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RESUMO
A localização de dispositivos móveis em redes celulares é crucial tanto em aplicações
críticas, como chamadas de emergência, quanto em serviços comerciais baseados em loca-
lização. Métodos clássicos de trilateração alcançam elevada acurácia em cenários externos,
mas permanecem vulneráveis ao multipercurso das ondas de rádio e exigem a resolução
de sistemas não lineares, comumente tratados por algoritmos bioinspirados, como o oti-
mizador por enxame de partículas, os quais podem sofrer convergência prematura e, em
variantes mais sofisticadas, incorrer em alto custo computacional. Para contornar essas
limitações, esta tese propõe um algoritmo híbrido que integra trilateração, regressão pelo
método dos vizinhos mais próximos e um conjunto adaptativo de variantes de otimizadores
baseados em enxames de partículas, apoiado por uma janela de memória deslizante. Essa
estratégia seleciona dinamicamente a abordagem mais adequada, preservando a acurácia
e o baixo tempo de execução. Em experimentos com dados reais de redes de telefonia celu-
lar, observaram-se erros médios de 5,35 m em ambientes externos e 17,33 m em ambientes
internos, em conformidade com os requisitos regulatórios internacionais, que exigem erros
de localização menores que 50 m para 80% das chamadas telefônicas realizadas. Análises
estatísticas corroboram a superioridade do algoritmo proposto em relação a variantes clás-
sicas e híbridas de PSO, evidenciando sua simplicidade, robustez e escalabilidade como
solução prática para localização em redes celulares.

Palavras-chaves: Localização em redes celulares, Otimização por enxame de partículas,
Algoritmos em conjunto, 𝑘-vizinhos mais próximos, Critérios regulatórios.



ABSTRACT

The localization of mobile devices in cellular networks is crucial both for critical appli-
cations, such as emergency calls, and for commercial location-based services. Classical
trilateration methods achieve high accuracy in outdoor scenarios but remain vulnerable
to radio-wave multipath and require solving nonlinear systems, which are commonly han-
dled by bio-inspired algorithms such as particle swarm optimization. These algorithms,
however, may suffer from premature convergence and, in more sophisticated variants, in-
cur high computational cost. To overcome these limitations, this thesis proposes a hybrid
algorithm that integrates trilateration, nearest-neighbor regression, and an adaptive en-
semble of particle-swarm-based optimizers supported by a sliding memory window. This
strategy dynamically selects the most suitable approach, preserving accuracy and low ex-
ecution time. In experiments with real cellular-network data, average errors of 5.35 m in
outdoor environments and 17.33 m indoors were observed, complying with international
regulatory requirements that demand localization errors below 50 m for 80% of emergency
calls. Statistical analyses corroborate the superiority of the proposed algorithm over clas-
sical and hybrid PSO variants, highlighting its simplicity, robustness, and scalability as a
practical solution for localization in cellular networks.

Keywords: Cellular network localization, Particle swarm optimization, Ensemble algo-
rithms, 𝑘-Nearest neighbors, Regulatory requirements.
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𝑑*𝑖 Distância estimada entre EM-ERB, em que 𝑖 = 1, 2, . . . , 𝑛

𝐽(𝑥, 𝑦) Função de minimização do erro entre as distâncias 𝑑*𝑖 e 𝑑𝑖

𝐴𝑖 Notação para ERB

𝑃 (𝑥, 𝑦) Coordenadas geográficas referentes a EM

𝑘 k-vizinho mais próximo



X𝑖 Instância i

X𝑗 Instância j

𝑑(X𝑖, X𝑗) Distância entre as instâncias 𝑖 e 𝑗

𝑓(X𝑖) Valor predito para X𝑖

𝑓(X𝑖) Rótulo para X𝑖

𝐺𝑖 i-ésimo grupo de ERBBs, em que 𝑖 = 1, 2, 3

𝐸𝑖 Identificação individual de ERBs, em que 𝑖 = 1, 2, . . . , 9

pt 4-tupla de medidas de campo

(𝑥𝑡, 𝑦𝑡) Coordenadas geográficas do ponto de medição de teste

qt Vetor com valores de RSCP

dt Vetor com valores de PD

𝑓𝑖(·) Funções de hipótese, em que 𝑖 = 1, 2, . . . , 𝑞

𝑞 Quantidade de ERBs

𝑒𝑑 Erro de localização em metros

𝐽(𝑥𝑝, 𝑦𝑝) Função de minimização do erro 𝑒𝑑

𝑃 (𝑥𝑝, 𝑦𝑝) Coordenada geográfica estimada pelo MB-EPSO

𝑃 *(𝑥*𝑝, 𝑦*𝑝) Coordenada geográfica estimada pelo k-NN

𝑁𝑡𝑟𝑒𝑖𝑛𝑜 Número de amostras de treino

𝑁𝑡𝑒𝑠𝑡𝑒 Número de amostras de teste

𝑁 Número total de amostras

𝑐 Número de atributos por amostra

𝑀 Matriz de Medições (𝑁 × 𝑐)

𝑃 Matriz de Posições reais associadas às medições

𝜄 Modelo de otimização

̂︁𝑃𝑡 Matriz de posições preditas (𝑁 × 3)

𝜈 Fator de redução



(𝑥𝑖, 𝑦𝑖) Coordenadas geográficas das ERBs

𝐶𝐻𝑖 Número do canal

𝐶𝐼𝑖 Identificador da célula

𝑋 Identificação do fold

𝑝 Valor de 𝑝 para os teste post-hoc de Nemenyi

𝑒𝑑 Valor médio do erro de localização

𝜎𝑒𝑑
Desvio padrão do erro de localização

𝑒𝑑,𝑚𝑖𝑛 Valor mínimo do erro de localização

𝑒𝑑,𝑚𝑎𝑥 Valor máximo do erro de localização
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1 INTRODUÇÃO

“Localizar é preciso,
viver não é preciso.”

(adaptada de Pompeu)

1.1 Motivação e justificativa
A localização de dispositivos móveis em redes celulares consolidou-se como um requisito
essencial para uma ampla gama de aplicações contemporâneas. Ela se faz presente em
serviços críticos, como o atendimento a emergências e a segurança pública, e também em
soluções comerciais voltadas para logística urbana e serviços personalizados baseados em
localização. Em situações de crise, uma estimativa rápida e confiável da posição pode ser
determinante para salvar vidas; no setor privado, por sua vez, conhecer e até prever a
localização de clientes possibilita ações de marketing e gestão operacional mais assertivas
(HUANG; GARTNER, 2018). Nesse contexto, diversas técnicas têm sido empregadas para
resolver o problema de localização, como a identificação de célula (Cell ID, do inglês Cell
Identification), que determina a célula à qual a estação móvel (EM) está conectada; o
método de impressão digital de sinais (fingerprinting), que compara medições de radio-
frequência (RF); a triangulação, baseada na estimativa de ângulos entre a EM e a estação
radiobase (ERB); e a trilateração, que utiliza medições da potência do sinal de RF rece-
bido pela EM (RAMTOHUL; KHEDO, 2020). Entre elas, a trilateração é reconhecida por
apresentar boa acurácia em ambientes outdoor, mas sua utilização prática envolve a reso-
lução de sistemas de equações não lineares, tarefa geralmente delegada a métodos bioins-
pirados, como a Otimização por Enxame de Partículas (PSO, do inglês Particle Swarm
Optimization). O PSO é bastante utilizado para resolver sistemas não lineares porque
não requer derivadas, lida bem com funções multimodais e evita a dependência de boas
aproximações iniciais — limitações típicas de métodos clássicos como Newton-Raphson
(RAPHSON, 1690) e Nelder-Mead (NELDER; MEAD, 1965) . Seu mecanismo populacional
favorece a busca global, reduz a probabilidade de convergência prematura e mantém baixo
custo computacional (KENNEDY; EBERHART, 1995; EL-SHORBAGY, 2024).

Embora eficaz, o PSO apresenta fragilidades conhecidas, como a convergência prema-
tura, e a perda de desempenho em ambientes de propagação heterogêneos — em especial,
o ambiente interno (indoor)1, afetado por multipercurso e atenuação — e a forte depen-
1 A partir desse ponto, o termo indoor será utilizado para se referir ao ambiente interno.
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dência de condições específicas de parametrização (WANG et al., 2021). Variantes mais
complexas do PSO introduzem mecanismos adicionais — como operadores adaptativos,
estruturas auxiliares de memória, rotinas de recombinação ou critérios de diversidade —
que aumentam significativamente o número de operações realizadas em cada iteração.
Esse acréscimo eleva o tempo total de processamento e o uso de memória, dificultando a
aplicação desses métodos em cenários de tempo real ou em sistemas de larga escala, onde
respostas rápidas e custo computacional reduzido são fundamentais (JAIN et al., 2022).

Diante desse desafio, esta tese propõe um método híbrido de localização capaz de
conciliar a simplicidade de implementação, o baixo custo computacional e a robustez dos
resultados, ou seja, mantendo o desempenho consistente mesmo diante de variações do
ambiente e ruído nas medições. O núcleo da proposta é o algoritmo baseado em memó-
ria (MB-EPSO, do inglês Memory-Based Ensemble Particle Swarm Optimization), que
introduz um mecanismo de memória deslizante responsável por armazenar as melhores
gerações de partículas, evitando a perda de soluções relevantes ao longo da evolução (SILVA

et al., 2024). Esse recurso permite a seleção adaptativa das variantes de PSO mais ade-
quadas a cada momento, equilibrando a exploração e a intensificação do espaço de busca
de forma dinâmica e reduzindo a probabilidade de estagnação prematura. Além disso, o
algoritmo MB-EPSO incorpora um controle estocástico da velocidade das partículas para
prevenir aglomerações em regiões de fronteira. Com base nesse otimizador, desenvolve-se o
algoritmo híbrido de localização (HyMLoc, do inglês Hybrid Memory-based Localization),
que integra técnicas clássicas de trilateração e regressão pelo método dos k-vizinhos mais
próximos (k-NN, do inglês k-Nearest Neighbors), aplicadas à estimativa de distâncias a
partir de medições reais dos níveis de intensidade dos sinais recebidos (RSSI, do inglês
Received Signal Strength Indicator) e do atraso de propagação (PD, do inglês propagation
delay). Avalia-se a solução por meio de dados coletados em campo em redes de terceira
geração (3G), ou seja, (WCDMA, do inglês Wideband Code Division Multiple Access) no
município de Recife, contemplando ambientes indoor e externos (outdoor)2 de propaga-
ção de ondas de RF. Ressalta-se que a limitação da pesquisa ao cenário 3G decorreu da
indisponibilidade de bases de dados reais em tecnologias celulares mais recentes, como
quarta geração 4G e quinta geração 5G, impedindo a avaliação experimental do algoritmo
nesses ambientes. Essa restrição, contudo, não compromete a generalidade da metodologia
nem a validade dos resultados obtidos, uma vez que os principais parâmetros utilizados
— como RSSI e PD — permanecem presentes nas gerações mais novas, assim como os
princípios físicos de propagação das ondas eletromagnéticas. Portanto, mesmo restrita ao
3G, a investigação preserva sua aplicabilidade e pode ser estendida de forma direta a redes
contemporâneas, desde que bases de dados adequadas estejam disponíveis.
2 A partir desse ponto, o termo outdoor será utilizado para se referir a ambiente externo.
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1.2 Objetivo geral e específico
O objetivo geral desta tese é investigar e propor um método de localização em redes
celulares de baixo custo computacional em cenários reais. Para atingir esse objetivo, a
pesquisa desenvolve um conjunto de metas específicas que incluem a análise das limita-
ções de abordagens baseadas em trilateração e variantes tradicionais do PSO aplicadas à
radiolocalização, o estudo de mecanismos baseados em memória e estratégias adaptativas
capazes de melhorar a estabilidade e a convergência de algoritmos inspirados em enxame,
e a investigação de formas de integração entre técnicas de regressão e métodos de oti-
mização como alternativa para aprimorar estimativas de distância e posição. Além disso,
contempla-se o projeto e a validação de um método híbrido adequado a cenários indoor
e outdoor, com base em dados reais de redes celulares, bem como a comparação sistemá-
tica do seu desempenho com padrões de referência amplamente difundidos na literatura
e a verificação da aderência da proposta às diretrizes e aos requisitos estabelecidos por
normas regulatórias internacionais.

1.3 Contribuições
O presente trabalho traz as seguintes contribuições:

• Proposição do algoritmo MB-EPSO, que se baseia em um conjunto de variantes
PSO auxiliadas por uma janela de memória deslizante, capaz de preservar soluções
historicamente boas e aumentar a diversidade populacional, reduzindo a estagnação
prematura;

• Seleção adaptativa de variantes de PSO a partir da janela de memória, escolhendo
dinamicamente a estratégia mais adequada para cada fase da busca;

• Proposição do algoritmo híbrido de localização HyMLoc, que combina trilateração,
regressão por k-NN e otimização via algoritmo MB-EPSO para estimar a posição
de dispositivos móveis;

1.4 Organização da tese
A organização do texto da tese está da seguinte forma: o segundo capítulo apresenta
os fundamentos da otimização por enxame de partículas, suas variantes e as principais
abordagens de combinação de otimizadores. O terceiro capítulo é dedicado à formulação e
à avaliação do algoritmo MB-EPSO, detalhando sua arquitetura, seu funcionamento e seus
resultados em benchmarks reconhecidos, como, por exemplo, o congresso de computação
evolucionária de 2017 (CEC2017, do inglês IEEE Congress on Evolutionary Computation
2017 ). Em seguida, o quarto capítulo introduz os sistemas de radiolocalização, revisando
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métodos clássicos e destacando o papel da AM nesse domínio. O quinto capítulo concentra-
se na proposta do algoritmo híbrido HyMLoc, explicando a metodologia, a construção
da base de dados, os protocolos de avaliação e os resultados experimentais obtidos em
comparação com outros métodos. Por fim, o sexto capítulo reúne as conclusões, sintetiza as
contribuições alcançadas, discute as limitações do estudo, além de apresentar perspectivas
para trabalhos futuros.
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2 OTIMIZAÇÃO POR ENXAME DE PAR-
TÍCULAS

“A otimização não é apenas
resolver um problema: é

encontrar harmonia entre
simplicidade e eficiência.”

(Zbigniew Michalewicz)

Este capítulo tem início com uma breve descrição dos problemas de otimização e de suas principais carac-

terísticas. Em seguida, discute a otimização por enxame de partículas, desde a sua formulação original até

as variantes mais avançadas, desenvolvidas para mitigar suas limitações. Por fim, apresenta um estudo

sobre estratégias de combinação de otimizadores, com ênfase na seleção autoadaptativa das variantes que

compõem o conjunto de algoritmos analisados.

Problemas de otimização buscam soluções ótimas sob um conjunto de condições e
restrições (AZEGAMI, 2020; NOCEDAL; WRIGHT, 2006). Em termos práticos, o objetivo
é localizar pontos de mínimo ou de máximo de uma função objetivo. Trata-se de uma
tarefa cotidiana, como, por exemplo, escolher o melhor trajeto ou a melhor relação custo-
benefício e, ao mesmo tempo, central em áreas científicas como processamento de imagens,
comunicações sem fio e sistemas de energia (SHAMI et al., 2022).

Para modelar um problema de otimização, recorre-se a uma função objetivo, também
chamada fitness. Conforme descrito em Khouni e Menacer (2023), a função pode ser
classificada quanto à topologia e à natureza. Do ponto de vista topológico, é unimodal
quando possui um único ótimo global e multimodal quando apresenta múltiplos ótimos
locais. Quanto à natureza, é monoobjetiva quando envolve uma única função objetivo,
e multiobjetiva quando duas ou mais funções objetivo são otimizadas simultaneamente.

Para a resolução de problemas de otimização, isto é, a busca pela melhor solução,
as técnicas baseadas em inteligência de enxames (IE), entre as quais se destacam a oti-
mização por colônia de formigas, colônia artificial de abelhas, algoritmo do vagalume e
PSO, configuram-se como alternativas consolidadas na literatura (MCNULTY et al., 2024).
Tomando particularmente o PSO, tal potencial decorre de sua simplicidade de imple-
mentação, exige poucos parâmetros, tem baixo custo computacional e alcança boa con-
vergência em diferentes tipos de problemas. Sua estrutura flexível facilita a criação de
variantes e híbridos, o que amplia seu uso em diversas áreas da engenharia e da ciência
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de dados, consolidando-o como uma das meta-heurísticas mais populares e influentes da
atualidade.(SCARDUA, 2021; SHAMI et al., 2022). Nesse contexto, na sequência, serão apre-
sentados o algoritmo PSO, suas principais variantes, bem como estratégias de combinação
entre elas.

2.1 Otimização por enxame de partículas
A otimização de problemas complexos consolidou-se como um dos principais focos em
computação e inteligência artificial, impulsionada pela crescente necessidade de soluções
eficientes e escaláveis em áreas tão diversas quanto engenharia (SIDDIQI et al., 2023),
economia (SHEN; YAN; SHANG, 2024), logística (LO, 2022) e ciência de dados (TIJJANI;

WAHAB; NOOR, 2024). Nesse cenário, o algoritmo PSO destaca-se por sua capacidade
de explorar amplos espaços de busca de forma adaptativa e robusta, tornando-se uma
ferramenta de grande relevância para enfrentar desafios contemporâneos de otimização.

De acordo com (KENNEDY; EBERHART, 1995), o algoritmo PSO está definido como
uma técnica de busca e se enquadra em IE, pois se baseia em comportamentos da natureza,
como, por exemplo, a migração de pássaros e a movimentação de cardumes de peixes
em busca de alimento. Diferentemente de outros algoritmos evolucionários, no algoritmo
PSO, não ocorrem mutações e cruzamentos. Essa característica confere ao método maior
robustez e reduz a probabilidade de que a solução permaneça estagnada em mínimos locais.
Além disso, o PSO desperta bastante interesse na comunidade científica dedicada à área de
inteligência por enxames, devido à sua implementação relativamente simples e à elevada
velocidade de convergência (WANG et al., 2021). A seguir, descrevem-se o funcionamento
do PSO, suas vantagens e limitações, bem como estratégias propostas para superar seus
principais desafios.

No PSO, cada partícula representa uma possível solução de um problema de otimi-
zação. Inicialmente, as partículas são distribuídas em um espaço de busca com valores
iniciais aleatórios. Em seguida, a velocidade da partícula é atualizada de acordo com a
melhor posição já alcançada pela partícula, denotada por 𝑝𝑏𝑒𝑠𝑡, e o melhor resultado glo-
bal da partícula em toda a população, denotado por 𝑔𝑏𝑒𝑠𝑡 (WANG et al., 2021). Assim, a
velocidade e a posição da 𝑖-ésima partícula na 𝑑-ésima dimensão podem ser calculadas
como

𝑉 𝑑
𝑖 (𝑡 + 1) = 𝑉 𝑑

𝑖 (𝑡) + 𝑐1𝑅
𝑑
1(𝑡)(𝑝𝑏𝑒𝑠𝑡𝑑

𝑖 (𝑡)−𝑋𝑑
𝑖 (𝑡)) + 𝑐2𝑅

𝑑
2(𝑡)(𝑔𝑏𝑒𝑠𝑡𝑑 −𝑋𝑑

𝑖 (𝑡)) (2.1)

e
𝑋𝑑

𝑖 (𝑡 + 1) = 𝑋𝑑
𝑖 (𝑡) + 𝑉 𝑑

𝑖 (𝑡 + 1), 𝑑 = 1, 2, ..., 𝐷; 𝑖 = 1, 2, ..., 𝑁 (2.2)

em que 𝐷 e 𝑁 representam, respectivamente, o número de dimensões do problema e o
número total de partículas da população. 𝑋𝑑

𝑖 (𝑡) e 𝑉 𝑑
𝑖 (𝑡) são, respectivamente, as compo-
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nentes atuais de posição e velocidade da 𝑖-ésima partícula na dimensão 𝑑 na iteração 𝑡;
𝑋𝑑

𝑖 (𝑡 + 1) e 𝑉 𝑑
𝑖+1(𝑡 + 1) serão, respectivamente, a velocidade e a posição futura da partí-

cula; 𝑝𝑏𝑒𝑠𝑡𝑑
𝑖 é a melhor posição já encontrada pela própria 𝑖-ésima partícula, e 𝑔𝑏𝑒𝑠𝑡𝑑 é

a melhor posição global, ou seja, aquela já encontrada pelo enxame inteiro; 𝑐1 e 𝑐2 são
coeficientes de aceleração; 𝑅𝑑

1(𝑡) e 𝑅𝑑
2(𝑡) são números aleatórios gerados dentro do inter-

valo uniforme 𝒰(0, 1). O termo 𝑐1𝑅
𝑑
1(𝑡)(𝑝𝑏𝑒𝑠𝑡𝑑

𝑖 − 𝑋𝑑
𝑖 (𝑡)) é o componente cognitivo; força

que direciona a partícula para a melhor solução que ela mesma descobriu no passado. Por
outro lado, o termo 𝑐2𝑅

𝑑
2(𝑡)(𝑔𝑏𝑒𝑠𝑡𝑑(𝑡)−𝑋𝑑

𝑖 (𝑡)) é o componente social; força que impulsi-
ona a partícula para a melhor solução global do grupo. Assim, o PSO busca pela solução
global ótima ajustando iterativamente a trajetória de cada partícula, de modo que ela se
desloque em direção tanto à sua melhor posição já alcançada quanto à melhor posição
encontrada pelo enxame em cada geração.

Apesar de suas vantagens, o algoritmo PSO apresenta como limitação a possibilidade
de convergir prematuramente para mínimos locais. Para mitigar esse problema, diversas
variantes foram propostas na literatura, visando aprimorar sua capacidade de exploração e
evitar estagnação (MIRJALILI et al., 2020). Tais aprimoramentos, bem como a possibilidade
de combinar diferentes variantes, conferem ao algoritmo elevada flexibilidade e adapta-
bilidade, tornando-o uma solução dinâmica e aplicável a uma ampla gama de problemas
de otimização. Tendo isso em vista, apresentam-se a seguir cinco variações do algoritmo
PSO.

Otimização por enxame de partículas com peso de inércia

Como um dos primeiros aprimoramentos do PSO original, foi introduzido um novo parâ-
metro denominado peso de inércia, denotado por 𝑤, proposto em (Shi; Eberhart, 1998), com
o objetivo de mitigar a convergência prematura das partículas. Com essa modificação, a
equação de atualização da velocidade passa a ser expressa por

𝑉 𝑑
𝑖 (𝑡 + 1) = 𝑤 𝑉 𝑑

𝑖 (𝑡) + 𝑐1𝑅
𝑑
1(𝑡)

(︁
𝑝𝑏𝑒𝑠𝑡𝑑

𝑖 −𝑋𝑑
𝑖 (𝑡)

)︁
+ 𝑐2𝑅

𝑑
2(𝑡)

(︁
𝑔𝑏𝑒𝑠𝑡𝑑 −𝑋𝑑

𝑖 (𝑡)
)︁

, (2.3)

enquanto a atualização da posição permanece descrita pela Equação (2.2). De acordo com
a Equação (2.3), valores mais elevados de 𝑤 favorecem a exploração global do espaço de
busca, ao passo que valores menores intensificam a exploração local. Esse aprimoramento
ficou conhecido como PSO com peso de inércia (WPSO, do inglês Inertia Weight Particle
Swarm Optimization).

Otimização por enxame de partículas com aprendizado compreensivo

O algoritmo de otimização por enxame de partículas com aprendizado compreensivo
(CLPSO, do inglês Comprehensive Learning Particle Swarm Optimization, proposto em
(TRELEA et al., 2007) e posteriormente aprimorado em (HUYNH et al., 2023), surgiu para
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superar uma limitação do PSO clássico, no qual a trajetória de cada partícula em dire-
ção ao ótimo global é guiada apenas por suas próprias melhores posições locais e pela
melhor posição global do enxame. Em problemas multimodais, essa estratégia pode levar
à convergência para mínimos locais ou conduzir partículas a regiões distantes do ótimo
global.

Contudo, no algoritmo CLPSO, a experiência de diferentes partículas é utilizada para
guiar a atualização, permitindo que a partícula aprenda a partir de múltiplos valores
de 𝑝𝑏𝑒𝑠𝑡𝑑

𝑖 em diferentes dimensões. Assim, a velocidade da 𝑖-ésima partícula na 𝑑-ésima
dimensão é atualizada por

𝑉 𝑑
𝑖 (𝑡 + 1) = 𝑤𝑉 𝑑

𝑖 (𝑡) + 𝑐𝑅𝑑
1(𝑡)(𝑝𝑏𝑒𝑠𝑡𝑑

𝑓𝑖
−𝑋𝑑

𝑖 (𝑡)), (2.4)

em que 𝑓𝑖 = 𝑓(x𝑖) com x𝑖 =
[︁
𝑥

(1)
𝑖 , 𝑥

(2)
𝑖 , . . . , 𝑥

(𝐷)
𝑖

]︁
define qual é a melhor posição 𝑝𝑏𝑒𝑠𝑡𝑑

𝑖

que a partícula 𝑖 deve seguir em cada dimensão. A escolha dessa trajetória é determinada
pela probabilidade de aprendizado 𝑃𝑐𝑖

, dada por

𝑃𝑐𝑖
= 0, 05 + 0, 45

(︁
exp

(︁
10(𝑖−1)

𝑝𝑠−1

)︁
− 1

)︁
(exp(10)− 1) , (2.5)

sendo 𝑝𝑠, o tamanho da população. Para cada dimensão, gera-se um número aleatório 𝑅𝑑
𝑖

entre 0 e 1, que é comparado a 𝑃𝑐𝑖
. Quando a condição 𝑅𝑑

𝑖 (𝑡) > 𝑃𝑐𝑖
é satisfeita, a partícula

não aprende de sua própria posição 𝑝𝑏𝑒𝑠𝑡𝑑
𝑖 , mas sim de um exemplar selecionado segundo

o mecanismo do CLPSO. Para cada dimensão 𝑑, o processo ocorre da seguinte forma:

1. Selecionam-se aleatoriamente duas partículas 𝑘 e 𝑗, distintas de 𝑖.

2. Compara-se o valor de fitness de seus respectivos pbest, isto é, 𝑓(𝑝𝑏𝑒𝑠𝑡𝑘) e 𝑓(𝑝𝑏𝑒𝑠𝑡𝑗).

3. A partícula cujo pbest apresentar melhor valor de fitness é escolhida como exemplar
para aquela dimensão:

𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟𝑑
𝑖 = 𝑝𝑏𝑒𝑠𝑡𝑑

𝑘 ou 𝑗.

Dessa forma, diferentes dimensões de uma mesma partícula podem aprender com par-
tículas distintas, o que contribui para aumentar a diversidade do processo de atualização
e reduzir a probabilidade de convergência prematura.

Essa seleção é feita por meio de um torneio, no qual duas partículas são escolhidas ale-
atoriamente, e aquela que apresentar melhor desempenho fornece sua experiência. Dessa
forma, 𝑝𝑏𝑒𝑠𝑡𝑑

𝑓𝑖
passa a ser a nova referência que guiará a partícula no espaço de busca.

Para evitar que a função objetivo siga trajetórias equivocadas, um conjunto de soluções é
armazenado, garantindo que as partículas sejam guiadas por experiências consistentes até
a estabilização da busca. Essa metodologia aumenta a robustez do algoritmo, preserva a
diversidade da população e reduz a probabilidade de convergência prematura.
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Por fim, uma formulação estendida do CLPSO foi proposta em (HUYNH et al., 2023),
incorporando parâmetros adicionais, como os coeficientes de aceleração 𝑐1 e 𝑐2, além do
termo 𝑔𝑏𝑒𝑠𝑡, resultando na equação de velocidade

𝑉 𝑑
𝑖 (𝑡 + 1) = 𝑤𝑉 𝑑

𝑖 (𝑡) + 𝑐1𝑅
𝑑
1(𝑡)(𝑝𝑏𝑒𝑠𝑡𝑑

𝑓𝑖(𝑑) −𝑋𝑑
𝑖 (𝑡)) + 𝑐2𝑅

𝑑
2(𝑡)(𝑔𝑏𝑒𝑠𝑡𝑑 −𝑋𝑑

𝑖 (𝑡)). (2.6)

Em síntese, 𝑓𝑖 e 𝑃𝑐𝑖
preservam a diversidade ao permitir que diferentes dimensões

“aprendam” com partículas distintas, reduzindo estagnação sem sacrificar a convergência
(HUYNH et al., 2023).

Otimização por enxame de partículas baseado na relação distância-treino

Muitas aplicações baseadas em PSO sofrem com o problema da convergência prematura.
Assim como o CLPSO, o algoritmo de otimização por enxame de partículas baseado
na relação distância-treino (FDRPSO, do inglês Fitness-Distance-Ratio based Particle
Swarm Optimization), proposto em (PERAM; VEERAMACHANENI; MOHAN, 2013) e poste-
riormente revisado em (SHAMI et al., 2022), foi desenvolvido para mitigar essa limitação.
Em comparação ao PSO clássico, o FDRPSO incorpora um componente social adicional de
aprendizado, fundamentado na experiência das partículas vizinhas (𝑛𝑏𝑒𝑠𝑡), selecionadas
segundo os seguintes critérios:

1. Proximidade em relação às partículas que estão sendo atualizadas;

2. Melhor valor de aptidão (fitness) quando comparado às partículas vizinhas.

A velocidade da 𝑖-ésima partícula na 𝑑-ésima dimensão é atualizada por

𝑉 𝑑
𝑖 (𝑡+1) = 𝑤𝑉 𝑑

𝑖 (𝑡)+𝑐1𝑅
𝑑
1(𝑡)(𝑝𝑏𝑒𝑠𝑡𝑑

𝑓𝑖(𝑑)−𝑋𝑑
𝑖 (𝑡))+𝑐2𝑅

𝑑
2(𝑡)(𝑔𝑏𝑒𝑠𝑡𝑑−𝑋𝑑(𝑡)𝑖)+𝑐3(𝑛𝑏𝑒𝑠𝑡𝑑

𝑖−𝑋𝑑
𝑖 (𝑡)),

(2.7)
em que 𝑐1 = 1, 𝑐2 = 2 e 𝑐3 = 3. Nesta formulação, 𝑝𝑏𝑒𝑠𝑡𝑑

𝑖 representa o componente
cognitivo, isto é, a própria experiência da partícula; 𝑔𝑏𝑒𝑠𝑡𝑑 corresponde ao componente
social global, ou seja, a melhor experiência encontrada por todo o enxame até o momento;
𝑛𝑏𝑒𝑠𝑡𝑑

𝑖 refere-se ao componente social local, obtido da partícula vizinha que maximiza a
relação fitness–distância, denotada por RFD e definida por

RFD(𝑑)
𝑖←𝑗 = Fitness(𝑃𝑗)− Fitness(𝑋𝑗)

|𝑃 𝑑
𝑗 −𝑋𝑑

𝑗 |
, (2.8)

em que 𝑗 percorre vizinhos de 𝑖, 𝑛𝑏𝑒𝑠𝑡𝑑
𝑖 é o vizinho que maximiza RFD(𝑑)

𝑖←𝑗; o numerador
representa a diferença de aptidão entre a melhor partícula 𝑃𝑗 e a partícula atual 𝑋𝑗, en-
quanto o denominador corresponde à distância absoluta entre suas posições na dimensão
𝑑. O numerador, Fitness(𝑃𝑗)−Fitness(𝑋𝑗), corresponde à melhoria esperada ao mover-se
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da posição atual 𝑋𝑗 para a melhor posição conhecida 𝑃𝑗. O denominador, |𝑃 𝑑
𝑗 − 𝑋𝑑

𝑗 |,
representa o deslocamento na dimensão 𝑑 entre essas posições. Assim, o valor da RFD
reflete a relação entre ganho de aptidão e distância percorrida, orientando o enxame a pri-
orizar movimentos que tragam maior benefício com menor deslocamento, o que aumenta
a eficiência do processo de busca e reduz a probabilidade de movimentos desnecessários.

Otimização por enxame de partículas híbrida com controle de coeficientes de
aceleração variáveis no tempo

O diferencial introduzido por esta variante do algoritmo PSO está no controle mais efetivo
entre a exploração de mínimos locais e a convergência para o ótimo global. Para tanto, ele
considera apenas os componentes cognitivo e social, cujo aprendizado se dá por partículas
vizinhas, na estimativa da nova velocidade da partícula. As demais partículas, definidas
no início da evolução, são reinicializadas mesmo quando estagnadas no espaço de busca
(BASU, 2023). Devido à ausência do termo de inércia, ou seja, a velocidade anterior,
as partículas tendem a deslocar-se rapidamente para um mínimo local e, em seguida,
permanecer estagnadas por falta de estímulo adicional.

A otimização por enxame de partículas híbrida com controle de coeficientes de acele-
ração variáveis no tempo (HPSO-TVAC, do inglês Hybrid Particle Swarm Optimization
with Time-Varying Acceleration Coefficients) tem como objetivo superar esse problema,
fornecendo o impulso necessário para mover partículas paralisadas.

O algoritmo HPSO-TVAC controla explicitamente o equilíbrio exploração–intensificação
ao variar 𝑐1 e 𝑐2 ao longo das iterações, dispensando o termo de inércia. A velocidade é
atualizada por

𝑉 𝑑
𝑖 (𝑡) = 𝑐1(𝑔) 𝑅𝑑

1(𝑡)
(︁
𝑝𝑏𝑒𝑠𝑡𝑑

𝑖 −𝑋𝑑
𝑖 (𝑡)

)︁
+ 𝑐2(𝑔) 𝑅𝑑

2(𝑡)
(︁
𝑔𝑏𝑒𝑠𝑡𝑑 −𝑋𝑑

𝑖 (𝑡)
)︁

,

em que 𝑐1(𝑔) e 𝑐2(𝑔) cresce/decresce, respectivamente, conforme o valor da geração de
partículas 𝑔, favorecendo a exploração no início e a intensificação no final. Em situações
de estagnação, ou seja, em que |𝑉𝑖| é muito pequeno por várias iterações, reinicializa-se
a magnitude por 𝑅𝑑

𝑣,𝑖 ∼ 𝒰(0, 1) para reativar a busca, conferindo maior diversidade e
capacidade adaptativa ao processo de otimização.

Otimização por enxame de partículas com informação local

Ao contrário dos algoritmos de enxame previamente descritos, os quais utilizam a melhor
experiência global das partículas (𝑔𝑑

𝑏𝑒𝑠𝑡) como referência para guiar toda a população, o
algoritmo de otimização por enxame de partículas com informação local (LIPS, do inglês
Local Information Particle Swarm) baseia-se na melhor experiência das partículas vizinhas
(𝑛𝑏𝑒𝑠𝑡𝑑

𝑖 ). Nesse caso, são justamente as partículas mais próximas que direcionam a busca
no espaço de soluções. Essa escolha visa tornar o algoritmo mais eficaz para aplicação em
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problemas multimodais, ou seja, aqueles caracterizados pela presença de múltiplos ótimos
locais (JI et al., 2023).

A seleção das partículas vizinhas é feita com base na distância Euclidiana entre partí-
culas, de modo que as mais próximas são empregadas como guias para a partícula atual.
Assim, a atualização da velocidade da 𝑖-ésima partícula na dimensão 𝑑 é dada por

𝑉 𝑑
𝑖 (𝑡 + 1) = 𝜒

[︂
𝑉 𝑑

𝑖 (𝑡) + 𝜙
(︁
𝑃 𝑑

𝑖 −𝑋𝑑
𝑖 (𝑡)

)︁]︂
, (2.9)

em que 𝜒 = 0, 7298 corresponde ao coeficiente de restrição, responsável por evitar velo-
cidades excessivas e a consequente convergência prematura. A posição de referência 𝑃 𝑑

𝑖 é
calculada como

𝑃 𝑑
𝑖 =

𝑛size∑︁
𝑗=1

𝑤𝑗 𝑛𝑏𝑒𝑠𝑡𝑑
𝑗

𝑛size∑︁
𝑗=1

𝑤𝑗

, (2.10)

sendo 𝜙, o peso de aceleração; 𝑤𝑗 , peso adaptativo; 𝑛𝑏𝑒𝑠𝑡𝑑
𝑗 , a 𝑗-ésima vizinhança mais

próxima do 𝑝𝑏𝑒𝑠𝑡𝑑
𝑖 da 𝑖-ésima partícula; e 𝑛size ∈ {2, . . . , 5}, o tamanho da vizinhança,

que é conforme Ji et al. (2023) ajustado dinamicamente entre 2 e 5.
Dessa forma, o LIPS explora informações locais provenientes de partículas situadas

na mesma região do espaço de busca. Esse mecanismo reforça a capacidade de exploração
local do algoritmo, especialmente nas fases finais da busca, permitindo que as partículas
convirjam para o ótimo global com maior exatidão, isto é, aproximando-se mais do valor
ótimo, e com maior estabilidade, reduzindo oscilações e garantindo uma convergência
menos sensível às variações estocásticas do algoritmo.

Em resumo, o PSO e suas variantes mostram a versatilidade dos algoritmos baseados
em inteligência por enxame, oferecendo diferentes mecanismos para equilibrar exploração
e intensificação no espaço de busca. Cada aprimoramento surge como resposta a limita-
ções específicas, como a convergência prematura e a perda de diversidade, ampliando a
aplicabilidade do método em cenários cada vez mais complexos. Essa evolução contínua
estabelece o fundamento para estratégias mais avançadas, como a combinação adaptativa
de otimizadores discutida na Seção 2.2.

2.2 Combinação de otimizadores
O problema da robustez e da universalidade dos algoritmos baseados em PSO tem sido
amplamente discutido por pesquisadores, visto que, muitas vezes, tais métodos não estão
preparados para lidar com a diversidade de problemas de otimização existentes (GBENGA;

RAMLAN, 2016). Esse aspecto se relaciona diretamente ao teorema da inexistência do
almoço grátis (NFL, do inglês No Free Lunch Theorem) (WOLPERT; MACREADY, 1997),
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segundo o qual nenhum método, de forma isolada, apresenta desempenho superior em
todos os tipos de problemas.

Nesse contexto, a combinação de algoritmos e modelos surge como uma alternativa
consolidada na literatura, pois, em diversas áreas da ciência, tal estratégia tem se mos-
trado eficaz para gerar soluções adaptáveis a diferentes cenários. Por exemplo, em análises
climáticas, conjuntos de modelos são empregados para reduzir a incerteza das previsões
meteorológicas (HUANG; ZHAO, 2022); por outro lado, em aprendizagem de máquina (AM)
e inteligência artificial, métodos baseados em conjuntos, como o Random Forest e o Bag-
ging, de acordo com (GONZALEZ et al., 2020), aumentam a precisão da classificação ao
explorar múltiplos modelos sobre o mesmo conjunto de dados.

De forma análoga, no âmbito do PSO, foram propostas soluções em que variantes do
algoritmo são alocadas dinamicamente. Assim, dado um conjunto de diferentes tipos de
algoritmos baseados em PSO, é possível selecionar, durante a execução, aquele que melhor
se adequa às características do problema a ser resolvido, explorando de modo sinérgico as
vantagens de cada variante. Essa estratégia, conhecida como combinação de algoritmos
PSO (HONG et al., 2023), amplia a capacidade de adaptação e mitiga as limitações impostas
pelo teorema NFL, resultando em soluções mais eficazes para cada tipo de problema.

Como exemplos de algoritmos combinados, destaca-se a otimização por enxame de
partículas multiestratégica, na qual a população é dividida em duas partes complemen-
tares. Na primeira, aplica-se uma busca gaussiana local para favorecer a convergência da
solução, em que um mecanismo de refinamento perturba a solução corrente por meio de
incrementos amostrados de uma distribuição normal de média zero (SCHWEFEL, 1981).
Em vez disso, na segunda, emprega-se a estratégia de mutação diferencial, responsável
por preservar a diversidade das partículas e evitar a estagnação do processo de busca,
em que são gerados novos candidatos por meio da combinação linear entre indivíduos da
população (NO; DAHIYA, 2017). Outra técnica híbrida é a otimização por enxame de par-
tículas heterogêneas, na qual se constrói um conjunto composto por diferentes variantes
de PSO. As partículas são alocadas aleatoriamente nesse conjunto e suas velocidades são
atualizadas conforme a dinâmica de cada variante do conjunto, ampliando a robustez do
processo de exploração (DU et al., 2017).

Além desses algoritmos, merece destaque o otimizador por enxame de partículas em
conjunto (EPSO, do inglês Ensemble Particle Swarm Optimizer), inicialmente proposto
em (LYNN; SUGANTHAN, 2017) e posteriormente aprimorado em (HONG et al., 2023).
O EPSO combina cinco variantes distintas do algoritmo PSO, quais sejam, CLPSO,
FDRPSO, HPSO-TVAC, LIPS e WPSO, descritos previamente na Seção 2.1, e adota
uma estratégia de seleção autoadaptativa para, a cada iteração, escolher dinamicamente
o algoritmo mais adequado ao cenário corrente (PUTNINS; ANDROULAKIS, 2021).

No EPSO, a população é organizada em duas subpopulações de forma a equilibrar
convergência e diversidade. O algoritmo CLPSO é aplicado a uma das subpopulações,
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enquanto as demais variantes são atribuídas à outra. Essa divisão favorece a exploração
do espaço de busca e evita a perda prematura de diversidade. Para atualizar uma partícula
da segunda subpopulação, seleciona-se uma variante de PSO com base na taxa de sucesso
observada nas últimas iterações, de acordo com o mecanismo de seleção autoadaptativa,
que será descrito a seguir. Finalmente, esse processo resultará na seleção automática do
algoritmo mais adequado para cada tipo de problema de otimização.

Estratégia de seleção autoadaptativa

No algoritmo EPSO, a seleção das variantes de PSO é dinâmica e ocorre de forma auto-
adaptativa. Em síntese, a cada iteração, o método observa o histórico de êxitos e falhas
durante a busca pelas melhores soluções e, com base nesse desempenho, ajusta as proba-
bilidades de escolha de cada variante. Define-se um número fixo de gerações como período
de aprendizagem, que será denotado por PA deste ponto em diante. Vale ressaltar que,
de acordo com (HONG et al., 2023), sugere-se o valor 𝑃𝐴 = 200. Nesse intervalo, o EPSO
acompanha a trajetória das partículas, registrando em memória os sucessos e as falhas
associados a cada variante. A partir desses registros, estima-se a taxa de sucesso de cada
PSO e atualizam-se, para as gerações subsequentes ao PA, as respectivas probabilidades
de seleção. Assim, as variantes passam a ser escolhidas com probabilidade proporcional
ao seu desempenho histórico, direcionando a busca para a técnica mais adequada ao pro-
blema. As etapas da estratégia autoadaptativa são apresentadas a seguir:

1. Define-se 𝑝(𝑘)
𝑔 = 1/𝐾 como a probabilidade de selecionar o 𝑘-ésimo algoritmo PSO

na 𝑔-ésima geração, em que 𝑘 = 1, 2, 3, . . . , 𝐾, sendo 𝐾 o número total de algorit-
mos presentes no conjunto. Inicialmente, todos os algoritmos PSO são considera-
dos equiprováveis. Nesta pesquisa, foi assumido que 𝐾 = 5, pois o conjunto será
composto por cinco variantes do algoritmo PSO, quais sejam, CLPSO, FDRPSO,
HPSO-TVAC, LIPS e WPSO.

2. Para efetuar a escolha do algoritmo candidato em cada iteração, adota-se o método
de seleção por roleta, originalmente proposto em (BAKER, 1987). Nesse método,
cada algoritmo é representado em proporção ao seu valor de aptidão, de modo
que valores mais elevados resultam em parcelas maiores da roleta atribuídas ao
respectivo algoritmo. Por outro lado, algoritmos de menor desempenho recebem
uma fração proporcionalmente reduzida. Dessa forma, a seleção tende a favorecer
algoritmos mais promissores, ao mesmo tempo em que mantém a diversidade ao
permitir a escolha ocasional de variantes menos aptas;

3. Na 𝑔-ésima geração de partículas, após a avaliação de todas as soluções, isto é,
das respostas obtidas para o problema de otimização, estabelece-se uma memória
destinada a registrar o desempenho do 𝑘-ésimo algoritmo de PSO. Nessa memória,
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registram-se os sucessos e as falhas do algoritmo — representados, respectivamente,
por 𝑠(𝑘)

𝑔 e 𝑓 (𝑘)
𝑔 — conforme ele acerta ou erra a solução do problema. Assim, cada

algoritmo é descrito pelo par ordenado (𝑠(𝑘)
𝑔 ; 𝑓 (𝑘)

𝑔 ), no qual 𝑠(𝑘)
𝑔 corresponde ao nú-

mero de sucessos e 𝑓 (𝑘)
𝑔 ao número de falhas na geração 𝑔. A Tabela 1 exemplifica

a forma como esses valores são organizados e mantidos na memória ao longo do
processo evolutivo;

4. A memória responsável por armazenar os números de sucessos e falhas é atualizada
em ciclos definidos pelo período de aprendizagem. Caso a capacidade de armazena-
mento seja excedida após o término de um PA, ocorre uma substituição em regime
de overflow, o que significa que os registros mais antigos são descartados, de modo
a liberar espaço para a inserção dos novos valores produzidos pela geração corrente
de partículas.

5. Na geração subsequente ao término do PA, a nova probabilidade de seleção do 𝑘-
ésimo algoritmo PSO, denotada por 𝑝(𝑘)

𝑔 , é atualizada de acordo com

𝑝(𝑘)
𝑔 =

𝑆(𝑘)
𝑔

𝐾∑︁
𝑘=1

𝑆(𝑘)
𝑔

, (2.11)

em que 𝑆(𝑘)
𝑔 representa a taxa de sucesso acumulada do 𝑘-ésimo algoritmo até a

𝑔-ésima geração, definida como

𝑆(𝑘)
𝑔 =

𝑔−1∑︁
𝑗=𝑃 𝐴+1

𝑠
(𝑘)
𝑗

𝑔−1∑︁
𝑗=𝑃 𝐴+1

(︂
𝑠

(𝑘)
𝑗 + 𝑓

(𝑘)
𝑗

)︂ + 𝜑 , (2.12)

sendo 𝑠
(𝑘)
𝑗 e 𝑓

(𝑘)
𝑗 , o número de sucessos e falhas observados pelo 𝑘-ésimo algoritmo

na 𝑗-ésima geração, respectivamente, e 𝜑 = 0,01, o fator de suavização da taxa

Tabela 1 – Memória de sucessos e falhas do 𝑘-ésimo algoritmo PSO na 𝑔-ésima geração
de partículas.

Índice da Memória Algoritmo 𝑃𝑆𝑂1 Algoritmo 𝑃𝑆𝑂2 . . . Algoritmo 𝑃𝑆𝑂𝐾

1 (𝑠(1)
𝑔−𝑃 𝐴; 𝑓

(1)
𝑔−𝑃 𝐴) (𝑠(2)

𝑔−𝑃 𝐴; 𝑓
(2)
𝑔−𝑃 𝐴) . . . (𝑠(𝑘)

𝑔−𝑃 𝐴; 𝑓
(𝑘)
𝑔−𝑃 𝐴)

2 (𝑠(1)
𝑔−𝑃 𝐴+1; 𝑓

(1)
𝑔−𝑃 𝐴+1) (𝑠(2)

𝑔−𝑃 𝐴+1; 𝑓
(2)
𝑔−𝑃 𝐴+1) . . . (𝑠(𝑘)

𝑔−𝑃 𝐴+1; 𝑓
(𝑘)
𝑔−𝑃 𝐴+1)

...
...

...
...

...
PA (𝑠(1)

𝑔−1; 𝑓
(1)
𝑔−1) (𝑠(2)

𝑔−1; 𝑓
(2)
𝑔−1) . . . (𝑠(𝑘)

𝑔−1; 𝑓
(𝑘)
𝑔−1)

Fonte: Adaptado de (PUTNINS; ANDROULAKIS, 2021).
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de sucesso, introduzido para evitar valores nulos (PUTNINS; ANDROULAKIS, 2021).
Dessa forma, o algoritmo PSO com maior taxa de sucesso histórica obtém também
maior probabilidade de ser selecionado para guiar as partículas na geração atual.
Além disso, a estratégia de seleção autoadaptativa permite que o método aprenda, ao
longo da evolução, qual variante se mostra mais adequada ao problema em questão,
reforçando sua utilização progressiva.

Em síntese, a combinação de otimizadores baseada em PSO, aliada a mecanismos de
seleção autoadaptativa, representa um avanço significativo frente às limitações impostas
pelo teorema NFL. Ao explorar simultaneamente a diversidade de variantes disponíveis e
aprender, ao longo da evolução, estes algoritmos se mostram mais eficazes; tais enfoques
ampliam a robustez e a eficiência do processo de otimização. Com isso, estabelece-se uma
base sólida para métodos mais flexíveis e adaptativos, capazes de lidar com diferentes
cenários de busca e com problemas complexos, como será explorado ao longo dos próximos
capítulos.

2.3 Revisão bibliográfica acerca de combinação de otimizadores
O levantamento a seguir destaca avanços recentes em combinações e variantes do algo-
ritmo PSO e evidencia lacunas persistentes, como, por exemplo, risco de convergência
prematura, desequilíbrios entre exploração e intensificação e custos computacionais eleva-
dos, que motivam as propostas desta tese.

Conforme discutido na Seção 2.2, o teorema NFL estabelece que não existe um algo-
ritmo de otimização universal capaz de resolver, de maneira eficaz e eficiente, todos os
tipos de problemas (MONIZ; MONTEIRO, 2021). Para contornar as limitações inerentes a
cada algoritmo, destacam-se, nos últimos anos, tanto as estratégias de seleção autoadap-
tativa quanto as técnicas baseadas em conjuntos de otimizadores (AJANI; MALLIPEDDI,
2022; HONG et al., 2021; WU et al., 2018). A principal razão é que tais métodos permitem
que os algoritmos se ajustem dinamicamente às características do problema em questão,
aumentando sua robustez e aplicabilidade. No caso específico dos algoritmos inspirados
no PSO, essas combinações híbridas podem ser agrupadas em duas categorias, sendo a
primeira o PSO associado a suas próprias variantes e a segunda o PSO integrado a outros
algoritmos de otimização. Esta seção apresenta alguns dos trabalhos mais recentes dentro
dessas duas linhas de pesquisa, além de destacar propostas que incorporam mecanismos
auxiliares projetados para aprimorar o desempenho do PSO.

Em (HONG et al., 2023), propõe-se o otimizador por enxame de partículas de conjunto
aprimorado (IEPSO, do inglês Improved Ensemble Particle Swarm Optimizer), que es-
tende o algoritmo EPSO com duas inovações. A primeira apresenta melhorias no algoritmo
WPSO para induzir e manter a diversidade das gerações de partículas, sobretudo no início
da evolução. Na segunda, são utilizadas matrizes de covariância adaptadas para refinar
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a exploração local. Embora os resultados mostrem ganhos em conjuntos heterogêneos de
problemas, permanecem limitações, como a parametrização fixa das matrizes e um pro-
cesso de seleção pouco dinâmico, que podem afetar o equilíbrio exploração–intensificação.

A meta-heurística simulada (SA, do inglês Simulated Annealing) foi combinada ao PSO
em (PAN et al., 2019), resultando no algoritmo híbrido denominado otimização por enxame
de partículas com recozimento simulado (SA-PSO, do inglês Simulated Annealing-Particle
Swarm Optimization). O objetivo dessa integração é mitigar limitações conhecidas do
PSO, como a propensão a ficar preso em ótimos locais ao lidar com funções complexas, a
baixa acurácia na fase evolutiva e a velocidade de convergência relativamente lenta. O SA,
por sua vez, introduz um mecanismo probabilístico que permite aceitar não apenas solu-
ções vizinhas melhores, mas também piores, com determinada probabilidade, ampliando
a exploração do espaço de busca. Dessa forma, o SA-PSO busca escapar de mínimos locais
e aumentar as chances de alcançar o ótimo global, oferecendo novas trajetórias de solução
ao problema. Os experimentos mostraram desempenho superior em comparação à SA e
ao PSO originais. Contudo, o algoritmo SA-PSO apresentou dificuldades na resolução de
funções unimodais, como a função Easom, cujo mínimo global está restrito a uma região
extremamente pequena em relação ao espaço de busca.

Diferentemente de outros algoritmos que apenas combinam variações do PSO, em
(YANG; YU; HUANG, 2022) foi proposta a inserção de uma métrica de relação sinal-ruído
(SNR, do inglês Signal-to-Noise Ratio) em conjunto com uma estratégia adaptativa para
selecionar, a cada etapa da evolução, o modo de aprendizado mais adequado — seja pela
atualização da velocidade, pelo ajuste do peso de inércia, pela manutenção da diversi-
dade populacional ou pela adaptação dos coeficientes de aceleração. O método resultante,
denominado conjunto multiestratégia adaptativo PSO com métrica de distância de SNR
(AMSEPSO, do inglês Adaptive Multistrategy Ensemble PSO with Signal-to-Noise Ratio
Distance Metric), tem como objetivo central melhorar o processo de otimização a partir
da escolha dinâmica de uma única estratégia de aprendizado em cada iteração. Esse meca-
nismo não apenas contribui para mitigar a convergência prematura, mas também introduz
recursos para auxiliar a população a escapar de mínimos locais. Os experimentos foram
conduzidos sobre o conjunto de problemas de referência do congresso de Computação Evo-
lucionária CEC2017 (SALGOTRA et al., 2022), nos quais o AMSEPSO obteve resultados
de destaque. Ressalta-se ainda que a incorporação de métricas SNR fortalece a integração
entre inteligência por enxame e AM, abrindo novas perspectivas para algoritmos híbri-
dos. Entretanto, permanece o desafio de se desenvolver estratégias de aprendizado mais
refinadas, capazes de se adaptar de forma eficiente a diferentes estágios evolutivos das
partículas.

Um dos pontos fracos do algoritmo PSO original é a tendência do algoritmo a per-
manecer “preso” em mínimos locais, sem a capacidade de avançar para regiões mais pro-
missoras do espaço de busca. O trabalho apresentado em (NAMA et al., 2023) identifica
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que esse comportamento decorre, em grande parte, do desbalanceamento entre a fase de
descoberta de novas soluções e o subsequente refinamento delas, o que compromete o al-
cance de resultados mais robustos. Para enfrentar essa limitação, os autores propuseram
um novo algoritmo de conjunto que integra variantes do PSO com o algoritmo de busca
de retrocesso (BSA, do inglês Backtracking Search Algorithm) (JIN; YIN, 2020). A ideia
central é explorar a complementaridade entre os métodos, de modo que o BSA auxilie o
PSO a manter um equilíbrio contínuo entre as explorações globais e locais durante todo
o processo de busca. O algoritmo resultante, denominado conjunto modificado PSO e
BSA (e-mPSOBSA, do inglês Ensemble modified PSO and BSA), foi avaliado com base
nos conjuntos de funções de benchmark CEC2014 e CEC2017, apresentando desempe-
nho superior em termos de taxa de convergência, acurácia e estabilidade dos resultados.
Como limitação, entretanto, o e-mPSOBSA mostrou-se menos adequado para problemas
de otimização de grande escala, especialmente aqueles que envolvem elevado número de
variáveis e múltiplas funções objetivo.

O algoritmo PSO tem sido amplamente empregado em diferentes áreas devido à sua
implementação simples e à facilidade de adaptação em diversas linguagens de programa-
ção (LIU et al., 2021). No entanto, ele apresenta algumas limitações conhecidas, como a
convergência prematura e a baixa diversidade populacional (WANG et al., 2021; HUYNH et

al., 2023). Com o intuito de mitigar essas fragilidades, a pesquisa apresentada em (YANG;

LI; HUANG, 2023) propõe o PSO multi-enxame dinâmico adaptativo com detecção de es-
tagnação e exclusão espacial (ADPSO, do inglês Adaptive Dynamic Multi-Swarm PSO
with Stagnation Detection and Spatial Exclusion). A proposta introduz uma arquitetura
que combina dois mecanismos complementares. O primeiro é um detector de estagnação
de partículas, responsável por redefinir o espaço de busca quando o progresso da popula-
ção é interrompido. Por outro lado, no segundo, há uma estratégia de exclusão espacial,
projetada para evitar a convergência prematura entre os subgrupos de partículas.

Inicialmente, a população é dividida em dois subgrupos, que podem ser reagrupados
ao longo da evolução. A melhor partícula de cada subgrupo, denotada por lbest, é uti-
lizada como referência para avaliar o estado evolutivo. Caso não haja melhora contínua
até o período de reagrupamento, o mecanismo de estagnação é ativado, forçando a defi-
nição de um novo espaço de busca. Para manter a diversidade, as novas partículas são
geradas a partir das melhores soluções anteriores. Em paralelo, a estratégia de exclusão
espacial atua para impedir que todos os subgrupos se tornem prematuramente homogê-
neos, preservando a exploração global. O ADPSO foi avaliado nos conjuntos de funções de
benchmark CEC2013 e CEC2017, apresentando resultados promissores. Mostrou-se eficaz
na resolução da maioria dos problemas de otimização e superou diversas variantes do algo-
ritmo PSO. Entretanto, os experimentos também evidenciaram limitações em problemas
unimodais, nos quais o algoritmo não obteve desempenho satisfatório.

Ao se analisar comparativamente os estudos discutidos nesta seção, observa-se que a
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Tabela 2 – Trabalhos relacionados ao tema combinação de otimizadores.

Trabalho

Resolve
problemas
unimodais

e
multimodais

Evita
conver-
gência

precoce

Baixo
tempo de
execução

Aproveita
melhor

experiência
das

partículas
anteriores

Diver-
sidade

Popula-
cional

Seleção
auto-

adaptativa
de

variantes
PSO

IEPSO (HONG et al., 2023) ✓ X ✓ X ✓ X
SA-PSO (PAN et al., 2019) X ✓ X X X X
AMSEPSO (YANG; YU; HUANG, 2022) ✓ ✓ X X X ✓

e-mPSOBSA (NAMA et al., 2023) X ✓ X X X X
ADPSO (YANG; LI; HUANG, 2023) ✓ ✓ X ✓ ✓ X
MB-EPSO (SILVA et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓

combinação de diferentes algoritmos evolucionários se mostra uma estratégia altamente
eficaz, uma vez que permite a adaptação dinâmica às características específicas de cada
problema. Dessa forma, tais alternativas híbridas contribuem para preencher a lacuna
apontada pelo teorema NFL, segundo o qual não existe uma única estratégia de otimização
capaz de resolver, de forma igualmente eficiente, todos os tipos de problemas.

A Tabela 2 apresenta uma lista dos trabalhos discutidos anteriormente e o algoritmo
apresentado nesta tese, denominado MB-EPSO, destacando-se as principais caracterís-
ticas de cada metodologia. Nota-se que o algoritmo MB-EPSO contempla um conjunto
mais abrangente de propriedades em comparação aos demais métodos relacionados. Algo-
ritmos como o IEPSO e o ADPSO já apresentam avanços relevantes, como a capacidade
de lidar com problemas multimodais e o aproveitamento da experiência passada das par-
tículas, mas ainda apresentam limitações quanto ao custo computacional reduzido ou à
seleção autoadaptativa de variantes. Outros métodos, como SA-PSO e e-mPSOBSA, em-
bora atuem contra a convergência prematura, não oferecem mecanismos adicionais para
manutenção da diversidade ou aproveitamento da memória de gerações anteriores.

O algoritmo MB-EPSO diferencia-se por integrar todas as características listadas; ou
seja, resolve problemas unimodais e multimodais, evita a convergência precoce, mantém
um baixo tempo de execução, utiliza informações das melhores gerações passadas, pre-
serva a diversidade populacional e incorpora a seleção autoadaptativa de variantes PSO.
Essa combinação amplia sua robustez e flexibilidade, tornando o algoritmo aplicável em
diferentes cenários de otimização.

2.4 Resumo do capítulo
Problemas de otimização consistem na busca por soluções ótimas sob restrições, estando
presentes em diversas áreas científicas. O algoritmo PSO destaca-se por sua simplicidade
e rapidez, mas sofre com convergência prematura, o que motivou variantes como CLPSO,
FDRPSO, HPSO-TVAC, LIPS e WPSO, cada uma voltada a equilibrar exploração, diver-
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sidade e estabilidade. Para superar as limitações do teorema NFL, surgiram estratégias
de combinação de otimizadores, entre elas o EPSO, que adota seleção autoadaptativa
para escolher dinamicamente a variante mais adequada. Trabalhos recentes ampliaram a
robustez do PSO por meio de técnicas híbridas, embora persistam restrições em custo
ou escalabilidade. Nesse cenário, o algoritmo MB-EPSO se diferencia ao integrar baixo
tempo de execução, preservação da diversidade, memória de gerações passadas e seleção
adaptativa, tornando-se uma solução robusta e escalável para diferentes problemas de
otimização.
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3 CONJUNTO DE OTIMIZADORES POR
ENXAME DE PARTÍCULAS BASEADO
EM MEMÓRIA

“O progresso resulta da arte de
colher o melhor de cada experiência

e reuni-lo em benefício de um
propósito comum.”

(Francis Bacon)

Neste capítulo apresenta-se o algoritmo MB-EPSO, uma extensão do EPSO que incorpora uma janela

de memória deslizante para aprimorar a seleção autoadaptativa de variantes de PSO. Descrevem-se o

funcionamento, os principais parâmetros e os experimentos conduzidos com as funções do CEC2017.

Por fim, discutem-se os resultados em termos de acurácia, robustez e tempo de execução, comparando o

MB-EPSO a algoritmos consagrados da literatura.

O algoritmo aqui proposto fundamenta-se no EPSO (HONG et al., 2023) e, em parti-
cular, em sua estratégia de seleção autoadaptativa (PUTNINS; ANDROULAKIS, 2021). O
algoritmo, denominado MB-EPSO, modifica esse mecanismo ao introduzir uma memória
deslizante responsável por preservar, ao longo da evolução, as melhores gerações de partí-
culas. As soluções armazenadas são reintroduzidas no conjunto, contribuindo para manter
a diversidade populacional, mitigar a convergência prematura e reforçar a exploração do
espaço de busca em problemas de otimização.

3.1 Descrição da proposta
De acordo com a Equação (2.12), todas as gerações compreendidas entre a primeira gera-
ção produzida após o 𝑃𝐴 e a penúltima geração (𝑔− 1) recebem o mesmo peso, indepen-
dentemente de apresentarem sucessos ou falhas. Como consequência, partículas eficazes
nas iterações iniciais podem deixar de ser selecionadas na iteração seguinte, mesmo tendo
alta ou baixa probabilidade de escolha, pois o mecanismo de roleta não diferencia o mo-
mento em que o bom desempenho ocorreu.

Para mitigar essa limitação, o MB-EPSO combina variantes de PSO que compõem
o conjunto (CLPSO, FDRPSO, HPSO-TVAC, LIPS e WPSO) e introduz uma janela de
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Figura 1 – Evolução das gerações de partículas no algoritmo MB-EPSO.

memória deslizante, de tamanho 𝑀 , destinada a armazenar as melhores gerações de par-
tículas ao longo do processo. Essa memória torna a seleção autoadaptativa mais eficiente,
elevando a probabilidade de escolha das variantes mais adequadas ao problema em análise.

Para evidenciar o papel da janela de memória deslizante no processo de seleção au-
toadaptativa e na evolução das partículas, a Figura 1 ilustra esse mecanismo, no qual a
janela de memória é denotada por 𝑀 .

A seta identificada pelo rótulo “Evolução das gerações de partículas” representa a
linha do tempo da evolução, a qual se estende desde a primeira geração até o número
total de gerações, denotado por 𝐺. Após o período de aprendizagem, a janela de memória
𝑀 passa a deslizar ao longo dessa linha, acompanhando todo o processo evolutivo. Assim,
a nova probabilidade de seleção para o 𝑘-ésimo algoritmo PSO é dada por

𝑃 (𝑘)
𝑔 =

𝑅(𝑘)
𝑔

𝐾∑︁
𝑘=1

𝑅(𝑘)
𝑔

, (3.1)

em que 𝑃 (𝑘)
𝑔 é a probabilidade de seleção de algoritmos PSO, 𝑅(𝑘)

𝑔 é a nova taxa de sucesso
do k-ésimo algoritmo na g-ésima geração, tal que

𝑅(𝑘)
𝑔 =

𝑔−1∑︁
𝑗=𝑔−𝑀

𝛼𝑗𝑠
(𝑘)
𝑗

𝑔−1∑︁
𝑗=𝑔−𝑀

(︂
𝛼𝑗𝑠

(𝑘)
𝑗 + 𝑓

(𝑘)
𝑗

)︂ + 𝜑, (3.2)

em que se definem 𝑃𝐴+1 ≤ 𝑔 ≤ 𝐺−1 e 𝑔 > 𝑀 . O termo 𝜑 = 0, 01 é o mesmo já definido
em (2.12) e, finalmente, 𝛼𝑗 é o fator de peso dado por

𝛼𝑗 = 𝑗

𝐺
, (3.3)

cuja função é premiar o número de sucessos de cada geração, uma vez que seu valor cresce
à medida que o processo evolutivo avança.

O algoritmo EPSO, que serve de base para esta proposta, privilegia soluções mais
recentes, o que pode comprometer a escolha do algoritmo PSO mais adequado, já que
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Figura 2 – Fluxograma do algoritmo MB-EPSO.

conjuntos de partículas com bom desempenho em iterações anteriores podem ser descar-
tados. Nesse contexto, a introdução da janela de memória 𝑀 e do fator 𝛼𝑗 contribui para
preservar informações relevantes ao longo das gerações, auxiliando os algoritmos PSO do
conjunto a conduzir a otimização de maneira mais eficiente e a alcançar resultados de
melhor qualidade.

A Figura 2 ilustra o fluxograma do funcionamento do algoritmo MB-EPSO, cuja pro-
posta central é integrar diferentes estratégias de atualização de partículas em um modelo
de conjunto autoadaptativo. O processo ocorre conforme descrito a seguir:

1. Inicializar: Definir o problema de otimização e os parâmetros: período de apren-
dizagem (𝑃𝐴), geração atual (𝑔) e tamanho da memória (𝑀)1 e o número total de
gerações (𝐺);

2. Selecionar variante: Realizar a seleção autoadaptativa entre as cinco variantes de
PSO com base na distribuição de probabilidade uniforme. Conforme a Seção 2.2,

1 O valor de 𝑀 é discutido na Seção 3.2.
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na fase em que 𝑔 ≤ 𝑃𝐴, essa probabilidade é calculada por 𝑝(𝑘)
𝑔 = 1/𝐾, em que

𝑘 = 1, 2, 3, . . . , 𝐾, sendo 𝐾, o número total de algoritmos presentes no conjunto;

3. Evoluir e registrar: Gerar a próxima população de partículas com a variante esco-
lhida e registrar sucessos, falhas, probabilidades e o valor de 𝑀 . Se 𝑔 ≤ 𝑃𝐴, voltar
ao Passo 2; caso contrário, atualizar as probabilidades segundo a Equação (3.1).

4. Parar: Repetir até a (𝑔 − 1)-ésima geração, correspondente à penúltima iteração
do processo evolutivo. Ao final, retornar a melhor solução encontrada.

Esse modelo de fluxo permite que o algoritmo MB-EPSO adapte dinamicamente suas
estratégias de busca com base no histórico de desempenho, utilizando, de forma contínua,
as melhores gerações de partículas registradas ao longo do processo evolutivo.

3.2 Resultados
Nesta seção, apresentamos os resultados numéricos obtidos nos testes de desempenho re-
alizados com o algoritmo MB-EPSO. O desempenho de cinco algoritmos baseados em
PSO (CLPSO, FDRPSO, HPSO-TVAC, LIPS e WPSO), bem como dois métodos em
conjunto (EPSO e MB-EPSO) é avaliado utilizando 29 funções de benchmark de oti-
mização de parâmetros reais do CEC2017, quais sejam, funções unimodais (𝐹1 e 𝐹2),
multimodais (𝐹3 a 𝐹9), híbridas (𝐹10 a 𝐹19) e de composição (𝐹20 a 𝐹29) (SALGOTRA et

al., 2022). Embora existam suítes mais recentes, como a CEC2022 para o mesmo tipo
de problema, estas não substituem a CEC2017, mas oferecem um conjunto alternativo e
mais compacto de funções com filosofia semelhante (SUGANTHAN et al., 2022). Além disso,
trabalhos recentes continuam utilizando a CEC2017 como benchmark padrão, inclusive
em competições atuais; por exemplo, a competição CEC2024 baseia-se diretamente nessa
suíte, o que reforça sua relevância e permite uma comparação direta com um grande corpo
de resultados da literatura (BREST; MAUčEC, 2025). Dessa forma, a escolha da CEC2017
garante simultaneamente representatividade, comparabilidade e viabilidade computacio-
nal dos experimentos, sem comprometer a generalidade das conclusões obtidas sobre o
desempenho do algoritmo proposto.

Para começar, analisamos o comportamento da proposta MB-EPSO a partir da relação
entre o número de sucessos e o tamanho da janela de memória deslizante para cada tipo
de função de otimização. A Figura 3 mostra a relação entre o tamanho da memória 𝑀

e o número de sucessos por tipo de função do CEC2017. Para 𝑀 ≤ 8, a taxa média
de sucesso aproxima-se de 85% em todas as categorias; para 𝑀 > 8, cai para cerca
de 50%. Destaca-se na cor azul-marinho que foi apenas com 𝑀 = 8 que se obtiveram
soluções corretas em funções unimodais, possivelmente porque as partículas tendem a se
concentrar em ótimos locais/globais, reduzindo a diversidade (EIBEN, 2016). Com base
nessas conclusões, adota-se 𝑀 = 8 como valor padrão para o MB-EPSO.
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Figura 3 – Número de sucessos do algoritmo MB-EPSO para diferentes tamanhos de janela
de memória deslizante e tipos de função de teste do CEC2017.

Conforme já mencionado, o algoritmo MB-EPSO é comparado com as variantes PSO
e com o algoritmo EPSO, adotando-se o valor 𝑀 = 8 para o tamanho da memória
deslizante. Após todas as iterações, o desempenho é avaliado por meio dos valores de
erro absoluto médio e desvio padrão. A Tabela 3 apresenta os resultados experimentais
de todos os métodos PSO e EPSO para as funções de teste do CEC2017, de 𝐹1 a 𝐹29.
Seguindo as mesmas configurações de (HONG et al., 2023), uma comparação entre cada
algoritmo, dois a dois, foi realizada, considerando 30 execuções de simulação em problemas
de 30 dimensões. Cada simulação utilizou 𝐺 = 10.000 gerações, 𝑃𝐴 = 200 e 30 partículas
por população.

A significância estatística foi avaliada pelos testes de Friedman/Nemenyi (FRIEDMAN,
1937; NEMENYI, 1963) com nível de significância de 5%. A hipótese nula 𝐻0 assume
desempenho equivalente entre MB-EPSO e as variantes de PSO; a alternativa 𝐻1 postula
superioridade do MB-EPSO. A Tabela 3 reporta, para cada função 𝐹𝑛, o valor médio 𝜇

da solução obtida em cada uma das funções, o desvio padrão 𝜎, o rank — quanto menor
o valor, melhor o desempenho do algoritmo — e o símbolo “+”/“=” nas comparações
pareadas com o MB-EPSO, denotado por p, em que “+” significa que o algoritmo proposto
foi superior e “=” significa que obteve desempenho semelhante.
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Tabela 3 – Resultados experimentais dos algoritmos PSO para funções de teste

CEC2017 de 30 dimensões.

𝐹𝑛 Critério MB-EPSO EPSO WPSO LIPS CLPSO HPSO-TVAC FDRPSO

𝐹1 𝜇 1,08E+03 3, 09𝐸 + 09 1, 57𝐸 + 11 2, 24𝐸 + 11 1, 31𝐸 + 11 1, 30𝐸 + 11 2, 27𝐸 + 11

𝜎 1, 32𝐸 + 03 5, 55𝐸 + 09 5, 48𝐸 + 10 5, 50𝐸 + 10 1, 70𝐸 + 10 2, 01𝐸 + 10 4, 91𝐸 + 10

rank/𝑝 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

𝐹2 𝜇 3,12E+01 1, 44𝐸 + 05 1, 15𝐸 + 13 1, 79𝐸 + 14 8, 89𝐸 + 08 9, 59𝐸 + 09 2, 80𝐸 + 14

𝜎 1, 06𝐸 + 02 5, 21𝐸 + 04 2, 81𝐸 + 13 3, 21𝐸 + 14 2, 32𝐸 + 09 4, 39𝐸 + 10 5, 55𝐸 + 14

rank/𝑝 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

𝐹3 𝜇 1,96E+01 1, 52𝐸 + 03 1, 15𝐸 + 05 1, 80𝐸 + 05 3, 51𝐸 + 04 4, 70𝐸 + 04 2, 09𝐸 + 05

𝜎 3, 13𝐸 + 01 2, 07𝐸 + 03 7, 40𝐸 + 04 8, 69𝐸 + 04 2, 58𝐸 + 04 2, 19𝐸 + 04 3, 51𝐸 + 05

rank/𝑝 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

𝐹4 𝜇 7,53E+01 1, 44𝐸 + 02 9, 01𝐸 + 02 9, 94𝐸 + 02 6, 71𝐸 + 02 5, 51𝐸 + 02 9, 44𝐸 + 02

𝜎 2, 61𝐸 + 01 7, 23𝐸 + 01 3, 58𝐸 + 02 2, 81𝐸 + 02 1, 67𝐸 + 02 2, 41𝐸 + 02 3, 15𝐸 + 02

rank/𝑝 1 2/ = 5/+ 7/+ 4/+ 3/+ 6/+

𝐹5 𝜇 4,04E+01 5, 89𝐸 + 01 1, 84𝐸 + 02 2, 16𝐸 + 02 1, 47𝐸 + 02 1, 43𝐸 + 02 1, 97𝐸 + 02

𝜎 3, 74𝐸 + 00 8, 68𝐸 + 00 3, 78𝐸 + 01 2, 81𝐸 + 01 1, 51𝐸 + 01 1, 30𝐸 + 01 3, 28𝐸 + 01

rank/𝑝 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

𝐹6 𝜇 2,18E+02 3, 40𝐸 + 02 3, 37𝐸 + 03 4, 11𝐸 + 03 2, 55𝐸 + 03 2, 40𝐸 + 03 4, 11𝐸 + 03

𝜎 3, 34𝐸 + 01 8, 55𝐸 + 01 1, 26𝐸 + 03 1, 12𝐸 + 03 7, 59𝐸 + 02 7, 83𝐸 + 02 9, 03𝐸 + 02

rank/𝑝 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

𝐹7 𝜇 5,04E+01 1, 14𝐸 + 02 7, 85𝐸 + 02 8, 92𝐸 + 02 4, 62𝐸 + 02 4, 62𝐸 + 02 8, 80𝐸 + 02

𝜎 7, 08𝐸 + 00 5, 65𝐸 + 01 2, 88𝐸 + 02 1, 77𝐸 + 02 2, 10𝐸 + 02 2, 18𝐸 + 02 1, 65𝐸 + 02

rank/𝑝 1 2/ = 5/ = 7/+ 3/ = 4/ = 6/ =

𝐹8 𝜇 2,26E+03 2, 82𝐸 + 03 7, 27𝐸 + 04 7, 90𝐸 + 04 4, 05𝐸 + 04 4, 10𝐸 + 04 6, 29𝐸 + 04

𝜎 5, 97𝐸 + 02 1, 23𝐸 + 03 3, 20𝐸 + 04 1, 93𝐸 + 04 7, 53𝐸 + 03 5, 51𝐸 + 03 1, 90𝐸 + 04

rank/𝑝 1 2/ = 6/ = 7/ = 3/ = 4/ = 5/ =

𝐹9 𝜇 3,44E+03 4, 31𝐸 + 03 1, 07𝐸 + 04 1, 15𝐸 + 04 9, 85𝐸 + 03 1, 01𝐸 + 04 5, 13𝐸 + 03

𝜎 1, 09𝐸 + 03 8, 47𝐸 + 02 2, 18𝐸 + 03 6, 67𝐸 + 02 6, 74𝐸 + 02 3, 74𝐸 + 02 5, 95𝐸 + 03

rank/𝑝 1 2/+ 6/+ 7/+ 4/+ 5/+ 3/+

𝐹10 𝜇 5,85E+01 6, 47𝐸 + 02 2, 66𝐸 + 09 2, 85𝐸 + 09 1, 07𝐸 + 06 1, 96𝐸 + 05 1, 19𝐸 + 11

𝜎 2, 40𝐸 + 01 1, 17𝐸 + 03 9, 77𝐸 + 09 8, 06𝐸 + 09 4, 47𝐸 + 06 3, 52𝐸 + 05 6, 48𝐸 + 11

rank/𝑝 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

𝐹11 𝜇 2,65E+05 1, 31𝐸 + 08 5, 11𝐸 + 10 6, 64𝐸 + 10 3, 14𝐸 + 10 3, 09𝐸 + 10 6, 03𝐸 + 10

𝜎 2, 13𝐸 + 05 2, 91𝐸 + 08 2, 60𝐸 + 10 2, 27𝐸 + 10 6, 20𝐸 + 09 7, 20𝐸 + 09 2, 28𝐸 + 10

rank/𝑝 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

𝐹12 𝜇 1,23E+04 8, 27𝐸 + 08 6, 62𝐸 + 10 1, 08𝐸 + 11 3, 06𝐸 + 10 3, 17𝐸 + 10 7, 70𝐸 + 10

𝜎 1, 04𝐸 + 04 1, 86𝐸 + 09 3, 59𝐸 + 10 4, 99𝐸 + 10 1, 36𝐸 + 10 1, 12𝐸 + 10 5, 52𝐸 + 10

rank/𝑝 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/+

𝐹13 𝜇 4,50E+03 1, 31𝐸 + 05 1, 98𝐸 + 09 2, 09𝐸 + 09 9, 75𝐸 + 07 9, 22𝐸 + 07 3, 56𝐸 + 09

𝜎 5, 93𝐸 + 03 4, 46𝐸 + 05 2, 51𝐸 + 09 3, 21𝐸 + 09 8, 26𝐸 + 07 6, 79𝐸 + 07 4, 90𝐸 + 09

rank/𝑝 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

𝐹14 𝜇 2,96E+03 1, 40𝐸 + 06 3, 64𝐸 + 10 4, 11𝐸 + 10 7, 87𝐸 + 09 9, 07𝐸 + 09 3, 61𝐸 + 10

𝜎 2, 85𝐸 + 03 7, 37𝐸 + 06 2, 53𝐸 + 10 2, 44𝐸 + 10 4, 15𝐸 + 09 3, 31𝐸 + 09 2, 02𝐸 + 10

rank/𝑝 1 2/+ 6/+ 7/+ 3/+ 4/+ 5/+

𝐹15 𝜇 9,79E+02 1, 92𝐸 + 03 3, 95𝐸 + 04 5, 06𝐸 + 04 8, 37𝐸 + 03 9, 13𝐸 + 03 5, 62𝐸 + 04

𝜎 2, 52𝐸 + 02 6, 88𝐸 + 02 3, 59𝐸 + 04 4, 15𝐸 + 04 2, 84𝐸 + 03 3, 08𝐸 + 03 5, 47𝐸 + 04

rank/𝑝 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

Continua na próxima página
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Tabela 3 (continuação)

𝐹𝑛 Critério MB-EPSO EPSO WPSO LIPS CLPSO HPSO-TVAC FDRPSO

𝐹16 𝜇 4,86E+02 1, 04𝐸 + 03 1, 04𝐸 + 07 2, 23𝐸 + 07 7, 52𝐸 + 04 4, 99𝐸 + 04 2, 16𝐸 + 07

𝜎 2, 01𝐸 + 02 2, 68𝐸 + 02 2, 48𝐸 + 07 4, 03𝐸 + 07 7, 87𝐸 + 04 6, 78𝐸 + 04 5, 48𝐸 + 07

rank/𝑝 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

𝐹17 𝜇 8,11E+04 7, 14𝐸 + 05 9, 24𝐸 + 09 1, 86𝐸 + 10 1, 17𝐸 + 09 1, 22𝐸 + 09 1, 82𝐸 + 10

𝜎 4, 86𝐸 + 04 1, 94𝐸 + 06 9, 73𝐸 + 09 1, 31𝐸 + 10 7, 77𝐸 + 08 1, 01𝐸 + 09 1, 68𝐸 + 10

rank/𝑝 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/+

𝐹18 𝜇 1,53E+03 1, 35𝐸 + 06 3, 77𝐸 + 10 5, 17𝐸 + 10 1, 09𝐸 + 10 8, 88𝐸 + 09 4, 22𝐸 + 10

𝜎 2, 26𝐸 + 03 4, 65𝐸 + 06 2, 10𝐸 + 10 3, 35𝐸 + 10 3, 63𝐸 + 09 4, 65𝐸 + 09 2, 36𝐸 + 10

rank/𝑝 1 2/+ 5/+ 7/+ 4/+ 3/+ 6/+

𝐹19 𝜇 3,70E+02 6, 81𝐸 + 02 2, 52𝐸 + 03 2, 74𝐸 + 03 1, 90𝐸 + 03 1, 92𝐸 + 03 2, 81𝐸 + 03

𝜎 1, 19𝐸 + 02 2, 04𝐸 + 02 4, 18𝐸 + 02 4, 38𝐸 + 02 2, 49𝐸 + 02 2, 18𝐸 + 02 6, 82𝐸 + 02

rank/𝑝 1 2/+ 5/+ 6/+ 3/+ 4/+ 7/+

𝐹20 𝜇 2,87E+02 4, 46𝐸 + 02 1, 08𝐸 + 03 1, 57𝐸 + 03 8, 59𝐸 + 02 8, 71𝐸 + 02 1, 45𝐸 + 03

𝜎 1, 76𝐸 + 01 8, 98𝐸 + 01 3, 88𝐸 + 02 8, 16𝐸 + 02 5, 87𝐸 + 01 8, 56𝐸 + 01 5, 91𝐸 + 02

rank/𝑝 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/+

𝐹21 𝜇 3,56E+03 5, 10𝐸 + 03 1, 15𝐸 + 04 1, 57𝐸 + 03 1, 04𝐸 + 04 1, 02𝐸 + 04 1, 18𝐸 + 04

𝜎 1, 83𝐸 + 03 1, 07𝐸 + 03 7, 06𝐸 + 02 8, 92𝐸 + 02 4, 57𝐸 + 02 7, 18𝐸 + 02 9, 05𝐸 + 02

rank/𝑝 1 2/+ 5/+ 6/+ 4/+ 3/+ 7/+

𝐹22 𝜇 7,44E+02 9, 90𝐸 + 02 2, 06𝐸 + 03 3, 37𝐸 + 03 1, 85𝐸 + 03 1, 83𝐸 + 03 3, 24𝐸 + 03

𝜎 1, 27𝐸 + 02 4, 40𝐸 + 02 7, 89𝐸 + 02 1, 14𝐸 + 03 3, 06𝐸 + 02 2, 90𝐸 + 02 1, 41𝐸 + 03

rank/𝑝 1 2/ = 5/+ 7/+ 4/+ 3/+ 6/+

𝐹23 𝜇 8, 60𝐸 + 02 6,26E+02 1, 98𝐸 + 03 2, 66𝐸 + 03 2, 08𝐸 + 03 2, 04𝐸 + 03 3, 03𝐸 + 03

𝜎 2, 19𝐸 + 02 1, 96𝐸 + 02 4, 76𝐸 + 02 1, 01𝐸 + 03 3, 53𝐸 + 02 3, 45𝐸 + 02 9, 59𝐸 + 02

rank/𝑝 2 1/ = 3/+ 6/+ 5/+ 4/+ 7/+

𝐹24 𝜇 3,88E+02 8, 23𝐸 + 02 2, 81𝐸 + 04 5, 64𝐸 + 04 1, 78𝐸 + 04 1, 91𝐸 + 04 5, 63𝐸 + 04

𝜎 2, 32𝐸 + 01 8, 23𝐸 + 02 2, 81𝐸 + 04 5, 64𝐸 + 04 1, 78𝐸 + 04 1, 91𝐸 + 04 5, 63𝐸 + 04

rank/𝑝 1 2/ = 5/+ 7/+ 3/+ 4/+ 6/+

𝐹25 𝜇 2,64E+03 3, 92𝐸 + 03 1, 97𝐸 + 04 3, 04𝐸 + 04 1, 49𝐸 + 04 1, 45𝐸 + 04 3, 91𝐸 + 04

𝜎 1, 13𝐸 + 03 1, 69𝐸 + 03 8, 06𝐸 + 03 1, 33𝐸 + 04 2, 17𝐸 + 03 2, 75𝐸 + 03 2, 14𝐸 + 04

rank/𝑝 1 2/ = 5/+ 6/+ 4/+ 3/+ 7/+

𝐹26 𝜇 6, 54𝐸 + 02 5, 02𝐸 + 02 5,00E+02 5, 01𝐸 + 02 2, 95𝐸 + 03 2, 98𝐸 + 03 5, 06𝐸 + 02

𝜎 3, 29𝐸 + 02 2, 12𝐸 − 04 1, 42𝐸 − 05 1, 01𝐸 − 05 5, 13𝐸 + 02 6, 16𝐸 + 02 1, 46𝐸 − 07

rank/𝑝 5 3/ = + 1/ = 2/ = 6/+ 7/+ 4/ =

𝐹27 𝜇 1, 12𝐸 + 04 4, 96𝐸 + 02 5, 01𝐸 + 02 5, 02𝐸 + 02 3,49E+02 1, 17𝐸 + 04 5, 05𝐸 + 02

𝜎 2, 60𝐸 + 03 1, 26𝐸 + 01 2, 91𝐸 − 05 1, 44𝐸 − 04 7, 11𝐸 + 01 2, 58𝐸 + 03 2, 53𝐸 − 06

rank/𝑝 6 2/ = 3/ = 4/ = 1/ = 7/+ 5/ =

𝐹28 𝜇 1,34E+03 2, 43𝐸 + 03 1, 69𝐸 + 08 9, 86𝐸 + 07 8, 47𝐸 + 04 9, 71𝐸 + 04 4, 11𝐸 + 07

𝜎 3, 24𝐸 + 02 7, 36𝐸 + 02 8, 16𝐸 + 08 4, 47𝐸 + 08 1, 37𝐸 + 05 1, 33𝐸 + 05 9, 74𝐸 + 07

rank/𝑝 1 2/ = 7/+ 6/+ 3/+ 4/+ 5/+

𝐹29 𝜇 2,05E+04 1, 02𝐸 + 08 1, 48𝐸 + 10 3, 11𝐸 + 10 5, 15𝐸 + 09 6, 04𝐸 + 09 2, 29𝐸 + 10

𝜎 1, 61𝐸 + 04 1, 45𝐸 + 08 1, 15𝐸 + 10 1, 57𝐸 + 10 2, 58𝐸 + 09 2, 72𝐸 + 09 1, 16𝐸 + 10

rank/𝑝 1 2/+ 5/+ 7/+ 3/+ 4/+ 6/ =

1∘/2∘/𝑢 26/1/0 1/27/0 1/0/1 0/1/16 1/0/0 0/0/2 0/0/10

+/ = 19/10 25/4 26/3 26/3 27/2 24/5

Métodos MB-EPSO EPSO WPSO LIPS CLPSO HPSO-TVAC FDRPSO



Capítulo 3. Conjunto de Otimizadores por Enxame de Partículas Baseado em Memória 46

Ao final da Tabela 3, os rótulos “1∘/2∘/u”, em que u significa último lugar, e “+/ =”
evidenciam os resultados consolidados da comparação entre o MB-EPSO e os demais
algoritmos. Por exemplo: na função híbrida 𝐹11, o MB-EPSO atingiu rank = 1, obtendo o
menor erro médio, enquanto o FDRPSO ficou em rank = 7. Os resultados pareados com
“+” reforçam a superioridade do MB-EPSO.

Ainda na Tabela 3, observa-se que o algoritmo MB-EPSO obteve os melhores valo-
res médios 𝜇 das soluções em 26 das 29 funções de teste. Destaca-se que o MB-EPSO
apresentou os melhores resultados nas funções unimodais, multimodais e híbridas. Por
outro lado, no caso das funções de composição, as melhores soluções do MB-EPSO foram
encontradas em apenas sete situações, enquanto o EPSO apresentou o segundo melhor
desempenho em 27 das 29 funções.

A Figura 4 apresenta a evolução do melhor valor da função objetivo (do inglês, best
fitness) do algoritmo MB-EPSO para 𝑀 = 8, em comparação com diversas variantes
do PSO, considerando a função unimodal 𝐹1 de 30 dimensões do CEC2017. Destaca-se,
em particular, o melhor valor médio da função objetivo obtido para 𝐹1, evidenciando o
desempenho do MB-EPSO em relação aos demais métodos. Observa-se que o algoritmo
MB-EPSO apresenta o melhor desempenho em comparação com as variantes PSO, pois
a melhor aptidão média é menor desde as primeiras gerações de partículas até as últimas.
Além disso, a convergência é alcançada antes dos outros algoritmos, aproximadamente na
milésima geração de partículas.

Por fim, outro aspecto importante a ser analisado nos algoritmos PSO é o seu tempo
de execução. Para esse propósito, em cada algoritmo, considerou-se o tempo médio de
execução em 30 rodadas de simulação, realizadas com os mesmos parâmetros experimen-
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Figura 4 – Melhor valor médio da função objetivo unimodal 𝐹1 de 30 dimensões do
CEC2017.
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tais, quais sejam: o número máximo de iterações, o tamanho do enxame e o número de
dimensões.

Os experimentos foram executados no cluster Apuana do CIn–UFPE, plataforma de
alto desempenho composta por múltiplos nós com processadores de arquitetura AMD/In-
tel de múltiplos núcleos e suporte a GPUs. Para garantir uma comparação justa, todas as
execuções foram realizadas utilizando o mesmo tipo de nó, com alocação idêntica de re-
cursos (CPU, memória e threads), sob as mesmas condições de software e compilação. Foi
assumido o mesmo hardware para todos os algoritmos PSO considerados neste trabalho.

A Tabela 4 indica, para cada algoritmo e cada tipo de função do CEC2017, os tempos
médios de execução e seus respectivos desvios padrão, denotados, respectivamente, por 𝑡 e
𝜎𝑡. Com base nos parâmetros definidos, os tempos médios de execução foram normalizados
em relação ao valor obtido pelo algoritmo MB-EPSO e estão indicados na Tabela 5.

A normalização dos tempos de execução permite comparar os algoritmos de forma
justa, pois coloca todos os resultados na mesma escala ao dividir os valores pelo tempo
do algoritmo de referência. Assim, é possível avaliar proporcionalmente o desempenho
de cada método, sem depender de unidades de tempo, de cenários específicos ou do tipo
de hardware utilizado. Desse modo, os resultados permanecem consistentes mesmo em
computadores com baixas ou altas capacidades de processamento. Portanto, a normaliza-
ção garante a equidade na comparação, bem como a portabilidade e a reprodutibilidade
dos resultados em diferentes ambientes computacionais. Por fim, é importante esclarecer
o que significam os percentuais situados ao lado de cada valor normalizado de tempo.
Por exemplo, considerando o tipo de função unimodal, o MB-EPSO promove uma redu-
ção de 10,71% no tempo médio de execução quando comparado ao algoritmo CLPSO.
Comparações semelhantes são realizadas para os demais algoritmos e tipos de função.

Os resultados evidenciam que o MB-EPSO com memória deslizante de tamanho 𝑀 = 8
apresentou o menor tempo de execução em todas as categorias de funções do CEC2017.
Nas funções unimodais, embora as diferenças sejam discretas, o MB-EPSO supera varia-

Tabela 4 – Estatísticas do tempo de execução de todas as variantes do PSO
consideradas neste trabalho para cada tipo de função do CEC2017.

Algoritmo Unimodal Multimodal Composição Híbrida

𝑡 (ms) 𝜎𝑡 (ms) 𝑡 (ms) 𝜎𝑡 (ms) 𝑡 (ms) 𝜎𝑡 (ms) 𝑡 (ms) 𝜎𝑡 (ms)

CLPSO 5,61 0,23 12,41 1,29 5,92 0,32 94,71 16,12
EPSO 6,09 0,41 13,06 1,14 6,49 0,33 96,81 15,49
FDRPSO 6,08 0,31 12,89 1,25 6,25 0,37 96,68 13,28
HPSO-TVAC 7,87 0,33 14,61 1,55 7,83 0,42 102,23 16,08
LIPS 6,80 0,35 13,52 1,48 7,49 0,38 99,44 16,58
WPSO 5,63 0,27 12,51 1,44 5,83 0,34 96,96 14,69
MB-EPSO 5,60 0,32 10,27 0,85 5,79 0,29 94,50 13,52
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Tabela 5 – Valores normalizados dos tempos de execução das variantes PSO
acompanhados da respectiva redução percentual de tempo médio
promovida pelo algoritmo MB-EPSO.

Algoritmo Unimodal Multimodal Composição Híbrida

CLPSO 1,12 (10,71%) 1,75 (42,86%) 1,86 (46,24%) 1,65 (39,39%)
EPSO 1,03 (2,91%) 1,50 (33,33%) 1,39 (28,06%) 1,23 (18,70%)
FDRPSO 1,35 (25,93%) 1,45 (31,03%) 1,93 (48,19%) 1,40 (28,57%)
HPSO-TVAC 1,05 (4,76%) 1,05 (4,76%) 1,06 (5,66%) 1,04 (3,85%)
LIPS 1,03 (2,91%) 1,88 (46,81%) 1,86 (46,24%) 1,92 (47,92%)
WPSO 1,02 (1,96%) 1,12 (10,71%) 1,07 (6,54%) 1,03 (2,91%)
MB-EPSO (𝑀 = 8) 1,00 1,00 1,00 1,00

ções como CLPSO e FDRPSO, que chegam a consumir 12% e 35% mais tempo, respecti-
vamente. Nos cenários multimodais, de composição e híbridos — caracterizados por maior
complexidade e múltiplos mínimos locais — o ganho do MB-EPSO torna-se mais expres-
sivo, alcançando reduções de tempo superiores a 40% frente a algoritmos como CLPSO,
LIPS e FDRPSO.

Os experimentos evidenciam a robustez e a superioridade do MB-EPSO em relação às
variantes avaliadas. A escolha de 𝑀 = 8 mitigou a convergência prematura e equilibrou a
diversidade e a exploração, resultando em menores erros médios no CEC2017 e em menor
tempo de execução. Esses achados posicionam o MB-EPSO como uma alternativa promis-
sora para otimização em larga escala. Nos capítulos seguintes, caracterizamos a localização
de dispositivos móveis como um problema de otimização e propomos uma solução híbrida
que integra técnicas de AM ao MB-EPSO para aplicação em redes celulares.

3.3 Resumo do capítulo
Este capítulo apresentou o algoritmo MB-EPSO, um conjunto autoadaptativo de otimi-
zadores PSO que integra uma janela de memória deslizante para preservar boas soluções e
reduzir a convergência prematura. A proposta redefine a escolha das variantes por meio de
uma taxa de sucesso ponderada no tempo, explorando o papel do período de aprendizagem
e do tamanho da memória. Experimentos no CEC2017 mostraram que 𝑀 = 8 maximiza
os resultados, com o algoritmo MB-EPSO superando as demais variantes PSO em acu-
rácia, estabilidade e tempo de execução. Assim, o uso da memória integrada à seleção
autoadaptativa reforça sua robustez e eficiência em problemas complexos de otimização.
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4 SISTEMAS DE RADIOLOCALIZAÇÃO

“Para descrever o movimento de um
corpo, é preciso primeiro definir

com exatidão o lugar onde ele está.”

(Isaac Newton)

Este capítulo apresenta os fundamentos dos sistemas de radiolocalização, descrevendo as principais téc-

nicas de posicionamento e suas limitações. Em seguida, formaliza a trilateração como um problema de

otimização e discute o uso de algoritmos evolucionários e métodos de AM, como o 𝑘-NN, que dão su-

porte às soluções propostas nesta pesquisa. Por fim, inclui-se uma síntese da literatura sobre técnicas de

localização baseadas em PSO.

Localizar dispositivos móveis em redes celulares é fundamental, sobretudo em situa-
ções de emergência, em que o tempo é decisivo para salvar vidas. Sob a ótica dos negócios,
a localização também viabiliza serviços e modelos de receita — de navegação e entregas
a publicidade geolocalizada (HUANG; GARTNER, 2018). Nesse contexto, sistemas de lo-
calização que utilizam a infraestrutura celular ganham destaque por oferecer estimativas
confiáveis mesmo quando a navegação por sistema global de posicionamento (GPS, do
inglês Global Positioning System) está indisponível.

4.1 Sistemas de localização em redes celulares
Os sistemas de localização têm como objetivo determinar, com precisão e acurácia, as
coordenadas geográficas de um dispositivo móvel (PERAL-ROSADO et al., 2018). Embora
existam alternativas baseadas em redes pessoais, como redes Wi-Fi (do inglêsWireless
Fidelity) e Bluetooth, o presente estudo concentra-se exclusivamente em cenários nos quais
a EM está conectada a uma rede de telefonia celular. Essa escolha se justifica, em parte,
por questões de segurança cibernética, ou seja, para reduzir o risco de exposição de dados
pessoais a possíveis ataques, muitos usuários optam por não conectar seus aparelhos a
redes locais públicas ou privadas de confiabilidade duvidosa (SANGEEN et al., 2023). Além
disso, em situações críticas, como a busca por sobreviventes em desastres naturais ou no
colapso de edificações (ALBANESE et al., 2023), a localização de dispositivos conectados a
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redes celulares tende a permanecer acessível na maioria dos casos, independentemente do
aparelho estar em ambiente indoor ou outdoor.

Ao se conectar à rede celular, o dispositivo passa a reportar e atualizar periodicamente
parâmetros técnicos definidos pelas normas do projeto de parceria de terceira geração
(3GPP, do inglês Third Generation Partnership Project), tais como ângulo de chegada
(AoA, do inglês Angle of Arrival), PD, RSSI, a diferença de tempo de chegada (TDoA,
do inglês Time Difference of Arrival), o tempo de chegada (ToA, do inglês Time of
Arrival), entre outros. Essas grandezas físicas fundamentam algoritmos de localização
nas arquiteturas previstas pelo 3GPP (YANG; MAO; WANG, 2022).

Conforme ilustrado na Figura 5, os parâmetros de AoA, PD, RSSI, TDoA e ToA são
coletados e processados pela própria rede, por meio do servidor de localização. A partir
desses dados, torna-se imprescindível a aplicação de técnicas especializadas capazes de
estimar com exatidão a posição geográfica do dispositivo. Para isso, destacam-se quatro
técnicas bastante difundidas na literatura — trilateração, triangulação, Cell ID e finger-
printing — acompanhadas de um resumo comparativo de suas características, vantagens
e limitações.

1. Trilateração: É uma técnica que se baseia na medição das distâncias entre o dispo-
sitivo e três ou mais pontos de referência com coordenadas conhecidas (RAMTOHUL;

KHEDO, 2020). Ela oferece alta acurácia em ambiente outdoor, como em aplicações
com GPS, e pode utilizar medidas baseadas em tempo, como ToA e TDoA, ou ainda
RSSI. Além disso, apresenta boa escalabilidade em redes bem distribuídas, ou seja,
aquelas em que as antenas estão estrategicamente posicionadas de acordo com a
geografia, densidade populacional e padrões de tráfego, garantindo cobertura am-
pla, capacidade balanceada e qualidade de serviço estável (SUDHAMANI et al., 2023;

Figura 5 – Arquitetura geral de um sistema de localização remota. Adaptado de
(PERAL-ROSADO et al., 2018).



Capítulo 4. Sistemas de Radiolocalização 51

KHATIWODA; DAWADI; JOSHI, 2024). No entanto, essa técnica exige no mínimo três
pontos de referência para localização em duas dimensões ou quatro para três dimen-
sões, o que a torna vulnerável a obstáculos físicos como edifícios e paredes. Além
disso, o seu desempenho tende a ser ainda mais comprometido em ambientes indoor,
especialmente em cenários com presença de multipercurso e ruído de sinal.

2. Triangulação: Essa é uma técnica que se baseia na medição de ângulos, como o
AoA, entre o dispositivo e dois ou mais pontos de referência (RAMTOHUL; KHEDO,
2020). Pode apresentar bom desempenho mesmo com um número reduzido de esta-
ções base, sendo particularmente útil em cenários que utilizam antenas direcionais.
Por outro lado, essa técnica exige hardware especializado para garantir a exatidão
nas medições dos ângulos, apresenta menor robustez diante de reflexões de sinal
(efeitos de multipercurso) e tende a oferecer desempenho inferior em ambientes in-
door quando comparada a outras técnicas (HAILU et al., 2024).

3. Cell ID: Esta técnica utiliza a identificação da célula da rede móvel à qual o dis-
positivo está conectado (RAMTOHUL; KHEDO, 2020). Trata-se de um método extre-
mamente simples de implementar, que não requer hardware adicional, possui baixo
custo computacional e está disponível em praticamente qualquer dispositivo com
acesso à rede celular. Em contrapartida, apresenta baixa acurácia, com variações
que podem ir de centenas de metros a quilômetros, dependendo da densidade de
torres na região, o que a torna inadequada para aplicações que demandam localiza-
ção exata (NAHMIAS-BIRAN et al., 2023).

4. Fingerprinting: Essa técnica baseia-se na comparação das medições de sinais,
como o RSSI de redes Wi-Fi ou Bluetooth, com um banco de dados previamente
construído a partir de coletas realizadas em uma área mapeada (RAMTOHUL; KHEDO,
2020). Essa técnica oferece elevada acurácia em ambientes indoor, mantém bom de-
sempenho em locais com muitos obstáculos e não exige linha de visada direta com as
antenas. No entanto, demanda uma fase inicial intensiva de calibração, envolvendo
a coleta detalhada de dados. Além disso, é uma técnica cujo desempenho depende
fortemente de alterações no ambiente, como a movimentação de móveis ou a pre-
sença de pessoas. Por fim, apresenta elevada complexidade computacional devido à
necessidade de realizar buscas em tempo real (DAI et al., 2023).

As quatro técnicas de localização mencionadas anteriormente apresentam vantagens
e desvantagens. No entanto, considerando a premissa de se desenvolver um algoritmo de
localização de implementação simplificada, a Tabela 6 reúne características como acurá-
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Tabela 6 – Características das técnicas de localização (RAMTOHUL; KHEDO,
2020).

Técnica Acurácia Custo Comp. Requisitos Ambiente Ideal

Trilateração Alta (outdoor) Médio 3+ referências outdoor
Triangulação Média Médio/Alto Medição de ângulo outdoor
Cell ID Baixa Baixo Apenas torre de celular outdoor
Fingerprinting Alta (indoor) Alto Banco de dados de sinais indoor

cia, custo computacional, requisitos e ambiente de propagação ideal, possibilitando uma
análise comparativa. A partir dessa avaliação, observa-se que as técnicas de trilateração
e Cell ID atendem a esse critério. Contudo, conforme discutido em (NAHMIAS-BIRAN et

al., 2023), a técnica Cell ID apresenta diversas fragilidades, o que a torna menos ade-
quada. Nesse contexto, a trilateração desponta como uma alternativa promissora sob a
ótica da relação custo-benefício, já que oferece elevada acurácia em ambientes outdoor,
demanda apenas um custo computacional moderado e requer o número mínimo de três
estações base para sua aplicação. Por outro lado, a adoção de técnicas alternativas, ou
mesmo a combinação de diferentes métodos, poderia comprometer o objetivo de manter
a simplicidade do sistema proposto, incorporando complexidades adicionais ao processo
de localização.

A técnica de trilateração tem origem nos sistemas de posicionamento por satélite,
como o GPS, onde a posição de um receptor é determinada com base na distância a pelo
menos três satélites. A técnica se baseia na interseção de círculos para localização bidi-
mensional ou esferas para localização tridimensional, com raio igual à distância medida
entre o ponto de referência e o receptor (LIU et al., 2023). As Figuras 6(a) e 6(b) ilus-
tram a técnica de trilateração de potência em situações ideais e reais, respectivamente.
Nos dois casos, três pontos de referência são indicados, assim como o ponto em que se
deseja estimar a posição. No contexto das redes celulares, as ERBs, denotadas como 𝐴𝑖, e
identificadas por 𝐴1, 𝐴2 e 𝐴3, têm coordenadas geográficas conhecidas (𝑥1, 𝑦1), (𝑥2, 𝑦2) e
(𝑥3, 𝑦3), respectivamente. Os parâmetros 𝑑1, 𝑑2 e 𝑑3 são as distâncias entre 𝐴1, 𝐴2 e 𝐴3 e o
ponto 𝑃 (𝑥, 𝑦), respectivamente. Finalmente, o ponto 𝑃 (𝑥, 𝑦) na Figura 6(a), cuja posição
se deseja estimar, representa a EM. Por outro lado, na Figura 6(b), o ponto 𝑃 (𝑥, 𝑦) está
situado em algum lugar da região de interseção em destaque.

Ainda no cenário dos sistemas de propagação de sinais de RF, em especial da telefonia
celular, o valor de RSSI obtido em cada ERB pode ser utilizado para estimar as distâncias
euclidianas 𝑑1, 𝑑2 e 𝑑3 por meio de equações fundamentadas em modelos de propagação,
métodos computacionais ou técnicas de AM. Essa abordagem constitui uma das alter-
nativas para a determinação da posição do dispositivo, entre outras que serão discutidas
ao longo desta pesquisa. De posse das três equações que representam as circunferências
centradas em cada uma das ERBs, pode-se expressar o problema da trilateração como
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(a) Cenário ideal. (b) Cenário real.

Figura 6 – Trilateração de potência com três ERBs.

um sistema de equações não lineares, tal que⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑥− 𝑥1)2 + (𝑦 − 𝑦1)2 = 𝑑2

1

(𝑥− 𝑥2)2 + (𝑦 − 𝑦2)2 = 𝑑2
2

(𝑥− 𝑥3)2 + (𝑦 − 𝑦3)2 = 𝑑2
3

(4.1)

e cuja solução será a posição 𝑃 (𝑥, 𝑦) da EM, que é a estimativa da localização desejada.
Considerando o contexto deste trabalho, o problema de localização, cujo principal

objetivo é determinar a posição de uma EM em uma rede celular, pode ser definido como
um problema de otimização, conforme segue.

Definição 1: Considere

𝑑𝑖(𝑥, 𝑦) =
√︁

(𝑥− 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2, 𝑖 = 1, 2, . . . , 𝑛, (4.2)

em que 𝑑𝑖(𝑥, 𝑦) é a distância euclidiana da 𝑖-ésima ERB, denotada como 𝐴𝑖, até a EM,
também chamada de alvo, e representada por 𝑃 (𝑥, 𝑦), cujas coordenadas geográficas são
desconhecidas. Sendo 𝑑*𝑖 a estimativa de 𝑑𝑖(𝑥, 𝑦), deseja-se encontrar as coordenadas (𝑥, 𝑦)
de 𝑃 na Equação (4.2) de forma que o erro dado por

min
𝑥,𝑦

𝐽(𝑥, 𝑦) =
𝑛∑︁

𝑖=1

[︁
𝑑*𝑖 − 𝑑𝑖(𝑥, 𝑦)

]︁2
(4.3)

seja o menor possível.
A função 𝐽(𝑥, 𝑦) que minimiza o erro entre as distâncias 𝑑*𝑖 e 𝑑𝑖(𝑥, 𝑦), definida pela

Equação (4.3), considera o mínimo entre diversas expressões individuais, uma para cada
valor de 𝑖. Essa estrutura tende a introduzir descontinuidades e a gerar múltiplos mínimos
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locais (GUR; SABACH, 2025), o que permite classificá-la como uma função multimodal. Tal
comportamento decorre do fato de que cada termo da função apresenta um padrão pró-
prio de variação. Em outras palavras, as distâncias euclidianas derivadas de 𝑑*𝑖 e 𝑑𝑖(𝑥, 𝑦)
podem ser estimadas por diferentes formas, como métodos computacionais, técnicas de
AM ou algoritmos de computação evolucionária. Cada uma dessas estratégias contribui
de forma independente para o resultado final dos cálculos, refletindo a natureza diver-
sificada do processo de estimativa. Além disso, a função é caracterizada como objetiva
ou monoobjetiva, pois retorna um único valor escalar que representa a minimização da
diferença entre a distância 𝑑𝑖(𝑥, 𝑦) e a sua estimativa 𝑑*𝑖 . Por fim, a Equação (4.3), trata-se
de uma função de duas dimensões, uma vez que é definida em termos de duas variáveis
independentes, 𝑥 e 𝑦, que representam as coordenadas do ponto a ser estimado.

Por se tratar de um problema de otimização — isto é, da busca pela melhor solu-
ção possível — diferentes métodos matemáticos podem ser empregados para encontrar
a posição do alvo, tais como o método de Newton-Raphson (RAPHSON, 1690) ou o de
Nelder-Mead (NELDER; MEAD, 1965; LOPES et al., 2013). Entretanto, a acurácia e a pre-
cisão obtidas por esses métodos costumam ser insatisfatórias quando comparadas às de
técnicas mais avançadas, como os algoritmos evolucionários (TIMOTEO et al., 2017). Isso
evidencia a necessidade de recorrer a métodos mais eficientes e adaptáveis.

Nesse contexto, as técnicas baseadas em IE, entre elas o PSO, mostram-se promissoras.
Além de apresentarem custo computacional competitivo, possuem ampla aplicabilidade
em problemas provenientes de cenários reais, demonstrando grande adequação para fun-
ções de otimização (SCARDUA, 2021). Considerando essas características, conclui-se que
o algoritmo MB-EPSO pode ser aplicado de forma eficaz para minimizar a função de
otimização definida na Equação (4.3).

Contudo, vale destacar que, em uma rede celular real, não é possível conhecer dire-
tamente a posição exata de um dispositivo. Assim, torna-se necessário prever a posição
estimada, de modo que os resultados possam ser comparados àqueles gerados pelo MB-
EPSO. Para resolver a Equação (4.2), que retorna as distâncias entre EM e ERB, faz-se
necessário adotar uma abordagem complementar.

Seguindo a mesma premissa de simplicidade e eficiência, o algoritmo de k-NN apresenta-
se como uma alternativa bastante utilizada na literatura e testada em (TIMOTEO et al.,
2017). Trata-se de um método versátil, amplamente utilizado em tarefas de classificação
e regressão, que tem recebido destaque em sistemas de localização (ZHOU; YANG; CHEN,
2021; XIANG et al., 2023; NARDIS et al., 2022; HUANG et al., 2021; GAMBI et al., 2023).

Entre os diversos métodos de AM que poderiam ser empregados na regressão entre
medidas de potência, atraso e distância, como máquinas de vetor de suporte, florestas
aleatórias, métodos de boosting e redes neurais profundas, optou-se pelo k-NN por ofe-
recer um equilíbrio adequado entre acurácia e simplicidade. Trata-se de um método não
paramétrico, que não assume um modelo explícito de propagação, o que o torna particu-



Capítulo 4. Sistemas de Radiolocalização 55

larmente adequado a ambientes sujeitos a multipercurso e condições sem visada direta de
sinal (NLOS, do inglês Non-Line-of-Sight). Além disso, o 𝑘-NN exige um esforço de mo-
delagem e ajuste de hiperparâmetros significativamente menor do que abordagens como
máquinas de vetor de suporte ou aprendizado profundo, mantendo, ao mesmo tempo,
desempenho competitivo em tarefas de localização baseadas em RSSI e fingerprinting,
conforme discutido em estudos recentes que comparam o 𝑘-NN a outras técnicas de AM
em cenários de localização indoor. (MADURANGA; TILWARI; ABEYSEKERA, 2023)

4.2 Algoritmo 𝑘-vizinhos mais próximos
O uso crescente de dispositivos móveis gerou um grande volume de dados digitais, cri-
ando um ambiente propício para a aplicação de técnicas de AM. Entre essas técnicas,
o algoritmo k-NN destaca-se por sua simplicidade conceitual e desempenho consistente
em tarefas de predição, tanto em cenários indoor (NARDIS et al., 2022) quanto outdoor
(TIMOTEO et al., 2017). Trata-se de um método não paramétrico bastante empregado em
problemas de classificação e regressão, cuja premissa é que instâncias próximas no espaço
de atributos tendem a apresentar respostas semelhantes. Dada sua ampla adoção em es-
tudos recentes e sua relevância para aplicações de localização, apresenta-se, a seguir, uma
descrição detalhada de seu funcionamento.

O algoritmo k-NN é um classificador que pertence à família dos algoritmos baseados
em instâncias (HALDER et al., 2024). Nesse tipo de algoritmo, as instâncias de treinamento
são armazenadas e a predição de uma nova instância é realizada usando as 𝑘 instâncias
mais próximas no conjunto de treinamento. Essa estratégia difere de outras embasadas
em AM, como as redes neurais, nas quais se constrói previamente uma função hipótese a
partir das amostras de treinamento. No caso do k-NN, a generalização ocorre apenas no
momento da predição, ou seja, o algoritmo calcula as distâncias entre a nova amostra e
as instâncias conhecidas, utilizando os k vizinhos mais próximos para estimar o valor de
saída. Dessa forma, sua capacidade de generalização é local e instantânea, apresentando-se
exclusivamente durante a fase de predição (ZHANG; LI; ZONG, 2021).

O algoritmo k-NN pode ser aplicado tanto a problemas de classificação quanto a
problemas de regressão (COVER; HART, 1967; HALDER et al., 2024). Dada uma instância
de teste X𝑖, o primeiro passo consiste em identificar as 𝑘 instâncias mais próximas de X𝑖,
denominadas vizinhos dessa instância. Supondo que cada instância seja representada por
um vetor de atributos 𝑚-dimensional, X = [𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑚 ], a distância entre duas
instâncias X𝑖 e X𝑗, denotada por 𝑑(X𝑖, X𝑗), é definida por

𝑑(X𝑖, X𝑗) =
⎯⎸⎸⎷ 𝑚∑︁

𝑟=1
(𝑋𝑖𝑟 −𝑋𝑗𝑟)2 . (4.4)

Cabe destacar que diferentes métricas podem ser empregadas para calcular a distância
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entre amostras. Na Equação (4.4), utiliza-se a distância euclidiana, uma das mais comuns
na aplicação do algoritmo k-NN (KUHN; JOHNSON, 2013).

Nos problemas de classificação, após determinar os 𝑘 vizinhos mais próximos de X𝑖

por meio da Equação (4.4), a classe atribuída ao rótulo será aquela mais frequente entre
os vizinhos identificados. Por outro lado, nos problemas de regressão, o valor predito para
X𝑖 é obtido a partir da média dos valores correspondentes aos seus 𝑘 vizinhos, de forma
que

𝑓(X𝑖)←
∑︀𝑘

𝑖=1 𝑓(X𝑗)
𝑘

, (4.5)

em que X𝑖 é uma instância de treino, enquanto 𝑓(X𝑖) é o rótulo para X𝑖. Por fim, é im-
portante salientar que o algoritmo k-NN não se apresenta como a escolha mais adequada
para cenários com grandes volumes de dados, devido ao elevado custo computacional as-
sociado à busca pelos vizinhos mais próximos (HALDER et al., 2024). Em contrapartida,
uma de suas principais vantagens é o fato de praticamente não demandar custo de treina-
mento (ARORA; DAHIYA, 2025), sendo capaz de lidar com problemas complexos por meio
de aproximação, empregando um mecanismo baseado apenas na comparação de vizinhos
mais próximos, o que o torna conceitualmente simples e fácil de implementar.

Em síntese, o algoritmo k-NN destaca-se por sua simplicidade e eficiência na resolução
de problemas com conjuntos de dados de menor dimensão, bem como por outras vantagens
quando comparado a outros métodos (SHDEFAT et al., 2024). Embora apresente como
desvantagem a complexidade computacional elevada, sua natureza baseada em instâncias
o torna uma ferramenta versátil para tarefas de classificação e regressão. Ademais, a
capacidade de adaptação a diferentes métricas de distância confere ao método elevada
flexibilidade, permitindo sua aplicação em diversos domínios. Nesse contexto, o k-NN
configura-se como uma alternativa relevante e amplamente utilizada no campo da AM,
motivo pelo qual foi adotado neste trabalho, especificamente para a predição das distâncias
entre a EM e as ERBs.

4.3 Sistemas de localização baseados em PSO
Esta seção discute brevemente três trabalhos recentes que incorporam o PSO com técnicas
de AM para melhorar o desempenho da localização sob diferentes restrições e contextos
de aplicação.

O primeiro estudo introduz um método de localização voltado para cenários de busca e
resgate, especialmente em situações em que as vítimas estão presas em edifícios colapsados,
sem acesso a sinais de GPS (ALBANESE et al., 2023). Esta solução comprime as flutuações
de RSSI para reduzir o ruído e a dimensionalidade, além de empregar uma rede neural
de retropropagação (BP-NN, do inglês Backpropagation Neural Networks) para mapear
os dados de RSSI em estimativas de localização. Para melhorar a convergência e mitigar
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o risco de mínimos locais, o algoritmo PSO é utilizado para inicializar os pesos da BP-
NN, resultando no método híbrido (PSO-BP, do inglês Particle Swarm Optimization with
Backpropagation Neural Networks).

As principais vantagens desse método incluem a sua aplicabilidade em ambientes sem
GPS, o baixo custo de infraestrutura e a capacidade de funcionar de maneira eficaz,
mesmo com dados limitados e ruidosos. A integração com o algoritmo PSO aumenta
a estabilidade do modelo e a velocidade de aprendizagem. No entanto, o desempenho
do método foi verificado apenas em condições simuladas. Além disso, sua robustez em
ambientes dinâmicos, ou sujeitos a interferências, ainda precisa ser validada em cenários
práticos de campo.

O método mostra um desempenho eficaz em ambientes sem GPS, como interiores de
edificações ou áreas subterrâneas, e oferece uma solução de baixo custo que aproveita
sinais celulares já existentes na região. Sua capacidade de funcionar de forma eficaz com
dados limitados é potencializada pelo uso de técnicas de compressão, enquanto a integra-
ção do algoritmo PSO com a BP-NN melhora tanto a acurácia quanto a convergência do
método. No entanto, sua aplicabilidade é restrita, uma vez que foi concebida especifica-
mente para cenários envolvendo vítimas presas em escombros de edificações, o que pode
limitar sua eficácia em contextos mais amplos de navegação urbana. Adicionalmente, sua
confiabilidade depende da estabilidade dos níveis de RSSI, que podem variar com mudan-
ças no ambiente. Tal técnica ainda não foi validada em cenários reais, tendo sido testada
apenas em condições laboratoriais.

No segundo estudo, Liu et al.(LIU et al., 2017) propõem o algoritmo híbrido que com-
bina o algoritmo PSO com a máquina de aprendizado extremo semissupervisionada (PSO-
SSELM, do inglês Particle Swarm Optimization with a Semi-Supervised Extreme Learning
Machine) para aprimorar a localização em ambientes outdoor. A técnica SS-ELM é capaz
de aproveitar tanto dados de RSSI rotulados quanto não rotulados, o que reduz significa-
tivamente o custo associado à rotulagem manual de dados. No entanto, seu desempenho é
sensível ao ajuste de hiperparâmetros, aspecto tratado por meio do PSO, que possibilita
a otimização automática e adaptativa desses parâmetros.

A validação experimental, conduzida com dados sintéticos baseados em disposições re-
ais de ERBs, indica maior acurácia do modelo PSO-SSELM em comparação com métodos
tradicionais. Esse modelo é particularmente eficaz em cenários com quantidade limitada
de dados rotulados. Contudo, o uso de conjuntos de dados simulados pode limitar a avali-
ação de seu desempenho em condições reais. Além disso, a inclusão do PSO acarreta uma
sobrecarga computacional adicional, o que pode torná-lo inadequado para aplicações em
tempo real.

O algoritmo PSO-SSELM reduz significativamente a necessidade de dados rotulados,
o que é particularmente valioso em ambientes outdoor de grande escala, além de se bene-
ficiar do ajuste automático de hiperparâmetros por meio do algoritmo PSO, eliminando
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a necessidade de tentativa e erro manual durante a configuração do modelo. O algoritmo
PSO-SSELM ainda oferece maior estabilidade e capacidade de generalização em compa-
ração com o SS-ELM tradicional e modelos de AM convencionais, sendo adequado para
lidar com problemas desbalanceados e mal formulados. Por outro lado, sua avaliação é
limitada a simulações, carecendo de validação em testes reais com usuários ou operadoras
de rede. O uso do algoritmo PSO introduz uma sobrecarga computacional adicional du-
rante o treinamento e, como muitos métodos baseados em redes neurais, o modelo carece
de interpretabilidade, dificultando a compreensão ou explicação de seus processos internos
de tomada de decisão.

No último estudo, Lukić e Simić(LUKIć; SIMIć, 2022) apresentam um algoritmo meta-
heurístico para resolver desafios de localização em ambientes NLOS. O algoritmo integra
busca caótica, aprendizagem baseada em oposição e coeficientes de aceleração variáveis no
tempo (COPSO-TVAC, do inglês Chaotic Search, Opposition-Based Learning, and Time-
Varying Acceleration Coefficient into PSO) ao arcabouço tradicional do algoritmo PSO,
com o objetivo de otimizar uma função de custo de máxima verossimilhança. Essa função
modela os efeitos estatísticos do viés de NLOS e do ruído de medição nos dados de ToA.

Os resultados de simulação em cenários suburbanos e urbanos mostram que o método
COPSO-TVAC supera o PSO padrão e diversas técnicas clássicas de otimização, tanto em
acurácia quanto em convergência. Entretanto, sua complexidade computacional é signifi-
cativamente elevada devido às melhorias incorporadas. Por fim, a ausência de validação
empírica em campo representa uma limitação para aplicações reais.

O método COPSO-TVAC apresenta alta acurácia em cenários NLOS, típicos de am-
bientes urbanos, superando o PSO padrão e o método de Levenberg–Marquardt (MAR-

QUARDT, 1963). Além disso, mostra robustez estatística e boa adaptação a diferentes
níveis de ruído e viés de medição, graças à sua estrutura de otimização flexível. Entre-
tanto, requer um alto custo computacional, devido à inclusão de múltiplas estratégias de
aprimoramento, como a teoria do caos e a aprendizagem baseada em oposição. Por fim,
sua validação foi testada apenas por simulações, sem experimentos em redes reais, e o
método depende de um ajuste cuidadoso dos parâmetros meta-heurísticos, como mapas
caóticos e pesos de inércia.

Em síntese, os algoritmos PSO-BP, PSO-SSELM e COPSO-TVAC apresentam dife-
renças marcantes quanto ao cenário de aplicação, método de AM e papel específico do
algoritmo PSO no funcionamento do método. O método PSO-BP, proposto para situa-
ções de emergência e ambientes indoor, utiliza uma rede neural com retropropagação, na
qual o PSO atua na inicialização dos pesos para melhorar a convergência. Seu principal
mérito é operar sem GPS e com baixo custo de implementação, embora apresente limi-
tações por depender apenas de simulações e pela sensibilidade a variações do sinal. Já
o PSO-SSELM foi projetado para ambientes outdoor, combinando o PSO com a técnica
SS-ELM, de modo a otimizar seus hiperparâmetros. Essa integração reduz a necessidade
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de dados rotulados e garante maior estabilidade, mas implica elevado custo computa-
cional e ausência de validação com dados reais. Por fim, o COPSO-TVAC destina-se a
ambientes urbanos com forte presença de condições NLOS, empregando a teoria do caos e
mecanismos adaptativos do PSO para otimizar a função de verossimilhança. Esta solução
alcança alta acurácia sob ruído e obstruções; porém, é complexa, exige ajuste criterioso
de parâmetros e ainda carece de testes em cenários reais.

4.4 Resumo do capítulo
Neste capítulo, foram apresentados os fundamentos dos sistemas de radiolocalização em
redes celulares, destacando sua importância em aplicações críticas e comerciais. Foram
descritas as principais técnicas de posicionamento — trilateração, triangulação, identi-
ficação de célula e fingerprinting — com análise de suas características e limitações. A
trilateração, adotada como base deste trabalho, foi formalizada como um problema de
otimização multimodal, cuja resolução exige métodos avançados, tais como algoritmos
evolucionários baseados em inteligência por enxame, especificamente, PSO e MB-EPSO.
Além disso, a técnica de AM foi introduzida como ferramenta complementar, com ênfase
no algoritmo k-NN, que se mostrou adequado para apoiar a estimativa de distâncias no
processo de localização. Por fim, este capítulo apresenta uma revisão bibliográfica de três
técnicas de localização baseadas em PSO, quais sejam PSO-BP, PSO-SSELM e COPSO-
TVAC, acompanhada de uma análise comparativa que destaca suas principais caracterís-
ticas, incluindo o ambiente de propagação alvo, o método de AM empregado e o papel
desempenhado pelo algoritmo PSO em cada abordagem, concluindo com a exposição das
respectivas vantagens e limitações.
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5 ALGORITMO HÍBRIDO DE LOCALIZA-
ÇÃO BASEADO EM MEMÓRIA

“A acurácia da localização é o
alicerce da comunicação moderna. Logo,

quanto melhor sabemos onde estamos,
mais longe podemos ir.”

(Lizandro Nunes)

Este capítulo estrutura-se em quatro partes principais. Inicialmente, o procedimento de construção da base

de dados é apresentado em detalhes, com ênfase na coleta dos dados de campo em uma rede de telefonia

celular. Na descrição da proposta, descrevem-se o funcionamento do método, a integração entre técnicas

clássicas de trilateração, otimização com MB-EPSO e regressão com 𝑘-NN. Na avaliação experimental,

detalham-se os protocolos de validação adotados, incluindo os cenários reais indoor e outdoor, a compara-

ção com algoritmos de referência, a análise de parâmetros da nossa proposta, além das métricas e testes

estatísticos empregados. No final, em resultados e discussão, são apresentados os desempenhos obtidos

em diferentes contextos, análises geoespaciais, tempo de execução e testes de significância, evidenciando

a acurácia e robustez do algoritmo de localização proposto.

Reunindo as características do algoritmo MB-EPSO, como o uso de memória deslizante
para mitigar a convergência prematura, e o método regressor k-NN, reconhecido por sua
simplicidade e aplicação em sistemas de localização, este capítulo propõe um método
híbrido para localizar dispositivos móveis em redes celulares, tanto em cenários indoor
quanto em cenários outdoor. A proposta aprimora a técnica de trilateração por meio de
um conjunto de variantes do algoritmo PSO, originando o método de localização híbrido
baseado em memória (HyMLoc, do inglês Hybrid Memory-based Localization).

5.1 Construção da base de dados
Tomando como base a técnica de trilateração de potência, torna-se necessário dispor das
informações de localização e dos valores de RSSI provenientes de, no mínimo, três ERBs.
Além desses parâmetros, outros dados complementares são indispensáveis para a execução
de medições práticas em campo, tais como as coordenadas geográficas das ERBs (𝑥𝑖, 𝑦𝑖),
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o número do canal, o identificador da célula e as coordenadas geográficas dos pontos de
teste 𝑃 (𝑥𝑡, 𝑦𝑡) 1.

Para a coleta de dados em campo, foi realizado um drive test. Nesse tipo de procedi-
mento, um operador utiliza um equipamento especializado para medir e registrar parâme-
tros de RF de uma rede celular, percorrendo as vias ao redor das ERBs e armazenando
os valores dos parâmetros de interesse. No contexto desta pesquisa, todas as medições —
tanto em ambiente indoor quanto outdoor — foram obtidas com o uso de um scanner
de RF modelo DRT4301A, fabricado pela Digital Receiver Technology.2. O equipamento
utilizado gera arquivos em formato de valores separados por vírgula, contendo os da-
dos mencionados anteriormente, além de um arquivo georreferenciado em linguagem de
marcação Keyhole, no qual são registrados todos os pontos correspondentes às medições
realizadas.

Ao todo, foram obtidas 3.064 medições em ambiente outdoor e 6.615 em ambiente
indoor, totalizando 9.679 medições. As coletas foram realizadas a partir de uma porta-
dora de 1,8 GHz, cuja interface aérea é baseada em WCDMA. Desse conjunto, 80% das
medições foram utilizadas para o treinamento dos modelos k-NN, enquanto os 20% res-
tantes compuseram o conjunto de teste destinado à avaliação do desempenho das técnicas
de localização. Conforme (BICHRI; CHERGUI; HAIN, 2024) essa divisão oferece um bom
compromisso entre a quantidade de dados para treino e o tamanho do conjunto de teste.
Ressalta-se que os conjuntos de treinamento e teste foram mantidos rigorosamente se-
parados, a fim de evitar o data leakage, ou seja, a introdução indevida de informações
externas ao conjunto de treinamento durante o desenvolvimento do modelo, garantindo,
dessa forma, uma validação consistente e confiável dos resultados obtidos (KAPOOR; NA-

RAYANAN, 2023).
Para o cenário outdoor, a coleta dos dados foi realizada em vias urbanas no entorno do

campus da UFPE, em que o scanner de RF mediu e armazenou a potência do sinal piloto
de enlace de descida3. A Figura 7 apresenta a região urbana de aproximadamente 1,6 km2
onde foram realizadas as medições. Nesta figura, 𝐺𝑖 representa o 𝑖-ésimo grupo de ERBs,
sendo 𝑖 = 1, 2, 3. Cada grupo 𝐺𝑖, identificado por um quadrado vermelho, é formado
por três ERBs instaladas em um mesmo sítio geográfico. Apesar de compartilharem as
mesmas coordenadas, os azimutes das ERBs em cada grupo 𝐺𝑖 são fixados em 0°, 120°
e 240°. O azimute de 0° corresponde ao Norte Verdadeiro, enquanto os demais (120° e
240°) são definidos no sentido horário a partir dessa referência. Conforme já mencionado
na Subseção 4.1, para a identificação individual de cada ERB, adotamos a notação 𝐴𝑖,
𝑖 = 1, 2, . . . , 9. Assim, 𝐴1, 𝐴2 e 𝐴3 correspondem às ERBs de 𝐺1 com azimutes de 0°,
1 Informações de acesso público disponibilizadas no portal da Agência Nacional de Telecomunicações

(ANATEL) ( Agência Nacional de Telecomunicações (ANATEL) , 2025).
2 Receptor digital de varredura modular projetado para fornecer medições precisas de sinais de RF em

redes sem fio.
3 Sinal de RF transmitido da ERB para a EM.
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Figura 7 – Área urbana de Recife-PE onde as medições foram realizadas.

120° e 240°, respectivamente. De forma análoga, as ERBs 𝐴4 a 𝐴6 seguem essa convenção
para o grupo 𝐺2, enquanto as ERBs 𝐴7 a 𝐴9 referem-se ao grupo 𝐺3.

A 4-tupla p𝑡 = (𝑥𝑡, 𝑦𝑡, q𝑡, d𝑡) ∈ R× R× R9 × R3 caracteriza cada medida de campo.
Nessa representação, 𝑥𝑡 e 𝑦𝑡 denotam, respectivamente, a latitude e a longitude do ponto
de medição. O vetor q𝑡 corresponde aos valores de RSSI coletados de nove ERBs, enquanto
d𝑡 contém os valores de PD associados a três grupos de ERBs. O PD é um parâmetro de
rede, o qual reflete o intervalo de distância entre a EM em teste e um grupo 𝐺𝑖, expresso em
passos discretos de 234 𝑚 (SHAH et al., 2025; TelecomHall Community, 2022). Seu valor é um
número inteiro que varia de 0 a 54. Especificamente, PD = 0 corresponde a um intervalo
de distância de 0–234 𝑚; PD = 1 corresponde a 234–468 𝑚; e assim sucessivamente, com
cada incremento estendendo o alcance em 234 𝑚.

No que se refere às medições no cenário indoor, todas foram realizadas no interior
do Centro de Informática da UFPE, distribuídas em dez pontos distintos. A Figura 8
apresenta a planta baixa do edifício onde essas medições foram efetuadas, na qual os
pontos de coleta de dados de treino e teste estão representados, respectivamente, por
círculos nas cores laranja e azul.

Uma questão relevante a se tratar é a escassez de bases públicas de dados das redes
celulares 4G e 5G. Embora o objetivo inicial da pesquisa fosse coletar dados provenientes
das redes mencionadas, tal iniciativa não pôde ser concretizada. Isto ocorreu tanto pela
inexistência de bases de dados públicas quanto pelas restrições relacionadas à Lei Geral de
Proteção de Dados. Diante deste cenário, os experimentos foram conduzidos com medições
obtidas em redes 3G por meio da pesquisa desenvolvida em Timoteo e Cunha (2020).
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Figura 8 – Planta baixa da edificação do prédio do CIn-UFPE com a indicação
dos pontos de medição indoor dos parâmetros RSSI e PD.

Apesar da limitação tecnológica, vale destacar que os parâmetros de RF utilizados
nas análises são comuns a todas as gerações de redes celulares (POLAK et al., 2024). Em
outras palavras, mesmo que os dados fossem oriundos de redes mais recentes, como 4G ou
5G, as metodologias aplicadas e as implementações do algoritmo proposto permaneceriam
válidas.

Resumidamente, a construção da base de dados foi uma etapa essencial para viabilizar
a aplicação prática do algoritmo HyMLoc. A utilização de medições reais em ambientes
urbanos, tanto indoor quanto outdoor, permitiu a obtenção de parâmetros relevantes,
como o RSSI e o PD, fundamentais para a predição das distâncias entre a EM e as ERBs
por meio dos modelos k-NN, o que fortaleceu a relevância do conjunto de dados e contribui
para avaliações mais fidedignas de desempenho do algoritmo proposto.

5.2 Descrição da proposta
A proposta HyMLoc é apresentada de forma resumida no Algoritmo 1, organizada em
três etapas. As duas primeiras etapas compõem a fase off-line e consistem na preparação
dos dados coletados e utilização dos modelos 𝑘-NN para predição das distâncias da EM
para cada uma das ERBs. Por fim, na fase on-line, formada apenas pela terceira etapa, a
posição da EM é estimada em tempo real a partir das distâncias previstas, empregando-se
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Algoritmo 1 Descrição resumida da proposta HyMLoc.
1: Aplicar o conjunto de treino aos modelos 𝑘-NN para cada ERB considerada;
2: Dadas as medições de RSSI e PD, prever as distâncias entre o dispositivo móvel alvo

e as ERBs usando o algoritmo 𝑘-NN;
3: Aplicar o conjunto de teste ao algoritmo MB-EPSO para estimar a posição do dispo-

sitivo móvel alvo usando as distâncias estimadas no passo anterior.

o algoritmo MB-EPSO.
A Figura 9 representa as fases do algoritmo HyMLoc. Após a coleta das medições

e a divisão da base de dados em porções de treino e teste, o conjunto de treinamento
é aplicado a 𝑞 modelos k-NN. Assume-se que a região de localização possui 𝑞 ERBs da
rede de telefonia celular, o que significa que cada ERB está associada a um modelo k-
NN específico, projetado para estimar a distância da referida ERB até a EM procurada.
As variáveis de entrada de cada modelo k-NN são os valores de RSSI e PD medidos
da EM para cada uma das ERBs, enquanto a saída do modelo é a distância prevista.
Desta forma, os 𝑞 modelos k-NN geram 𝑞 funções de hipótese 𝑓𝑖(·), 𝑖 = 1, 2, . . . , 𝑞. Em
seguida, na etapa 2, cada função 𝑓𝑖(·) estima sua distância 𝑑*𝑖 , gerando, ao final da fase
off-line, 𝑞 estimativas de distância. Conforme destacado na Seção 4.2, o desempenho do
k-NN depende fortemente de diversos parâmetros que exigem ajuste cuidadoso — em
especial, o número de vizinhos 𝑘 considerados na predição. Para o nosso caso específico,
conforme (TIMOTEO et al., 2017), escolheu-se 𝑘 = 7. O processo de seleção e refinamento
sistemático desses parâmetros para maximizar a acurácia é conhecido como ajuste de
modelo (RAZAVI-TERMEH et al., 2024).

Na fase on-line, também denominada fase de testes, a porção de dados de teste é
aplicada ao conjunto de 𝑞 funções de hipótese, obtidas na fase anterior, para obter 𝑞

valores de 𝑑*𝑖 , ou seja, a partir das medições de RSSI da base de testes, o regressor por
instâncias k-NN calcula a média dos sete vizinhos mais próximos. O valor resultante,
por sua vez, é comparado à base construída na fase off-line, e aquele que apresentar
melhor correspondência é utilizado como parâmetro de entrada do algoritmo MB-EPSO,
responsável pelo processo de otimização. O histórico das melhores gerações de partículas
é utilizado para selecionar, dinamicamente, a variante do PSO mais adequada dentre as
disponíveis no conjunto. Assim, o erro de localização 𝑒𝑑 — definido como a distância entre
as posições real e estimada da EM — é minimizado por meio de uma função de aptidão
(fitness function) dada por

𝐽(𝑥𝑝, 𝑦𝑝) =
𝑞∑︁

𝑖=1

[︂
𝑑*𝑖 −

√︁
(𝑥𝑖 − 𝑥𝑝)2 + (𝑦𝑖 − 𝑦𝑝)2

]︂2
, (5.1)

em que (𝑥𝑝, 𝑦𝑝) representa as coordenadas geográficas estimadas a partir do conjunto de
partículas gerado pelo algoritmo MB-EPSO, (𝑥𝑖, 𝑦𝑖) corresponde às coordenadas geográ-
ficas da 𝑖-ésima ERB; 𝑞 é o número total de ERBs e 𝑑*𝑖 denota a distância predita pelo
𝑖-ésimo modelo k-NN. De forma sucinta, o objetivo do algoritmo MB-EPSO é encontrar
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Figura 9 – Representação do algoritmo de localização HyMLoc, com ênfase nas
fases off-line (treinamento) e on-line (teste).

as coordenadas (𝑥𝑝, 𝑦𝑝) que minimizam a função 𝐽(𝑥𝑝, 𝑦𝑝). Um ponto importante a sa-
lientar é que, para a minimização do erro de localização 𝑒𝑑, o algoritmo MB-EPSO foi
configurado de modo semelhante ao descrito em (SILVA et al., 2024), pois, como já men-
cionado, trata-se de uma função de otimização. Portanto, ajustou-se um enxame de 10
partículas, distribuídas em duas dimensões ao longo de 500 iterações em 30 simulações
independentes.

5.3 Avaliação experimental
A avaliação da proposta HyMLoc foi conduzida de forma abrangente, contemplando di-
versos aspectos experimentais. Sob a ótica dos protocolos de avaliação, consideraram-se
tanto cenários outdoor quanto indoor, a fim de verificar a robustez do algoritmo em dife-
rentes ambientes. Na fase on-line do HyMLoc, os algoritmos CLPSO, EPSO, FDRPSO,
HPSO-TVAC e WPSO foram adotados como benchmarks. É importante destacar que,
embora o algoritmo LIPS integre o conjunto de variantes do MB-EPSO — base do HyM-
Loc —, ele não será incluído nas análises apresentadas neste capítulo. A justificativa para
sua exclusão será detalhada na parte da análise geoespacial que consta na subseção 5.4.3.
Além disso, foram conduzidas análises específicas para avaliar o impacto do mecanismo
estocástico de controle da velocidade das partículas e da variação do tamanho da janela
de memória deslizante do algoritmo MB-EPSO sobre o desempenho geral do HyMLoc.

Levando em consideração especificamente o ambiente indoor, é importante destacar
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que, na maioria dos sistemas de localização utilizados nesse tipo de cenário, o uso da
infraestrutura da telefonia móvel celular não é predominante. Isso ocorre devido à elevada
atenuação dos sinais de RF e aos efeitos de multipercurso, que dificultam a obtenção de
estimativas confiáveis de posição (SUHARTONO et al., 2022). Em contrapartida, em cenários
críticos, como desabamentos e outros desastres urbanos, a conectividade da EM com a
rede celular representa um fator determinante para aumentar as chances de localização
de vítimas, sobretudo em condições adversas, como, por exemplo, quando a vítima está
sob escombros.

Nesse contexto de situações de emergência, a análise comparativa dos métodos de lo-
calização em ambientes indoor será guiada pelos requisitos estabelecidos pela Comissão
Federal de Comunicações (FCC, do inglês Federal Communications Commission), que de-
fine critérios mínimos de acurácia para a localização de celulares que originam chamadas
de emergência, como o serviço 911 nos Estados Unidos. Esses critérios estabelecem que
os provedores de serviço devem garantir a entrega de coordenadas horizontais com erro
inferior a 50 m para, pelo menos, 80% e 150 m para, pelo menos, 95% das chamadas reali-
zadas a partir de dispositivos móveis, tanto em ambientes indoor quanto outdoor (Federal

Communications Commission, 2020). Vale ressaltar que a proposta apresentada nesta tese não
contempla a estimativa da acurácia vertical, uma vez que a aplicação originalmente não
foi concebida para fornecer a altura da EM em relação ao nível do solo.

Um ponto importante para avaliação do desempenho do algoritmo HyMLoc é a sua
capacidade de generalização, isto é, sua habilidade de manter um desempenho satisfa-
tório ao lidar com dados não observados durante o treinamento. O objetivo é evitar o
overfitting, assegurar a robustez e a credibilidade dos resultados e, por fim, comprovar a
aplicabilidade prática do algoritmo HyMLoc em condições reais de uso (D’AMOUR; HEL-

LER; MOLDOVAN, 2022). Existem várias técnicas para esta finalidade, tais como testes por
estresse (HENDRYCKS; DIETTERICH, 2019), avaliação estratificada (KOHAVI, 1995), testes
de dados fora de distribuição (HENDRYCKS; GIMPEL, 2017) e validação cruzada (STONE,
1974).

De acordo com (BRADSHAW et al., 2023) e (ZHANG; YANG; LIU, 2021), em bases de
dados pequenas, a validação cruzada é a técnica mais indicada, pois utiliza melhor as
amostras disponíveis, reduz a variância das estimativas e preserva a proporção entre clas-
ses. Portanto, adotou-se o método de validação cruzada 𝐾-fold, que consiste em dividir
o conjunto de dados em 𝐾 partições ou folds, de modo que, em cada iteração, uma delas
seja utilizada para teste, enquanto as demais são aplicadas ao treinamento, garantindo
que todas as partições sejam utilizadas exatamente uma vez.

O procedimento de validação cruzada adotado neste trabalho considerou 𝐾 = 5, resul-
tando em cinco diferentes conjuntos, denotados por DS-1 a DS-5, conforme indicado na
Figura 10. A partir da base de dados descrita na Seção 5.1, cada fold corresponde a 20%
das instâncias, utilizadas alternadamente no treinamento dos regressores. Por exemplo,
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Figura 10 – Diagrama ilustrativo da formação dos datasets DS-1, DS-2, DS-3, DS-4
e DS-5, considerando os folds da validação cruzada para 𝐾 = 5.

no conjunto DS-1, o quinto fold (em cor vermelha) é integralmente reservado para teste,
enquanto 80% das instâncias provenientes dos folds 1, 2, 3 e 4 (em cor azul) são seleciona-
das aleatoriamente para compor o conjunto de treinamento. Da mesma forma, repete-se a
estratégia para a formação dos conjuntos DS-2, DS-3, DS-4 e DS-5, variando-se apenas os
folds destinados ao treino dos dados. Essa estratégia possibilita investigar tanto o impacto
do volume de dados disponíveis para treinamento, quanto as diferenças de desempenho
entre o algoritmo HyMLoc e as demais técnicas de referência.

No que se refere às métricas de desempenho, a avaliação do algoritmo HyMLoc foi
conduzida a partir de um conjunto de indicadores complementares. Inicialmente, foram
calculadas estatísticas descritivas — média, desvio padrão, valores mínimos e máximos —
com o intuito de caracterizar a distribuição dos erros de localização. Em seguida, foram
geradas funções de distribuição acumulada (FDAs) para examinar a probabilidade de
ocorrência de erros abaixo de determinados limiares. Para uma apreciação mais prática e
intuitiva do erro médio de localização, desenvolveu-se uma análise geoespacial em mapas,
que evidencia a distribuição espacial dos erros produzidos por cada técnica, ressaltando
diferenças de desempenho de forma clara e interpretável, desde que analisadas em conjunto
com as estatísticas descritivas.

Adicionalmente, foram mensurados os custos computacionais, representados pelo tempo
médio de execução normalizado, de modo a possibilitar a comparação da eficiência dos
diferentes algoritmos. Para terminar, foram aplicados testes estatísticos não paramétri-
cos para validar a significância dos resultados, incluindo o teste pareado de Wilcoxon
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(WILCOXON, 1945; HUANG; SEN, 2023), o teste de Friedman baseado em ranking médio
(FRIEDMAN, 1937; JAN; SHIEH, 2025) e o post-hoc de Nemenyi para comparações múltiplas
(NEMENYI, 1963; THAMILSELVAN, 2023). A utilização dos testes mencionados tem o pro-
pósito de assegurar uma análise estatística consistente, conferindo robustez às conclusões
do trabalho.

5.4 Resultados e discussão
Nesta seção, são apresentados e discutidos os resultados obtidos com a aplicação do algo-
ritmo proposto, bem como daqueles empregados como benchmarks, no contexto do pro-
blema de localização. A análise abrange os cenários outdoor e indoor, permitindo avaliar
a robustez e a capacidade de generalização da solução proposta em diferentes ambientes.

Além disso, são investigados os efeitos de parâmetros específicos do HyMLoc, como o
tamanho da janela de memória deslizante 𝑀 e o controle estocástico da velocidade das
partículas. Os resultados são examinados sob a perspectiva de métricas de desempenho,
testes estatísticos e conformidade com requisitos normativos, de modo a fornecer uma
avaliação crítica e abrangente da proposta.

Cabe destacar que a proposta HyMLoc utiliza o MB-EPSO como núcleo de otimi-
zação, enquanto as demais abordagens de localização se baseiam em variantes do PSO,
aqui referenciadas conforme o algoritmo empregado na fase on-line, quais sejam, CLPSO,
EPSO, FDRPSO, HPSO-TVAC e WPSO.

5.4.1 Estratégia e efeitos do controle de velocidade das partículas em algo-
ritmos baseados em PSO

Os resultados preliminares obtidos com a aplicação do algoritmo HyMLoc ao problema
de localização evidenciaram uma limitação recorrente dos métodos baseados em PSO. Tal
limitação decorre da elevada velocidade das partículas, que pode induzir a convergência
prematura do enxame, conforme discutido em (SHAMI et al., 2022). Nos testes iniciais em
que foi usado 𝑀 = 8, melhor resultado obtido em (SILVA et al., 2024), esse comporta-
mento resultou na concentração de partículas nas bordas da área de busca, o que elevou
significativamente os erros médios de localização. Na Figura 11 destaca-se esse compor-
tamento por meio da distribuição das estimativas de localização dos pontos de teste em
cor vermelha.

Com o intuito de mitigar esse efeito, foi incorporada ao algoritmo HyMLoc e às demais
variantes PSO aqui consideradas uma estratégia estocástica de controle de velocidade,
baseada em (SHAMI et al., 2023), na qual se introduzem pausas controladas na atualização
das velocidades das partículas. A modificação foi aplicada à equação de atualização da
velocidade, anteriormente definida em (2.1), a qual foi ajustada por meio de um fator de
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Figura 11 – Distribuição das estimativas dos pontos de teste antes (vermelho)
e depois (azul) do ajuste estocástico da velocidade.

redução probabilístico 𝜈, tal que

𝑉 𝑑
𝑖 (𝑡 + 1)←

⎧⎪⎨⎪⎩𝑉 𝑑
𝑖 (𝑡 + 1)/2, se 𝑅𝑑

1(𝑡) ou 𝑅𝑑
2(𝑡) < 𝜈,

𝑉 𝑑
𝑖 (𝑡 + 1), caso contrário.

(5.2)

Seguindo estratégia semelhante à aplicada em (SHAMI et al., 2023), adotou-se 𝜈 = 0,5,
o que implica uma probabilidade de 50% de redução à metade do valor da velocidade.
Tal ajuste reduz a probabilidade de convergência prematura sem acarretar um aumento
significativo do tempo de execução.

Após a introdução dessa estratégia, verificou-se uma exploração equilibrada do espaço
de busca, com menor incidência de aglomeração em regiões de mínimos locais, conforme
ilustrado pelos pontos em cor azul da Figura 11.

Em síntese, a introdução do controle estocástico mostrou-se eficaz na atenuação de um
dos principais problemas associados a algoritmos baseados em PSO — a convergência pre-
matura. A simples modificação probabilística no processo de atualização das velocidades
permitiu alcançar um equilíbrio adequado entre exploração e aproveitamento do espaço
de busca, resultando em soluções de melhor qualidade. No entanto, embora a Figura 11
evidencie uma melhoria visual na distribuição das partículas, o erro médio de localização
ainda se manteve relativamente elevado, ou seja, algo em torno de dezenas de metros.

Com base nesse fato, procedeu-se a um refinamento adicional do algoritmo MB-EPSO,
por meio do ajuste da janela de memória. Entretanto, inicialmente, era preciso testar,
por meio da validação cruzada, a capacidade de generalização do algoritmo HyMLoc. A
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Figura 12 – Erro médio de localização para cada algoritmo baseado em PSO
aplicado a cada um dos cinco datasets obtidos na validação cruzada.

princípio, na validação cruzada de cinco folds, também foi usado 𝑀 = 8 pela mesma
justificativa utilizada no teste de controle de velocidade . O algoritmo HyMLoc manteve o
menor erro médio em todos os conjuntos DS-1 a DS-5 e os testes de Wilcoxon confirmaram
diferenças estatisticamente significativas, isto é, p ≈ 0, calculado conforme (WILCOXON,
1945).

A Figura 12 ilustra o erro médio de localização dos algoritmos CLPSO, EPSO, FDRPSO,
HPSO-TVAC, WPSO e HyMLoc para cada um dos cinco conjuntos de teste. Nota-se que
o algoritmo HyMLoc apresenta desempenho superior em todos os folds analisados, com
erros médios significativamente mais baixos do que os demais. Isso evidencia sua consis-
tência e acurácia em ambientes outdoor. Outro ponto a ser destacado é o fato de que os
demais algoritmos apresentaram maiores variações no erro médio de localização, indicando
menor robustez à variação dos dados.

A Figura 13 ilustra um mapa de calor dos erros médios de localização de cada algoritmo
baseado em PSO para cada fold de teste. A coloração amarela indica o desempenho
superior do algoritmo HyMLoc, cujos valores de erro médio são da ordem de um dígito,
enquanto os demais algoritmos superam os 100 m. O contraste visual destaca a eficácia
do algoritmo HyMLoc na minimização do erro de localização e reforça seu potencial para
aplicações em ambientes reais.

Além das análises gráficas, foi realizado o teste estatístico de Wilcoxon para comparar
o desempenho do algoritmo HyMLoc com as demais variantes PSO. Os resultados mos-
traram que o método proposto obteve desempenho estatisticamente superior em relação
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Figura 13 – Mapa de calor dos erros médios de localização de cada algoritmo
baseado em pso para cada fold de teste.

a todos os métodos concorrentes (CLPSO, EPSO, FDRPSO, HPSO-TVAC e WPSO).
Todos os pares comparativos apresentaram valores de 𝑝 extremamente baixos, que podem
ser considerados aproximadamente zero, conforme (FRIEDMAN, 1937), evidenciando dife-
renças significativas sob o nível de significância de 0,05. Esses resultados confirmam que
o desempenho superior do algoritmo HyMLoc não é apenas observável visualmente, mas
também estatisticamente consistente, consolidando sua eficácia para aplicações reais.

A análise dos resultados obtidos com a validação cruzada de cinco folds e com o teste de
Wilcoxon evidencia que o algoritmo HyMLoc apresenta desempenho superior e estável na
tarefa de localização, quando comparado aos algoritmos PSO testados no benchmark. Sua
capacidade de manter erros médios inferiores a 10 m em diferentes subconjuntos de dados,
aliada à confirmação estatística de superioridade, demonstra sua robustez e poder de
generalização, confirmando sua aplicabilidade prática em cenários reais de posicionamento
móvel.

5.4.2 Influência do tamanho da janela de memória

De acordo com (SILVA et al., 2024), o algoritmo MB-EPSO fundamenta-se no uso de uma
janela de memória 𝑀 , responsável por percorrer a trajetória evolutiva das gerações de
partículas e armazenar uma quantidade fixa de soluções. Essa estrutura atua como um
mecanismo de apoio à seleção autoadaptativa das variantes do PSO incorporadas ao con-
junto. Com base nesse princípio, realizou-se uma análise experimental para identificar
qual valor de 𝑀 proporciona os menores erros médios de localização. Foram testados ta-
manhos de janela de memória iguais a 2, 4, 8, 16, 32 e 64. O uso de valores em potências
de 2 teve como objetivo facilitar a identificação de possíveis mudanças significativas, tor-
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Tabela 7 – Estatísticas do erro de localização 𝑒𝑑 obtidas para diferentes
tamanhos da janela de memória deslizante 𝑀 no algoritmo MB-EPSO
(fase on-line do algoritmo HyMLoc).

𝑀 𝑒𝑑 (𝑚) 𝜎𝑒𝑑
(𝑚) 𝑒𝑑,𝑚𝑖𝑛 (𝑚) 𝑒𝑑,𝑚𝑎𝑥 (𝑚)

2 9,02 12,09 0,59 100,19
4 8,25 7,14 4,31 81,51
8 6,87 8,55 0,78 153,54
16 308,82 209,55 3,01 1398,79
32 346,90 251,12 12,78 1506,99
64 475,25 501,39 10,13 1933,62

nando variações no comportamento dos resultados mais evidentes. Cada valor de 𝑀 foi
aplicado individualmente aos conjuntos de dados DS-1 a DS-5 obtidos na etapa de valida-
ção cruzada. Por exemplo, para 𝑀 = 2, o algoritmo HyMLoc foi executado em todos os
conjuntos DS-1 a DS-5 e o mesmo procedimento foi repetido para os demais valores de 𝑀 .
Os experimentos foram conduzidos com dados de medições indoor e outdoor ; entretanto,
nesta análise, apresentam-se apenas os resultados obtidos no cenário outdoor, uma vez
que os dados indoor revelaram tendências semelhantes, cuja inclusão seria redundante.

A Tabela 7 apresenta o erro médio, o desvio padrão, além dos valores mínimo e máximo,
denotados, respectivamente, por 𝑒𝑑, 𝜎𝑒𝑑

, 𝑒𝑑,min e 𝑒𝑑,max do algoritmo HyMLoc, considerando
os diferentes tamanhos de janela de memória. Para cada valor de 𝑀 apresentado, o erro
médio e o desvio padrão correspondem às médias dos erros médios de localização e desvios
padrão obtidos em cada um dos folds de teste (DS-1 a DS-5). Enquanto isso, os valores
mínimo e máximo se referem, respectivamente, ao menor valor mínimo e ao maior valor
máximo obtidos nos cinco folds de teste. É possível observar que os menores erros médios
e desvios padrão são obtidos para 𝑀 = 2, 4 e 8, indicando melhor desempenho e maior
estabilidade nesses casos. Para valores maiores de 𝑀 , como, por exemplo, 16, 32 e 64,
ocorrem aumentos expressivos tanto na média quanto na variabilidade do erro. Tal fato
indica que, a partir de certos valores, o aumento do tamanho da janela de memória degrada
o desempenho do algoritmo. Desta maneira, valores mais baixos de 𝑀 são preferíveis para
otimizar a acurácia e a consistência da localização.

Para assegurar a escolha do tamanho de M com base em testes de hipóteses, o teste
de Wilcoxon com 𝑝 = 0, 05 foi utilizado. Quando 𝑝 < 0, 05, rejeita-se a hipótese nula de
igualdade entre os tamanhos de 𝑀 . Quando 𝑝 ≥ 0, 05, não se pode rejeitar a hipótese nula,
o que nos leva a desempenhos estatisticamente indistinguíveis. Os resultados dos testes
pareados estão apresentados na Figura 14. O mapa de calor mostra que há diferenças
estatisticamente significativas entre os vários modelos, especialmente quando há contraste
entre memórias de tamanhos 𝑀 = 2 a 𝑀 = 8 e memórias de tamanhos 𝑀 = 16 a 𝑀 = 64.
Isso sugere que o parâmetro 𝑀 exerce uma influência significativa sobre o desempenho
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Figura 14 – Resultados dos testes pareados de Wilcoxon para todos os tamanhos
de janela de memória considerados na aplicação do algoritmo HyMLoc.

do algoritmo HyMLoc. Observa-se que os valores de 𝑀 pertencentes ao conjunto {2, 4, 8}
delimitam uma faixa de operação estável, enquanto valores de 𝑀 mais elevados, ou seja,
pertencentes ao conjunto {16, 32, 64}, indicam uma tendência à saturação do desempenho.

Os testes de hipóteses indicaram a ausência de diferenças estatisticamente significati-
vas entre os valores de 𝑀 = 2, 4 e 8. Contudo, conforme apresentado na Tabela 7, embora
os resultados sejam próximos, os menores valores de erro médio e de desvio padrão fo-
ram obtidos para 𝑀 = 8. Tal resultado corrobora o que foi reportado em (SILVA et al.,
2024), em que o algoritmo MB-EPSO apresentou desempenho consistente em diferentes
classes de problemas de otimização para uma janela de memória de tamanho 𝑀 = 8. Por
conseguinte, será adotado este valor nas análises subsequentes, em consonância com os
melhores desempenhos observados.

5.4.3 Desempenho nos ambientes outdoor e indoor

Esta seção apresenta a comparação entre o algoritmo HyMLoc e os benchmarks emprega-
dos na tarefa de localização. Para todos os algoritmos analisados, foi assumido o uso do
fold DS-4 como base de teste. A motivação para a escolha de tal fold deve-se ao fato de
que o desempenho de todos os algoritmos abordados foi o melhor para este subconjunto
de dados (vide Fig.13), ou seja, possui distribuição mediana entre os cinco folds. A análise
será apresentada primeiramente com os resultados do cenário outdoor e, em seguida, com
o cenário indoor. Além disso, todos os algoritmos utilizam o modelo 𝑘-NN para estimar
as distâncias entre a EM e as ERBs.
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Tabela 8 – Estatísticas do erro de localização 𝑒𝑑 obtidas para os algoritmos
de localização baseados em PSO, considerando o cenário outdoor.

Algoritmo 𝑒𝑑 (𝑚) 𝜎𝑒𝑑
(𝑚) 𝑒𝑑,𝑚𝑖𝑛 (𝑚) 𝑒𝑑,𝑚𝑎𝑥 (𝑚)

CLPSO 154,30 107,91 5,20 844,54
EPSO 233,43 156,83 5,84 1025,59
FDRPSO 207,09 151,95 4,33 1362,50
HPSO-TVAC 160,26 119,30 3,95 979,62
WPSO 201,72 122,63 5,30 672,30
HyMLoc 5,35 5,22 3,66 130,36

Iniciando com os resultados do cenário outdoor, a Tabela 8 sintetiza as principais
estatísticas do erro de localização 𝑒𝑑 para os algoritmos analisados, seguindo a mesma
notação definida para a Tabela 7. O algoritmo HyMLoc apresentou os menores valores
de erro médio, além do menor desvio padrão, confirmando sua maior acurácia e estabi-
lidade. Esse desempenho decorre da arquitetura baseada no algoritmo MB-EPSO, que
utiliza uma janela de memória deslizante para armazenar gerações anteriores e selecio-
nar dinamicamente a melhor estratégia de PSO, equilibrando exploração e intensificação
no espaço de busca. Em contraste com o desempenho dos algoritmos, sobretudo com o
HyMLoc, encontra-se o EPSO, pois, mesmo sendo baseado em conjuntos de otimizadores
e utilizando as mesmas variantes PSO empregadas no algoritmo proposto, apresenta os
piores resultados em todos os parâmetros, exceto no 𝑒𝑑,𝑚𝑎𝑥. Essa atuação evidencia as
dificuldades do algoritmo EPSO em problemas com múltiplos mínimos locais, como é o
caso da localização.

A Figura 15 ilustra a distribuição do erro de localização para o algoritmo HyMLoc e
os benchmarks considerados. A análise dos boxplots evidencia que os métodos baseados
em PSO apresentam uma quantidade expressiva de outliers, distribuídos em faixas de
erro superiores às observadas no HyMLoc. Tais valores indicam que os benchmarks ado-
tados estão sujeitos à instabilidade, resultando em estimativas de localização com erro
elevado. Isso sugere que, embora esses algoritmos baseados em PSO possam alcançar um
desempenho na faixa de 150 a 230 m, eles são menos consistentes e mais vulneráveis a
condições adversas da base de dados, como medições ruidosas, regiões de baixa cobertura
ou cenários com geometria desfavorável entre a EM e as ERBs.

Por outro lado, o algoritmo HyMLoc apresenta uma dispersão bastante reduzida e
praticamente não exibe erros isolados de grande magnitude que possam interferir signifi-
cativamente na avaliação do desempenho do algoritmo. Os valores discrepantes observados
permanecem em faixas de erro próximas à média dos dados, não ultrapassando a ordem
de algumas dezenas de metros. Essa característica indica que o HyMLoc não apenas reduz
o erro médio, mas também garante maior robustez e previsibilidade, ou seja, o método é
menos suscetível a falhas e também mais confiável do ponto de vista operacional.
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A Figura 16 apresenta a FDA do erro de localização 𝑒𝑑 para o algoritmo HyMLoc e
as variantes baseadas em PSO, levando em conta o cenário outdoor. A análise das curvas
permite avaliar o comportamento de convergência dos algoritmos baseados em PSO sob o
ponto de vista da rapidez, estabilidade e controle da velocidade das partículas. Nesse con-
texto, o algoritmo HyMLoc apresenta um desempenho superior ao dos demais métodos.
Sua FDA se destaca por uma inclinação acentuada à esquerda, atingindo 50% das esti-
mativas, com erro em torno de 5 m. Esse comportamento indica uma convergência rápida
e precisa, com baixa variabilidade entre as execuções. Tal eficiência é atribuída à combi-
nação da memória deslizante de soluções, ao uso de múltiplas variantes de PSO operando
em conjunto e ao método estocástico de controle de velocidade das partículas, que atua
diretamente na mitigação da convergência prematura e na preservação da diversidade do
enxame.

Embora todos os algoritmos sejam baseados em PSO, eles apresentam comportamentos
de convergência bastante distintos. Os algoritmos FDRPSO e WPSO tendem a explorar
excessivamente o espaço de busca, o que reduz a probabilidade de convergência prema-
tura; entretanto, prolongam a permanência em regiões de alto erro. No extremo oposto, o
HPSO-TVAC converge mais rapidamente, porém com maior risco de aprisionamento em
soluções subótimas, uma vez que não preserva a memória das melhores posições encon-
tradas. Esse comportamento também se reflete na análise da FDA do HPSO-TVAC, que
apresenta queda acentuada nas iterações iniciais, indicando rápida convergência, mas se
estabiliza precocemente em um platô. Isso evidencia que o algoritmo deixa de explorar
novas regiões do espaço de busca e se fixa em soluções não ótimas. O algoritmo EPSO fica
no meio-termo, pois consegue escapar de mínimos locais, mas não melhora com a mesma
eficiência as posições das partículas em direção ao mínimo global. Por fim, o CLPSO

CLPSO EPSO FDRPSO HPSO-TVAC WPSO HyMLoc
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Figura 15 – Distribuição do erro de localização 𝑒𝑑 obtida para os algoritmos
de localização baseados em PSO, considerando o cenário outdoor.
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Figura 16 – Função de distribuição acumulada do erro de localização 𝑒𝑑 obtida
para os algoritmos de localização baseados em PSO, considerando o
cenário outdoor.

é o algoritmo que mais se aproxima do HyMLoc em termos de estabilidade, pois man-
tém a diversidade no enxame e evita oscilações excessivas. Ainda assim, sua convergência
ocorre de forma mais lenta. Em síntese, enquanto os benchmarks oscilam entre explorar
excessivamente o espaço de busca e convergir cedo demais, o algoritmo HyMLoc converge
rapidamente, com precisão e sem perda de estabilidade.

A significância estatística foi avaliada pelo teste não paramétrico de Friedman, ade-
quado para comparações entre múltiplos algoritmos sob as mesmas condições (LI; LIU,
2021). A hipótese nula 𝐻0 — igualdade de desempenho — foi rejeitada a 5% de signifi-
cância. A Tabela 9 apresenta a matriz de valores 𝑝 obtidos pelo teste de Friedman, seguida
pelo post-hoc Nemenyi, em que o algoritmo HyMLoc obteve o valor 𝑝 ≈ 0,000 conforme
o cálculo de (FRIEDMAN, 1937). Observa-se que algumas combinações entre os demais
algoritmos não apresentam diferença significativa, como no caso de EPSO versus WPSO,
em que 𝑝 > 0, 05, sugerindo desempenhos semelhantes. Já no caso da comparação entre
EPSO e FDRPSO, temos um valor de 𝑝 ≈ 0,042, indicando uma diferença estatística
moderada, porém menos expressiva em relação às demais.

Em termos de desempenho, o algoritmo HyMLoc apresentou um ranking médio de
1,01, indicando que ele ocupou a primeira posição entre os algoritmos avaliados, conforme
ilustrado na Figura 17. De acordo com o teste estatístico de Friedman, essa vantagem
não é aleatória. O valor de 𝑝 ≈ 0,00 confirma que o desempenho superior do HyMLoc é
estatisticamente significativo quando comparado a todos os demais. Em resumo, para o
cenário outdoor, o algoritmo HyMLoc apresentou os menores erros, maior estabilidade e
melhor desempenho estatístico entre os métodos comparados.
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Figura 17 – Ranking médio dos algoritmos obtidos com a aplicação do Teste de
Friedman, considerando o cenário outdoor.

A Tabela 10 apresenta as principais estatísticas do erro de localização 𝑒𝑑 para os algo-
ritmos analisados, considerando agora o cenário indoor. O algoritmo HyMLoc obteve um
erro médio de apenas 17,33 m, contrastando fortemente com algoritmos como o FDRPSO,
cujo erro médio ultrapassa 870 m. Observa-se, contudo, que o desvio padrão relativamente
alto, cujo valor é 90,72 m em relação à média, indica a presença de alguns erros atípicos, o
que sugere uma distribuição com cauda longa (MERZ et al., 2022), isto é, a maior parte das
estimativas apresenta erros baixos, mas há alguns casos isolados com erros mais elevados,
conforme evidenciado pelo valor máximo de aproximadamente 993 m.

A Figura 18 apresenta a FDA do erro de localização 𝑒𝑑 para o algoritmo HyMLoc e
as variantes baseadas em PSO, tendo em vista o cenário indoor. É possível observar o
bom desempenho do algoritmo HyMLoc em comparação aos demais algoritmos, visto que
estes últimos apresentaram curvas mais dilatadas, indicando maior dispersão nos erros de
localização. Adicionalmente, é importante frisar que a acurácia alcançada pelo algoritmo
HyMLoc também tem implicações regulatórias significativas. A FCC estabelece que, para
chamadas de emergência, pelo menos 80% das estimativas devem apresentar erro inferior

Tabela 9 – Matriz de valores 𝑝 dos algoritmos obtidos com a aplicação do teste
de post-hoc de Nemenyi, considerando o cenário outdoor.

Algoritmo CLPSO EPSO FDRPSO HPSO-TVAC WPSO HyMLoc

CLPSO 1, 000 0, 000 0, 000 8, 33× 10−14 0, 000 0, 000
EPSO 0, 000 1, 000 0,042 0, 000 0,593 0, 000
FDRPSO 0, 000 0,042 1, 000 0, 000 0, 010 0, 000
HPSO-TVAC 8, 33× 10−14 0, 000 0, 000 1, 000 0, 000 0, 000
WPSO 0, 000 0,593 0, 010 0, 000 1, 000 0, 000
HyMLoc 0, 000 0, 000 0, 000 0, 000 0, 000 1, 000
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Figura 18 – Função de distribuição acumulada do erro de localização 𝑒𝑑 obtida
para os algoritmos de localização baseados em PSO, considerando
o cenário indoor (requisitos da FCC indicados na região de cor
laranja).

a 50 m (Federal Communications Commission, 2020). Tal requisito regulatório está indicado na
Figura 18. Nota-se que apenas o algoritmo HyMLoc praticamente cumpriu o requisito,
alcançando 98,53% das amostras dentro do limite estabelecido. Face ao exposto, podemos
afirmar que o HyMLoc apresentou resultados superiores frente aos demais algoritmos
baseados em PSO no cenário indoor e se mostra uma solução eficaz para sistemas de
localização neste tipo específico de ambiente.

Para avaliar de outra forma o desempenho dos algoritmos aplicados ao problema da
localização em relação ao HyMLoc, apresenta-se uma análise geoespacial da distribuição
das estimativas de localização dos pontos de teste em ambiente outdoor, obtidas a partir
de cada um dos algoritmos avaliados, em que, mais uma vez, utilizou-se o conjunto DS-
4. A Figura 19 mostra os mapas de distribuição dos pontos estimados, obtidos pelos

Tabela 10 – Estatísticas do erro de localização 𝑒𝑑 obtidas para os algoritmos
de localização baseados em PSO, considerando o cenário indoor.

Algoritmo 𝑒𝑑 (𝑚) 𝜎𝑒𝑑
(𝑚) 𝑒𝑑,𝑚𝑖𝑛 (𝑚) 𝑒𝑑,𝑚𝑎𝑥 (𝑚)

CLPSO 177,82 100,50 0,27 584,67
EPSO 358,42 223,33 1,08 1393,14
FDRPSO 879,79 347,01 7,17 1403,24
HPSO-TVAC 218,01 180,54 2,61 1403,24
WPSO 277,27 210,43 3,40 1396,34
HyMLoc 17,33 90,72 0,29 993,19
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benchmarks baseados em PSO e pelo algoritmo HyMLoc, em relação aos pontos reais de
medição. A partir de cada subfigura, 19(a) - 19(f), é possível analisar o desempenho de
cada algoritmo por meio da comparação entre os pontos estimados e as posições reais
obtidas no procedimento de drive-test. Novamente, cabe ressaltar que tal análise só tem
significado se realizada em conjunto com as estatísticas do erro de localização, as quais
estão apresentadas na Tabela 8.

O algoritmo CLPSO apresenta, na Figura 19(a), uma boa concentração de estimati-
vas próximas aos pontos reais. Esse comportamento é coerente com sua média de erro
de 154,30 m e desvio padrão de 107,91 m, que são menores do que os observados para
EPSO e FDRPSO. Contudo, valores elevados de erro, como o representado por 𝑒𝑑,𝑚𝑎𝑥 =
844,54 m, evidenciam falhas localizadas, consistentes com as dispersões periféricas visíveis
nos mapas. Essa limitação decorre da ênfase do CLPSO em diversificar o aprendizado en-
tre partículas, o que pode dificultar a convergência local precisa em casos com múltiplos
mínimos.

O mapa de distribuição do algoritmo EPSO, ilustrado na Figura 19(b), indica que
seu desempenho é inferior ao do CLPSO, com uma distribuição de pontos estimados
mais espalhada em relação às posições reais. Isto é confirmado por seus valores de erro
médio e desvio padrão, quais sejam, 233,43 m e 156,83 m, respectivamente. A ausência de
um controle refinado de convergência local e a menor exploração adaptativa do EPSO
resultam em maior variabilidade no erro. Tais condições também apontam que, embora
o algoritmo EPSO apresente facilidade para escapar de mínimos locais, sua estratégia se
mostra ineficaz em ambientes urbanos densos.

A variante FDRPSO exibe, na Figura 19(c), resultados mais equilibrados, com boa
proximidade de diversos pontos estimados em relação às posições reais. Isso se reflete na
média de erro de 207,09 m, porém com alto desvio padrão de 151,95 m e erros máximos de
até 1.362,50 m, indicando instabilidade. A estratégia baseada na razão entre aptidão e dis-
tância permite guiar as partículas de forma mais eficaz em direção a regiões promissoras do
espaço de busca. No entanto, ainda há uma quantidade considerável de desvios pontuais,
sugerindo que a dependência dessas estratégias pode limitar o desempenho em cenários
ruidosos ou com múltiplas soluções próximas. Isso fica nítido nas bordas da imagem, onde
se verificam vários pontos aglomerados e enfileirados, sugerindo uma convergência prema-
tura das partículas. Apesar do FDRPSO, bem como os demais avaliados, ter incorporado
o ajuste de velocidade descrito na Subseção 5.4.1, os resultados obtidos não apresentaram
melhorias significativas no desempenho.

O algoritmo HPSO-TVAC evidencia, na Figura 19(d), resultados significativos em
relação aos obtidos pelas técnicas anteriores. A adaptação dinâmica dos coeficientes de
aceleração ao longo do tempo melhora o equilíbrio entre a exploração e o aproveitamento
do espaço de busca. Como consequência, observa-se uma distribuição mais concentrada
de pontos estimados em torno das posições reais. O que se confirma por meio de valores
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estatísticos condizentes, ou seja, erro médio de 160,26 m e desvio padrão de 119,30 m.
Embora seja próximo ao CLPSO em média, destaca-se pela melhor estabilidade. Con-
tudo, o desempenho não é uniforme em todas as regiões, revelando sensibilidade a certas
configurações iniciais e ao tipo de cenário urbano.

Passando ao WPSO, este apresenta um desempenho insatisfatório. Apresenta estima-
tivas mais dispersas, consistentes com sua média de erro de 201,72 m e desvio padrão de
122,63 m. Sua estratégia, baseada na ponderação dos componentes de velocidade, contri-
bui para a estabilidade na busca, mas não oferece a mesma capacidade adaptativa das
técnicas com aprendizado mais sofisticado, como, por exemplo, o CLPSO, o HPSO-TVAC
e o próprio algoritmo HyMLoc. A Figura 19(e) mostra uma concentração moderada de
pontos corretos, mas também apresenta erros mais evidentes em certas regiões.

Por fim, o algoritmo proposto, HyMLoc, é o que apresenta a menor dispersão e uma
forte aderência aos pontos reais. Os pontos estimados plotados na Figura 19(f) estão
notavelmente próximos dos reais ao longo de todo o mapa, com baixa dispersão. Os
valores estatísticos reforçam essa conclusão, ou seja, erro médio de 5,35 m e desvio padrão
de 5,22 m, com erro máximo limitado a 993,19 m — valores com uma ordem de grandeza
menor do que todos os algoritmos baseados apenas em PSO, exceto para o caso do 𝑒𝑑,𝑚𝑎𝑥.
A utilização de uma janela de memória deslizante 𝑀 para selecionar dinamicamente a
melhor variante do PSO entre várias disponíveis permite que o algoritmo se adapte da
melhor maneira possível às características locais do problema. Essa combinação eficaz de
estratégias faz com que o algoritmo HyMLoc se destaque como o mais robusto dentre as
opções analisadas.



Capítulo 5. Algoritmo Híbrido de Localização baseado em Memória 81

(a) CLPSO (b) EPSO

(c) FDRPSO (d) HPSO-TVAC

(e) WPSO (f) HyMLoc

Figura 19 – Mapas de distribuição dos pontos estimados obtidos pelos algoritmos
de localização em relação aos pontos reais de medição.
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Um ponto relevante a se destacar é que a análise geoespacial, bem como os testes
comparativos, revelaram a ineficácia do algoritmo LIPS quando aplicado ao problema da
localização. A Figura 20 ilustra a distribuição dos pontos estimados, onde se verifica um
acúmulo de pontos em um mesmo local. A principal deficiência do algoritmo LIPS foi sua
tendência à exploração local excessiva, que frequentemente resultou em uma convergência
prematura. Isso ocorreu porque a estratégia do LIPS se baseia na atualização das partí-
culas, considerando apenas informações provenientes de vizinhos próximos. Isso restringe
a diversidade da população e limita a capacidade do algoritmo de explorar regiões mais
amplas do espaço de busca. Como consequência, as partículas tendem a se aglomerar ra-
pidamente em uma área limitada — mesmo que essa região não contenha a solução ótima
— o que justifica a concentração espacial dos pontos gerados.

Apesar de as medições reais estarem bem distribuídas no espaço urbano, o LIPS não
conseguiu acompanhar essa distribuição, indicando que o algoritmo convergiu prematura-
mente. A diversidade da população foi mal preservada e, mesmo com o ajuste de velocidade
e tamanho da janela de memória, não foi possível guiar as partículas de forma eficaz por
toda a área. Esse comportamento é discutido na literatura, como, por exemplo, em (PAN

et al., 2020), em que os autores destacam que metodologias excessivamente locais podem
comprometer significativamente a eficácia da busca global em problemas de otimização
com múltiplos mínimos locais. Por esta razão, o algoritmo LIPS foi excluído de toda a
análise comparativa realizada entre os métodos utilizados.

Figura 20 – Mapa de distribuição dos pontos estimados pelo algoritmo LIPS quando
aplicado à localização em relação aos pontos reais de medição.
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Com o objetivo de complementar a comparação entre o algoritmo HyMLoc e as demais
abordagens, apresenta-se também uma análise do tempo de execução focada em cada
algoritmo. Essa análise se refere exclusivamente à etapa de otimização, não incluindo
fases de pré-processamento, leitura de dados ou treinamento dos modelos de regressão.

Os experimentos foram realizados no mesmo ambiente computacional descrito na Seção
3.2, isto é, no cluster Apuana do CIn–UFPE. Mantiveram-se os mesmos critérios utilizados
na avaliação do MB-EPSO, incluindo os parâmetros experimentais, o número de execuções
e o procedimento de normalização dos tempos de execução. A única diferença reside no
algoritmo de referência adotado para a normalização, isto é, enquanto nos testes anteriores
utilizou-se o MB-EPSO, nesta etapa, o tempo do HyMLoc foi considerado como valor base.

A Tabela 11 apresenta os tempos médios de execução e seus correspondentes desvios
padrão, denotados, respectivamente, por 𝑡 e 𝜎𝑡 para cada algoritmo nos cenários indoor e
outdoor. Tomando como referência tais valores, os tempos foram normalizados utilizando
a média do algoritmo HyMLoc como referência. A Tabela 12 apresenta os valores norma-
lizados dos tempos de execução da etapa de otimização de cada algoritmo baseado em
PSO, assim como da proposta HyMLoc, para cada cenário investigado, acompanhados das
reduções percentuais promovidas pelo algoritmo proposto. Por exemplo, considerando o
cenário indoor, o algoritmo HyMLoc promove uma redução de 23,08% no tempo médio de
execução quando comparado ao algoritmo CLPSO. Análises equivalentes são conduzidas
para os outros algoritmos nos cenários indoor e outdoor.

Com base nas Tabelas 11 e 12, o desempenho do HyMLoc, adotado como referência
para comparação, evidencia reduções consistentes no tempo de execução em ambos os
ambientes avaliados.

No cenário indoor, que apresenta maior complexidade devido à presença de obstáculos
e ao maior volume de medições, o HyMLoc destacou-se com as maiores reduções de
tempo em relação aos demais métodos. As reduções variam de aproximadamente 13% a
28%, com destaque para os algoritmos que mais sofrem nesse tipo de ambiente, como o

Tabela 11 – Estatísticas do tempo de execução de todas as variantes PSO
consideradas neste trabalho para cada tipo de cenário.

Algoritmo Cenário indoor Cenário outdoor

𝑡 (ms) 𝜎𝑡 (ms) 𝑡 (ms) 𝜎𝑡 (ms)

CLPSO 107,82 16,56 13,39 1,04
EPSO 103,25 14,42 12,78 1,33
FDRPSO 105,51 14,38 14,35 1,32
HPSO-TVAC 101,06 15,04 11,83 1,37
WPSO 102,54 14,57 12,52 0,84
HyMLoc 94,50 12,76 10,27 1,08



Capítulo 5. Algoritmo Híbrido de Localização baseado em Memória 84

Tabela 12 – Valores normalizados dos tempos de execução e ganho percentual do
HyMLoc, com médias por cenário e média geral.

Algoritmo Cenário indoor Cenário outdoor

CLPSO 1,30 (23,08%) 1,14 (12,28%)
EPSO 1,24 (19,35%) 1,09 (8,26%)
FDRPSO 1,40 (28,57%) 1,12 (10,71%)
HPSO-TVAC 1,15 (13,04%) 1,07 (6,54%)
WPSO 1,22 (18,03%) 1,08 (7,41%)
HyMLoc 1,00 1,00

FDRPSO e o CLPSO, em que o HyMLoc promove uma redução de tempo na faixa de
aproximadamente 25%. Esse comportamento reforça a eficiência do HyMLoc em contextos
de maior interferência, nos quais os outros algoritmos tendem a apresentar penalizações
maiores no tempo de execução.

No cenário outdoor, as diferenças de desempenho são mais moderadas, mas o HyMLoc
mantém-se como a alternativa mais eficiente. As reduções situam-se aproximadamente
entre 6% e 12%, com os maiores percentuais de redução de tempo observados em relação
ao CLPSO com 12,28% e ao FDRPSO com 10,71%. Mesmo em condições menos adversas,
o HyMLoc continua a exigir menos tempo de processamento, demonstrando consistência
no desempenho. Entre os demais, o HPSO-TVAC permanece como o mais próximo do
HyMLoc, pois a redução de tempo foi inferior a 7%.

Esses resultados mostram que o HyMLoc não apenas atinge o melhor desempenho em
termos de tempo de execução, mas também mantém sua vantagem em ambientes com
diferentes níveis de complexidade. Enquanto métodos como FDRPSO e CLPSO são os
mais impactados por condições adversas, o HyMLoc preserva sua eficiência e consistência,
destacando-se como a alternativa mais robusta entre os algoritmos avaliados.

5.5 Resumo do capítulo
Neste capítulo, foi proposto o algoritmo híbrido de localização baseado em memória HyM-
Loc, que combina estimativas de distância obtidas por regressão k-NN e otimização adap-
tativa via algoritmo MB-EPSO. Detalhou-se a construção da base de dados a partir de
medições reais em cenários urbanos, tanto indoor quanto outdoor ; o esquema de separação
treino/teste e a adoção de validação cruzada para comprovar a capacidade de generaliza-
ção do algoritmo. Também foram introduzidas melhorias, como o controle estocástico da
velocidade das partículas e o ajuste do tamanho da janela de memória deslizante do al-
goritmo MB-EPSO. A avaliação experimental comparou a proposta HyMLoc com outros
algoritmos de referência baseados em PSO, evidenciando ganhos em acurácia, estabili-
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dade e tempo de execução, além de conformidade com os critérios normativos da FCC.
Os resultados confirmaram o potencial do algoritmo HyMLoc como uma solução robusta
e eficiente para sistemas de localização em redes celulares.
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6 CONCLUSÕES

“Andei, andei, andei, até
localizar...

(Adaptada da canção

Coração Sertanejo)

A localização de dispositivos móveis em redes celulares configura-se como um desafio
central para a evolução das telecomunicações modernas, dada a sua relevância tanto em
aplicações críticas, como serviços de emergência e segurança pública, quanto em solu-
ções voltadas para mobilidade, logística e personalização de serviços. Ao longo desta tese,
buscou-se enfrentar esse desafio por meio do desenvolvimento de técnicas que combinam
simplicidade, robustez e eficiência computacional, sem abrir mão da acurácia necessária
para cenários regulatórios, como os estabelecidos pelo FCC E911. O trabalho partiu da
constatação de que algoritmos clássicos de trilateração apresentam limitações em ambi-
entes reais e que, embora o PSO seja uma ferramenta poderosa para lidar com a não
linearidade intrínseca do problema, suas variantes tradicionais sofrem com convergência
prematura e alto custo computacional em cenários heterogêneos.

Nesse contexto, a primeira contribuição da tese foi a proposição do algoritmo MB-
EPSO, que introduziu um mecanismo de memória deslizante para preservar gerações his-
toricamente mais bem-sucedidas e, assim, manter a diversidade populacional ao longo da
evolução. Associado a isso, o algoritmo incorporou uma estratégia adaptativa de seleção de
variantes de PSO, capaz de escolher dinamicamente a abordagem mais promissora a cada
instante, e um controle estocástico de velocidade para reduzir aglomerações nas bordas
do espaço de busca. Essa arquitetura provou ser eficiente em benchmarks de referência,
como, por exemplo, o CEC2017, superando algoritmos consagrados e demonstrando que
é possível conciliar acurácia e baixo tempo de execução em um mesmo modelo de otimi-
zação.

A segunda contribuição foi a integração desse otimizador ao processo de radiolocali-
zação, resultando no algoritmo HyMLoc. A solução combina trilateração, regressão por
k-NN aplicada às medições de RSSI e PD, e otimização via MB-EPSO. Avaliada em uma
base de dados real coletada em Recife, abrangendo tanto cenários indoor quanto out-
door, a proposta apresentou desempenho consistente, alcançando erros médios de 5,35 m
em ambientes outdoor e 17,33 m em ambientes indoor. Além disso, foi capaz de atender
aos critérios normativos do FCC E911, garantindo que mais de 80% das estimativas se
mantivessem abaixo de 50 m de erro em chamadas de emergência. Testes estatísticos de
significância confirmaram a superioridade do algoritmo HyMLoc em relação a variantes
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clássicas e híbridas de PSO, evidenciando ganhos em acurácia, estabilidade e tempo de
execução.

A análise comparativa também evidenciou limitações associadas ao uso de algoritmos
de referência, em especial o LIPS. Embora tenha sido concebido para explorar informa-
ções locais da vizinhança das partículas, sua aplicação ao problema de radiolocalização
mostrou-se ineficaz. Os resultados experimentais indicaram uma concentração excessiva
de partículas em regiões restritas do espaço de busca, o que levou a erros elevados. Essa
ineficiência reforça a dificuldade de métodos baseados exclusivamente em informação local
lidarem com ambientes de propagação altamente heterogêneos, caracterizados por múl-
tiplos percursos e atenuação irregular. Assim, a comparação com o LIPS evidenciou a
relevância do HyMLoc. Graças à memória e à adaptação dinâmica, o método descartou
automaticamente o LIPS durante o processo de seleção autoadaptativa, refletindo seu
baixo desempenho e evitando que ele fosse escolhido pela janela de memória M.

Os resultados obtidos permitem afirmar que os objetivos propostos foram atingidos.
O algoritmo MB-EPSO mostrou ser um otimizador versátil, capaz de lidar com funções
complexas sem incorrer em custos excessivos, e o algoritmo HyMLoc consolidou-se como
uma solução prática e escalável para localização em redes celulares, mesmo em condições
adversas de propagação. Além disso, a pesquisa contribui de maneira mais ampla para o
campo da otimização, ao evidenciar o potencial de mecanismos baseados em memória e
adaptação dinâmica na construção de algoritmos mais robustos.

Ainda assim, algumas limitações precisam ser reconhecidas. Embora a avaliação tenha
incluído cenários indoor e outdoor com medições reais, os experimentos restringiram-se
a redes de terceira geração WCDMA, o que abre espaço para investigações em contex-
tos mais recentes, como 4G e 5G, caracterizados por maior densidade de células e maior
heterogeneidade espectral. Entretanto, enfatiza-se que essa restrição enfrentada não com-
prometeu a implementação do algoritmo HyMLoc, tampouco os resultados obtidos, que se
mantêm consistentes e relevantes dentro do escopo da pesquisa. Ainda sobre fatores limi-
tantes, também foi identificado que, apesar da eficiência do algoritmo HyMLoc, a etapa de
regressão com k-NN ainda representa um custo relevante em termos de tempo de execu-
ção, especialmente quando aplicada a bases de dados muito extensas. Além disso, fatores
como mobilidade em alta velocidade e variações dinâmicas da rede não foram explorados
em profundidade, permanecendo como desafios a serem enfrentados.

A partir dessas considerações, delineiam-se perspectivas promissoras para trabalhos
futuros. Entre elas, destaca-se a adaptação dos algoritmos MB-EPSO e HyMLoc a am-
bientes 5G e de sexta geração (6G), nos quais coexistem múltiplas tecnologias de acesso
e arquiteturas ultradensas. Outras possibilidades incluem a substituição ou complemen-
tação do k-NN por modelos de aprendizado profundo capazes de lidar com padrões mais
complexos de propagação, bem como a integração de informações contextuais adicionais,
como dados de sensores inerciais ou Wi-Fi. Também merece atenção a implementação de
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uma integração da técnica proposta na tese com sistemas de localização indoor baseados
em redes Wi-Fi, assim como em outras redes de comunicação de curto alcance, como
redes pessoais sem fio. Essa integração permitiria ampliar a aplicabilidade da solução
para cenários em que a infraestrutura celular apresenta cobertura limitada ou desem-
penho insatisfatório, especialmente em ambientes indoor complexos. Do ponto de vista
da otimização, investigações sobre estratégias de memória hierárquica e de autoaprendi-
zado adaptativo podem ampliar ainda mais a capacidade de generalização do algoritmo
MB-EPSO. Em paralelo, a aplicação da proposta a outros problemas não restritos à lo-
calização, como planejamento de redes e otimização de recursos em sistemas distribuídos,
representa uma extensão natural do trabalho aqui desenvolvido.

Em síntese, esta tese apresentou uma contribuição original para o avanço dos sistemas
de localização em redes celulares. Ao propor e validar os algoritmos MB-EPSO e HyM-
Loc, estabeleceu-se uma solução que alia acurácia, escalabilidade e viabilidade prática,
respondendo a uma demanda crescente tanto no meio acadêmico quanto na indústria. Os
resultados obtidos confirmam o seu potencial para contribuir para a evolução dos serviços
baseados em localização. Além disso, reforçam o papel da otimização inteligente como
uma ferramenta fundamental na construção de sistemas mais adaptativos e confiáveis.
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A IMPLEMENTAÇÃO DO ALGORITMO
HYMLOC

Conforme mencionado, o algoritmo HyMLoc combina técnicas de AM e otimização para
estimar a posição de um usuário móvel em uma rede de telefonia celular. A seguir,
apresenta-se um esboço de sua implementação, ilustrado no Algoritmo 2.

O Algoritmo 2 possui as seguintes variáveis de entrada (linhas 2–9): 𝑁𝑡𝑟𝑒𝑖𝑛𝑜, número
de amostras de treinamento (linha 2); 𝑁𝑡𝑒𝑠𝑡𝑒, número de amostras de teste (linha 3). 80%
dos dados são utilizados para treinamento e 20% para teste. O valor total de amostras é
dado por 𝑁 = 𝑁𝑡𝑟𝑒𝑖𝑛𝑜 + 𝑁𝑡𝑒𝑠𝑡𝑒.

A variável 𝑐 representa o número de atributos por amostra (linha 5), como, por exem-
plo, RSSI e PD. Já 𝑛𝑏 corresponde ao número de ERBs (linha 6), sendo nove no total. A
matriz 𝑀𝑚 (linha 7), com dimensão 𝑁 × 𝑐, contém as medições dos atributos (e.g., RSSI
e PD). A matriz 𝑃 (linha 8), de dimensão 𝑁 × 3, armazena as posições reais associadas
às medições, representadas por (𝑥, 𝑦) — identificador do ponto, latitude e longitude, res-
pectivamente. Por fim, 𝜎 (linha 9) representa o modelo de otimização, que neste trabalho
é o algoritmo MB-EPSO, responsável por resolver a função de fitness.

As variáveis de saída (linhas 11–12) são: ̂︁𝑃𝑡, matriz de posições preditas (linha 11),
com dimensão 𝑁×3, contendo os tripletos (𝑥, 𝑦, 𝑧) correspondentes às posições estimadas;
e 𝑒𝑑, vetor de erros de predição de distância (linha 12), de dimensão 𝑁 ×1, representando
o erro absoluto entre as posições reais e preditas.

O funcionamento do Algoritmo HyMLoc é estruturado em cinco etapas principais:

1. Separação dos dados: 𝑀 e 𝑃 são divididos em dados de treinamento (linha
14) e teste (linha 15), resultando na tupla [𝑀𝑞, 𝑃𝑞], a qual servirá de base para o
treinamento do modelo de AM e na tupla [𝑀𝑡, 𝑃𝑡], que, por sua vez, será a base
para os testes em que se retornará a saída do algoritmo;

2. Treinamento do modelo: O modelo k-NN é treinado. Este modelo é uma função
𝑓𝐷 (linha 16) que prediz a posição a partir da tupla [𝑀𝑞, 𝑃𝑞];

3. Inicialização das matrizes de saída: As matrizes para armazenar as posições
preditas ̂︁𝑃𝑡 (linha 17) e os erros 𝑒𝑑 (linha 18) são inicializadas, cujas dimensões são
(𝑁𝑡𝑒𝑠𝑡𝑒, 3) e (𝑁𝑡𝑒𝑠𝑡𝑒, 1), respectivamente;

4. Laço de predição para cada amostra de teste: Para cada amostra 𝑖 variando
entre [0 . . . 𝑁𝑡𝑒𝑠𝑡𝑒] gera-se uma partícula de teste 𝑑 = 𝑓𝐷(𝑀𝑡[𝑖]) (linha 20), a posição
prevista pelo MB-EPSO 𝑃 [𝑖] = 𝜄(𝑑) (linha 21) é obtida, e, finalmente, calcula-se o
erro absoluto de distância 𝑒𝑑[𝑖] = 𝐴𝐵𝑆(𝑃𝑡[𝑖]− 𝑃𝑡[𝑖]) (linha 22);
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Algoritmo 2 Algoritmo híbrido de localização baseado em memória (HyMLoc).
1: Entrada:
2: 𝑁𝑡𝑟𝑒𝑖𝑛𝑜 = Número de amostras (treinamento)
3: 𝑁𝑡𝑒𝑠𝑡𝑒 = Número de amostras (teste)
4: 𝑁 = Número total de amostras (𝑁 = 𝑁𝑡𝑟𝑒𝑖𝑛𝑜 + 𝑁𝑡𝑒𝑠𝑡𝑒)
5: 𝑐 = Número de atributos por amostra
6: 𝑞 = Quantidade de ERBs
7: 𝑀𝑚 = Matriz de medições, (𝑁 × 𝑐)
8: 𝑃 = Matriz de posições reais associadas às medições, (𝑁 × 3) (𝑥, 𝑦, 𝑧)
9: 𝜄 = Modelo de otimização

10: Saída:
11: ̂︁𝑃𝑡 = Matriz de posições preditas, (𝑁 × 3)
12: 𝑒𝑑 = Erro de localização, (𝑁 × 1)
13: Início:
14: [𝑀𝑞, 𝑃𝑞]← ConstroiDatasetDeTreino (𝑀, 𝑃, 𝑁𝑡𝑟𝑒𝑖𝑛𝑜)
15: [𝑀𝑡, 𝑃𝑡]← ConstroiDatasetDeTeste (𝑀, 𝑃, 𝑀𝑞,̂︁𝑃𝑡, 𝑁𝑡𝑒𝑠𝑡𝑒)
16: 𝑓𝐷 ← TreinamentoDoModeloDeML [𝑀𝑞, 𝑃𝑞]
17: ̂︁𝑃𝑡 ← CriaMatrizVazia (𝑁, 3)
18: 𝑒𝑑 ← CriaMatrizVazia (𝑁, 1)
19: for 𝑖 in [0 ... 𝑁𝑡𝑒𝑠𝑡𝑒] do
20: 𝑑 = 𝑓𝐷(𝑀𝑡[𝑖])
21: 𝑃𝑖 = 𝜄(𝑑)
22: 𝑒𝑑[𝑖] = 𝐴𝐵𝑆(𝑃𝑡[𝑖]− ̂︁𝑃𝑡[𝑖])
23: Retorne ̂︁𝑃𝑡, 𝑒𝑑

24: Fim

5. Retorno dos resultados: Finalizado o laço com todas as iterações, o algoritmo
retorna 𝑃𝑡, 𝑒𝑑 (linha 24), ou seja, a posição estimada para o conjunto de testes e o
erro associado a cada uma.

Em resumo, o algoritmo HyMLoc combina modelagem com AM supervisionada e
regressão k-NN; apresenta etapa de pré-processamento para separação treino/teste; e,
por fim, realiza o cálculo de erros para avaliação de desempenho. Este fluxo se apresenta
como uma alternativa bastante útil para aplicações de localização em ambientes urbanos,
tanto indoor quanto outdoor, onde técnicas baseadas apenas em geometria, como, por
exemplo, trilateração, são imprecisas devido ao multipercurso.
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B FUNÇÕES DE BENCHMARK CEC2017

Este apêndice resume as funções de benchmark da sessão especial “CEC2017 Special Ses-
sion and Competition on Single Objective Bound Constrained Real-Parameter Numerical
Optimization”, composta por 29 funções (𝐹1–𝐹29) amplamente utilizadas na avaliação de
algoritmos de otimização contínua. A formulação detalhada com vetores de deslocamento,
matrizes de rotação e arquivos auxiliares encontra-se no relatório técnico oficial (AWAD et

al., 2016) e nos arquivos shift_data_*.txt e M_*_D.txt distribuídos com o código oficial.
Todas as funções são problemas de minimização definidos, em geral, em

𝑓 : Ω ⊂ R𝐷 −→ R, Ω = [−100, 100]𝐷,

com soluções ótimas deslocadas e/ou rotacionadas em relação às formulações clássicas.

B.1 Transformações gerais
As funções CEC2017 são construídas a partir de funções-base clássicas 𝑓base(·), combinadas
com operações de deslocamento, rotação e composição. Em termos gerais, tem-se:

1. Funções deslocadas e rotacionadas

Seja 𝑥 ∈ R𝐷 um vetor candidato, 𝑜 ∈ R𝐷 o vetor de deslocamento (shift) e 𝑀 ∈
R𝐷×𝐷 uma matriz de rotação ortonormal. Define-se

𝑧 = 𝑀(𝑥− 𝑜), (B.1)

e a função objetivo é dada por

𝑓(𝑥) = 𝑓base(𝑧) + 𝑓bias, (B.2)

em que 𝑓bias é um valor de deslocamento vertical (bias) específico de cada função
(por exemplo, 100, 200, . . . , 3000).

2. Funções híbridas

Nas funções híbridas, o vetor 𝑧 é particionado em 𝑁 subvetores 𝑧(1), . . . , 𝑧(𝑁), cada
um associado a uma função-base distinta 𝑓

(𝑘)
base:

𝑓hyb(𝑥) =
𝑁∑︁

𝑘=1
𝑓

(𝑘)
base

(︁
𝑧(𝑘)

)︁
+ 𝑓bias. (B.3)

A divisão das dimensões entre os componentes e a ordem das funções-base são
definidas pelo relatório oficial.
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3. Funções de composição

Nas funções de composição, combinam-se 𝑁 funções-base 𝑓
(𝑖)
base com diferentes des-

locamentos 𝑜(𝑖), rotações 𝑀 (𝑖) e pesos 𝑤𝑖(𝑥) dependentes da distância de 𝑥 a cada
centro 𝑜(𝑖):

𝑧(𝑖) = 𝑀 (𝑖)
(︁
𝑥− 𝑜(𝑖)

)︁
, 𝑖 = 1, . . . , 𝑁, (B.4)

𝑓𝑖(𝑥) = 𝑓
(𝑖)
base

(︁
𝑧(𝑖)

)︁
+ 𝑓bias,𝑖, (B.5)

𝑤𝑖(𝑥) = exp
(︃
−‖𝑥− 𝑜(𝑖)‖2

2𝐷𝜎2
𝑖

)︃
, (B.6)

𝑤̂𝑖(𝑥) = 𝑤𝑖(𝑥)∑︀𝑁
𝑗=1 𝑤𝑗(𝑥)

, (B.7)

𝑓comp(𝑥) =
𝑁∑︁

𝑖=1
𝑤̂𝑖(𝑥) 𝑓𝑖(𝑥). (B.8)

Os valores de 𝜎𝑖, dos bias 𝑓bias,𝑖 e a escolha das funções-base de cada composição
são especificados no relatório técnico.

B.2 Funções-base clássicas utilizadas
A seguir, listam-se as principais funções-base clássicas usadas na construção das funções
CEC2017. Em todas elas, 𝑧 = (𝑧1, . . . , 𝑧𝐷) representa o vetor já deslocado e, quando
aplicável, rotacionado.

1. Bent Cigar

𝑓BentCigar(𝑧) = 𝑧2
1 + 106

𝐷∑︁
𝑖=2

𝑧2
𝑖 . (B.9)

2. Sum of Different Powers

𝑓SumDiffPowers(𝑧) =
𝐷∑︁

𝑖=1
|𝑧𝑖|2+4 𝑖−1

𝐷−1 . (B.10)

3. Zakharov

𝑓Zakharov(𝑧) =
𝐷∑︁

𝑖=1
𝑧2

𝑖 +
(︃

𝐷∑︁
𝑖=1

0.5𝑖𝑧𝑖

)︃2

+
(︃

𝐷∑︁
𝑖=1

0.5𝑖𝑧𝑖

)︃4

. (B.11)

4. Rosenbrock

𝑓Rosenbrock(𝑧) =
𝐷−1∑︁
𝑖=1

[︁
100 (𝑧𝑖+1 − 𝑧2

𝑖 )2 + (𝑧𝑖 − 1)2
]︁

. (B.12)

5. Rastrigin

𝑓Rastrigin(𝑧) =
𝐷∑︁

𝑖=1

[︁
𝑧2

𝑖 − 10 cos(2𝜋𝑧𝑖) + 10
]︁

. (B.13)
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6. Expanded Schaffer’s F6

𝑓SF6(𝑢, 𝑣) = 0.5 +
sin2

(︁√
𝑢2 + 𝑣2

)︁
− 0.5[︁

1 + 0.001(𝑢2 + 𝑣2)
]︁2 . (B.14)

𝑓ExpSF6(𝑧) =
𝐷−1∑︁
𝑖=1

𝑓SF6(𝑧𝑖, 𝑧𝑖+1) + 𝑓SF6(𝑧𝐷, 𝑧1). (B.15)

7. Lunacek bi-Rastrigin

𝑓Lunacek(𝑧) = min
{︃

𝐷∑︁
𝑖=1

(𝑧𝑖 − 𝜇1)2, 𝑑𝐷 + 𝑠
𝐷∑︁

𝑖=1
(𝑧𝑖 − 𝜇2)2

}︃

+ 10
𝐷∑︁

𝑖=1
[1− cos(2𝜋(𝑧𝑖 − 𝜇1))] . (B.16)

8. Non-Continuous Rastrigin

𝑧𝑖 =

⎧⎪⎨⎪⎩round(2𝑧𝑖)/2, se |𝑧𝑖| > 0.5,

𝑧𝑖, caso contrário,
(B.17)

𝑓NC-Rastrigin(𝑧) =
𝐷∑︁

𝑖=1

[︁
𝑧2

𝑖 − 10 cos(2𝜋𝑧𝑖) + 10
]︁

. (B.18)

9. Levy

𝑤𝑖 = 1 + 𝑧𝑖 − 1
4 , (B.19)

𝑓Levy(𝑧) = sin2(𝜋𝑤1) +
𝐷−1∑︁
𝑖=1

(𝑤𝑖 − 1)2
[︁
1 + 10 sin2(𝜋𝑤𝑖 + 1)

]︁
+ (𝑤𝐷 − 1)2

[︁
1 + sin2(2𝜋𝑤𝐷)

]︁
. (B.20)

10. Schwefel

𝑓Schwefel(𝑧) = 418.9829𝐷 −
𝐷∑︁

𝑖=1
𝑧𝑖 sin

(︂√︁
|𝑧𝑖|
)︂

. (B.21)

B.3 Lista das funções CEC2017
A Tabela 13 resume as 29 funções do conjunto CEC2017, indicando o tipo, o identificador
e o valor ótimo (bias) 𝑓opt.

O intervalo de busca padrão para todas as funções é Ω = [−100, 100]𝐷, salvo indica-
ção contrária no relatório oficial. Os vetores de deslocamento 𝑜, as matrizes de rotação
𝑀 , as partições de dimensões das funções híbridas e os detalhes de cada composição de-
vem ser obtidos diretamente dos arquivos de definição do CEC2017, de modo a garantir
reprodutibilidade com a competição original.
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Tabela 13 – Funções de benchmark CEC 2017 para otimização real de parâmetro único e
com restrição de limites.

Tipo Id Função 𝑓opt

Unimodal F1 Shifted and Rotated Bent Cigar Function 100
Unimodal F2 Shifted and Rotated Sum of Different Power Function 200
Unimodal F3 Shifted and Rotated Zakharov Function 300

Multimodal F4 Shifted and Rotated Rosenbrock’s Function 400
Multimodal F5 Shifted and Rotated Rastrigin’s Function 500
Multimodal F6 Shifted and Rotated Expanded Schaffer’s F6 Function 600
Multimodal F7 Shifted and Rotated Lunacek bi-Rastrigin Function 700
Multimodal F8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
Multimodal F9 Shifted and Rotated Levy Function 900
Multimodal F10 Shifted and Rotated Schwefel’s Function 1000

Hybrid F11 Hybrid Function 1 (𝑁 = 3) 1100
Hybrid F12 Hybrid Function 2 (𝑁 = 3) 1200
Hybrid F13 Hybrid Function 3 (𝑁 = 3) 1300
Hybrid F14 Hybrid Function 4 (𝑁 = 4) 1400
Hybrid F15 Hybrid Function 5 (𝑁 = 4) 1500
Hybrid F16 Hybrid Function 6 (𝑁 = 4) 1600
Hybrid F17 Hybrid Function 6 (𝑁 = 5) 1700
Hybrid F18 Hybrid Function 6 (𝑁 = 5) 1800
Hybrid F19 Hybrid Function 6 (𝑁 = 5) 1900
Hybrid F20 Hybrid Function 6 (𝑁 = 6) 2000

Composition F21 Composition Function 1 (𝑁 = 3) 2100
Composition F22 Composition Function 2 (𝑁 = 3) 2200
Composition F23 Composition Function 3 (𝑁 = 4) 2300
Composition F24 Composition Function 4 (𝑁 = 4) 2400
Composition F25 Composition Function 5 (𝑁 = 5) 2500
Composition F26 Composition Function 6 (𝑁 = 5) 2600
Composition F27 Composition Function 7 (𝑁 = 6) 2700
Composition F28 Composition Function 8 (𝑁 = 6) 2800
Composition F29 Composition Function 9 (𝑁 = 3) 2900
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