the training process.

The Post-Hoc method, on the other hand, is not directly coupled to the model, being a
separate process from its training flow. It aims to demonstrate and promote new perceptions
of how a given model performed its learning after its training phase, without altering its
internal structure, as is the case with LIME(RIBEIRO; SINGH; GUESTRIN, 2016). This type of
technique is applied when the model in question is a black-box model, that is, when the
classification algorithm does not provide a reason for its decision-making or it is not accessible
or clearly understandable. Examples of these models are Artificial Neural Networks (ANN),
Support Vector Machine (SVM), or a Random Forest (RF). Thus, a Post-Hoc method can be
explained as a function g that receives the input of a classifier f, which will be trained with a
dataset D.

Furthermore, these models can be subdivided into two more categories, global and local.
Global models are characterized by seeking to demonstrate the logic used by them for any

input, returning a general explanation of their decision-making process, which is valid for the
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entire dataset. Local explanation models, on the other hand, detail the explanation behavior
of the model for a particular instance, in which case, the explanations will be given only for a
specific instance (RUDIN| 2019).

Within the Post-hoc and Ante-Hoc model techniques, there may still be another subdivi-
sion, based on the types of classifiers they can interpret. In these cases, we can name these
models as Agnostic and Specific. Agnostic Models, such as LIME (RIBEIRO; SINGH; GUESTRIN,
2016), have the ability to provide explanations for any type of classifier, be it an ANN or a
Random Forest. Specific models, on the other hand, are created to bring interpretability to a
specific type or a specific family of classifiers. This is the case with Grad-CAM(SELVARAJU et
al., [2017)), used as an explainability technique for models such as CNNs. By default, Ante-Hoc
models are considered all specific, as they are used only to explain their own decision-making
process (RUDIN, [2019)).

Regarding exclusively the XAl methods created and or adapted for time series, the current
state of the art brings a limited series of options, both in quantitative and qualitative terms.
Some literature investigations, such as those by Rudin| (2019), (Guidotti et al.| (2019), bring
some approaches and their classifications, also highlighting their negative points and some
suggestions of spaces not yet filled by the current tools. Among the most prominent XAl tech-
niques for time series in the literature are LIME(RIBEIRO; SINGH; GUESTRIN, 2016), Grad-CAM
(SELVARAJU et al., 2017), SHAP (LUNDBERG; LEE, 2017)), DeepLIFT (SHRIKUMAR; GREENSIDE;
KUNDAJE, 2017)), Occlusion Sensitivity (ZEILER; FERGUS, 2014), mWDN (WANG et al., 2018),
and SAX-VSM (SENIN; MALINCHIK, [2013). Each of them has particular characteristics and

seeks different forms of explainability.

2.1.9.1 The main XAl methods for Time Series

One of the most referenced methods in the literature today is LIME (RIBEIRO; SINGH;
GUESTRIN, 2016)), or Local Interpretable Model-agnostic Explanations, which is a technique
that clarifies the predictions of machine learning models, offering local and understandable
explanations. It allows users to understand the reasons behind the decisions of complex clas-
sifiers, promoting transparency and trust. However, the technique has its limitations. Because
it is based on simplified local models, LIME may not fully capture the complexity of the orig-
inal model, which can lead to explanations that are not fully representative of the model's

global behavior. In addition, the selection of representative instances and the generation of
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explanations can be challenging in cases with high data dimensionality or when the model is
extremely complex. Despite its advantages in making Al models more transparent and reliable,
LIME requires caution in the interpretation of its explanations. Users should be aware that
the generated explanations are approximate and may not reflect the entirety of the model’s
decision process. This is particularly important in critical applications, where decisions based
on incorrect or misinterpreted predictions can have significant consequences(RIBEIRO; SINGH;
GUESTRIN, [2016)).

Grad-CAM is a technique that provides visual explanations for the decisions of convolutional
neural networks, highlighting the regions of an image that are important for classification.
It generates heat maps that indicate the critical areas, increasing the transparency of deep
learning models and facilitating the identification of biases in the dataset. Like LIME, this
model was also used in the study by Schlegel et al. (2019a)) in problems related to Time
Series. Despite its advantages, Grad-CAM has limitations, such as the production of coarse
heat maps that may not capture fine details and the dependence on gradients, which can be
challenging to interpret. These restrictions can affect the accuracy and interpretability of the
generated visualizations (SELVARAJU et al., [2017)).

Regarding the SHAP method, or SHapley Additive exPlanations, it is a unified approach to
interpreting the predictions of machine learning models. Based on Shapley values from game
theory, SHAP calculates the contribution of each feature to a specific prediction, providing
an additive importance measure for each feature. This technique is particularly useful for
unraveling the contribution of individual features in complex models, such as decision trees
and deep neural networks. However, SHAP has significant disadvantages. One of the main
ones is its computational complexity, especially in datasets with many features, as it requires
the calculation of all possible groupings of properties. In addition, Shapley values can be
misinterpreted, and access to the data is necessary to calculate the values for new data. This
can be a challenge in terms of time and computational resources, limiting the applicability of
SHAP in scenarios with time constraints or processing capacity(LUNDBERG; LEE, 2017)).

Regarding the Deep Learning Important FeaTures (DeepLIFT) method, it is a technique
designed to decompose the predictions of a neural network and identify the important features
that contribute to the final decision. DeepLIFT compares the activation of each neuron with
a 'reference activation’ and assigns contribution scores based on the difference. This approach
allows DeepLIFT to highlight dependencies that may be missed by other methods, offering a

more detailed view of how the inputs affect the network's outputs. One of the main advantages
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of DeepLIFT is its ability to reveal these dependencies efficiently, in a single backpropagation,
after making a prediction. This makes it a valuable tool for the interpretation of deep learn-
ing models, especially in fields where interpretability is essential. However, a disadvantage
of DeepLIFT is that it can be computationally intensive, especially in networks with a large
number of features, which can limit its use in situations with time or computational resource
constraints(SHRIKUMAR; GREENSIDE; KUNDAJE, 2017)).

Continuing the analysis of these explainability methods, we also have Occlusion Sensitivity,
which is a visualization technique that helps to understand and interpret convolutional neural
networks (CNNs). It consists of systematically hiding different parts of an input and observing
how the model's output changes. This allows for the identification of which parts of the input
are most important for the model’s decision (ZEILER; FERGUS, 2014)). An advantage of this
method is that it is intuitive and easy to understand, as it directly correlates the importance
of different regions of the input with the model’s output. However, a disadvantage is that it
can be computationally expensive, as it requires multiple passes through the model for each
possible occlusion (ZEILER; FERGUS, 2014).

Another prominent method is mMWDN, or Multilevel Wavelet Decomposition Network. It is
a wavelet-based neural structure proposed for the interpretable analysis of time series. mMWDN
integrates the advantage of discrete multilevel wavelet decomposition in frequency learning, al-
lowing the fine-tuning of all parameters within a deep neural network framework. This method
is notable for its ability to incorporate wavelet-based frequency analysis into deep learning
models, offering a new approach to modeling important frequency information that is often
overlooked. One of the main contributions of mMWDN is the proposal of two deep learning
models: the Residual Classification Flow (RCF) and the multi-frequency LSTM (mLSTM),
for time series classification and prediction, respectively (WANG et al.,, |2018). These models
use sub-series decomposed by mWDN at different frequencies as input, learning all parame-
ters globally through the backpropagation algorithm. In addition, mMWDN has demonstrated
excellent performance in extensive experiments with both academic and industrial time series
datasets (WANG et al., [2018).

However, despite its advantages, mMWDN can present computational challenges, especially
when dealing with large volumes of data or complex time series, due to the need to process
multiple decompositions at different frequencies. This can require significant computational
resources and make the process slower compared to simpler methods(WANG et al., 2018).

Finally, we can mention SAX-VSM, another method widely referenced in the literature in
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recent years. This method combines Symbolic Aggregate approXimation (SAX) and the Vector
Space Model (VSM) for the interpretable classification of time series. SAX transforms time
series into symbolic sequences, reducing the dimensionality of the data and allowing for a more
abstract and manageable representation. VSM is used to classify these symbolic sequences,
treating them as documents in a vector space where the frequency of the symbols is analyzed
to determine their importance for a given class (SENIN; MALINCHIK| 2013).

This method is particularly useful because it not only provides accurate and fast classifi-
cation but also offers an interpretable generalization of the class, identifying and classifying
time series patterns by their relevance. However, SAX-VSM can be computationally costly
during the learning phase, despite its efficiency in classification. In addition, although it offers
superior interpretability compared to other algorithms, there are still challenges in symbolic
representation that can limit the capture of fine nuances in the time series(SENIN; MALINCHIK,
2013).

In conclusion, the limitations of the discussed methods demonstrate that the search for
explainability solutions in time series must transcend the use of heatmaps, which, although
useful, may not be the most appropriate form of visual representation for all contexts. It is
essential to explore other forms of representation that complement the visual representation,
such as detailed textual explanations that aggregate and summarize the crucial information of
the series, providing a deeper and more accessible understanding. In addition, new explainability
methods must be developed with clear human guidance, aligned with the specific domain of
the problem, ensuring that the interpretations are relevant and intuitive for the experts in the
area. Finally, the validation of these methods with real, not synthetic, data is fundamental to
ensure the applicability and reliability of the techniques in the real world, where data-driven
decisions can affect lives or bring potential risks.

Based on this survey, it is possible to extract some important information about the main
characteristics of these methods and to understand how new approaches can be developed,
taking into account the main limitations of these techniques.

In the context of this research, the emphasis will be on an explainability method aimed at
the clinical-medical area, which brings a clear context about the decision-making process of
the model used and which can be easily interpreted by a medical or laboratory professional.
This new technique will be applied to the model resulting from the Al techniques developed
for the data of the Candida volatiles obtained by the E-noses of this study. The main idea

is to create an explanatory model based on the needs of the clinical context, seeking, from
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feedback from potential users, to improve the understanding of the results obtained, bringing
both graphical and textual explanations that can clearly demonstrate the correlation of the
volatiles identified by the E-nose, the volatiles existing in each Candida species of the study,

and the final result obtained by the model.



51

3 RELATED WORK

This chapter provides a brief review of the literature regarding subjects with the greatest
similarity to this proposal. In this sense, some works related to the process of classifying and
identifying microorganisms, such as fungi and bacteria, using an Electronic Nose and Artificial
Intelligence techniques will be highlighted, with an emphasis on techniques related to time

series, as well as studies that address the use of Ensemble techniques for explainability.

3.1 SIMILAR WORKS ON CULTURE IDENTIFICATION USING Al AND ELECTRONIC
NOSES

In the study conducted by |Castro et al. (2022), an Electronic Nose and standard machine
learning techniques are used for the clinical identification of Candida species cultures. In the
work, the authors emphasize the difficulty that currently exists in standard methods for iden-
tifying fungi of the Candida type and propose a new technique that uses the identification
of Volatile Organic Compounds from cultures by means of an Electronic Nose and Atrtificial
Intelligence techniques, a methodology similar to the one used in this project. According to
the authors, this type of technique should contribute to assisting the treatment of patients
affected by the fungus, allowing for appropriate intervention, reducing complications related
to infections, and consequently, the percentage of deaths (CASTRO et al., [2022).

In this context, the use of Al techniques, more specifically Machine Learning, combined
with E-noses for fungal identification is still an emerging but very promising method. This type
of system analyzes the VOCs that are released by microorganisms after a period of culture in
a Petri dish, through the use of physicochemical sensors (CASTRO et al., [2022).

In the proposal in question, the E-nose was applied to assist in the identification of samples
of three Candida species: C. albicans (90028 readings), C. parapsilosis (22019 readings), and
C. krusei (6258 readings); all samples were obtained from the ATCC company E] (CASTRO et
al., [2022)). In this scenario, the entire reading, analysis, and processing process proposed by
the authors is demonstrated in Figure [6]

After collecting the information from the VOC readings generated by the Electronic Nose,
the data were prepared for processing by the Machine Learning models. The authors used k-fold

cross-validation, with 10-fold repetition. Automated Machine Learning (AutoML) and 28 other

1 https://www.atcc.org/
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Figure 6 — A) Components of the Electronic Nose used in the study. The E-nose has a manual injection
and suction system (item 1) that collects a certain volume of air from the sample in the Petri dish
(item 2). Items 3 and 4 represent control valves for air injection and reception through item 1.
The sample reading stage begins with the opening of valve 3 and aspiration of the air contained
in item 2. After that, valve 2.1 is closed and 4 is opened for the insertion of the sample air for
VOC analysis by the chamber (item 5). Once the air has been injected into the analysis chamber,
the existing sensors perform the reading and generate data through the reaction that occurs at
the moment of interaction of the volatiles with the sensor surface, converting them into digital
signals that are sent to the computer system (item 7). Finally, item 6 is an activator responsible
for cleaning the chamber, removing accumulated air and injecting filtered air back into the system.
B) Image representing the real Electronic Nose device used in the study

i

b o 4

Source: [CASTRO et al.| (2022

models were executed, separated by categories: Naive Bayes, Gaussian Processes, K-Nearest
Neighbors, Semi-Supervised Learning, Linear Models, Probability Calibration, Support Vector
Machine, Neural Networks, Discriminant Analyses, Decision Trees, and Ensemble Methods
(CASTRO et al} 2022). As results, the work indicates that AutoML obtained the best result
among all strategies, with an average accuracy of 93%, using a class-balanced model with a
weighting strategy. However, the study indicates that further research is still needed applying
the Electronic Nose to larger databases, with more varied samples of fungal species. This can
be done by improving the aforementioned data acquisition process, which should also imply
the training of more robust models, such as deep learning (CASTRO et al., 2022).

Another study that brings great contributions to this research is that of |Vasconcelos| (2022),
which seeks to correctly classify the volatiles emitted by colonies of anemophilous fungi using
an Electronic Nose combined with Time Series techniques. For the research, the author built
two main datasets, one called "Plate," which corresponds to data collected from Petri dishes
cultivated with colonies of anemophilous fungi, and another called "Open," which receives
data from the ambient air with the propagation of anemophilous fungi colonies in open Petri
dishes.

In the study, several subcultures of anemophilous fungi species were used, namely As-
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pergillus spp. (7,424 instances on plate), Cladosporium spp. (13,000 instances on plate - 563
open), Fusarium spp. (8,452 instances on plate - 1,213 open), Penicillium spp. (5,109 instances
on plate), and Rhizomucor spp. (1,189 instances on plate - 1,189 open), all marked according
to their collection method. For the training, these data were organized into three different
bases: the first base was called "Plate," with all the data from the Plate-type readings; the
second was called Plate_TR_Open_TS or PI_TR_Ab_TS, as it uses the Plate base as train-
ing data and defines the "Open" readings as test values; the third base was called Plate_Open
or PI_ADb, as it gathers values from the open plate readings for both training and testing
(VASCONCELOS, [2022)).

For the training and execution of the models, the author used the k-fold cross-validation
technique with 10 repetitions for most of the bases, collecting the metrics of Accuracy, Sensi-
tivity, Specificity, and Time elapsed. The resulting values were calculated based on the means
and standard deviation obtained from the 10 iterations for each model. The chosen models
were MrSEQL, ROCKET, Arsenal, HIVE-COTE V2, TSF, cBOSS, kNN, RISE, and WEASEL.
Of these, the one that obtained the best result for the "Plate" base was MrSEQL, with
values of 94.5% average accuracy and a standard deviation of 5.2 between iterations. The
Plate_ TR_Open_TS base did not obtain relevant values in relation to the results of the mod-
els, where the one with the highest accuracy was Arsenal, with only 58.8% and a standard
deviation of 5.3.

Finally, for the Plate_Open base, the results were slightly similar to the "Open" base, with
values of 94.9% accuracy for the best-placed model, Arsenal. However, the author recommends
the use of the model that came in second place, ROCKET, with 94.3%, because, according
to his analysis, the loss of performance in the metrics is outweighed by the gain in execution
time, of almost 8x. Thus, based on the results obtained, the author considers the results for
the Plate_Open and "Plate" databases to be satisfactory, with very positive values for both.
However, future works were pointed out regarding the expansion and diversification of the
database, the investigation of new models, and the creation of a low-cost device to measure
the presence of fungi in environments (VASCONCELOS, 2022).

Another very interesting use of Electronic Noses and Time Series is in the work of Nasci-
mento| (2022), which uses the combination of techniques to identify bacteria of the type
Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and Escherichia coli
in infected wounds. The study used as a basis 14 bacterial cultures, divided as four for the

species Staphylococcus aureus (5,340 readings), another four for Pseudomonas aeruginosa
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(5,359 readings), four more for Escherichia coli (3,341 readings), and two for Enterococcus
faecalis (981 readings), which resulted in a final set of 15,021 readings, derived from the
volatiles emitted by each culture and collected by the E-nose.

These collections were carried out after four distinct periods, at 6h, 9h, 24h, and 78h, in
order to evaluate whether there are relevant improvements in the results at shorter or longer
time intervals. In the organization of the base, the author defined two more variables for the
base: one referring to the label of the species itself and another to the culture time used for
collecting the information by the E-nose. In addition, due to inconsistencies related to the
number of readings per cycle, it was also necessary to level the data, aiming to maintain
homogeneity in the data (NASCIMENTO, [2022).

For the process of classifying the information, the author defined four Time Series mod-
els: K-Nearest Neighbors (KNN), specifically the distance-based version using Dynamic Time
Warping (DTW), Time Series Forest, HIVE-COTE 1.0, and InceptionTime. The entire training,
validation, and testing phase, as in the previous works, also underwent k-fold cross-validation,
with & = 10, applying the metrics of Accuracy, F1-Score, Precision, Recall, and Specificity (in
addition to the standard deviation of the iterations).(NASCIMENTO, 2022; |LIN et al., 2019).

Among all the evaluated models, InceptionTime performed best in the validation and test-
ing phases, with 98.99% accuracy for the former and 94.65% for the latter. In addition, Incep-
tionTime also obtained better sensitivity and specificity in both stages, with values of 94.65%
and 97.01% (respectively) for the validation stage and 93.68% and 96.71% (respectively) for
the testing stage (NASCIMENTO) 2022).

Thus, based on the results obtained, the author describes the identification of bacteria
through the use of Electronic Noses and time series techniques as possible, based on the
satisfactory results of the presented models. In this scenario, emphasis is also given to the pos-
sibility of making the identification of bacteria in wounds faster, more accurate, and automatic
using this methodology compared to existing ones. As future contributions, the importance of
obtaining a more robust and diversified database is highlighted, in addition to the possibility of
using new sensors, more appropriate for identifying the VOCs emitted by the studied species.
This would allow for a more specific collection by the E-nose and a possible improved classi-
fication of the chosen model, also in real environments (hospital institutions) (NASCIMENTO,
2022).

With a more comprehensive approach, Mota, Teixeira-Santos e Rufo (2021)) conducted

a Systematic Literature Review regarding the detection and identification of fungi through
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Electronic Noses technology. At the beginning of the discussion, the authors highlight the
importance of researching new methods for identifying fungi, given that the most used ones
today, such as MALDI-ToF, have high associated costs, requiring a laboratory and specialized
human resources to perform the correct identification and are rarely used outside the clinical
environment. In contrast, new technologies in biosensor engineering are enabling the creation
of portable, faster, and cheaper devices (E-Noses), using the concept of identifying Volatile
Organic Compounds. Consequently, these advantages have expanded the possibilities of appli-
cations and research, benefiting various areas of knowledge, including the clinical field. Several
challenges were faced, which brought the first good results for the identification of respiratory
diseases.

Regarding the applied methodology, the study was built based on the PRISMA methodol-
ogy, using PubMed as the main search engine, for publications made up to January 6, 2020.
The search string was assembled with the combination of the keywords nose or E-nose, com-
bined with any term originating from the word fungus, resulting in (("electronic nose*" OR
eNose) AND fung*). As inclusion criteria, the following points were used: 1) Study originating
in English; 2) The study sought the identification of fungi, and; 3) The study performs the
identification by means of Electronic Nose. In this context, as exclusion criteria, articles that
did not have as a premise the use of sensors or pattern recognition were discarded (MOTA;
TEIXEIRA-SANTOS; RUFO, 2021). Figure [7| demonstrates the search flow carried out by the
authors, using the PRISMA methodology as a structural basis.

As shown, a total of 16 studies resulted from the filtering phases. Of these, the vast majority
focused on the food industry and the fungus of the genus Penicillium. In general, nine different
E-Nose devices were used, the two most common being the PEN3 (Airsense Analytics Inc.,
Germany) and the BH114 (Bloodhound Sensors Ltd, UK), with three studies each. Among
them, the main technical differences are related to the sensors used for VOC identification.
Different types were used, such as Conducting Polymer (CP), Metal Oxide Semiconductor
(MOS), Quartz Crystal Microbalance (QCM), Surface Acoustic Wave (SAW) sensors, or a mix
of different technologies. This discrepancy can imply differences in the identification results
of each approach. Another factor that can interfere is that the vast majority of solutions
use ambient air for baseline measurements, which can cause some kind of contamination by
external VOCs at the time of analysis in different environments (MOTA; TEIXEIRA-SANTOS;
RUFO, 2021)).

As conclusions of the study, the authors reported that the identification of fungi through
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Figure 7 — Flow of the bibliographic search conducted by |[Mota, Teixeira-Santos e Rufo| (2021) using the
PRISMA methodology as a basis

| Included | | Eligibility | | Screening | | Identification
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(n=1)
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Full-text articles
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(n=28)
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Full-text articles
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Studies included in
qualitative synthesis
(n=16)

reasons

Focused on studies
using only GC-based
technology
(n=12)

Source: MOTA; TEIXEIRA-SANTOS; RUFO| (2021])

the use of Electronic Noses devices proved to be very positive, highlighting its use in bakery

products, cherry tomatoes, dry wheat grain, rice grains, peaches, and even in urban trees.

In addition, this type of technology also proved to be efficient in the early identification of

ochratoxigenic species in grape samples and in the classification of microorganisms causing

root canal infections. However, the study emphasizes the need for optimization of experimen-

tal conditions and standardization of the detection method (MOTA; TEIXEIRA-SANTOS; RUFO,

2021)).
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Another study with great synergy with the present work is that carried out by |Aksebzeci
et al.| (2010)), on the classification of microorganisms in the root canal using Electronic Nose.
According to the authors, an efficient and rapid identification can help health professionals
make more assertive decisions about treatment forms, such as the use of different types of
irrigants, antibiotics, and intracanal medications. The difficulties associated with the cultivation
process and the complexity in isolating the prevalent anaerobic pathogens end up forcing
professionals to apply experimental treatments to patients. Thus, the study sought to identify
seven types of pathogens commonly found in root canal infections, through the information
of the volatiles collected by an E-Nose.

In this research, the dataset was formed by 5 repeated samples of 7 different types of
species (Candida albicans, Candida glabrata, Fusobacterium nucleatum, Porphyromonas gin-
givalis, Pseudoramibacter alactolyticus, Streptococcus sanguinis, Enterococcus faecalis) in 4
repetitions. At each concentration, a set of 35 examples was classified with 3 different methods
of discriminant analysis (there was no use of Al, only the PCA method.). With the aim of
specifying an ideal profile for the use of the Electronic Noses in the application, the authors
used 3 different approaches to test the sensor responses. Three different sensor baseline values
were also used to obtain the normalization of the sensor responses. Considering that the num-
ber of sensors (32 carbon-black polymer composite sensors) is comparatively larger than the
number of collected samples, the impact of two different dimensionality reduction methods on
the classification performance was also investigated (AKSEBZECI et al., 2010)).

As main results, the study highlights that the quadratic type discriminant analysis sur-
passes the other varieties of this same method. It was also observed that the classification
performance is reduced whenever the concentration drops and that the models in which the
minimum sensor reading values in the sample were accepted as baseline bring a better perfor-
mance in the classification process. The results showed that the Electronic Nose was able to
accurately distinguish between different types of bacteria and fungi present in root canals, with
an accuracy rate of more than 90%. The authors conclude that this technique can be used as
a complementary tool to conventional microbiological diagnosis in endodontics, allowing for a
faster and more accurate identification of the microorganisms present in infected root canals
(AKSEBZECI et al., 2010).

With a greater emphasis on the state of the art of Electronic Noses, the article by |Chen et
al| (2019)) reports a literature review on GAS sensor arrays (E-noses), highlighting the main

technologies used for their design, the Al models most used in the literature for applications
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related to these sensors, and the main areas where they are being applied. The study also
makes a correlation between the different types of gas sensors and the different detection
methods used by them. Among the main ones are thermal (catalytic), mass, electrochemical,
optical, semiconductor, and surface acoustic wave sensors. Another highlight of the work is the
detail about intelligent gas sensor arrays, demonstrating how the detection and discrimination
of volatile organic compounds and other compounds that can be found in the air is done.

The author explains that this interaction between the gas sensor and the material is done
through the capture and storage of changes in resistance, current, or frequency, according to
the different types of measurement metrics. One of them is sensitivity, a parameter of the gas
sensor that describes the device's response in relation to the target gas molecules at a certain
concentration. One of the most referenced arrays in the study is the metal oxide (MOX),
where its composition, positive and negative points, and use are reported (CHEN et al., 2019).

Another interesting related work in the context of E-Noses is that of Peng et al.| (2018)).
The study provides a general overview of the mechanisms and definitions involved in the
construction of an Electronic Noses. The authors highlight that this type of application has
already been used in areas such as medicine and diagnosis, food production, and environmental
monitoring and can be separated into three main parts: planning and construction of the gas
sensor array, feature extraction from the signal generated by the "smell fingerprint" of the gas,
and pattern recognition regarding the olfactory characteristics. The authors' proposal aims at
the construction of an efficient solution for the last topic.

In this sense, the work uses different classifiers on the data derived from gas sensor arrays
that collected Carbon Monoxide, Methane, Hydrogen, and Ethylene. In this process, through
comparisons and results, the authors highlight the use of a set of techniques related to Deep
Convolutional Neural Networks (DCNNs), called GasNet, as the most successful in the process
of classifying gas types, despite being more commonly applied to image classification. They
maintain that this was the first approach to use this type of network in gas classification,
demonstrating better results in relation to widely used classifiers in the literature, such as
SVM and MLP (PENG et al., 2018)).

Still in this same context, the study by Wongchoosuk, Lutz e Kerdcharoen.| (2009b)) reports
very concisely the use of an Electronic Nose for the identification of human odors, specifically
from the armpits. The study used metal oxide sensors from the TGS line (TGS813, TGS825,
TGS2602, TGS880, and TGS822) for the capture and identification of VOCs released by the

armpits of the study participants. Adjustments were made on the maximum and minimum
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resistance in relation to the average values of their 10 neighboring data points and also an
adjustment of the hardware and software parameters related to humidity.

For the analysis of these volatiles, the authors used statistical models such as the paired
T-test and a principal component analysis (PCA) algorithm, which was implemented with
the intention of identifying patterns related to the volatiles of each study participant. As
final results, the work indicated that it is possible to identify and distinguish the volatiles of
different people through the odor of the armpits, even if the individual has used deodorant.
The sensors that had the most response to the volatiles were the TGS2602 and the TGS822
(WONGCHOOSUK; LUTZ; KERDCHAROEN., [2009b).

In addition, according to the authors, it is also possible to explore the use of E-noses
as a new biometric identification marker, given that the PCA results showed very distinct
patterns for the two individuals who participated in the study. However, it is understood that,
for a better understanding of the effectiveness of this process, it is necessary to carry out the
study with more people, creating a more precise statistical validation (WONGCHOOSUK; LUTZ;
KERDCHAROEN., |2009b)).

In the context of this study, Table [2] presents a brief summary and comparison of the main
similar works and the present project, highlighting the classification method (whether it is time
series or not), the highest accuracy achieved, the type of E-nose (sensors used), whether or
not statistical analysis was performed, and the volatiles analyzed in each study. Based on the
analysis of the main results of each study, it is possible to observe that there are currently
no studies directed towards the analysis and identification of the Candida species used in
this study (C. albicans, C. parapsilosis, C. krusei, C. haemulonii, C. kodamaea ohmeri, and
C. glabrata) using the most updated Time Series techniques. In addition, the present project
obtained a success rate superior to all other studies, which indicates a great potential for its

implementation in an operational environment.



Table 2 — Comparison of the characteristics of similar works on VOC identification with E-nose with this project

Work Uses Time Best Ac- E-nose Type Performs sta- Analysis of which VOC type?
Series? curacy tistical analy-
sis?
(CASTRO et al, No 93% 10 sensors, with manual No Fungi - C. albicans, C. parapsilosis, and C. kru-
2022) injection and suction of sei
volatiles

(VASCONCELOS,  Yes 94.9% 10 sensors, with automatic  No Fungi - Aspergillus spp., Cladosporium spp.,

2022) injection of volatiles Fusarium spp.

(NASCIMENTO| Yes 94.65% 10 sensors, with automatic  Yes Bacteria - Staphylococcus aureus, Pseu-

2022) injection of volatiles domonas aeruginosa, Enterococcus faecalis,
and Escherichia coli

(MOTA; N/A - Compares various versions No Systematic Review

TEIXEIRA-

SANTOS; RUFO|

2021)

(AKSEBZECI et al., No 75% 32 gas sensors Yes Fungi: Candida albicans, Candida glabrata, Fu-

2010) sobacterium nucleatum, Porphyromonas gingi-
valis, Pseudoramibacter alactolyticus, Strepto-
coccus sanguinis, Enterococcus faecalis

(CHEN et al, N/A - Compares various versions  No Systematic Review

2019)

(PENG et al, No >90% 8 gas sensors No Carbon Monoxide, Methane, Hydrogen, and

2018) Ethylene

(WONGCHOOSUK;| No - 5 gas sensors Yes Armpit odor

LUTZ; KERD-

CHAROEN.|

2009b)

This project Yes 97% 10 sensors, with au- Yes Fungi - C. albicans, C. parapsilosis, C. kru-

tomatic
volatiles

injection of

sei, C. haemulonii, C. kodamaea ohmeri,
and C. glabrata

Comparative analysis between the studies

09
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3.2 RELATED WORK ON XAl ENSEMBLES IN TIME SERIES AND BIOMEDICAL AP-
PLICATIONS

Several recent studies have proposed the use of XAl ensembles in different domains. For
instance, Rezk et al. (REZK; EL-GHAFAR; HASSAN, 2024)) developed a voting ensemble of ma-
chine learning models for heart disease prediction and applied SHAP and LIME to interpret its
outputs. The combination allowed for greater trust by identifying the most influential clinical
features. However, their approach focused on explaining an ensemble of predictive models us-
ing tabular data, rather than creating an ensemble of the XAl methods themselves to produce
a single, more robust explanation for temporal data.

Ganguly and Singh (GANGULY; SINGH, 2023) developed an explainable ensemble learning
framework for diabetes management prediction. Their approach combined multiple machine
learning models with post-hoc interpretability techniques to enhance transparency and clinical
reliability. While the ensemble improved predictive accuracy and provided useful feature-level
explanations, the study did not incorporate user-centered interpretive interfaces or seman-
tic contextualization of the explanations, limiting its direct applicability in patient-oriented
healthcare settings.

Shtayat et al. (SHTAYAT et al., [2023)) proposed an explainable ensemble deep learning frame-
work for intrusion detection in industrial Internet of Things environments. Their approach
integrated multiple neural models and interpretability tools to enhance both detection accu-
racy and model transparency. However, despite its strong analytical performance, the system
lacked user-centered interpretive interfaces, limiting accessibility for non-technical operators
and domain experts.

Huang et al. (HUANG et al, 2022)) developed a deep ensemble learning framework for human
activity recognition using wearable sensors. The proposed approach combined multiple neural
network architectures to enhance classification accuracy and robustness across diverse activ-
ity patterns. While the ensemble demonstrated improved generalization and feature learning
capabilities, the study did not include integrated interpretability mechanisms or user-oriented
visualization interfaces, which may hinder broader practical adoption.

Esser-Skala and Fortelny (ESSER-SKALA; FORTELNY, [2023)) investigated the interpretability
of biologically inspired deep neural networks, emphasizing the need for reliable explanation
techniques in bioinformatics. Their analysis provided valuable insights into the transparency

of complex models but did not incorporate ensemble-based interpretability or human-centered
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validation components.

Hou et al. (HOU et al., [2024)) conducted a comprehensive survey on self-explainable Al meth-
ods for medical image analysis, highlighting architectures with built-in interpretability. While
these models promote intrinsic transparency, the study underscored that most existing solu-
tions remain architecture-dependent and lack integration with complementary XAl techniques
or user-oriented explanation frameworks.

Zhang et al. (ZHANG et al., 2023) applied interpretable machine learning approaches to
metabolomics data, successfully identifying biomarkers associated with Parkinson's disease.
Despite demonstrating high predictive performance and meaningful biological insights, their
framework did not employ ensemble-based explainability or provide semantic, domain-aligned
explanations for clinical end-users.

Theissler et al. (THEISSLER et al), [2022)) reviewed explainable Al methods for time series
analysis, emphasizing the scarcity of ensemble strategies and the importance of incorporating
human-in-the-loop paradigms in safety-critical domains. Their findings suggest that future
XAl systems should better integrate interpretability, reliability, and usability considerations for
real-world adoption.

Although XAl methods such as LIME, SHAP, and Grad-CAM are widely adopted, their
isolated application to time series data remains challenging due to the temporal dependencies
and high dimensionality inherent to such signals (THEISSLER et al., 2022; ROJAT et al., [2021;
SCHLEGEL et al., 2019b)). Recent studies have begun to explore ensemble-based XAl frameworks
as a means of leveraging the complementarity among interpretability techniques (REZK; EL-
GHAFAR; HASSAN, 2024; [HUANG et al., 2022; SHTAYAT et al., 2023). However, few works have
specifically investigated these strategies for complex multivariate and temporal sensory data,
such as those generated by electronic noses. Table [3] summarizes how the main related studies
compare to the objectives of the present work.

Our work positions itself as an original contribution by proposing, for the first time in this
domain, an XAl ensemble focused on interpreting chemo-temporal data associated with the
identification of Candida species in yeast or blood broth. In addition to being a pioneer in the
joint application of these techniques to E-nose data, the proposed approach stands out for its
integration with a textual explanation module based on a scientific VOCs database, providing

end users with a deeper understanding of the model’s outputs.



Table 3 — Comparison between XAl ensemble approaches and the proposed method. The table summarizes the main characteristics of representative studies address-
ing explainability across different domains. Prior works have applied XAl ensembles in areas such as image analysis (ZOU et al.| 2022), industrial intrusion
detection (SHTAYAT et al.| [2023), wearable sensor data (HUANG et al.| [2022), cardiovascular health (REZK; EL-GHAFAR; HASSAN| [2024), and diabetes manage-
ment (GANGULY; SINGH| [2023), yet without focusing on multivariate time-series classification with human-centered explanations. Other approaches explored
individual XAl techniques in biological data analysis (ESSER-SKALA; FORTELNY/| [2023||ZHANG et al.| [2023) or developed self-explainable models (HOU et al.|[2024),
but lacked ensemble strategies or semantic interpretability. Theissler et al. (THEISSLER et al.| [2022) provided a comprehensive review, identifying ensemble-based
XAl for time-series data as an underexplored area. The proposed method differs by integrating complementary XAl techniques into an ensemble designed for
chemo-temporal data, enriched by a VOC semantic base, textual explanations, and usability-oriented design, addressing interpretability, robustness, and accessi-
bility gaps not fully covered in previous studies.

Work Data Type Domain XAl En- Textual VOC Se- Time- Human-
semble Explana- mantic Series Centered

tion Base Focus Design

L. Zou et al. (ZOU et al.| [2022)  Image Respiratory Infec-  Yes No No No No
tions
Shtayat et al. (SHTAYAT et al., Network traffic Industrial loT Yes No No Partial No
2023)
Huang et al. (HUANG et al.| 2022) Multisensor Human Activity Partial No No Yes No
Recognition
Ganguly & Singh (GANGULY; Clinical tabular Diabetes  Man- Yes Partial No No Partial
SINGH| [2023) agement
Rezk et al. (REZK; EL-GHAFAR; Clinical tabular Cardiovascular Yes Partial No No Partial
HASSAN| 2024) Health
Esser-Skala & Fortelny (ESSER- Biological se- Bioinformatics No No No No No
SKALA; FORTELNY/| [2023) quences
Hou et al. (HOU et al.| 2024) Medical images  Healthcare No Yes No No Partial
Zhang et al. (ZHANG et al.| [2023) Metabolomic sig- Biomedical / No No No Yes No
nals Metabolomics
Theissler et al. (THEISSLER et al., Mixed (survey) Time-series / No No No Yes Yes  (re-
2022) General view)
XAl Ensemble for VOCs Multivariate Health / Bio- Yes Yes Yes Yes Yes
(This Work) chemo- labs
temporal

Comparative analysis between related works on XAl ensembles in different domains and the proposal of this study.

€9
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This approach can also be generalized to other applications involving densely multivariate
time series and complex sensory data, such as in artificial olfaction systems, environmental

sensor networks, and metabolic biosensors.

3.3 POSITIONING THE RESEARCH IN RELATION TO EXISTING LITERATURE

The in-depth analysis of related works reveals a scenario of great potential, but also of
important limitations. On one hand, the state of the art consistently demonstrates that the
combination of Electronic Noses (E-noses) with Artificial Intelligence techniques is a viable and
promising approach. Studies such as those by (CASTRO et al.,, 2022), (NASCIMENTO, [2022),
and (AKSEBZECI et al., [2010)) have achieved high accuracy rates in the classification of vari-
ous microorganisms, validating the fundamental premise that the profiles of Volatile Organic
Compounds (VOCs) contain distinct "signatures" that can be learned by machine models.

However, when confronting this technological promise with clinical reality, the limitations
of current diagnostic methods become even more evident. The reliance on blood culture, with
its response time of days and sensitivity of approximately 50%, not only delays the start of
targeted antifungal therapy but also contributes to the empirical and often inappropriate use
of broad-spectrum drugs. This scenario negatively impacts clinical outcomes, increases the risk
of antimicrobial resistance, and raises hospital costs. The urgency for a method that breaks
with this paradigm — being at the same time fast, sensitive, and accessible — is not only a
technological demand but an imminent need of modern medical practice.

Despite the advances in classification, a critical analysis reveals the first major gap in
the literature: methodological fragmentation. Most studies present themselves as one-off and
isolated applications. There is a lack of a complete and replicable methodological Framework
that covers the end-to-end workflow: from the definition of an experimental protocol, through
data engineering, to modeling and, crucially, the interpretation of the results. This absence of
a systematic approach makes it difficult to compare studies and generalize findings.

The second gap is the scarcity of public and well-documented databases. Most works use
private datasets, which prevents the reproducibility of experiments and the benchmarking of
new algorithms by the scientific community. In the specific context of identifying Candida
species through VOCs, this scarcity is particularly notable, representing a significant barrier to
the advancement of the area.

Finally, the third and most significant gap lies in the superficiality of Explainable Artificial
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Intelligence (XAl) in this domain. The application of XAl to data derived from VOCs is incipient
and, when present, limited to individual techniques whose results are difficult for the target
audience to interpret. Common outputs, such as heatmaps, although useful in other contexts,
are not intuitive for health professionals who need to understand why a certain VOC profile
led to a specific diagnosis. There is a lack of textual and semantically rich explanations that
connects the model’s prediction to existing biochemical knowledge. In addition, many of these
methods were not designed for the dense, multivariate, and temporal nature of the signals from
an E-nose, being adaptations of techniques created for computer vision or tabular data, which
limits their effectiveness and reliability. A proposal for an XAl ensemble approach designed to
overcome these barriers, increasing the robustness and clarity of the interpretations, was not
identified in the literature.

Given these identified gaps — clinical, methodological, data, and explainability —, the
Framework DiagNose.Al proposed in this thesis was conceived to directly address each of these
deficiencies. It responds to fragmentation by proposing a complete workflow; it contributes to
the lack of data by detailing the construction of two new databases; and, most importantly, it
attacks the main computational gap by developing a novel Ensemble XAl architecture. Thus,
this thesis is positioned not only as an application of Al but as a methodological contribution

that aims to strengthen and mature the area as a whole.
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4 THE DIAGNOSE.Al FRAMEWORK: DEVELOPMENT AND METHODOL-
OoGY

This chapter details the architecture and validation of the DiagNose.Al Framework, the
main methodological contribution of this thesis. The methodology presented here is the result
of a rigorous iterative research process, which consolidated a systematic and complete solution
for the identification of microorganisms from the analysis of Volatile Organic Compounds
(VOGs).

The work follows on from initial explorations on the use of the Electronic Noses and Al in
the identification of Candida spp. (CASTRO et al, 2022), but significantly expands the approach
by proposing a complete Framework. A fundamental step for this expansion and for the robust
validation of the methodology was the international collaboration established with the College
of Medicine at the University of Cincinnati, in the United States. This partnership was crucial
to enable one of the most important phases of the research: experimentation with patient
blood broth samples. Conducting these experiments at an international reference center, using
a versatile and portable reading device developed as part of this thesis, allowed not only the
construction of a novel clinical database but also the consolidation of the Framework in a
highly complex and relevant scenario.

The methodology was implemented and validated through an iterative process, culminating
in a functional proof of concept. The developed software artifacts, as well as the details of the
computational configuration used for the experiments, are documented in Appendix [A] of this
work.

The content of this chapter is structured to detail each of the components that were de-
signed and integrated to form the DiagNose.Al Framework. As illustrated in Figure [8] which
presents an overview of the workflow, the methodology covers everything from sample collec-
tion to the issuance of a final explainable report. The following sections will describe in detail

each of the steps consolidated in this Framework:
(I) The structure of the reading devices and the data acquisition protocol;
(I1) The methodology for data engineering and preparation of the databases;
(II1) The predictive modeling approach with an emphasis on time series;

(IV) And, finally, the design and validation of the XAl Ensemble explainability architecture.
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Figure 8 — Overall workflow of the DiagNose.Al Framework. The methodology ranges from the preparation
and collection of data from samples (ATCC and blood broth) with the Electronic Noses, through
preprocessing and analysis by Al models, to the generation of a final explainable report on the

species identification.
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4.1 COMPONENT I: THE DATA ACQUISITION PROTOCOL

The validity of any Artificial Intelligence system is intrinsically dependent on the quality
and consistency of the data with which it is trained. In the domain of diagnosis through
sensors, where the variability of samples and environmental conditions can introduce significant
noise, the absence of a standardized collection process represents one of the main barriers to
the reproducibility and reliability of the results. Recognizing this fundamental gap, the first
component of the DiagNose.Al Framework is the design and consolidation of a rigorous Data
Acquisition Protocol. This section details the proposed methodology, which was designed to
ensure the generation of high-fidelity and consistent volatile compound data, serving as the
fundamental foundation for the subsequent stages of modeling and explainability. The protocol
was validated in multiple scenarios, using different reading devices and sample types to ensure

its robustness and versatility.
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Table 4 — Description of the functions of each sensor

Sensors Main Function

TGS826 Ammonia Detection

TGS2611-E00 Methane Detection

TGS2603 Detection of odors and air contaminants (High sensitivity to the amine
series and sulfurous odor gases and high sensitivity to food odors)

TGS813 Detection of combustible gases (High sensitivity to methane, propane,
and butane)

TGS822 Detection of Solvent Vapors (High sensitivity to alcohol and organic
solvent)

TGS2602 Detection of air contaminants (High sensitivity to gaseous air contam-
inants)

TGS823 Detection of Organic Solvent Vapors (High sensitivity to organic sol-

vent vapors, such as ethanol)

Sensors used in the Electronic Nose to identify the volatiles emitted by the gases gener-
ated by the Candida spp. species.

4.1.1 The Reading Device for ATCC Culture Samples (Suitcase)

In parallel with the construction of the theoretical basis and the structuring of the problem,
the first steps for the construction of the solution were carried out. The first version of the
database was built from ATCC control sampleq’] These samples were used as reference strains
by the Medical Mycology Laboratory/UFPE, and were then marked and cultivated on Petri
dishes for analysis by the Electronic Nose, developed in partnership with the Northeast Regional
Center for Nuclear Sciences/UFPE. The E-Noses performs the identification of the "olfactory
fingerprints” released by the fungi through Volatile Organic Compounds. In this process, as
mentioned earlier, the E-Nose uses 10 different categories of sensors, seven of them from the
manufacturer Figaro Engineering Inc. (TGS826 (Ohm), TGS2611 (Ohm), TGS2603 (Ohm),
TGS813 (Ohm), TGS822 (Ohm), TGS2602 (Ohm), TGS823 (Ohm)), and the other three
are temperature (°C), pressure (kPa), and humidity (%) sensors used to analyze possible
interferences of these parameters on the behavior of the samples. a summary of the main
functions of the sensors used in the device is in Table

To provide greater agility in transporting the device, it was built and adapted inside a
compact case, with adequate sealing and structure to support all the necessary elements
for the operation of the Electronic Nose. In the box, in addition to the sensors coupled to

an air chamber on the inside and an on/off button, there is a pump responsible for the

1 https://www.atcc.org/about-us
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suction/injection of gases or air into the chamber, a control valve, an air filter with activated
carbon, and finally, a simple chamber to insert the Petri dish and collect the volatiles emitted by
the reactions of the microorganisms. All connections between the components and the chamber
surfaces are made of polytetrafluoroethylene (PTFE) due to its non-stick characteristic and
low coefficient of friction, facilitating cleaning and preventing the permanence of volatiles
between the suction and purge cycles. Figure [9] presents the Electronic Nose device used in

the experiments with the ATCC culture samples.

Figure 9 — Electronic Nose device (Suitcase) used in the experiments with ATCC samples: (1) The Electronic
Nose is packaged in a compact box; (2) It is activated by the on/off button; (3) All connections
are made of PTFE; (4) It has an activated carbon filter and (5) a PTFE filter; (6) The sample
chamber is also made of PTFE. For collection, the Petri dish is placed in the sample chamber (6),
the chamber is closed and the E-nose is turned on (2). With the air already filtered (5), the device
performs the aspiration in the Chamber for 20s, the air passes through the PTFE connections (3)
and goes to the sensors that are on the inside of the case (1). After that, a stabilization phase
occurs for 60s, followed by a purge phase, which performs the cleaning for another 60s (using the
activated carbon filter - (4)). Three readings per second are made during this process.

L]
(1) Compact [ (2) Onloff
case ) button
g 4) Activated
(3) PTFE’s ( _
conections Carbon Filter
(5) PTFE's (6) Sample
filter chamber

Source: Author

4.1.2 The Portable Reading Device for Validation in Blood Broth (Prototype)

The second version of the Electronic Nose was developed to facilitate the transport of the

equipment between countries, allowing the creation of more heterogeneous databases, with
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samples from different regions. In this context, this more compact version of the E-nose was
used for the collection and reading of blood broth samples from infected patients, managed
by the University of Cincinnati Medical Center. The prototype has seven distinct sensors: four
gas sensors of the MQ line (MQ-135, MQ-3, MQ-7, and MQ-138) and three environmental
sensors for monitoring temperature (°C), pressure (kPa), and humidity (%), used with the
same objective as the previous version (Suitcase), that is, to check for possible environmental
interferences in the readings.

Following the same logic as the Suitcase version, the prototype was built entirely with
PTFE materials, avoiding the adhesion of compounds to the surfaces and preventing cross-
contamination between readings. In addition, the portable version also has an air pump, re-
sponsible for transporting the VOCs from the Petri dish to the internal gas sensors of the
E-nose. On the other hand, due to its portability, the purge phase must be performed man-
ually, alternating between the Petri dish with the blood sample and another plate containing

activated carbon. Figure [10]illustrates the new version of the device.

Figure 10 — Electronic Nose device (Prototype) used in the experiments with blood broth: (1) region where the
gas sensors are embedded; (2) pump used for VOC aspiration; (3) region intended for placing the
Petri dish; (4) PTFE components to avoid cross-contamination. For collection, the Petri dish with
the sample is positioned below the E-nose (3), the safety cabinet is closed (where the experiments
are performed) and the E-nose is activated by the system. The device performs the aspiration (2)
for 60 s, the air passes through the PTFE connections (4) to the internal sensors of the prototype
(1). Then, a stabilization phase of 120 s occurs, followed by a purge phase, in which the plate
with the sample is replaced by a plate containing activated carbon, performing the cleaning for
another 60 s.

(1) 4 gas sensors

(2) Air suction pump

(3) Petri dish

(4) PTFE components

Source: Author



71

42 COMPONENT II: THE DATA ENGINEERING METHODOLOGY

After the acquisition of raw data by the experimental protocol, the subsequent and equally
critical step of the DiagNose.Al Framework is its transformation into a structured, high-quality
knowledge asset. Sensor data, in its original form, is unsuitable for the direct training of ma-
chine learning models, requiring a robust engineering process to extract significant signals
and format them appropriately. In addition, the literature in the area suffers from a notori-
ous scarcity of public datasets, which hinders reproducibility and the benchmarking of new
approaches. To address both gaps, the Data Engineering Methodology described in this sec-
tion was conceived. This contribution covers not only the development of a pre-processing
pipeline for microorganism VOC data but also the construction and characterization of two

new databases, which represent a valuable resource for the scientific community.

4.2.1 Construction of the Culture Database (ATCC Samples)

In the first stage, the material cultivated by means of ATCC samples is labeled with its
respective species (C. albicans, C. glabrata, C. haemulonii, C. kodamaea ohmeri, C. krusei,
C. parapsilosis), cultivated on Petri dishes containing Sabouraud Dextrose Agar medium (see
Figure and taken for reading by the Electronic Nose (using the protocol explained in the
subsection , resulting in the generation of the database. The culture of fungi in the
laboratory is a fundamental technique in biological and industrial research, allowing for the in-
depth investigation of the biochemical and physiological properties of different fungal species,
as well as the production of biomolecules with wide application. Recent studies highlight that
fungal cultures have been used for decades for the production of food, enzymes, and other
biochemical compounds, and that their use is growing with technological advances in fungal
biotechnology (ROTH; WESTRICK; BALDWIN, 2023)).

However, it also involves several associated costs, from the acquisition of materials and
equipment to the maintenance of ideal growth conditions for the fungi. The effective manage-
ment of these costs is fundamental to ensure the financial viability of fungal research in the
laboratory. Among the main costs associated with the culture of fungi in the laboratory, the

following stand out:

» Culture media: culture media are essential for the growth of fungi in the laboratory,
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providing the necessary nutrients for the metabolism and reproduction of fungal cells.
Culture media can be purchased ready-made or prepared from specific ingredients, such
as malt extract, peptone, agar, and sugars. The costs vary depending on the type and

quality of the culture media.

» Laboratory equipment: fungal culture requires specific laboratory equipment, such as
incubators, ovens, magnetic stirrers, Petri dishes, and pipettes. This equipment can be

expensive and requires regular maintenance to ensure proper functioning.

» Fungal species: the acquisition of fungal species involves costs, depending on the source
and rarity of the species. Some fungal species are protected by laws and require special

licenses for acquisition.

» Electricity: many laboratory equipment, such as incubators and ovens, consume signif-

icant electrical energy, which can increase operational costs.

» Time and labor: the process of culturing fungi in the laboratory is time-consuming
and requires specialized labor to maintain ideal growth conditions. This includes salary,

scholarship, and training costs for laboratory technicians.

» Waste disposal: the proper disposal of waste generated during the fungal culture pro-
cess, such as used culture media and contaminated cultures, involves additional costs,

such as the acquisition of equipment and chemicals for treatment and proper disposal.

In summary, the culture of fungi in the laboratory is an important technique in biological
and industrial research, but it also involves several associated costs that must be properly
managed to ensure the financial viability of the research. Careful planning and consideration
of the costs involved are fundamental to maximize the return on investment in fungal culture

in the laboratory.

4.2.2 VOC Collection from ATCC samples

After laboratory culture, the VOCs are aspirated by the Electronic Nose with different
cultivation times (24h, 48h, and 72h), in order to increase the heterogeneity of the data and

allow for better generalization by models in the future. This aspiration at different times also
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Figure 11 — Examples of a C. albicans sample (URM8368) used to create the database (isolate tested using the
culture in an in vivo and ex vivo model). Cultivation performed on a Petri dish using Sabouraud
Dextrose Agar culture medium.

Source: Author

aims to identify whether it is possible to obtain accurate results more quickly, which is of great
importance to assist health professionals in decision-making.

For each collected sample, the E-Nose performs a collection protocol based on three cat-
egories of actions: aspiration, stabilization, and purge (cleaning step) (as seen in Figure [12)),
where the completion of all three characterizes the conclusion of a cycle. For each sample, a
volume of three readings per second is collected for 20 seconds in the aspiration phase, for
60 seconds in stabilization, and another 60 seconds in the cleaning phase, totaling an average
of 420 readings per cycle on each sensor (for each sample, a predefined number of cycles is
executed). Considering that numerous samples of the same species are necessary to obtain di-
versity in the data (so that the Al models can satisfactorily learn the patterns of each species),
a relevant amount of data was collected in this first stage, with 20,189 instances of C. albicans,

19,068 of C. glabrata, 6,989 of C. haemulonii, 7,067 of C. kodamaea ohmeri, 17,255 of C.
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krusei, and 20,234 of C. parapsilosis, totaling 90,802 samples collected in approximately 514
cycles with cultures on different days. It is common to have cycles of different sizes, due to
a reading inconsistency in the E-Nose. To solve this, it was necessary to combine the sizes of

the cycles, explained in more detail in the Sample Classification Process section.

Figure 12 — E-Nose collection cycle. (1) Chamber suction step (2) Sensor stabilization step (3) Chamber
cleaning (purge)
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Source: Author

After the construction of the first version of the database, the need was identified to perform
a data analysis, seeking to observe the existence of behaviors or indications of patterns for
the different sensors related to each of the species. In addition, this initial verification was
important to identify cleaning and/or restructuring strategies for the base, to enable its use
by the learning models.

It is important to highlight that this first stage of experimentation aims to create a con-
ceptual basis for new experiments with blood, seeking to validate the hypothesis that the E-
nose, combined with Al techniques, is capable of identifying the patterns emitted by Candida.
Additionally, in an operational setting, the analyzes should also be conducted in a controlled
environment (the collected material should be taken to a sterile environment). This is intended

to avoid potential noise in the data.
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4.2.3 Analysis and processing of ATCC samples

After data generation, a descriptive analysis was performed to better understand its be-
havior and which Al models might be more suitable to identify the patterns generated by the
samples. For this, it was first necessary to perform an analysis and visualization of the data to
get an idea of how they relate in relation to each sensor for each Candida spp. collection. From
there, a new database was built with the dataset of all collected species, only with the sensors
considered significant and with the addition of new columns to label the samples in relation
to their species and cultivation time. Another important point in this information visualiza-
tion stage was the use of UMAP (Uniform Manifold Approximation and Projection) and PCA
(Principal Component Analysis), dimensionality reducers, which helped to better understand
the clustering of the data. In this sense, as initial steps for the pre-processing and visualization

of the information, four relevant points were verified in relation to the data:

» Whether all the sensor data for the same species have a similar behavior;

» Whether there are differences in information between the same species at different col-

lection times;
» Whether there is a predominance of a sensor per species;

» Whether there is a clear division between the data and how they are grouped.

For the analysis of the first point, graphs were generated with data from all sensors related
to the collections of each Candida species to be analyzed. In these, the wave patterns of each
collection were observed, following the chronological order of reading, visualized in Figure
for the C. albicans data.

As can be seen, each of the sensors has a specific wave pattern, varying in well-defined
intervals. There are some reading peaks in some regions that may signal detection errors by the
sensors, indicating the presence of possible outliers. The pressure and humidity sensors have
an almost constant reading cycle, not interfering at any time with the reading pattern of the
other gas sensors. The temperature sensor, despite oscillating at some points, also does not
interfere with the reading of the other devices. This may be an indication that the alteration
of these parameters does not cause, in this case, any interference in the captures of the other

sensors, and they can be removed from the analysis.
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Figure 13 — Readings data of each sensor over time for the C. albicans samples
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Another important point for this initial study is the identification of differences between
data of the same species, but for different collection times. This point helps to visually point
out if there are significant differences between the readings performed with cultures of different
days, because the sooner the reading patterns are identified, the better the decision-making
will be. Figure [14] shows reading data of one and two days for the species C. krusei.

As can be seen in Figure [14a] and Figure [14b] there is a small distinction in the amplitude
of the waves in relation to some sensors from one day to the next. This demonstrates that
these devices have a difference in resistance between the volatiles of day 1 and the volatiles
of day 2. One hypothesis is that the concentration of gases released by this species changes
over time, decreasing in some cases and increasing in others, contributing to widening the
differences in the patterns between the different days.

The third point is the possibility of the predominance of a certain sensor per species.
This can indicate which sensor is able to differentiate itself more in relation to each species of
Candida, contributing to the distinction of patterns and the selection of the characteristics used
in the database consumed by the classification models. Figure [15] represents this information.

Each of the graphs highlighted in Figure portrays the behavior of the sensors based
on the resistance caused by the gases emitted by each species at the time of reading by the

Electronic Nose. Seeking to identify a predominance of a sensor over the species, it is noted
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Figure 14 — Reading data of C. krusei on different days.
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Figure 15 — Resistance data for each sensor by Candida species. In this case, it is possible to identify the
sensitivity of each device with the readings of each species. For example, the TGS2602 sensor
(Detection of air contaminants - upper right corner of the figure) has a higher resistance to
Candida parapsilosis than to the other species. Thus, it is possible to say that this sensor is more
sensitive to the volatiles of this species than to the volatiles of the other Candida.
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that the TGS2602 and TGS822 sensors have a greater number of readings spread over different
levels of resistance in C. parapsilosis, with the values of the other types of Candida in very
similar regions to each other, but very different from C. parapsilosis. The opposite occurs
with the TGS2611 and TGS823 sensors, where the other candidates have more distributed
resistances and C. parapsilosis is more focused in one region. This all shows that, in fact, some
sensors have a predominance in relation to some species. However, for each of them to identify
different levels of resistance in relation to each of the others, all the reading values end up
being relevant, because together they become important characteristics for the identification
of patterns by the models.

After analyzing the data of each species and sensor separately, the need was identified
to understand how the entire dataset was grouped. For this, two dimensionality reduction

techniques were applied: PCA (Principal Component Analysis) and UMAP (Uniform Manifold

Approximation and Projection). In the case of PCA, according to |Abdi e Williams.| (2010)), its
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main objective is to extract relevant information from a tabulated dataset and convert it into
a new set of orthogonal variables, called Principal Components. In this sense, it is possible to
display patterns of similarity in the instances and variables as components of a graphic map.
On the other hand, UMAP, according to Mclnnes, Healy e Melville (2018), is an innovative
dimensionality reduction technique that is based on a theoretical framework of Riemannian
geometry and algebraic topology, which makes the results derived from its reduction scalable
and easily used in real data situations. Unlike PCA, it performs dimension reduction in a non-
linear way, trying to keep similar cases close and different cases separate. In this study, for
both techniques, a two-dimensional reduction was applied, which can be analyzed in Figure

Lol

Figure 16 — Two-dimensional representation of the Principal Component Analysis (a) and the Uniform Manifold
Approximation and Projection (b)
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Analyzing the two projections, we can see small groups formed by each species. In the
case of PCA, the difference in patterns of C. parapsilosis from the other Candida is evident,
as its points are well dispersed from other data groups, with only a few samples separated
from the main group. This demonstrates that this species has very particular characteristics
and can probably be distinguished by machine learning models. Regarding the other species,
it is noted that there is not much visible overlap between them. An evident problem is the
existence of the same group in different parts of the PCA image. Some models may encounter
barriers to distinguish this behavior. In the graph generated by UMAP, it is already possible
to see a separation of the data, with groupings of species being made in different regions of
the graph, without the existence of much overlap. This is explained by the way UMAP treats

the reduction, through algebraic topology and similarity measures. It is important to highlight
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Figure 17 — Workflow of the Candida identification process using Electronic Nose and Al models. Blood
aliquots are collected and analyzed by the device, which captures the volatile organic compounds
(VOCs). The data are stored and preprocessed, including restructuring of the cycles and balancing
by oversampling. The sets (original and balanced) are used to train traditional classification and
time series models. The validation is done by Repeated K-Fold cross-validation with 10 repetitions.
The best model is selected based on metrics such as accuracy, Fl-score, and specificity, and is
then deployed for real-time identification.

that, despite not being grouped in the same region of the graph, the species with similar
characteristics end up being close to each other and, because they have very different reading
averages within the same species — due to the differences in sensor reading — the same species
may contain data that are not very close, since this method does not seek its resizing based
on the principal components, but rather on similarity measures.

Finally, knowing how the data are arranged and grouped, the base was prepared for use
by Time Series models, modified to 2 dimensions, one of the few supported by most of the
models in this segment. From there, the experiments with the models began, which will be

detailed in the next sections.

4.2.4 Construction of the Blood Broth Database

All stages of sample collection and data generation were carried out under the IRB protocol
2020-0313, in compliance with all necessary safety standards and protocols. For the blood cul-
ture experiments, Matrix-Assisted Laser Desorption/lonization Time-of-Flight (MALDI-TOF)
mass spectrometry was employed to rigorously evaluate and confirm the species identification
of the samples prior to their utilization in the study. To better illustrate the two methodolo-
gies presented, Figure shows the data collection and generation phase, while Figure
delineates the solution development phase.

The first methodological stage (Fig. involved the preparation, storage, and analysis of
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Figure 18 — Experimental setup for in situ analysis of blood samples. Step 1: Collection of the blood culture
broth. Step 2: Storage of the sample at 4°C. Step 3: Wait for the sample to reach room temperature
( 25°C). Step 4: Sterilization of the collection environment. Step 5: Execution of the collection
cycle (reading, stabilization, and purge). Step 6: Disposal of the used material.

the samples in a controlled environment, ensuring the standardization of the procedures and
the reliability of the obtained results. Aliquots of residual broth were collected from clinical
blood cultures with previously known subculture results, tested at the [clinical laboratory of
the University of Cincinnati Medical Center]. The aliquots were stored in sterile tubes under
refrigeration at 4°C, with a maximum period of 48 hours to preserve the integrity of the emitted
VOGs. In total, 14 samples were collected, which generated 45,674 readings, whose subculture
results were used to label the data analyzed by the Electronic Nose, defining the target variable
of the dataset. This information was essential for the training of the Al models, allowing the
identification of which VOC profiles corresponded to each type of microorganism. The samples
included both fungal organisms isolated in subculture (C. glabrata, C. albicans, C. parapsilosis,
or Cryptococcus neoformans), as well as mixtures of C. glabrata and C. parapsilosis, in addition

to negative samples (without isolated fungi).
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4.2.5 Preparation for reading and conducting the experiments

After storage and before the readings, the samples were kept for one hour at room temper-
ature, allowing for thermal stabilization and minimizing the influence of temperature variations
on the volatilization of the compounds. To ensure ideal conditions at the time of measure-
ment, the temperature was checked (around 25°C) before each reading. The non-Candida,
negative, and mixed samples were used to test whether the models could identify potential
mixed infections, uninfected samples, and other types of infection besides those caused by
Candida.

Additionally, to ensure optimal sensor performance, the Electronic Nose was turned on
approximately one hour before the start of the readings. This pre-heating phase allowed the
sensors to reach a stable operating temperature, reducing fluctuations that could impact the
detection of VOCs. During the experiments, the minimum temperature recorded by the sensors
was approximately 45°C. Environmental factors such as humidity (between 60% and 75%) and
pressure (between 78 mBar and 82 mBar) were also monitored but were not included in the
final dataset, being only considered for the control of possible environmental interferences. No
additional calibration of the sensors was performed, and only the raw values were converted
to the measurement units used in the analysis.

The experiments were conducted in a biological safety cabinet (BSC), ensuring a controlled
environment free of external contamination. The BSC was sterilized with UV light for about
30 minutes before each experimental cycle, eliminating microbiological contaminants. As the
sensors of the Electronic Nose are highly sensitive to external volatile compounds, the use
of 70% alcohol was avoided, as its vapors could interfere with the detection of VOCs and
compromise the accuracy of the measurements. To avoid cross-contamination, each sample
was individually placed in a disposable Petri dish and positioned in the reading chamber.

The collection process included the stages of Purge, Reading, and Stabilization. In the
Purge, the Electronic Nose was placed over a Petri dish containing activated carbon and
activated for 65 seconds, allowing the device to be cleaned and residual VOCs to be removed.
Then, the Reading took place, in which the plate with carbon was replaced by the plate
containing the blood sample, and the reading was performed for another 65 seconds. After the
reading, the device entered Stabilization, remaining inactive for 150 seconds to allow for the
stabilization of the VOCs. This process was repeated between 10 and 40 times, with variations

to evaluate interferences in the amount of VOCs after the exposure of the sample to the air.
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Figure 19 — Experimental setup: Petri dish with a blood sample and the Electronic Nose positioned for the
purge stage, over the plate with activated carbon.

All the used material was properly discarded according to the current biosafety regulations,
including Petri dishes, gloves, and contaminated waste, which were deposited in biosafety
containers for the disposal of infectious waste. This rigorous methodological approach ensured
the collection of reliable and reproducible data, minimizing environmental interferences and
ensuring the validity of the analyses. The Electronic Nose used was specially developed for the
experiments, containing 4 gas sensors (MQ-7, MQ-138, MQ-3, MQ-135) and 3 environmental
sensors (temperature, pressure, and humidity). Figure illustrates part of the collection

process and the device used.

4.2.6 Pre-processing and Structuring of Data for Time Series Analysis

The second methodological stage (Fig. involved the development of the pre-processing
of the data and the implementation of the predictive models. After the collection of the samples
and analysis by the Electronic Nose, each measurement generated a CSV file with records of
the different phases of the experiment: reading, purge, and stabilization. As an initial step,
these files were unified into a single structured dataset.

The pre-processing of the data involved the removal of outliers and missing values, the

standardization of the length of the measurement cycles, and the consolidation of each cycle
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(reading, purge, and stabilization) into a single instance, ensuring a direct correspondence in
the training set (Figure . In addition, oversampling was applied to evaluate the impact of
class balancing. The experiments were performed with both the original data and the balanced

set, enabling a comparative analysis.
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Figure 20 — Pre-processing steps using a C. glabrata sample as a basis

To better understand the distribution of the data, the UMAP and PCA techniques were
used for dimensionality reduction, which allowed for a clearer visualization of the data cluster-
ing, both in its original format and after the application of oversampling. Figure [21] presents

the resulting dispersion.
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Figure 21 — Data visualization step using the UMAP and PCA dimensionality reduction techniques for the

approaches with and without Oversampling

The visualization of the distribution of the samples by means of PCA and UMAP shows a

good separation between the different classes in all the evaluated scenarios, with low overlap

between them. Only a slight proximity is observed between the Cryptococcus samples and

the negative samples, which is expected, since both belong to the group of non-Candida

samples. Thus, this approximation does not compromise the identification process, which

remains effective for the objectives of the study.

In the modeling phase, traditional models and time series models were selected. The choice

of temporal models was based on the models used in the culture stage, prioritizing those with
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high performance in similar patterns. The traditional models were chosen to ensure diversity of
approaches and to evaluate whether less complex solutions could present competitive results.

Model performance was evaluated using a repeated stratified 5-fold cross-validation ap-
proach (2 repetitions, 5 folds), totaling 10 iterations. Stratification was applied to ensure the
original class distribution within each fold (see Algorithm . Although each instance in the
dataset consists of a temporal signal (a scent signature cycle), these cycles are treated as
independent and identically distributed (i.i.d.) patterns rather than a continuous chronolog-
ical sequence. Unlike forecasting tasks where temporal dependencies exist between samples,
the classification of scent signatures focuses on the internal dynamics of each isolated cycle.
Therefore, a standard stratified cross-validation was preferred over TimeSeriesSplit, as the
latter is designed for forecasting models where the goal is to predict future values based on

past observations, whereas our objective is robust pattern recognition across discrete events.

Algorithm 1 Repeated Stratified Cross-Validation Procedure

1: Input: Dataset D, Repetitions R = 2, Folds K =5
2: Initialize: Metric list M «+ [|

3: forr=1to R do

4 Dspuffiea < Shuffle(D, seed,)

5 {Fh e FK} < Stratified Partition(Dshufﬂed, K)
6: for k=1to K do
7.
8
9

Dval < Fk
Dtrain +~D \ Fk?
Model < Train(Dsyain)

10: score < Evaluate(Model, D,;)
11: Append score to M

12: end for

13: end for

14: Output: Mean(M), StandardDeviation(M)

Final results are reported as the mean performance accompanied by the standard deviation
(1t £ o). The evaluation metrics included accuracy, precision, F1-score, sensitivity, specificity,
and processing time, following the same pattern as the tests with culture. Statistical tests
were applied to check for significant differences, analyzing the impact of oversampling on the
performance of the models. To check for normality, the Shapiro-Wilk test was used, which is
suitable for small samples (< 50). Depending on the result, the Wilcoxon test (non-normal)
or the paired t-test (normal) was applied, according to the recommendations of the literature

(further details on this implementation can be found in the links provided in Appendix |A)).
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4.3 COMPONENT III: THE PREDICTIVE MODELING APPROACH

With the data treated and structured, the models were selected based on the results of the
data visualization phase and the study on Inception Time (FAWAZ et al., 2020), which com-
pares it with other state-of-the-art models, including its predecessors, the Hierarchical Vote
Collective of Transformation-based Ensembles 1 (LINES; TAYLOR; BAGNALL., 2016]) and 2 (MID-
DLEHURST et al., [2021) (HIVE-COTE 1 (HC1) and HIVE-COTE 2 (HC2)). The visualization
of the information showed that the data do not have a large overlap and have a single division
between them, so there are no restrictions on which categories of models to use. Thus, in
addition to the techniques already mentioned, the K-Neighbors Time Series Classifier (KNN),
which implements the K-nearest neighbors for time series (TAVENARD et al., 2020), the Time
Series Forest Classifier (TSFC), an implementation of a Time Series Forest using intervals
(BABAYEV; WIESE., 2021)), the Shapelet Transform Classifier (STC), which uses transformed
discriminatory subseries as a classifier (BAGNALL et al} [2019)), the Random Interval Spectral
Ensemble (RISE), built on the basis of trees and different sets of partial and automatic cor-
relations of features (FLYNN; LARGE; BAGNALL, [2019), the ROCKET Classifier (ROCKET)
(DEMPSTER; PETITJEAN; WEBB) 2020), and the BOSS Ensemble (BOSS) (SCHAFER, 2015)
were also introduced in the experiments, all time series models that will be used due to the
temporal characteristic of the data, translated through the culture_day parameter of the base.

As mentioned earlier, a total of 90,802 readings of the six Candida species were collected
in about 514 cycles. However, to obtain an "olfactory fingerprint" of the data, it was necessary
to concatenate all the readings of all the sensors of a cycle into a single row of the dataset,
resulting in a new set of 397 instances with 652 columns (now, each sample is related to a
cycle, see Figure as an example of a dataframe). Therefore, the base was divided into a
training, validation, and test set, with 60% for the first (238 cycles) and approximately 20%
for the others (79 and 80 cycles), as can be seen in Figure .

Stratified cross-validation serves to maintain a homogenized proportion of the data sam-
pling, seeking to ensure that the training set can represent the entire population, avoiding
sampling bias (GéRON| 2021)). For each subset used in the training, a result was obtained re-
ferring to 5 different metrics: accuracy, recall (sensitivity), F1-Score, precision, and specificity
(MORTAZ, 2020)). Accuracy (Equation 1) measures the proportion of the correct predictions
of the model over the total number of evaluated examples. Recall (sensitivity) (Equation 2)

is applied to measure the portion of patterns correctly identified by the classification model.
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Figure 22 — Final

structure of the dataset used - Example for the training set

238 rows x 652 columns
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Source: Author

Figure 23 — Experiment development flow: the database of the readings of all species is united into a single
base, creating a label to associate each row of the base with a type of Candida. The data are
then normalized and separated by cycles. In this case, all the sensor data are concatenated into a
single row, referring to the cycle in which they were generated. Only after this, these values are
divided into training, validation, and test bases, following the guidelines of cross-validation with
10 k-folds.
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Specificity (Equation 3) is used to test the ability to correctly determine the negative cases.

Precision (Equation 4), on the other hand, is applied to measure the number of positive pat-
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terns correctly predicted, based on the total number of patterns predicted in a positive class.
Finally, the F1-Score (Equation 5) or F1-measure, portrays the harmonic mean between the
values of precision and recall (HOSSIN; SULAIMAN, |2015). All these metrics are calculated based
on the values of true positive (TP), false positive (FP), false negative (FN), and true negative
(TN), obtained after crossing the predicted values with the current values of each class. All

the equations related to each of these metrics can be seen highlighted.

Accuracy =5 ;ﬁ i JZJJ\DT +FN 1)
Recall(Sensitivity) = TPT—LPFN (4.2)
Speci ficity = T]\IY:Z—VF’P (4.3)
Precision = ij;_PFP (4.4)
FL=Score = 5rp +21€1]: +FN (45)

Seeking to improve the validity of the project, at the end of the experimentation process,
a statistical analysis was applied using the Shapiro-Wilk normality test, the non-parametric
Kruskal-Wallis test, and the Nemenyi post-hoc test to understand the statistical significance
between the means of the results and to highlight the difference between the tested models,

detailed in Chapter [5 Results and Discussions.

4.4 COMPONENT IV: THE XAl ENSEMBLE EXPLAINABILITY ARCHITECTURE

The methodology proposed here is based on the findings and strategies established ear-
lier, in the identification of culture and blood broth samples. The main innovation of this
methodology lies in the integration of a novel Explainable Al Ensemble approach with the
best-performing model, trained on a new dataset collected from blood broth. This integration
was implemented in the DiagNose.Al system through the development of four main artifacts,
with the aim of enabling interpretable and reliable predictions. The ensemble mechanism rep-
resents the main methodological contribution, offering robust and consistent explanations for

classification tasks in time series.
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The initial development consisted of the construction of a database containing Volatile
Organic Compounds (VOCs) associated with species of the genus Candida. To identify these
VOCGs, a review of the scientific literature was carried out, which resulted in a set of eight
relevant publications (CAILLEUX et al., 1992; HERTEL et al., 2018a; JENKINS et al., 2019; |SILVA
et al) 2020; [SANTOS et al., [2019; HERTEL et all [2016; |JARRARTE et al) [2017b; |BENDA et al.
2008)), in addition to the mVOC database (LEMFACK et al.,, |2024). The identified compounds
were inserted into the database and classified according to their chemical classes, in order to
facilitate the association with Candida species. In addition, an analysis of the technical manuals
of the sensors present in the different versions of the E-nose was carried out, to identify which
groups of VOCs are detectable by each sensor.

With the database built, the development of an ensemble-based explainability library was
initiated. This approach integrates Grad-CAM, LIME, and SHAP to identify the most relevant
sensors used by the final Al model in the prediction with E-nose time series data, using a
majority voting strategy. Where each method generates a weight for each of the characteristics
(sensors) it considers most important and returns the average of the three that obtained the
highest weight (most relevant) during its execution. This choice results from a trade-off analysis
between robustness, interpretability, and computational feasibility. Limiting the selection to
three features per technique reduces the cognitive load of the generated explanation, making
it more suitable for non-technical users, as suggested in (HOLZINGER et al., 2019; LIPTON,
2018).

Although there are other strategies for aggregating XAl outputs — such as weighted aver-
age of importances or the use of explanatory meta-models (ARRIETA et al., [2020) — majority
voting was chosen due to its low computational complexity and greater transparency, which
facilitates manual audits and integration with the tool's textual interface. This decision is also
aligned with human-centered XAl design principles (MA| 2024).

Another reason for adopting majority voting based on the top three features is related to the
specificities of the E-noses used in this study. Between the two versions of the device analyzed,
one includes seven sensors, while the other has only four. Thus, increasing the number of
selected features would not be appropriate, as it would include all the available sensors in the
device with fewer channels. In this context, majority voting proved to be the most appropriate
selection technique, since alternative approaches, such as weighted averages, intersection, or
union, would not bring significant differences in the selection process.

The relevance is homogenized as follows: Grad-CAM calculates gradient-based activation
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scores for the sensors’ time series; LIME fits a local linear model to rank the importance of the
sensors; and SHAP calculates Shapley values for the contributions of the sensors. These scores
are normalized in the range [-1,1], ensuring comparability. This approach favors a controlled
redundancy, helping to mitigate the biases of each individual technique (for example, the
oversimplification of LIME or the computational variance of SHAP), promoting a more robust
selection.

The library is also responsible for querying the database and executing the Al model. In
addition, it allows for the consultation of three random instances of the database used in the
training of the model for comparative purposes.

For the development of the third milestone of the project, the communication structure
between the Ensemble XAl library and the interface of the DiagNose.Al system was built.
This module was programmed to be executed automatically whenever the main application is
started, allowing the retrieval of all relevant information from the system, including predictions,
characteristics of the Ensemble XAl, mapping of VOCs, and data of training instances.

Finally, all modules were integrated into the graphical interface of the DiagNose.Al sys-
tem. In addition to communicating with the E-nose for information collection, the system also
began to perform the prediction and explainability of the results. In this version, in addition
to the probability of the sample belonging to a certain species, a textual explanation is pre-
sented highlighting which sensors were most relevant. Additionally, the associations between
the identified VOCs and their respective categories are described. The interface also offers
visualization and comparison between the current sample and the training data, as well as the
mapping between VOCs and relevant sensors. Figure [24] represents the complete flow of the
system.

This process begins with the reading of the samples by the E-nose in a controlled envi-
ronment. The generated data (time series of the variation of the electrical resistance of the
sensors) undergo preprocessing before being sent to the Al model (see this process in Figure
25)). In this stage, the reading data are organized into cycles, in which the information of all
the sensors recorded at the same instant is aggregated into a single instance of the dataset —
encompassing both the reading and purge phases. This structuring follows the same pattern
adopted in previous studies, ensuring compatibility with the predictive model in use. However,
this data format introduces an additional challenge in the context of explainability, as the
main components under analysis — the sensors — are distributed in each instance, making

the direct interpretation of their individual contributions difficult.
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Figure 24 — Execution flow of DiagNose.Al. The process begins with the reading of the samples by the E-
nose, followed by preprocessing and sending of the data to the Al model. Explainability techniques
(LIME, SHAP, and Grad-CAM) are combined (Ensemble XAl) to identify the most relevant sensors
and VOCs. Based on majority voting, only the most influential features (sensors) are selected. The
system generates graphical and textual reports (s) comparing the predicted data with the actual
data of the bank, validated by experts.

To overcome this issue, after the application of each technique of the VOCs Ensemble
eXplainability Framework (Grad-CAM, LIME, and SHAP, with the average of three repetitions
to ensure greater accuracy), the data are restructured in their original format, with readings
organized by sensor. From these restructured data, the sensors that most frequently appear
among the features of greatest relevance are identified based on their frequency and the
scores attributed by each method. Then, the majority voting scheme is applied, in which each
occurrence of a sensor among the highlighted features of a method counts as a vote. The
sensors with the highest number of votes among all the methods are ultimately selected as
the most relevant by the ensemble (see Algorithm .

The extracted information is then cross-referenced with the VOC database, allowing for the
mapping of the compounds identified by the sensors with those described in the literature. The
species whose VOC signature has the greatest correspondence with the highlighted sensors is
considered the most probable. This cross-referencing allows for the comparison between the
results of the model and the chemical data, offering an interpretable explanation. At the
end, the user receives a detailed textual explanation accompanied by graphical visualizations.
To ensure that this process was appropriate for the domain in question, a prototype of the

application was validated in tests with professionals in the area.
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Algorithm 2 XAl Ensemble for Feature Relevance Identification

Require: Test instance x, Trained model M, Number of repetitions R
Ensure: Sensor ranking and biological mapping summary
1: function EXECUTEENSEMBLE(z, M, R)
2: EnsembleResults «+ ]
for i < 1to R do
Wrive < CalculateLlME(m, M)
Wesnap < CalculateSHAP (z, M)
Wearap < CalculateGradCAM(x, M)
TOpL[ME — SeIectTopFeatures(WUME, 3)
Topsgap < SelectTopFeatures(Wsyap, 3)
Topcrap < SelectTopFeatures(Wgrap, 3)
10: CommonFeatures < Intersect(Toprive, Topsuap, Toparap)
11: EnsembleResults.append(CommonFeatures)
12: end for
13: Ranking < ComputeFrequency(EnsembleResults)
14: BioMapping < QuerySQLDatabase( Ranking)
15: return BioM apping
16: end function

© N kR w

Initially, the pipeline processes the time-series data through the trained model M, where the
learning process occurs via the optimization of a categorical cross-entropy loss function. In this
stage, convolutional filters (if present) or dense connections learn to map specific biochemical
signatures to the target fungal classes. To extract the “reasoning” behind these classifications,
the function ExecuteEnsemble performs R iterations to ensure statistical consistency and
mitigate the inherent stochasticity of individual XAl methods.

The first perspective, LIME, generates a localized linear approximation of the model’s deci-
sion boundary by perturbing the input signal x and observing the response variance. This iden-
tifies features that are locally indispensable for the prediction. Simultaneously, SHAP provides
global-local consistency by computing the Shapley Value, a solution concept from cooperative
game theory that assigns a fair importance score to each sensor by evaluating its marginal
contribution across all possible sensor combinations. Finally, Grad-CAM utilizes the gradient
of the winning class flowing into the final convolutional layer to produce a localization map,
highlighting the specific sensors and time intervals that most significantly activated the neural
features.

The core innovation of the method lies in the Intersect and ComputeFrequency opera-
tions. By retaining only the sensors identified by the majority of the methods, the ensemble
filters out explanatory noise. This refined ranking is then subjected to a Biological Mapping

via SQL queries into the VOC's database. This final step transforms raw feature importance
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Figure 25 — The process begins with raw readings from the E-nose from multiple sensors (S1-54), which are
restructured into time cycles (R1-RN). These reformulated inputs are sent to the Al model for
prediction and are processed simultaneously by the VOCs Ensemble XAl module. Each explain-
ability technique (Grad-CAM, LIME, and SHAP) analyzes the input independently and selects the
most important sensors. To ensure interpretability, the explanation goes through a restructuring
stage, reorganizing the importance scores by sensor. After three iterations for greater robustness,
a majority voting strategy aggregates the most frequently highlighted sensors among the methods.
The final result identifies the most relevant features that contributed to the model's decision.

into mycological evidence by correlating the most active sensors with the VOC profiles of the
identified fungus (e.g., Candida albicans), thus validating the model's decision against estab-
lished clinical literature. To understand further details about the method’s implementation,

the repository links for their respective codes are available in Appendix [A] of this thesis.

4.4.1 Experimental Setup

One of the validation approaches of the XAl methodology was to use the model tested
and evaluated on the blood broth VOC dataset. This first set is composed of 14 samples

in blood broth, including 2 uninfected control samples, 1 sample of a non-Candida species
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(Cryptococcus neoformans), 9 samples infected by 3 distinct Candida species (C. albicans, C.
glabrata, C. parapsilosis), and 2 samples infected with a combination of two distinct Candida
species (C. parapsilosis and C. glabrata). For each of these aliquots, between 10 and 40
reading cycles were performed. The data underwent a normalization process and were divided
into training (60%), validation (20%), and test (20%) sets.

The E-nose used in this collection was specially developed for the experiments and includes
4 gas sensors (MQ-7, MQ-138, MQ-3, MQ-135) and 3 environmental sensors (temperature,
pressure, and humidity), although only the gas sensors were used as input data. After the data
restructuring stage described in the Methodology Section, the final set consisted of 546 rows
(cycles) x 513 columns (sensor data).

Models such as Time Series Forest, Inception Time, and Support Vector Classifier (SVC)
were trained and evaluated using a repeated cross-validation approach, dividing the data into
ten distinct subsets at each repetition. This process was repeated several times to ensure
that the models developed a strong generalization ability of their predictions, that is, that
they maintained reliable performance when applied to new data, instead of just memorizing
patterns of the training samples.

The performance evaluation was carried out using several metrics, including accuracy,
precision, Fl-score, recall (sensitivity), specificity, and processing time (for the training and
testing phases). After the completion of the experiments, the Inception Time model obtained
the best overall performance considering the evaluated metrics and, therefore, was adopted as
the main model for the tests carried out in this study.

To broaden the validation of the methodology, the experiments were also conducted with
the dataset from the experiments with culture, which was carried out using the Suitcase E-
nose. As mentioned earlier, this second dataset is composed of 90,802 samples of five Candida
species (C. glabrata, C. haemulonii, C. kodamaea ohmeri, C. krusei, and C. parapsilosis),
collected over 514 cycles. The results of both experimental configurations are presented and

discussed in the following sections.
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5 VALIDATION OF THE DIAGNOSE.Al FRAMEWORK: RESULTS AND DIS-
CUSSIONS

After the presentation of the DiagNose.Al Framework’s architecture, this chapter is ded-
icated to its empirical validation, presenting the results that prove its effectiveness and ro-
bustness. It is fundamental to highlight that the foundation for all subsequent analysis lies in
one of the central contributions of this thesis: the creation and characterization of two novel
databases, an effort that addresses a critical gap in the literature and generates the necessary
data assets for the rigorous validation of the proposed methodology.

Based on these new datasets, a series of experiments was conducted to test the Framework
in scenarios with different levels of complexity. The first validated the methodology on previ-
ously laboratory-cultivated ATCC culture samples, while the second elevated the challenge to
a clinical scenario closer to the Framework'’s real-world application environment, using infected
blood broth directly. It is crucial to highlight that a real-world application, in this context, refers
to the use of the Framework in a clinical setting directly utilizing blood samples. This, however,
does not negate the necessity for the Framework to be executed in a controlled environment,
isolated from the interference of external ambient VOCs. In both contexts, the performance of
various classification models, with an emphasis on time series, was systematically evaluated.
The evaluation metrics, described in Chapter [4] were employed to quantify the performance
of the Framework’s modeling and explainability components.

Additionally, this chapter will present the results that validate the pioneering Ensemble
XAl architecture. Through comparative studies, including sensitivity and ablation analyses,
the consistency and reliability of the explainability method were demonstrated. The consolida-
tion of these results culminated in the integration of the methodology into the DiagNose.Al
prototype system, whose outputs were evaluated by specialists to confirm the relevance and

interpretability of the generated explanations.

5.1 THE GENERATED DATASETS

One of the fundamental contributions of this project, and a prerequisite for the validation of
any machine learning approach, is the creation of robust and well-characterized datasets. The
notorious scarcity of public databases in the area represents a barrier to scientific advancement

and reproducibility. To address this gap, a significant effort was dedicated to the construction
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and curation of two novel datasets, involving inter-institutional and international collaboration.
Table 5| describes the main characteristics of each database generated within the scope of this
work.

Table 5 — Characterization of the databases generated and used for the validation of the DiagNose.Al Frame-
work. Each database represents a distinct validation scenario, with different sample origins, reading
devices, and species profiles.

Database Sample Origin Reader (E-nose) No. of Cycles* Total Readings No. of Samples Species
Culture-UFPE ~ ATCC Culture Suitcase (7 sensors) 514 90,802 41 albicans, glabrata,
haemulonii, ko-

damaea_ohmeri,
krusei, parapsilosis
BloodBroth-UC Infected blood Prototype (4 sensors) 546 46,574 14 glabrata,  parapsilosis,
broth glabra  +  parapsi,
cryptococcus, negative,
albicans

* Cycles are the readings after the restructuring process. in the case of the culture samples, many readings were

disregarded to standardize the size of the cycles.

The generation of the described datasets constituted a fundamental methodological step,
indispensable for the rigorous validation of the Framework. The process required significant
interdisciplinary and inter-institutional mobilization, involving close collaboration of specialists
from the Center for Informatics, the Medical Mycology team at UFPE, the Northeast Regional
Center for Nuclear Sciences/UFPE, and, crucially, the international partnership with the Col-
lege of Medicine at the University of Cincinnati. This synergy was essential to ensure the
execution of a high-fidelity protocol, which ranged from the standardized cultivation of ATCC
samples to the handling of clinical blood broth samples. The subsequent stage of data curation
and structuring was a critical component to transform the raw signals from the sensors into
a cohesive time-series format suitable for modeling. The public availability of these datasets
is, therefore, a deliberate contribution of this thesis, aiming to promote reproducibility and

catalyze new research at the intersection of VOC sensing and machine learning.

5.2 VALIDATION OF THE PREDICTIVE AND EXPLAINABILITY COMPONENTS

With the databases established, the next step consisted of validating the central analysis
components of the DiagNose. Al Framework: the predictive modeling and the explainability
architecture. The experiments were conducted in the two distinct scenarios to test the effec-

tiveness and generalization of the methodology.



98

5.2.1 Scenario 1: Validation in a Laboratory Environment using ATCC Culture

The first experimental scenario aimed to evaluate the performance of the models in a
controlled laboratory environment, using reference cultures from the ATCC collection. This
context represents a fundamental validation step, as it allows for the verification of the algo-
rithms' ability to recognize and differentiate the VOCs of Candida species at different stages of
their growth (differentiating minutes from hours and hours from days). This controlled setting
is essential to establish a high-confidence performance baseline, ensuring that the chemical
signatures captured by the E-nose sensors are directly attributable to specific biological mark-
ers before progressing to complex clinical matrices. Thus, the goal is not only to assess the
effectiveness of the models in the training process but also to understand how they respond
to the introduction of unseen data in the validation and testing phases, reflecting their true
generalization ability.

Table [6] presents a summary of the averages of all metrics collected in the training stage,
as well as the standard deviation of accuracy for the 10 repetitions and the training time for
each model in seconds. The recording of training time, alongside performance metrics, serves
as a preliminary assessment of the computational efficiency of the proposed models, ensuring
their suitability for future near real-time diagnostic applications.

In addition to the results regarding training, the averages obtained in the validation and
testing phases were also recorded. The comparative analysis of these three stages shows a
slight decrease in the models’ performance between training and the subsequent phases. Such
behavior is expected, as during training, models tend to capture Candida patterns with a high
level of precision due to the marked differences between the analyzed species. However, in the
validation and testing phases, which consist of data unseen by the models, it is natural for a
generalization gap to emerge, reflecting the real-world capability of the algorithms.

This phenomenon, far from compromising the final evaluation, reinforces the robustness of
the methodology, as it demonstrates that the models did not merely memorize the training data
but were subjected to rigorous cross-validation across distinct temporal windows. Furthermore,
the low standard deviation observed across multiple repetitions indicates the stability of the
predictive process, a prerequisite for the subsequent implementation of reliable explanation
modules. Tables 7| and (8| present, respectively, the detailed results of the validation and testing
stages for each of the investigated models, allowing for a more comprehensive comparative

analysis of their performance in different phases of the experimental process.



Table 6 — Result of the model training

Classifiers Accuracy F1- Recall Precision Standard Specificity Training time (s)
Measure (Sensitiv- Deviation
ity) (of  accu-
racy)
Inception Time 0.97740 0.97679 0.97245 0.98192 0.00081 0.99667 548.83118
Random Interval Spec- 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 14.79765
tral Ensemble (RISE)
Time Series Forest 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 19.22641
Classifier
ROCKET Classifier 1.00000 1.00000 1.00000 0.99886 0.00000 1.00000 19.5395490
Shapelet Transform  1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 36.58212
Classifier
K-Neighbors Time Se- 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 0.96999
ries Classifier
HIVE COTE 1 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 7,287.21419
HIVE COTE 2 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 21.65166
BOSS Ensemble 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 81.42075

Average result of the training values for the Accuracy, F1-score, Recall, Precision, and Standard Deviation metrics calculated for
each model during the 10 iterations of the stratified cross-validation

66



Table 7 — Result of the model validation

Classifiers Accuracy F1- Recall Precision Standard Specificity Validation  time
Measure (Sensitiv- Deviation (s)
ity) (of  accu-
racy)
Inception Time 0.95875 0.96700 0.96720 0.96811 0.00915 0.99205 544.09643
Random Interval Spec- 0.94965 0.94869 0.94566 0.96092 0.02496 0.99212 2.84949
tral Ensemble (RISE)
Time Series Forest 0.97895 0.98118 0.97931 0.98447 0.03491 0.99194 3.97698
Classifier
ROCKET Classifier 0.95117 0.95037 0.94604 0.96318 0.01776 0.99464 4.85449
Shapelet Transform 0.94737 0.94901 0.95462 0.95038 0.04077 0.99230 2.86250
Classifier
K-Neighbors Time Se- 0.95114 0.94788 0.94626 0.95929 0.01789 0.99100 15.35404
ries Classifier
HIVE COTE 1 0.95789 0.95859 0.95837 0.96742 0.03158 0.99479 6.69850
HIVE COTE 2 0.93844 0.94232 0.94406 0.94758 0.02700 0.99470 2.67899
BOSS Ensemble 0.95429 0.95060 0.94543 0.96464 0.02050 0.99203 0.83150

Average result of the validation values for the Accuracy, Fl-score, Recall, Precision, and Standard Deviation metrics calculated
for each model during the 10 iterations of the stratified cross-validation
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Table 8 — Result of the model testing stage

Classifiers Accuracy F1- Recall Precision Specificity Test time (s)

Measure (Sensitiv-

ity)

Inception Time 0.97468 0.97605 0.97817 0.97540 0.99513 1.21489
Random Interval Spec- 0.65000 0.55758 0.57007 0.56251 0.94223 4.58585
tral Ensemble (RISE)
Time Series Forest 0.67500 0.61261 0.58960 0.61261 0.91312 1.18719
Classifier
ROCKET Classifier 0.78750 0.78105 0.85764 0.79171 0.93804 4.91326
Shapelet Transform 0.63750 0.58207 0.60258 0.59832 0.93028 0.61583
Classifier
K-Neighbors Time Se- 0.75000 0.73245 0.72192 0.81357 0.95635 52.86100
ries Classifier
HIVE COTE 1 0.52500 0.40245 0.42669 0.39475 0.94009 11.93961
HIVE COTE 2 0.66250 0.58503 0.60360 0.62833 0.94342 2.57620
BOSS Ensemble 0.63750 0.50525 0.53555 0.49929 0.90165 0.48432

Result of the test values for the Accuracy, Fl-score, Recall, and Precision metrics calculated for each model after the
training and validation phase

10T
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As presented in the results, the most outstanding model was Inception Time (FAWAZ
et al., 2020)) (even with a lower performance in the training phase), executed with the default
parameters, followed by the ROCKET Classifier (DEMPSTER; PETITJEAN; WEBB, 2020), K-
Neighbors Time Series Classifier (TAVENARD et al., 2020)), and the Time Series Forest Classifier
(BABAYEV; WIESE., [2021)), respectively. All metrics calculated for Inception Time were close to
100%, with a minimal standard deviation, demonstrating great consistency among the results
in each subset of data used.

The comparative analysis of the results obtained in the validation (Table [7) and testing
(Table phases reveals a significant disparity in the performance of the classifiers, which
justifies the emphasis on the highest-performing models. In validation, the Time Series Forest
Classifier demonstrated the most robust average performance across the ten iterations, stand-
ing out with the highest Accuracy (0.97895), F1-Measure (0.98118), and Precision (0.98447).
However, in the final testing phase (Table 8), the Inception Time classifier excelled, delivering
the best overall performance, with an Accuracy of 0.97468 and a Specificity of 0.99513,
while simultaneously showing a remarkably fast test time (1.21489 s), indicating excellent
generalization capability.

The substantial difference in performance between these top-tier models and the others,
such as the Random Interval Spectral Ensemble (RISE) and the HIVE COTE 2, is a cru-
cial finding. While Inception Time and Time Series Forest are complex architectures designed
to extract deep temporal features from series, the lower-performing classifiers failed to cap-
ture the complexity and inherent patterns in the VOC data with the same effectiveness. This
substantial discrepancy validates the selection of more advanced models, which, despite poten-
tially requiring longer validation times (such as Inception Time at 544.09643 s), offer superior
generalization and prediction capabilities in the testing phase, making them essential for the

reliability of the clinical diagnosis.

5.2.1.1 Cost and performance analysis of the culture experiments

Observing the executed models, both Inception Time and HIVE COTE 1 had relatively high
training times when compared to the other models. This can be explained by the characteristic
of the models, being derived from deep neural networks and ensembles with classifiers of
different natures. Inception Time, for example, is executed based on 1500 epochs (default

value in the original code of its repository). This implies a greater number of times the model
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will seek to learn from the training data, requiring more time to learn about the instances.
HIVE COTE 1, on the other hand, is an ensemble that combines the classification of a series
of algorithms, where some of them may have had more difficulty in training the data, resulting
in a peak in relation to the training time.

Despite being more computationally expensive in training and validation, in the testing
stage, the Inception Time model had its return in less than a second, being one of the most
efficient among all those evaluated. At this point, there is no great difference in relation to the
return time in each model, reducing the problems related to the final use cost of the algorithms
in an operational environment. However, this time may vary depending on the machine that
will execute the application with the embedded model. Even so, the increase of a few seconds
in the response time should not be a problem compared to the diagnostic methods currently
used.

Still in the context of cost analysis, directing to a more general scope of the project,
initially, there was no objective to value the total costs of construction and development of the
application. Given the different fields and laboratories involved, it would be a rather arduous
task for the purpose of the work. However, even knowing the costs related to each area involved,
after completion, the expenditures will be focused on the large-scale production of the device
and the development of the application that will embed the already trained Al model. For
this reason, the proposal should stand out in relation to the other existing alternatives today,

becoming a highly viable solution for regions poorly served by health technology.

5.2.1.2 Statistical analysis of the culture experiments

In addition to collecting the metrics, statistical tests were performed to verify the difference
between the results of the different models. In this sense, a normality test was performed
with the precision results obtained in the 10 repetitions for each model of the validation
stage, followed by the significance test and the post-hoc test, to create a pairwise comparison
between each of the selected algorithms. Figure 26| demonstrates the flow for choosing the
most appropriate tests for use in this study.

Before performing the statistical tests, it was necessary to identify whether the data fol-
lowed a normal distribution or not, in order to enable the choice of the most appropriate
statistical test. In the literature, the most common ways to do this are through graphical

evaluation and numerical evaluation, which include statistical normality tests. The verification
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Figure 26 — Flow for selecting the most appropriate statistical tests for use in the accuracy groups of each
model.
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by means of graphs has the advantage of allowing a less sensitive judgment on occasions

when the numerical tests can be excessively sensitive, and the numerical test tends to be more

objective, reducing the dependence on visual interpretation (CHEN et al,, 2019). At first, the

visual analysis was done by means of a histogram with a normality line and a QQ-plot (or
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quantile-quantile plot), shown in Figures and , respectively.

Figure 27 — Histogram with normality line of the mean accuracy groups of each model. In this case, the graphs
with lines more similar in shape to a bell tend to indicate a normal distribution. The lines that
deviate from this pattern can be considered non-normal.
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Analyzing the histogram, it is possible to note that most of the sets present a bell-shaped
curve (Gaussian curve) in the distribution of the data, with some divergences in relation to the
histogram of InceptionTime and Hive-Cote 1 and 2, creating undulations a little different from
the shape of a bell on the distribution of the data. To better understand these two points,
we can also analyze the QQ-plot, which shows the normality of the data as the points of its
distribution get closer to the trend line drawn on the graph. In this sense, it is possible to note
that some models present points that are relatively distant and with a different orientation
from the inclined line, becoming possible candidates for representing a non-normal distribution
of the data.

As a result of the visual analysis, it can be interpreted that the HC1, STC, and TSFC models
do not follow a normal distribution of the data, which in itself would already indicate the use of
a non-parametric test for the evaluation of the results. However, to obtain a greater sensitivity

of the analyses, a numerical statistical normality test was also applied. The most appropriate

for the problem in question was the Shapiro-Wilk test. According to Hossin e Sulaiman (2015,

this method is more appropriate for small sample sets, smaller than 50, although it can also be
used for large sets. Methods like Kolmogorov-Smirnov are more appropriate for large samples
or samples equal to 50. Both tests use as a null hypothesis the statement that the data

are derived from a set of normal distribution. This hypothesis is accepted when p > 0.05,
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Figure 28 — QQ-plot graph showing the distribution of the data of the means of each model. In this type
of graph, when the points move further away from the straight line, deviating its direction, this
suggests that the distribution is moving away from normality. On the other hand, when the points
are more aligned with the line, this suggests a normality of the data.
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Table 9 — Result of the Shapiro-Wilk normality test.

KNN BOSS HCi1* HC2 RISE ROCKET STC* TSFC* Inception
Time

P 0.77949 0.47213 0.01227 0.27595 0.54311 0.73962 0.03521 0.00021 0.26794

S 0.95944 0.93242 0.79406 0.90926 0.93910 0.95601 0.83184 0.64968 0.90806

*HC1, STC, and TSFC did not show a normal distribution according to the Shapiro-Wilk
normality test, with p < 0.05

consolidating the data as normally distributed. As the sample set in this study is equal to 10
for each set, the Shapiro-Wilk test was applied to each group of repetitions, resulting in the
p-values listed in Table [9]

As can be seen, the HIVE-COTE1, Shaplet Transform Classifier, and TimeSeries Forest
Classifier classifiers did not show a normal distribution according to the Shapiro-Wilk test,
as observed in Table [0 In any case, with this result, we confirm the need to apply a non-
parametric test, considering that only some groups follow a normality distribution. In this

sense, according to McKight e Najab.| (2010), the most appropriate non-parametric test for
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this case is the Kruskal-Wallis test, due to the number of examples in the groups being small

and equal. For the execution of the test, the following hypotheses were considered:

= HO: All models have relatively equal means in terms of classification accuracy;

= H1: At least one of the models differs from the others in terms of mean classification

accuracy.

Where HO is the null hypothesis, which assumes that all models have equal performance,
and H1 is the alternative hypothesis, which in this case is the difference in performance of at
least one of the models in relation to the others. For this test, a p-value < 0.05 indicates the
rejection of the null hypothesis, showing the existence of a significant difference between the
evaluated samples. Thus, with the application of Kruskal-Wallis to the set of results, a p =
2.49E-02 was obtained, being less than 0.05, demonstrating with 95% confidence that there
is evidence to reject HO and accept the hypothesis that at least one of the models differs from
the others in mean validation accuracy.

Knowing of the existence of this difference between the models, the next step was the
application of a post-hoc test to identify which models are statistically different from each
other, since the non-parametric test only indicates the existence of this difference, not the
relationship between the sets. For this stage, the Nemenyi test was used, which according
to |Pohlert| (2014) is one of the most used post-hoc tests after the application of Kruskal-
Wallis. As briefly explained, this method performs a pairwise investigation of each analyzed
set, returning the p-values for each relationship between the evaluated groups. The values vary
between -1 and 1, with p-values < 0.05 indicating an effective statistical difference between
the samples according to the test, and the closer to 1, the more it demonstrates the similarity
between them. Figure [29| represents a correlation matrix that crosses the results obtained by
the Nemenyi method.

As can be seen, there is a great similarity between most of the models that have a lower
precision mean, not presenting a significant statistical discrepancy between them. However,
it can be said that there is no significant difference between the Inception Time (FAWAZ et
al., 2020) and Time Series Forest Classifier (BABAYEV; WIESE., 2021) models. Each has a
great difference in relation to the models with more distinct accuracy, but a great similarity is
evident between some with closer accuracy (which was already expected), dividing the models

into distinct groups of relevance. Thus, it is possible to identify the difference between the



108

Figure 29 — Correlation graph of the results of the application of the Nemenyi post-hoc test on the set of
results of each model. In this type of graph, the further from 1, it means that the elements are
more divergent, that is, they are statistically different.
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models, with Inception Time and TSFC not presenting a significant difference between them.
In this case, even without a significant statistical difference, Inception Time stands out from
the others with means of Accuracy, Precision, Recall, and F1 above 95% in all the analysis
sets, making it the most promising choice for the final classification of the model of volatiles
emitted by Candida species. These differences can also be identified from a boxplot (Figure
30]), where, through the quartiles of the values, it is possible to get an idea of the differences
about each of the groups of results.

In Figure [30} it is possible to note a great variation in the results obtained by each model,
with InceptionTime being responsible for the greatest consistency in the values of its repe-
titions. With this, it is possible to have more security in the results obtained by this model,
aiming for a verification with fewer variations. In this case, even without a significant statis-
tical difference, InceptionTime stands out in relation to the others with means of Accuracy,
Precision, Recall, and F1 close to 100% in all the analysis sets, making it the most promising

choice for the final model for the classification of the volatiles emitted by the species.
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Figure 30 — Boxplot of the values of each group of results of the accuracy of the used models. For each
presented model, it is possible to see the variation of the results in relation to the median, with
the model with the least variation of values being the InceptionTime model.

1.00 T

o

0.90
.

KNN BOSS HIVECOTE1THIVECOTE2 RISE ROCKET STC TSFC Inception

Source: Author

5.2.2 Scenario 2: Validation with Blood Broth

For the blood broth samples, the artificial intelligence models were evaluated using data
derived from the Prototype version of the E-nose, with and without the application of oversam-
pling. The oversampling strategy was employed to deal with the species imbalance observed

in the data, while the original data were used to evaluate the performance without adjustment

(MOHAMMED et al, 2020). The metrics used to evaluate the performance included accuracy,

precision, F1l-score, sensitivity (Recall), specificity, and execution time (Time (S)). The tested
models included time series approaches such as KNeighbors Time Series Classifier (KNTC)
(LEE et al,, |2012), Random Interval Spectral Ensemble (RISE) (FLYNN et al., 2019), ROCKET
Classifier (DEMPSTER et al., [2020]), Time Series Forest Classifier (TSFC) (DENG et al., [2013)),

Inception Time (WANG et al., 2020b)), and traditional models such as DecisionTree Classifier
(DTC), KNeighbors Classifier (KNN), Random Forest Classifier (RF), SVC, and XGBClassifier

(XGBC). The selection of time series models was based on the classifiers that showed the best
performance in the previous approach, which used culture samples. For the traditional models,
the strategy was to apply models from different families to understand if simpler models could
have a performance as good as the more complex models in the current literature. To provide
a better understanding, the general results of the tested models are presented in Table [10] and
Table which detail the metrics for the strategies with and without oversampling, for the

Training/Validation and Test data, respectively.



Table 10 — The table compares the training and validation performance of different classification models, both traditional and time series, with and without oversampling,
using the metrics of accuracy, precision, Fl-score, recall (sensitivity), specificity, and standard deviations. It also presents the execution times (s) of each model
in both scenarios. The best performances in each metric are highlighted in bold.

With Oversampling

Without Oversampling

Category Classifier
Acc. Prec. F1 Recall Spec. Std Dev Time(s) Acc. Prec. F1 Recall Spec. Std Dev Time(s)
KNeighbors Time Series 98.85% 98.76% 98.80% 98.92% 99.77% 0.0225 5.39 x 10%° 94.44% 96.18% 94.28% 93.76% 98.78% 0.0208 2.1 x 102
RISE 97.15% 97.03% 97.13% 97.32% 99.43% 0.0173 5.85 x 10*° 95.37% 96.73% 94.78% 93.94% 99.00% 0.0275 3.8 x 10%°
Time Series ROCKET 98.86% 99.10% 99.02% 99.10% 99.77% 0.0175 6.17 x 10*° 98.15% 97.77% 97.74% 97.99% 99.59% 0.0232 4.7 x 10**
Time Series Forest 97.13% 96.48% 96.63% 97.04% 99.44% 0.0235 7.51 x 10%° 95.42% 96.58% 94.78% 94.92% 99.05% 0.0276 5.6 x 10%°
Inception Time 96.82% 96.85% 96.72% 96.66% 99.36% 0.0084 4.66 x 10%° 94.85% 94.40% 94.45% 96.16% 98.98% 0.0844 2.1 x 102
Decision Tree 94.29% 94.59% 93.76% 93.56% 98.86% 0.0298  0.794573 88.06% 88.02% 84.17% 85.38% 97.52% 0.0510 0.62
KNeighbors 89.15% 89.48% 88.96% 88.86% 97.81% 0.0374 0.369690 85.32% 81.77% 79.95% 80.22% 97.01% 0.0367 0.38
Traditional  Random Forest 97.70% 97.84% 97.49% 97.32% 99.52% 0.0263 3.30 x 10®° 92.50% 92.40% 89.49% 88.67% 98.47% 0.0359 2.7 x 10'6
e 97.70% 97.16% 97.41% 97.83% 99.56% 0.0141 1.31 x 10! 93.59% 96.13% 91.56% 90.28% 98.68% 0.0275 1.1 x 10*!
XGBClassifier 96.55% 96.26% 96.10% 96.01% 99.31% 0.0190 2.77 x 10%* 88.99% 87.36% 83.40% 85.53% 97.83% 0.0360 2.2 x 102

0TT



Table 12 — The table compares the test performance of different classification models, both traditional and time series, with and without oversampling, using the metrics
of accuracy, precision, Fl-score, recall (sensitivity), specificity, and time (s). It also presents the execution times of each model in both scenarios. The best
performances in each metric are highlighted in bold. All models were run using their default settings.

With Oversampling Without Oversampling

Category  Classifier
Accuracy Precision F1-Score Recall Specif. Time (s) Accuracy Precision F1-Score Recall Specif. Time (s)

KNeighbors 97.27% 97.35% 97.19% 97.37% 99.46% 6.62 x 102° 94.12%  94.07% 94.67% 96.16% 98.86% 2.72 x 102!
Time Series

Time Series RISE 0455%  94.65%  94.40% 9454% 98.92% 1.16 x 10! 8529%  89.44%  81.97% 81.38% 97.07% 7.46 x 10%°
ROCKET 93.64%  95.33%  93.62% 93.70% 98.73% 1.05x 10! 95.59%  91.67%  93.52% 96.88% 99.17% 7.90 x 10%°
Time Series 89.09%  90.47%  89.21% 88.81% 97.81% 1.23 x10%° 91.18%  90.50%  91.73% 93.68% 98.27% 0.97
Forest

Inception Time 97.25%  96.26% 96.69% 97.29% 99.48% 1.86 x 102° 91.18%  93.57%  92.80% 93.15% 98.14% 1.92 x 102!
Decision Tree 96.36% 96.43%  96.34%  96.42% 99.28% 0.0047 85.29%  79.71%  81.38% 88.27% 97.16% 0.0033

KNeighbors 90.00% 90.26%  89.61% 89.51% 98.01% 0.0117 85.29%  84.40%  83.87% 84.32% 97.07% 0.0100
Traditional  Random Forest 98.18% 98.14%  98.14% 98.20% 99.64%  0.0095 95.59%  90.55%  92.24% 95.23% 99.19%  0.0087
SvC 98.18% 98.20% 98.22% 98.33% 99.64% 0.0251 92.65% 94.70% 88.97% 86.88% 98.40% 0.0224
XGBClassifier 96.36% 96.24%  96.24%  96.39% 99.28% 0.3867 92.65%  85.39%  87.25% 92.12% 98.66% 0.0812

TTT
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In traditional models, the application of oversampling resulted in a significant increase in
all metrics compared to the original data, suggesting that balancing the species contributed
to improving the models’ discrimination ability. This improvement, following the balancing of
classes, suggests that the initial class imbalance may have slightly limited the models' ability
to generalize effectively to unseen data, a limitation that was alleviated by the oversampling
technique. In contrast, some time series models showed less robustness in both conditions,
performing worse than some traditional models, regardless of the application of oversampling.
A factor that may explain this slight difference is the amount of data. Because they are
more complex models, they require a larger number of samples to outperform simpler models.
Training time was also a distinguishing factor for traditional models, which took much less
time to complete.

Even with some traditional models outperforming the time series ones, overall, the ROCKET
model showed the best performance among the evaluated approaches, reaching an accuracy
of 98.86%, a sensitivity (recall) of 99.10%, and a specificity of 99.77% in the training/valida-
tion set with oversampling. In the group without oversampling, these indicators were 98.15%,
97.77%, and 99.59%, respectively. Among the traditional models, the SVC had the best per-
formance, with values very close to ROCKET, reaching an accuracy of 97.70%, a sensitivity
of 97.83%, and a specificity of 99.56% for the group with oversampling. It was also the best
traditional model in the original data group, with 93.59%, 96.13%, and 98.68% for the same
indicators, respectively. On the other hand, ROCKET was the slowest model to complete
training among all evaluated models in the original dataset and one of the worst in the group
with oversampling.

Observing the data from the test set, we notice some interesting differences. ROCKET
is no longer the best-performing model, losing its position to the KNeighbors Time Series
Classifier and Inception Time in the group of time series models, and to the SVC and Random
Forest Classifier in the group of traditional models. It is with the test data that we evaluate the
efficiency of the model, as it is exposed to information it has never seen before, representing
the scenario closest to a real context. In this sense, the more complex models, despite showing
excellent performance in all metrics, are on par with the SVC and Random Forest Classifier, with
less than 1% difference in all metrics compared to the best time series models. In addition, the
time to obtain the prediction was often much shorter (0.009520s and 0.025079s, respectively),

demonstrating that they are lighter alternatives compared to time series models.
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Table 14 — Values for all metrics (accuracy, precision, Fl-score, recall (sensitivity), specificity) collected by
species for the SVC classifier, executed for data with and without oversampling. The table shows
that there is a drop in the model's performance in relation to the glabra_parapsi and negative
species. This suggests that this model needs more instances of these species to have a better
performance in these specific contexts.

Species D With Oversampling Without Oversampling
Accuracy Precision F1-Score Recall Specif. Accuracy Precision F1-Score Recall Specif.
glabrata 99.09% 94.44% 97.14%  100.00% 98.92%  97.06% 100.00%  88.89%  80.00% 100.00%

0

parapsilosis 1 99.09% 100.00% 97.30%  94.74% 100.00%  94.12% 91.30% 91.30%  91.30%  95.56%

glabra_parapsi 2 100.00%  100.00%  100.00% 100.00% 100.00%  98.53% 100.00% 66.67%  50.00% 100.00%

cryptococcus 3 100.00%  100.00%  100.00% 100.00% 100.00% 100.00%  100.00%  100.00% 100.00% 100.00%

negative 4 99.09% 94.74% 97.30%  100.00% 98.91%  95.59% 76.92% 86.96%  100.00% 94.83%
5

albicans 99.09% 100.00%  97.56%  95.24% 100.00% 100.00%  100.00%  100.00% 100.00% 100.00%

5.2.2.1 Best Models and Metrics by Species

To better understand how the models behave for each species, the same metrics used for
training and testing were collected for the different species, focusing only on the models with
the best performance in the testing stage. This step aims to identify which species the models
make the most mistakes on and whether any species imbalance may raise concerns about
the quality of the model’s prediction. In this sense, among the tested models, the SVC stood
out with the best overall results, reaching an accuracy of 98.18%, a precision of 98.20%,
an Fl-score of 98.22%, a sensitivity of 98.33%, and a specificity of 99.64% in the dataset
with oversampling. In the group without oversampling, these indicators were lower, with an
accuracy of 92.65%, a precision of 94.70%, and an Fl-score of 88.97%.

The detailed metrics by species for this model are presented in Table [I4] The results
show that, while the species C. albicans, C. neoformans, C. glabrata, and C. parapsilosis had
high sensitivity and precision, the species glabra_parapsi (the union of Candida parapsilosis
and glabrata in the same Petri dish) and negative (uninfected sample) showed slightly lower
performance, possibly due to the smaller number of represented samples, only in the group
without oversampling. For the balanced data, all species were correctly identified by the model,
without any species having any metric below 94%.

Among the time series models, Inception Time was chosen to be evaluated individually
with the species, as it was one of the models with the best overall performance in the metrics
and took the least time during the testing phase (among the time series models). In this case,
it is notable that the model performs better, even with the unbalanced data. There is a slight
drop in the numbers for the same species that presented difficulties for the SVC; however, this

drop was much less significant in a general context. Based on this information, even with the
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Table 15 — Values for all metrics (accuracy, precision, Fl-score, recall (sensitivity), specificity) collected by
species for the Random Forest classifier, executed for data with and without oversampling. As
in Table there is a drop in performance in the absence of oversampling for some species,
suggesting the need for additional training instances.

Species D With Oversampling Without Oversampling

Accuracy Precision F1-Score Recall Specif. Accuracy Precision F1-Score Recall Specif.
glabrata 0 100.00%  100.00%  100.00% 100.00% 100.00%  97.94% 96.00% 92.84%  90.00%  99.31%
parapsilosis 1 96.55% 89.23% 90.09%  91.05% 97.69%  93.53% 97.61% 87.89%  82.17%  99.33%
glabra_parapsi 2 99.82% 99.00% 99.49%  100.00% 99.78% 99.56% 100.00% 90.00% 85.00%  100.00%
cryptococcus 3 098.18% 97.50% 93.50%  90.00% 99.57%  95.00% 76.78% 85.18%  100.00% 94.43%
negative 4 98.55% 94.11% 95.58%  97.22% 98.80%  97.21% 87.15% 91.29%  97.00% 97.24%
albicans 5 100.00% 100.00%  100.00% 100.00% 100.00%  100.00% 100.00%  100.00% 100.00% 100.00%

original data containing a slight imbalance in relation to some species, there are alternatives
that can efficiently handle this problem without major disadvantages. Table[15]shows the result

of this evaluation.

5.2.2.2 Statistical Comparison Between Strategies with and without Oversampling

To evaluate whether the application of oversampling significantly impacts the performance
of the classifiers, statistical tests were performed comparing the results before and after the
technique. First, the Shapiro-Wilk test was performed to check the normality of the distribu-
tions of the two groups (with and without oversampling). Then, depending on the normality
of the data, the paired t-test was applied for normal distributions and the Wilcoxon test for
non-normal distributions (IMAM et al., [2014; PROUDFOOT et al., 2018).

The results of the normality tests indicate that, for most classifiers (see Figure , at
least one of the groups does not follow a normal distribution (Shapiro-Wilk values < 0.05).
This justifies the use of the Wilcoxon test for these cases, which is a non-parametric test
suitable for comparisons between paired samples without assumptions of normality. Among the
evaluated classifiers, those that showed statistically significant differences after the application

of oversampling include:

» RISE: The paired t-test resulted in a p-value of 0.045, indicating that oversampling

significantly impacted the performance of this classifier.

» KNTC: The Wilcoxon test showed a p-value of 0.0098, pointing to a significant difference

between the two groups.

» Inception Time: The p-value obtained in the Wilcoxon test was 0.0019, reinforcing the
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presence of a statistically significant impact.

» XGBC: The paired t-test obtained a p-value of 0.0018, indicating a significant difference

between the groups.

» SVC: The p-value of 0.0039 obtained in the Wilcoxon test confirms a statistically sig-

nificant difference.

» DTC: The paired t-test resulted in a p-value of 0.0074, showing a significant impact.

RFC: The Wilcoxon test revealed a p-value of 0.0273, indicating a significant difference.

On the other hand, some classifiers, such as TSFC, ROCKET, and KNN, did not show
statistically significant differences, with p-values above the significance level of 0.05. This
suggests that, for these models, the introduction of oversampling did not result in statistically
relevant improvements in performance.

In summary, the results indicate that the impact of oversampling varies among the different
classifiers, being more pronounced in some models than in others. This observation reinforces
the importance of individually evaluating the effectiveness of data balancing techniques before

their final implementation.

5.2.2.3 Analysis of Time Series and Traditional Data

Time series models showed greater effectiveness in detecting patterns associated with
Candida infections, especially in the dynamic analysis of the signals collected by the Electronic
Nose. Among them, the KNeighbors Time Series Classifier and Inception Time achieved the
best performances, reaching 97.27% and 97.25% accuracy, respectively, when oversampling
was applied. These models maintained a high generalization ability even without oversampling,
reinforcing their robustness in the face of unbalanced data.

In contrast, traditional models exhibited competitive performance, with a highlight for the
Random Forest Classifier and the SVC, which reached 98.18% accuracy with oversampling.
However, without this balancing technique, their accuracy dropped significantly, evidencing the
dependence of these models on specific pre-processing steps to deal with unbalanced data. The
application of oversampling had a widespread positive impact, especially for traditional models,
significantly improving accuracy, precision, and Fl-score. This highlights the importance of

balancing strategies to optimize performance in scenarios with unequal distribution of species.
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Comparison of p-values for Oversampling in Classifiers
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Figure 31 — Comparison of the p-values of the applied statistical tests, indicating which models were signifi-
cantly impacted by the application of oversampling. The red line represents the confidence interval.
Models with bars above this interval were not significantly affected by the use of the oversampling
strategy.

Overall, time series models demonstrated greater flexibility and consistency in the analysis
of non-stationary data, making them promising alternatives for the rapid and accurate diag-
nosis of fungal infections caused by Candida, without the need for extensive pre-processing
adjustments.

These findings further emphasize the variable impact of oversampling on different classifi-
cation models, reinforcing the need for personalized pre-processing approaches. As the results
demonstrate, while traditional models benefit significantly from oversampling, time series mod-
els tend to exhibit an inherent robustness to species imbalance. This observation naturally leads
to a more in-depth discussion about the comparative strengths and weaknesses of these two
methodological approaches. The next section explores these aspects in more detail, analyzing
not only the classification accuracy but also the computational efficiency and clinical appli-
cability, ultimately aiming to determine the most suitable models for real-world diagnostic

scenarios.
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5.2.2.4 Main discussions

The results obtained with the Al models show significant performance differences between
traditional and time series-based models. The application of oversampling proved to be effective
in improving the classification metrics, reducing the impact of the imbalance between species
in traditional models. In contrast, for time series models, this technique did not show such
a pronounced impact, suggesting that these models maintain good performance regardless
of the data balancing. This robustness is particularly relevant in clinical contexts, where the
distribution of data can be highly variable.

Among the evaluated models, ROCKET showed excellent performance in the training and
validation phases, standing out mainly in the version with oversampling, where it obtained
the highest accuracy (98.86%) and sensitivity (99.10%). However, when exposed to the test
data, its performance was surpassed by the KNeighbors Time Series Classifier and Inception
Time among the time series models, and by the SVC and Random Forest Classifier among the
traditional models. This suggests that, despite the high performance in the validation phase,
some models may have a lower generalization ability, possibly due to the specific characteristics
of the training set.

The analysis of the processing time revealed that traditional models are considerably faster
than time series models. The SVC and Random Forest Classifier showed significantly shorter
prediction times (0.009520s and 0.025079s, respectively), making them viable alternatives for
applications that require computational efficiency without major compromises in accuracy.
However, despite being slower, time series models like Inception Time offer a greater feature
extraction capacity, proving to be more suitable for detecting subtle temporal variations in the
E-Nose signals.

In the evaluation of metrics by species, it was observed that the SVC showed consistent
performance, reaching an accuracy of 98.18% in the set with oversampling. However, in the set
without oversampling, there was a noticeable drop, highlighting the importance of balancing
species so that traditional models can detect subtle patterns in the E-Nose signals. In contrast,
Inception Time showed greater robustness to the imbalance of the data, maintaining good
metrics even without the application of oversampling. This suggests that time series-based
models inherently capture temporal dependencies that contribute to their resilience in different
data conditions.

From a clinical point of view, the ability to quickly detect fungal pathogens directly from
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blood broth represents a transformative advance. Traditional culture-based methods for iso-
lating and identifying pathogens in the bloodstream can take days, delaying treatment deci-
sions. The E-Nose/Al approach based on blood broth reduces this time to minutes, bringing
substantial benefits to antifungal management and patient treatment, especially in intensive
care environments. By eliminating the need for sample preparation and fungal isolation, this
method allows for faster interventions, which can be crucial for improving clinical outcomes
and reducing the mortality associated with fungal infections.

In this scenario, diagnostic accuracy and speed are critical factors. While models like SVC
and Random Forest Classifier offer a balance between performance and computational effi-
ciency, more specialized approaches, such as KNeighbors Time Series Classifier and Inception
Time, deserve further exploration. When evaluating the performance of the models by species,
it becomes evident that more robust models, such as Inception Time, stand out in capturing
temporal variations of the signals, even when some species have a smaller number of samples.

Deep learning models generally demonstrate a better generalization ability in scenarios with
unbalanced datasets when compared to linear models like the SVC. This characteristic makes
them especially suitable for complex medical diagnoses. However, there is a wide set of strong
alternatives for model selection, which increases the reliability, portability, and scalability of
the system. This is particularly important in challenging clinical conditions, where rapid and
accurate diagnoses are essential for the proper management of patients and for therapeutic
decisions.

When compared to the culture-based methodology, the results are quite similar. However,
the blood broth-based approach has a significant advantage by eliminating the need for sample
processing, thus avoiding exposure to VOCs from external sources, such as the agar used in
fungal cultivation. This can lead to more accurate readings and improve the ability of the
models to correctly identify patterns of volatile compounds.

Although the results are promising, there are several considerations for the practical ap-
plication of this approach. The drift of the sensors, a known challenge in Electronic Noses,
can affect the responses over time due to prolonged use or environmental factors, possibly
requiring periodic recalibrations. In addition, the cross-sensitivity to VOCs from different mi-
croorganisms or external sources can influence the accuracy of the classification, reinforcing
the importance of robust pre-processing techniques and the inclusion of diversified samples.
Despite the high accuracy in the evaluated sets, multicenter validations are necessary to ensure

the consistency of the results in different clinical scenarios and collection protocols. Continuous
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efforts of refinement and broad validation are essential to increase the reliability and scalability
of this method for practical use.

Another important aspect to consider is the comparison of this approach with established
diagnostic techniques, such as MALDI-TOF. Although MALDI-TOF is considered the gold
standard in microbial identification, due to its accuracy and reliability, it requires sample prepa-
ration, specialized equipment, and trained personnel — factors that can limit its accessibility in
certain health environments. In contrast, the E-Nose/Al approach offers a fast, non-invasive,
and low-cost alternative, reducing the diagnosis time and enabling early interventions. How-
ever, more studies are needed to comprehensively establish its competitive advantages and
address possible gaps in sensitivity and specificity compared to traditional methods (PATEL,
2019).

In summary, considering the points above, the optimization of model selection involves bal-
ancing accuracy, computational efficiency, and clinical applicability. The analysis shows that,
while traditional models benefit from the balancing between species, time series-based models,
such as Inception Time, show greater robustness in the face of data imbalance, making them
particularly suitable for clinical practice, where speed and diagnostic reliability are fundamen-
tal. The following section consolidates the main contributions of the study, discussing their

implications and pointing out potential directions for future research and applications.

5.3 EVALUATION OF THE XAl ENSEMBLE METHOD AND THE DIAGNOSE.Al TOOL

To evaluate the XAl Ensemble module, two types of procedures were conducted: (i) a
quantitative evaluation of the explanatory performance, by means of direct comparison tests,
ablation study, and sensitivity analysis; and (ii) a quali-quantitative evaluation of the usability
and interpretability of the results produced by the XAl Ensemble VOCs method. In this second
stage, the Nielsen Heuristics (NIELSEN, (1994) were used as a reference, combining the quan-
titative analysis of the response percentages with the qualitative analysis of the participants’

feedback. The following subsections detail the results obtained in each of these stages.

5.3.1 Quantitative Evaluation of the Method

To evaluate the performance of the method in different data contexts, the tests were

conducted on the two datasets. The analysis was structured in three sequential stages, following
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the best practices for validating explainability methods (HOOKER et al., [2019): (i) a direct
comparison of the agreement between the LIME, SHAP, and Grad-CAM methods; (ii) an
ablation study to evaluate the contribution of each method to the ensemble’s consensus; and
(iii) a sensitivity analysis to test the robustness of the explanation against perturbations in the
input data (ALVAREZ-MELIS; JAAKKOLA, 2018)).

To ensure a comparative evaluation on both datasets, we adopted a specific sampling
strategy. For the Sensitivity Analysis, we randomly selected six samples from the test set
of each dataset, ensuring the representation of all six classes in both contexts. The results
presented in this section correspond to the mean and standard deviation calculated from these
subsets. For the other subsections — Direct Comparison and Ablation Study — we selected
the same representative instance, Candida parapsilosis, for the contexts of blood broth and
culture. This species was chosen consistently in both datasets due to its high prevalence in
the dataset and the high confidence exhibited by the model in its predictions, thus allowing

for a direct comparison of the behavior of the explainers under different data conditions.

5.3.1.1 Agreement between Explanation Methods (Direct Comparison)

The initial analysis focused on quantifying the level of agreement between the three XAl
methods on the two datasets. This addresses the well-known "disagreement problem” docu-
mented in the literature (KRISHNA et al., 2022). Table (16| summarizes the agreement counts,
highlighting the most relevant features identified in each experiment.

Table 16 — Feature Agreement Count between XAl Methods for Blood Broth and Culture experiments.

Experiment Sensor (Feature) Agreement Count
MQ-138 3
Blood Broth MQ-3 3
MQ-7 2
TGS-2611 2
2
2

TGS-823
TGS-822

Culture

The primary output of XAl methods is the feature importance score (weight), which
quantifies the contribution of each input variable (sensor) to the model's prediction. The
analysis of these scores across multiple methods allows the establishment of consensus and

disagreement regarding feature relevance.
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For the blood broth data, a unanimous consensus (count = 3) is observed for the
MQ-138 and MQ-3 sensors, indicating that, regardless of the approach of each method,

both are consistently identified as highly relevant.

= Example of Agreement (Consensus): This unanimous consensus is a clear example
of strong agreement, as all three XAl methods ranked MQ-138 and MQ-3 as the most

important features.
The MQ-7 sensor also showed relevance, being identified by two of the three methods.

= Example of Disagreement (Partial Consensus): This result, where one method
disagreed with the other two (count = 2), illustrates a point of disagreement among

the XAl methods regarding the relative importance of MQ-7.

In contrast, the analysis of the culture data did not result in a unanimous consensus. However,
a partial consensus (count = 2) was found for a different set of sensors: TGS-2611, TGS-822,
and TGS-823.

These combined results suggest that, although the specific features of greatest impor-
tance may vary depending on the experimental medium, the ensemble’'s consensus approach
is consistently effective in identifying a central set of relevant features in both scenarios. This
increases robustness against potentially misleading explanations, as demonstrated by (SLACK

et al., 2020).

5.3.1.2 Contribution of the Methods to the Ensemble (Ablation Study)

To understand the influence of each method on the result of the ensemble, an ablation
study was performed (HAMEED et al., 2022) on both datasets. The ensemble was executed in
its full configuration (LIME + SHAP + Grad-CAM) and in three ablation configurations, each
removing one of the methods. Table compares the consensus features identified in each
scenario for both experiments.

The results of the ablation of the blood broth data reveal that the MQ-3 sensor is the
most stable feature, remaining in the consensus even with the removal of LIME or Grad-CAM,
which consistently confirms it as the most robust and reliable feature. The MQ-138 sensor
also consistently appears as a relevant feature in multiple ablation scenarios, reinforcing its

importance.
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Table 17 — Consensus Features Identified in the Ablation Study for Blood Broth and Culture experiments.

Experiment Ensemble Configuration Identified Consensus Features
Complete (LIME + SHAP + {MQ-3, MQ-138, MQ-7}
GRAD)

Blood Broth Ablation (without SHAP) (MQ-138, MQ-7}
Ablation (without Grad-CAM) {MQ-135, MQ-3}
Ablation (without LIME) {MQ-138, MQ-3}
Complete (LIME + SHAP + {TGS-2611, TGS-822, TGS-
GRAD) 823}

Culture Ablation (without SHAP) (TGS-822, TGS-823)
Ablation (without Grad-CAM) {TGS-822, TGS-823}
Ablation (without LIME) {TGS-2611}

For the culture data, a different and very revealing pattern emerges. The TGS-822 and
TGS-823 sensors show remarkable stability, forming the consensus not only when SHAP is
removed, but also when Grad-CAM is removed. This strongly suggests that this pair represents
the central and most reliable features for this dataset, consistently identified by the LIME and
SHAP combination. In addition, the removal of LIME isolates TGS-2611 as the only consensus
feature, indicating a unique contribution of the SHAP and Grad-CAM pair.

This comparative study highlights the value of ablation analysis. While the blood broth
experiment points to a single highly dominant feature (MQ-3), the culture experiment reveals
a stable "pair" of features (TGS-822, TGS-823). This demonstrates that the specific context
of the data critically influences how the XAl methods interact and which features are high-
lighted, reinforcing the need for an ensemble approach to achieve a comprehensive and reliable

explanation.

5.3.1.3 Robustness of the Explanation (Sensitivity Analysis)

The evaluation of an explanation’s quality often relies on assessing its fidelity (how well
it reflects the model’'s behavior) and its stability or robustness (how much the explanation
changes when the input data is slightly perturbed). In this study, we primarily evaluate the
ensemble’s explanation by focusing on two key aspects: Robustness through Sensitivity Analysis
and Inter-Method Consistency.

The robustness of the ensemble’s explanation was evaluated by introducing Gaussian noise
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to the original test instances, an essential "sanity check" to validate the fidelity of the explana-
tion (ADEBAYO et al., 2018]). This perturbation approach simulates minor, real-world variations
in the input data, and a stable explanation should not change drastically. The stability of the
explanation was measured quantitatively for the two experimental configurations. The results
are summarized in Table [18

Table 18 — Explanation robustness metrics from the sensitivity analysis for both Blood Broth and Culture
experiments. The reported values correspond to the average results obtained among the 6 species
in each dataset. For each species, 3 samples were generated with noise perturbation. First, the
average of the 3 perturbations was calculated per species; then, the overall average and standard
deviation were calculated among all 6 species for each experimental configuration.

Data Source Metric Average Value Standard Deviation
Jaccard Index 0.917 0.105
Blood broth Kendall's Tau 0.530 0.314
Overlap Coefficient 0.981 0.045
Jaccard Index 0.972 0.062
Culture Kendall's Tau 0.815 0.270
Overlap Coefficient 0.981 0.041

The results of both experimental configurations provide strong evidence of the method'’s
robustness. For the blood broth data, the high values observed for the Jaccard Index (91.7%)
and the Overlap Coefficient (98.1%) indicate excellent stability in the set of features identified
by the ensemble method, even under noise perturbation. Additionally, the moderate value
of Kendall's Tau (53.0%) suggests a reasonable level of consistency in the ranking of the
importance of the features.

These findings are reinforced by the analysis of the culture data, which showed even
higher stability metrics. With a Jaccard Index of 97.2% and a remarkably high Kendall's Tau
of 81.5%, this second experiment demonstrates that the ensemble not only consistently iden-
tifies the same central features but also maintains its relative importance ranking with high
fidelity. The consistency of the high Overlap Coefficient (98.1% in both experiments) highlights
the reliability of the method. The strong performance on two different data sources signifi-
cantly increases confidence in the ensemble approach, demonstrating that it is robust both
in identifying which features are relevant and in maintaining a coherent order of importance,
aligning well with the central objectives of explainable Al.

To comprehensively evaluate the reliability of the ensemble approach in different data

contexts, we performed a second evaluation step: a consistency analysis between methods on
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the two datasets. This analysis compares the output of the ensemble with each individual
explanation technique (LIME, SHAP, and Grad-CAM). High consistency indicates that the
ensemble’s explanation is not only stable to noise but also highly aligned with the core findings
of its constituent methods. The results, detailed in Table [I9, reflect the alignment of the
ensemble with its constituent methods in each scenario.

Table 19 — Similarity Between the Ensemble and Individual XAl Methods for the Blood Broth and Culture
Datasets (Mean and Standard Deviation of 6 repetitions). Here, i represents the mean and o the
standard deviation.

Comparison Jaccard Overlap Kendall’s Tau

i o ] o i o
Blood Broth

Ensemble vs Grad-CAM 0.792 0.188 0.944 0.136 -0.556 0.544

Ensemble vs LIME 0.875 0.137 1.000 0.000 1.000 0.000

Ensemble vs SHAP 0.792 0.188 0.944 0.136 0.444 0.655
Culture

Ensemble vs Grad-CAM 0.751 0.201 0.910 0.150 -0.215 0.600

Ensemble vs LIME 0.850 0.152 0.980 0.025 0.950 0.050

Ensemble vs SHAP 0.763 0.195 0.925 0.141 0.350 0.710

The results demonstrate a consistently high agreement in the selection of features (Jaccard
Index and Overlap Coefficient) for both datasets, indicating that the ensemble and the individ-
ual methods tend to identify a similar set of important features. However, significant variations
arise when analyzing the ranking of these features, measured by Kendall's Tau, revealing a
context-dependent behavior of the explainers.

For the blood broth dataset, the ensemble exhibits a perfect and stable agreement with
LIME (1.000 £ 0.000), a moderate positive agreement with SHAP (0.444 + 0.655), and a
notable moderate negative correlation with Grad-CAM (—0.556 = 0.544).

In the culture dataset, this divergence in ranking is even more pronounced. Although the
agreement with LIME remains very high and stable (0.950 + 0.050), the correlations with
SHAP (0.350 £ 0.710) and Grad-CAM (—0.215 + 0.600) become weaker and exhibit even
greater variability, as indicated by the high standard deviations.

This divergence, especially the instability observed in the correlations with SHAP and Grad-
CAM in both scenarios and its intensification in the culture dataset, reinforces the justification

for the use of an ensemble. It successfully harmonizes complementary — and sometimes
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conflicting — perspectives from different explanation paradigms, resulting in a more robust

and reliable feature identification in various analytical contexts.

5.3.1.4 Comparative Performance and Computational Cost Analysis of the XAl Ensemble

The validation of an XAl architecture for clinical application depends not only on the
robustness of its explanations but also on its computational efficiency and adaptability to
different contexts. This section presents a comparative performance analysis of the XAl en-
semble, evaluating its cost (execution time) and benefit (relevant sensors identified) in the
two experimental scenarios: the controlled culture environment (ATCC) and the clinical blood
broth scenario.

The objective is to demonstrate the methodology’s flexibility and identify the trade-offs
between explanatory completeness and practical viability, a critical factor for implementation
in the DiagNose.Al system. To facilitate direct comparison, the results from both scenarios

are consolidated into a single table.

Table 20 — Comparative Cost-Benefit Analysis of the XAl Ensemble in the Culture and Blood Broth Scenarios.

Experimental Ensemble Time (s) Consensus Sensors Identified
Scenario Configuration
LIME + SHAP + 2248.95 TGS-2611, TGS-822, TGS-823
Grad-CAM (Full)
Culture (ATCC) | |ME + Grad-CAM 2138 TGS-822, TGS-823
LIME + SHAP 2152.37 TGS-813
SHAP + Grad-CAM 2119.81 TGS-2611
LIME + SHAP + 1273.65 MQ-138, MQ-3, MQ-7
Grad-CAM (Full)
Blood Broth
LIME + Grad-CAM 16.79 MQ-138, MQ-7
LIME + SHAP 1290.86 MQ-3

SHAP + Grad-CAM 1266.50 MQ-138, MQ-3

The consolidated analysis of Table [20] allows for three main conclusions about the XAl
ensemble architecture:

1. Computational Cost and the Consistent Pattern of SHAP: Data from both
scenarios unequivocally confirm that the SHAP technique is the main performance bottleneck.
In both experiments, any combination including it increases the execution time to tens of

minutes (between 21 and 37 minutes). In contrast, the LIME + Grad-CAM combination proves
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to be extremely fast in both contexts, with times of 21.38s (culture) and 16.79s (blood broth).
The faster execution in the blood broth scenario, despite a similar number of cycles, can be
attributed to the lower number of sensors in the Prototype E-nose (4 sensors) compared to the
Suitcase (7 sensors), which reduces the data dimensionality and, consequently, the processing
cost.

2. Framework Adaptability to Different Hardwares: It is crucial to highlight that each
experimental scenario used a distinct E-nose device, each equipped with an exclusive set of
sensors: the TGS family for the culture experiment and the MQ family for the blood broth
experiment. The analysis of the XAl ensemble (Table demonstrates that the methodology
was able to identify the most pertinent sensors within each of these distinct hardware sets.
This finding indicates the Framework’s ability to adapt to different hardware configurations and
extract the most informative features available in each architecture. The method's robustness
is evidenced by its ability to operate effectively and provide coherent explanations, regardless
of the underlying sensors.

3. The Trade-off between Completeness and Efficiency: The comparison between

the scenarios reinforces the existence of a strategic trade-off.

» The full ensemble (with all three methods) consistently provides the most comprehen-
sive and hardware-adapted explanation, making it the ideal choice for in-depth research

analyses where time is not a limiting factor.

» The LIME 4 Grad-CAM configuration establishes itself as the best cost-benefit option for
practical application. It offers an ultra-fast (under 30 seconds) and robust explanation in
both scenarios, capturing a significant subset (50% for culture and 66% for blood broth)
of the most important sensors identified by the complete analysis on their respective

hardware.

The main limitation identified in this analysis is the high computational cost associated
with SHAP, which points to a clear direction for future work: the investigation of alternative
explainability techniques. The objective would be to find or develop a method that, by replac-
ing SHAP in the ensemble, can maintain or even enhance the robustness and depth of the
explanation but with significantly superior performance. Such an advancement would allow the
full ensemble configuration to be used more viably in time-critical scenarios, eliminating the

current trade-off and consolidating an explanatory solution that is both complete and agile.
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In summary, the comparative analysis, with complete data from both scenarios, validates
the XAl Ensemble architecture as a robust and, most importantly, flexible and adaptable
solution. The Framework’s ability to operate on different hardware and provide contextual
explanations, combined with the option to configure the ensemble to prioritize either analytical
completeness or response speed, gives DiagNose. Al the versatility needed to transition between

the research environment and real-time clinical application.

5.3.2 Key Discussions on the XAl Ensemble VOCs Method

The results demonstrate that the proposed XAl Ensemble provides explanations that are
both robust and context-sensitive, addressing the well-known disagreement problem in single-
method approaches (KRISHNA et al, 2022). In the blood broth dataset, MQ-3 and MQ-138
consistently emerged as the most reliable features, while in the culture dataset, the pair TGS-
822 and TGS-823 showed the greatest stability. This context-dependent behavior reinforces
the need for an ensemble strategy.

The ablation study revealed that the removal of a single method significantly alters the
consensus, highlighting the risks of relying on a single technique. By integrating LIME, SHAP,
and Grad-CAM, the ensemble harmonizes complementary perspectives and mitigates the vul-
nerabilities of individual explainers (SLACK et al., [2020).

The sensitivity analysis further confirmed the robustness, with high Jaccard and Overlap
values (>0.91 and >0.98) ensuring stability in the set of identified features, even under per-
turbations. Although the feature rankings (Kendall's Tau) varied, the central set of relevant
features remained consistent, a more reliable basis for practical applications (ALVAREZ-MELIS;
JAAKKOLA, [2018; |ADEBAYO et al |, 2018).

Furthermore, the performance analysis highlights a critical trade-off between computational
cost and explanatory completeness. The full three-method ensemble, while offering the most
comprehensive feature set, is computationally expensive due to the overhead imposed by the
SHAP method, with execution times of 1273.65s for blood broth and 2248.95s for culture data.
This high cost, primarily attributed to SHAP's extensive calculation time, necessitates a new
literature survey to identify alternative explanation methods that offer comparable explanatory
completeness with a drastically lower computational cost. In contrast, the partial ensemble of
LIME and Grad-CAM provides an ultra-fast alternative, yielding explanations in just 16.79s and

21.38s, respectively. This demonstrates the Framework’s flexibility, allowing for a configuration
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optimized for speed that still captures a significant subset of the key features, making it viable
for time-sensitive clinical applications.

Finally, the ensemble aligned more stably with LIME, while SHAP and Grad-CAM exhib-
ited greater variability, reinforcing the benefit of combining multiple paradigms. Overall, the
Framework delivers explanations that are not only interpretable but also verifiably robust and

reliable, essential for high-risk domains like healthcare.

5.3.3 Quantitative Evaluation - An Analysis of Nielsen’s Heuristics

To evaluate the usability and identify the most effective way to present the information to
the user, a medium-fidelity prototype was deveIopecE]. The evaluation was guided by Nielsen's
Heuristics (NIELSEN, 1994) and supplemented by detailed qualitative feedback. 11 responses
were collected through an online questionnaire from two distinct groups of participants: tech-
nical experts (computing, design, software testing — 45.45%) and experts in the prototype's
application domain (Medicine, Biomedicine, and Biology — 54.55%). The questionnaire com-
bined closed questions to measure the heuristics and open questions to capture perceptions
and suggestions.

The quantitative analysis of the responses revealed a generally positive perception regarding
the prototype’s usability. Notably, no heuristic was evaluated exclusively as "Does not meet"
by all participants, suggesting that the prototype demonstrates a basic level of compliance
with all evaluated heuristics. However, the variation in responses between "Yes" (meets the
heuristic) and "Partially" (partially meets the heuristic) indicates specific areas that require

attention and refinement:

= H1 - Visibility of system status: The vast majority (81.82%) considered it "Yes,"

demonstrating that the prototype provides adequate feedback about what is happening.

» H2 - Match between system and the real world: Showed a division, with 63.64%
"Meets" and 36.36% "Partially." This suggests that, although the language is generally

understandable, some technical terms need adaptation.

= H3 - User control and freedom: The majority (72.73%) evaluated it as "Yes," indi-
cating ease of navigation and undoing actions, but the 27.27% "Partially" point to areas

for refinement.

1 <https://bit.ly/3HCNOia>


https://bit.ly/3HCN0ia
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= H4 - Consistency and standards: The vast majority (81.82%) indicated that the
prototype follows consistent conventions, although 18.18% "Partially" suggest points

for improvement.

= H5 - Recogpnition rather than recall: Predominantly (72.73%), users considered that

the prototype facilitates recognition, with 27.27% indicating "Partially."

= H6 - Aesthetic and minimalist design: Received the highest percentage of "Yes"

(90.91%), showing that the design is considered clean and focused.

= H7 - Help and documentation: The responses were the most divided, with 63.64%
"Yes" and 36.36% "Partially," suggesting that the accessibility or clarity of the help could

be improved.

5.3.4 Qualitative Results: Perceptions and Suggestions from Users

The qualitative analysis of the feedback revealed valuable insights. Many participants
praised the clear and detailed way the system explains the Al results, highlighting the use
of graphs and legends as facilitators. Health professionals mentioned its effectiveness in the
rapid and safe identification of microorganisms, stressing the importance of comparison with
other results. The general ease of use was a recurring positive point. However, several sugges-
tions for improvement were proposed. Several users suggested Ul improvements, such as a more
refined design, more centralized elements, and less "cartoonish" and more professional icons.
The clarity of the information was a concern, with some pointing out difficulty in understand-
ing certain graphical elements and the initial screen. Health professionals emphasized the need
for greater detail about the process and technology, similar to established products, including
information on sensitivity, analytical reproducibility, and model logic. Understanding the tech-
nical scope was considered crucial for appropriate analogies. The usability evaluation indicated
strengths (clarity of the Al explanation, minimalist design) and areas for improvement (Ul/UX,
clarity of information, methodological detail). The final result of the implemented system can

be observed in Appendix |B| of this project.
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5.3.5 Validation and Advancement of the Framework: From Culture to the Clinical

Scenario

The application of the DiagNose.Al Framework in two distinct contexts — in laboratory
cultures (ATCC) and directly in clinical blood broth samples — allowed not only to validate
the methodology but also to demonstrate its evolution and practical relevance. The transition
from the controlled scenario to the clinical one revealed significant methodological advances.

The main advance refers to the diagnostic response time. While the culture-based approach
requires preparation and incubation steps, the application of the Framework to blood broth
eliminates these prerequisites, allowing for an almost immediate diagnosis. This optimization
represents a drastic reduction in analysis time and laboratory resources, aligning the solution
with the urgent needs of the clinical environment.

Additionally, the clinical validation demonstrated the robustness and flexibility of the
Framework. The use of a more compact and portable Electronic Nose, with a reduced set
of sensors, proved the adaptability of the methodology. Notably, even with a more simplified
hardware, the approach not only maintained its effectiveness but also obtained superior accu-
racy results (98.18% vs. 97.46%), indicating that the computational core of the Framework is
capable of extracting significant patterns even under different hardware conditions and greater
sample complexity.

Table below synthesizes the main results, connecting each validation scenario to the
performance of the best predictive model and the main sensors identified by the XAl Ensemble
architecture. This consolidated view demonstrates the Framework's ability not only to classify
with high precision but also to provide interpretable insights into the patterns that guided its

decisions.
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Table 22 — Synthesis of the DiagNose.Al Framework validation, correlating the model’s performance (training
and testing) with the main sensors identified by the XAl methodology in each experimental scenario.

Database Best Model  Accuracy (Train) Accuracy (Test) Ref. Species  Relevant
(XAI) Sensors (via

XAl)

Culture-UFPE  InceptionTime 97.74% 97.46% C. parapsilosis  TGS-2611,
TGS-813,
TGS-822,
TGS-823

BloodBroth- SVvC 97.70% 98.18% C. parapsilosis MQ-138,

uc MQ-3, MQ-7
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6 CONCLUSION

This work presented the development, implementation, and validation of the DiagNose.Al
Framework, a systematic methodology for the identification of microorganisms from the analy-
sis of Volatile Organic Compounds (VOCs). In response to the critical need for fungal infection
diagnostics that are faster, more accurate, and accessible, this work focused on consolidating
a complete, robust, and fundamentally explainable workflow.

The methodology was validated in scenarios of increasing complexity, starting in a con-
trolled laboratory environment with fungal cultures and evolving to a clinical context close to
the real application scenario, with the use of blood broth. This validation was made possible by
the use of two distinct versions of the Electronic Nose — one more robust and the other more
portable — proving the Framework's adaptability to different hardware conditions and sample
types. A fundamental pillar of this trajectory was the construction of two novel databases,
with VOC data from culture and blood broth, which not only served as a foundation for the
experiments but also stand as a valuable resource for the scientific community.

The effectiveness of the Framework's analytical components was proven by expressive re-
sults. The time-series classification models showed high predictive power, achieving accuracies
above 97% in both validation and test scenarios. However, the main computational contri-
bution lies in the pioneering Ensemble XAl architecture. By complementarily integrating the
LIME, SHAP, and Grad-CAM techniques within this context, the explainability methodology
proved capable of providing consistent and multifaceted interpretations. Its robustness was
confirmed in sensitivity and ablation studies, which demonstrated high stability in identifying
the most relevant sensors (Jaccard Index > 0.91), even under perturbation of the input data.
In addition, the performance analysis revealed the ensemble’s practical flexibility, offering an
ultra-fast configuration capable of delivering robust explanations in under 30 seconds (in the
scenario without SHAP), establishing a crucial balance between analytical depth and the speed
required for clinical applications.

Furthermore, the approach fills important gaps in the literature by generating textual and
semantically rich explanations, with an interface designed with a focus on the medical domain
and based on the needs of end-users, ensuring that the interpretations are not only correct but
also useful and actionable for specialists.

Despite the promising results, it is recognized that the consolidation of the Framework
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opens new research fronts and challenges to be faced. Generalization to an even larger number
of species and the investigation of mixed infections are important future steps. Issues inherent
to sensor technology, such as stability and the possibility of drift over time, will demand the
continuous refinement of the models and the possible creation of a calibration protocol. The
expansion of the database through multicenter studies will be fundamental to further increase
the solution’s robustness.

In summary, this project fulfills its objective by delivering a complete, end-to-end validated
methodological Framework. The successful integration of an acquisition protocol, data en-
gineering, predictive modeling, and, crucially, a robust explainability approach, represents an
innovative solution with significant clinical impact. The adoption of technologies like that of
the DiagNose.Al Framework has the potential to transform diagnostic practice, reduce as-
sociated mortality from infections, and consolidate the application of trustworthy Artificial

Intelligence in the clinical environment.
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7 MAIN CONTRIBUTIONS AND FUTURE PERSPECTIVES

The conclusion of this study has resulted in a set of methodological, software, and data
contributions that establish a new approach for the identification of microorganisms. The
consolidated work is presented below, detailing the milestones achieved and the promising
lines of research that originate from it.

The main contributions developed and validated throughout this research are:

» A Methodological Pattern for Sensor-based Systems: The main contribution to
Computer Science is the design of a complete, end-to-end methodological framework.
This pipeline, which systematically integrates an acquisition protocol, data engineering,
time-series modeling, and a native Explainable Al layer, establishes itself as a replicable
methodological pattern. Its structure can be adapted for other areas that rely on
the interpretation of sensor data, such as environmental sensing, Industry 4.0, and loT

networks.

= Advances in Explainable Al for Multivariate Time Series: A pioneering XAl archi-
tecture based on an ensemble method was developed. This approach is not limited to
health diagnostics; it represents an advance for the analysis of multivariate time series in
any domain where model transparency and reliability are crucial. Its applications extend
beyond healthcare and can be employed, for example, in anomaly detection in sensor

networks or in data analysis for predictive maintenance.

» Creation and Availability of Novel Databases: A fundamental pillar was the gener-
ation and characterization of two new databases for the analysis of VOCs from Candida
spp., a resource that was previously scarce in the literature. The Culture-UFPE database
was created in a controlled laboratory environment, cultivating Candida isolates over
different time periods. The BloodBroth-UC database, in turn, was developed in a labo-
ratory using infected blood broth samples, an approach that significantly approximates
the real-world application scenario of the solution and expands the variability of the
samples, making the dataset more heterogeneous, especially when new collections are

conducted in Brazil.

» Scientific Production and Academic Recognition: The relevance of the research was

validated by the scientific community through the publication of an article in the journal
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Scientific Reports of the Nature group (Appendix, the submission of two new articles
(one on the experiments with blood broth and another on the XAl Ensemble method)
currently under peer review, and the approval in the CAPES/Print program, which
enabled the international collaboration with the University of Cincinnati, a fundamental

step for the consolidation of the Framework.

7.1 FUTURE PERSPECTIVES AND RESEARCH DIRECTIONS

From the completion of this work, several perspectives arise to guide future research, which

can be organized into the following directions:

» Sensor Drift and System Robustness: One limitation of current E-nose systems is
the gradual drift of sensor responses over time, which can degrade predictive perfor-
mance. Future work should investigate drift compensation techniques, such as adaptive
calibration, transfer learning, or domain adaptation strategies, ensuring the long-term

robustness of the Framework.

» Expansion to New Clinical and Nonclinical Domains: A natural direction is to
apply the methodological pipeline to other clinically relevant microorganisms, such as
antibiotic-resistant bacteria, for the detection of microbial biofilms on surfaces and for
monitoring microorganisms in laboratory settings. Beyond healthcare, the Framework

can be adapted to monitor microorganisms in food safety and agriculture, for example.

» Integration with State-of-the-Art Models: While this thesis employed Inception-
Time and SVC as core models, recent advances in time-series Transformers (e.g., Times-
Net, TST, and PatchTST) represent a promising research avenue. Future studies may
explore hybrid architectures combining convolutional and transformer-based models to

improve both accuracy and interpretability.

» Optimization of the XAl Ensemble for Real-Time Performance: The performance
analysis in this thesis consistently identified the SHAP method as a significant compu-
tational bottleneck, limiting the practicality of the complete three-method ensemble in
time-critical scenarios. A promising research direction is the exploration of alternative,
more efficient XAl techniques to replace SHAP. The goal would be to find a method

that preserves or enhances the explanatory robustness of the ensemble while drastically
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reducing execution time. This would resolve the current trade-off between speed and an-
alytical depth, enabling the most comprehensive version of the Framework to be deployed

in real-time diagnostic environments.

» Multimodal Diagnostic Models: A high-impact line of research involves the fusion
of E-nose data with other modalities, such as clinical metadata or imaging. Multimodal
integration may provide richer diagnostic insights, pushing the frontier of Al-assisted

diagnosis toward more holistic patient profiles.

» Usability and Clinical Adoption of XAIl: Although the ensemble-based XAl layer
increased interpretability and robustness, its real adoption in clinical settings remains an
open question. This thesis has already applied Nielsen's heuristics in the evaluation of
a high-fidelity prototype, providing initial evidence of usability. The next step, however,
is the validation of the final system with physicians in real clinical environments. Future
work should involve larger and more diverse sets of healthcare professionals, assessing
dimensions such as acceptance, trust, decision-making support, and cognitive workload
during actual diagnostic routines. These studies are essential to bridge the gap between

experimental validation and practical clinical adoption.

» Large-scale Validation and Technology Readiness: The next step for practical appli-
cation involves multicenter validation studies to assess predictive performance and clinical
utility in heterogeneous environments. Crucially, this includes expanding the dataset to
encompass a wider range of biological variations, specifically focusing on intra-species
variability within Candida albicans, Candida parapsilosis, and other prevalent species to
ensure model robustness. Furthermore, the framework must undergo rigorous double-
blind testing compared against current gold-standard methods (such as blood cultures
and molecular assays). Finally, usability assessments of the DiagNose.Al Framework in

situ will be fundamental for advancing its Technological Readiness Level (TRL).

In summary, while this research establishes a solid methodological, computational, and ex-
perimental foundation, its continuity depends on addressing sensor-related challenges, adopting
state-of-the-art models, expanding to new domains, and ensuring clinical usability. These di-
rections point toward the consolidation of E-nose systems as reliable, explainable, and widely

adopted diagnostic tools.
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A - SOFTWARE ARTIFACTS AND COMPUTATIONAL ENVIRONMENT

This appendix details the computational resources, software artifacts, and libraries used for
the implementation and validation of the DiagNose.Al Framework. The objective is to ensure

the transparency and reproducibility of the experiments conducted in this thesis.

A.1 SOURCE CODE REPOSITORY

All the source code developed for data processing, training of the classification models,
and implementation of the XAl Ensemble explainability architecture has been documented and

is publicly available. Access can be obtained through the following GitHub repositories:

Candida |dentification from culture samples:

<https://github.com /michaellopes16/Candidaldentification.git>

= Ensemble Xai API:

<https://github.com/michaellopes16/EnsembleXaiAPI.git>

» Explainability Ensemble API:

<https://github.com /michaellopes16/ExplainabilityEnsembleAPl.git>

» Candida ldentification from blood samples:

<https://github.com/michaellopes16/BloodCandidaldentification.git>

The repository includes the notebooks (Jupyter Notebooks) with the analysis scripts and

the data files necessary to replicate the results presented in Chapter 5.

A2 COMPUTATIONAL ENVIRONMENTS

The experiments were executed in two distinct computational environments to ensure

flexibility and the validation of the processes in different hardware configurations.


https://github.com/michaellopes16/CandidaIdentification.git
https://github.com/michaellopes16/EnsembleXaiAPI.git
https://github.com/michaellopes16/ExplainabilityEnsembleAPI.git
https://github.com/michaellopes16/BloodCandidaIdentification.git
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A.2.1 Local Configuration

Most of the initial development and testing was carried out on a personal workstation with

the following specifications:
» Processor: Core i7
= RAM: 24 GB

= GPU: NVIDIA GTX 1060

A.2.2 Cloud Environment (Google Colaboratory)

For experiments that demanded greater computational power and to ensure reproducibility
in a standardized environment, the Google Colaboratory (Colab) platform was used. The
configuration (free version) made available by the platform during the experimental period

was:
» RAM: Approximately 12.7 GB
» Disk Storage: Approximately 78.2 GB

» GPU: Google Compute Engine graphic accelerator (e.g., NVIDIA Tesla K80, T4, etc.)

A.3 MAIN TECHNOLOGIES AND LIBRARIES

The implementation of the methodology was carried out using the Python 3 programming
language. The main software libraries that supported the development include, but are not

limited to:

Data Analysis and Manipulation: Pandas, NumPy

» Machine Learning and Time Series: Scikit-learn, Sktime, TensorFlow, Keras

Explainable Artificial Intelligence (XAl): SHAP, LIME, GRAD-CAM
= Data Visualization: Matplotlib, Seaborn

The use of these open-source tools was fundamental for the agile development and robust

validation of the proposed framework's components.
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B - THE DIAGNOSE.AlI SYSTEM PROTOTYPE

This appendix details the interface and workflow of the DiagNose.Al system prototype,
developed as a proof of concept to implement and validate the explainability methodology
proposed in this thesis.

Based on the results and feedback obtained from the usability evaluation, the first version
of the DiagNose.Al system was developed. In addition to offering the functionality of database
creation, the system now also allows for the analysis and prediction of VOCs from samples,
featuring the integration of the XAl Ensemble structure and an enhanced explainability mod-
ule. The interface has been refined, adopting a more minimalist style with better-positioned
elements. The final prediction screen now presents textual and visual explanations about the
prediction process more clearly.

Another important update was the implementation of informational buttons that trigger
help pop-ups distributed throughout the application, aiming to guide the user in each step
of the process, providing detailed information about the functionality and purpose of each
module. Representative images of the final system are presented in Figure 32]

On the application’s home screen, the user is presented with three main options, in addition
to access to further information. Upon selecting the Al-based sample identification option, the
user is directed to a settings screen and then to the sample reading screen (Figure [32(a)).
In this step, a complete reading cycle is performed, which includes purging and VOC collec-
tion. Detailed descriptions of each step are accessible through informational elements in the
interface. After the cycle is completed, the VOC data undergoes preprocessing and is sent for
analysis by the XAl Ensemble library and the Al model.

In a few seconds, the system returns several results (Figure b)): the sample prediction,
the main features (sensors) that influenced the model’s decision, an interpretable textual expla-
nation (see an example in the quote below), the mapping of the identified VOCs (Figure|32(c)),
as well as data from three similar samples (Figure [32(d)), extracted from the database, which
were used as a reference. Thus, the user obtains a comprehensive and transparent view of the

model’s decision-making process.

"The chart demonstrates the sensors considered most relevant to the Al
model in prediction.

The main groups of VOCs identified by these sensors are Alcohols, Inorganic
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Gases and Aromatics, commonly emitted by C. haemulonii, C. parapsilosis,
and C. albicans, varying in their component emission quantity. Null samples may

also emit low amounts of these VOCs."

Additionally, the system effectively addresses the main bottlenecks identified in the lit-
erature regarding currently available explainability methods, such as the absence of textual
explanations, the limitation of intuitive graphical visualizations, and the difficulty of interpre-
tation by non-technical users (TJOA; GUAN, 2020; HOLZINGER et al., [2017; |CHE et al., 2017)).
By adopting an approach centered on the interpretation of VOC classification, based on the

opinion and needs of end-users, the system promotes a target-audience-oriented explainability.
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Breaking barriers in Candida spp.
detection with Electronic Noses
and artificial intelligence

Michael L. Bastos*™, Clayton A. Benevides®®, Cleber Zanchettin'%, Frederico D. Menezes®*®,
Cicero P. Inacio*5, Reginaldo G. de Lima Neto*“®, José Gilson A. T. Filho*®,
Rejane P. Neves“® & Leandro M. Almeida*™*

The timely and accurate diagnosis of candidemia, a severe bloodstream infection caused by Candida
spp., remains challenging in clinical practice. Blood culture, the current gold standard technique,
suffers from lengthy turnaround times and limited sensitivity. To address these limitations, we
propose a novel approach utilizing an Electronic Nose (E-nose) combined with Time Series-based
classification techniques to analyze and identify Candida spp. rapidly, using culture species of C.
albicans, C.kodamaea ohmeri, C. glabrara, C. haemulonii, C. parapsilosis and C. krusei as control
samples. This innovative method not only enhances diagnostic accuracy and reduces decision time
for healthcare professionals in selecting appropriate treatments but also offers the potential for
expanded usage and cost reduction due to the E-nose’s low production costs. Our proof-of-concept
experimental results, carried out with culture samples, demonstrate promising outcomes, with the
Inception Time classifier achieving an impressive average accuracy of 97.46% during the test phase.
This paper presents a groundbreaking advancement in the field, empowering medical practitioners
with an efficient and reliable tool for early and precise identification of candidemia, ultimately leading
to improved patient outcomes.

Infections caused by fungi are a significant issue in the scenario of Intensive Care Units (ICUs), increasing
morbidity and the number of deaths in patients who are in a critical state of health?. The main reason for the
occurrence of this type of infection, also described as invasive fungal infections (IFI), is candidiasis, with Candida
albicans as the primary causative agent, followed by Candida parapsilosis, Candida glabrata, Candida krusei and
Candida tropicalis®. According to reports by*, approximately 15 species of Candida can cause human diseases,
and the most common, presented in more than 90% of cases. Furthermore, there have been notable changes in
this field, with the emergence of species considered rare or uncommon, such as occurrences with C. pelliculosa,
C. haemulonii, C. guilliermondii, C. lusitaniae, C. famata and C. auris*®.

Data reported by® show that, despite considerable advances in antifungal therapy in recent years, mortality
related to Invasive fungal infections (IFIs) in ICUs has been 40 to 60%. One of the factors contributing to this
mortality rate is the challenge in recognizing and diagnosing IFIs in the early stages of treatment™®. According
to®, only half of the tested patients were reported to be infected by Candida spp. Considering that the result may
take 2 to 7 days to be confirmed (in the case of culture-based methods), and given the severity of this condition,
a delay of more than 12 hours can increase the risk of mortality.

At present, blood culture is the standard method in the laboratory diagnosis of candidemia, enabling the
isolation of the causative agent for identification’. Alternative techniques that do not rely on cultures are also
used, including polymerase chain reaction (PCR), detection of mannan and beta-D-1,3-glucan antigens (BDG),
and enzyme-linked immunosorbent assay (ELISA). It is important to note that some of these approaches involve
careful sample preparation, have long response times, entail significant costs, and require professionals with
specific expertise®”.
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In addition, we can also mention T2Candida, which combines targeted PCR with T2 magnetic resonance and
Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). T2Candida
allows for early detection of candidemia in patients undergoing antifungal therapy; however, it is not suitable
for low-prevalence environments, is costly, and covers only five of the main species!’. As for MALDI-TOF MS,
it is highly successful in identifying clinical samples, but it can be a time-consuming process and heavily relies
on the expertise of clinical mycologists handling the samples®'. Furthermore, according to'?, combining the
MALDI-TOF MS technique with other methods is often advisable to achieve more accurate and satisfactory
results. However, this approach also involves the use of equipment that can be costly and may not always be
readily available in various microbiology laboratories, particularly in developing countries'*. However, alterna-
tive methods are based on detecting Volatile Organic Compounds (VOCs) to identify these fungal agents. These
methods include Gas Chromatography-Mass Spectrometry (GC-MS), Solid Phase Microextraction (SPME),
Simultaneous distillation extraction (SDE), and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS)".

Another method that has received some attention and shows potential for development is the Electronic Nose,
often called the “E-Nose.” This technology combines a variety of gas sensors and uses artificial intelligence to
identify patterns of Volatile Organic Compounds (VOCs) and categorize the unique “smell fingerprints” associ-
ated with these compounds. This tool is generally built with metal oxide conducting chemical sensors (MOS),
which are responsible for identifying the volatile organic compounds released by the odor-emitting components.
Its functioning is based on the olfactory function of mammals and has been studied since the 1980s'°. Like a real
nose, the E-nose aims to identify patterns from the VOCs identified by the sensors, whose reading values are
analyzed and classified by an artificial intelligence (AI) model. This device typically comprises three main parts:
sensors, a signal processing unit, and a pattern recognition system'”.

The Electronic Nose is already being applied in various domains, from food safety to agricultural applica-
tions and disease diagnosis, as'® mentioned. For a more comprehensive view of these applications, one can delve
into studies conducted by'*?, and?!, which focus on the identification of microorganisms, including fungi and
bacteria. Furthermore, research carried out by**?*, and** further extends the exploration of Electronic Nose
applications in the food industry. Its also worth highlighting the study by*, in which a portable Electronic Nose
device is employed to diagnose gynecological conditions in a clinical setting rapidly.

In the context of medical diagnosis, Electronic Noses have experienced remarkable advances in recent years,
particularly in hardware development and algorithm evolution'®?°. Medical diagnosis stands out among the
fields most benefited by the progress of this technology, as previously mentioned'®. However, some limitations
still require refinement, such as the stability, standardization, and reliability of certain sensors?”?*. In this regard,
efforts are being devoted to enhancing the sensitivity, selectivity, and stability of these devices, with significant
progress when these mechanisms are integrated with artificial intelligence and Machine Learning techniques'®*.

Given the above, it is understood that there is a significant issue regarding the rapid identification of fungi in
hospitalized patients and those with a clinical condition that requires extra care*®. Considering that this iden-
tification process can be improved, this project proposes using an Electronic Nose to recognize patterns related
to fungi of the Candida spp. species® utilizing control samples collected by ATCC company. This method can
be combined with a set of machine learning techniques, enabling quicker and more efficient identification®?,
streamlining the decision-making process of health professionals, and, consequently, improving the survival
chances of these patients. It is essential to mention that in this initial proof-of-concept study, we are using only
culture samples, aiming at the creation and validation of a rapid and efficient protocol that can be replicated in
the future for samples of other materials, such as whole blood. To better understand this, the following sections
will address the Materials and methods used for the construction of the study, the Results and discussions on its
development, and, finally, the Conclusions of the findings of this investigation.

Results

Through the implemented models, a series of experiments were conducted and cataloged using the metrics
Accuracy, F1-score, Recall (Sensitivity), Specificity, Precision, and Standard deviation, aiming to identify patterns
in the VOCs released by the analyzed Candida species. The variety of models covered the different character-
istics that the data may have, highlighting the models that best fit the data standard and discarding those with
less potential. Initially, all models were applied with the parameters defined by the documentation or in their
respective repositories. The possibility of including a parameter validation step for the models was considered.
However, given the satisfactory performance of most models and considering the computational cost and time
that this step would require, it was deprioritized for the time being.

Regarding the methods used, the primary rationale for using time series models is the temporal nature of the
signal reading, with data from each round of the aspiration process being added to the database. The majority
of the models used were sourced from the Sktime library. However, due to its uniqueness, Inception Time was
the only one implemented independently of the library, as there is currently no tool that simplifies access to its
functions and properties. The model code provided by the authors on GitHub had to be modified to accom-
modate the metrics and dataset of this study.

As aresult of the training stage, most of the models achieved 100% accuracy. This is justified due to the reduc-
tion of instances that the pre-processing step brought, using the cycles as training elements. Thus, models learn
data patterns better as they have less to memorize. In this regard, to prevent overfitting, in addition to adding
more data cycles for model training, grid search steps or optimization algorithms can be employed to find better
parameters®. Another commonly used strategy is the application of more robust models, as was the case with
InceptionTime*, achieving greater consistency at all stages of the process.

In addition to the average value referring to the metrics in the training process, the values referring to the
averages of the validation and testing stages of the models were also recorded. There was a moderate decrease
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Classifiers Accuracy | Fl-score | Recall (Sensitivity) | Precisi Specificity | Test time (s)
Inception Time 0,97468 0,97605 0,97817 0,97540 0,99513 1,21489
Random Interval Spectral Ensemble (RISE) 0,65000 0,55758 0,57007 0,56251 0,94223 4,58585
Time Series Forest Classifier 0,67500 0,61261 0,58960 0,61261 0,91312 1,18719
ROCKET Classifier 0,78750 0,78105 0,85764 0,79171 0,93804 4,91326
Shapelet Transform Classifier 0,63750 0,58207 0,60258 0,59832 0,93028 0,61583
K-Neighbors Time Series Classifier 0,75000 0,73245 0,72192 0,81357 0,95635 52,86100
HIVE COTE 1 0,52500 0,40245 0,42669 0,39475 0,94009 11,93961
HIVE COTE 2 0,66250 0,58503 0,60360 0,62833 0,94342 2,57620
BOSS Ensemble 0,63750 0,50525 0,53555 0,49929 0,90165 0,48432

Table 1. Result of the model testing stage—test values for the metrics Accuracy, F1-score, Recall (sensitivity),
Precision, Specificity, and Test time measured for each model after the training and validation phase.
Significant values are in bold.

in the performance of the models between the training phase and the validation and test phases, amidst 7 and
4%. This is because, during training, the models identify Candida patterns precisely due to the distinctive nature
between each species and the new data division. In the other phases, as they are new data, and the model has
never seen them, it is normal and expected that it ends up making more errors, which in no way interferes with
its final evaluation. Table 1 demonstrates the data referring to the testing steps of each of the models.

As observed in the result set, the most notable model was Inception Time*, executed with the standard set
of parameters, followed by ROCKET Classifier*, Time Series Forest Classifier* and Random Interval Spectral
Ensemble (RISE)¥, respectively. All metrics calculated in Inception Time were near 100%, demonstrating high
consistency between the results.

In addition to collecting the metrics, statistical tests were conducted to verify the difference between the
results of the different models. Specifically, a normality test was performed with the accuracy results obtained in
the 10 repetitions for each model of the validation stage. This was followed by a significance test and a post-hoc
test to compare the selected algorithms pairwise.

It can be interpreted that only the Inception Time model does not follow a normal data distribution. It would
already suggest using a non-parametric test to evaluate the results. However, to obtain increased sensitivity of
the analyses, a numerical test of statistical normality was also applied, where the most suitable test for the prob-
lem in question was the Shapiro-Wilk test. According to*, this method is more suitable for small sample sets
smaller than 50, although it can also be used for larger sets. In contrast, methods such as Kolmogorov-Smirnov
are ideal for samples larger than or equal to 50. Both tests use as a null hypothesis the statement that the data
are all derived from a normal distribution set, accepting this hypothesis when p>0.05, confirming the data as
normally distributed.

As a result of applying the normality test, the HIVE COTEI1, Shaplet Transform Classifier, and TimeSeries
Forest Classifier classifiers did not present a normal distribution according to the Shapiro-Wilk test, with p-values
equal to 0.01227, 0.03521, and 0.00021, respectively. All these values are less than 0.05.

Indeed, with this result, we confirm the need to apply a non-parametric test, given that only some groups
follow a normal distribution. As per®, the most appropriate non-parametric test for this case is the Kruskal-
Wallis test, considering the number of examples in the groups is small and equal. For the execution of the test,
the following hypotheses were considered:

® HO: All models have relatively equal means in terms of classification accuracy;
® HI: At least one of the models differs from the others in terms of mean classification accuracy.

Where HO is the null hypothesis, which assumes that all models have equal performance, H1 is the alternative
hypothesis, which is the difference in performance of at least one of the models about the others. For this test,
a p-value less than 0.05 indicates the rejection of the null hypothesis, suggesting the existence of a significant
difference between the evaluated samples. Thus, applying Kruskal-Wallis to the set of results acquired, a p-value
of 2.49E-02 was obtained, which is less than 0.05. This demonstrates that with 95% confidence, there is evidence
to reject HO and accept the hypothesis that at least one of the models differs from the others in mean validation
accuracy.

Given this model difference, the next step was applying a post-hoc test to identify which models are statisti-
cally different. The non-parametric test only indicates the existence of this difference, not the relationship between
the sets. For this step, the Nemenyi test was used, which, according to*, is one of the most commonly used post-
hoc tests after applying Kruskal-Wallis. As briefly explained, this method performs a pairwise investigation of
each analyzed set, returning the p-values for each relationship between the evaluated groups. The values vary
between -1 and 1, with p<0.05 indicating a significant statistical difference between the samples according to the
test and values closer to 1 demonstrating similarity. Figure 1 depicts a correlation matrix that crosses the results
obtained by the Nemenyi method.

As observed, there is a high similarity between most models with a lower accuracy average, not showing a
significant statistical discrepancy between them. However, it can be stated that there is no significant difference
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Figure 1. Correlation graph of the results of applying the Nemenyi post-hoc test on the set of results for
each model. In this type of graph, when it is farther from 1, the elements are more divergent; that is, they are
statistically different.

between the Inception Time* and Time Series Forest Classifier’® models, both of which have p-values much less
than 0.05. Each one has a notable difference between the models with more distinct accuracy. However, there is
a high similarity between some with closer accuracy (which was expected), dividing the models into different
groups of relevance. This way, it is possible to identify the difference between the models, with Inception Time
and TSFC not showing a significant difference. Although there is no significant statistical difference, Inception
Time stands out with average values for Accuracy, Precision, Recall (sensitivity), Specificity, and F1 above 95%
in all analysis sets. Additionally, it boasts an execution time of just over 1 second, making it the most promising
choice for the final classification model of volatile compounds emitted by Candida species. The entire process of
identifying microorganisms, encompassing sample reading and model classification, is completed in approxi-
mately 15 minutes.

Discussion

With the results of this study, it is possible to see the effectiveness of using Electronic Noses in the face of such
complex problems, including identifying fungi through VOCs emitted by species in culture. In contrast to other
solutions, using this technology, in addition to making the process of helping identify fungi cheaper, can speed
it up, achieving a satisfactory result within a few hours. Traditional methods use expensive, large machines
(challenging to transport), which require a longer time to indicate an accurate result. With the E-nose built with
low-cost parts in a compact suitcase, it will be possible to transport it more easily and quickly. The identification
speed is up to the Al models being trained because the more accurately they use data with less culture time, the
faster their classification returns.

From the first stages of the study, in the visual analysis of the data, it is possible to identify a distinct separation
between some species (highlighted in the PCA of the Fig. 4a). This helps to understand which Candida species
can be better identified by the models and demonstrate a linear separation between some. For example, it’s pos-
sible to observe in the left part of the projection a cluster of five species (C. albicans, C. glabrata, C. haemulonii,
C. kodamaea ohmeri, and C. krusei), which could be separated by some lines, as well as in the lower right corner,
where C. parapsilosis and C. krusei are located, and in the upper right corner, where C. albicans and C. glabrata
can be found. It's worth noting that some other species within these groups might account for some of the errors
recorded by the models during the learning process.

Another critical point is the choice of Time Series for training and data classification. This decision was
taken given the temporal characteristic of the data, both for the time of culture of the fungi and for the reading
of the volatile emitted by them and captured by the Electronic Nose, based on the process in evidence in Fig. 3c.

All this flow culminated in obtaining outstanding results for the validation and classification phase of the
samples, where most of the models achieved an assertiveness above 90%, with emphasis on the Inception Time,
with an average of 97.70%, 95.87%, and 97.46% of accuracy in the training, validation, and testing phases,
respectively, with very similar values for the other metrics. In the training step, most models reached 100% in all
metrics. However, this can be seen as a bias in the data, harming the test step. All this difference was confirmed
by the analysis of statistical significance, where through the Shapiro-Wilk normality tests, the Kruskal-Wallis
non-parametric test, and the Nemynyi post-hoc test, the difference between the algorithms used was identified.

Although there are still no comparative studies between the E-nose and artificial intelligence in relation to
more traditional yeast identification techniques, we can observe a great similarity between the efficiency of the
method presented in this work and methods such as MALDI-TOF MS, CHROMagar and Corn meal tween-80
agar, as demonstrated in study*'. The authors’ approach indicates that, even though these techniques are not
considered gold standard for yeast identification, they can lead to very promising results for some species, with
a performance very similar to that of our study (indicated in Table 1), when compared to the percentage of cor-
rect answers. This highlights the importance of using new methods that can fill the gaps left by more traditional
methods.
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Thus, as seen in the study, it is possible to perceive how powerful Electronic Nose, combined with new Time
Series techniques, can yield satisfactory and promising results. Because it is a portable tool with a moderate
construction cost compared to current mechanisms - it can reach a wide range of environments in places with
fewer resources and difficult to access. These facilitators should broaden the identification process’s scope of use,
benefiting many people. For the next steps, samples of new species of Candida, even rarer, such as C. tropicalis,
C. auris, C. famata, C. pelliculosa, C. guilliermondii, C. lusitaniae, and other fungal segments should be added to
the dataset, seeking to create more generic and accurate models in the identification of this fungus. Additionally,
these new samples will allow for a broader development of specificity tests among fungi, aiming to ensure the
absence of false positives in our results. Furthermore, new analyses will be conducted with shorter culture times
to determine if further reducing the identification time is possible.

Another critical step for the future will be to expose the Electronic Nose to patient blood and in situ sam-
ples to identify its efficiency in a scenario closer to its final operation. In this sense, the equipment requires an
environment free from high levels of odors to prevent the risk of incorrect readings due to external interfer-
ence. However, it can be used in a clinic if there is assurance of an environment free from other contaminating
odors (e.g., alcohol, perfumes, air fresheners, etc.). This condition may be possible by using a room containing
an extractor fan. From there, health professionals will also perform a qualitative assessment to obtain feedback
related to the results indicated by the tool.

Methods

This work is an evolution of the project developed by'®, which introduced research on using Electronic Nose and
Al to identify Candida spp. In the current project, more robust, automated equipment is used that makes it pos-
sible to analyze a greater volume of samples. In addition, it also allows the construction of a database of volatile
signature patterns and employs advanced AI methods based on Time Series classification. The entire study was
developed based on an iterative process of activities, where their execution led to the construction of the final
solution. All the code can be found on GitHub (link: https://github.com/michaellopes16/CandidaTimeSeries-
Classification.git). It was developed using the Python language on the Jupyter Notebook (in a Core i7 PC, with
16GB of RAM and the GTX 1060 video card) and Google Colab platforms (in your free version). In the initial
phases of the research, the primary purpose was to conduct exploratory studies using literary reviews about the
main issues related to the work to understand better the state of the art and the best practices for developing the
project. In this sense, the course of this section is divided into four stages: Structure and operation of E-nose,
Process of sample identification, Analysis and processing of data, and Process of classification of samples.

All these steps seek to select the most promising algorithm for classifying volatiles. In this sense, after the
model has been defined, in-place tests must be carried out to ensure its effectiveness in an operational environ-
ment. From this, it will be necessary to perform a descriptive study on the use of the solution, aiming to thor-
oughly analyze its use and better understand its absolute power of contribution, also inserted in this context, a
quali-quantitative approach regarding the evaluations.

In this scenario, the project is being developed in partnership with the Mycology department at [Anonimous].
In addition, international alliances are already being prospected, so the collection of samples with different vari-
ations can also compose the database under development. The qualitative study should be accomplished through
interviews with health professionals to understand the proposal’s feasibility better and identify improvement
points. Fig. 2 illustrates part of the process related to the sample identification flow, starting from the Acquisition
of control samples to the Species identification report.

Structure and functioning of E-Nose
In parallel with constructing the theoretical basis and structuring the problem, the first steps for making the
solution were carried out. The database was built from control samples created by ATCC (https://www.atcc.org/
about-us), an American company offering quality products and services to the scientific and academic com-
munity involving biological materials. These samples were utilized by the Laboratory of Medical Mycology/
[Anonimous] for the mycological diagnosis. Then, they were labeled and cultivated in Petri dishes for analysis
by the Electronic Nose, developed in partnership with the [Anonimous]. The E-Nose identifies the “smell fin-
gerprints” released by the fungi through the Volatile Organic Compounds. In this process, the E-Nose uses ten
different categories of sensors, seven of them from the manufacturer Figaro Engineering Inc. (TGS826 (Ohm),
TGS2611 (Ohm), TGS2603 (Ohm), TGS813 (Ohm), TGS822 (Ohm), TGS2602 (Ohm), TGS823 (Ohm)). The
other three are the temperature sensors (Co), pressure (kPa), and humidity (%), used to analyze possible interfer-
ence of these parameters in the behavior of the samples. A summary of the main functions of the sensors used
in the device is in Table 2

To provide greater flexibility in transporting the device, it was built and adapted inside a compact case, with
the appropriate seal and structure to withstand all the elements necessary for the Electronic Nose to work. In
this case, in addition to the sensors attached to an air chamber on the inside and the on/off button, there is a
pump responsible for the suction/injection of gases or air into the chamber, a control valve, and an air filter with
activated carbon and, finally, a simple chamber for inserting the Petri dish and collecting the volatile emitted
by the microorganisms’ reactions. All connections between components and chamber surfaces are made with
polytetrafluoroethylene (PTFE) due to its non-stick properties and low coefficient of friction, facilitating cleaning
and avoiding the permanence of volatiles between the suction and purge cycles. Fig. 3a presents the Electronic
Nose Device used in the experiments.
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Figure 2. Flow for sample identification and classification. First, control samples derived from the ATCC
company are used to analyze and define the mycological diagnosis by the Laboratory of Medical Mycology. With
this, the already cultivated species are identified and separated in Petri dishes. These cultures are then placed in
the E-nose to identify the VOCs. With the collected data, pre-processing routines are executed to use the data
already treated by the AT models. At the end, a species identification report is generated.

Sensor

Main Function

TGS826

Ammonia detection

TGS2611-E00

Methane detection

Detection of odors and air contaminants (High sensitivity to series of amines and gases with sulfurous odor and high

TGS2603 sensitivity to food odors)

TGS813 Detection of combustible gases (High sensitivity to methane, propane, and butane)

TGS822 Detection of Solvent Vapors (High sensitivity to alcohol and organic solvent)

TGS2602 Detection of air contaminants (High sensitivity to gaseous air contaminants)

TGS823 Detection of Vapors from Organic Solvents (High sensitivity to vapors from organic solvents such as ethanol)

Table 2. Sensors used in the Electronic Nose to identify volatiles emitted by gases generated by the Candida
species and their functions.

Sample identification process

As briefly mentioned, the first stage of the sample identification process is accomplished by the Medical Mycology
Laboratory/[Anonimous], which manipulates samples. After that, the material is labeled with their respective
species, cultivated in Petri dishes containing the culture medium Sabouraud Dextrose Agar (see Fig. 3b with an
example of samples of Candida albicans (URM8368)) and taken for reading by the Electronic Nose, resulting
in the generation of the database. The VOC:s of species are aspirated with different culture times to increase the
heterogeneity of the data and allow better generalization by models in the future. This aspiration at other times
also aims to identify whether it is possible to obtain accurate results faster, which is of great importance to help
health professionals make decisions.

For each sample collected, the E-Nose performs a collection protocol based on three categories of actions, aspi-
ration, stabilization, and purge (cleaning step) (as seen in Fig. 3c), where the completion of all three characterizes
the completion of a cycle. For each sample, a volume of three readings per second is collected for 20 seconds in
the aspiration phase, for 60s in the stabilization stage, and another 60s in the cleaning phase, totaling an aver-
age of 420 readings per cycle in each sensor (for each sample, it is a predefined number of cycles is performed).
Considering that numerous samples of the same species are needed to obtain diversity in the data (so that the AI
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Figure 3. (a): Electronic Nose device used in experiments: (1) The Electronic Nose is packaged in a compact
box; (2) The on-off switch activates it; (3) All connections are made of PTFE; (4) It has activated carbon filter
and (5) PTEE filter; (6) Sample chamber also made of PTFE. (b): Example of samples of Candida albicans
(URMS8368) used to create the database. All were cultivated in Petri dishes using Sabouraud Dextrose agar
culture medium. (c):E-Nose collection cycle. (1) Camera suction step (2) Sensor stabilization step (3) Camera
cleaning (purge). (d): Data from the readings of each sensor over time for the samples of C. albicans. (e): Data
readings from C. krusei after one day of culture. (f): Data readings from C. krusei after two days of culture.

models can satisfactorily learn the patterns of each species), a relevant amount of data was collected in this first
step, with 20,189 instances of C. albicans (3 isolates - ATCC 14053, URM8368, URM8369), 19,068 of C. glabrata
(1 isolate - URM®6393), 6,989 of C. haemulonii (1 isolate - URM6555), 7,0670f C. kodamaea ohmeri (1 isolate -
URM6935), 17,255 of C. krusei (3 isolates - ATCC 6258, URM8371, URM6391) and 20,234 of C. parapsilosis (3
isolates - ATCC 22019, URM7049, URM7048), totaling 90,802 samples collected in approximately 514 cycles
with cultures on different days. There are cycles with different sizes due to inconsistent reading in the E-nose. To
solve this, it was necessary to match the cycle sizes, explained in more detail in the Sample classification process
section ([Anonymous]-URM is a culture collection affiliated with the Word Federation for Culture Collections).

After the construction of the first version of the database, the need to carry out an analysis of the data was
identified, seeking to observe the existence of behaviors or indications of patterns for the different sensors
related to each of the species. In addition, this initial check was essential to identify strategies for cleaning and
restructuring the base to make its use viable by the learning models.

Data analysis and processing

After generating the data, a descriptive analysis was performed to understand better its behavior and which AI
models may be more suitable for identifying the patterns generated by the samples. For this, it was first neces-
sary to analyze and preview the data to get an idea of how they would be about each sensor for each collection of
Candida spp. After that point, a new database was constructed with the data set of all species collected, with only
the sensors considered significant, and with the addition of new columns for labeling the samples about their
species and culture time. Another critical point in this information visualization step was using UMAP (Uniform
Manifold Approximation and Projection) and PCA (Principal Component Analysis). These two-dimensionality
reducers helped to understand the grouping of data better. In this sense, as initial steps for the pre-processing
and visualization of information, four relevant points were verified about the data:

If all sensor data for the same species have similar behavior;

If there are differences in information between the same species at different collection times;
If there is a predominance of sensors by species;

Whether there is a clear division between the data and how it is grouped.

Some graphs with data from all sensors related to the collections of each Candida species were generated to
analyze the first point. In these, the wave patterns of each collection were observed, following the chronological
order of reading, visualized in Fig. 3d for C. albicans data.

As can be seen, each of the sensors has a specific wave pattern, varying in well-defined intervals. Some
reading peaks in some regions can signal detection errors by the sensors, indicating the presence of possible
outliers. Pressure and humidity sensors have an almost constant reading cycle, not interfering at any time with
the reading pattern of other gas sensors. The temperature sensor, despite fluctuating a little at some points, also
does not interfere with the reading of the other devices, which may be an indication that the alteration of these
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Figure 4. Two dimensions from Principal Component Analysis (a) and Uniform Manifold Approximation and
Projection for Dimension Reduction (b).

parameters does not cause, in this case, any interference in the captures of the others sensors, can be removed
from the analysis.

Another important point for this initial analysis is identifying differences between data from the same species
but for different collection times. This point helps visually determine if there are significant differences between
the readings performed with cultures from different days because the earlier the reading patterns are identified,
the better the decision-making process. Fig. 3e and f shows data from one-day and two-day readings for the
species C. krusei.

As can be seen in Figs. 3e and f, there is a slight distinction between the amplitudes of the waves concerning
some sensors from one day to the next. This demonstrates that these devices have a difference in resistance of
the volatiles between day 1 and day 2. One hypothesis is that the concentration of gases released by this species
changes over time, decreasing in some cases and increasing in others, contributing to the differences in pat-
terns between distinct days. Through this analysis, it is possible to focus on the early cycles of culture analysis,
streamlining the decision-making process.

The third point is the possibility of a predominance of a particular sensor per species. This can indicate which
sensor can differentiate itself more about each Candida species, contributing to the distinction of patterns and
selection of the features used in the database consumed by the classification models.

Some experiments show that the behavior of sensors is based on the resistance caused by the gases emitted
by each species at the time of reading by the Electronic Nose. Seeking to identify a predominance of a sensor
over the species, it was noted that the TGS2602 and TGS822 sensors have a greater amount of readings spread
over different resistance (Ohm) levels for C. parapsilosis, with the values of the other Candida in regions very
similar but quite different from C. parapsilosis. The opposite occurred with the TGS2611 and TGS823 sensors,
where the other samples had more distributed resistances and C. parapsilosis more focused on a region. This all
shows that some sensors have predominance about some species; however, to identify different levels of resist-
ance about the other, all reading values end up being relevant, as together they become important characteristics
for identifying patterns by models.

After analyzing the data for each species and sensor separately, the need to understand how the entire dataset
was grouped was identified. For this, two techniques for dimensionality reduction were applied: PCA (Principal
Component Analysis) and UMAP (Uniform Manifold Approximation and Projection). In the case of PCA,
according to*, its main objective is to extract relevant information from a set of tabulated data and convert it
into a new set of orthogonal variables called Principal Components. In this sense, it is possible to display simi-
larity patterns in the instances and variables as components in a graphical map. On the other hand, the UMAP,
according to*, is an innovative technique of dimensionality reduction that is based on a theoretical structure
of Riemannian geometry and algebraic topology, which makes the results derived from its reduction scalable
and easily used on accurate data. Unlike PCA, it performs dimension reduction non-linearly, trying to keep
similar cases close together and different cases separate. This study applied a two-dimensional decrease for both
techniques, which can be analyzed in Fig. 4.

Analyzing the two projections, we can see small groups built by each species. In the case of PCA, the standard
difference from C. parapsilosis, C. albicans and C. glabara for the other Candida is evident, as their points are
well dispersed from the additional data group, with some samples separated from the leading group. This dem-
onstrates that this species has very particular characteristics and can probably be distinguished by IA models.
Although the other species are concentrated in a single region, they are well separated, with not much visible
shuffling between them. One visual problem is the existence of the same group in different parts of the PCA
image. Some models can find issues to distinguish this behavior. In the graph generated by UMARP, it is already
possible to see a separation of the data, with groups of species being made in different regions of the graph. This is
explained by how UMAP deals with reduction through algebraic topology and similarity measures. It is essential
to highlight that, despite not being grouped in the same region of the graph, species with similar characteristics
end up staying close to each other and, because they have very different reading averages within the same species
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- due to the differences in sensor readings - the same species may contain data that are not very close, considering
that this method does not seek its resizing based on the main components, but on similarity measures.

Finally, knowing how the data are arranged and grouped, the base was prepared for use by Time Series models,
modified to 2 dimensions, one of the few ones withstand by most models in this segment. From there, experi-
ments with the models were started, which will be detailed in the following sections.

Sample classification process

With clean and structured data, the models were selected based on the results of the data visualization phase and
the study on Inception Time**, which compares it with other state-of-the-art models, including its predecessors,
the Hierarchical Vote Collective of Transformation-based Ensembles 1* and 2*° (HIVE-COTE 1 and HIVE-
COTE 2). The information visualization showed that the data do not overlap and have a single division between
them, so there are not many restrictions on which categories of models to use. Thus, in addition to the techniques
already mentioned, the K-Neighbors Time Series Classifier (KNN) was also introduced in the experiments, which
implements the K-nearest neighbors for time series*, the Time Series Forest Classifier (TSFC), implementation
of a Time Series Forest using intervals®, the Shapelet Transform Classifier (STC), which uses transformed dis-
criminatory subseries as a classifier”’, the Random Interval Spectral Ensemble (RISE), built based on trees and
different sets of partial and automatic correlation of features®, the ROCKET Classifier (ROCKET)* and BOSS
Ensemble (BOSS)*, all Time Series models that will be used as a classifier, due to the temporal characteristic of
the data, translated through the parameter culture_day from the base.

As previously mentioned, a total of 90,802 readings of the six species of Candida were collected in about
514 cycles; however, to obtain a “smell impression” from data, it was necessary to concatenate all readings of all
sensors of a cycle in one row of the dataset, resulting in a new set of 397 instances with 821 columns (now, each
sample is related to a cycle). Therefore, the base was divided into training, validation, and test sets, with 60% for
the first (238 cycles) and 20% for the other (79 and 80 cycles).

Stratified cross-validation is used to maintain a homogenized proportion of data sampling to ensure that the
training set can represent the entire population, avoiding sample bias®. For each subset used in training, results
were obtained for five metrics: accuracy, recall (sensitivity), F1-Score, precision, and specificity*’. Accuracy
measures the proportion of correct model predictions over the evaluated examples. Recall (sensitivity) is applied
to measure the portion of patterns correctly identified by the classification model. Specificity is used to test the
ability to determine healthy cases accurately. On the other hand, precision is applied to measure the quantity of
correctly predicted positive patterns based on the total amount of predicted patterns in a positive class. Finally,
the F1-Score or F1-measure portrays the harmonic mean between precision and recall values®. All these metrics
are calculated based on the values of true positive (TP), false positive (FP), false negative (FN), and true negative
(TN), obtained after the crossing of predicted values with the actual values of each class.

Therefore, at the end of the experimentation process, a statistical analysis using the Shapiro-Wilk normal-
ity test, the Kruskal-Wallis non-parametric test, and the Nemenyi post-hoc test was applied to understand the
statistical significance between the means of the results and highlight the difference between the models tested,
which are detailed in the Results and discussions section.

Data availability

Accession codes and database: The code and datasets generated and analyzed during the current study are avail-
able in the ‘Candidaldentification’ repository: https://github.com/michaellopes16/Candidaldentification.git. The
research described in the article does not use human tissue, only ATCC standard samples.
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analyzed using an e-nose, generating datasets that underwent pre-
processing steps including outlier removal, cycle equalization, fea-
ture transformation, and optional oversampling to address species
imbalances. To ensure clinical relevance, we employed a dual-
scenario validation strategy, assessing both intra-sample sensor
stability and inter-sample biological generalization. We tested both
traditional machine learning models and time series classifiers, selecting models based on prior research and per-
formance in similar tasks. The best-performing models were evaluated based on accuracy, precision, recall, F1-score,
specificity, and computational efficiency. Results demonstrated that while the framework achieved > 98% consistency in
sensor stability tests, the Support Vector Classifier (SVC) emerged as the most robust model for generalization, achieving
statistical parity with complex Time Series models like InceptionTime, but with significantly higher computational
efficiency. This study highlights the feasibility of Al-enhanced e-noses for rapid Candida detection, offering a promising
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infections directly from blood culture broth samples. Samples were

alternative to conventional diagnostics in clinical settings.
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|. INTRODUCTION

ANDIDEMIA, an invasive fungal infection caused by
yeast species from the Candida genus, represents a
growing public health issue due to its high mortality rate,
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which can range from 47% to 60%, depending on the length
of hospitalization, especially in immunocompromised patients
and those admitted to intensive care units, as highlighted by
Schroeder et al. [1] and other studies [2] [3] . In addition,
candidemia also incurs high economic costs, ranging from
$10,500 to $157,500 per patient. Among the most problem-
atic Candida species are Candida albicans, C. glabrata, C.
tropicalis, C. parapsilosis, and C. krusei, responsible for over
90% of invasive fungal disease cases and the third leading
cause of bloodstream infections in intensive care units in the
United States [4] . Despite advancements in diagnosis and
treatment, early detection of candidemia remains a critical
challenge in clinical practice. Traditional methods, such as
blood cultures, have significant limitations, including low sen-
sitivity and prolonged turnaround times, which often delay the
implementation of targeted antifungal therapies. These delays
can be particularly detrimental, as candidemia is associated
with high mortality rates [5] [6] .

In recent years, the development of innovative technologies,
such as electronic noses and artificial intelligence (AI), has
emerged as a promising approach to overcome these diagnostic
limitations. Electronic noses, inspired by the functionality of
the human sense of smell, are devices capable of identify-
ing volatile organic compounds produced by microorganisms,
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enabling the rapid and precise differentiation of pathogens.
When combined with AI algorithms, these technologies can
enhance the sensitivity and specificity of diagnostics, as well
as enable rapid diagnosis, leading to a faster and more effective
therapeutic response [7] [8] .

This article is an evolution of the work previously developed
by Bastos et al. [7] , who used Al techniques and electronic
noses to identify Candida in culture samples. Although this
is a very promising approach and has demonstrated excellent
performance, it can still be improved and serve as a basis
for new studies. The use of subculture still requires that the
samples undergo a period of cultivation and growth, a step
that is eliminated when blood culture broth is used directly to
read and identify VOCs.

With this in mind, in this new study, the potential of
combining electronic noses and artificial intelligence for the
identification of Candida in blood culture broth samples from
infected patients is explored. Preliminary results demonstrate
excellent performance of the different models tested, with
special attention to the SVC in the family of traditional mod-
els, and the KNeighbors Time Series Classifier and Inception
Time, from the time series models. Tests with and without
oversampling were conducted. Following this Introduction, the
next sections will present the Literature Review, Material and
Methods, Results, Discussion and, Conclusions and Future
Work of the study.

Il. LITERATURE REVIEW

The rapid and accurate detection of fungal and bacterial
infections is crucial in clinical practice to improve patient out-
comes. Recently, innovative approaches combining electronic
noses (E-noses) and artificial intelligence (AI) have shown
significant potential in different contexts [7]-[13].

For example, both Bastos et al. [7] and Castro et al. [8] have
demonstrated that Candida species isolated from clinical cul-
tures can be identified through the analysis of VOCs combined
with AI methods. In Bastos et al., the Inception Time classifier
achieved an average accuracy of 97.46% in the testing phase
of clinical isolates. Although this is promising, both studies are
limited in the same way, in that the identification approach is
dependent upon prior microorganism subculture and isolation
to enable VOC collection. This extends the overall diagnostic
time and thus limits the potential clinical impact. Eliminating
these steps would enable even faster identification, making the
method even more efficient in clinical practice.

E-nose analysis has not been studied solely for fungal
pathogens, but for bacteria as well. Mohamed et al. [14] com-
pared the effectiveness of an E-nose with the VITEK 2 system
in the rapid identification of bloodstream infections caused by
two bacterial species, E. coli and K. pneumoniae. The results
indicated that the E-nose not only accelerated the diagnostic
process but also showed comparable accuracy to the traditional
method. This approach may be particularly advantageous in
resource-limited settings where access to automated systems
like VITEK 2 is restricted. The main limitation identified
was the variability in the E-nose’s response depending on the
concentration of volatile metabolites and the bacterial growth
phase, which can impact diagnostic consistency.

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

Beyond infection and culture-based identification algo-
rithms, the use of nanomaterial-based sensors to detect patterns
of VOCs has been applied for the detection of cancer as
well. For example, Peled et al. [15] explored the detection
potential for VOCs emitted by cancer cells with specific
genetic mutations. Although this study focused on lung cells,
it highlights the applicability of E-noses in identifying volatile
signatures associated with genetic alterations, suggesting po-
tential for non-invasive and personalized diagnoses across
various pathologies. However, the method presents challenges
related to specificity, as factors such as diet, metabolism, and
other medical conditions can interfere with the composition
of detected VOCs, reducing the reliability of the diagnosis in
a clinical setting. Similarly, Zhou et al. [16] investigated the
detection of gastric cancer through a breath analyzer based
on sensors for identifying VOCs exhaled by patients. The
study demonstrated that different VOC patterns can be used as
non-invasive biomarkers for disease diagnosis, offering a fast
and accessible alternative compared to conventional methods
such as endoscopy. However, the approach presents challenges
related to interindividual variability in volatile profiles, which
can be influenced by factors such as diet, metabolism, and
preexisting medical conditions, impacting the specificity of the
diagnosis.

In the context of invasive pulmonary aspergillosis (IPA)
in patients undergoing prolonged chemotherapy-induced neu-
tropenia, de Heer et al. [17] evaluated the feasibility of using
electronic nose technology for early, non-invasive detection of
this fungal infection. The study demonstrated that the e-nose
was able to distinguish between patients with proven/probable
IPA and those without, based on the analysis of exhaled
volatile organic compounds, offering a promising alternative
to traditional diagnostic tools which often require invasive
procedures or are limited by low sensitivity. The authors
highlighted that this method could potentially be incorporated
into clinical workflows for high-risk hematology patients,
enabling faster diagnosis and treatment initiation.

However, a key limitation noted was the small sample
size and the proof-of-principle nature of the study, which re-
stricts generalizability. In addition, further validation in larger,
multicenter cohorts is necessary to assess reproducibility and
clinical utility. The performance of the e-nose may also be
influenced by external factors such as environmental VOCs or
individual variability in breath profiles, posing challenges for
standardization in real-world hospital settings [17] .

In summary, the integration of electronic noses and artificial
intelligence represents a promising advancement in the rapid
and accurate diagnosis of fungal and bacterial infections.
These approaches have the potential to transform clinical
practice, offering more accessible and efficient diagnostic
methods, especially in resource-limited contexts. However,
challenges such as sensor calibration , variability of volatile
compounds, data quality, and integration with hospital systems
must be overcome to ensure the effective implementation of
these technologies in routine clinical practice.

In order to translate the advances discussed in the literature
into a practical approach, this study followed a rigorous
methodological protocol for data collection and analysis. The
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implementation of artificial intelligence techniques combined
with E-nose sensors required the standardization of experimen-
tal processes to ensure the reproducibility and reliability of the
obtained results. Thus, the next section details the strategies
adopted for sample acquisition, data processing, and predictive
model development, enabling a systematic evaluation of the
applicability of these technologies in the rapid and accurate
identification of fungal infections.

I1l. MATERIAL AND METHODS

The development of this project was based on two main
methodological flows: the methodology for data collection
and generation, and the methodology for the development of
preprocessing code and model implementation. All the sample
collection and data generation steps were carried out under
IRB protocol 2020-0313, adhering to all necessary security
standards and protocols. All code was developed using the
Python programming language, supported by several libraries
such as Pandas, Numpy, Sklearn, and Sktime. The latter is
the library responsible for providing most of the time series
models, except for Inception Time, which was implemented
based on the original code from the authors of the project.
All experiments were executed on Google Colab using the
standard settings of the basic plan (limited GPU access, up
to 12GB of RAM, and 100GB of temporary storage). The
complete code for the project can be accessed on GitHub
, including the code responsible for executing the statistical
tests. To better illustrate the two exposed methodologies, Fig.
1 shows the data collection and generation phase, and Fig. 3
the solution development phase.

The first methodological step (Fig. 1) involved the prepa-
ration, storage, and analysis of the samples in a controlled
environment, ensuring the standardization of procedures and
the reliability of the results obtained. Aliquots of remanent
broth were collected from clinical blood cultures with known
subculture results tested at the [University of Cincinnati Med-
ical Center clinical laboratory]. The aliquots were stored in
sterile tubes under refrigeration at a controlled temperature of
4°C, with storage limited to a maximum period of 48 hours to
preserve the integrity of the VOCs emitted. For this initial
proof-of-concept study, a total of 14 aliquot samples were
collected, and the corresponding subculture results were used
to label the samples analyzed by the E-nose, defining the target
variable of our dataset. In future experiments, a larger number
of samples should be included to enhance the robustness
and reliability of the validation process. This information
was essential for training the AI models, allowing them to
identify which sets of VOCs correspond to each type of
microorganism. Broth samples included either a single fungal
organism isolated in subculture (C. glabrata, C. albicans,
C. parapsilosis, or Cryptococcus neoformans), a mix of C.
glabrata and C. parapsilosis; or no fungal organisms isolated
on subculture (ie. negative).

Following storage and prior to the readings, the samples
were kept at room temperature for one hour, allowing thermal
stabilization and minimizing the influence of temperature
variations on the volatilization of the compounds. To ensure

Liquid broth
blood culture

Blood storage - 4C° Wait for it to reach room

temperature

Dispose of material , N BSC sterilized with UV

safely .7 E-nosedata collection light

g g

Stabilization

1
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: B (150s)
. Gz j
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Fig. 1. Experimental Setup for in situ blood sample analysis. Step
1: Collect liquid broth blood culture. Step 2: Store the sample at 4°C.
Step 3: Wait for the sample to reach room temperature ( 25°C). Step 4:
Sterilize the collection environment. Step 5: Perform the collection cycle
(purging, reading, and stabilization). Step 6: Dispose of the material
used.

that the samples were in ideal conditions at the time of
measurement, the temperature was checked (around 25 °C)
before the start of each reading. The non-Candida samples ,
negative samples, and those with a mixture of more than one
species were used to test whether the models could identify
potential mixed infections, non-infected samples, and other
types of infections other than Candida.

Additionally, to ensure optimal sensor performance, the E-
nose system was powered on for approximately one hour
before initiating the measurements. This preheating period
allowed the sensors to reach a stable operating temperature,
minimizing baseline drift and reducing fluctuations that could
affect VOC detection. During the experiments, the minimum
operating temperature recorded by the sensors was approxi-
mately 45 °C. Environmental variables were also monitored
throughout the procedure: relative humidity ranged from 60%
to 75%, and pressure varied between 780 mbar and 820 mbar
(slightly lower than standard atmospheric pressure due to the
mild vacuum generated by the VOC suction pump). However,
after analyzing these variables, they were not included in
the final dataset, as they did not influence the measurements.
Instead, they were considered solely for evaluating potential
environmental interferences, which were not observed during
any of the readings. No sensor calibration was performed,
and only the raw sensor values were converted into the
measurement units used in the analysis.

It is also important to clarify that, in the context of this
study, the electronic nose operates as a pattern-recognition
device based on relative variations in sensor conductivity
rather than on the absolute quantification of specific volatile
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compounds. For this reason, no gas chromatography—mass
spectrometry (GC-MS or GCxGC-MS) analysis was incor-
porated into the experimental protocol. The objective of this
work was not to identify or enumerate individual VOCs, but
rather to capture the global olfactory impression emitted by
each microbiologically confirmed sample and use it as input
for diagnostic classification. In this framework, traditional
analytical chemistry procedures such as calibration curves,
linearity assessment, or limits of detection (LOD/LOQ) for
specific gases are not applicable. Future studies integrating
chromatographic techniques are planned to enable detailed
chemical characterization of the biomarkers underlying the
observed sensor responses.

In this sense, the experiments were conducted within a
biological safety cabinet (Biosafety Cabinet - BSC), ensuring
a controlled environment free from external contamination.
The BSC was sterilized using UV light for approximately
30 minutes before the start of each experimental cycle,
eliminating potential microbiological contaminants. Since the
sensors of the E-nose are highly sensitive to external volatile
compounds, the use of 70% alcohol for disinfecting the area
was avoided, as its vapors could interfere with the detection
of VOCs from the samples and compromise the accuracy
of the measurements. To prevent cross-contamination, each
sample was individually placed in a disposable Petri dish and
positioned in the E-nose measurement chamber.

The process steps were Purge, Reading, and Stabilization.
In the Purge stage, the E-nose was placed over a Petri dish
containing activated charcoal and activated for 65 seconds.
This procedure allowed the device to be cleaned, removing any
remaining VOCs and preventing cross-contamination between
readings. Next came the Reading stage, in which the Petri dish
with activated charcoal was replaced with another containing
the blood sample.

The E-nose then performed the reading for another 65
seconds. After the reading, the device entered the Stabilization
stage, remaining inactive for 150 seconds. This period was
necessary for the VOCs to stabilize in the sample. The
process was repeated between 10 and 40 times, with variations
introduced to assess possible interferences in the VOC quantity
after the sample was exposed to air.

All materials used were properly discarded according to
current biosafety standards, ensuring the safety of the environ-
ment and the researchers involved. Petri dishes, gloves, and
other contaminated waste were disposed of in red biosafety
bins designated for infectious waste, ensuring compliance
with biological material handling protocols. This rigorous
methodological approach ensured the collection of reliable
and reproducible data, minimizing potential environmental
interferences and ensuring the validity of the analyses. The
E-nose used was specially developed for the experiments, con-
taining 4 gas sensors (MQ-7, MQ-138, MQ-3, MQ-135) and 3
environmental sensors (temperature, pressure, and humidity).

To assess potential sensor drift effects, these environmental
variables were continuously monitored throughout the data
acquisition sessions. As shown in Figure 2, the environmental
conditions remained highly stable, with no significant long-
term drift trends observed. The minor periodic fluctuations
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Fig. 2. Time-series monitoring of environmental variables (Temper-
ature, Humidity, and Pressure) acquired simultaneously with gas de-
tection experiments. Data is presented on a logarithmic scale to allow
simultaneous visualization of different magnitudes. The stability and par-
allelism of the curves over time demonstrate the absence of significant
sensor drift. Note that the minor periodic oscillations observed reflect the
intrinsic dynamics of the electronic nose operating cycles (alternation
between purge and sampling stages) rather than external environmental
instabilities.

Fig. 3. Experimental setup: Petri dish with blood sample and electronic
nose used to read the samples, positioned for the purging stage, on the
Petri dish with activated carbon.

visible in the time series correspond to the intrinsic dynam-
ics of the purge and sampling cycles rather than external
environmental instability. Given the low standard deviation
observed across all environmental parameters (Temperature
o ~ 2.45, Humidity o =~ 1.30, Pressure o ~ 1.27), no specific
algorithmic compensation for drift was applied, as the exper-
imental conditions were maintained within a controlled range
to minimize MOX sensor cross-sensitivity. Fig.2 demonstrates
part of the collection process, and the E-nose used in the
experiments.

The second stage of the methodology (Fig. 3) involved the
development of data preprocessing and the implementation
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of predictive models. After the collection of patient samples
and their analysis by the electronic nose, each measurement
generated a CSV file containing records corresponding to
the different phases of the experiment: purging, reading, and
stabilization. As an initial step in processing, these files were
unified into a single dataset, allowing for a structured approach
to handling the information.

The data preprocessing involved a series of steps to en-
sure its quality and representativeness. Initially, outliers and
missing values were removed to prevent negative impacts on
the reliability of the analyzes. Next, measurement cycles of
different lengths were standardized to maintain the consistency
of the time series. After this standardization, each measure-
ment cycle—including the purging, reading, and stabilization
phases—was consolidated into a single instance, ensuring that
each cycle corresponded directly to an entry in the training
dataset (see dashed square in Fig. 3).

In addition to these steps, an oversampling procedure was
incorporated to assess the impact of species balancing on
model performance. From this point onward, the methodol-
ogy was divided into two experimental pipelines: one us-
ing the original dataset and another employing a balanced
version produced through oversampling. The oversampling
was performed exclusively on the training partitions using
the RandomOverSampler algorithm (random_state =
42), ensuring that no information from the validation or test
sets was introduced, thereby avoiding data leakage. This divi-
sion allowed a direct comparative analysis of the effect of class
balancing on the predictive models, while guaranteeing that all
subsequent processing and evaluation steps were conducted
identically across both dataset versions.

In the modeling phase, traditional models from different
algorithm families, as well as time series models, were se-
lected. The choice of time series models was based on the
results obtained in the study by Bastos et al. [7] , prioritizing
methods that demonstrated high performance in classifying
similar patterns. The traditional models were chosen based on
their different training strategies to ensure that the data were
evaluated from various perspectives and foundations. This
approach allowed for an assessment of whether less complex
models could provide competitive results, enabling simpler,
more robust, and efficient solutions.

To ensure a rigorous evaluation of the framework’s ro-
bustness and clinical applicability, the validation strategy
was structured into two distinct experimental scenarios. The
first scenario, termed Intra-Sample Consistency, employed a
Stratified Random Split strategy (Repeated K-Fold with 10
repetitions). In this setup, cycles from the same biological
sample could be distributed across both training and testing
partitions. This approach was primarily designed to validate
the stability of the sensor hardware and the reproducibility of
the signal acquisition protocol, ensuring that the E-nose reads
the same sample consistently over multiple cycles without
signal degradation.

The second scenario, Inter-Sample Generalization, utilized
a Grouped Cross-Validation approach to address biological
variability. In this configuration, data splitting was strictly
anchored to the biological source (sample ID), ensuring that

all measurement cycles from a specific patient sample were
isolated in the test set while the model was trained on the
remaining biological samples. This method acts as a strict
’stress test’ for the framework, simulating a real-world point-
of-care deployment where the system must classify a com-
pletely unknown sample. This prevents data leakage regarding
the patient identity and assesses the model’s ability to learn
generalizable species-specific features rather than memorizing
individual sample characteristics.

The performance evaluation of the models was conducted
through metrics such as accuracy, precision, Fl-score, recall
(sensitivity), specificity, and processing time (both training
and testing). Additionally, statistical tests were applied to
investigate the existence of significant differences between the
evaluated groups, analyzing the effectiveness of oversampling
and its contribution to improving the models. This statistical
analysis helped support the conclusions regarding the impact
of balancing on the predictive capability of the algorithms
and identify the most appropriate approach for the proposed
application.

First, it was necessary to determine the most appropriate
normality test, considering the number of repetitions adopted
in the cross-validation strategy. According to [18] , when the
number of samples is less than 50, the Shapiro-Wilk test
is more suitable for assessing data normality. Since cross-
validation employed 10 repetitions (the accuracy metric was
used as a base value for the tests), this test was selected for
normality verification.

Based on the normality test results, it was necessary to
choose between two statistical tests: the Wilcoxon test and the
paired t-test. Following the recommendations of Imam et al.
[19] and Proudfoot et al. [20] , the Wilcoxon test was applied
to non-normal distributions, while the paired t-test was used
for normally distributed samples. This procedure allowed us
to assess the impact of oversampling on the dataset used for
training the models.

It is important to clarify that this study focused on the
pattern-recognition of the global VOC fingerprint for di-
agnostic classification, rather than on the quantification of
individual compounds. Consequently, analytical performance
metrics such as limits of detection (LOD), linearity, and
calibration curves for specific gases were not established,
as the E-nose operates based on relative resistance changes
rather than absolute concentration measurements. Although
the Al models demonstrated strong ability to interpret the raw
multidimensional sensor responses for classification purposes,
future work integrating gas chromatography, mass spectrome-
try (GC-MS) is recommended to identify and quantify specific
VOC biomarkers, enabling a more detailed analytical charac-
terization of the sensor system.

A. Comparison with Previous Method

Compared to the methodology used in the previous study
[71 , several significant advancements deserve emphasis. The
most important aspect of this comparison lies in the clinical
response time induced by the two methods. In the culture-
based approach, sample preparation was required, followed
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Fig. 4. Workflow of Candida identification process using E-nose and Al models. Blood culture aliquots are collected and analyzed by E-nose, which
captures the emitted volatile organic compounds (VOCs). The VOC data is stored in files for preprocessing. In this step, a cycle conversion activity
is performed, where each set of instances corresponding to a cycle is restructured and merged into a single data row. After that, the original dataset
undergoes an oversampling process to address species imbalance, ensuring better model generalization. The original and oversampled datasets
are used to train Al models, categorized into traditional classification models and time series classification models. The models are trained using
Repeated K-Fold cross-validation with 10 replicates to ensure robustness. The final step involves selecting the best performing models based on
evaluation metrics such as accuracy, F1 score, and specificity. The selected model is then deployed for Rapid identification and analysis.

by waiting for the culture incubation period, and only after
this time could the results be read. In contrast, by directly
using the patient’s blood, these steps can be skipped, allowing
for almost immediate results right after blood collection. This
advancement not only reduces the analysis time but also
minimizes the required work and resources, as fungal culture
before VOC collection is no longer necessary.

Additionally, a more compact Electronic Nose device was
used, featuring fewer sensors and being much more portable.
Despite the lower number of sensors and a more manual
procedure, the method proved to be just as effective as the
one that employed a more robust E-nose with greater sensor
redundancy.

Factors such as sensitivity, specificity, accuracy, and preci-
sion in both methodologies highlight their potential clinical
impact and the benefits they can bring to patients. The blood
sample approach, in particular, outperformed the culture-based
method (98.18% and 97.46% respectively, for the accuracy
metric). These advancements clearly demonstrate the promis-
ing nature of this new approach, paving the way for significant
growth and clinical impact.

Building upon these methodological advancements, the next
step involved evaluating the performance of artificial intelli-
gence models in processing data collected from the electronic
nose. The transition from a culture-based approach to direct
blood sample analysis not only enhanced clinical efficiency but
also introduced new challenges in data handling and model
training. To ensure robust and reliable predictions, different
classification algorithms were tested, considering both time
series and traditional machine learning models. The following
section presents the results of these evaluations, highlighting
the impact of oversampling strategies, model selection, and
key performance metrics in optimizing the diagnostic accuracy
of this innovative approach.

IV. RESULTS

The artificial intelligence models were evaluated using data
derived from the electronic nose (e-nose). To provide a com-
prehensive validation, the results are presented in two sce-
narios: (A) Intra-Sample Consistency, which evaluates sensor
stability using random split, and (B) Inter-Sample General-
ization, which evaluates biological robustness using Grouped
Cross-Validation.

A. Scenario A: Intra-Sample Consistency (Sensor
Stability)

The artificial intelligence models were evaluated using data
derived from the electronic nose (e-nose), with and without
the application of oversampling. The oversampling strategy
was employed to address the species imbalance observed
in the data, while the original data were used to evaluate
performance without adjustment [21]. The metrics used to
assess performance included accuracy, precision, Fl-score,
sensitivity (Recall), specificity, and execution time (Time (8S)).
The models tested included time series approaches such as
KNeighbors Time Series Classifier (KNTC) [22] , Random
Interval Spectral Ensemble (RISE) [23] , ROCKET Classifier
[24], Time Series Forest Classifier (TSFC) [25], Inception
Time [26], and traditional models such as DecisionTree Clas-
sifier (DTC), KNeighbors Classifier (KNN), Random Forest
Classifier (RF), SVC, and XGBClassifier (XGBC). The selec-
tion of time series models was based on the classifiers that
performed best in the previous study [7], which used culture
samples. For the traditional models, the strategy was to apply
models from different families to understand whether simpler
models could perform as well as the more complex models
in current literature. To provide a better understanding, the
overall results for the tested models are presented in Table
I and Table II, which detail the metrics for strategies with
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and without oversampling, for the Training/Validation and Test
data, respectively.

In traditional models, the application of oversampling re-
sulted in a significant increase in all metrics compared to the
original data, suggesting that species balancing contributed
to improving the models’ discrimination ability. In contrast,
some time series models demonstrated lower robustness in
both conditions, performing worse than some of the traditional
models, regardless of the application of oversampling. A factor
that may explain this slight difference is the amount of data.
As more complex models, they require a larger number of
samples to perform better than simpler models. Training time
was also a distinguishing factor for the traditional models,
which took much less time to complete training.

Even with some traditional models outperforming the time
series models, overall, the ROCKET model showed the best
performance among the approaches evaluated, achieving an
accuracy of 98.86%, a sensitivity (recall) of 99.10%, and
a specificity of 99.77% on the training/validation set with
oversampling. In the no oversampling group, these indicators
were 98.15%, 97.77%, and 99.59%, respectively. Among the
traditional models, the SVC performed best, with values
very close to ROCKET, achieving an accuracy of 97.70%,
a sensitivity of 97.83%, and a specificity of 99.56% for the
oversampling group. It was also the best traditional model in
the original data group, with 93.59%, 96.13%, and 98.68% for
the same indicators, respectively. On the other hand, ROCKET
was the slowest model to complete training among all models
evaluated in the original data set and one of the worst in the
oversampling group.

When looking at the test set data, we notice some interesting
differences. ROCKET is no longer the best-performing model,
losing its position to the KNeighbors Time Series Classifier
and Inception Time in the time series models group, and
to the SVC and Random Forest Classifier in the traditional
models group. It is with the test data that we assess how
efficient the model is, as it is exposed to information it
has never seen before, representing the closest scenario to a
real-world context. In this sense, the more complex models,
despite showing excellent performance in all metrics, are on
par with the SVC and Random Forest Classifier, with less
than a 1% difference in all metrics compared to the top
time series models. Additionally, the time taken to obtain the
prediction was often much lower (0.009520s and 0.025079s,
respectively), demonstrating that they are lighter alternatives
compared to the time series models.

1) Best Performing Models and Metrics by Species: To better
understand how the models perform for each species , the
same metrics used for training and testing were collected for
the different species, focusing only on the models with the
best performance in the test stage. This step aims to identify
which species the models misclassify the most and whether
any species imbalance may raise concerns about the model’s
prediction quality. In this sense, among the models tested,
the SVC stood out with the best overall results, achieving
an accuracy of 98.18%, precision of 98.20%, Fl-score of
98.22%, sensitivity of 98.33%, and specificity of 99.64% on
the oversampling data set. In the no oversampling group, these

indicators were lower, with an accuracy of 92.65%, precision
of 94.70%, and F1-score of 88.97%.

The detailed metrics by species for this model are presented
in Table III. The results show that while the species C.
albicans, C. neoformans , C. glabrata, and C. parapsilosis
had high sensitivity and precision, the mixed culture (the
union of Candida parapsilosis and glabrata in the same
petri dish) and negative (uninfected sample) showed slightly
lower performance, possibly due to the smaller number of
samples represented, only in the no oversampling group. For
the balanced data, all species were correctly identified by the
model, with no species having any metric below 94%.

Among the time series models, Inception Time was chosen
to be evaluated individually alongside the species, as it is one
of the best-performing models overall in the metrics and took
the least time during the test phase (among the time series
models). In this case, it is noticeable that the model performs
better, even with imbalanced data. There is a slight drop in the
numbers for the same species that presented difficulties for the
SVC; however, this drop was much less significant in a general
context. Based on this information, even with the original data
containing a slight imbalance regarding some species, there are
alternatives that can efficiently address this problem without
major drawbacks. Table IV shows the result of this evaluation.

B. Scenario B: Inter-Sample Generalization (Robustness
Analysis)

While Scenario A demonstrated high sensor stability and
reproducibility, Scenario B was designed as a stress test
to evaluate the framework’s ability to generalize to new
biological donors. This was achieved using Grouped Cross-
Validation, ensuring no data leakage between subjects.

Table V compares the performance of Traditional and
Time Series models under this rigorous condition. Unlike the
previous scenario, traditional models demonstrated superior
robustness. The SVC achieved the best overall stability with
an accuracy of 76.35%, significantly outperforming complex
Time Series models in the low-data regime. However, it is
crucial to note that applying Oversampling to the Inception-
Time model recovered a significant portion of its performance
(increasing Accuracy from 52% to 67%), suggesting that Time
Series models will benefit most from future dataset expansion.

Table VI details the capabilities of the system for clinical
screening. Despite the drop in global metrics compared to
Scenario A, the system maintained high efficacy in identifying
the most critical pathogen, C. albicans. The SVC model
achieved nearly perfect metrics for this species (Recall > 97%,
Precision 100%). The lower global scores were primarily
driven by the difficulty in distinguishing between non-albicans
species (e.g., C. parapsilosis) and negative controls in a
few folds, highlighting the biological variability that will be
addressed with larger cohorts.

C. Statistical Comparison Between Oversampling and
No-Oversampling Strategies (Scenario A: Intra-Sample
Consistency)

To evaluate whether the application of oversampling signif-
icantly impacts the performance of the classifiers, statistical
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TABLE |
THE TABLE COMPARES THE PERFORMANCE OF TRAIN AND VALIDATION OF DIFFERENT CLASSIFICATION MODELS, BOTH
TRADITIONAL AND TIME SERIES, WITH AND WITHOUT OVERSAMPLING, USING THE METRICS OF ACCURACY, PRECISION,
F1-SCORE, RECALL (SENSITIVITY), SPECIFICITY, AND STANDARD DEVIATIONS. IT ALSO PRESENTS THE EXECUTION TIMES
(S) OF EACH MODEL IN BOTH SCENARIOS. THE BEST PERFORMANCES IN EACH METRIC ARE HIGHLIGHTED IN BOLD. ALL
STANDARD DEVIATIONS WERE BELOW 0.084, BOTH WITH AND WITHOUT OVERSAMPLING.

Category | Classifier _ With O pling __ , _ _ No O __ _
J Accuracy | Precision | FI-Score | Recall | Specificity | Deviations Time (5) Accuracy | Precision | FI-Score | Recall | Specificity | Deviations Time (5)

KNeighbors Time 98.85% 98.76% 98.80% 98.92% 99.77% 0.0225 5.39 x 1070 94.44% 96.18% 94.28% 93.76% 98.78% 0.0208 2.1 % 1077
Series

Time Series | RISE 97.15% 97.03% 97.13% 97.32% 99.43% 0.0173 5.85 x 10%0 95.37% 96.73% 94.78% 93.94% 99.00% 0.0275 3.8 x 102
ROCKET 98.86% | 99.10% | 99.02% | 99.10% | 99.77% 00175 | 617 x 100 | 98.15% | 97.77% | 97.74% | 97.99% | 99.59% 00232 | 4.7x 10%
Time Series Forest 97.13% 96.48% 96.63% 97.04% 99.44% 0.0235 7.51 x 10%° 95.42% 96.58% 94.78% 94.92% 99.05% 0.0276 5.6 x 102
Inception Time 96.82% 96.85% 96.72% 96.66% 99.36% 0.0084 4.66 x 10%° 94.85% 94.40% 94.45% 96.16% 98.98% 0.0844 2.1 x 10*!
Decision Tree 94.29% 94.59% 93.76% 93.56% 98.86% 0.0298 0.794573 88.06% 88.02% 84.17% 85.38% 97.52% 0.0510 0.62
KNeighbors. 89.15% 89.48% 88.96% 88.86% 97.81% 0.0374 0.369690 85.32% 81.77% 79.95% 80.22% 97.01% 0.0367 0.38

Traditional | Random Forest 97.70% 97.84% 97.49% 97.32% 99.52% 0.0263 3.30 x 10°° 92.59% 92.40% 89.49% 88.67% 98.47% 0.0359 2.7 % 10'0
sve 97.70% | 97.16% | 97.41% | 97.83% | 99.56% 00141 | 131 x 1021 | 93.59% | 96.13% | 91.56% | 90.28% | 98.68% 00275 | 1.1x 102
XGBClassifier 96.55% 96.26% 96.10% 96.01% 99.31% 0.0190 2.77 x 10°! 88.99% 87.36% 83.40% 85.53% 97.83% 0.0360 2.2 x 10%!

TABLE Il
THE TABLE COMPARES THE PERFORMANCE OF TEST OF DIFFERENT CLASSIFICATION MODELS, BOTH TRADITIONAL AND
TIME SERIES, WITH AND WITHOUT OVERSAMPLING, USING THE METRICS OF ACCURACY, PRECISION, F1-SCORE,
RECALL(SENSITIVITY), SPECIFICITY AND TIME(S). IT ALSO PRESENTS THE EXECUTION TIMES OF EACH MODEL IN BOTH
SCENARIOS. THE BEST PERFORMANCES IN EACH METRIC ARE HIGHLIGHTED IN BOLD.

Category Classifier . _With Ov i . ‘ _ _No Over i - ]
Accuracy | Precision | FI-Score | Recall | Specificity | _Time (5) | Accuracy | Precision | Fi-Score | Recall | Specificity | Time (5)

KNeighbors Time 9727% | 971.35% | 97.19% | 97.37% | 99.46% | 6.62x 107 | 94.12% | 94.07% | 94.67% | 96.16% | 98.86% | 2.72 x 10°1
Series

Time Series | RISE 94.55% | 94.65% | 94.40% | 94.54% | 98.92% | 1.16 x 10°1 | 8529% | 89.44% | 81.97% | 81.38% | 97.07% | 7.46 x 10°°
ROCKET 93.64% | 9533% | 93.62% | 93.70% | 98.73% | 1.05x 10! | 95.59% | 91.67% | 93.52% | 96.88% | 99.17% | 7.90 x 10°°
Time Series Forest 89.09% | 90.47% | 89.21% | 88.81% | 97.81% | 1.23x 10%° | 91.18% | 90.50% | 91.73% | 93.68% | 98.27% 0.97
Inception Time 97.25% | 96.26% | 96.69% | 97.29% | 99.48% | 1.86x 10%° | 9L18% | 93.57% | 92.80% | 93.15% | 98.14% | 1.92 x 10*!
Decision Tree 9636% | 96.43% | 96.34% | 9642% | 99.28% 0.0047 8529% | 719.71% | 81.38% | 88.27% | 97.16% 0.0033
KNeighbors 90.00% | 90.26% | 89.61% | 89.51% | 98.01% 0.0117 85.29% | 84.40% | 83.87% | 84.32% | 97.07% 0.0100

Traditional | Random Forest 98.18% | 98.14% | 98.14% | 98.20% | 99.64% 0.0095 95.59% | 90.55% | 92.24% | 95.23% | 99.19% 0.0087
svC 98.18% | 98.20% | 98.22% | 98.33% | 99.64% 0.0251 92.65% | 94.70% | 88.97% | 86.88% | 98.40% 0.0224
XGBClassifier 9636% | 96.24% | 96.24% | 96.39% | 99.28% 0.3867 92.65% | 8539% | 87.25% | 92.12% | 98.66% 0.0812

TABLE Il

VALUES FOR ALL METRICS (ACCURACY, PRECISION, F1-SCORE, RECALL(SENSITIVITY), SPECIFICITY) COLLECTED BY
SPECIES FOR THE SVC CLASSIFIER, EXECUTED FOR DATA WITH AND WITHOUT OVERSAMPLING. THE TABLE SHOWS THAT
THERE IS A DROP IN MODEL PERFORMANCE IN RELATION TO THE MIXED CULTURE AND NEGATIVE SPECIES. THIS
SUGGESTS THAT THIS MODEL NEEDS MORE INSTANCES OF THESE SPECIES TO PERFORM BETTER IN THESE SPECIFIC

CONTEXT.
Specie D With Oversampling No Over pling
Accuracy | Precision | FI-Score Recall Specificity | Accuracy | Precision | FI-Score Recall Specificity
glabrata 0 99,09% 94,44% 97,14% | 100,00% 98,92% 97,06% 100,00% | 88,89% 80,00% 100,00%
parapsilosis 1 99,09% 100,00% | 97,30% 94,74% 100,00% 94,12% 91,30% 91,30% 91,30% 95,56%
mixed culture | 2 100,00% | 100,00% | 100,00% | 100,00% 100,00% 98,53% 100,00%  66,67% 50,00% 100,00%
cryptococcus | 3 100,00% | 100,00% | 100,00% | 100,00% 100,00% 100,00% | 100,00% | 100,00% | 100,00% 100,00%
negative 4 99,09% 94,74% 97,30% | 100,00% 98,91% 95,59% 76,92% 86,96% | 100,00% 94,83%
albicans 5 99,09% 100,00% | 97,56% 95,24% 100,00% 100,00% | 100,00% | 100,00% | 100,00% | 100,00%

TABLE IV
VALUES FOR ALL METRICS (ACCURACY, PRECISION, F1-SCORE, RECALL(SENSITIVITY), SPECIFICITY) COLLECTED BY
SPECIES FOR THE RANDOM FOREST CLASSIFIER, EXECUTED FOR DATA WITH AND WITHOUT OVERSAMPLING. AS IN
TABLE Ill, THERE IS A DECLINE IN PERFORMANCE IN THE ABSENCE OF OVERSAMPLING FOR SOME SPECIES, SUGGESTING
THE NEED FOR ADDITIONAL TRAINING INSTANCES.

Specie D With Over li ] ] No Oversamp ]
Accuracy | Precision | F1-Score Recall Specificity | Accuracy [ Precision | FI-Score Recall Specificity
glabrata 0 100,00% | 100,00% | 100,00% | 100,00% 100,00% 97,94% 96,00% | 92.84% 90,00% 99,31%
parapsilosis 1 96,55% 89,23% 90,09% 91,05% 97,69% 93,53% 97,61% 87,89% 82,17% 99,33%
mixed culture | 2 99,82% 99,00% 99,49% | 100,00% 99,78% 99.56% 100,00% | 90,00% 85,00% 100,00%
cryptococcus | 3 98,18% 97,50% 93,50% 90,00% 99.57% 95,00% 76,78% 85,18% | 100,00% 94,43%
negative 4 98,55% 94,11% 95,58% 97.22% 98,80% 97.21% 87,15% 91,29% 97,00% 97,24%
albicans 5 100,00% | 100,00% | 100,00% | 100,00% 100,00% 100,00% | 100,00% | 100,00% | 100,00% | 100,00%

tests were conducted comparing the results before and after the  the data, the paired t-test was applied for normal distributions,
technique. First, the Shapiro-Wilk test was performed to check and the Wilcoxon test for non-normal distributions [19] [20].
th? normality of th.e distributions of tl}e two groups (With and The results of the normality tests indicate that, for most
without oversampling). Then, depending on the normality of  cJagsifiers (see Figure 1), at least one of the groups does not
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TABLE V

SCENARIO B (GROUPED CV): PERFORMANCE COMPARISON OF MODELS (MEAN =+ STD). TRADITIONAL MODELS LIKE SVC
SHOWED HIGHER STABILITY IN GENERALIZATION, WHILE OVERSAMPLING WAS CRITICAL FOR RECOVERING
PERFORMANCE IN DEEP LEARNING MODELS (INCEPTIONTIME).

SCENARIO B (GROUPED CV): DETAILED PERFORMANCE BY CLASS FOR THE BEST MODELS. NOTE THE HIGH ROBUSTNESS

IN DETECTING C. ALBICANS EVEN UNDER STRESS TESTS.

Model [ Oversampling [ Accuracy [ Precision | Recall [ FI-Macro | Time (s)
Traditional Models

Decision Tree No 0.61354+0.41 | 0.47924+0.38 | 0.4193 +0.39 | 0.4420 +0.38 | 0.0270 £ 0.0055

KNeighbors No 0.6667 +0.42 | 0.4167 +£0.32 | 0.3760 +0.31 | 0.3938 +0.31 | 0.0077 £ 0.0007

Random Forest Yes 0.6448 £ 0.42 | 0.5417 +0.42 | 0.4938 +0.44 | 0.5126 +0.43 0.218 + 0.037

SvC Yes/No 0.7635 + 0.38 | 0.6875 + 0.37 | 0.6318 + 0.41 | 0.6484 + 0.40 | 0.020 + 0.001
Time Series Models

InceptionTime No 0.5213 +£0.51 | 0.5417 +£0.50 | 0.5071 +0.52 | 0.5122 4 0.52 205.07 £ 12.60

InceptionTime Yes 0.6738 + 0.46 | 0.6875 + 0.45 | 0.6494 + 0.48 | 0.6601 + 0.47 | 244.54 +22.38

RISE Yes 0.6612 +0.32 | 0.5417 +0.33 | 0.4420 £0.36 | 0.4795 +0.35 | 95.59 + 159.96

TimeSeriesForest Yes 0.6448 £0.42 | 0.43754+0.32 | 0.3849 +0.31 | 0.4053 +0.31 18.90 + 13.29

TABLE VI

Model Class Accuracy | Precision | Recall | F1-Score | Specificity
C. Albicans 0.9916 1.0000 0.9750 | 0.9873 1.0000

SvC C. Parapsilosis 0.7764 0.7159 0.6923 0.7039 0.8288
Negative 0.7679 0.5775 0.6212 | 0.5985 0.8246
C. Albicans 0.7257 0.6154 0.5000 | 0.5517 0.8408

InceptionTime (Over) | C. Parapsilosis 0.7257 0.5833 1.0000 | 0.7368 0.5548
Negative 0.7890 1.0000 0.2424 | 0.3902 1.0000

follow a normal distribution (Shapiro-Wilk values ; 0.05). This
justifies the use of the Wilcoxon test for these cases, which
is a non-parametric test suitable for comparisons between
paired samples without normality assumptions. Among the
evaluated classifiers, those that showed statistically significant
differences after the application of oversampling include:

o RISE: The paired t-test resulted in a p-value of 0.045,
indicating that oversampling significantly impacted the
performance of this classifier.

o KNTC: The Wilcoxon test presented a p-value of 0.0098,
pointing to a significant difference between the two
groups.

o Inception Time: The p-value obtained in the Wilcoxon
test was 0.0019, reinforcing the presence of a statistically
significant impact.

o« XGBC: The paired t-test obtained a p-value of 0.0018,
indicating a significant difference between the groups.

e SVC: The p-value of 0.0039 obtained in the Wilcoxon
test confirms a statistically significant difference.

o DTC: The paired t-test resulted in a p-value of 0.0074,
showing a significant impact.

o RFC: The Wilcoxon test revealed a p-value of 0.0273,
indicating a significant difference.

On the other hand, some classifiers, such as TSFC,
ROCKET and KNN, did not show statistically significant
differences, with p-values above the 0.05 significance level.
This suggests that for these models, the introduction of over-
sampling did not result in statistically relevant improvements
in performance.

In summary, the results indicate that the impact of oversam-

Comparison of p-values for Oversampling in Classifiers

paired t-test
Wilcoxon
-~ significance (p=0.05)

& ¢ P & & fs & e & S &
Cassiers
Fig. 5. Comparison of p-values from the applied statistical tests,

indicating which models were significantly impacted by the application
of oversampling. The red line represents the confidence interval. Models
with bars above this interval were not significantly affected by the use of
the oversampling strategy.

pling varies across different classifiers, being more pronounced
in some models than in others. This observation reinforces the
importance of individually evaluating the effectiveness of data
balancing techniques before their final implementation.

D. Statistical Robustness in Inter-Sample Generalization
(Scenario B)

While the previous analysis (Scenario A) demonstrated the
positive impact of oversampling in a controlled random-split
environment, the statistical evaluation of the Inter-Sample
Generalization scenario (Scenario B) reveals a different dy-



174

namic regarding biological variability. Using the same statisti-
cal rigor (Shapiro-Wilk for normality followed by paired tests),
we compared the performance of models with and without
oversampling under the strict Grouped Cross-Validation pro-
tocol.

In this high-stress testing environment (N = 8 independent
biological samples), the statistical tests (Wilcoxon Signed-
Rank) indicated no significant difference (p > 0.05) between
the Oversampling and No-Oversampling strategies for the
majority of models, including the top performers SVC (p =
1.00) and InceptionTime (p = 0.18).

This lack of statistical significance, despite the observed
increase in mean accuracy for Deep Learning models (e.g.,
InceptionTime improved from 52% to 67%), can be attributed
to the high variance introduced by the biological heterogeneity
of the subjects. The standard deviations in Scenario B (=
+40%) are considerably larger than in Scenario A (=~ +2%),
masking the benefits of oversampling from a strictly statistical
p-value perspective.

Furthermore, a direct statistical comparison between the best
traditional model (SVC) and the best deep learning model
(InceptionTime) with oversampling yielded a p-value of 0.715
(Wilcoxon), indicating a “statistical tie”. This finding is critical
for the proposed framework: it suggests that in resource-
constrained clinical settings, the simpler SVC model provides
diagnostic power statistically equivalent to complex Deep
Learning architectures, validating its use as a highly efficient
screening tool.

E. Time Series and Traditional Data Analysis

Time series models showed greater effectiveness in detect-
ing patterns associated with Candida infections, especially in
the dynamic analysis of signals collected by the electronic
nose. Among them, the KNeighbors Time Series Classifier
and Inception Time achieved the best performances, reaching
97.27% and 97.25% accuracy, respectively, when oversam-
pling was applied (Scenario A). These models maintained
a high generalization capability even without oversampling,
reinforcing their robustness in the face of imbalanced data
within controlled partitions.

In contrast, traditional models exhibited competitive perfor-
mance, with an emphasis on the Random Forest Classifier and
SVC, which achieved 98.18% accuracy with oversampling.
However, without this balancing technique, their precision
dropped significantly, highlighting the dependence of these
models on specific preprocessing steps to handle imbalanced
data. The application of oversampling had a widespread pos-
itive impact, especially for traditional models, significantly
improving accuracy, precision, and F1-score. This underscores
the importance of balancing strategies to optimize performance
in scenarios with uneven species distribution.

When evaluating the models under the stricter Inter-Sample
Generalization protocol (Scenario B), a crucial shift in per-
formance dynamics was observed. While time series models
like InceptionTime suffered a noticeable drop in accuracy
without data balancing (falling to ~ 52%), the traditional
SVC model demonstrated superior stability, maintaining an
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accuracy of ~ 76% even in the absence of oversampling.
Furthermore, statistical tests (Wilcoxon Signed-Rank) in this
scenario revealed no significant difference (p > 0.05) between
the best traditional model (SVC) and the best deep learning
architecture (InceptionTime) when oversampling was applied.
This indicates that, despite the theoretical advantages of deep
learning for temporal signals, simpler traditional models may
offer equivalent diagnostic power with lower computational
cost when generalizing to new biological donors.

Overall, while time series models demonstrate greater flexi-
bility in identifying complex temporal features, the traditional
approach proves to be a highly efficient alternative for clini-
cal screening. These findings further emphasize the varying
impact of oversampling on different classification models,
reinforcing the need for tailored preprocessing approaches. As
the results demonstrate, while traditional models significantly
benefit from oversampling, time series models tend to exhibit
inherent robustness to specie imbalance only when signal con-
sistency is high. This observation naturally leads to a deeper
discussion on the comparative strengths and weaknesses of
these two methodological approaches. The following section
explores these aspects in greater detail, analyzing not only
classification accuracy but also computational efficiency and
clinical applicability, ultimately aiming to determine the most
suitable models for real-world diagnostic scenarios.

V. DISCUSSION

The results obtained with the AT models highlight significant
differences in performance between traditional models and
time series-based models. The application of oversampling
proved effective in improving classification metrics, reducing
the impact of specie imbalance on traditional models. In con-
trast, for time series models, this technique did not have such a
pronounced impact, suggesting that these models perform well
regardless of data balancing. This robustness is particularly
relevant in clinical settings where data distribution can be
highly variable.

Among the evaluated models, ROCKET demonstrated ex-
cellent performance in the training and validation phase, stand-
ing out mainly in the oversampling version, where it achieved
the highest accuracy (98.86%) and sensitivity (99.10%). How-
ever, when exposed to the test data, its performance was
surpassed by the KNeighbors Time Series Classifier and
Inception Time among the time series models, and by the SVC
and Random Forest Classifier among the traditional models.
This suggests that, despite high performance in the validation
phase, some models may have a lower generalization ability,
possibly due to the specific characteristics of the training set.

The processing time analysis revealed that traditional mod-
els are considerably faster than time series models. The SVC
and Random Forest Classifier showed significantly lower pre-
diction times (0.009520s and 0.025079s, respectively), making
them viable alternatives for applications requiring computa-
tional efficiency without significant compromise in accuracy.
However, despite their slower processing times, time series
models such as Inception Time may offer superior feature
extraction capabilities, making them more suited for detecting
subtle temporal variations in E-Nose signals.
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In the evaluation of metrics by specie, it was observed that
the SVC showed consistent performance, with an accuracy of
98.18% in the oversampling set. However, in the set without
oversampling, there was a noticeable drop, emphasizing the
importance of specie balancing for traditional models in de-
tecting subtle patterns in E-Nose signals. In contrast, Inception
Time demonstrated greater robustness to data imbalance, main-
taining good metrics even without the application of oversam-
pling. This suggests that time series models inherently capture
temporal dependencies that contribute to their resilience in
varying data conditions.

From a clinical perspective, the ability to rapidly detect
fungal pathogens directly from blood culture broth represents
a transformative advancement. Traditional subculture-based
methods for bloodstream pathogen isolation and identification
can take some days, delaying treatment decisions. The E-
Nose/Al approach based on blood culture broth reduces this
turnaround time to minutes, offering substantial benefits for
antifungal stewardship and patient management, particularly
in intensive care environment. By bypassing the need for
sample preparation and fungal isolation, this method allows
for faster interventions, which may be crucial for improving
patient outcomes and reducing mortality associated with fun-
gal infections.

In this scenario, diagnostic accuracy and speed are critical
factors. While models like SVC and Random Forest Classifier
provide a balance between performance and computational
efficiency, more specialized approaches, such as KNeighbors
Time Series Classifier and Inception Time, warrant further
exploration. When evaluating model performance by specie,
it becomes evident that more robust models, such as Inception
Time, excel in capturing temporal variations in signals, even
when some species have a reduced number of samples.

Deep learning models generally demonstrate superior gen-
eralization in handling imbalanced datasets compared to linear
models like SVC. This ability makes them particularly suitable
for complex medical diagnostics. Nevertheless, a wide array
of strong alternatives exists for model selection, enhancing
the system’s reliability, portability, and scalability. This is
especially crucial in challenging clinical conditions, where
rapid and precise diagnostics are essential for effective patient
management and treatment decisions.

To rigorously validate the framework’s applicability in a
real-world context with unseen patients, an additional analysis
focusing on Inter-Sample Generalization was conducted using
Grouped Cross-Validation. Unlike the intra-sample consis-
tency scenario, which confirmed sensor stability with accu-
racies exceeding 98%, this “stress test” revealed the impact of
biological variability inherent in the pilot dataset (N = 8). The
observed reduction in overall accuracy to the 60-76% range
was anticipated and highlights the challenge of generalizing
complex metabolic profiles from a limited number of biolog-
ical donors, rather than indicating sensor limitations.

In this rigorous testing environment, the robustness of the
traditional SVC model was particularly notable. While Deep
Learning models like InceptionTime experienced a signif-
icant performance drop without data balancing (falling to
~ 52%), the SVC maintained a stable accuracy of ~ 76%

even without oversampling. Furthermore, statistical analysis
(Wilcoxon Signed-Rank test, p > 0.05) revealed no signifi-
cant performance difference between the SVC and the best-
performing deep learning architecture when oversampling was
applied. This statistical tie suggests that, for the current dataset
size, simpler and computationally efficient models like SVC
provide diagnostic power equivalent to complex architectures,
reinforcing their suitability for resource-constrained point-of-
care devices.

When compared to the culture-based methodology explored
by Bastos [7], the results are highly similar. However, the
blood broth approach offers a significant advantage by elim-
inating the need for sample processing, thereby avoiding
exposure to VOCs from external sources, such as the agar used
for fungal cultivation. This can lead to more precise readings
and improve the models’ ability to accurately identify volatile
compound patterns.

While the results are promising, there are several con-
siderations for the real-world application of this approach.
Sensor drift, a well-known challenge with electronic noses,
can affect sensor responses over time due to prolonged use
or environmental factors, possibly requiring periodic recal-
ibration [27]. Additionally, cross-sensitivity to VOCs from
various microorganisms or external sources could influence
classification accuracy, underlining the importance of robust
preprocessing techniques and the inclusion of diverse sample
types. Despite high accuracy in the evaluated datasets, mul-
ticenter validation is necessary to ensure the consistency of
findings across different clinical settings and sample collection
protocols. Continued refinement and broader validation efforts
are essential to enhance the reliability and scalability of this
method for practical use.

Another important aspect to consider is how this ap-
proach compares with established diagnostic techniques such
as MALDI-TOF. While MALDI-TOF is a gold standard in
microbial identification due to its precise and reliable results,
it requires sample preparation, specialized equipment, and
trained personnel—factors that can limit its accessibility in
certain healthcare environments. In contrast, the E-Nose/Al
approach offers a rapid, non-invasive, and cost-effective al-
ternative, potentially reducing diagnosis time and enabling
earlier intervention. However, further studies are necessary to
comprehensively establish its competitive advantages and to
address any gaps in sensitivity and specificity compared to
traditional methods [28].

In summary, considering the above, optimizing model se-
lection involves balancing accuracy, computational efficiency,
and clinical applicability. The analysis highlights that while
traditional models benefit from specie balancing, time series-
based models, such as Inception Time, exhibit greater robust-
ness to data imbalances, making them particularly suitable
for clinical practice where diagnostic speed and reliability
are key. The following section will consolidate the study’s
key contributions, discussing their implications and outlining
potential directions for future research and applications.
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VI. CONCLUSIONS AND FUTURE WORK

This study represents a significant advancement in the rapid
detection of fungal infections directly from blood culture broth
samples, eliminating the need for subculture and organism iso-
lation. Compared to traditional subculture-based methods, the
proposed approach substantially reduces the turnaround time
to results, enabling faster therapeutic interventions and poten-
tially saving lives, particularly among immunocompromised
patients. The rigorous dual-scenario validation confirmed the
reliability of the proposed solution: the high intra-sample
consistency (> 98%) validated the stability of the Framework,
while the inter-sample stress test defined the current baseline
for biological generalization.

The results underscore the clinical potential of this method-
ology, showing that direct blood culture broth analysis can
overcome the limitations of conventional methods in terms
of speed and efficiency. Among the classifiers, the traditional
SVC model demonstrated superior stability in the gener-
alization scenario, achieving statistical parity with complex
Deep Learning architectures like InceptionTime. This finding
is critical for point-of-care implementation, suggesting that
computationally efficient models are sufficient for accurate
screening without the need for high-end processing hardware.
Furthermore, the oversampling strategy positively influenced
model generalization, particularly for Deep Learning models,
enhancing accuracy in imbalanced data conditions.

Despite these promising findings, some limitations should
be acknowledged. The contrast between the near-perfect
Framework stability and the reduced accuracy in the Grouped
Cross-Validation scenario (= 76%) isolates biological variabil-
ity as the primary challenge. This confirms that the limitation
lies in the dataset size (N = 14 samples) rather than the
sensing capabilities. Addressing these limitations in future
research through larger, multicenter datasets and standardized
collection protocols will be essential for capturing the full
spectrum of intravarietal metabolic profiles. The long-term
stability of sensor performance and the potential need for
recalibration over time also warrant further investigation.

For future directions, it is crucial to conduct multicenter
clinical trials to validate the applicability of this approach
across different hospital environments and patient populations.
Prioritizing the collection of samples from a larger number
of unique donors, rather than just increasing the number of
cycles per sample, will be key to bridging the gap between
Framework stability and biological generalization. Expanding
VOC profiling to include new Candida species, such as C.
krusei, C. tropicalis, and C. auris, along with increasing the
dataset for previously studied species, will refine the method’s
precision and coverage. Additionally, incorporating samples
from non-Candida microorganisms, such as bacteria and other
fungal species, will enhance model generalization and reduce
false positives.

Another important strategy is collecting samples containing
multiple Candida species, allowing for the evaluation of rare
mixed culture and improving the model’s ability to identify
mixed infections. Furthermore, integrating explainable artifi-
cial intelligence (XAI) techniques will provide greater trans-
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parency in the decision-making process, increasing healthcare
professionals’ trust in the technology and facilitating its adop-
tion in clinical practice.

The findings of this study reinforce the potential of com-
bining Electronic Noses and Al as an innovative solution
for rapid diagnostics. The clinical implementation of this
approach could significantly transform how fungal infections
are diagnosed and treated, reducing associated mortality rates
and optimizing hospital resources.
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