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RESUMO

A localizacao de dispositivos moéveis em redes celulares é crucial tanto em aplicagoes
criticas, como chamadas de emergéncia, quanto em servigos comerciais baseados em loca-
lizacao. Métodos classicos de trilateracao alcancam elevada acuracia em cenarios externos,
mas permanecem vulneraveis ao multipercurso das ondas de radio e exigem a resolugao
de sistemas nao lineares, comumente tratados por algoritmos bioinspirados, como o oti-
mizador por enxame de particulas, os quais podem sofrer convergéncia prematura e, em
variantes mais sofisticadas, incorrer em alto custo computacional. Para contornar essas
limitagoes, esta tese propoe um algoritmo hibrido que integra trilateragao, regressao pelo
método dos vizinhos mais préximos e um conjunto adaptativo de variantes de otimizadores
baseados em enxames de particulas, apoiado por uma janela de memoria deslizante. Essa
estratégia seleciona dinamicamente a abordagem mais adequada, preservando a acuracia
e o baixo tempo de execucao. Em experimentos com dados reais de redes de telefonia celu-
lar, observaram-se erros médios de 5,35 m em ambientes externos e 17,33 m em ambientes
internos, em conformidade com os requisitos regulatérios internacionais, que exigem erros
de localizacao menores que 50 m para 80% das chamadas telefénicas realizadas. Andlises
estatisticas corroboram a superioridade do algoritmo proposto em relagao a variantes clas-
sicas e hibridas de PSO, evidenciando sua simplicidade, robustez e escalabilidade como

solugao pratica para localizagdo em redes celulares.

Palavras-chaves: Localizacdo em redes celulares, Otimizacao por enxame de particulas,

Algoritmos em conjunto, k-vizinhos mais préoximos, Critérios regulatérios.



ABSTRACT

The localization of mobile devices in cellular networks is crucial both for critical appli-
cations, such as emergency calls, and for commercial location-based services. Classical
trilateration methods achieve high accuracy in outdoor scenarios but remain vulnerable
to radio-wave multipath and require solving nonlinear systems, which are commonly han-
dled by bio-inspired algorithms such as particle swarm optimization. These algorithms,
however, may suffer from premature convergence and, in more sophisticated variants, in-
cur high computational cost. To overcome these limitations, this thesis proposes a hybrid
algorithm that integrates trilateration, nearest-neighbor regression, and an adaptive en-
semble of particle-swarm-based optimizers supported by a sliding memory window. This
strategy dynamically selects the most suitable approach, preserving accuracy and low ex-
ecution time. In experiments with real cellular-network data, average errors of 5.35 m in
outdoor environments and 17.33 m indoors were observed, complying with international
regulatory requirements that demand localization errors below 50 m for 80% of emergency
calls. Statistical analyses corroborate the superiority of the proposed algorithm over clas-
sical and hybrid PSO variants, highlighting its simplicity, robustness, and scalability as a

practical solution for localization in cellular networks.

Keywords: Cellular network localization, Particle swarm optimization, Ensemble algo-

rithms, k-Nearest neighbors, Regulatory requirements.
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1 INTRODUCAO

“Localizar é preciso,

viver nao € preciso.”

(adaptada de Pompeu)

1.1 Motivacao e justificativa

A localizacao de dispositivos méveis em redes celulares consolidou-se como um requisito
essencial para uma ampla gama de aplicagoes contemporaneas. Ela se faz presente em
servigos criticos, como o atendimento a emergéncias e a seguranca publica, e também em
solugodes comerciais voltadas para logistica urbana e servigos personalizados baseados em
localizacao. Em situagoes de crise, uma estimativa rapida e confidvel da posicao pode ser
determinante para salvar vidas; no setor privado, por sua vez, conhecer e até prever a
localizacao de clientes possibilita agoes de marketing e gestao operacional mais assertivas
(HUANG; GARTNER, [2018). Nesse contexto, diversas técnicas tém sido empregadas para
resolver o problema de localizagao, como a identificagdo de célula , do inglés
, que determina a célula a qual a estagao movel estd conectada; o
método de impressao digital de sinais (fingerprinting), que compara medigoes de radio-
frequéncia ; a triangulacao, baseada na estimativa de angulos entre a e a estagao
radiobase ; e a trilateragao, que utiliza medi¢oes da poténcia do sinal de rece-
bido pela (RAMTOHUL; KHEDO, [2020). Entre elas, a trilateragdo é reconhecida por
apresentar boa acuracia em ambientes outdoor, mas sua utilizacao pratica envolve a reso-
lucao de sistemas de equagodes nao lineares, tarefa geralmente delegada a métodos bioins-
pirados, como a Otimizacao por Enxame de Particulas do inglés |Particle Swarm|

Optimization)). O PSO é bastante utilizado para resolver sistemas nao lineares porque
nao requer derivadas, lida bem com fungoes multimodais e evita a dependéncia de boas

aproximacoes iniciais — limitagoes tipicas de métodos classicos como Newton-Raphson
(RAPHSON, [1690) e Nelder-Mead (NELDER; MEAD) |1965|) . Seu mecanismo populacional
favorece a busca global, reduz a probabilidade de convergéncia prematura e mantém baixo
custo computacional (KENNEDY; EBERHART), (1995; EL-SHORBAGY), [2024)).

Embora eficaz, o [PSO| apresenta fragilidades conhecidas, como a convergéncia prema-
tura, e a perda de desempenho em ambientes de propagacao heterogéneos — em especial,

o ambiente interno (mdoor)ﬂ, afetado por multipercurso e atenuacao — e a forte depen-

L A partir desse ponto, o termo indoor serd utilizado para se referir ao ambiente interno.



Capitulo 1. Introdugdo 21

déncia de condigoes especificas de parametrizagdo (WANG et al), 2021). Variantes mais

complexas do [PSO] introduzem mecanismos adicionais — como operadores adaptativos,
estruturas auxiliares de memoria, rotinas de recombinacao ou critérios de diversidade —
que aumentam significativamente o nimero de operacoes realizadas em cada iteracao.
Esse acréscimo eleva o tempo total de processamento e o uso de memoria, dificultando a

aplicagao desses métodos em cenarios de tempo real ou em sistemas de larga escala, onde

respostas rapidas e custo computacional reduzido sdo fundamentais (JAIN et all, 2022).

Diante desse desafio, esta tese propdoe um método hibrido de localizacao capaz de
conciliar a simplicidade de implementacao, o baixo custo computacional e a robustez dos
resultados, ou seja, mantendo o desempenho consistente mesmo diante de variacoes do
ambiente e ruido nas medig¢oes. O nicleo da proposta é o algoritmo baseado em memo-

ria (MB-EPSO| do inglés [Memory-Based Ensemble Particle Swarm Optimization)), que

introduz um mecanismo de memoria deslizante responsavel por armazenar as melhores

geragoes de particulas, evitando a perda de solugoes relevantes ao longo da evolugao (SILVA
, . Esse recurso permite a selecao adaptativa das variantes de mais ade-
quadas a cada momento, equilibrando a exploracao e a intensificagao do espago de busca
de forma dindmica e reduzindo a probabilidade de estagnacao prematura. Além disso, o
algoritmo [MB-EPSO|incorpora um controle estocastico da velocidade das particulas para
prevenir aglomeragoes em regioes de fronteira. Com base nesse otimizador, desenvolve-se o
algoritmo hibrido de localizagao , do inglés [Hybrid Memory-based Localization)),
que integra técnicas classicas de trilateragao e regressao pelo método dos k-vizinhos mais
préoximos , do inglés [k-Nearest Neighbors)), aplicadas a estimativa de distancias a
partir de medigoes reais dos niveis de intensidade dos sinais recebidos , do inglés
[Received Signal Strength Indicator|) e do atraso de propagagao (PD], do inglés
. Avalia-se a solugao por meio de dados coletados em campo em redes de terceira
geracao (3G)), ou seja, (WCDMA] do inglés [Wideband Code Division Multiple Access)) no

municipio de Recife, contemplando ambientes indoor e externos (outdoor)ﬂ de propaga-

cdo de ondas de [RF] Ressalta-se que a limitagdo da pesquisa ao cendrio decorreu da
indisponibilidade de bases de dados reais em tecnologias celulares mais recentes, como
quarta geracao e quinta geracao 0G| impedindo a avaliagao experimental do algoritmo
nesses ambientes. Essa restri¢cao, contudo, ndo compromete a generalidade da metodologia
nem a validade dos resultados obtidos, uma vez que os principais parametros utilizados
— como [RSS]] e [PD] — permanecem presentes nas geragoes mais novas, assim como 0s
principios fisicos de propagagao das ondas eletromagnéticas. Portanto, mesmo restrita ao
BG a investigagdo preserva sua aplicabilidade e pode ser estendida de forma direta a redes

contemporaneas, desde que bases de dados adequadas estejam disponiveis.

2 A partir desse ponto, o termo outdoor serd utilizado para se referir a ambiente externo.
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1.2 Objetivo geral e especifico

O objetivo geral desta tese é investigar e propor um método de localizacdo em redes
celulares de baixo custo computacional em cendrios reais. Para atingir esse objetivo, a
pesquisa desenvolve um conjunto de metas especificas que incluem a analise das limita-
¢oes de abordagens baseadas em trilateracao e variantes tradicionais do [PSO] aplicadas &
radiolocalizacao, o estudo de mecanismos baseados em memoéria e estratégias adaptativas
capazes de melhorar a estabilidade e a convergéncia de algoritmos inspirados em enxame,
e a investigagdo de formas de integracao entre técnicas de regressao e métodos de oti-
mizagao como alternativa para aprimorar estimativas de distancia e posi¢ao. Além disso,
contempla-se o projeto e a validacao de um método hibrido adequado a cenarios indoor
e outdoor, com base em dados reais de redes celulares, bem como a comparacao sistema-
tica do seu desempenho com padroes de referéncia amplamente difundidos na literatura
e a verificacdo da aderéncia da proposta as diretrizes e aos requisitos estabelecidos por

normas regulatorias internacionais.

1.3 Contribuicoes

O presente trabalho traz as seguintes contribuicoes:

 Proposicao do algoritmo [MB-EPSO] que se baseia em um conjunto de variantes
[PSOJ auxiliadas por uma janela de meméria deslizante, capaz de preservar solugoes
historicamente boas e aumentar a diversidade populacional, reduzindo a estagnacgao

prematura;

« Selecao adaptativa de variantes de [PSO|a partir da janela de memdria, escolhendo

dinamicamente a estratégia mais adequada para cada fase da busca;

« Proposicao do algoritmo hibrido de localizagao [HyMLod, que combina trilateragao,
regressao por [k-NN] e otimizagao via algoritmo [MB-EPSO| para estimar a posigao
de dispositivos moveis;

1.4 Organizacao da tese

A organizacao do texto da tese estd da seguinte forma: o segundo capitulo apresenta
os fundamentos da otimizacao por enxame de particulas, suas variantes e as principais
abordagens de combinacao de otimizadores. O terceiro capitulo é dedicado a formulacao e
a avaliagao do algoritmo[MB-EPSO] detalhando sua arquitetura, seu funcionamento e seus
resultados em benchmarks reconhecidos, como, por exemplo, o congresso de computacao
evolucionaria de 2017 , do inglés [I[EEE Congress on Evolutionary Computation|
. Em seguida, o quarto capitulo introduz os sistemas de radiolocalizagao, revisando
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métodos cldssicos e destacando o papel da[AM]nesse dominio. O quinto capitulo concentra-
se na proposta do algoritmo hibrido [HyMLod, explicando a metodologia, a construgio
da base de dados, os protocolos de avaliacao e os resultados experimentais obtidos em
comparag¢ao com outros métodos. Por fim, o sexto capitulo retine as conclusoes, sintetiza as
contribuigoes alcangadas, discute as limitagoes do estudo, além de apresentar perspectivas

para trabalhos futuros.
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2 OTIMIZACAO POR ENXAME DE PAR-
TICULAS

“A otimizacdo ndo é apenas
resolver um problema: é

encontrar harmonia entre

simplicidade e eficiéncia.”

(Zbigniew Michalewicz)

Este capitulo tem inicio com uma breve descricdo dos problemas de otimizacdo e de suas principais carac-
teristicas. Em sequida, discute a otimizacdo por enxame de particulas, desde a sua formulacao original até
as variantes mais avancadas, desenvolvidas para mitigar suas limitacoes. Por fim, apresenta um estudo
sobre estratégias de combinagdo de otimizadores, com énfase na selecdo autoadaptativa das variantes que

compoem o conjunto de algoritmos analisados.

Problemas de otimizagao buscam solugoes 6timas sob um conjunto de condigoes e
restrigoes (AZEGAMI, 2020; NOCEDAL; WRIGHT, [2006). Em termos praticos, o objetivo
¢ localizar pontos de minimo ou de maximo de uma funcao objetivo. Trata-se de uma
tarefa cotidiana, como, por exemplo, escolher o melhor trajeto ou a melhor relacao custo-
beneficio e, a0 mesmo tempo, central em dreas cientificas como processamento de imagens,
comunicagoes sem fio e sistemas de energia (SHAMI et al., 2022).

Para modelar um problema de otimizagao, recorre-se a uma fungao objetivo, também
chamada fitness. Conforme descrito em Khouni e Menacer| (2023), a funcdo pode ser
classificada quanto a topologia e a natureza. Do ponto de vista topoldgico, ¢ unimodal
quando possui um unico 6timo global e multimodal quando apresenta multiplos 6étimos
locais. Quanto a natureza, ¢ monoobjetiva quando envolve uma tnica fungao objetivo,
e multiobjetiva quando duas ou mais func¢oes objetivo sao otimizadas simultaneamente.

Para a resolugao de problemas de otimizacao, isto é, a busca pela melhor solugao,
as técnicas baseadas em inteligéncia de enxames , entre as quais se destacam a oti-
mizacao por colonia de formigas, colonia artificial de abelhas, algoritmo do vagalume e
[PSO] configuram-se como alternativas consolidadas na literatura (MCNULTY et al}, [2024).
Tomando particularmente o [PSO] tal potencial decorre de sua simplicidade de imple-
mentagao, exige poucos parametros, tem baixo custo computacional e alcanga boa con-
vergéncia em diferentes tipos de problemas. Sua estrutura flexivel facilita a criacao de

variantes e hibridos, o que amplia seu uso em diversas areas da engenharia e da ciéncia
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de dados, consolidando-o como uma das meta-heuristicas mais populares e influentes da
atualidade.(SCARDUA| 2021} [SHAMI et al., [2022). Nesse contexto, na sequéncia, serdo apre-
sentados o algoritmo[PSO] suas principais variantes, bem como estratégias de combinagao

entre elas.

2.1 Otimizacao por enxame de particulas

A otimizacao de problemas complexos consolidou-se como um dos principais focos em
computacao e inteligéncia artificial, impulsionada pela crescente necessidade de solugoes
eficientes e escaldveis em areas tao diversas quanto engenharia (SIDDIQI et al., [2023),
economia (SHEN; YAN; SHANG, 2024), logistica (LO, [2022)) e ciéncia de dados (TIJJANI;
WAHAB; NOOR|, [2024)). Nesse cendrio, o algoritmo destaca-se por sua capacidade
de explorar amplos espacos de busca de forma adaptativa e robusta, tornando-se uma
ferramenta de grande relevancia para enfrentar desafios contemporéaneos de otimizagao.

De acordo com (KENNEDY; EBERHART, (1995), o algoritmo estd definido como
uma técnica de busca e se enquadra em [[E] pois se baseia em comportamentos da natureza,
como, por exemplo, a migracdo de passaros e a movimentagdo de cardumes de peixes
em busca de alimento. Diferentemente de outros algoritmos evolucionarios, no algoritmo
@], nao ocorrem mutagoes e cruzamentos. Essa caracteristica confere ao método maior
robustez e reduz a probabilidade de que a solu¢ao permanega estagnada em minimos locais.
Além disso, o[PSO|desperta bastante interesse na comunidade cientifica dedicada a érea de
inteligéncia por enxames, devido a sua implementacao relativamente simples e a elevada
velocidade de convergéncia (WANG et all, [2021). A seguir, descrevem-se o funcionamento
do [PSOJ suas vantagens e limitagoes, bem como estratégias propostas para superar seus
principais desafios.

No [PSOJ cada particula representa uma possivel solugdo de um problema de otimi-
zagao. Inicialmente, as particulas sao distribuidas em um espago de busca com valores
iniciais aleatérios. Em seguida, a velocidade da particula é atualizada de acordo com a
melhor posicao ja alcancada pela particula, denotada por pyes;, € 0 melhor resultado glo-
bal da particula em toda a populagdo, denotado por gpes; (WANG et al., [2021). Assim, a
velocidade e a posicao da i-ésima particula na d-ésima dimensao podem ser calculadas

CcOo1mo
VA +1) = V) + el Ry (1) (phest{ (t) — X (1) + c2 R (1) (gbest? — XI(8))  (2.1)
XHt+1) = XM+ Vit+1), d=1,2,...,D;i=1,2,...N (2.2)

em que D e N representam, respectivamente, o niimero de dimensoes do problema e o

ntimero total de particulas da populacio. X%(t) e V.4(t) sdo, respectivamente, as compo-
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nentes atuais de posicao e velocidade da i-ésima particula na dimensao d na iteracao t;
Xt +1) e V&, (¢t + 1) serdo, respectivamente, a velocidade e a posi¢do futura da parti-
cula; pbest? é a melhor posicao ja encontrada pela prépria i-ésima particula, e gbest? é
a melhor posicao global, ou seja, aquela ja encontrada pelo enxame inteiro; ¢; e ¢y sao
coeficientes de aceleragio; RY(t) e RI(t) sdo ntimeros aleatérios gerados dentro do inter-
valo uniforme (0, 1). O termo c¢; R{(t)(pbest? — X@(t)) é o componente cognitivo; forca
que direciona a particula para a melhor solu¢ao que ela mesma descobriu no passado. Por
outro lado, o termo co R4(t)(gbest?(t) — X@(t)) é o componente social; for¢a que impulsi-
ona a particula para a melhor solucao global do grupo. Assim, o [PSO] busca pela solugao
global 6tima ajustando iterativamente a trajetéria de cada particula, de modo que ela se
desloque em direcao tanto a sua melhor posi¢ao ja alcangada quanto a melhor posicao
encontrada pelo enxame em cada geracao.

Apesar de suas vantagens, o algoritmo [PSO] apresenta como limitagao a possibilidade
de convergir prematuramente para minimos locais. Para mitigar esse problema, diversas
variantes foram propostas na literatura, visando aprimorar sua capacidade de exploragao e
evitar estagnagao (MIRJALILI et al., 2020)). Tais aprimoramentos, bem como a possibilidade
de combinar diferentes variantes, conferem ao algoritmo elevada flexibilidade e adapta-
bilidade, tornando-o uma solucao dinamica e aplicavel a uma ampla gama de problemas

de otimizacao. Tendo isso em vista, apresentam-se a seguir cinco variagoes do algoritmo

PSSO

Otimizacao por enxame de particulas com peso de inércia

Como um dos primeiros aprimoramentos do [PSOJ original, foi introduzido um novo para-
metro denominado peso de inércia, denotado por w, proposto em (Shi; Eberhart, [1998]), com
o objetivo de mitigar a convergéncia prematura das particulas. Com essa modificagao, a

equacao de atualizacao da velocidade passa a ser expressa por
VAt 4+ 1) = w V(L) + clRf(t)(pbestf — Xid(t)) + Ry (1) (gbestd — Xf(t)) : (2.3)

enquanto a atualizagdo da posi¢do permanece descrita pela Equagao (2.2). De acordo com
a Equagao ([2.3)), valores mais elevados de w favorecem a exploragao global do espago de
busca, ao passo que valores menores intensificam a exploracao local. Esse aprimoramento

ficou conhecido como com peso de inércia (WPSO| do inglés [[nertia Weight Particld

[Swarm Optimization|).

Otimizacao por enxame de particulas com aprendizado compreensivo

O algoritmo de otimizacao por enxame de particulas com aprendizado compreensivo

(CLPSO], do inglés [Comprehensive Learning Particle Swarm Optimization| proposto em
(TRELEA et al., [2007) e posteriormente aprimorado em (HUYNH et al., |2023), surgiu para
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superar uma limitagao do PSO classico, no qual a trajetéria de cada particula em dire-
¢do ao otimo global é guiada apenas por suas préprias melhores posi¢oes locais e pela
melhor posicao global do enxame. Em problemas multimodais, essa estratégia pode levar
a convergéncia para minimos locais ou conduzir particulas a regides distantes do 6timo
global.

Contudo, no algoritmo [CLPSO], a experiéncia de diferentes particulas é utilizada para
guiar a atualizacao, permitindo que a particula aprenda a partir de multiplos valores
de pbest? em diferentes dimensoes. Assim, a velocidade da i-ésima particula na d-ésima

dimensao é atualizada por

VAt +1) = wV(t) + cR{(t)(pbest} — X (1)), (2.4)

7
em que f; = f(x;) com x; = {xz(»l), xz(?), cee xZ(D)} define qual é a melhor posicao pbest?
que a particula ¢ deve seguir em cada dimensao. A escolha dessa trajetoria é determinada

pela probabilidade de aprendizado P,,, dada por

106-1)\
P, =0,05+0,45 <6Tix(pfi§5; _> 5 D , (2.5)

sendo ps, o tamanho da populacio. Para cada dimensio, gera-se um niimero aleatério RY

entre 0 e 1, que é comparado a P... Quando a condicdo R%(t) > P,, é satisfeita, a particula
nio aprende de sua prépria posigao pbest?, mas sim de um exemplar selecionado segundo

o mecanismo do [CLPSO] Para cada dimensdo d, o processo ocorre da seguinte forma:

1. Selecionam-se aleatoriamente duas particulas k e 7, distintas de .
2. Compara-se o valor de fitness de seus respectivos pbest, isto é, f(pbesty) e f(pbest;).

3. A particula cujo pbest apresentar melhor valor de fitness é escolhida como exemplar

para aquela dimensao:

d

exemplar] = pbest{ j

Dessa forma, diferentes dimensoes de uma mesma particula podem aprender com par-
ticulas distintas, o que contribui para aumentar a diversidade do processo de atualizacao
e reduzir a probabilidade de convergéncia prematura.

Essa sele¢ao é feita por meio de um torneio, no qual duas particulas sdo escolhidas ale-
atoriamente, e aquela que apresentar melhor desempenho fornece sua experiéncia. Dessa
forma, pbest‘}i passa a ser a nova referéncia que guiara a particula no espacgo de busca.
Para evitar que a funcao objetivo siga trajetérias equivocadas, um conjunto de solugoes é
armazenado, garantindo que as particulas sejam guiadas por experiéncias consistentes até
a estabilizagdo da busca. Essa metodologia aumenta a robustez do algoritmo, preserva a

diversidade da populacao e reduz a probabilidade de convergéncia prematura.
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Por fim, uma formulagao estendida do [CLPSO| foi proposta em (HUYNH et al., 2023),
incorporando parametros adicionais, como os coeficientes de aceleragao c; e co, além do

termo gbest, resultando na equacgao de velocidade

VAt +1) = wVA(t) + clR(f(t)(pbesti(d) — XA(t)) + o R4(t)(gbest® — X4(t)).  (2.6)

Em sintese, f; e P, preservam a diversidade ao permitir que diferentes dimensoes
“aprendam” com particulas distintas, reduzindo estagnacao sem sacrificar a convergéncia
(HUYNH et al., |2023)).

Otimizacao por enxame de particulas baseado na relacao distancia-treino

Muitas aplicagdes baseadas em [PSO]sofrem com o problema da convergéncia prematura.
Assim como o [CLPSOJ o algoritmo de otimizagao por enxame de particulas baseado
na relagao distancia-treino , do inglés |Fitness-Distance-Ratio based Particle
[Swarm Optimization]), proposto em (PERAM; VEERAMACHANENI; MOHAN, [2013) e poste-

riormente revisado em (SHAMI et al., [2022), foi desenvolvido para mitigar essa limitacao.
Em comparagao ao[PSO|cléssico, o FDRPSO]incorpora um componente social adicional de
aprendizado, fundamentado na experiéncia das particulas vizinhas (nbest), selecionadas

segundo os seguintes critérios:

1. Proximidade em relagao as particulas que estao sendo atualizadas;

2. Melhor valor de aptidao (fitness) quando comparado as particulas vizinhas.
A velocidade da i-ésima particula na d-ésima dimensao é atualizada por

VA1) = wl/;d(t)—kclR‘f(t)(pbest‘jei(d)—Xf(t))—chRg(t)(gbestd—Xd(t)Z-)—kc;;(nbest?—Xﬁ(t}),
(2.7)
em que ¢; = 1, ¢ = 2 e c3 = 3. Nesta formulagdo, pbest{ representa o componente
cognitivo, isto é, a prépria experiéncia da particula; gbest? corresponde ao componente
social global, ou seja, a melhor experiéncia encontrada por todo o enxame até o momento;
nbestd refere-se ao componente social local, obtido da particula vizinha que maximiza a

relagdo fitness—distancia, denotada por RFD]e definida por

@ _ Fitness(P;) — Fitness(X)

RFD{?, P X , (2.8)
J J

. .. . P .. .. d
em que j percorre vizinhos de i, nbest{ é o vizinho que maximiza RFDZ((_)j; o numerador
representa a diferenca de aptidao entre a melhor particula P; e a particula atual X, en-
quanto o denominador corresponde a distancia absoluta entre suas posi¢oes na dimensao

d. O numerador, Fitness(F;) — Fitness(X), corresponde a melhoria esperada ao mover-se
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da posicao atual X; para a melhor posicao conhecida P;. O denominador, \P;i - X ;l\,
representa o deslocamento na dimenséo d entre essas posi¢oes. Assim, o valor da [RFD]
reflete a relacao entre ganho de aptidao e distancia percorrida, orientando o enxame a pri-
orizar movimentos que tragam maior beneficio com menor deslocamento, o que aumenta

a eficiéncia do processo de busca e reduz a probabilidade de movimentos desnecessarios.

Otimizacao por enxame de particulas hibrida com controle de coeficientes de

aceleracao variaveis no tempo

O diferencial introduzido por esta variante do algoritmo [PSO]esté no controle mais efetivo
entre a exploracao de minimos locais e a convergéncia para o 6timo global. Para tanto, ele
considera apenas os componentes cognitivo e social, cujo aprendizado se d& por particulas
vizinhas, na estimativa da nova velocidade da particula. As demais particulas, definidas
no inicio da evolucao, sao reinicializadas mesmo quando estagnadas no espacgo de busca
(BASU, [2023)). Devido a auséncia do termo de inércia, ou seja, a velocidade anterior,
as particulas tendem a deslocar-se rapidamente para um minimo local e, em seguida,
permanecer estagnadas por falta de estimulo adicional.

A otimizacao por enxame de particulas hibrida com controle de coeficientes de acele-

ragao variaveis no tempo (HPSO-TVAC, do inglés |[Hybrid Particle Swarm Optimization|
(with Time-Varying Acceleration Coefficients|) tem como objetivo superar esse problema,

fornecendo o impulso necessario para mover particulas paralisadas.
O algoritmo[HPSO-TVAC]controla explicitamente o equilibrio explora¢ao—intensificagao
ao variar c; e cg ao longo das iteracoes, dispensando o termo de inércia. A velocidade é

atualizada por
VA(t) = e1(g) R{(t) (pbest! — X{(1)) + calg) Ra(t) (gbest” — X{ (1)),

em que ¢;(g) e ca2(g) cresce/decresce, respectivamente, conforme o valor da geragao de
particulas g, favorecendo a exploracao no inicio e a intensificagdo no final. Em situagoes
de estagnacao, ou seja, em que |V;| é muito pequeno por vdrias iteragoes, reinicializa-se
a magnitude por R, ~ U(0,1) para reativar a busca, conferindo maior diversidade e

capacidade adaptativa ao processo de otimizacao.

Otimizacao por enxame de particulas com informacao local

Ao contrario dos algoritmos de enxame previamente descritos, os quais utilizam a melhor
experiéncia global das particulas (gl _,) como referéncia para guiar toda a populacio, o

algoritmo de otimizacao por enxame de particulas com informacao local (LIPS, do inglés

[Local Information Particle Swarm|) baseia-se na melhor experiéncia das particulas vizinhas

(nbestd). Nesse caso, sdo justamente as particulas mais préximas que direcionam a busca

no espaco de solugoes. Essa escolha visa tornar o algoritmo mais eficaz para aplicagdo em



Capitulo 2. Otimizagdo por Enzame de Particulas 30

problemas multimodais, ou seja, aqueles caracterizados pela presenca de multiplos 6timos
locais (JI et al., [2023]).

A selecao das particulas vizinhas é feita com base na distancia Euclidiana entre parti-
culas, de modo que as mais préximas sao empregadas como guias para a particula atual.

Assim, a atualizacao da velocidade da i-ésima particula na dimensao d é dada por

Vi + 1) = x|VA® + (P - X0, (2.9)

em que x = 0,7298 corresponde ao coeficiente de restrigcao, responsavel por evitar velo-
cidades excessivas e a consequente convergéncia prematura. A posicao de referéncia P é

calculada como

Nsize
Z w; nbest?
pl=t
Z wj
j=1

(2.10)

sendo ¢, o peso de aceleracao; w; , peso adaptativo; nbest?, a j-ésima vizinhanc¢a mais
proxima do pbest? da i-ésima particula; e ngze € {2,...,5}, o tamanho da vizinhanca,
que é conforme Ji et al| (2023) ajustado dinamicamente entre 2 e 5.

Dessa forma, o [LIPS] explora informagoes locais provenientes de particulas situadas
na mesma regiao do espaco de busca. Esse mecanismo reforca a capacidade de exploracao
local do algoritmo, especialmente nas fases finais da busca, permitindo que as particulas
convirjam para o 6timo global com maior exatidao, isto ¢, aproximando-se mais do valor
otimo, e com maior estabilidade, reduzindo oscilagoes e garantindo uma convergéncia
menos sensivel as variagoes estocasticas do algoritmo.

Em resumo, o [PSOJ| e suas variantes mostram a versatilidade dos algoritmos baseados
em inteligéncia por enxame, oferecendo diferentes mecanismos para equilibrar exploragao
e intensificagdo no espaco de busca. Cada aprimoramento surge como resposta a limita-
¢oes especificas, como a convergéncia prematura e a perda de diversidade, ampliando a
aplicabilidade do método em cendrios cada vez mais complexos. Essa evolucao continua
estabelece o fundamento para estratégias mais avangadas, como a combinacao adaptativa
de otimizadores discutida na Segao [2.2]

2.2 Combinacao de otimizadores

O problema da robustez e da universalidade dos algoritmos baseados em [PSO| tem sido
amplamente discutido por pesquisadores, visto que, muitas vezes, tais métodos nao estao
preparados para lidar com a diversidade de problemas de otimizagao existentes (GBENGA;
RAMLAN, 2016)). Esse aspecto se relaciona diretamente ao teorema da inexisténcia do
almogo gratis (NFL| do inglés [No Free Lunch Theorem]) (WOLPERT; MACREADY], [1997),
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segundo o qual nenhum método, de forma isolada, apresenta desempenho superior em
todos os tipos de problemas.

Nesse contexto, a combinagao de algoritmos e modelos surge como uma alternativa
consolidada na literatura, pois, em diversas areas da ciéncia, tal estratégia tem se mos-
trado eficaz para gerar solugoes adaptaveis a diferentes cendarios. Por exemplo, em anélises
climaticas, conjuntos de modelos sdo empregados para reduzir a incerteza das previsoes
meteorologicas (HUANG; ZHAO, 2022); por outro lado, em aprendizagem de maquina
e inteligéncia artificial, métodos baseados em conjuntos, como o Random Forest e o Bag-
ging, de acordo com (GONZALEZ et al., 2020), aumentam a precisdo da classifica¢do ao
explorar multiplos modelos sobre o mesmo conjunto de dados.

De forma analoga, no ambito do [PSO] foram propostas solugoes em que variantes do
algoritmo sao alocadas dinamicamente. Assim, dado um conjunto de diferentes tipos de
algoritmos baseados em [PSOJ é possivel selecionar, durante a execugao, aquele que melhor
se adequa as caracteristicas do problema a ser resolvido, explorando de modo sinérgico as
vantagens de cada variante. Essa estratégia, conhecida como combinacao de algoritmos
PSO|(HONG et al., 2023), amplia a capacidade de adaptacao e mitiga as limitagoes impostas
pelo teorema [NFI] resultando em solugoes mais eficazes para cada tipo de problema.

Como exemplos de algoritmos combinados, destaca-se a otimizacao por enxame de
particulas multiestratégica, na qual a populagao ¢é dividida em duas partes complemen-
tares. Na primeira, aplica-se uma busca gaussiana local para favorecer a convergéncia da
solugao, em que um mecanismo de refinamento perturba a solugao corrente por meio de
incrementos amostrados de uma distribui¢do normal de média zero (SCHWEFEL, |1981)).
Em vez disso, na segunda, emprega-se a estratégia de mutacao diferencial, responsavel
por preservar a diversidade das particulas e evitar a estagnagdo do processo de busca,
em que sao gerados novos candidatos por meio da combinacao linear entre individuos da
populagao (NO; DAHIYA, [2017)). Outra técnica hibrida é a otimizacao por enxame de par-
ticulas heterogéneas, na qual se constréi um conjunto composto por diferentes variantes
de[PSO] As particulas sdao alocadas aleatoriamente nesse conjunto e suas velocidades séo
atualizadas conforme a dinamica de cada variante do conjunto, ampliando a robustez do
processo de exploragao (DU et al., [2017)).

Além desses algoritmos, merece destaque o otimizador por enxame de particulas em
conjunto , do inglés |[Ensemble Particle Swarm Optimizer]), inicialmente proposto
em (LYNN; SUGANTHAN, 2017)) e posteriormente aprimorado em (HONG et al.,, 2023).

O [EPSO] combina cinco variantes distintas do algoritmo [PSO| quais sejam, [CLPSO]
[FDRPSO} [HPSO-TVAC] [LIPS| e [WPSO] descritos previamente na Secao 2.1, e adota

uma estratégia de selecao autoadaptativa para, a cada iteragao, escolher dinamicamente
o algoritmo mais adequado ao cendrio corrente (PUTNINS; ANDROULAKIS, [2021)).

No [EPSO} a populagao é organizada em duas subpopulagoes de forma a equilibrar

convergéncia e diversidade. O algoritmo [CLPSQ] é aplicado a uma das subpopulagoes,
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enquanto as demais variantes sao atribuidas a outra. Essa divisao favorece a exploracao
do espaco de busca e evita a perda prematura de diversidade. Para atualizar uma particula
da segunda subpopulagdo, seleciona-se uma variante de[PSO|com base na taxa de sucesso
observada nas tultimas iteragoes, de acordo com o mecanismo de sele¢ao autoadaptativa,
que serd descrito a seguir. Finalmente, esse processo resultara na sele¢do automatica do

algoritmo mais adequado para cada tipo de problema de otimizacao.

Estratégia de selecao autoadaptativa

No algoritmo [EPSO] a selegao das variantes de [PSOJé dindmica e ocorre de forma auto-
adaptativa. Em sintese, a cada iteracao, o método observa o histérico de éxitos e falhas
durante a busca pelas melhores solugoes e, com base nesse desempenho, ajusta as proba-
bilidades de escolha de cada variante. Define-se um niimero fixo de geragoes como periodo
de aprendizagem, que serd denotado por [PA] deste ponto em diante. Vale ressaltar que,
de acordo com (HONG et al., 2023), sugere-se o valor PA = 200. Nesse intervalo, o
acompanha a trajetoria das particulas, registrando em memoria os sucessos e as falhas
associados a cada variante. A partir desses registros, estima-se a taxa de sucesso de cada
[PSOJ e atualizam-se, para as geragoes subsequentes ao [PA] as respectivas probabilidades
de selecao. Assim, as variantes passam a ser escolhidas com probabilidade proporcional
ao seu desempenho historico, direcionando a busca para a técnica mais adequada ao pro-

blema. As etapas da estratégia autoadaptativa sao apresentadas a seguir:

1. Define-se pgk) = 1/K como a probabilidade de selecionar o k-ésimo algoritmo m
na g-ésima geracao, em que k = 1,2,3,..., K, sendo K o ntmero total de algorit-
mos presentes no conjunto. Inicialmente, todos os algoritmos [PSO] sdo considera-

dos equiprovaveis. Nesta pesquisa, foi assumido que K = 5, pois o conjunto sera

composto por cinco variantes do algoritmo [PSO| quais sejam, [CLPSO| [FDRPSO]
HPSO-TVAC] [LIPS] e WPSO|

2. Para efetuar a escolha do algoritmo candidato em cada iteracao, adota-se o método
de selegao por roleta, originalmente proposto em (BAKER) [1987)). Nesse método,
cada algoritmo é representado em proporcao ao seu valor de aptidao, de modo
que valores mais elevados resultam em parcelas maiores da roleta atribuidas ao
respectivo algoritmo. Por outro lado, algoritmos de menor desempenho recebem
uma fracdo proporcionalmente reduzida. Dessa forma, a selecao tende a favorecer
algoritmos mais promissores, ao mesmo tempo em que mantém a diversidade ao

permitir a escolha ocasional de variantes menos aptas;

3. Na g-ésima geracao de particulas, apds a avaliacao de todas as solugoes, isto é,
das respostas obtidas para o problema de otimizagao, estabelece-se uma memoéria

destinada a registrar o desempenho do k-ésimo algoritmo de [PSO] Nessa meméria,
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registram-se os sucessos e as falhas do algoritmo — representados, respectivamente,
por sgk) e fg(k) — conforme ele acerta ou erra a solucao do problema. Assim, cada
algoritmo é descrito pelo par ordenado (sé’“); f;k)), no qual sék) corresponde ao nu-
mero de sucessos e fg(’“) ao numero de falhas na geragao g. A Tabela 1| exemplifica
a forma como esses valores sdo organizados e mantidos na memoria ao longo do

processo evolutivo;

4. A memoria responsavel por armazenar os nimeros de sucessos e falhas é atualizada
em ciclos definidos pelo periodo de aprendizagem. Caso a capacidade de armazena-
mento seja excedida apds o término de um [PA] ocorre uma substituigdo em regime
de overflow, o que significa que os registros mais antigos sao descartados, de modo
a liberar espaco para a insercao dos novos valores produzidos pela geragdo corrente

de particulas.

5. Na geracao subsequente ao término do [PAl a nova probabilidade de sele¢do do k-

ésimo algoritmo E denotada por p(k) é atualizada de acordo com

S(k)
pgk) =7 (2.11)
k
> 5,
k=1

em que Sgk) representa a taxa de sucesso acumulada do k-ésimo algoritmo até a

g-ésima geracao, definida como

-1
J
j=PA+1
S = — — +¢, (2.12)
oo+ )
jPA-',—l( ! ’

sendo sg- ) e fj( ), o numero de sucessos e falhas observados pelo k-ésimo algoritmo

na j-ésima geracao, respectivamente, e ¢ = 0,01, o fator de suavizacdo da taxa

Tabela 1 — Meméria de sucessos e falhas do k-ésimo algoritmo na g-ésima geragao
de particulas.

indice da Meméria | Algoritmo PSO; Algoritmo PSO- Algoritmo PSOgk
T T 2 2 2 2
1 (s é )PA7fg(—)PA) (s E, )PA’ f;—)PA) (ksé )PA7 fé;)PA)
T T 2 2
2 (s g)PA-H’fg—PA—H) (s ;)PA+1’fg—PA+1) (s 5(7 )PA+1’fg—PA+1)
T T 2 2
PA (E,M,f“) (;’1,f“> CRAGN

Fonte: Adaptado de (PUTNINS; ANDROULAKIS, [2021)).
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de sucesso, introduzido para evitar valores nulos (PUTNINS; ANDROULAKIS, [2021)).
Dessa forma, o algoritmo [PSO| com maior taxa de sucesso histérica obtém também
maior probabilidade de ser selecionado para guiar as particulas na geragao atual.
Além disso, a estratégia de selecao autoadaptativa permite que o método aprenda, ao
longo da evolucgao, qual variante se mostra mais adequada ao problema em questao,

reforcando sua utilizagado progressiva.

Em sintese, a combinagao de otimizadores baseada em [PSO] aliada a mecanismos de
selecao autoadaptativa, representa um avanco significativo frente as limitagdes impostas
pelo teorema [NFL] Ao explorar simultaneamente a diversidade de variantes disponiveis e
aprender, ao longo da evolucao, estes algoritmos se mostram mais eficazes; tais enfoques
ampliam a robustez e a eficiéncia do processo de otimizagao. Com isso, estabelece-se uma
base sélida para métodos mais flexiveis e adaptativos, capazes de lidar com diferentes
cenarios de busca e com problemas complexos, como serd explorado ao longo dos proximos

capitulos.

2.3 Revisao bibliografica acerca de combinacio de otimizadores

O levantamento a seguir destaca avancos recentes em combinagoes e variantes do algo-
ritmo [PSO| e evidencia lacunas persistentes, como, por exemplo, risco de convergéncia
prematura, desequilibrios entre exploracao e intensificagdo e custos computacionais eleva-
dos, que motivam as propostas desta tese.

Conforme discutido na Secao [2.2], o teorema [NFT] estabelece que néao existe um algo-
ritmo de otimizagao universal capaz de resolver, de maneira eficaz e eficiente, todos os
tipos de problemas (MONIZ; MONTEIRO, 2021)). Para contornar as limitagoes inerentes a
cada algoritmo, destacam-se, nos ultimos anos, tanto as estratégias de selecao autoadap-
tativa quanto as técnicas baseadas em conjuntos de otimizadores (AJANT; MALLIPEDDI,
2022; HONG et al., [2021; [WU et al., 2018)). A principal razao é que tais métodos permitem
que os algoritmos se ajustem dinamicamente as caracteristicas do problema em questao,
aumentando sua robustez e aplicabilidade. No caso especifico dos algoritmos inspirados
no [PSO| essas combinagoes hibridas podem ser agrupadas em duas categorias, sendo a
primeira o [PSO] associado a suas préprias variantes e a segunda o [PSO]integrado a outros
algoritmos de otimizacao. Esta secdo apresenta alguns dos trabalhos mais recentes dentro
dessas duas linhas de pesquisa, além de destacar propostas que incorporam mecanismos
auxiliares projetados para aprimorar o desempenho do [PSO|

Em (HONG et al., 2023)), propoe-se o otimizador por enxame de particulas de conjunto
aprimorado do inglés [Improved Ensemble Particle Swarm Optimizer)), que es-

tende o algoritmo [EPSO|com duas inovagdes. A primeira apresenta melhorias no algoritmo

[WPSO] para induzir e manter a diversidade das geragoes de particulas, sobretudo no inicio

da evolugao. Na segunda, sao utilizadas matrizes de covariancia adaptadas para refinar
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a exploracao local. Embora os resultados mostrem ganhos em conjuntos heterogéneos de
problemas, permanecem limitagoes, como a parametrizagao fixa das matrizes e um pro-
cesso de selecao pouco dinamico, que podem afetar o equilibrio exploracao—intensificacao.

A meta-heuristica simulada , do inglés|Simulated Annealing)) foi combinada ao PSO
em (PAN et al., 2019)), resultando no algoritmo hibrido denominado otimizagao por enxame
de particulas com recozimento simulado (SA-PSO| do inglés [Simulated Annealing-Particld

[Swarm Optimization)). O objetivo dessa integracao é mitigar limitagoes conhecidas do

PSO, como a propensao a ficar preso em 6timos locais ao lidar com fungoes complexas, a
baixa acurdcia na fase evolutiva e a velocidade de convergéncia relativamente lenta. O [SA]
por sua vez, introduz um mecanismo probabilistico que permite aceitar nao apenas solu-
¢oes vizinhas melhores, mas também piores, com determinada probabilidade, ampliando
a exploragao do espago de busca. Dessa forma, o[SA-PSO]busca escapar de minimos locais
e aumentar as chances de alcangar o 6timo global, oferecendo novas trajetérias de solugao
ao problema. Os experimentos mostraram desempenho superior em comparacao a [SA] e
ao [PSOJ originais. Contudo, o algoritmo [SA-PSOJ apresentou dificuldades na resolugao de
fungoes unimodais, como a funcao Easom, cujo minimo global esta restrito a uma regiao
extremamente pequena em relagao ao espaco de busca.

Diferentemente de outros algoritmos que apenas combinam variagdes do [PSO| em

(YANG; YU; HUANG, 2022) foi proposta a inser¢gao de uma métrica de relagao sinal-ruido

(SNR) do inglés [Signal-to-Noise Ratio) em conjunto com uma estratégia adaptativa para

selecionar, a cada etapa da evolugao, o modo de aprendizado mais adequado — seja pela
atualizacdo da velocidade, pelo ajuste do peso de inércia, pela manutencao da diversi-
dade populacional ou pela adaptagao dos coeficientes de aceleragao. O método resultante,
denominado conjunto multiestratégia adaptativo [PSO| com métrica de distancia de SNR

(AMSEPSO]| do inglés |[Adaptive Multistrateqgy Ensemble PSO with Signal-to-Noise Ratio

[Distance Metric|), tem como objetivo central melhorar o processo de otimizagao a partir

da escolha dindmica de uma tnica estratégia de aprendizado em cada iteragao. Esse meca-
nismo nao apenas contribui para mitigar a convergéncia prematura, mas também introduz
recursos para auxiliar a populacao a escapar de minimos locais. Os experimentos foram
conduzidos sobre o conjunto de problemas de referéncia do congresso de Computagao Evo-
lucionéria (SALGOTRA et al., 2022), nos quais o obteve resultados
de destaque. Ressalta-se ainda que a incorporagao de métricas [SNR] fortalece a integragio
entre inteligéncia por enxame e [AM] abrindo novas perspectivas para algoritmos hibri-
dos. Entretanto, permanece o desafio de se desenvolver estratégias de aprendizado mais
refinadas, capazes de se adaptar de forma eficiente a diferentes estdgios evolutivos das
particulas.

Um dos pontos fracos do algoritmo PSO original é a tendéncia do algoritmo a per-
manecer “preso” em minimos locais, sem a capacidade de avancar para regidoes mais pro-

missoras do espago de busca. O trabalho apresentado em (NAMA et al, 2023)) identifica
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que esse comportamento decorre, em grande parte, do desbalanceamento entre a fase de
descoberta de novas solugoes e o subsequente refinamento delas, o que compromete o al-
cance de resultados mais robustos. Para enfrentar essa limitacdo, os autores propuseram
um novo algoritmo de conjunto que integra variantes do PSO com o algoritmo de busca
de retrocesso (BSA| do inglés [Backtracking Search Algorithm]) (JIN; YIN| 2020). A ideia

central é explorar a complementaridade entre os métodos, de modo que o [BSA] auxilie o

[PSO| a manter um equilibrio continuo entre as exploragoes globais e locais durante todo
o processo de busca. O algoritmo resultante, denominado conjunto modificado [PSO] e
IBSA| (e-mPSOBSA] do inglés |[Ensemble modified PSO and BSA)), foi avaliado com base
nos conjuntos de funcoes de benchmark [CEC2014] e [CEC2017, apresentando desempe-
nho superior em termos de taxa de convergéncia, acuracia e estabilidade dos resultados.
Como limitacdo, entretanto, o mostrou-se menos adequado para problemas

de otimizacao de grande escala, especialmente aqueles que envolvem elevado nimero de

variaveis e multiplas fungoes objetivo.

O algoritmo [PSO| tem sido amplamente empregado em diferentes dreas devido a sua
implementacao simples e a facilidade de adaptacao em diversas linguagens de programa-
¢ao (LIU et al) 2021)). No entanto, ele apresenta algumas limitagoes conhecidas, como a
convergéncia prematura e a baixa diversidade populacional (WANG et al, 2021; HUYNH et
al., [2023). Com o intuito de mitigar essas fragilidades, a pesquisa apresentada em (YANG;
LI; HUANG, [2023)) propoe o PSO multi-enxame dindmico adaptativo com detecgao de es-
tagnacao e exclusao espacial , do inglés |Adaptive Dynamic Multi-Swarm PSO|

lwith Stagnation Detection and Spatial Fzxclusion)). A proposta introduz uma arquitetura

que combina dois mecanismos complementares. O primeiro é um detector de estagnacao
de particulas, responsavel por redefinir o espago de busca quando o progresso da popula-
¢ao é interrompido. Por outro lado, no segundo, ha uma estratégia de exclusao espacial,
projetada para evitar a convergéncia prematura entre os subgrupos de particulas.
Inicialmente, a populagao ¢ dividida em dois subgrupos, que podem ser reagrupados
ao longo da evolugdo. A melhor particula de cada subgrupo, denotada por lbest, é uti-
lizada como referéncia para avaliar o estado evolutivo. Caso nao haja melhora continua
até o periodo de reagrupamento, o mecanismo de estagnagao é ativado, forcando a defi-
nicdo de um novo espaco de busca. Para manter a diversidade, as novas particulas sao
geradas a partir das melhores solugoes anteriores. Em paralelo, a estratégia de exclusao
espacial atua para impedir que todos os subgrupos se tornem prematuramente homogé-
neos, preservando a exploragao global. O [ADPSO] foi avaliado nos conjuntos de fungoes de
benchmark [CEC2013| e [CEC2017, apresentando resultados promissores. Mostrou-se eficaz

na resolucao da maioria dos problemas de otimizacao e superou diversas variantes do algo-

ritmo [PSO] Entretanto, os experimentos também evidenciaram limitagoes em problemas
unimodais, nos quais o algoritmo nao obteve desempenho satisfatorio.

Ao se analisar comparativamente os estudos discutidos nesta secdo, observa-se que a
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Tabela 2 — Trabalhos relacionados ao tema combinac3o de otimizadores.

Resol Aproveita Selecéo
esotve Evita . melhor Diver- auto-
problemas Baixo . idad dantati
Trabalho unimodais COAHVG.)I‘_ tempo de experiéncia sidade adaptativa
géncia N das Popula- de
e execugao J . .
. . precoce particulas cional variantes
multimodais .
anteriores PSO
IEPSO (HONG et al., |2023]) v X v X v X
SA-PSO (PAN et al.}|2019) X v X X X X
AMSEPSO (YANG; YU; HUANG] |2022) v v X X X v
e-mPSOBSA (NAMA et al.| [2023) X v X X X X
ADPSO (YANG; LI; HUANG; 2023) v v X v v X
MB-EPSO (SILVA et al.| [2024) v v v v v v

combinacao de diferentes algoritmos evoluciondrios se mostra uma estratégia altamente
eficaz, uma vez que permite a adaptacao dindmica as caracteristicas especificas de cada
problema. Dessa forma, tais alternativas hibridas contribuem para preencher a lacuna
apontada pelo teorema[NFILJ] segundo o qual ndo existe uma tnica estratégia de otimizagao
capaz de resolver, de forma igualmente eficiente, todos os tipos de problemas.

A Tabela [2] apresenta uma lista dos trabalhos discutidos anteriormente e o algoritmo
apresentado nesta tese, denominado [MB-EPSO]| destacando-se as principais caracterfs-
ticas de cada metodologia. Nota-se que o algoritmo [MB-EPSO] contempla um conjunto
mais abrangente de propriedades em comparagao aos demais métodos relacionados. Algo-

ritmos como o [EPSO] e o [ADPSO| j4 apresentam avancos relevantes, como a capacidade

de lidar com problemas multimodais e o aproveitamento da experiéncia passada das par-
ticulas, mas ainda apresentam limitacoes quanto ao custo computacional reduzido ou a
selecao autoadaptativa de variantes. Outros métodos, como [SA-PSO] e fe-mPSOBSA], em-

bora atuem contra a convergéncia prematura, nao oferecem mecanismos adicionais para

manutencao da diversidade ou aproveitamento da memoria de geracoes anteriores.

O algoritmo [MB-EPSQ)] diferencia-se por integrar todas as caracteristicas listadas; ou
seja, resolve problemas unimodais e multimodais, evita a convergéncia precoce, mantém
um baixo tempo de execugao, utiliza informacoes das melhores geracoes passadas, pre-
serva a diversidade populacional e incorpora a selegao autoadaptativa de variantes [PSO]
Essa combinacao amplia sua robustez e flexibilidade, tornando o algoritmo aplicavel em

diferentes cendrios de otimizacao.

2.4 Resumo do capitulo

Problemas de otimizacao consistem na busca por solugoes 6timas sob restrigoes, estando
presentes em diversas dreas cientificas. O algoritmo [PSO] destaca-se por sua simplicidade

e rapidez, mas sofre com convergéncia prematura, o que motivou variantes como [CLPSO]

[FDRPSO], [HPSO-TVAC] [LIPS|e[WPSO], cada uma voltada a equilibrar exploracao, diver-
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sidade e estabilidade. Para superar as limitagdes do teorema [NFL] surgiram estratégias
de combinagdo de otimizadores, entre elas o [EPSO] que adota sele¢io autoadaptativa
para escolher dinamicamente a variante mais adequada. Trabalhos recentes ampliaram a
robustez do [PSO| por meio de técnicas hibridas, embora persistam restrigoes em custo
ou escalabilidade. Nesse cendrio, o algoritmo [MB-EPSO] se diferencia ao integrar baixo
tempo de execugao, preservacao da diversidade, memoria de geracoes passadas e selecao
adaptativa, tornando-se uma solugdo robusta e escalavel para diferentes problemas de

otimizacao.
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3 CONJUNTO DE OTIMIZADORES POR
ENXAME DE PARTICULAS BASEADO
EM MEMORIA

“0 progresso resulta da arte de
colher o melhor de cada experiéncia

e reuni-lo em beneficio de um

propoésito comum.”

(Francis Bacon)

Neste capitulo apresenta-se o algoritmo MB-EPSO, uma extensdo do EPSO que incorpora uma janela
de memdria deslizante para aprimorar a selecio autoadaptativa de variantes de PSO. Descrevem-se o
funcionamento, os principais parametros e os experimentos conduzidos com as fungoes do CEC2017.
Por fim, discutem-se os resultados em termos de acurdcia, robustez e tempo de execucio, comparando o

MB-EPSO a algoritmos consagrados da literatura.

O algoritmo aqui proposto fundamenta-se no (HONG et al., 2023)) e, em parti-
cular, em sua estratégia de sele¢cdo autoadaptativa (PUTNINS; ANDROULAKIS, 2021). O
algoritmo, denominado [MB-EPSO] modifica esse mecanismo ao introduzir uma memoria
deslizante responsavel por preservar, ao longo da evolucao, as melhores geracoes de parti-
culas. As solugoes armazenadas sao reintroduzidas no conjunto, contribuindo para manter
a diversidade populacional, mitigar a convergéncia prematura e reforcar a exploracao do

espacgo de busca em problemas de otimizacao.

3.1 Descricao da proposta

De acordo com a Equacao , todas as geragoes compreendidas entre a primeira gera-
cao produzida apds o PA e a pentltima geracao (g — 1) recebem o mesmo peso, indepen-
dentemente de apresentarem sucessos ou falhas. Como consequéncia, particulas eficazes
nas iteragoes iniciais podem deixar de ser selecionadas na iteracao seguinte, mesmo tendo
alta ou baixa probabilidade de escolha, pois o mecanismo de roleta nao diferencia o mo-
mento em que o bom desempenho ocorreu.

Para mitigar essa limitacdo, o [MB-EPSO] combina variantes de [PSO| que compoem
o conjunto (CLPSO| [FDRPSO] [HPSO-TVAC] [LIPS| e WPSO) e introduz uma janela de
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Evolugao das geragoes de particulas

Figura 1 — Evolugdo das geragdes de particulas no algoritmo MB-EPSO.

memoria deslizante, de tamanho M, destinada a armazenar as melhores geracoes de par-
ticulas ao longo do processo. Essa memoria torna a sele¢do autoadaptativa mais eficiente,
elevando a probabilidade de escolha das variantes mais adequadas ao problema em analise.

Para evidenciar o papel da janela de memoria deslizante no processo de selecao au-
toadaptativa e na evolugdao das particulas, a Figura [T ilustra esse mecanismo, no qual a
janela de meméria é denotada por M.

A seta identificada pelo rétulo “Evolucao das geracoes de particulas” representa a
linha do tempo da evolugao, a qual se estende desde a primeira geracao até o ntmero
total de geragoes, denotado por G. Apds o periodo de aprendizagem, a janela de memoria
M passa a deslizar ao longo dessa linha, acompanhando todo o processo evolutivo. Assim,

a nova probabilidade de selegao para o k-ésimo algoritmo [PSO| é dada por

__BY
L (k),
> Ry
k=1

em que Pg(k) é a probabilidade de sele¢ao de algoritmos m, R;k) é a nova taxa de sucesso

P

g

(3.1)

do k-ésimo algoritmo na g¢-ésima geragao, tal que

g—1
> ags”

j=9—M

Rék) - g—1 + ¢7 (32)
5 (e 1)
J=9—M

em que se definem PA+1<¢g<G—-1eg> M. O termo ¢ = 0,01 é o mesmo ja definido
em (2.12)) e, finalmente, a; é o fator de peso dado por

a; = = (33)

cuja funcao é premiar o nimero de sucessos de cada geracao, uma vez que seu valor cresce
a medida que o processo evolutivo avanca.
O algoritmo [EPSOJ], que serve de base para esta proposta, privilegia solugoes mais

recentes, o que pode comprometer a escolha do algoritmo [PSO|] mais adequado, j& que
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Envia Problema de
Otimizacao
Definir PA,g Me G

l

Iniciar as variantes
PSO do conjunto
f_’
(CLPSQ, FDRPSQO,
HPSO, LIPS e WPSO)

Selegao Auto-
adaptativa

(p" = 17K)

.
Armazenar sucessos,
fathas, p* e M

sim

Z<PA

Retorna a
solugao
do
problema

Corresponde a
peniltima
geracdo de
particulas?

Gravar as novas
probabilidades do
conjunto

T

Nova Selecao
Auto-adaptativa

Figura 2 — Fluxograma do algoritmo MB-EPSO

conjuntos de particulas com bom desempenho em itera¢oes anteriores podem ser descar-

tados. Nesse contexto, a introducao da janela de memoéria M e do fator a; contribui para

preservar informagoes relevantes ao longo das geragoes, auxiliando os algoritmos [PSO| do

conjunto a conduzir a otimizacao de maneira mais eficiente e a alcangar resultados de

melhor qualidade.

A Figura [2]ilustra o fluxograma do funcionamento do algoritmo [MB-EPSO], cuja pro-

posta central é integrar diferentes estratégias de atualizagdo de particulas em um modelo

de conjunto autoadaptativo. O processo ocorre conforme descrito a seguir:

1. Inicializar: Definir o problema de otimizacao e os parametros: periodo de apren-

dizagem (PA), geracdo atual (g) e tamanho da meméria (M) e o ntimero total de

geragoes (G);

2. Selecionar variante: Realizar a selecao autoadaptativa entre as cinco variantes de
[PSO| com base na distribui¢do de probabilidade uniforme. Conforme a Secao [2.2]

1O valor de M é discutido na Secio
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na fase em que g < PA, essa probabilidade é calculada por pg’f) = 1/K, em que

k=1,2,3,..., K, sendo K, o nimero total de algoritmos presentes no conjunto;

3. Evoluir e registrar: Gerar a proxima populacao de particulas com a variante esco-
lhida e registrar sucessos, falhas, probabilidades e o valor de M. Se g < PA, voltar

ao Passo 2; caso contrario, atualizar as probabilidades segundo a Equacao (3.1]).

4. Parar: Repetir até a (g — 1)-ésima geragao, correspondente a pentultima iteracao

do processo evolutivo. Ao final, retornar a melhor solucao encontrada.

Esse modelo de fluxo permite que o algoritmo adapte dinamicamente suas
estratégias de busca com base no historico de desempenho, utilizando, de forma continua,

as melhores geracoes de particulas registradas ao longo do processo evolutivo.

3.2 Resultados

Nesta se¢ao, apresentamos os resultados numéricos obtidos nos testes de desempenho re-
alizados com o algoritmo [MB-EPSO|] O desempenho de cinco algoritmos baseados em
[PSO| (CLPSO| [FDRPSO], [HPSO-TVAC] [LIPS| e WPSOJ), bem como dois métodos em
conjunto (EPSO| e [MB-EPSO)) é avaliado utilizando 29 fungdes de benchmark de oti-
mizagao de parametros reais do , quais sejam, fungoes unimodais (F; e Fy),
multimodais (F3 a Fy), hibridas (Fig a Fig) e de composigao (Fay a Fog) (SALGOTRA et

al, |2022). Embora existam suites mais recentes, como a CEC2022 para o mesmo tipo
de problema, estas ndo substituem a [CEC2017], mas oferecem um conjunto alternativo e
mais compacto de fungoes com filosofia semelhante (SUGANTHAN et al., [2022). Além disso,
trabalhos recentes continuam utilizando a como benchmark padrao, inclusive
em competicoes atuais; por exemplo, a competicao CEC2024 baseia-se diretamente nessa
suite, o que reforca sua relevancia e permite uma comparacao direta com um grande corpo
de resultados da literatura (BREST; MAUEEC, 2025). Dessa forma, a escolha da
garante simultaneamente representatividade, comparabilidade e viabilidade computacio-
nal dos experimentos, sem comprometer a generalidade das conclusoes obtidas sobre o
desempenho do algoritmo proposto.

Para comegar, analisamos o comportamento da proposta[MB-EPSO|a partir da relagao
entre o nimero de sucessos e o tamanho da janela de memoria deslizante para cada tipo
de funcao de otimizacdo. A Figura |3| mostra a relacdo entre o tamanho da memoria M
e o nimero de sucessos por tipo de fungdo do [CEC2017] Para M < 8, a taxa média
de sucesso aproxima-se de 85% em todas as categorias; para M > 8, cai para cerca
de 50%. Destaca-se na cor azul-marinho que foi apenas com M = 8 que se obtiveram
solugoes corretas em fungoes unimodais, possivelmente porque as particulas tendem a se
concentrar em 6timos locais/globais, reduzindo a diversidade (EIBEN, [2016). Com base
nessas conclusoes, adota-se M = 8 como valor padrdo para o [MB-EPSO]
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Figura 3 — Nimero de sucessos do algoritmo MB-EPSO| para diferentes tamanhos de janela
de memoéria deslizante e tipos de funcdo de teste do [CEC2017|.

Conforme ja mencionado, o algoritmo [MB-EPSO] é comparado com as variantes [PSOJ
e com o algoritmo [EPSO] adotando-se o valor M = 8 para o tamanho da memoria
deslizante. Apds todas as iteracoes, o desempenho é avaliado por meio dos valores de
erro absoluto médio e desvio padrao. A Tabela [3] apresenta os resultados experimentais

de todos os métodos [PSO| e [EPSO] para as fungoes de teste do [CEC2017], de F; a Fu.
Seguindo as mesmas configuragoes de (HONG et all [2023), uma comparagao entre cada

algoritmo, dois a dois, foi realizada, considerando 30 execugoes de simulagao em problemas
de 30 dimensoes. Cada simulagao utilizou G = 10.000 geracoes, PA = 200 e 30 particulas
por populacao.

A significancia estatistica foi avaliada pelos testes de Friedman/Nemenyi (FRIEDMAN|
11937; INEMENYT, [1963)) com nivel de significincia de 5%. A hipétese nula H, assume
desempenho equivalente entre MB-EPSO|e as variantes de [PSO} a alternativa H; postula
superioridade do [MB-EPSO] A Tabela [3] reporta, para cada funcdo F,, o valor médio p

da solugao obtida em cada uma das fungoes, o desvio padrao o, o rank — quanto menor

2

o valor, melhor o desempenho do algoritmo — e o simbolo “+”/“=" nas comparagoes
pareadas com o[MB-EPSO] denotado por p, em que “+” significa que o algoritmo proposto

foi superior e “=" significa que obteve desempenho semelhante.
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Tabela 3 — Resultados experimentais dos algoritmos PSO para fungbes de teste
CEC2017 de 30 dimensdes.

F, Critério MB-EPSO EPSO WPSO LIPS CLPSO HPSO-TVAC FDRPSO

3] " 1,08E+03 3,00E+09 1,57E+11 2,24E+11 1,31E+11 1,30E+11  2,27TE+11
- 1,32E+03 5,55E+09 548E+10 550E+10 1,70E+10 2,01E+10  4,91E + 10
rank/p 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

F " 3,12E401 1,44E+05 1,15E+13 1,79E+14 8,89E +08 9,59E +09  2,80F + 14
P 1,06E+02 521E+04 2,8lE+13 3,21E+14 2,32E+09 4,39E+10  5,55E + 14
rank/p 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

F3 “w 1,96E+4-01 1,52E4+03 1,15bE4+05 1,80E+05 3,51E+04 4,70E+4 04 2,09E 4 05
o 3,13E+01 2,01E+4+03 7,40E+04 8,69E+04 2,58E+04 2,19FE4 04 3,51E + 05
rank/p 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

Fy o 7,53E4-01 1,44E +02 9,01E4+02 9,949E402 6,71E+02 5,51E+02 9,44F + 02
- 2,61E+01 7,23E+01 3,58E+02 2,81E+02 1,6TE+02 2,41E+02  3,15E 4 02
rank/p 1 2/ = 5/+ 7/+ 4/+ 3/+ 6/+

Fs " 4,04E401 5,89E+01 1,84E+02 2,16E+02 1,4TE+02 1,43E+02  1,97E + 02
o 3,74E+00 8,68E4+00 3,78E4+01 2,81E+01 1,51E+01 1,30E+401 3,28E + 01
rank/p 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

Fs L 2,18E4+02 3,40E+02 3,37TE+03 4,11E+03 2,55E+03 2,40E+03  4,11E + 03
o 3,34E+01 §8,55E4+01 1,26E+4+03 1,12E+03 7,59E+02 7,83E+4 02 9,03E + 02
rank/p 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

Fr " 5,04E4+01 1,14E+02 7,85E+02 8,92E+02 4,62E+02 4,62E+02  8,80E 4 02
o 7,08E+00 5,65E+01 2,88E+02 1,77E+02 2,10E+02 2,18E+02  1,65E + 02
rank/p 1 2/ = 5/ = T/+ 3/ = 4/ = 6/ =

Fy " 2,26E4+03 2,82E+03 7,27TE+04 7,90E+04 4,05E+04 4,10E+04  6,29E + 04
o 5,97 +02 1,23E+03 3,20£64+04 1,93E+04 7,53E+4+03 5,51E+03 1,90E + 04
rank/p 1 2/ = 6/ = 7/ = 3/ = 4/ = 5/ =

Fy ”w 3,44E403 4,31E+03 1,01E+4+04 1,15E404 9,8E+03 1,01E+04 5,13E 4 03
o 1,09E +03 8,47TE+02 2,18£+4+03 6,67TE+02 6,74E+402 3,74E + 02 5,95E + 03
rank/p 1 2/+ 6/+ 7/+ 4/+ 5/+ 3/+

Fio “w 5,85E4-01 6,47TE+02 2,66E+09 2,8E+09 1,07E406 1,96FE 4 05 1,19E + 11
o 2,40E4+01 1,17TE+03 9,7TE4+09 §8,06E409 4,47TE+06 3,52E + 05 6,48F + 11
rank/p 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

Fi1 " 2,65E405 1,31E+08 5 11E+10 6,64E+10 3,14E+10 3,09E+10  6,03E + 10
o 2,13E4+05 2,91E+08 2,60E+10 2,27TE+4+10 6,20E+09 7,20E+09 2,28E 410
rank/p 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

Fi2 o 1,23E+4+04 8,27TE+08 6,62E+10 1,08£+11 3,06E+410 3,17E+10 7,70FE 4+ 10
- 1,04E +04 1,86E+09 3,59E+10 4,99E+10 1,36E+10 1,12E+10  5,52E + 10
rank/p 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/+

Fi3 o 4,50E403 1,31E4+05 1,98E+09 2,09E+4+09 9,75E+07 9,22E+ 07 3,56E + 09
P 5,93E+03 4,46E+05 2,51E+09 3,21E+09 8,26E+07 6,79E+07  4,90E + 09
rank/p 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

Fla “w 2,96E4-03 1,40E 406 3,64E+10 4,11E+10 7,87TE+09 9,07E 4 09 3,61FE + 10
o 2,85E£+03 T7,3TE+06 2,53E+10 2,44E+10 4,15E409 3,31E+4 09 2,02E + 10
rank/p 1 2/+ 6/+ 7/+ 3/+ 4/+ 5/+

Fi5 ”w 9,79E4-02 1,92E+03 3,95E+04 5,06E4+04 8,3TE+03 9,13E+03 5,62E 4 04
o 2,52E+02 6,88E+02 3,59E+04 4,15E+4+04 2,84FE+03 3,08E+03 5,47FE + 04
rank/p 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

Continua na préozima pdgina



Capitulo 3. Conjunto de Otimizadores por Enxame de Particulas Baseado em Memoria 45
Tabela 3 (continuacéo)

Fy Critério MB-EPSO EPSO WPSO LIPS CLPSO HPSO-TVAC FDRPSO

Fie o 4,86E-402 1,04E+03 1,04E4+07 2,23E407 7,52E+04 4,99E +04 2,16E 4 07
o 2,01E+02 2,68E+02 2,48E+407 4,03E+07 7,87TE+04 6,78E+ 04 5,48FE 4 07
rank/p 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

7 o 8,11E4-04 7,14E4+05 9,24E+09 1,86E+10 1,17E4+09 1,22E4 09 1,82E + 10
o 4,86E+04 1,94E406 9,73E+09 1,31E+4+10 7,77E+08 1,01E+ 09 1,68E + 10
rank/p 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/+

Fis 1 1,58E4+03 1,35E+06 3,77TE+10 517E+10 1,00E+10 8,88E+09  4,22E + 10
o 2,26E4+03 4,65E+06 2,10E+10 3,35E4+10 3,63E+09 4,65E+09 2,36E + 10
rank/p 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

Fig m 3,70E4-02 6,81E+02 2,52E4+03 2,74E+03 1,90E+4+03 1,92E 403 2,81FE 403
o 1L,L1I9E+02  2,04E+02 4,18E+02 4,38E+02 2,49E+02 2,18E+02  6,82E + 02
rank/p 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

Fao u 2,87TE4+02 4,46E 102 1,08E+03 1,57E+03 8,59E+02 87IE+02  1,45E 4 03
o 1,76E+01 8,98E+01 3,885+02 8,16E+02 587E+01 856E-+01 5 91E +02
rank/p 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/+

For 4 3,56E4+03 5,10E+03 1,15E+04 1,57E+03 1,04E+04 1,02E+04  1,18E + 04
o 1,83E+03 1,07/E+03 7,06£402 8,92E+02 4,57TE+4+02 7,18E+ 02 9,05E + 02
rank/p 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

Fyo “w 7,44E402 9,90E+02 2,06E4+03 3,37TE+4+03 1,8E+03 1,83E+03 3,24F + 03
o 1,27TE+02 4,40E+02 7,89E+402 1,14E+03 3,06E402 2,90E + 02 1,41FE 403
rank/p 1 2/ = 5/+ 7/+ 4/+ 3/+ 6/+

Fas 1 8,60E +02 6,26E+02 1,98E +03 2,66E+03 2,088+03 2,04E+03  3,03E +03
o 2,19E4+02 1,96E+02 4,76E4+02 1,01E403 3,53E+02 3,45E+02 9,59F + 02
rank/p 2 1/ = 3/+ 6/+ 5/+ 4/+ 7/+

Fou " 3,88E4+02 8,23E402 2,81E4+04 5,64E+04 1,78E+04 1,91E-+04  5,63E 404
o 2,32E4+01 8,23E+02 2,81E4+04 5,64E4+04 1,78E+04 1,91E+04 5,63E 4+ 04
rank/p 1 2/ = 5/+ T/+ 3/+ 4/+ 6/+

Fos m 2,64E403 3,92E+03 1,97E+04 3,04E+04 1,49E+4+04 1,45E+04 3,91FE + 04
o 1,13E+03 1,69E +03 8,06E+03 1,33E+04 2,17E+03 2,75E+03  2,14E + 04
rank/p 1 2/ = 5/+ 6/+ 4/4+ 3/+ 7/+

Foe o 6,54FE +02 5,02E+02 5,00E+4+02 5,01E+4+02 2,95E+03 2,98E+ 03 5,06 E + 02
o 3,20E +02 2,12E—04 1,42E—05 1,0lE—05 5,13E+02 6,16E+02  1,46E — 07
rank/p 5 3/ =+ 1/ = 2/ = 6/+ 7/+ 4/ =

Fyy o 1,12E+04 4,96E402 5,01E+02 5,02E+02 3,49E402 1,17TE 404 5,05E 4 02
o 2,60EK+03 1,26E+01 2,91E—-05 1,44E-04 7,11E+401 2,58E+4 03 2,53E — 06
rank/p 6 2/ = 3/ = 4/ = 1/ = 7/+ 5/ =

Fog “w 1,34E+4+03 2,43E4+03 1,69E+08 9,86E+07 8§8,47TE4+04 9,71E+404 4,11E 4+ 07
o 3,24E+02 7,36E402 8,16E+08 4,47TE+08 1,37TE+05 1,33E+ 05 9,74E + 07
rank/p 1 2/ = 7/+ 6/+ 3/+ 4/+ 5/+

Fag " 2,05E404 1,02E+08 1,48E+10 3,11E+10 515E+09 6,04E+09  2,29E + 10
o 1,61E+04 1,45E408 1,15E+10 1,57E+10 2,58E409 2,72E4 09 1,16E + 10
rank/p 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/ =

1°/2° Ju 26/1/0 1/27/0 1/0/1 0/1/16 1/0/0 0/0/2 0/0/10

+/= 19/10 25/4 26/3 26/3 27/2 24/5

Métodos MB-EPSO EPSO WPSO LIPS CLPSO HPSO-TVAC FDRPSO
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Ao final da Tabela |3 os rétulos “1°/2°/u”, em que u significa ultimo lugar, e “+/ ="
evidenciam os resultados consolidados da comparacao entre o [MB-EPSO| e os demais
algoritmos. Por exemplo: na funcao hibrida Fi;, o[MB-EPSO]atingiu rank = 1, obtendo o
menor erro médio, enquanto o [FDRPSO)| ficou em rank = 7. Os resultados pareados com
“+” reforam a superioridade do [MB-EPSO]

Ainda na Tabela [3| observa-se que o algoritmo [MB-EPSO] obteve os melhores valo-
res médios p das solugbes em 26 das 29 fungoes de teste. Destaca-se que o [MB-EPSO|
apresentou os melhores resultados nas fungoes unimodais, multimodais e hibridas. Por
outro lado, no caso das fungoes de composigao, as melhores solugoes do [MB-EPSO| foram
encontradas em apenas sete situacoes, enquanto o @ apresentou o segundo melhor
desempenho em 27 das 29 fungoes.

A Figura {4 apresenta a evolugao do melhor valor da fungao objetivo (do inglés, best
fitness) do algoritmo para M = 8, em comparacao com diversas variantes
do [PSOJ, considerando a fun¢ao unimodal F; de 30 dimensées do [CEC2017] Destaca-se,
em particular, o melhor valor médio da func¢ao objetivo obtido para Fi, evidenciando o
desempenho do [MB-EPSO] em relagdo aos demais métodos. Observa-se que o algoritmo
apresenta o melhor desempenho em comparagao com as variantes [PSO| pois
a melhor aptidao média é menor desde as primeiras geracoes de particulas até as tltimas.
Além disso, a convergéncia é alcancada antes dos outros algoritmos, aproximadamente na
milésima geracao de particulas.

Por fim, outro aspecto importante a ser analisado nos algoritmos [PSO| é o seu tempo
de execucgao. Para esse propoésito, em cada algoritmo, considerou-se o tempo médio de

execucao em 30 rodadas de simulacao, realizadas com os mesmos parametros experimen-

de+11 > Algoritmo:
~
S~ — FDRPSO
STT T TS - WPSO
i T S e PESO S . LIPS
~—— 1— — HPSO-TVAC
v ) — CLPSO
3e+11 | —— EPSO
| Lo — MB-EPSO (M=8)

2e+11

1e+11

Melhor valor médio da fungao objetivo

0e+00

10 100

1000 10000

Figura 4 — Melhor valor
CEC2017.

Numero de Geragdes

médio da funcdo objetivo unimodal F; de 30 dimensdes do
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tais, quais sejam: o nimero maximo de iteragdes, o tamanho do enxame e o ntimero de
dimensoes.

Os experimentos foram executados no cluster Apuana do CIn—UFPE, plataforma de
alto desempenho composta por miltiplos nés com processadores de arquitetura AMD /In-
tel de multiplos nicleos e suporte a GPUs. Para garantir uma comparagao justa, todas as
execucoes foram realizadas utilizando o mesmo tipo de no, com alocagao idéntica de re-
cursos (CPU, memoria e threads), sob as mesmas condigbes de software e compilacao. Foi
assumido o mesmo hardware para todos os algoritmos [PSO| considerados neste trabalho.

A Tabela[f] indica, para cada algoritmo e cada tipo de fun¢do do CEC2017, os tempos
médios de execucao e seus respectivos desvios padrao, denotados, respectivamente, por ¢ e
o¢. Com base nos parametros definidos, os tempos médios de execugao foram normalizados
em relagdao ao valor obtido pelo algoritmo [MB-EPSQ| e estao indicados na Tabela [5]

A normalizagdo dos tempos de execucao permite comparar os algoritmos de forma
justa, pois coloca todos os resultados na mesma escala ao dividir os valores pelo tempo
do algoritmo de referéncia. Assim, é possivel avaliar proporcionalmente o desempenho
de cada método, sem depender de unidades de tempo, de cendrios especificos ou do tipo
de hardware utilizado. Desse modo, os resultados permanecem consistentes mesmo em
computadores com baixas ou altas capacidades de processamento. Portanto, a normaliza-
¢ao garante a equidade na comparagao, bem como a portabilidade e a reprodutibilidade
dos resultados em diferentes ambientes computacionais. Por fim, é importante esclarecer
o que significam os percentuais situados ao lado de cada valor normalizado de tempo.
Por exemplo, considerando o tipo de fun¢do unimodal, o MB-EPSO] promove uma redu-
¢do de 10,71% no tempo médio de execugao quando comparado ao algoritmo [CLPSO]
Comparacoes semelhantes sao realizadas para os demais algoritmos e tipos de funcao.

Os resultados evidenciam que 0o[MB-EPSO|com meméria deslizante de tamanho M = 8
apresentou o menor tempo de execugao em todas as categorias de fungdes do CEC2017.
Nas func¢oes unimodais, embora as diferencas sejam discretas, o supera varia-

Tabela 4 — Estatisticas do tempo de execucdo de todas as variantes do PSO
consideradas neste trabalho para cada tipo de funcdo do CEC2017.

Algoritmo Unimodal Multimodal Composi¢ao Hibrida

t (ms) oy (ms) t(ms) o (ms) ¢ (ms) oy (ms) ¢ (ms) o, (ms)

CLPSO 561 0,23 1241 1,20 592 032 9471 16,12
EPSO 6,09 041 1306 1,04 649 033 9681 1549
FDRPSO 608 031 1289 1,25 625 037 96,68 13,28
HPSO-TVAC 787 033 1461 155 7,83 042 102,23 16,08
LIPS 6,80 0,35 13,52 148 749 038 9944 16,58
WPSO 563 027 1251 144 583 034 96,96 14,69

MB-EPSO 5,60 0,32 10,27 0,85 579 0,29 94,50 13,52
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Tabela 5 — Valores normalizados dos tempos de execucdo das variantes PSO

acompanhados da

respectiva

promovida pelo algoritmo MB-EPSO.

reducdo percentual de tempo médio

Algoritmo Unimodal Multimodal Composicao Hibrida
CLPSO 1,12 (10,71%) 1,75 (42,86%) 1,86 (46,24%) 1,65 (39,39%)
EPSO 1,03 (2,91%) 1,50 (33,33%) 1,39 (28,06%) 1,23 (18,70%)
FDRPSO 1,35 (25,93%) 1,45 (31,03%) 1,93 (48,19%) 1,40 (28,57%)
HPSO-TVAC 1,05 (4,76%) 1,05 (4,76%) 1,06 (5,66%) 1,04 (3,85%)
LIPS 1,03 (2,91%) 1,88 (46,81%) 1,86 (46,24%) 1,92 (47,92%)
WPSO 1,02 (1,96%) 1,12 (10,71%) 1,07 (6,54%) 1,03 (2,91%)
MB-EPSO (M = 8) 1,00 1,00 1,00 1,00

coes como [CLPSO| e [FDRPSO| que chegam a consumir 12% e 35% mais tempo, respecti-

vamente. Nos cenarios multimodais, de composicao e hibridos — caracterizados por maior

complexidade e multiplos minimos locais — o ganho do [MB-EPSO] torna-se mais expres-
sivo, alcancando redugoes de tempo superiores a 40% frente a algoritmos como [CLPSO
e EDRPSOL

Os experimentos evidenciam a robustez e a superioridade do[MB-EPSO| em relagao as
variantes avaliadas. A escolha de M = 8 mitigou a convergéncia prematura e equilibrou a
diversidade e a exploragdo, resultando em menores erros médios no [CEC2017] e em menor
tempo de execucao. Esses achados posicionam o como uma alternativa promis-
sora para otimizagao em larga escala. Nos capitulos seguintes, caracterizamos a localizacao
de dispositivos moveis como um problema de otimizagao e propomos uma solucao hibrida

que integra técnicas de [AM] ao [MB-EPSO)] para aplicacdo em redes celulares.

3.3 Resumo do capitulo

Este capitulo apresentou o algoritmo [MB-EPSO] um conjunto autoadaptativo de otimi-
zadores [PSO| que integra uma janela de meméria deslizante para preservar boas solugoes e
reduzir a convergéncia prematura. A proposta redefine a escolha das variantes por meio de
uma taxa de sucesso ponderada no tempo, explorando o papel do periodo de aprendizagem
e do tamanho da memoéria. Experimentos no [CEC2017] mostraram que M = 8 maximiza
os resultados, com o algoritmo [MB-EPSO| superando as demais variantes [PSO| em acu-
racia, estabilidade e tempo de execucao. Assim, o uso da memoéria integrada a selecao

autoadaptativa reforca sua robustez e eficiéncia em problemas complexos de otimizagao.
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4 SISTEMAS DE RADIOLOCALIZACAO

“Para descrever o movimento de um

corpo, é preciso primeiro definir

com exatiddo o lugar onde ele estd.”

(Isaac Newton)

Este capitulo apresenta os fundamentos dos sistemas de radiolocalizacdo, descrevendo as principais téc-
nicas de posicionamento e suas limitacoes. Em sequida, formaliza a trilateracao como um problema de
otimizagdo e discute o uso de algoritmos evoluciondrios e métodos de AM, como o k-NN, que ddo su-
porte as solugdes propostas nesta pesquisa. Por fim, inclui-se uma sintese da literatura sobre técnicas de

localizacao baseadas em PSO.

Localizar dispositivos moveis em redes celulares é fundamental, sobretudo em situa-
¢oes de emergéncia, em que o tempo é decisivo para salvar vidas. Sob a ética dos negébcios,
a localizagao também viabiliza servigos e modelos de receita — de navegacao e entregas
a publicidade geolocalizada (HUANG; GARTNER, [2018]). Nesse contexto, sistemas de lo-
calizacao que utilizam a infraestrutura celular ganham destaque por oferecer estimativas

confidveis mesmo quando a navegacao por sistema global de posicionamento (GPS| do

inglés [Global Positioning System]) esté indisponivel.

4.1 Sistemas de localizacdo em redes celulares

Os sistemas de localizagdo tém como objetivo determinar, com precisao e acuracia, as
coordenadas geograficas de um dispositivo mével (PERAL-ROSADO et al., 2018). Embora
existam alternativas baseadas em redes pessoais, como redes (do ingle Wireless
e Bluetooth, o presente estudo concentra-se exclusivamente em cenarios nos quais
a estd conectada a uma rede de telefonia celular. Essa escolha se justifica, em parte,
por questoes de seguranca cibernética, ou seja, para reduzir o risco de exposicao de dados
pessoais a possiveis ataques, muitos usuarios optam por nao conectar seus aparelhos a
redes locais ptblicas ou privadas de confiabilidade duvidosa (SANGEEN et al., 2023)). Além
disso, em situagoes criticas, como a busca por sobreviventes em desastres naturais ou no

colapso de edificagoes (ALBANESE et all) 2023), a localizagao de dispositivos conectados a
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redes celulares tende a permanecer acessivel na maioria dos casos, independentemente do
aparelho estar em ambiente indoor ou outdoor.

Ao se conectar a rede celular, o dispositivo passa a reportar e atualizar periodicamente
parametros técnicos definidos pelas normas do projeto de parceria de terceira geracao
do inglés [Third Generation Partnership Project]), tais como angulo de chegada
do inglés [Angle of Arrival), [PD| [RSSI| a diferenca de tempo de chegada
do inglés (Time Difference of Arrival), o tempo de chegada , do inglés
, entre outros. Essas grandezas fisicas fundamentam algoritmos de localizacao
nas arquiteturas previstas pelo (YANG; MAO; WANG, 2022)).

Conforme ilustrado na Figura [f], os pardmetros de [AoA] [PD] [RSSI|, [TDoA] e [ToA] sdo

coletados e processados pela propria rede, por meio do servidor de localizacao. A partir

desses dados, torna-se imprescindivel a aplicacao de técnicas especializadas capazes de
estimar com exatidao a posicao geografica do dispositivo. Para isso, destacam-se quatro
técnicas bastante difundidas na literatura — trilateragao, triangulacao, [Cell ID|e finger-
printing — acompanhadas de um resumo comparativo de suas caracteristicas, vantagens

e limitacoes.

1. Trilateracdo: E uma técnica que se baseia na medicio das distancias entre o dispo-
sitivo e trés ou mais pontos de referéncia com coordenadas conhecidas (RAMTOHUL;
KHEDO, 2020). Ela oferece alta acurdcia em ambiente outdoor, como em aplicagoes
com [GPS] e pode utilizar medidas baseadas em tempo, como[ToA]e[TDoA] ou ainda
[RSSI} Além disso, apresenta boa escalabilidade em redes bem distribuidas, ou seja,
aquelas em que as antenas estao estrategicamente posicionadas de acordo com a
geografia, densidade populacional e padroes de trafego, garantindo cobertura am-
pla, capacidade balanceada e qualidade de servigo estavel (SUDHAMANT et al., 2023;

AoA, PD, RSSI, TDoA e ToA

i

Estacdo
Movel

Servidor de Localizagdo

Estacdo Radiobase

Figura 5 — Arquitetura geral de um sistema de localizagdo remota. Adaptado de
(PERAL-ROSADO et al.|, [2018).
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KHATTWODA; DAWADT; JOSHI, 2024)). No entanto, essa técnica exige no minimo trés
pontos de referéncia para localizagdo em duas dimensoes ou quatro para trés dimen-
soes, o que a torna vulneravel a obstaculos fisicos como edificios e paredes. Além
disso, o seu desempenho tende a ser ainda mais comprometido em ambientes indoor,

especialmente em cenarios com presenca de multipercurso e ruido de sinal.

2. Triangulacgao: Essa ¢ uma técnica que se baseia na medicao de angulos, como o
entre o dispositivo e dois ou mais pontos de referéncia (RAMTOHUL; KHEDO),
2020)). Pode apresentar bom desempenho mesmo com um ntmero reduzido de esta-
¢oes base, sendo particularmente util em cenarios que utilizam antenas direcionais.
Por outro lado, essa técnica exige hardware especializado para garantir a exatidao
nas medigoes dos angulos, apresenta menor robustez diante de reflexdes de sinal
(efeitos de multipercurso) e tende a oferecer desempenho inferior em ambientes in-

door quando comparada a outras técnicas (HAILU et al., [2024]).

3. [Cell ID} Esta técnica utiliza a identificagdo da célula da rede mével & qual o dis-
positivo estd conectado (RAMTOHUL; KHEDO, 2020). Trata-se de um método extre-
mamente simples de implementar, que nao requer hardware adicional, possui baixo
custo computacional e estd disponivel em praticamente qualquer dispositivo com
acesso a rede celular. Em contrapartida, apresenta baixa acurédcia, com variagoes
que podem ir de centenas de metros a quilometros, dependendo da densidade de
torres na regiao, o que a torna inadequada para aplica¢oes que demandam localiza-
cao exata (NAHMIAS-BIRAN et al., 2023).

4. Fingerprinting: Essa técnica baseia-se na comparacao das medicoes de sinais,
como o [RSSI| de redes ou Bluetooth, com um banco de dados previamente
construido a partir de coletas realizadas em uma area mapeada (RAMTOHUL; KHEDO,
2020). Essa técnica oferece elevada acurdcia em ambientes indoor, mantém bom de-
sempenho em locais com muitos obstaculos e nao exige linha de visada direta com as
antenas. No entanto, demanda uma fase inicial intensiva de calibragao, envolvendo
a coleta detalhada de dados. Além disso, é uma técnica cujo desempenho depende
fortemente de alteragoes no ambiente, como a movimentagdo de mdveis ou a pre-
senca de pessoas. Por fim, apresenta elevada complexidade computacional devido a

necessidade de realizar buscas em tempo real (DAT et al., [2023)).

As quatro técnicas de localizagdo mencionadas anteriormente apresentam vantagens
e desvantagens. No entanto, considerando a premissa de se desenvolver um algoritmo de

localizagdo de implementacao simplificada, a Tabela [6] retine caracteristicas como acura-
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Tabela 6 — Caracteristicas das técnicas de localizagdo (RAMTOHUL; KHEDO,

2020).
Técnica Acuracia Custo Comp. Requisitos Ambiente Ideal
Trilateragao Alta (outdoor) Médio 3+ referéncias outdoor
Triangulacao Média Médio/Alto Medicao de angulo outdoor
Cell ID Baixa Baixo Apenas torre de celular outdoor
Fingerprinting  Alta (indoor) Alto Banco de dados de sinais  indoor

cia, custo computacional, requisitos e ambiente de propagacao ideal, possibilitando uma
andlise comparativa. A partir dessa avaliagdo, observa-se que as técnicas de trilateracao
e atendem a esse critério. Contudo, conforme discutido em (NAHMIAS-BIRAN et
al, 2023), a técnica apresenta diversas fragilidades, o que a torna menos ade-
quada. Nesse contexto, a trilateracao desponta como uma alternativa promissora sob a
otica da relagao custo-beneficio, ja que oferece elevada acuracia em ambientes outdoor,
demanda apenas um custo computacional moderado e requer o niimero minimo de trés
estagoes base para sua aplicacao. Por outro lado, a adogdo de técnicas alternativas, ou
mesmo a combinacao de diferentes métodos, poderia comprometer o objetivo de manter
a simplicidade do sistema proposto, incorporando complexidades adicionais ao processo
de localizacao.

A técnica de trilateracao tem origem nos sistemas de posicionamento por satélite,
como o [GPS], onde a posigao de um receptor é determinada com base na distancia a pelo
menos trés satélites. A técnica se baseia na intersecao de circulos para localizagao bidi-
mensional ou esferas para localizacao tridimensional, com raio igual a distancia medida
entre o ponto de referéncia e o receptor (LIU et all 2023). As Figuras [6a) e [6[b) ilus-
tram a técnica de trilateracao de poténcia em situacgoes ideais e reais, respectivamente.
Nos dois casos, trés pontos de referéncia sdo indicados, assim como o ponto em que se
deseja estimar a posicao. No contexto das redes celulares, as [ERBE, denotadas como A;, e
identificadas por A, Ay e Az, tém coordenadas geograficas conhecidas (x1,y1), (z2,92) €
(x3,ys3), respectivamente. Os pardmetros dy, ds e d3 sado as distdncias entre Ay, As e Az e o
ponto P(x,y), respectivamente. Finalmente, o ponto P(x,y) na Figura @(a), cuja posicao
se deseja estimar, representa a[EM] Por outro lado, na Figura [6b), o ponto P(z,y) estd
situado em algum lugar da regiao de interse¢ao em destaque.

Ainda no cenério dos sistemas de propagagao de sinais de [RF], em especial da telefonia
celular, o valor de[RSSI| obtido em cada[ERB|pode ser utilizado para estimar as distancias
euclidianas dy, dy e d3 por meio de equagoes fundamentadas em modelos de propagagao,
métodos computacionais ou técnicas de [AM] Essa abordagem constitui uma das alter-
nativas para a determinacao da posicao do dispositivo, entre outras que serao discutidas
ao longo desta pesquisa. De posse das trés equagdes que representam as circunferéncias

centradas em cada uma das [ERBE, pode-se expressar o problema da trilateragdo como
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A,
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o (%2, y2)
-
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intersecao

006, yi)
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(a) Cendrio ideal. (b) Cenério real.

Figura 6 — Trilateracdo de poténcia com trés ERBs.

um sistema de equacoes nao lineares, tal que

(z—21)*+(y—m) = &
(. —22)* + (y —3)* = ds (4.1)
(x—z3)*+ (y—uys3)> = dj

e cuja solugdo sera a posicao P(z,y) da , que ¢é a estimativa da localizacao desejada.

Considerando o contexto deste trabalho, o problema de localizagdo, cujo principal
objetivo é determinar a posi¢ao de uma [EM] em uma rede celular, pode ser definido como
um problema de otimizacao, conforme segue.

Definicao 1: Considere

di(w,y) =z — w2+ (y —9)2%, i=12...n, (4.2)

em que d;(x,y) é a distdncia euclidiana da i-ésima ERB, denotada como A;, até a
também chamada de alvo, e representada por P(z,y), cujas coordenadas geograficas sdo
desconhecidas. Sendo df a estimativa de d;(x,y), deseja-se encontrar as coordenadas (x, y)

de P na Equacao (4.2) de forma que o erro dado por

mlyany i[d —d;( xy} (4.3)

=1
seja 0 menor possivel.
A funcdo J(z,y) que minimiza o erro entre as distancias d; e d;(x,y), definida pela
Equagao (4.3]), considera o minimo entre diversas expressoes individuais, uma para cada

valor de ¢. Essa estrutura tende a introduzir descontinuidades e a gerar multiplos minimos
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locais (GUR; SABACH, |2025)), o que permite classificid-la como uma fungdo multimodal. Tal
comportamento decorre do fato de que cada termo da funcdo apresenta um padrao pro-
prio de variagdo. Em outras palavras, as distancias euclidianas derivadas de df e d;(z,y)
podem ser estimadas por diferentes formas, como métodos computacionais, técnicas de
[AM] ou algoritmos de computagdo evoluciondria. Cada uma dessas estratégias contribui
de forma independente para o resultado final dos calculos, refletindo a natureza diver-
sificada do processo de estimativa. Além disso, a fungao é caracterizada como objetiva
ou monoobjetiva, pois retorna um tunico valor escalar que representa a minimizagao da
diferenca entre a distancia d;(z, y) e a sua estimativa d;. Por fim, a Equacao (4.3)), trata-se
de uma funcao de duas dimensoes, uma vez que é definida em termos de duas variaveis
independentes, = e y, que representam as coordenadas do ponto a ser estimado.

Por se tratar de um problema de otimizacdo — isto é, da busca pela melhor solu-
¢do possivel — diferentes métodos matematicos podem ser empregados para encontrar
a posi¢ao do alvo, tais como o método de Newton-Raphson (RAPHSON, [1690) ou o de
Nelder-Mead (NELDER; MEAD), |1965; LOPES et al., 2013)). Entretanto, a acurédcia e a pre-
cisdo obtidas por esses métodos costumam ser insatisfatorias quando comparadas as de
técnicas mais avancadas, como os algoritmos evoluciondrios (TIMOTEO et al., 2017)). Isso
evidencia a necessidade de recorrer a métodos mais eficientes e adaptaveis.

Nesse contexto, as técnicas baseadas em [[E] entre elas o[PSO] mostram-se promissoras.
Além de apresentarem custo computacional competitivo, possuem ampla aplicabilidade
em problemas provenientes de cendrios reais, demonstrando grande adequacao para fun-
coes de otimizacao (SCARDUA/ [2021). Considerando essas caracteristicas, conclui-se que
o algoritmo [MB-EPSOJ pode ser aplicado de forma eficaz para minimizar a fungao de
otimizagao definida na Equacao (4.3).

Contudo, vale destacar que, em uma rede celular real, nao é possivel conhecer dire-
tamente a posicao exata de um dispositivo. Assim, torna-se necessario prever a posicao
estimada, de modo que os resultados possam ser comparados aqueles gerados pelo
EPSO| Para resolver a Equagao , que retorna as distancias entre e faz-se
necessario adotar uma abordagem complementar.

Seguindo a mesma premissa de simplicidade e eficiéncia, o algoritmo de apresenta-
se como uma alternativa bastante utilizada na literatura e testada em (TIMOTEO et al.,
2017)). Trata-se de um método versatil, amplamente utilizado em tarefas de classifica¢ao
e regressao, que tem recebido destaque em sistemas de localiza¢ao (ZHOU; YANG; CHEN|
2021 [ XIANG et al., |2023; INARDIS et al., [2022; [HUANG et al., [2021; | GAMBI et al., 2023).

Entre os diversos métodos de [AM] que poderiam ser empregados na regressiao entre
medidas de poténcia, atraso e distancia, como maquinas de vetor de suporte, florestas
aleatérias, métodos de boosting e redes neurais profundas, optou-se pelo [k-NN]| por ofe-
recer um equilibrio adequado entre acuréacia e simplicidade. Trata-se de um método nao

paramétrico, que nao assume um modelo explicito de propagacao, o que o torna particu-
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larmente adequado a ambientes sujeitos a multipercurso e condigoes sem visada direta de
sinal (NLOS| do inglés [Non-Line-of-Sight)). Além disso, o k-NN exige um esfor¢o de mo-

delagem e ajuste de hiperparametros significativamente menor do que abordagens como

maquinas de vetor de suporte ou aprendizado profundo, mantendo, ao mesmo tempo,
desempenho competitivo em tarefas de localizagdo baseadas em [RSSI| e fingerprinting,
conforme discutido em estudos recentes que comparam o k-NN a outras técnicas de
em cendarios de localizagao indoor. (MADURANGA; TILWARI; ABEYSEKERA, 2023))

4.2 Algoritmo k-vizinhos mais préximos

O uso crescente de dispositivos moveis gerou um grande volume de dados digitais, cri-
ando um ambiente propicio para a aplicacido de técnicas de [AM] Entre essas técnicas,
o algoritmo [E-NN] destaca-se por sua simplicidade conceitual e desempenho consistente
em tarefas de predigdo, tanto em cenérios indoor (NARDIS et al|, 2022)) quanto outdoor
(TIMOTEO et all, 2017)). Trata-se de um método nao paramétrico bastante empregado em
problemas de classificagao e regressao, cuja premissa é que instancias préximas no espago
de atributos tendem a apresentar respostas semelhantes. Dada sua ampla ado¢do em es-
tudos recentes e sua relevancia para aplicacoes de localizagao, apresenta-se, a seguir, uma
descricao detalhada de seu funcionamento.

O algoritmo [k-NN] é um classificador que pertence a familia dos algoritmos baseados
em instancias (HALDER et al., |2024). Nesse tipo de algoritmo, as instancias de treinamento
sao armazenadas e a predicao de uma nova instancia é realizada usando as k instancias
mais proximas no conjunto de treinamento. Essa estratégia difere de outras embasadas
em [AM] como as redes neurais, nas quais se constréi previamente uma fungao hipétese a
partir das amostras de treinamento. No caso do [k-NN] a generaliza¢do ocorre apenas no
momento da predicao, ou seja, o algoritmo calcula as distancias entre a nova amostra e
as instancias conhecidas, utilizando os k vizinhos mais préximos para estimar o valor de
salda. Dessa forma, sua capacidade de generalizagao é local e instantanea, apresentando-se
exclusivamente durante a fase de predi¢ao (ZHANG; LI; ZONG, [2021]).

O algoritmo pode ser aplicado tanto a problemas de classificacdo quanto a
problemas de regressdao (COVER; HART) [1967; [HALDER et al., 2024). Dada uma insténcia
de teste X;, o primeiro passo consiste em identificar as k instancias mais préximas de X,
denominadas vizinhos dessa instancia. Supondo que cada instancia seja representada por
um vetor de atributos m-dimensional, X = [Xiy, Xis, ..., X; |, a distdncia entre duas

instancias X; e X;, denotada por d(X;, X;), é definida por

d(X;,X,) JZ Xip — Xj0)2. (4.4)
r=1

Cabe destacar que diferentes métricas podem ser empregadas para calcular a distancia
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entre amostras. Na Equacao , utiliza-se a distancia euclidiana, uma das mais comuns
na aplicacao do algoritmo (KUHN; JOHNSON| 2013).

Nos problemas de classificacao, apds determinar os k vizinhos mais préximos de X;
por meio da Equagao , a classe atribuida ao rotulo serd aquela mais frequente entre
os vizinhos identificados. Por outro lado, nos problemas de regressao, o valor predito para
X, é obtido a partir da média dos valores correspondentes aos seus k vizinhos, de forma

que
f(X5)

em que X; é uma instancia de treino, enquanto f(X;) é o rétulo para X;. Por fim, é im-

s >y ]i” (X;) 7 (4.5)

portante salientar que o algoritmo [k-NN|nao se apresenta como a escolha mais adequada
para cenarios com grandes volumes de dados, devido ao elevado custo computacional as-
sociado a busca pelos vizinhos mais préximos (HALDER et al., 2024)). Em contrapartida,
uma de suas principais vantagens é o fato de praticamente nao demandar custo de treina-
mento (ARORA; DAHIYA| 2025)), sendo capaz de lidar com problemas complexos por meio
de aproximacao, empregando um mecanismo baseado apenas na comparagao de vizinhos
mais proximos, o que o torna conceitualmente simples e facil de implementar.

Em sintese, o algoritmo [f-NN] destaca-se por sua simplicidade e eficiéncia na resolugao
de problemas com conjuntos de dados de menor dimensao, bem como por outras vantagens
quando comparado a outros métodos (SHDEFAT et al) 2024). Embora apresente como
desvantagem a complexidade computacional elevada, sua natureza baseada em instancias
o torna uma ferramenta versatil para tarefas de classificacdo e regressao. Ademais, a
capacidade de adaptacao a diferentes métricas de distancia confere ao método elevada
flexibilidade, permitindo sua aplicacdo em diversos dominios. Nesse contexto, o [f-NN|
configura-se como uma alternativa relevante e amplamente utilizada no campo da [AM]

motivo pelo qual foi adotado neste trabalho, especificamente para a predi¢ao das distancias

entre a[EM e as [ERDBE.

4.3 Sistemas de localizacao baseados em PSO

Esta se¢ao discute brevemente trés trabalhos recentes que incorporam o[PSO|com técnicas
de [AM] para melhorar o desempenho da localizagdo sob diferentes restrigoes e contextos
de aplicacao.

O primeiro estudo introduz um método de localizagao voltado para cenarios de busca e
resgate, especialmente em situagoes em que as vitimas estao presas em edificios colapsados,
sem acesso a sinais de (ALBANESE et al., [2023)). Esta solugdo comprime as flutuagoes
de [RSS]) para reduzir o ruido e a dimensionalidade, além de empregar uma rede neural
de retropropagacao , do inglés [Backpropagation Neural Networks) para mapear

os dados de [RSSI] em estimativas de localizagao. Para melhorar a convergéncia e mitigar
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o risco de minimos locais, o algoritmo [PSOJ é utilizado para inicializar os pesos da [BP
resultando no método hibrido (PSO-BP| do inglés|Particle Swarm Optimization with|
[Backpropagation Neural Networks)).

As principais vantagens desse método incluem a sua aplicabilidade em ambientes sem
[GPS| o baixo custo de infraestrutura e a capacidade de funcionar de maneira eficaz,
mesmo com dados limitados e ruidosos. A integragdo com o algoritmo [PSO| aumenta
a estabilidade do modelo e a velocidade de aprendizagem. No entanto, o desempenho
do método foi verificado apenas em condi¢oes simuladas. Além disso, sua robustez em
ambientes dindmicos, ou sujeitos a interferéncias, ainda precisa ser validada em cenarios
praticos de campo.

O método mostra um desempenho eficaz em ambientes sem [GPS] como interiores de
edificacoes ou areas subterraneas, e oferece uma solucao de baixo custo que aproveita
sinais celulares ja existentes na regido. Sua capacidade de funcionar de forma eficaz com
dados limitados é potencializada pelo uso de técnicas de compressao, enquanto a integra-
¢ao do algoritmo [PSO] com a [BP-NN| melhora tanto a acurdcia quanto a convergéncia do
método. No entanto, sua aplicabilidade é restrita, uma vez que foi concebida especifica-
mente para cenarios envolvendo vitimas presas em escombros de edificagoes, o que pode
limitar sua eficacia em contextos mais amplos de navegacao urbana. Adicionalmente, sua
confiabilidade depende da estabilidade dos niveis de [RSSI que podem variar com mudan-
¢as no ambiente. Tal técnica ainda nédo foi validada em cendrios reais, tendo sido testada
apenas em condi¢oes laboratoriais.

No segundo estudo, Liu et al.(LIU et al., [2017) propdem o algoritmo hibrido que com-
bina o algoritmo com a maquina de aprendizado extremo semissupervisionada
[SSELM] do inglés[Particle Swarm Optimization with a Semi-Supervised Extreme Learning

\Machine)) para aprimorar a localizagdo em ambientes outdoor. A técnica SS-ELM)| é capaz

de aproveitar tanto dados de [RSS]| rotulados quanto nao rotulados, o que reduz significa-

tivamente o custo associado a rotulagem manual de dados. No entanto, seu desempenho é
sensivel ao ajuste de hiperparametros, aspecto tratado por meio do [PSO] que possibilita
a otimizacao automatica e adaptativa desses parametros.

A validacao experimental, conduzida com dados sintéticos baseados em disposigoes re-
ais de[ERBE, indica maior acurdcia do modelo [PSO-SSELM] em comparagao com métodos
tradicionais. Esse modelo é particularmente eficaz em cenarios com quantidade limitada
de dados rotulados. Contudo, o uso de conjuntos de dados simulados pode limitar a avali-
acao de seu desempenho em condigoes reais. Além disso, a inclusao do PSO acarreta uma
sobrecarga computacional adicional, o que pode torna-lo inadequado para aplicagoes em
tempo real.

O algoritmo [PSO-SSELM] reduz significativamente a necessidade de dados rotulados,
o que ¢é particularmente valioso em ambientes outdoor de grande escala, além de se bene-

ficiar do ajuste automético de hiperparametros por meio do algoritmo [PSOJ eliminando
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a necessidade de tentativa e erro manual durante a configuracao do modelo. O algoritmo
[PSO-SSELM] ainda oferece maior estabilidade e capacidade de generalizagdo em compa-
racao com o [SS-ELM] tradicional e modelos de [AM] convencionais, sendo adequado para
lidar com problemas desbalanceados e mal formulados. Por outro lado, sua avaliacao é
limitada a simulacoes, carecendo de validagao em testes reais com usuarios ou operadoras
de rede. O uso do algoritmo [PSO] introduz uma sobrecarga computacional adicional du-
rante o treinamento e, como muitos métodos baseados em redes neurais, o modelo carece
de interpretabilidade, dificultando a compreensao ou explicagao de seus processos internos
de tomada de decisao.

No ltimo estudo, Lukié¢ e Simié(LUKI¢; SIMI¢, [2022) apresentam um algoritmo meta-
heuristico para resolver desafios de localiza¢do em ambientes NLOS| O algoritmo integra
busca cadtica, aprendizagem baseada em oposigao e coeficientes de aceleragao variaveis no
tempo (COPSO-TVAC] do inglés [Chaotic Search, Opposition-Based Learning, and Time]
[Varying Acceleration Coefficient into PSO) ao arcabougo tradicional do algoritmo m,
com o objetivo de otimizar uma func¢ao de custo de maxima verossimilhanca. Essa funcao
modela os efeitos estatisticos do viés de e do ruido de medicao nos dados de [ToA]

Os resultados de simulacido em cenarios suburbanos e urbanos mostram que o método
[COPSO-TVAC]supera o[PSO| padréo e diversas técnicas classicas de otimizagdo, tanto em

acuracia quanto em convergéncia. Entretanto, sua complexidade computacional é signifi-

cativamente elevada devido as melhorias incorporadas. Por fim, a auséncia de validacao
empirica em campo representa uma limitagdo para aplicagoes reais.

O método [COPSO-TVAC] apresenta alta acurdcia em cenarios [NLOS] tipicos de am-
bientes urbanos, superando o padrao e o método de Levenberg-Marquardt (MAR-
QUARDT, [1963). Além disso, mostra robustez estatistica e boa adaptacao a diferentes

niveis de ruido e viés de medicao, gragas a sua estrutura de otimizacao flexivel. Entre-
tanto, requer um alto custo computacional, devido a inclusao de multiplas estratégias de
aprimoramento, como a teoria do caos e a aprendizagem baseada em oposi¢ao. Por fim,
sua validagao foi testada apenas por simulacoes, sem experimentos em redes reais, e o
método depende de um ajuste cuidadoso dos parametros meta-heuristicos, como mapas
cadticos e pesos de inércia.

Em sintese, os algoritmos [PSO-BP], [PSO-SSELM] e [COPSO-TVAC]| apresentam dife-
rengas marcantes quanto ao cendrio de aplica¢do, método de [AM] e papel especifico do
algoritmo [PSO| no funcionamento do método. O método [PSO-BP| proposto para situa-

¢oes de emergéncia e ambientes indoor, utiliza uma rede neural com retropropagacao, na

qual o [PSOJ] atua na inicializagao dos pesos para melhorar a convergéncia. Seu principal
mérito é operar sem [GPS| e com baixo custo de implementacao, embora apresente limi-
tagoes por depender apenas de simulagoes e pela sensibilidade a variagoes do sinal. Ja
o [PSO-SSELM] foi projetado para ambientes outdoor, combinando o [PSO| com a técnica

[SS-ELM], de modo a otimizar seus hiperpardmetros. Essa integracao reduz a necessidade
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de dados rotulados e garante maior estabilidade, mas implica elevado custo computa-
cional e auséncia de validacdo com dados reais. Por fim, o [COPSO-TVAC| destina-se a

ambientes urbanos com forte presenga de condigoes [NLOS| empregando a teoria do caos e

mecanismos adaptativos do[PSO| para otimizar a funcdo de verossimilhanca. Esta solugao
alcanca alta acuracia sob ruido e obstrugoes; porém, é complexa, exige ajuste criterioso

de parametros e ainda carece de testes em cenarios reais.

4.4 Resumo do capitulo

Neste capitulo, foram apresentados os fundamentos dos sistemas de radiolocalizagao em
redes celulares, destacando sua importancia em aplicagoes criticas e comerciais. Foram
descritas as principais técnicas de posicionamento — trilateracao, triangulacao, identi-
ficacao de célula e fingerprinting — com andlise de suas caracteristicas e limitacoes. A
trilateragao, adotada como base deste trabalho, foi formalizada como um problema de
otimizacao multimodal, cuja resolugao exige métodos avancados, tais como algoritmos

evolucionérios baseados em inteligéncia por enxame, especificamente, [PSO| e MB-EPSO]

Além disso, a técnica de [AM] foi introduzida como ferramenta complementar, com énfase
no algoritmo [k-NN| que se mostrou adequado para apoiar a estimativa de distancias no
processo de localizacao. Por fim, este capitulo apresenta uma revisao bibliografica de trés

técnicas de localizagao baseadas em [PSO| quais sejam [PSO-BP| [PSO-SSELM] e [COPSO-|

[TVAC] acompanhada de uma analise comparativa que destaca suas principais caracteris-

ticas, incluindo o ambiente de propagacao alvo, o método de [AM] empregado e o papel
desempenhado pelo algoritmo [PSO|em cada abordagem, concluindo com a exposigdo das

respectivas vantagens e limitagoes.



60

5 ALGORITMO HIBRIDO DE LOCALIZA-
CAO BASEADO EM MEMORIA

“A acurdcia da localizacdo é o
alicerce da comunica¢do moderna. Logo,
quanto melhor sabemos onde estamos,

mats longe podemos ir.”

(Lizandro Nunes)

Este capitulo estrutura-se em quatro partes principais. Inicialmente, o procedimento de construcdo da base
de dados ¢ apresentado em detalhes, com énfase na coleta dos dados de campo em uma rede de telefonia
celular. Na descri¢io da proposta, descrevem-se o funcionamento do método, a integracdo entre técnicas
cldssicas de trilaterag¢io, otimizacdo com MB-EPSO e regressao com k-NN. Na avaliagio experimental,
detalham-se os protocolos de validagdo adotados, incluindo os cendrios reais indoor e outdoor, a compara-
¢do com algoritmos de referéncia, a andlise de parametros da nossa proposta, além das métricas e testes
estatisticos empregados. No final, em resultados e discussao, sio apresentados os desempenhos obtidos
em diferentes contextos, andlises geoespaciais, tempo de execugdo e testes de significincia, evidenciando

a acurdcia e Tobustez do algoritmo de localizagcdo proposto.

Reunindo as caracteristicas do algoritmo[MB-EPSO] como o uso de meméria deslizante
para mitigar a convergéncia prematura, e o método regressor reconhecido por sua
simplicidade e aplicagdo em sistemas de localizacdo, este capitulo propde um método
hibrido para localizar dispositivos moéveis em redes celulares, tanto em cenarios indoor
quanto em cenarios outdoor. A proposta aprimora a técnica de trilateracdo por meio de
um conjunto de variantes do algoritmo [PSO] originando o método de localiza¢ao hibrido
baseado em memoria , do inglés [Hybrid Memory-based Localization)).

5.1 Construcao da base de dados

Tomando como base a técnica de trilateracao de poténcia, torna-se necessario dispor das
informagoes de localizagio e dos valores de [RSSI| provenientes de, no minimo, trés [ERBE.
Além desses parametros, outros dados complementares sao indispensaveis para a execucao

de medigoes préticas em campo, tais como as coordenadas geograficas das [ERBE (z;, v;),
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o numero do canal, o identificador da célula e as coordenadas geograficas dos pontos de
teste P(z,y:) [

Para a coleta de dados em campo, foi realizado um drive test. Nesse tipo de procedi-
mento, um operador utiliza um equipamento especializado para medir e registrar parame-
tros de [RF] de uma rede celular, percorrendo as vias ao redor das [ERBp e armazenando
os valores dos parametros de interesse. No contexto desta pesquisa, todas as medigoes —
tanto em ambiente indoor quanto outdoor — foram obtidas com o uso de um scanner
de modelo DRT4301A, fabricado pela Digital Receiver Technologyﬂ O equipamento
utilizado gera arquivos em formato de valores separados por virgula, contendo os da-
dos mencionados anteriormente, além de um arquivo georreferenciado em linguagem de
marcacao Keyhole, no qual sao registrados todos os pontos correspondentes as medi¢oes
realizadas.

Ao todo, foram obtidas 3.064 medigoes em ambiente outdoor e 6.615 em ambiente
indoor, totalizando 9.679 medi¢oes. As coletas foram realizadas a partir de uma porta-
dora de 1,8 GHz, cuja interface aérea é baseada em [WCDMA| Desse conjunto, 80% das
medigdes foram utilizadas para o treinamento dos modelos [k-NN] enquanto os 20% res-
tantes compuseram o conjunto de teste destinado a avaliagao do desempenho das técnicas
de localizagao. Conforme (BICHRI; CHERGUL HAIN, 2024) essa divisdo oferece um bom
compromisso entre a quantidade de dados para treino e o tamanho do conjunto de teste.
Ressalta-se que os conjuntos de treinamento e teste foram mantidos rigorosamente se-
parados, a fim de evitar o data leakage, ou seja, a introducado indevida de informacoes
externas ao conjunto de treinamento durante o desenvolvimento do modelo, garantindo,
dessa forma, uma validacdo consistente e confidvel dos resultados obtidos (KAPOOR; NA-
RAYANAN| 2023).

Para o cenario outdoor, a coleta dos dados foi realizada em vias urbanas no entorno do
campus da UFPE, em que o scanner de[RF| mediu e armazenou a poténcia do sinal piloto
de enlace de descidalﬂ A Figura|7|apresenta a regiao urbana de aproximadamente 1,6 km?
onde foram realizadas as medigoes. Nesta figura, G; representa o i-ésimo grupo de [ERBE,
sendo 7 = 1,2,3. Cada grupo G;, identificado por um quadrado vermelho, é formado
por trés [ERBE instaladas em um mesmo sitio geografico. Apesar de compartilharem as
mesmas coordenadas, os azimutes das [ERBf em cada grupo G; sdo fixados em 0°, 120°
e 240°. O azimute de 0° corresponde ao Norte Verdadeiro, enquanto os demais (120° e
240°) sao definidos no sentido horario a partir dessa referéncia. Conforme ja mencionado
na Subsec¢ao para a identificagao individual de cada [ERB| adotamos a notagao A4;,
i=1,2,...,9. Assim, A;, Ay e A3 correspondem as [ERBk de G; com azimutes de 0°,

1

Informacoes de acesso publico disponibilizadas no portal da Agéncia Nacional de Telecomunicagoes
@ (| Agéncia Nacional de Telecomunicagdes (ANATEL) |, [2025)).

Receptor digital de varredura modular projetado para fornecer medigoes precisas de sinais de RF em
redes sem fio.

3 Sinal de transmitido da m para a
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Figura 7 — Area urbana de Recife-PE onde as medi¢des foram realizadas.

120° e 240°, respectivamente. De forma anéloga, as @IS Ay a Ag seguem essa convencao
para o grupo Go, enquanto as [ERBg A; a Ay referem-se ao grupo Gs.

A 4-tupla p; = (4, ¥, q,d¢) € R x R x R? x R? caracteriza cada medida de campo.
Nessa representacao, x; e y; denotam, respectivamente, a latitude e a longitude do ponto
de medicao. O vetor q; corresponde aos valores de[RSSI| coletados de nove [ERBE, enquanto
d; contém os valores de [PD] associados a trés grupos de [ERBg. O [PD]é um parametro de
rede, o qual reflete o intervalo de distancia entre a EM em teste e um grupo G;, expresso em
passos discretos de 234 m (SHAH et al., 2025} [TelecomHall Community, 2022)). Seu valor é um

nimero inteiro que varia de 0 a 54. Especificamente, [PD] = 0 corresponde a um intervalo
de distancia de 0-234 m; PD = 1 corresponde a 234-468 m; e assim sucessivamente, com
cada incremento estendendo o alcance em 234 m.

No que se refere as medigoes no cenario indoor, todas foram realizadas no interior
do Centro de Informatica da UFPE, distribuidas em dez pontos distintos. A Figura
apresenta a planta baixa do edificio onde essas medicoes foram efetuadas, na qual os
pontos de coleta de dados de treino e teste estao representados, respectivamente, por
circulos nas cores laranja e azul.

Uma questao relevante a se tratar é a escassez de bases piuiblicas de dados das redes
celulares [4G] e Embora o objetivo inicial da pesquisa fosse coletar dados provenientes
das redes mencionadas, tal iniciativa nao pode ser concretizada. Isto ocorreu tanto pela
inexisténcia de bases de dados publicas quanto pelas restri¢oes relacionadas a Lei Geral de
Protecao de Dados. Diante deste cenario, os experimentos foram conduzidos com medigoes
obtidas em redes 3G| por meio da pesquisa desenvolvida em Timoteo e Cunha (2020).
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Figura 8 — Planta baixa da edificacdo do prédio do CIn-UFPE com a indicagdo
dos pontos de medicdo indoor dos parametros RSSI e PD.

Apesar da limitagdao tecnoldgica, vale destacar que os parametros de [RF] utilizados

nas andlises sdo comuns a todas as geracoes de redes celulares (POLAK et al., [2024). Em

outras palavras, mesmo que os dados fossem oriundos de redes mais recentes, como 4G|ou
as metodologias aplicadas e as implementacoes do algoritmo proposto permaneceriam
validas.

Resumidamente, a constru¢ao da base de dados foi uma etapa essencial para viabilizar
a aplicagao pratica do algoritmo A utilizagdo de medigoes reais em ambientes
urbanos, tanto indoor quanto outdoor, permitiu a obtencao de parametros relevantes,
como o [RSST e o [PD] fundamentais para a predigdo das distancias entre a[EM] e as[ERBE

por meio dos modelos o que fortaleceu a relevancia do conjunto de dados e contribui

para avaliagdes mais fidedignas de desempenho do algoritmo proposto.

5.2 Descricao da proposta

A proposta ¢ apresentada de forma resumida no Algoritmo [I, organizada em
trés etapas. As duas primeiras etapas compoem a fase off-line e consistem na preparacao
dos dados coletados e utilizacao dos modelos k-NN para predicao das distancias da
para cada uma das [ERBp. Por fim, na fase on-line, formada apenas pela terceira etapa, a

posigao da[EM]é estimada em tempo real a partir das distancias previstas, empregando-se
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Algoritmo 1 Descri¢do resumida da proposta HyMLoc.
1: Aplicar o conjunto de treino aos modelos k-NN para cada ERB considerada;
2: Dadas as medigoes de RSSI e PD, prever as distancias entre o dispositivo mével alvo
e as ERBs usando o algoritmo k-NN;
3: Aplicar o conjunto de teste ao algoritmo MB-EPSO para estimar a posi¢ao do dispo-
sitivo mével alvo usando as distancias estimadas no passo anterior.

o algoritmo

A Figura [9] representa as fases do algoritmo [HyMLod Apéds a coleta das medigoes
e a divisao da base de dados em porgoes de treino e teste, o conjunto de treinamento
é aplicado a ¢ modelos [f-NN| Assume-se que a regido de localizagdo possui ¢ [ERBk da
rede de telefonia celular, o que significa que cada [ERB] estd associada a um modelo [£-]
[NN] especifico, projetado para estimar a distancia da referida [ERB| até a [EM] procurada.
As varidveis de entrada de cada modelo [E=NN| sdo os valores de e medidos
da [EM] para cada uma das [ERBE, enquanto a saida do modelo é a distancia prevista.
Desta forma, os ¢ modelos geram ¢ fungoes de hipétese f;(+), i = 1,2,...,¢q. Em
seguida, na etapa 2, cada fungao f;(-) estima sua distdncia d;, gerando, ao final da fase
off-line, q estimativas de distancia. Conforme destacado na Secao .2 o desempenho do
[k-NN] depende fortemente de diversos parametros que exigem ajuste cuidadoso — em
especial, o nimero de vizinhos k considerados na predicao. Para o nosso caso especifico,
conforme (TIMOTEO et al., 2017)), escolheu-se k = 7. O processo de selegio e refinamento
sistematico desses parametros para maximizar a acuracia é conhecido como ajuste de
modelo (RAZAVI-TERMEH et al., [2024)).

Na fase on-line, também denominada fase de testes, a porcao de dados de teste é
aplicada ao conjunto de ¢ fungoes de hipotese, obtidas na fase anterior, para obter ¢
valores de df, ou seja, a partir das medicoes de [RSS]| da base de testes, o regressor por
instancias [i-NN] calcula a média dos sete vizinhos mais préximos. O valor resultante,
por sua vez, ¢ comparado a base construida na fase off-line, e aquele que apresentar
melhor correspondéncia é utilizado como pardmetro de entrada do algoritmo [MB-EPSO]
responsavel pelo processo de otimizagao. O histérico das melhores geracoes de particulas
é utilizado para selecionar, dinamicamente, a variante do [PSO|] mais adequada dentre as
disponiveis no conjunto. Assim, o erro de localizacao e; — definido como a distancia entre
as posigoes real e estimada da [EM]— é minimizado por meio de uma fungao de aptidao

(fitness function) dada por

q 2
Ty = S [ = o =, + = w)?] (5.)

i=1
em que (z,,Yy,) representa as coordenadas geograficas estimadas a partir do conjunto de
particulas gerado pelo algoritmo [MB-EPSO| (z;,y;) corresponde as coordenadas geogra-
ficas da i-ésima [ERB} ¢ é o nimero total de [ERBk e df denota a distancia predita pelo

i-ésimo modelo [k-NN] De forma sucinta, o objetivo do algoritmo [MB-EPSO] é encontrar
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Figura 9 — Representacdo do algoritmo de localizagdo HyMLoc, com énfase nas
fases off-line (treinamento) e on-line (teste).

as coordenadas (xp,y,) que minimizam a fungao J(x,,y,). Um ponto importante a sa-
lientar é que, para a minimizac¢ao do erro de localiza¢do e4, o algoritmo [MB-EPSO] foi
configurado de modo semelhante ao descrito em (SILVA et al., 2024)), pois, como ja men-
cionado, trata-se de uma funcao de otimizacgao. Portanto, ajustou-se um enxame de 10
particulas, distribuidas em duas dimensoes ao longo de 500 iteragoes em 30 simulacoes

independentes.

5.3 Avaliacao experimental

A avaliacao da proposta foi conduzida de forma abrangente, contemplando di-
versos aspectos experimentais. Sob a 6tica dos protocolos de avaliacao, consideraram-se

tanto cenarios outdoor quanto indoor, a fim de verificar a robustez do algoritmo em dife-

rentes ambientes. Na fase on-line do [HyMLod, os algoritmos [CLPSO], [EPSO] [FDRPSO]
IHPSO-TVAC] e WPSO| foram adotados como benchmarks. E importante destacar que,

embora o algoritmo [LIPS| integre o conjunto de variantes do MB-EPSO|]— base do [HyM]
—, ele nao sera incluido nas analises apresentadas neste capitulo. A justificativa para

sua exclusao sera detalhada na parte da analise geoespacial que consta na subsecao [5.4.3
Além disso, foram conduzidas andlises especificas para avaliar o impacto do mecanismo
estocéstico de controle da velocidade das particulas e da variagdo do tamanho da janela

de memoria deslizante do algoritmo [MB-EPSO|sobre o desempenho geral do [HyMLod]

Levando em consideracao especificamente o ambiente indoor, é importante destacar
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que, na maioria dos sistemas de localizacao utilizados nesse tipo de cenario, o uso da
infraestrutura da telefonia moével celular nao é predominante. Isso ocorre devido a elevada
atenuagao dos sinais de [RF] e aos efeitos de multipercurso, que dificultam a obtengao de
estimativas confidveis de posigao (SUHARTONO et al., [2022)). Em contrapartida, em cendrios
criticos, como desabamentos e outros desastres urbanos, a conectividade da [EM] com a
rede celular representa um fator determinante para aumentar as chances de localizacao
de vitimas, sobretudo em condigoes adversas, como, por exemplo, quando a vitima esta
sob escombros.

Nesse contexto de situagoes de emergéncia, a analise comparativa dos métodos de lo-
calizagao em ambientes indoor serd guiada pelos requisitos estabelecidos pela Comissao
Federal de Comunicagoes , do inglés|Federal Communications Commission]), que de-

fine critérios minimos de acuracia para a localizacao de celulares que originam chamadas

de emergéncia, como o servigo 911 nos Estados Unidos. Esses critérios estabelecem que
os provedores de servico devem garantir a entrega de coordenadas horizontais com erro
inferior a 50 m para, pelo menos, 80% e 150 m para, pelo menos, 95% das chamadas reali-
zadas a partir de dispositivos méveis, tanto em ambientes indoor quanto outdoor (Federal
Communications Commission, 2020)). Vale ressaltar que a proposta apresentada nesta tese nao
contempla a estimativa da acuracia vertical, uma vez que a aplicagdo originalmente nao
foi concebida para fornecer a altura da [EM] em relagiao ao nivel do solo.

Um ponto importante para avaliacao do desempenho do algoritmo ¢ a sua
capacidade de generalizagao, isto é, sua habilidade de manter um desempenho satisfa-
torio ao lidar com dados nao observados durante o treinamento. O objetivo é evitar o
overfitting, assegurar a robustez e a credibilidade dos resultados e, por fim, comprovar a
aplicabilidade pratica do algoritmo em condigoes reais de uso (D’AMOUR; HEL-
LER; MOLDOVAN;, 2022). Existem vdrias técnicas para esta finalidade, tais como testes por
estresse (HENDRYCKS; DIETTERICH, 2019), avaliagao estratificada (KOHAVI, |1995), testes
de dados fora de distribuigdo (HENDRYCKS; GIMPEL, 2017) e validagao cruzada (STONE,
1974).

De acordo com (BRADSHAW et al,, 2023) e (ZHANG; YANG; LIU, 2021)), em bases de
dados pequenas, a validagao cruzada é a técnica mais indicada, pois utiliza melhor as
amostras disponiveis, reduz a variancia das estimativas e preserva a propor¢ao entre clas-
ses. Portanto, adotou-se o método de validacao cruzada K-fold, que consiste em dividir
o conjunto de dados em K parti¢oes ou folds, de modo que, em cada iteragdo, uma delas
seja utilizada para teste, enquanto as demais sao aplicadas ao treinamento, garantindo
que todas as parti¢oes sejam utilizadas exatamente uma vez.

O procedimento de validacao cruzada adotado neste trabalho considerou K = 5, resul-
tando em cinco diferentes conjuntos, denotados por DS-1 a DS-5, conforme indicado na
Figura [10] A partir da base de dados descrita na Seciio [5.1], cada fold corresponde a 20%

das instancias, utilizadas alternadamente no treinamento dos regressores. Por exemplo,
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Figura 10 — Diagrama ilustrativo da formacao dos datasets DS-1, DS-2, DS-3, DS-4
e DS-5, considerando os folds da validacdo cruzada para K =5.

Ds-3

DS-4

no conjunto DS-1, o quinto fold (em cor vermelha) é integralmente reservado para teste,
enquanto 80% das instancias provenientes dos folds 1, 2, 3 e 4 (em cor azul) sao seleciona-
das aleatoriamente para compor o conjunto de treinamento. Da mesma forma, repete-se a
estratégia para a formacgao dos conjuntos DS-2, DS-3, DS-4 e DS-5, variando-se apenas os
folds destinados ao treino dos dados. Essa estratégia possibilita investigar tanto o impacto
do volume de dados disponiveis para treinamento, quanto as diferencas de desempenho
entre o algoritmo e as demais técnicas de referéncia.

No que se refere as métricas de desempenho, a avaliagdo do algoritmo foi
conduzida a partir de um conjunto de indicadores complementares. Inicialmente, foram
calculadas estatisticas descritivas — média, desvio padrao, valores minimos e maximos —
com o intuito de caracterizar a distribuicao dos erros de localizacdo. Em seguida, foram
geradas fungbes de distribuicao acumulada ) para examinar a probabilidade de
ocorréncia de erros abaixo de determinados limiares. Para uma apreciacao mais pratica e
intuitiva do erro médio de localizacao, desenvolveu-se uma analise geoespacial em mapas,
que evidencia a distribuicao espacial dos erros produzidos por cada técnica, ressaltando
diferencas de desempenho de forma clara e interpretavel, desde que analisadas em conjunto
com as estatisticas descritivas.

Adicionalmente, foram mensurados os custos computacionais, representados pelo tempo
médio de execucao normalizado, de modo a possibilitar a comparacao da eficiéncia dos
diferentes algoritmos. Para terminar, foram aplicados testes estatisticos nao paramétri-

cos para validar a significincia dos resultados, incluindo o teste pareado de Wilcoxon
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(WILCOXON, (1945} [HUANG:; SEN| [2023), o teste de Friedman baseado em ranking médio
(FRIEDMAN, |1937; |JAN; SHIEH, [2025) e 0 post-hoc de Nemenyi para comparagoes multiplas
(NEMENYT, 1963; THAMILSELVAN, 2023)). A utilizacao dos testes mencionados tem o pro-
posito de assegurar uma analise estatistica consistente, conferindo robustez as conclusoes
do trabalho.

5.4 Resultados e discussao

Nesta sec¢ao, sao apresentados e discutidos os resultados obtidos com a aplicacao do algo-
ritmo proposto, bem como daqueles empregados como benchmarks, no contexto do pro-
blema de localizacao. A andlise abrange os cenarios outdoor e indoor, permitindo avaliar
a robustez e a capacidade de generalizacao da solugao proposta em diferentes ambientes.

Além disso, sdo investigados os efeitos de parametros especificos do [HyMLod, como o
tamanho da janela de memoria deslizante M e o controle estocastico da velocidade das
particulas. Os resultados sao examinados sob a perspectiva de métricas de desempenho,
testes estatisticos e conformidade com requisitos normativos, de modo a fornecer uma
avaliacao critica e abrangente da proposta.

Cabe destacar que a proposta utiliza o [MB-EPSQ| como niticleo de otimi-
zagdo, enquanto as demais abordagens de localizagdo se baseiam em variantes do [PSO]

aqui referenciadas conforme o algoritmo empregado na fase on-line, quais sejam, [CLPSO|

[EPSO}, [FDRPSO}, [HPSO-TVAT| e [WPSOl

5.4.1 Estratégia e efeitos do controle de velocidade das particulas em algo-

ritmos baseados em PSO

Os resultados preliminares obtidos com a aplicacao do algoritmo ao problema
de localizagao evidenciaram uma limitacao recorrente dos métodos baseados em [PSO] Tal
limitagdo decorre da elevada velocidade das particulas, que pode induzir a convergéncia
prematura do enxame, conforme discutido em (SHAMI et al., 2022). Nos testes iniciais em
que foi usado M = 8, melhor resultado obtido em (SILVA et all 2024), esse comporta-
mento resultou na concentragao de particulas nas bordas da area de busca, o que elevou
significativamente os erros médios de localizagdo. Na Figura [11| destaca-se esse compor-
tamento por meio da distribuicdo das estimativas de localizacao dos pontos de teste em
cor vermelha.

Com o intuito de mitigar esse efeito, foi incorporada ao algoritmo e as demais
variantes [PSO] aqui consideradas uma estratégia estocdstica de controle de velocidade,
baseada em (SHAMI et al., [2023), na qual se introduzem pausas controladas na atualizagao
das velocidades das particulas. A modificagao foi aplicada a equacao de atualizacao da

velocidade, anteriormente definida em ({2.1)), a qual foi ajustada por meio de um fator de
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Figura 11 — Distribuicdo das estimativas dos pontos de teste antes (vermelho)
e depois (azul) do ajuste estocastico da velocidade.

reducao probabilistico v, tal que

Vit +1)/2, se R{(t) ou Ry(t) < v
Vo 1) [V D2 e B on B -
VAt +1), caso contrario.

Seguindo estratégia semelhante a aplicada em (SHAMI et al), 2023)), adotou-se v = 0,5,

o que implica uma probabilidade de 50% de reducao a metade do valor da velocidade.
Tal ajuste reduz a probabilidade de convergéncia prematura sem acarretar um aumento
significativo do tempo de execucao.

Apés a introdugao dessa estratégia, verificou-se uma exploracao equilibrada do espaco
de busca, com menor incidéncia de aglomeragao em regioes de minimos locais, conforme
ilustrado pelos pontos em cor azul da Figura [L1]

Em sintese, a introducao do controle estocastico mostrou-se eficaz na atenuacao de um
dos principais problemas associados a algoritmos baseados em [PSO|— a convergéncia pre-
matura. A simples modificacao probabilistica no processo de atualizacao das velocidades
permitiu alcancar um equilibrio adequado entre exploracao e aproveitamento do espago
de busca, resultando em soluc¢des de melhor qualidade. No entanto, embora a Figura
evidencie uma melhoria visual na distribui¢ao das particulas, o erro médio de localizacao
ainda se manteve relativamente elevado, ou seja, algo em torno de dezenas de metros.

Com base nesse fato, procedeu-se a um refinamento adicional do algoritmo
por meio do ajuste da janela de memoria. Entretanto, inicialmente, era preciso testar,

por meio da validagdo cruzada, a capacidade de generalizagdo do algoritmo [HyMLod A
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Figura 12 — Erro médio de localizagao para cada algoritmo baseado em PSO
aplicado a cada um dos cinco datasets obtidos na validacdo cruzada.

principio, na validacao cruzada de cinco folds, também foi usado M = 8 pela mesma
justificativa utilizada no teste de controle de velocidade . O algoritmo manteve o
menor erro médio em todos os conjuntos DS-1 a DS-5 e os testes de Wilcoxon confirmaram
diferengas estatisticamente significativas, isto é, p & 0, calculado conforme (WILCOXON
1915).

A Figura[I2]ilustra o erro médio de localizagao dos algoritmos[CLPSO] [EPSO| FDRPSO}

HPSO-TVAC], [WPSO| e [HyMLod para cada um dos cinco conjuntos de teste. Nota-se que
o algoritmo apresenta desempenho superior em todos os folds analisados, com

erros médios significativamente mais baixos do que os demais. Isso evidencia sua consis-

téncia e acuracia em ambientes outdoor. Outro ponto a ser destacado é o fato de que os
demais algoritmos apresentaram maiores variagoes no erro médio de localizacao, indicando
menor robustez a variagao dos dados.

A Figura[I3]ilustra um mapa de calor dos erros médios de localizagao de cada algoritmo
baseado em [PSO| para cada fold de teste. A coloragao amarela indica o desempenho
superior do algoritmo [HyMLod], cujos valores de erro médio sao da ordem de um digito,
enquanto os demais algoritmos superam os 100 m. O contraste visual destaca a eficacia
do algoritmo na minimizacao do erro de localizacdo e reforca seu potencial para
aplicagoes em ambientes reais.

Além das andlises graficas, foi realizado o teste estatistico de Wilcoxon para comparar
o desempenho do algoritmo com as demais variantes [PSO| Os resultados mos-

traram que o método proposto obteve desempenho estatisticamente superior em relacao
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Figura 13 — Mapa de calor dos erros médios de localizacdo de cada algoritmo
baseado em pso para cada fold de teste.

a todos os métodos concorrentes (CLPSO], [EPSO| [FDRPSO| [HPSO-TVAC]| e WPSO)).

Todos os pares comparativos apresentaram valores de p extremamente baixos, que podem

ser considerados aproximadamente zero, conforme (FRIEDMAN, 1937)), evidenciando dife-

rencas significativas sob o nivel de significincia de 0,05. Esses resultados confirmam que
o desempenho superior do algoritmo nao é apenas observavel visualmente, mas
também estatisticamente consistente, consolidando sua eficacia para aplicagoes reais.

A anélise dos resultados obtidos com a validacao cruzada de cinco folds e com o teste de
Wilcoxon evidencia que o algoritmo apresenta desempenho superior e estével na
tarefa de localizacao, quando comparado aos algoritmos [PSO] testados no benchmark. Sua
capacidade de manter erros médios inferiores a 10 m em diferentes subconjuntos de dados,
aliada a confirmacao estatistica de superioridade, demonstra sua robustez e poder de
generalizagao, confirmando sua aplicabilidade pratica em cenarios reais de posicionamento

movel.

5.4.2 Influéncia do tamanho da janela de memdria

De acordo com (SILVA et al, 2024), o algoritmo [MB-EPSO| fundamenta-se no uso de uma

janela de memoria M, responsavel por percorrer a trajetoria evolutiva das geragoes de

particulas e armazenar uma quantidade fixa de solugoes. Essa estrutura atua como um
mecanismo de apoio a selegdo autoadaptativa das variantes do [PSO]incorporadas ao con-
junto. Com base nesse principio, realizou-se uma andlise experimental para identificar
qual valor de M proporciona os menores erros médios de localiza¢ao. Foram testados ta-
manhos de janela de memoria iguais a 2, 4, 8, 16, 32 e 64. O uso de valores em poténcias

de 2 teve como objetivo facilitar a identificacao de possiveis mudancas significativas, tor-
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Tabela 7 — Estatisticas do erro de localizacdo e; obtidas para diferentes
tamanhos da janela de meméria deslizante M no algoritmo MB-EPSO
(fase on-line do algoritmo HyMLoc).

M e (m) oc, (M) eqmin (M) €dqmaz (M)

2 902 12,09 0,59 100,19

8,25 7,14 4,31 81,51
8 687 855 0,78 153,54
16 308,82 209,55 3,01 1398,79
32 346,90 251,12 12,78 1506,99
64 47525 501,39 10,13 1933,62

nando variagdes no comportamento dos resultados mais evidentes. Cada valor de M foi
aplicado individualmente aos conjuntos de dados DS-1 a DS-5 obtidos na etapa de valida-
cao cruzada. Por exemplo, para M = 2, o algoritmo foi executado em todos os
conjuntos DS-1 a DS-5 e o mesmo procedimento foi repetido para os demais valores de M.
Os experimentos foram conduzidos com dados de medig¢oes indoor e outdoor; entretanto,
nesta analise, apresentam-se apenas os resultados obtidos no cenario outdoor, uma vez
que os dados indoor revelaram tendéncias semelhantes, cuja inclusao seria redundante.

A Tabela[7lapresenta o erro médio, o desvio padrao, além dos valores minimo e méximo,
denotados, respectivamente, por €, oe,, €d,min € €d,max do algoritmo[HyMLod|, considerando
os diferentes tamanhos de janela de memoéria. Para cada valor de M apresentado, o erro
médio e o desvio padrao correspondem as médias dos erros médios de localizacao e desvios
padrao obtidos em cada um dos folds de teste (DS-1 a DS-5). Enquanto isso, os valores
minimo e maximo se referem, respectivamente, ao menor valor minimo e ao maior valor
méximo obtidos nos cinco folds de teste. E possivel observar que os menores erros médios
e desvios padrao sao obtidos para M = 2, 4 e 8, indicando melhor desempenho e maior
estabilidade nesses casos. Para valores maiores de M, como, por exemplo, 16, 32 e 64,
ocorrem aumentos expressivos tanto na média quanto na variabilidade do erro. Tal fato
indica que, a partir de certos valores, o aumento do tamanho da janela de memoria degrada
o desempenho do algoritmo. Desta maneira, valores mais baixos de M sao preferiveis para
otimizar a acurécia e a consisténcia da localizagao.

Para assegurar a escolha do tamanho de M com base em testes de hipdteses, o teste
de Wilcoxon com p = 0,05 foi utilizado. Quando p < 0,05, rejeita-se a hipotese nula de
igualdade entre os tamanhos de M. Quando p > 0, 05, ndo se pode rejeitar a hipotese nula,
o que nos leva a desempenhos estatisticamente indistinguiveis. Os resultados dos testes
pareados estdo apresentados na Figura [I4 O mapa de calor mostra que hé diferencas
estatisticamente significativas entre os varios modelos, especialmente quando ha contraste
entre memorias de tamanhos M = 2 a M = 8 e memorias de tamanhos M = 16 a M = 64.

Isso sugere que o parametro M exerce uma influéncia significativa sobre o desempenho
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Figura 14 — Resultados dos testes pareados de Wilcoxon para todos os tamanhos
de janela de meméria considerados na aplicacdo do algoritmo HyMLoc.

do algoritmo Observa-se que os valores de M pertencentes ao conjunto {2, 4, 8}
delimitam uma faixa de operacao estavel, enquanto valores de M mais elevados, ou seja,
pertencentes ao conjunto {16, 32,64}, indicam uma tendéncia a saturagao do desempenho.

Os testes de hipéteses indicaram a auséncia de diferencas estatisticamente significati-
vas entre os valores de M = 2, 4 e 8. Contudo, conforme apresentado na Tabela[7], embora
os resultados sejam préximos, os menores valores de erro médio e de desvio padrao fo-
ram obtidos para M = 8. Tal resultado corrobora o que foi reportado em (SILVA et al.
, em que o algoritmo apresentou desempenho consistente em diferentes
classes de problemas de otimizacdo para uma janela de memoria de tamanho M = 8. Por
conseguinte, sera adotado este valor nas analises subsequentes, em consonancia com os

melhores desempenhos observados.

5.4.3 Desempenho nos ambientes outdoor e indoor

Esta secao apresenta a comparacao entre o algoritmo e os benchmarks emprega-
dos na tarefa de localizagao. Para todos os algoritmos analisados, foi assumido o uso do
fold DS-4 como base de teste. A motivacao para a escolha de tal fold deve-se ao fato de
que o desempenho de todos os algoritmos abordados foi o melhor para este subconjunto
de dados (vide Fig, ou seja, possui distribuicdo mediana entre os cinco folds. A analise
sera apresentada primeiramente com os resultados do cenario outdoor e, em seguida, com

o cenario indoor. Além disso, todos os algoritmos utilizam o modelo k-NN para estimar
as distancias entre a [EMl e as [ERBk.
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Tabela 8 — Estatisticas do erro de localizacdo e; obtidas para os algoritmos
de localizacao baseados em PSO, considerando o cendrio outdoor.

Algoritmo eq (m) o0ey; (M) eqmin (M)  €dmaz (M)
CLPSO 154,30 107,91 5,20 844,54
EPSO 233,43 156,83 5,84 1025,59
FDRPSO 207,09 151,95 4,33 1362,50
HPSO-TVAC 160,26 119,30 3,95 979,62
WPSO 201,72 122,63 5,30 672,30
HyMLoc 5,35 5,22 3,66 130,36

Iniciando com os resultados do cenario outdoor, a Tabela |8] sintetiza as principais
estatisticas do erro de localizacao e; para os algoritmos analisados, seguindo a mesma
notagao definida para a Tabela [7] O algoritmo apresentou os menores valores
de erro médio, além do menor desvio padrao, confirmando sua maior acuracia e estabi-
lidade. Esse desempenho decorre da arquitetura baseada no algoritmo [MB-EPSO] que
utiliza uma janela de memoria deslizante para armazenar geragoes anteriores e selecio-
nar dinamicamente a melhor estratégia de [PSO] equilibrando exploracao e intensificagao
no espago de busca. Em contraste com o desempenho dos algoritmos, sobretudo com o
HyMTLod, encontra-se o [EPSO] pois, mesmo sendo baseado em conjuntos de otimizadores
e utilizando as mesmas variantes @ empregadas no algoritmo proposto, apresenta os
piores resultados em todos os parametros, exceto No €qmq,- Essa atuacao evidencia as
dificuldades do algoritmo [EPSO] em problemas com miiltiplos minimos locais, como é o
caso da localizagao.

A Figura [T ilustra a distribuicao do erro de localizacao para o algoritmo e
os benchmarks considerados. A analise dos boxplots evidencia que os métodos baseados
em [PSO| apresentam uma quantidade expressiva de outliers, distribuidos em faixas de
erro superiores as observadas no [HyMLod Tais valores indicam que os benchmarks ado-
tados estao sujeitos a instabilidade, resultando em estimativas de localizacdo com erro
elevado. Isso sugere que, embora esses algoritmos baseados em [PSO| possam alcangar um
desempenho na faixa de 150 a 230m, eles sdo menos consistentes e mais vulneraveis a
condic¢oes adversas da base de dados, como medigoes ruidosas, regioes de baixa cobertura
ou cendrios com geometria desfavoravel entre a [EM| e as [ERBE.

Por outro lado, o algoritmo apresenta uma dispersdo bastante reduzida e

praticamente nao exibe erros isolados de grande magnitude que possam interferir signifi-

cativamente na avaliagao do desempenho do algoritmo. Os valores discrepantes observados
permanecem em faixas de erro proximas a média dos dados, ndo ultrapassando a ordem
de algumas dezenas de metros. Essa caracteristica indica que o nao apenas reduz
o erro médio, mas também garante maior robustez e previsibilidade, ou seja, o método é

menos suscetivel a falhas e também mais confiavel do ponto de vista operacional.
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A Figura [16] apresenta a [FDA| do erro de localizagao e, para o algoritmo e

as variantes baseadas em [PSOJ levando em conta o cendrio outdoor. A andlise das curvas
permite avaliar o comportamento de convergéncia dos algoritmos baseados em [PSO]sob o
ponto de vista da rapidez, estabilidade e controle da velocidade das particulas. Nesse con-
texto, o algoritmo apresenta um desempenho superior ao dos demais métodos.
Sua se destaca por uma inclinacido acentuada a esquerda, atingindo 50% das esti-
mativas, com erro em torno de 5m. Esse comportamento indica uma convergéncia rapida
e precisa, com baixa variabilidade entre as execugoes. Tal eficiéncia é atribuida a combi-
nagao da meméria deslizante de solugoes, ao uso de miltiplas variantes de [PSO]operando
em conjunto e ao método estocédstico de controle de velocidade das particulas, que atua
diretamente na mitigacao da convergéncia prematura e na preservacao da diversidade do
enxame.

Embora todos os algoritmos sejam baseados em[PSO] eles apresentam comportamentos
de convergéncia bastante distintos. Os algoritmos [FDRPSO] e WPSO] tendem a explorar

excessivamente o espago de busca, o que reduz a probabilidade de convergéncia prema-

tura; entretanto, prolongam a permanéncia em regioes de alto erro. No extremo oposto, o
[HPSO-TVAC]| converge mais rapidamente, porém com maior risco de aprisionamento em
solugdes subotimas, uma vez que nao preserva a memoria das melhores posi¢oes encon-

tradas. Esse comportamento também se reflete na andlise da [FDA] do [HPSO-TVAC], que

apresenta queda acentuada nas iteragoes iniciais, indicando rapida convergéncia, mas se

estabiliza precocemente em um plato. Isso evidencia que o algoritmo deixa de explorar
novas regices do espago de busca e se fixa em solugdes nao 6timas. O algoritmo [EPSO|fica
no meio-termo, pois consegue escapar de minimos locais, mas nao melhora com a mesma

eficiéncia as posigoes das particulas em diregdo ao minimo global. Por fim, o [CLPSO|

e
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Figura 15 — Distribuicdo do erro de localizagdo e; obtida para os algoritmos
de localizacdo baseados em PSO, considerando o cenario outdoor.
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Figura 16 — Fungdo de distribuicdo acumulada do erro de localizacado e; obtida
para os algoritmos de localizacdo baseados em PSO, considerando o
cenario outdoor.

¢ o algoritmo que mais se aproxima do em termos de estabilidade, pois man-
tém a diversidade no enxame e evita oscilagdes excessivas. Ainda assim, sua convergéncia
ocorre de forma mais lenta. Em sintese, enquanto os benchmarks oscilam entre explorar
excessivamente o espaco de busca e convergir cedo demais, o algoritmo converge
rapidamente, com precisao e sem perda de estabilidade.

A significancia estatistica foi avaliada pelo teste nao paramétrico de Friedman, ade-
quado para comparagoes entre miultiplos algoritmos sob as mesmas condigoes
. A hipétese nula Hy — igualdade de desempenho — foi rejeitada a 5% de signifi-
cancia. A Tabela[Jlapresenta a matriz de valores p obtidos pelo teste de Friedman, seguida
pelo post-hoc Nemenyi, em que o algoritmo obteve o valor p ~ 0,000 conforme

o célculo de (FRIEDMAN, 1937). Observa-se que algumas combinagoes entre os demais

algoritmos ndo apresentam diferenca significativa, como no caso de [EPSO| versus [WPSO|
em que p > 0,05, sugerindo desempenhos semelhantes. J& no caso da comparacao entre
[EPSO| e [FDRPSO] temos um valor de p ~ 0,042, indicando uma diferenca estatistica
moderada, porém menos expressiva em relagao as demais.

Em termos de desempenho, o algoritmo apresentou um ranking médio de

1,01, indicando que ele ocupou a primeira posicao entre os algoritmos avaliados, conforme

ilustrado na Figura De acordo com o teste estatistico de Friedman, essa vantagem
nao ¢ aleatéria. O valor de p &~ 0,00 confirma que o desempenho superior do é
estatisticamente significativo quando comparado a todos os demais. Em resumo, para o
cendrio outdoor, o algoritmo apresentou os menores erros, maior estabilidade e

melhor desempenho estatistico entre os métodos comparados.
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Figura 17 — Ranking médio dos algoritmos obtidos com a aplicagdo do Teste de
Friedman, considerando o cenario outdoor.

A Tabela [10| apresenta as principais estatisticas do erro de localizacao e, para os algo-
ritmos analisados, considerando agora o cenério indoor. O algoritmo obteve um
erro médio de apenas 17,33 m, contrastando fortemente com algoritmos como o [FDRPSO]
cujo erro médio ultrapassa 870 m. Observa-se, contudo, que o desvio padrao relativamente

alto, cujo valor é 90,72 m em relacao a média, indica a presenca de alguns erros atipicos, o

que sugere uma distribui¢do com cauda longa (MERZ et al., 2022), isto é, a maior parte das

estimativas apresenta erros baixos, mas ha alguns casos isolados com erros mais elevados,
conforme evidenciado pelo valor méaximo de aproximadamente 993 m.

A Figura [I§] apresenta a [FDA| do erro de localizagdo e, para o algoritmo 3
as variantes baseadas em m tendo em vista o cendrio indoor. E possfvel observar o
bom desempenho do algoritmo em comparacao aos demais algoritmos, visto que
estes tultimos apresentaram curvas mais dilatadas, indicando maior dispersao nos erros de
localizacao. Adicionalmente, é importante frisar que a acurdcia alcancada pelo algoritmo
também tem implicagoes regulatérias significativas. A [FCC|estabelece que, para

chamadas de emergéncia, pelo menos 80% das estimativas devem apresentar erro inferior

Tabela 9 — Matriz de valores p dos algoritmos obtidos com a aplicacdo do teste
de post-hoc de Nemenyi, considerando o cenario outdoor.

Algoritmo CLPSO EPSO FDRPSO HPSO-TVAC WPSO HyMLoc
CLPSO 1,000 0,000 0,000 8,33 x 10~ 0,000 0,000
EPSO 0,000 1,000 0,042 0,000 0,593 0,000
FDRPSO 0,000 0,042 1,000 0,000 0,010 0,000
HPSO-TVAC 8,33 x 1074 0,000 0, 000 1,000 0,000 0,000
WPSO 0,000 0,593 0,010 0,000 1,000 0,000

HyMLoc 0,000 0,000 0,000 0,000 0,000 1,000
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Figura 18 — Fungdo de distribuicdo acumulada do erro de localizacado e; obtida
para os algoritmos de localizacdo baseados em PSO, considerando
0 cenario indoor (requisitos da FCC indicados na regido de cor
laranja).

a 50m (Federal Communications Commission, |2020). Tal requisito regulatério estéd indicado na

Figura [I§ Nota-se que apenas o algoritmo praticamente cumpriu o requisito,
alcancando 98,53% das amostras dentro do limite estabelecido. Face ao exposto, podemos

afirmar que o apresentou resultados superiores frente aos demais algoritmos
baseados em [PSO| no cendrio indoor e se mostra uma solucao eficaz para sistemas de
localizacao neste tipo especifico de ambiente.

Para avaliar de outra forma o desempenho dos algoritmos aplicados ao problema da
localizagao em relagao ao apresenta-se uma andlise geoespacial da distribuigao
das estimativas de localizacao dos pontos de teste em ambiente outdoor, obtidas a partir
de cada um dos algoritmos avaliados, em que, mais uma vez, utilizou-se o conjunto DS-

4. A Figura [19) mostra os mapas de distribuicio dos pontos estimados, obtidos pelos

Tabela 10 — Estatisticas do erro de localizacdo e; obtidas para os algoritmos
de localizacdo baseados em PSO, considerando o cenario indoor.

Algoritmo eq (m) o0ey (M) eqgmin (M)  €dmaz (M)
CLPSO 177,82 100,50 0,27 584,67
EPSO 358,42 223,33 1,08 1393,14
FDRPSO 879.79 347,01 717 140324
HPSO-TVAC 218,01 180,54 2,61 1403,24
WPSO 277,27 210,43 3,40 1396,34

HyMLoc 17,33 90,72 0,29 993,19
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benchmarks baseados em [PSO] e pelo algoritmo [HyMLod, em rela¢do aos pontos reais de
medigdo. A partir de cada subfigura, [L9(a) - [L9[f), é possivel analisar o desempenho de
cada algoritmo por meio da comparacao entre os pontos estimados e as posicoes reais
obtidas no procedimento de drive-test. Novamente, cabe ressaltar que tal andlise s6 tem
significado se realizada em conjunto com as estatisticas do erro de localizacao, as quais
estao apresentadas na Tabela [§

O algoritmo apresenta, na Figura (a)7 uma boa concentracao de estimati-
vas préximas aos pontos reais. Esse comportamento é coerente com sua média de erro
de 154,30m e desvio padrao de 107,91 m, que sao menores do que os observados para
[EPSO| e [FDRPSO] Contudo, valores elevados de erro, como o representado por €gmaz =

844,54 m, evidenciam falhas localizadas, consistentes com as dispersoes periféricas visiveis

nos mapas. Essa limitacdo decorre da énfase do[CLPSO|em diversificar o aprendizado en-
tre particulas, o que pode dificultar a convergéncia local precisa em casos com multiplos
minimos.

O mapa de distribuicao do algoritmo , ilustrado na Figura (b), indica que
seu desempenho é inferior ao do [CLPSO] com uma distribui¢do de pontos estimados
mais espalhada em relacao as posigoes reais. Isto é confirmado por seus valores de erro
médio e desvio padrao, quais sejam, 233,43 m e 156,83 m, respectivamente. A auséncia de
um controle refinado de convergéncia local e a menor exploragao adaptativa do [EPSO|
resultam em maior variabilidade no erro. Tais condigdes também apontam que, embora
o algoritmo [EPSO] apresente facilidade para escapar de minimos locais, sua estratégia se
mostra ineficaz em ambientes urbanos densos.

A variante exibe, na Figura (c), resultados mais equilibrados, com boa
proximidade de diversos pontos estimados em relacao as posigoes reais. Isso se reflete na
média de erro de 207,09 m, porém com alto desvio padrao de 151,95 m e erros maximos de
até 1.362,50 m, indicando instabilidade. A estratégia baseada na razao entre aptidao e dis-
tancia permite guiar as particulas de forma mais eficaz em dire¢ao a regioes promissoras do
espaco de busca. No entanto, ainda had uma quantidade consideravel de desvios pontuais,
sugerindo que a dependéncia dessas estratégias pode limitar o desempenho em cenarios
ruidosos ou com multiplas solugoes proximas. Isso fica nitido nas bordas da imagem, onde
se verificam varios pontos aglomerados e enfileirados, sugerindo uma convergéncia prema-
tura das particulas. Apesar do [FDRPSO] bem como os demais avaliados, ter incorporado
o ajuste de velocidade descrito na Subsecao [5.4.1], os resultados obtidos ndo apresentaram
melhorias significativas no desempenho.

O algoritmo evidencia, na Figura (d), resultados significativos em
relacdo aos obtidos pelas técnicas anteriores. A adaptacao dinamica dos coeficientes de
aceleragao ao longo do tempo melhora o equilibrio entre a exploracao e o aproveitamento
do espago de busca. Como consequéncia, observa-se uma distribuicdo mais concentrada

de pontos estimados em torno das posicoes reais. O que se confirma por meio de valores
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estatisticos condizentes, ou seja, erro médio de 160,26 m e desvio padrao de 119,30 m.
Embora seja préximo ao [CLPSO| em média, destaca-se pela melhor estabilidade. Con-
tudo, o desempenho nao é uniforme em todas as regides, revelando sensibilidade a certas
configuragoes iniciais e ao tipo de cenario urbano.

Passando ao [WPSO] este apresenta um desempenho insatisfatério. Apresenta estima-
tivas mais dispersas, consistentes com sua média de erro de 201,72 m e desvio padrao de
122,63 m. Sua estratégia, baseada na ponderacao dos componentes de velocidade, contri-
bui para a estabilidade na busca, mas nao oferece a mesma capacidade adaptativa das
técnicas com aprendizado mais sofisticado, como, por exemplo, o [CLPSO|, o [HPSO-TVAC]
e o préprio algoritmo . A Figura (e) mostra uma concentragao moderada de

pontos corretos, mas também apresenta erros mais evidentes em certas regioes.

Por fim, o algoritmo proposto, [HyMLod, é o que apresenta a menor dispersao e uma
forte aderéncia aos pontos reais. Os pontos estimados plotados na Figura (f) estao
notavelmente préximos dos reais ao longo de todo o mapa, com baixa dispersao. Os
valores estatisticos reforcam essa conclusao, ou seja, erro médio de 5,35 m e desvio padrao
de 5,22m, com erro maximo limitado a 993,19 m — valores com uma ordem de grandeza
menor do que todos os algoritmos baseados apenas em @, exceto para o caso do € maq-
A utilizacdo de uma janela de memoria deslizante M para selecionar dinamicamente a
melhor variante do [PSO] entre varias disponiveis permite que o algoritmo se adapte da
melhor maneira possivel as caracteristicas locais do problema. Essa combinacao eficaz de
estratégias faz com que o algoritmo se destaque como o mais robusto dentre as

opgoes analisadas.
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Um ponto relevante a se destacar é que a andlise geoespacial, bem como os testes
comparativos, revelaram a ineficicia do algoritmo [LIPS| quando aplicado ao problema da
localizagao. A Figura [20] ilustra a distribuicao dos pontos estimados, onde se verifica um
acimulo de pontos em um mesmo local. A principal deficiéncia do algoritmo foi sua
tendéncia a exploragao local excessiva, que frequentemente resultou em uma convergéncia
prematura. Isso ocorreu porque a estratégia do [LIPS| se baseia na atualizagdo das parti-
culas, considerando apenas informagoes provenientes de vizinhos proximos. Isso restringe
a diversidade da populagao e limita a capacidade do algoritmo de explorar regidoes mais
amplas do espaco de busca. Como consequéncia, as particulas tendem a se aglomerar ra-
pidamente em uma area limitada — mesmo que essa regiao nao contenha a solugao 6tima
— o que justifica a concentracao espacial dos pontos gerados.

Apesar de as medigoes reais estarem bem distribuidas no espago urbano, o [LIPS|nao
conseguiu acompanhar essa distribuicao, indicando que o algoritmo convergiu prematura-
mente. A diversidade da populacao foi mal preservada e, mesmo com o ajuste de velocidade
e tamanho da janela de memoria, nao foi possivel guiar as particulas de forma eficaz por
toda a area. Esse comportamento é discutido na literatura, como, por exemplo, em (PAN
et al., 2020)), em que os autores destacam que metodologias excessivamente locais podem
comprometer significativamente a eficicia da busca global em problemas de otimizacao
com multiplos minimos locais. Por esta razao, o algoritmo [LIPS] foi excluido de toda a

analise comparativa realizada entre os métodos utilizados.
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Figura 20 — Mapa de distribuigdo dos pontos estimados pelo algoritmo LIPS quando
aplicado a localizacdo em relacdo aos pontos reais de medicao.
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Com o objetivo de complementar a comparacao entre o algoritmo e as demais
abordagens, apresenta-se também uma andalise do tempo de execucao focada em cada
algoritmo. Essa analise se refere exclusivamente a etapa de otimizacao, nao incluindo
fases de pré-processamento, leitura de dados ou treinamento dos modelos de regressao.

Os experimentos foram realizados no mesmo ambiente computacional descrito na Secao
[3.2] isto é, no cluster Apuana do CIn-UFPE. Mantiveram-se os mesmos critérios utilizados
na avaliagdo do[MB-EPSO] incluindo os pardmetros experimentais, o nimero de execugoes
e o procedimento de normalizacao dos tempos de execucao. A tnica diferenca reside no
algoritmo de referéncia adotado para a normalizacao, isto ¢, enquanto nos testes anteriores
utilizou-se o[MB-EPSO] nesta etapa, o tempo do[HyMLod foi considerado como valor base.

A Tabela [11] apresenta os tempos médios de execucgao e seus correspondentes desvios
padrao, denotados, respectivamente, por ¢ e o; para cada algoritmo nos cendrios indoor e
outdoor. Tomando como referéncia tais valores, os tempos foram normalizados utilizando
a média do algoritmo como referéncia. A Tabela [12] apresenta os valores norma-
lizados dos tempos de execugdo da etapa de otimizacao de cada algoritmo baseado em
[PSOJ assim como da proposta[HyMLod, para cada cendrio investigado, acompanhados das
redugoes percentuais promovidas pelo algoritmo proposto. Por exemplo, considerando o
cenario indoor, o algoritmo promove uma reducao de 23,08% no tempo médio de
execugao quando comparado ao algoritmo [CLPSO] Anélises equivalentes sdo conduzidas
para os outros algoritmos nos cenérios indoor e outdoor.

Com base nas Tabelas [11] e [12] o desempenho do adotado como referéncia
para comparacao, evidencia redugdes consistentes no tempo de execucao em ambos os
ambientes avaliados.

No cenario indoor, que apresenta maior complexidade devido a presenca de obstaculos
e ao maior volume de medigdes, o destacou-se com as maiores redugoes de
tempo em relacao aos demais métodos. As redugoes variam de aproximadamente 13% a

28%, com destaque para os algoritmos que mais sofrem nesse tipo de ambiente, como o

Tabela 11 — Estatisticas do tempo de execucdo de todas as variantes PSO
consideradas neste trabalho para cada tipo de cenario.

Algoritmo Cenério indoor  Cenéario outdoor

t (ms) oy (ms) ¢ (ms) oy (ms)

CLPSO 107,82 16,56 13,39 1,04
EPSO 103,25 14,42 12,78 1,33
FDRPSO 105,51 14,38 14,35 1,32
HPSO-TVAC 101,06 1504 11,83 1,37
WPSO 102,54 14,57 1252 0,84

HyMLoc 94,50 12,76 10,27 1,08
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Tabela 12 — Valores normalizados dos tempos de execugdo e ganho percentual do
HyMLoc, com médias por cenario e média geral.

Algoritmo Cenario indoor Cenario outdoor

CLPSO 1,30 (23,08%) 1,14 (12,28%)
EPSO 1,24 (19,35%) 1,09 (8,26%)
FDRPSO 1,40 (28,57%) 1,12 (10,71%)
HPSO-TVAC 1,15 (13,04%) 1,07 (6,54%)
WPSO 1,22 (18,03%) 1,08 (7,41%)
HyMLoc 1,00 1,00

[FDRPSO] e o [CLPSO], em que o promove uma reducao de tempo na faixa de
aproximadamente 25%. Esse comportamento reforca a eficiéncia do em contextos

de maior interferéncia, nos quais os outros algoritmos tendem a apresentar penalizagoes

maiores no tempo de execugao.

No cendrio outdoor, as diferencas de desempenho sdo mais moderadas, mas o
mantém-se como a alternativa mais eficiente. As redugbes situam-se aproximadamente
entre 6% e 12%, com os maiores percentuais de reducao de tempo observados em relacao
a0 com 12,28% e ao com 10,71%. Mesmo em condi¢oes menos adversas,
0 continua a exigir menos tempo de processamento, demonstrando consisténcia
no desempenho. Entre os demais, o [HPSO-TVAC| permanece como o mais préximo do
[HyMLod, pois a redugdo de tempo foi inferior a 7%.

Esses resultados mostram que o nao apenas atinge o melhor desempenho em
termos de tempo de execucao, mas também mantém sua vantagem em ambientes com
diferentes niveis de complexidade. Enquanto métodos como [FDRPSO] e [CLPSO] sao os
mais impactados por condigoes adversas, o preserva sua eficiéncia e consisténcia,

destacando-se como a alternativa mais robusta entre os algoritmos avaliados.

5.5 Resumo do capitulo

Neste capitulo, foi proposto o algoritmo hibrido de localizagio baseado em meméria [HyM
[LCod que combina estimativas de distancia obtidas por regressao [k-NN] e otimizagao adap-
tativa via algoritmo [MB-EPSO] Detalhou-se a construgdo da base de dados a partir de
medigoes reais em cenarios urbanos, tanto indoor quanto outdoor; o esquema de separacao
treino/teste e a adocao de valida¢ao cruzada para comprovar a capacidade de generaliza-
¢ao do algoritmo. Também foram introduzidas melhorias, como o controle estocastico da
velocidade das particulas e o ajuste do tamanho da janela de memoria deslizante do al-

goritmo [MB-EPSO] A avaliagao experimental comparou a proposta com outros

algoritmos de referéncia baseados em [PSO| evidenciando ganhos em acuricia, estabili-
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dade e tempo de execugdo, além de conformidade com os critérios normativos da [FCC|
Os resultados confirmaram o potencial do algoritmo como uma solugao robusta

e eficiente para sistemas de localizacao em redes celulares.
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6 CONCLUSOES

“Andei, andei, andei, até
localizar...

(Adaptada da cancao

Coragao Sertanejo)

A localizacao de dispositivos moveis em redes celulares configura-se como um desafio
central para a evolucao das telecomunicacoes modernas, dada a sua relevancia tanto em
aplicagoes criticas, como servigos de emergéncia e seguranca publica, quanto em solu-
¢oes voltadas para mobilidade, logistica e personalizagao de servigos. Ao longo desta tese,
buscou-se enfrentar esse desafio por meio do desenvolvimento de técnicas que combinam
simplicidade, robustez e eficiéncia computacional, sem abrir mao da acuracia necessaria
para cendrios regulatérios, como os estabelecidos pelo [FCC| E911. O trabalho partiu da
constatacao de que algoritmos classicos de trilateragao apresentam limitacoes em ambi-
entes reais e que, embora o [PSO| seja uma ferramenta poderosa para lidar com a nao
linearidade intrinseca do problema, suas variantes tradicionais sofrem com convergéncia
prematura e alto custo computacional em cenarios heterogéneos.

Nesse contexto, a primeira contribuicao da tese foi a proposi¢do do algoritmo
[EPSO], que introduziu um mecanismo de memoria deslizante para preservar geragoes his-
toricamente mais bem-sucedidas e, assim, manter a diversidade populacional ao longo da
evolucao. Associado a isso, o algoritmo incorporou uma estratégia adaptativa de selecao de
variantes de [PSOJ, capaz de escolher dinamicamente a abordagem mais promissora a cada
instante, e um controle estocastico de velocidade para reduzir aglomerac¢ées nas bordas
do espaco de busca. Essa arquitetura provou ser eficiente em benchmarks de referéncia,
como, por exemplo, o [CEC2017] superando algoritmos consagrados e demonstrando que
¢é possivel conciliar acuracia e baixo tempo de execugdo em um mesmo modelo de otimi-
Zagao.

A segunda contribuicao foi a integragao desse otimizador ao processo de radiolocali-
zacao, resultando no algoritmo A solucdo combina trilateracao, regressao por
[k-NN] aplicada as medigoes de RSS] e [PD] e otimizagao via [MB-EPSO] Avaliada em uma
base de dados real coletada em Recife, abrangendo tanto cendrios indoor quanto out-
door, a proposta apresentou desempenho consistente, alcangando erros médios de 5,35 m
em ambientes outdoor e 17,33 m em ambientes indoor. Além disso, foi capaz de atender
aos critérios normativos do E911, garantindo que mais de 80% das estimativas se
mantivessem abaixo de 50 m de erro em chamadas de emergéncia. Testes estatisticos de

significAncia confirmaram a superioridade do algoritmo em relagao a variantes



Capitulo 6. Conclusées 87

cléssicas e hibridas de [PSO] evidenciando ganhos em acurdcia, estabilidade e tempo de
execucao.

A andlise comparativa também evidenciou limitagoes associadas ao uso de algoritmos
de referéncia, em especial o [LIPS] Embora tenha sido concebido para explorar informa-
¢oes locais da vizinhanca das particulas, sua aplicacdo ao problema de radiolocalizacao
mostrou-se ineficaz. Os resultados experimentais indicaram uma concentracao excessiva
de particulas em regides restritas do espago de busca, o que levou a erros elevados. Essa
ineficiéncia reforca a dificuldade de métodos baseados exclusivamente em informagao local
lidarem com ambientes de propagacao altamente heterogéneos, caracterizados por mul-
tiplos percursos e atenuagao irregular. Assim, a comparacao com o [LIPS| evidenciou a
relevancia do [HyMLod Gragas & memdria e & adaptacgdo dinidmica, o método descartou
automaticamente o [LIPS| durante o processo de selegao autoadaptativa, refletindo seu
baixo desempenho e evitando que ele fosse escolhido pela janela de meméria M.

Os resultados obtidos permitem afirmar que os objetivos propostos foram atingidos.
O algoritmo [MB-EPSO] mostrou ser um otimizador versatil, capaz de lidar com fungoes
complexas sem incorrer em custos excessivos, e o algoritmo consolidou-se como
uma solucao pratica e escalavel para localizacao em redes celulares, mesmo em condicoes
adversas de propagacao. Além disso, a pesquisa contribui de maneira mais ampla para o
campo da otimizagao, ao evidenciar o potencial de mecanismos baseados em memoria e
adaptagdo dinamica na construcao de algoritmos mais robustos.

Ainda assim, algumas limitagoes precisam ser reconhecidas. Embora a avaliagao tenha
incluido cenarios indoor e outdoor com medi¢oes reais, os experimentos restringiram-se
a redes de terceira geracio WCDMA] o que abre espago para investigagoes em contex-
tos mais recentes, como e 5G], caracterizados por maior densidade de células e maior
heterogeneidade espectral. Entretanto, enfatiza-se que essa restricao enfrentada nao com-
prometeu a implementac¢ao do algoritmo [HyMLod, tampouco os resultados obtidos, que se
mantém consistentes e relevantes dentro do escopo da pesquisa. Ainda sobre fatores limi-
tantes, também foi identificado que, apesar da eficiéncia do algoritmo[HyMLod, a etapa de
regressao com ainda representa um custo relevante em termos de tempo de execu-
¢ao, especialmente quando aplicada a bases de dados muito extensas. Além disso, fatores
como mobilidade em alta velocidade e variagoes dinamicas da rede nao foram explorados
em profundidade, permanecendo como desafios a serem enfrentados.

A partir dessas consideragoes, delineiam-se perspectivas promissoras para trabalhos
futuros. Entre elas, destaca-se a adaptacao dos algoritmos [MB-EPSO| e [HyMLod a am-
bientes e de sexta geracao (6G)), nos quais coexistem multiplas tecnologias de acesso

e arquiteturas ultradensas. Outras possibilidades incluem a substituigdo ou complemen-
tacdo do [E-NN] por modelos de aprendizado profundo capazes de lidar com padroes mais
complexos de propagacao, bem como a integragao de informagoes contextuais adicionais,

como dados de sensores inerciais ou |Wi-Fil. Também merece atencao a implementagao de
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uma integragao da técnica proposta na tese com sistemas de localizacao indoor baseados
em redes [Wi-Fi assim como em outras redes de comunicagao de curto alcance, como
redes pessoais sem fio. Essa integracdo permitiria ampliar a aplicabilidade da solucao
para cenarios em que a infraestrutura celular apresenta cobertura limitada ou desem-
penho insatisfatério, especialmente em ambientes indoor complexos. Do ponto de vista
da otimizagao, investigagoes sobre estratégias de memoria hierarquica e de autoaprendi-
zado adaptativo podem ampliar ainda mais a capacidade de generalizacao do algoritmo
[MB-EPSO] Em paralelo, a aplicagao da proposta a outros problemas nao restritos a lo-
calizagao, como planejamento de redes e otimizagao de recursos em sistemas distribuidos,
representa uma extensao natural do trabalho aqui desenvolvido.

Em sintese, esta tese apresentou uma contribuigao original para o avango dos sistemas
de localizacao em redes celulares. Ao propor e validar os algoritmos [MB-EPSO| e [HyM-]

[Cod estabeleceu-se uma solugdo que alia acurdcia, escalabilidade e viabilidade prética,

respondendo a uma demanda crescente tanto no meio académico quanto na industria. Os
resultados obtidos confirmam o seu potencial para contribuir para a evolugao dos servicos
baseados em localizacdo. Além disso, reforcam o papel da otimizacao inteligente como

uma ferramenta fundamental na construcao de sistemas mais adaptativos e confiaveis.
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A IMPLEMENTACAO DO ALGORITMO
HYMLOC

Conforme mencionado, o algoritmo [HyMLoc| combina técnicas de e otimizagao para
estimar a posicao de um usuario mével em uma rede de telefonia celular. A seguir,
apresenta-se um esbogo de sua implementagao, ilustrado no Algoritmo 2]

O Algoritmo [2| possui as seguintes variaveis de entrada (linhas 2-9): Nyy.cino, nimero
de amostras de treinamento (linha 2); Nyege, nimero de amostras de teste (linha 3). 80%
dos dados sdo utilizados para treinamento e 20% para teste. O valor total de amostras é
dado por N = Nireino + Nieste-

A varidvel ¢ representa o nimero de atributos por amostra (linha 5), como, por exem-
plo, e[PD] J4 n, corresponde ao nimero de (linha 6), sendo nove no total. A
matriz M, (linha 7), com dimensdo N x ¢, contém as medigoes dos atributos (e.g.,
e[PD). A matriz P (linha 8), de dimensdo N x 3, armazena as posigoes reais associadas
as medigoes, representadas por (x,y) — identificador do ponto, latitude e longitude, res-
pectivamente. Por fim, o (linha 9) representa o modelo de otimizagao, que neste trabalho
é o algoritmo responsavel por resolver a fungao de fitness.

As varidveis de saida (linhas 11-12) sdo: P, matriz de posi¢des preditas (linha 11),
com dimensao N x 3, contendo os tripletos (z,y, z) correspondentes as posi¢oes estimadas;
e eq, vetor de erros de predigao de distancia (linha 12), de dimensao N x 1, representando
o erro absoluto entre as posigoes reais e preditas.

O funcionamento do Algoritmo ¢ estruturado em cinco etapas principais:

1. Separacao dos dados: M e P sdo divididos em dados de treinamento (linha
14) e teste (linha 15), resultando na tupla [M,, P, a qual servird de base para o
treinamento do modelo de e na tupla [My, P], que, por sua vez, serda a base

para os testes em que se retornara a saida do algoritmo;

2. Treinamento do modelo: O modelo é treinado. Este modelo é uma funcao
fp (linha 16) que prediz a posi¢ao a partir da tupla [M,, P,];

3. Inicializagcdo das matrizes de saida: As matrizes para armazenar as posi¢oes
preditas P; (linha 17) e os erros ¢4 (linha 18) sdo inicializadas, cujas dimensoes sao

(Nieste, 3) € (Nieste, 1), respectivamente;

4. Laco de predicao para cada amostra de teste: Para cada amostra ¢ variando
entre [0 .. Nyeste] gera-se uma particula de teste d = fp(M,[i]) (linha 20), a posi¢io
prevista pelo MB-EPSO P[i] = 1(d) (linha 21) é obtida, e, finalmente, calcula-se o
erro absoluto de distancia eq[i] = ABS(P;[i] — P,[i]) (linha 22);



Apéndice A. Implementacao do algoritmo HyM Loc

100

Algoritmo 2 Algoritmo hibrido de localiza¢ao baseado em memoria (HyMLoc).

10

11:
12:

13

14:
15:
16:
17:
18:

19

20:
21:
22:

23
24

1
2
3
4:
5:
6
7
8
9

: Entrada:

Nireino = Nuimero de amostras (treinamento)

Nieste = Nimero de amostras (teste)

N = Nuamero total de amostras (N = Ny eino + Nieste)
¢ = Numero de atributos por amostra

q = Quantidade de ERBs

M., = Matriz de medigoes, (N X c)

: + = Modelo de otimizagao
: Saida:
P, = Matriz de posicoes preditas, (N x 3)

eq = Erro de localizacao, (N x 1)

: Inicio:

[M,, P,] < ConstroiDatasetDeTreino (M, P, Nireino)
[M;, P,] < ConstroiDatasetDeTeste (M, P, M, P, Nieste)
fp < TreinamentoDoModeloDeML [M,, P,]

P, + CriaMatrizVazia (N, 3)

eq < CriaMatrizVazia (N, 1)

. for z;in [0 ... Niesie] do
d= fo(Mi)
P; = 1(d)

eqli] = ABS(P,Ji] — PJ[i])
: Retorne P}, ey
. Fim

P = Matriz de posicoes reais associadas as medigoes, (N x 3) (z,v, 2)

5. Retorno dos resultados: Finalizado o laco com todas as iteragoes, o algoritmo

retorna P, eq (linha 24), ou seja, a posi¢ao estimada para o conjunto de testes e o

erro associado a cada uma.

Em resumo, o algoritmo [HyMLod combina modelagem com supervisionada e

regressao |k-NNp apresenta etapa de pré-processamento para separacao treino/teste; e,

por fim, realiza o calculo de erros para avaliacdo de desempenho. Este fluxo se apresenta

como uma alternativa bastante util para aplica¢oes de localizacao em ambientes urbanos,

tanto indoor quanto outdoor, onde técnicas baseadas apenas em geometria, como, por

exemplo, trilateracao, sao imprecisas devido ao multipercurso.
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B FUNCOES DE BENCHMARK CEC2017

Este apéndice resume as func¢oes de benchmark da sessao especial “CEC2017 Special Ses-
sion and Competition on Single Objective Bound Constrained Real-Parameter Numerical
Optimization”, composta por 29 fungoes (F)—Fyg) amplamente utilizadas na avaliacao de
algoritmos de otimizacgao continua. A formulagao detalhada com vetores de deslocamento,
matrizes de rotacao e arquivos auxiliares encontra-se no relatorio técnico oficial (AWAD et
al., 2016|) e nos arquivos shift_data_*.txt e M_x_D. txt distribuidos com o c6digo oficial.

Todas as fungoes sao problemas de minimizacao definidos, em geral, em
f:QCcRP —R,  Q=][-100,100]",

com solugdes 6timas deslocadas e/ou rotacionadas em relagao as formulagoes cléssicas.

B.1 Transformacoes gerais

As fungoes|CEC2017|sao construidas a partir de fung¢oes-base classicas fiase(+), combinadas

com operagoes de deslocamento, rotagdo e composicao. Em termos gerais, tem-se:

1. Funcgoes deslocadas e rotacionadas

Seja x € R um vetor candidato, o € R” o vetor de deslocamento (shift) e M &

RP*P uma matriz de rotacdao ortonormal. Define-se
z=M(x — o), (B.1)
e a funcao objetivo é dada por
f(@) = foase(2) + foias: (B.2)

em que fpias ¢ um valor de deslocamento vertical (bias) especifico de cada fungao
(por exemplo, 100,200, ... ,3000).

2. Funcgoes hibridas

Nas funcoes hibridas, o vetor z é particionado em N subvetores 2™, ..., 2V cada
um associado a uma funcao-base distinta fégze:
o (b)
fhyb(x> = Z fbase (Z(k)) + fbias' (BS)
k=1

A divisao das dimensbes entre os componentes e a ordem das fungoes-base sao

definidas pelo relatério oficial.
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3. Funcgoes de composicao

Nas fun¢oes de composigao, combinam-se N fun¢oes-base fé?se com diferentes des-
locamentos o', rotacdes M@ e pesos w;(x) dependentes da distancia de x a cada

centro o®:

20 = @ (a: - o@), i=1,....N, (B.4)
fi(@) = Fime (%) + foias,is (B.5)
— o2

w;(x) = exp (—W) , (B.6)

bu(a) = — i) B
wl<l’) Zjvz1 wj(x)u ( '7)

N ~

fcomp<x> - sz(x) fz(x) <B8>

Os valores de o;, dos bias fiias; € a escolha das fungoes-base de cada composigao

sao especificados no relatério técnico.

B.2 Funcoes-base classicas utilizadas

A seguir, listam-se as principais fungoes-base classicas usadas na construgao das fungoes
CEC2017, Em todas elas, z = (z1,...,2p) representa o vetor ja deslocado e, quando

aplicavel, rotacionado.

1. Bent Cigar
D
fBentCigar(Z) = Z% + 106 Z Ziz. (Bg)

=2

2. Sum of Different Powers
D 24411
fSumDiﬁPowers(Z) = Z ‘Zz| oo . (BlO)
i=1

3. Zakharov
2 I 4

fzakharov (2) = szf - (fj 0.5%) - (Z O.5izi> : (B.11)

4. Rosenbrock

D—-1
fRosenbrock Z [100 Zitl — 22)2 + (Zz - 1)2} . (B12)

i=1

5. Rastrigin
D
fRastrigm Z {Z — 10cos 27T2z) + 10] (B13)

=1
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6. Expanded Schaffer’s F6
sin2(\/u2 + U2) - 0.5
fsre(u,v) = 0.5+ 5. (B.14)
[140.001(u? +v2)]
D—
Jexpsre(2 Z fsre(2i, ziv1) + fsre(2D, 21). (B.15)
7. Lunacek bi-Rastrigin
D
fLunacek = min {Z dD +s Z 2}
=1 i=1
D
+ IOZ [1 —cos(2m(z; — t11))] - (B.16)
8. Non-Continuous Rastrigin
A round(2z;)/2, se |z| > 0.5,
Ziy caso contrario,
D
JNC-Rastrigin (2 Z [z — 10cos(272;) + 10} (B.18)
=1
9. Levy
i — 1
D—1
frevy(2) = sin®(mw1) + > (w; — 1)° [1 + 10 sin® (7w; + 1)}
i=1
+ (wp — 1) [1 + sin(2mwp)] . (B.20)
10. Schwefel
D
Fscmeror(2) = 418.9820D — 3" 2 sin («/ |zi|) . (B.21)

=1

B.3 Lista das funcoes CEC2017

A Tabela [13|resume as 29 fung¢oes do conjunto [CEC2017], indicando o tipo, o identificador

e o valor 6timo (bias) fopt-

O intervalo de busca padrao para todas as fungoes é 2 = [—100, 100]”

, salvo indica-

¢ao contraria no relatorio oficial. Os vetores de deslocamento o, as matrizes de rotacao

M, as particoes de dimensoes das fungoes hibridas e os detalhes de cada composicao de-

vem ser obtidos diretamente dos arquivos de defini¢do do de modo a garantir

reprodutibilidade com a competicao original.
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Tabela 13 — Func¢oes de benchmark CEC 2017 para otimizacao real de parametro tnico e
com restricao de limites.

Tipo Id Funcao fopt
Unimodal F1  Shifted and Rotated Bent Cigar Function 100
Unimodal F2  Shifted and Rotated Sum of Different Power Function 200
Unimodal F3  Shifted and Rotated Zakharov Function 300
Multimodal F4  Shifted and Rotated Rosenbrock’s Function 400
Multimodal ~ F5  Shifted and Rotated Rastrigin’s Function 500
Multimodal ~F6  Shifted and Rotated Expanded Schaffer’s F6 Function 600
Multimodal ~ F7  Shifted and Rotated Lunacek bi-Rastrigin Function 700
Multimodal F8  Shifted and Rotated Non-Continuous Rastrigin’s Function 800
Multimodal ~F9  Shifted and Rotated Levy Function 900
Multimodal ~ F10 Shifted and Rotated Schwefel’s Function 1000
Hybrid F11 Hybrid Function 1 (N = 3) 1100
Hybrid F12 Hybrid Function 2 (N = 3) 1200
Hybrid F13 Hybrid Function 3 (N = 3) 1300
Hybrid F14 Hybrid Function 4 (N = 4) 1400
Hybrid F15 Hybrid Function 5 (N = 4) 1500
Hybrid F16 Hybrid Function 6 (N = 4) 1600
Hybrid F17 Hybrid Function 6 (N = 5) 1700
Hybrid F18 Hybrid Function 6 (N = 5) 1800
Hybrid F19 Hybrid Function 6 (N = 5) 1900
Hybrid F20 Hybrid Function 6 (N = 6) 2000
Composition F21 Composition Function 1 (N = 3) 2100
Composition F22 Composition Function 2 (N = 3) 2200
Composition F23 Composition Function 3 (N = 4) 2300
Composition F24 Composition Function 4 (N = 4) 2400
Composition F25 Composition Function 5 (N = 5) 2500
Composition F26 Composition Function 6 (N = 5) 2600
Composition F27 Composition Function 7 (N = 6) 2700
Composition F28 Composition Function 8 (N = 6) 2800
Composition F29 Composition Function 9 (N = 3) 2900
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