
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE TECNOLOGIA E GEOCIÊNCIAS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CURSO DE GRADUAÇÃO EM ENGENHARIA

DE CONTROLE E AUTOMAÇÃO

Antonio Vitor da Silva

Desenvolvimento de Sistema Embarcado para Telemetria Veicular

Recife
2025

Antonio Vitor da Silva

Desenvolvimento de Sistema Embarcado para Telemetria Veicular

Trabalho de Conclusão de Curso
apresentado ao Curso de Graduação em
Engenharia de Controle e Automação da
Universidade Federal de Pernambuco,
como requisito parcial para obtenção do
grau de Bacharel.

Orientador(a): Prof. Dr. Marcio Evaristo da Cruz Brito

Recife
2025

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Silva, Antonio Vitor da.
 Desenvolvimento de Sistema Embarcado para Telemetria Veicular /
Antonio Vitor da Silva. - Recife, 2025.
 60p : il., tab.

 Orientador(a): Marcio Evaristo da Cruz Brito
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Tecnologia e Geociências, Engenharia de Controle e
Automação - Bacharelado, 2025.
 Inclui referências.

 1. Sistemas Embarcados. 2. Telemetria Veicular. 3. Internet das Coisas. 4.
Protocolo CAN. 5. OBD-II. I. Cruz Brito, Marcio Evaristo da. (Orientação). II.
Título.

 620 CDD (22.ed.)

Antonio Vitor da Silva

Desenvolvimento de Sistema Embarcado para Telemetria Veicular

Trabalho de Conclusão de Curso
apresentado ao Curso de Graduação em
Engenharia de Controle e Automação da
Universidade Federal de Pernambuco,
como requisito parcial para obtenção do
grau de Bacharel.

Aprovado em: 18/12/2025.

BANCA EXAMINADORA

Prof. Dr. Marcio Evaristo da Cruz Brito (Orientador)
Universidade Federal de Pernambuco

Prof. Dr. Davidson da Costa Marques (Examinador Interno)
Universidade Federal de Pernambuco

__

Eng. M.Sc. Renato Andrade Freitas (Examinador Interno)
Universidade Federal de Pernambuco

AGRADECIMENTOS

Dedico este trabalho a todos colegas, amigos, professores e familiares que

contribuíram para a minha formação pessoal e acadêmica ao longo desta longa

trajetória. Agradeço à Equipe Mandacaru AeroDesign por ter revelado a um jovem

inocente a magia da engenharia e a satisfação de transformar projetos em realidade,

além de me ensinar os verdadeiros significados de perseverança e companheirismo.

Igualmente, direciono meus agradecimentos à Equipe Mangue Baja, que me

incentivou a buscar a excelência e me mostrou que somos sempre capazes de

ultrapassar nossos próprios limites. Agradeço, ainda, ao LIVE por me abrir as portas

a um mundo repleto de novas possibilidades. Por fim, mas não menos importante,

manifesto toda a minha gratidão aos meus pais, pelo amor e apoio incondicional, sem

os quais essa jornada não poderia ser trilhada.

RESUMO

Este trabalho apresenta o desenvolvimento de um sistema embarcado modular

e de baixo custo para aquisição, processamento e transmissão de dados veiculares.

A solução integra os protocolos CAN (via OBD-II), Bluetooth Low Energy e MQTT,

permitindo coletar parâmetros do veículo, normalizá-los e publicá-los em redes locais

ou remotas. A arquitetura é organizada em módulos de interface (OBD-II/CAN),

processamento e comunicação, adotando formatos de dados estruturados que

favorecem a interoperabilidade com diferentes plataformas. Os resultados

demonstram a viabilidade da solução para aplicações em telemetria veicular, com

capacidades de expansão para novos sensores e protocolos. O sistema prioriza

acessibilidade, utilizando componentes de baixo custo e formatos de dados

estruturados, garantindo interoperabilidade com diferentes plataformas. A proposta

oferece uma base sólida para monitoramento veicular em tempo real, com potencial

para uso em gestão de frotas, diagnóstico remoto e pesquisas em mobilidade

inteligente.

Palavras-chave: Sistemas Embarcados; Telemetria Veicular; Internet das Coisas

(IoT); Protocolo CAN; OBD-II; Bluetooth Low Energy; MQTT.

ABSTRACT

This work presents the development of a modular, low-cost embedded system

for vehicle data acquisition, processing, and transmitting. The solution integrates CAN

(via OBD-II), Bluetooth Low Energy, and MQTT protocols, enabling the collection,

normalization, and published over local or remote networks. The architecture is

organized into interface (OBD-II/CAN), processing, and communication modules,

adopting structured data formats that favor interoperability with different platforms. The

results demonstrate the system's viability for vehicle telemetry applications, offering

extensibility for new sensors and protocols. The system prioritizes accessibility, using

low-cost components and structured data formats, ensuring interoperability with

different platforms. The proposal offers a solid foundation for real-time vehicle

monitoring, with potential for use in fleet management, remote diagnostics, and smart

mobility research.

Keywords: Embedded Systems, Vehicle telemetry; Internet of Things (IoT); CAN

protocol; OBD-II; Bluetooth Low Energy; MQTT.

LISTA DE ILUSTRAÇÕES

Figura 1 - Barramento CAN .. 18

Figura 2 - Níveis de Sinal diferenciais CAN .. 18

Figura 3 - Conector OBD-II .. 20

Figura 4 - Formato de mensagem OBD ... 21

Figura 5 - Arquitetura BLE.. 25

Figura 6 - Arquitetura MQTT .. 26

Figura 7 - Ciclo de Projeto em V .. 28

Figura 8 - Arquitetura de Hardware .. 29

Figura 9 - Arquitetura de Comunicação .. 30

Figura 10 - Arquitetura de Firmware ... 38

Figura 11 - Arquitetura Física de Hardware .. 43

Figura 12 - Parte Superior da Placa Base .. 44

Figura 13 - Parte Inferior da Placa Base .. 44

Figura 14 - Placa Modular .. 44

Figura 15 - Montagem das Placas .. 45

Figura 16 - ESP32 DEV KIT V1 ... 46

Figura 17 - Módulo MCP2515 .. 47

Figura 18 - Módulo Sim800L .. 47

Figura 19 - Conversor Buck LM2596 .. 48

Figura 20 - Arquitetura de Montagem para Teste de Hardware 48

Figura 21 - Montagem Inicial do Sistema ... 49

Figura 22 - Solicitação e Resposta de PIDs disponíveis no barramento 50

Figura 23 - Envio e Recebimento de Mensagens no Modo 01 50

Figura 24 - Decodificação do conteúdo das mensagens .. 51

Figura 25 - Veículos Testados ... 52

Figura 26 - Recebimento de Mensagem BLE em aparelho celular 53

Figura 27 - Formatação de mensagem JSON com os dados veiculares 54

Figura 28 - Recebimento de Mensagens no Tópico Assinado 54

Figura 29 - Área de testes delimitada ... 55

Figura 30 - Sistema Instalado na Porta OBD-II .. 56

LISTA DE TABELAS

Tabela 1 - Tabela de Conversão de PIDs .. 21

Tabela 2 - Comparação de Tecnologias de Comunicação 31

Tabela 3 - Comparação de Microcontroladores .. 35

LISTA DE ABREVIATURAS E SIGLAS

2G Second Generation (Segunda Geração)

BLE Bluetooth Low Energy (Bluetooth de Baixa Energia)

CAN Controller Area Network (Rede de Área do Controlador)

CAN ID Controller Area Network Identifier (Identificador da Rede CAN)

CPU Central Processing Unit (Unidade Central de Processamento)

CRC Cyclic Redundancy Check (Verificação de Redundância Cíclica)

ECU Electronic Control Unit (Unidade de Controle Eletrônico)

EPA Environmental Protection Agency (Agência de Proteção Ambiental)

GATT Generic Attribute Profile (Perfil de Atributos Genéricos)

GPRS General Packet Radio Service (Serviço Geral de Pacotes por Rádio)

GSM Global System for Mobile Communications (Sistema Global de

Comunicações Móveis)

I2C Inter-Integrated Circuit (Circuito Inter-integrado)

ID Identification / Identifier (Identificação / Identificador)

IoT Internet of Things (Internet das Coisas)

JSON JavaScript Object Notation (Notação de Objetos JavaScript)

LED Light Emitting Diode (Diodo Emissor de Luz)

LoRaWAN Long Range Wide Area Network (Rede de Longo Alcance e Baixo

Consumo)

MQTT Message Queuing Telemetry Transport (Transporte de Telemetria de

Enfileiramento de Mensagens)

OBD II On-Board Diagnostics II (Diagnóstico a Bordo II)

PCB/PCI Printed Circuit Board (Placa de Circuito Impresso)

PID Parameter ID (Identificador de Parâmetro)

PTH Plated Through-Hole (Placa com Furos Metalizados)

RTOS Real-Time Operating System (Sistema Operacional em Tempo Real)

RX Receive (Recepção / Receptor)

SMD Surface-Mount Device (Dispositivo de Montagem em Superfície)

SPI Serial Peripheral Interface (Interface Periférica Serial)

SSL/TLS Secure Sockets Layer / Transport Layer Security (Camada de Soquetes

Seguros / Camada de Segurança de Transporte)

TX Transmit (Transmissão / Transmissor)

UART Universal Asynchronous Receiver-Transmitter (Receptor-Transmissor

Assíncrono Universal)

VM Virtual Machine (Máquina Virtual)

Wi-Fi Wireless Fidelity

LISTA DE SÍMBOLOS

V Volts

MHz Mega Hertz

MB Megabyte

Mbps Megabits por segundo

GHz Gigahertz

bps Bits por segundo

ºC Graus Celsius

kB Kilobyte

Kbps Kilobits por segundo

Sumário

1 INTRODUÇÃO .. 14

1.1 OBJETIVOS .. 15

1.1.1 Geral ... 15

1.1.2 Específicos .. 16

1.2 ORGANIZAÇÃO DO TRABALHO .. 16

2 FUNDAMENTAÇÃO TEÓRICA .. 17

2.1 SISTEMAS AUTOMOTIVOS ... 17

2.1.1 Controller Area Network (CAN).. 17

2.1.2 Arquitetura de Hardware para interfaceamento da rede CAN 18

2.1.3 On-Board Diagnostics II (OBD-II) .. 19

2.2 SISTEMAS EMBARCADOS .. 22

2.2.1 Microcontroladores .. 22

2.2.2 Sistema Operacional em Tempo Real (RTOS) .. 23

2.3 PROTOCOLOS DE COMUNICAÇÃO E INTERNET DAS COISAS 24

2.3.1 Bluetooth Low Energy ... 24

2.3.2 MQTT .. 25

2.4 METODOLOGIA DE PROJETO EM V ... 26

3 DESENVOLVIMENTO DO TRABALHO ... 28

3.1 PROJETO DO SISTEMA ... 29

3.1.1 Escolha das Tecnologias de Comunicação ... 30

3.1.2 Hospedagem de Serviço em Nuvem ... 32

3.1.3 Seleção de Componentes de Hardware .. 33

3.1.4 Ferramentas de Depuração e Monitoramento ... 36

3.2 PROJETO DETALHADO ... 37

3.2.1 Projeto de Firmware .. 37

3.2.2 Projeto de Hardware .. 42

3.3 IMPLEMENTAÇÃO ... 45

3.3.1 Codificação.. 45

3.3.2 Montagem de Hardware .. 46

3.4 TESTES DE UNIDADE.. 49

3.5 TESTES DE INTEGRAÇÃO .. 52

3.6 TESTES DE SISTEMA .. 56

4 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE 57

5 REFERÊNCIAS ... 59

14

1 INTRODUÇÃO

Impulsionado pela digitalização, o setor automotivo passa por uma

transformação estrutural. A convergência entre conectividade embarcada, sensores e

análise de dados amplia as possibilidades de mobilidade e de gestão de frotas. Nesse

contexto, a telemetria veicular torna-se um componente central, visto que, coleta e

transmite, em tempo real, indicadores operacionais do veículo, sustentando desde o

monitoramento e diagnóstico básicos até aplicações avançadas baseadas em IoT e

aprendizado de máquina (GUBBI, 2013).

A importância desses sistemas vai muito além do simples acompanhamento de

veículos, eles atuam como a base para a mobilidade inteligente, coletando e

transmitindo dados cruciais sobre desempenho do motor, eficiência no consumo de

combustível, hábitos de direção e condições mecânicas (ALAM, 2022). Essas

informações são valiosas não só para proprietários de veículos, mas também para

empresas de transporte, seguradoras, fabricantes e gestores de trânsito urbano

(ZHANG, 2019).

A disponibilidade de dados de telemetria abre amplas oportunidades de

pesquisa em áreas como segurança viária, eficiência energética e planejamento

urbano (LI, 2021). Ao aplicar reconhecimento de padrões e aprendizado de máquina

a esses conjuntos de dados, é possível identificar perfis de condução, mapear fatores

de risco para acidentes, otimizar rotas e até antecipar necessidades de manutenção

preditiva, com impactos diretos em segurança, consumo e tempo de viagem (CHEN,

2020).

A evolução dos sistemas embarcados e da Internet das Coisas para

automóveis mostra um progresso constante nas últimas décadas. A relevância prática

desses sistemas aparece claramente quando olhamos para seus benefícios em

diferentes áreas. Para a segurança no trânsito, a telemetria permite identificar

comportamentos de direção perigosos, detectar problemas mecânicos com

antecedência e até intervir em tempo real para evitar acidentes (VICTOR, 2022). No

aspecto ambiental, o monitoramento preciso do motor e das condições de operação

ajuda a melhorar o consumo de combustível e reduzir a poluição.

15

Economicamente, a telemetria veicular oferece oportunidades reais de reduzir

custos operacionais através de manutenção preventiva, otimização de rotas e gestão

eficiente de frotas. Do ponto de vista tecnológico, esses sistemas representam um

campo cheio de possibilidades para inovação, unindo avanços em computação

embarcada, comunicação sem fio, inteligência artificial e análise de dados (CHEN,

2020). Neste cenário, empresas como CSS Electronics oferecem hardware

especializado, enquanto soluções como Geotab e Sascar dominam o mercado com

plataformas completas. Estes sistemas apresentam custos elevados, arquitetura

fechada e limitada flexibilidade para customizações.

Esta lacuna motiva o desenvolvimento de uma arquitetura aberta que mantém

a confiabilidade do padrão On Board Diagnostics (OBD-II) com custo reduzido,

inserindo-se no contexto de inovação e transformação digital do setor através da

criação de uma arquitetura integrada para capturar, processar e transmitir dados

veiculares. Este trabalho busca demonstrar as possibilidades tecnológicas atuais,

contribuindo para o avanço dos sistemas de telemetria com aplicações práticas e

acessíveis.

1.1 Objetivos

1.1.1 Geral

O principal objetivo deste trabalho é desenvolver um sistema embarcado de baixo

custo, capaz de fornecer dados veiculares estruturados e acessíveis através de

múltiplas plataformas e protocolos de comunicação. O sistema deve incorporar

requisitos de expansibilidade, permitindo a integração futura de novos sensores,

funcionalidades e protocolos de comunicação. Utilizando componentes amplamente

disponíveis no mercado e de custo acessível, este trabalho busca desenvolver uma

plataforma para acesso e compartilhamento de dados veiculares, tornando viável o

uso em diferentes aplicações e segmentos.

16

1.1.2 Específicos

1. Projetar uma arquitetura de sistema modular e expansível: Definir uma

estrutura de tarefas e dispositivos concorrentes, garantindo escalabilidade para

futuras ampliações funcionais.

2. Implementar uma camada robusta de aquisição de dados: Desenvolver

mecanismos para leitura periódica de parâmetros veiculares via barramento

CAN, utilizando a porta OBD-II.

3. Integrar múltiplos protocolos de comunicação: Configurar interfaces

diversificadas para transmissão de dados. Garantir interoperabilidade e

capacidade de adaptação a diferentes cenários de conectividade.

1.2 Organização do Trabalho

O trabalho está organizado em quatro capítulos principais.

No Capítulo 1, são apresentados o contexto e a motivação para o

desenvolvimento do sistema de telemetria veicular, seguidos pelos objetivos gerais e

específicos, e por fim uma visão geral da estrutura do trabalho.

O Capítulo 2 apresenta fundamentação teórica, onde revisam-se os conceitos que

sustentam o projeto. Abordou-se temas relacionados à sistemas automotivos como o

protocolo CAN e o funcionamento do padrão OBD-II, sistemas embarcados como

microcontroladores, o sistema operacional de tempo real RTOS, a comunicação

Bluetooth Low Energy (BLE), o protocolo MQTT, e a metodologia Ciclo V para

projetos.

O Capítulo 3 apresenta o desenvolvimento do Trabalho, onde detalha-se o

acompanhamento da metodologia adotada, abordando a estratégia de seleção de

componentes e meios de comunicação, o projeto de arquitetura do sistema e fluxos

de controle, implementação de ferramentas de codificação e projetos de hardware,

além dos testes e resultados atingidos.

Finalmente, o Capítulo 4 apresenta a Conclusão e Propostas de Continuidade,

onde avalia-se o grau de atendimento dos objetivos, e apresentam-se sugestões para

trabalhos futuros.

17

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Sistemas Automotivos

A eletrônica veicular moderna é composta por uma rede complexa de Electronic

Control Units (ECU) responsáveis por gerenciar funções críticas como injeção de

combustível, freios ABS, airbags e controle de estabilidade. Essas unidades

eletrônicas são distribuídas por todo o automóvel, propiciando uma comunicação

confiável e em tempo real um requisito fundamental para o funcionamento seguro e

eficiente do veículo. Dessa forma, o protocolo CAN surgiu como a solução dominante

para este desafio.

2.1.1 Controller Area Network (CAN)

O Controller Area Network (CAN) é um protocolo de comunicação serial

multimestre, amplamente reconhecido por sua robustez e elevada confiabilidade.

Desenvolvido pela Bosch na década de 1980 para atender às demandas do setor

automotivo, o CAN surgiu como alternativa ao complexo sistema de conexões ponto

a ponto então utilizado. Sua adoção possibilitou a redução significativa do peso, do

custo e da complexidade da fiação veicular, ao mesmo tempo em que assegurou uma

comunicação eficiente e imune a interferências eletromagnéticas, condições comuns

no ambiente automotivo (BOSCH, 1991).

A principal característica do CAN é sua operação baseada em mensagens,

onde a prioridade de transmissão é determinada pelo identificador da mensagem

(CAN ID), e não por um endereço nodal. Isso significa que todas as ECUs na rede

recebem todas as mensagens, cabendo a cada uma decidir, com base no CAN ID, se

a mensagem é relevante para suas operações. Este modelo broadcast simplifica a

adição de novos nós à rede, promovendo escalabilidade e flexibilidade (DAVIS, 2013).

O barramento CAN físico é composto por um par de fios trançados,

denominados CAN_H (Can_High) e CAN_L (Can_Low), que operam de forma

diferencial. Esta configuração oferece alta imunidade a ruídos eletromagnéticos, pois

a interferência afeta ambos os fios igualmente, e o receptor interpreta a diferença de

18

potencial entre eles. Como apresentado na Figura 1, a topologia de barramento requer

a instalação de resistores de terminação (tipicamente 120 Ω) em cada extremo do

barramento para evitar reflexões de sinal e garantir a integridade da comunicação,

conforme ISO 11898-2 (ISO, 2016).

Figura 1 - Barramento CAN

Fonte: (MARINA LACERDA, 2019).

2.1.2 Arquitetura de Hardware para interfaceamento da rede CAN

A implementação prática da comunicação com o barramento CAN veicular requer

mais do que apenas o conhecimento do protocolo. É necessária uma arquitetura de

hardware que faça a interface entre o microcontrolador, que opera em níveis de tensão

de 0V a 3.3V ou 5V, e o barramento CAN diferencial (CAN_H e CAN_L), que opera

em níveis de tensão diferentes e em um ambiente eletricamente ruidoso, como

mostrado na Figura 2 . Esta arquitetura é composta essencialmente por dois

componentes integrados: o Controlador CAN e o Transceptor CAN (ISO, 2016).

Figura 2 - Níveis de Sinal diferenciais CAN

Fonte: (MARINA LACERDA, 2019).

19

O controlador CAN é um circuito integrado que implementa as camadas de Enlace

de Dados e de Controle de Acesso ao Meio do protocolo CAN, conforme definido no

modelo OSI. Sua função principal é aliviar a carga de processamento da CPU principal

ao lidar com as complexidades do protocolo, como a montagem e desmontagem de

quadros, verificação de CRC, arbitragem, e filtragem de mensagens (MICROCHIP,

2019).

O transceptor CAN atua como a interface física entre o controlador CAN e o

barramento de pares trançados do veículo. Ele implementa a camada física do

protocolo, convertendo os sinais lógicos digitais TX e RX do controlador nos sinais

diferenciais do barramento CAN. (NXP, 2016)

2.1.3 On-Board Diagnostics II (OBD-II)

Enquanto o protocolo CAN estabelece o "meio de comunicação" entre as ECUs

de um veículo, o padrão OBD-II define uma "linguagem" padronizada para acessar

dados de diagnóstico e desempenho das ECUs. Trata-se de um sistema de

monitoramento obrigatório regulamentado globalmente, incluindo agências como a

Environmental Protection Agency (EPA) nos EUA e o Conselho Nacional do Meio

Ambiente (CONAMA) no Brasil, cuja adoção tornou-se mandatória para veículos

comercializados no país a partir de 2009. Seu objetivo primordial é o controle de

emissões de poluentes, estabelecendo um protocolo universal de diagnóstico que

permite a interoperabilidade entre diferentes fabricantes e sistemas de inspeção

veicular (EPA, 2020) (CONAMA, 2009).

A normatização OBD-II substituiu uma série de protocolos proprietários e

conectores diversos das montadoras por um único padrão, garantindo que

equipamentos de diagnóstico independentes pudessem se conectar a qualquer

veículo vendido no mercado a partir de 1996 nos EUA e 2001 na Europa, desde que

compatível, para ler dados padronizados, principalmente relacionados ao sistema de

trem de força e às emissões (BOSCH, 2014).

O ponto de acesso físico para o sistema OBD-II é o conector de 16 pinos J1962,

mostrado na Figura 3, geralmente localizado na área do motorista, sob o painel. Este

20

conector fornece acesso à alimentação da bateria (pino 16), ao terra (pinos 4 e 5), e

aos barramentos de comunicação do veículo, incluindo os pinos específicos para CAN

(pino 6: CAN_H e pino 14: CAN_L). A presença do barramento CAN nestes pinos é

obrigatória para veículos leves tornou-se obrigatória no Brasil seguindo o cronograma

estabelecido pela Resolução CONAMA 418/2009 (CONAMA, 2009), além dos

produzidos a partir de 2008 nos EUA e 2001 para veículos a diesel na Europa (ISO,

2016).

Figura 3 - Conector OBD-II

Fonte: o Autor.

A parte principal do padrão OBD-II reside em seu conjunto de Modos de Serviço

e Identificadores de Parâmetros (PIDs). Os modos de serviço, definidos pela SAE

J1979, são categorias de operações de diagnóstico. O modo mais relevante para a

telemetria em tempo real é o Modo 01, que solicita e retorna dados do trem de força

enquanto o veículo está em operação. Dentro de cada modo, os PIDs funcionam como

chaves que desbloqueiam parâmetros específicos do veículo. Cada PID é um código

hexadecimal que, quando solicitado, instrui a ECU a retornar um valor específico

(BOSCH, 2014).

A comunicação via OBD-II segue uma estrutura de requisição-resposta, onde

o dispositivo que deseja obter a informação deve enviar uma mensagem CAN para o

endereço de diagnóstico do veículo. Como mostrado na Figura 4 , a mensagem de

requisição contém o modo de serviço e o PID desejado. A ECU responsável responde

21

com outro frame CAN contendo o modo de serviço, o PID e os dados solicitados, que

devem ser decodificados conforme a fórmula padrão definida para aquele PID, como

o exemplo exibido na Tabela 1. O ID de requisição geralmente segue o padrão 0x7DF

(11 bits) ou 0x18DB33F1 (29 bits).

Figura 4 - Formato de mensagem OBD

Fonte: (RFWIRELESS-WORLD.com).

Tabela 1 - Tabela de Conversão de PIDs

PID
(Hex)

Parâmetro

Fórmula de
Conversão
(Exemplo)

Unidade

0C Rotação do Motor (RPM)
((A * 256) + B)

/ 4
rpm

0D Velocidade do Veículo A km/h

5
Temperatura do Líquido de

Arrefecimento
A - 40 °C

2F
Nível de Combustível no

Tanque
(100 * A) / 255 %

*A: Primeiro byte da resposta; B: Segundo byte da resposta.

Fonte: (SAE, 2021)

22

2.2 Sistemas Embarcados

Sistemas embarcados são sistemas computacionais completos projetados para

desempenhar uma ou poucas funções específicas, com restrições de custo, consumo

energético, tamanho físico e desempenho em tempo real. Diferentemente de um

computador de propósito geral, um sistema embarcado é tipicamente parte de um

dispositivo maior, operando de forma autônoma e sem intervenção humana direta

(LAKHTAR, 2023). No contexto automotivo moderno, dezenas de sistemas

embarcados (ECUs) gerenciam desde o entretenimento até a segurança do veículo

(BOSCH, 2014).

2.2.1 Microcontroladores

Microcontroladores são circuitos integrados que reúnem, em um único chip, todos

os componentes de um computador como unidade central de processamento (CPU),

memória RAM e Flash, e periféricos de entrada/saída (I/O). Essa característica os

torna ideais para sistemas embarcados, oferecendo um equilíbrio entre desempenho,

consumo e custo para aplicações dedicadas (BARR, 2022).

A funcionalidade de um microcontrolador é drasticamente ampliada pelo seu

conjunto de periféricos. Periféricos são circuitos especializados integrados ao chip que

gerenciam a interação com o mundo externo, liberando a CPU para tarefas de

processamento mais complexas (VALDERRÁBANO, 2023).

Entre os periféricos mais comuns e essenciais para aplicações de interação com

o mundo físico, destacam-se:

• Interface Serial Periférica (SPI): Um barramento síncrono de alta velocidade e

full-duplex, utilizado para comunicação com dispositivos próximos. É

caracterizado pelo uso de quatro linhas: SCLK (clock), MOSI (dados do mestre

para o escravo), MISO (dados do escravo para o mestre) e SS/CS (seleção de

escravo). É amplamente usado para conectar sensores, memórias e

controladores de interface.

• Comunicação Serial Assíncrona Universal (UART): Um protocolo de

comunicação serial assíncrono ponto a ponto que utiliza duas linhas: TX

23

(transmissão) e RX (recepção). A comunicação é baseada em um acordo pré-

estabelecido de velocidade (baud rate) entre os dispositivos. É comumente

empregado para comunicação com módulos GSM/GPRS, GPS e para debug

via console serial.

• Inter-Integrated Circuit (I²C): Um barramento serial síncrono multi-mestre, multi-

escravo que utiliza apenas duas linhas bidirecionais: SDA (dados) e SCL

(clock). É ideal para conectar múltiplos dispositivos de baixa velocidade em um

mesmo barramento, como sensores de temperatura, umidade e pressão.

• Conversor Analógico-Digital (ADC): Um periférico crucial que converte tensões

analógicas do mundo real em valores digitais que podem ser processados pela

CPU. Sua resolução é medida em bits, determinando a precisão da leitura.

2.2.2 Sistema Operacional em Tempo Real (RTOS)

Conforme a complexidade do software em sistemas embarcados aumenta,

gerenciar de forma eficiente e confiável múltiplas funções ou tarefas como aquisição

de dados e gerenciamento de comunicação, torna-se um desafio significativo. Esta

abordagem pode levar a problemas de responsividade, bloqueio de funções de baixa

prioridade por outras de alta prioridade e dificuldade em garantir tempos de resposta

previsíveis. Para superar estas limitações, recorre-se a um Sistema Operacional em

Tempo Real.

Um RTOS é um sistema operacional especializado projetado para gerenciar os

recursos de hardware de um microcontrolador e executar aplicações com timing

preciso e previsível. A característica definidora de um RTOS não é sua velocidade,

mas sua capacidade determinística, ou seja, a capacidade de garantir que as

operações sejam realizadas dentro de um intervalo de tempo estritamente definido

(LABROSSE, 2022).

A programação com um RTOS introduz um paradigma diferente, baseado em

concorrência e paralelismo. Seus conceitos mais relevantes para este trabalho

incluem as tarefas que são unidades independentes de execução que encapsulam

uma função específica, por exemplo, tarefa_leitura_can ou tarefa_comunicacao_ble.

24

O RTOS é responsável por simular a execução paralela dessas tarefas em um único

núcleo de processamento.

Dentre as opções disponíveis, o FreeRTOS destaca-se como uma solução

amplamente adotada na indústria, conhecida por sua robustez, portabilidade e licença

de código aberto (AWS, 2023). Seu ecossistema inclui portes para diversos

microcontroladores, incluindo o ESP32, e implementa todos os mecanismos

essenciais de um RTOS.

2.3 Protocolos de Comunicação e Internet das Coisas

A Internet das Coisas (IoT) refere-se a uma infraestrutura composta por sensores,

softwares e demais tecnologias embarcadas, cujo propósito é conectar dispositivos

físicos à internet, possibilitando o monitoramento, a troca e o processamento

distribuído de dados. No contexto automotivo, a IoT viabiliza a concepção de veículos

conectados, ampliando o escopo de funcionalidades disponíveis. Entre as aplicações

mais relevantes destacam-se a manutenção preditiva, a gestão inteligente de frotas,

os serviços baseados em localização e a integração com sistemas de automação

residencial (AL-FUQAHA, 2015).

O sistema desenvolvido neste trabalho insere-se nesse cenário, operando como

um nó IoT de sensoriamento responsável pela coleta de informações de um ativo físico

e pelo seu compartilhamento com plataformas externas. Nesse tipo de arquitetura, a

escolha dos protocolos de comunicação desempenha papel central, pois determina

como os dados serão transmitidos de forma eficiente, segura e confiável entre o

dispositivo e o usuário final.

2.3.1 Bluetooth Low Energy

O Bluetooth Low Energy (BLE) é um protocolo de comunicação sem fio de curto

alcance, parte da especificação Bluetooth 4.0 e posteriores, projetado

especificamente para aplicações que demandam baixo consumo de energia. Diferente

do Bluetooth Clássico, focado em transmissão contínua de dados, como áudio, o BLE

é otimizado para operar em rajadas curtas de transmissão de pequenos pacotes de

25

dados, permanecendo a maior parte do tempo em modo de baixo consumo (Bluetooth

Core Specification Version 5.3, 2023).

O BLE opera sob um modelo cliente-servidor baseado em atributos. Como pode

ser visto na Figura 5 o dispositivo periférico atua como um Servidor Generic Attribute

Profile (GATT) onde hospeda um conjunto de Serviços, que são coleções lógicas de

características. Uma característica é um contêiner para um valor de dado e seus

descritores, que configuram como o dado pode ser acessado ou notificado (NORDIC,

2023).

Figura 5 - Arquitetura BLE

Fonte: (AKB, 2024)

2.3.2 MQTT

O Message Queuing Telemetry Transport (MQTT) é um protocolo de transporte

de mensagens leve, projetado para comunicação eficiente em dispositivos IoT com

recursos computacionais limitados, bem como em redes com largura de banda

reduzida ou latência variável (BANKS, 2019). Baseado no paradigma

publicador/assinante, o MQTT possibilita uma comunicação assíncrona e altamente

escalável entre dispositivos distribuídos.

26

Nesse modelo arquitetural, o cliente responsável pelo envio das mensagens

denominado publicador, permanece desacoplado daqueles que as recebem,

denominados assinantes. Como ilustrado na Figura 6, a interação entre esses

elementos é intermediada por um servidor central denominado broker, o qual gerencia

o roteamento, o armazenamento temporário e o direcionamento das mensagens. Os

clientes podem publicar ou receber informações por meio de tópicos, que representam

canais de comunicação identificados por strings hierárquicas, como por exemplo

/dadosVeiculo (LIGHT, 2017).

Figura 6 - Arquitetura MQTT

Fonte: (GABRIEL, 2023)

2.4 Metodologia de Projeto em V

O desenvolvimento de um sistema embarcado requer uma abordagem sistemática

e metodológica. A adoção de uma metodologia de projeto proporciona um roteiro para

guiar o processo de desenvolvimento, mitigar riscos, gerenciar complexidade e

aumentar as chances de sucesso do projeto (VALDERRÁBANO, 2023).

Uma das metodologias tradicionais amplamente empregadas na engenharia de

sistemas embarcados é o Modelo em V, ou Ciclo de Vida em V. Essa abordagem

destaca a importância da verificação e da validação ao longo de todas as etapas do

desenvolvimento, assegurando que os requisitos sejam rastreados de forma

consistente desde a concepção até os testes finais. Conforme ilustrado na Figura 7, o

27

modelo organiza-se em duas fases que convergem para a implementação, assumindo

a forma da letra “V”: no lado esquerdo, encontram-se as atividades de definição de

requisitos e elaboração do projeto; no vértice, é realizada a implementação; e no lado

direito estão as etapas de integração, testes e validação. Cada fase de teste

corresponde diretamente a uma fase de especificação, garantindo a coerência entre

o que foi projetado e o que é efetivamente entregue.

A metodologia se inicia com a Definição e Análise de Requisitos, onde são

estabelecidas de forma clara e documentada as funcionalidades que o sistema deve

executar, suas restrições e seu desempenho esperado. Em seguida, avança-se para

o Projeto de arquitetura do sistema, onde o sistema global é decomposto em

subsistemas constituintes de hardware e software, com a definição das interfaces

entre eles.

A metodologia continua no projeto detalhado de software/firmware e hardware,

onde a arquitetura de software é definida em minúcias, incluindo a modularização, o

diagrama de tarefas concorrentes sob o FreeRTOS, o formato das estruturas de dados

e os algoritmos de comunicação, enquanto a arquitetura de hardware é especificada

através da seleção de componentes, diagramas esquemáticos e definição de

interfaces físicas.

O fundo do V representa a fase de Implementação ou Codificação. É nesta

etapa que o projeto detalhado é traduzido em código-fonte, soldagem de componentes

e montagem do hardware. As decisões e especificações definidas no lado esquerdo

do V são materializadas em software e hardware funcionais.

O lado direito se inicia com os testes de unidade, nos quais cada módulo ou

função de software é testado individualmente de forma isolada. Superada essa etapa,

realizam-se os testes de integração, onde os módulos previamente testados são

combinados progressivamente e suas interações são validadas. Com o sistema

integrado, executa-se o teste de sistema, que valida o comportamento do produto

completo contra todos os requisitos definidos inicialmente, envolvendo testes em

bancada e em ambiente real. Finalmente, o ciclo se encerra com o teste de aceitação,

que é a validação final perante o usuário ou cliente para confirmação de que o sistema

atende plenamente às suas necessidades e expectativas (SOMMERVILLE, 2019).

28

Figura 7 - Ciclo de Projeto em V

Fonte: O autor.

3 DESENVOLVIMENTO DO TRABALHO

Este capítulo detalha o processo de desenvolvimento do sistema de telemetria

veicular, seguindo uma adaptação da metodologia em V. A partir dos objetivos e

requisitos do sistema definidos no Capítulo 1, são apresentados a arquitetura de

hardware e software projetada para atendê-los, a implementação prática e, por fim, a

estratégia de testes e validação.

29

3.1 Projeto do Sistema

Com base nos requisitos estabelecidos no tópico 1.1, procedeu-se com a etapa

de projeto de arquitetura do sistema, onde foram definidos a arquitetura de hardware,

Figura 8, e a arquitetura de comunicação necessária para implementar as

funcionalidades especificadas, Figura 9.

Figura 8 - Arquitetura de Hardware

Fonte: O autor.

30

Figura 9 - Arquitetura de Comunicação

Fonte: O autor.

3.1.1 Escolha das Tecnologias de Comunicação

Para atender ao requisito de transmissão remota de dados, avaliou-se soluções

baseadas em tecnologias como LoRa, Sigfox e redes celulares, os parâmetros estão

resumidos na Tabela 2.

31

Tabela 2 - Comparação de Tecnologias de Comunicação

Tecnologia Alcance
Taxa de
Dados

Consumo
Energético

Custo de
Implantação

Custo
Operacional

GSM/GPRS Nacional
~50-100

kbps
Moderado-Alto Baixo Moderado

LTE-M/NB-IoT Nacional
~100-300

kbps
Baixo Moderado-Alto

Baixo-
Moderado

LoRaWAN Regional
~0.3-50

kbps
Muito Baixo Moderado Baixo

Sigfox Nacional ~100 bps Muito Baixo Baixo-Moderado Por mensagem

Wi-Fi Local
~10-100

Mbps
Alto Muito Baixo Baixo

Bluetooth
(BLE)

Local ~1 Mbps Muito Baixo Baixo Nulo

Fonte: O autor.

A seguir uma breve analise de adequação das tecnologias de comunicação

elencadas na Tabela 2.

A tecnologia LoRaWAN destaca-se por seu alcance de quilômetros em área

rural e consumo energético extremamente reduzido, sendo ideal para sensores

estáticos com transmissão esporádica de dados. Contudo, sua arquitetura baseada

em gateways fixos cria uma dependência crítica da existência de infraestrutura de

cobertura na região de operação do veículo.

A rede Sigfox opera em banda estreita e oferece excelente eficiência energética

para transmissão de pequenos pacotes de dados. Similarmente ao LoRaWAN, sua

viabilidade está condicionada à disponibilidade de cobertura na área de operação.

Apesar de possuir abrangência nacional, sua cobertura é inferior à rede GSM, além

de operar em modelo de negócio baseado no número de mensagens transmitidas, o

que poderia inviabilizar economicamente o envio contínuo de dados telemáticos

(MOUNA, 2022).

O Wi-Fi apresenta limitações críticas que o tornam inadequado para o cenário

proposto. A tecnologia depende inteiramente da disponibilidade de redes externas e

da inserção de credenciais de acesso para funcionar, o que é impraticável durante o

deslocamento do veículo ou em locais sem infraestrutura preexistente (AL-FUQAHA,

2015).

32

As tecnologias LTE-M (Long Term Evolution for Machines) e NB-IoT

(Narrowband IoT) representam a evolução das redes celulares para aplicações de IoT.

Oferecem vantagens significativas em consumo energético quando comparadas ao

GSM/GPRS tradicional, além de maior penetração de sinal em ambientes internos e

subterrâneos. Entretanto, o custo dos módulos especializados é substancialmente

superior ao dos módulos GSM/GPRS, impactando negativamente o custo total da

solução (RATAJ, 2022).

 Dessa forma, diante da análise realizada, a tecnologia GSM/GPRS mostrou-

se como a opção mais adequada ao projeto em sua fase atual devido a fatores como

a cobertura geográfica, volume de dados e custo operacional do sistema de telemetria

veicular proposto. É necessário destacar que a rede GSM/2G ainda mantém uma

ampla cobertura no território nacional, mas esta infraestrutura está em processo

progressivo de desativação pelas operadoras. Assim, a implementação adotada utiliza

módulo SIM800L comunicando-se com o microcontrolador principal via interface

UART, empregando protocolo de comandos AT para estabelecimento de conexão e

transmissão de dados através de conexões TCP/IP (WIRATAMA, 2021).

Em complemento, o Bluetooth Low Energy (BLE) foi integrado ao sistema para

prover conectividade de curto alcance com dispositivos móveis. Diferente das

soluções de longo alcance, o BLE opera em uma faixa de até dezenas de metros com

consumo energético extremamente reduzido, sendo ideal para cenários de

configuração local.

3.1.2 Hospedagem de Serviço em Nuvem

Em um sistema de telemetria móvel, a escolha da infraestrutura para

hospedagem do broker MQTT é decisiva para garantir uma comunicação confiável e

escalável. Dispositivos móveis, como veículos rastreados ou sensores em trânsito,

operam em redes com endereços IP dinâmicos e conexões instáveis, o que

impossibilita que atuem como servidores fixos. Essa limitação exige um ponto central

permanente na internet, capaz de agregar e gerenciar o fluxo de dados de fontes

distribuídas e geograficamente dispersas. Sem um endpoint estável, a comunicação

em tempo real se tornaria inviável, comprometendo todo o funcionamento do sistema.

33

Nesse contexto, uma máquina virtual (VM) em cloud, como as oferecidas pela

DigitalOcean, Amazon Web Service (AWS), Microsoft Azure ou Google Cloud, surge

como uma boa solução técnica. Ao provisionar uma VM, obtém-se um endereço IP

público fixo e recursos computacionais dedicados, criando um hub sempre acessível

para onde todos os dispositivos móveis direcionam seus dados. Essa centralização

assegura alta disponibilidade, mesmo com flutuações na conectividade dos

dispositivos, e permite o uso de mecanismos robustos de segurança, como firewalls

configuráveis e autenticação por chave. Além disso, a possibilidade de aumentar CPU,

RAM ou armazenamento sob demanda, torna a máquina virtual adequada para

cenários de crescimento progressivo da frota ou do volume de dados. Entretanto, esta

abordagem apresenta a desvantagem do custo operacional contínuo, que pode tornar-

se significativo conforme a escala do projeto aumenta, especialmente para aplicações

com grande número de dispositivos transmitindo dados constantemente.

Portanto, a escolha da DigitalOcean como provedor em nuvem para hospedar

o broker MQTT foi motivada não apenas por seus atributos técnicos como

simplicidade, custo acessível e desempenho estável, mas também pela grande

documentação e exemplos práticos disponíveis para implementações similares.

3.1.3 Seleção de Componentes de Hardware

A seleção dos componentes de hardware foi orientada pelos requisitos

previamente estabelecidos, priorizando o custo-benefício, a disponibilidade no

mercado nacional, a robustez para o ambiente automotivo e a adequação técnica às

funcionalidades do sistema.

34

3.1.3.1 Seleção do Microcontrolador

A análise para a escolha do microcontrolador central, mostrado na Tabela 3,

considerou plataformas amplamente utilizadas, como Arduino Uno (baseado no

ATmega328P), STM32 (família ARM Cortex-M) e ESP32.

O Arduino Uno, embora amplamente difundido devido ao seu baixo custo e ao

vasto ecossistema de desenvolvimento, apresenta limitações significativas de

memória, apenas 2 KB de RAM e de capacidade de processamento, baseada em uma

arquitetura de 8 bits operando com um clock de apenas 16 MHz. Tais restrições o

tornam inadequado para aplicações que demandam execução de um sistema

operacional de tempo real e gerenciamento concorrente de múltiplas pilhas de

comunicação (ARDUINO, 2023).

Os microcontroladores da família STM32, por sua vez, oferecem desempenho

superior, ampla variedade de periféricos avançados e, em algumas variantes,

controlador CAN integrado. Porém, a necessidade de módulos adicionais para prover

conectividade sem fio acarretaria maior complexidade de integração, aumento no

consumo energético e elevação do custo total da solução (STMICROELECTRONICS,

2022).

Diante desse cenário, o ESP32 foi selecionado por apresentar o melhor

equilíbrio entre desempenho, custo e funcionalidades integradas. Seu processamento

em 32 bits, aliado à arquitetura dual-core, garante recursos suficientes para a

execução do FreeRTOS e para o gerenciamento eficiente de tarefas concorrentes,

como aquisição e transmissão de dados (ESPRESSIF, 2023). Além disso, a

integração nativa de Wi-Fi e Bluetooth Low Energy (BLE) elimina a necessidade de

módulos externos, simplificando o projeto de hardware e reduzindo custos.

35

Tabela 3 - Comparação de Microcontroladores

Característica

Arduino Uno
(ATmega328P)

STM32F103C8T6
(ARM Cortex-M3)

ESP32-WROOM-
32 (Xtensa LX6)

Melhor Caso de
Uso

Arquitetura AVR 8-bit
ARM Cortex-M3 32-

bit

Xtensa LX6 32-bit
(Single/Dual-

Core) -

Freq. Clock 16 MHz 72 MHz 160 ou 240 MHz ESP32

Memória Flash 32 KB 64 KB 4 MB

ESP32
(Armazenamento de

código)

Memória RAM 2 KB 20 KB 520 KB

ESP32 (Manipulação
de dados)

Conectividade
Nativa UART, I²C, SPI

UART, I²C, SPI, I²S,
USB

Wi-Fi,
Bluetooth/BLE,
UART, I²C, SPI,

I²S

ESP32
(Conectividade sem

fio)

Periféricos
Avançados ADC 10-bit

ADC 12-bit, DAC,
DMA, CAN

ADC 12-bit, DAC,
DMA

STM32 (Controle
preciso e interface

CAN nativa)

Custo (Aprox.) Médio (R$ 30-40) Baixo (R$ 20-30) Médio (R$ 30-40)
STM32 (Custo

inicial)

Facilidade de
Desenvolvimento

Excelente
(Arduino IDE)

Moderada
(STM32CubeIDE,

Mbed OS)
Boa (Arduino IDE

ou ESP-IDF)

Arduino/ESP32
(Prototipagem

rápida)

Ecossistema

Maior número de
bibliotecas e

tutoriais

Robusto, mas mais
complexo

Muito vasto e em
crescimento

Arduino
(Simplicidade e
comunidade)

Fonte: O autor

3.1.3.2 Seleção de Controlador CAN

Para a interface com o barramento veicular, optou-se pela solução consolidada

baseada no controlador CAN MCP2515 e no transceptor TJA1050. O controlador

MCP2515 comunica-se com o microcontrolador através de interface SPI, gerenciando

autonomamente as camadas de enlace de dados do protocolo CAN. O transceptor

TJA1050 desempenha função crucial na interface física, convertendo os sinais lógicos

do controlador para os níveis diferenciais do barramento CAN e providenciando

isolamento elétrico e proteção contra transientes de tensão.

36

3.1.4 Ferramentas de Depuração e Monitoramento

Para garantir a robustez e confiabilidade do sistema, devem ser implementadas

ferramentas de depuração e monitoramento que permitam verificar o funcionamento

em tempo real e diagnosticar possíveis falhas. A escolha das ferramentas considerou

a simplicidade de implementação, o baixo custo e a eficácia na identificação de

problemas durante as fases de desenvolvimento e operação.

A principal ferramenta de depuração adotada foi a comunicação serial, utilizada

para envio de mensagens de depuração e informações de status do sistema. Através

do monitor serial, foi possível acompanhar o fluxo de execução das tarefas, verificar

valores de variáveis críticas e identificar eventuais erros nas operações de

comunicação. A implementação incluiu diferentes níveis de mensagens de depuração

como informacional e erro. Adicionalmente, foram implementados três LEDs

indicadores com funções específicas de monitoramento visual:

• LED de Alimentação: Indicador de alimentação do sistema, permanece

continuamente aceso quando o sistema está devidamente energizado e

operacional.

• LED de Status CAN: Atua como indicador de funcionamento do barramento

CAN. Em condições normais de operação, pisca periodicamente indicando a

recepção de mensagens do veículo. Em situações de erro na comunicação

CAN (perda de conexão, falha na decodificação de mensagens), permanece

aceso continuamente, sinalizando a necessidade de intervenção.

• LED de Atividade BLE: Indicador de comunicação Bluetooth Low Energy, pisca

sempre que uma mensagem é transmitida via protocolo BLE, permitindo

verificar visualmente a atividade de comunicação com dispositivos móveis.

37

3.2 Projeto Detalhado

3.2.1 Projeto de Firmware

O firmware corresponde ao software embarcado que atua diretamente sobre o

hardware, implementando as funcionalidades essenciais do dispositivo e

coordenando o funcionamento de seus periféricos. No sistema desenvolvido, o fluxo

operacional do firmware, ilustrado na Figura 10, inicia-se com a configuração e

inicialização dos módulos e interfaces de comunicação, progredindo para a execução

concorrente de tarefas que realizam a aquisição, o processamento e o envio dos

dados coletados.

Uma alternativa comum em sistemas embarcados é a abordagem bare metal,

na qual não há um sistema operacional, todo o controle de tempo e lógica de execução

depende exclusivamente do código da aplicação, frequentemente estruturado em

laços principais e rotinas de interrupção. Embora seja apropriada para aplicações

simples e com número reduzido de eventos concorrentes, essa abordagem tende a

tornar-se complexa e menos previsível quando a aplicação exige múltiplas tarefas de

forma simultânea e com diferentes prioridades.

Diante disso, optou-se pelo uso do FreeRTOS, um sistema operacional de

tempo real que permite estruturar o firmware em tarefas independentes, com

escalonamento preemptivo baseado em prioridades. Essa característica garante que

rotinas críticas, tais como, a leitura do barramento CAN mantenham comportamento

determinístico e não sejam interrompidas por operações secundárias. Além disso, a

organização modular do código facilita a manutenção, a depuração e a expansão

futura do sistema.

A arquitetura dual-core da ESP32 foi estrategicamente utilizada para otimizar o

desempenho do sistema, alocando a tarefa crítica de aquisição CAN no Core 1

(Application Core) para garantir temporalidade precisa e baixa latência, enquanto a

tarefa de comunicação BLE foi designada ao Core 0 (Protocol Core) para aproveitar

as dependências intrínsecas da função Bluetooth da fabricante Espressif. A tarefa de

comunicação MQTT opera através de comandos AT para controle do modem

GSM/GPRS, compartilha o Core 1 sem competição significativa por recursos.

38

Figura 10 - Arquitetura de Firmware

Fonte: O autor.

39

3.2.1.1 Rotina de Inicialização

1. Inicialização da Serial (UART): Configura a portas e baud rate da comunicação

serial para depuração e troca de mensagens com o módulo GSM.

2. Inicialização da comunicação com controlador CAN: Configura o controlador

CAN MCP2515 via SPI e o inicializa para operação no barramento veicular.

3. Configuração de Filtros e Máscaras CAN: Ajusta os filtros de hardware do

controlador CAN para aceitar apenas as mensagens com IDs relevantes,

ignorando o tráfego irrelevante do barramento.

4. Inicialização do Bluetooth Low Energy (BLE): Configura o servidor BLE,

definindo o serviço principal e suas características para permitir comunicação

sem fio com um aplicativo.

3.2.1.2 Tarefa CAN

1. Verificação de ID: Verifica o tipo de protocolo CAN utilizado pelo veículo

(Padrão ou Estendido) para ajustar a configuração do controlador CAN e o

formato das mensagens de requisição.

2. Solicita os PIDs Disponíveis no OBD-II: Envia mensagens de requisição OBD-

II para descobrir quais parâmetros estão disponíveis para consulta no veículo.

3. Processamento de Disponibilidade: Processa a resposta da ECU, convertendo

os dados hexadecimais recebidos em uma máscara binária onde cada bit

representa a disponibilidade (1) ou não (0) de um PID específico.

4. Inicialização dos temporizadores das mensagens: Configura temporizadores

individuais para cada PID disponível, definindo períodos de solicitação

40

personalizados com base na taxa de atualização necessária para cada tipo de

dado (ex: RPM com atualização mais frequente que temperatura).

5. Fila de Solicitação: Preenche a fila com os PID solicitados para aquisição.

6. Envio de mensagem: Rotina que monta e envia mensagens de requisição OBD-

II para o barramento CAN, utilizando o formato correto (Padrão ou Estendido)

conforme detectado.

7. Tratamento de Mensagem CAN Recebida: Acionada por interrupção, verifica o

ID da mensagem recebida, extrai o conteúdo da mensagem recebida.

8. Preenchimento da estrutura de dados: Decodifica os dados hexadecimais da

mensagem de resposta conforme a fórmula definida pelo padrão OBD-II para

o PID em questão e atualiza uma estrutura global de dados do veículo,

compartilhada com outras tarefas do sistema.

3.2.1.3 Tarefa MQTT

1. Inicialização do Modem GSM/GPRS: Verifica as informações básicas do

módulo e do estado do cartão SIM. Configura parâmetros de acesso

específicos de cada operadora, incluindo o ponto de acesso (APN) e as

credenciais de autenticação correspondentes.

2. Configura servidor MQTT: Estabelece conexão GPRS para obter conectividade

com a Internet, configura parâmetros de conexão com o broker MQTT

(endereço do servidor, porta, credenciais de acesso e tópicos).

3. Leitura de Dados Locais: Acessa a estrutura global de dados para obter os

valores mais recentes dos parâmetros capturados do barramento CAN.

41

4. Atualização de Mensagem JSON: Converte os dados telemétricos em um

formato JSON. Exemplo: {"rpm": 2100, "vel": 85, "temp": 92}.

5. Publicação MQTT: Envia a mensagem JSON para o broker MQTT no tópico

configurado.

3.2.1.4 Tarefa BLE

1. Inicialização do Servidor BLE: Configuração do servidor BLE com os serviços

e características GATT definidos para a aplicação. Definição das propriedades

das características (leitura, escrita, notificação).

2. Monitoramento de Conexões: Verificação constante do estado das conexões

BLE. Gerenciamento de eventos de conexão e desconexão de clientes.

3. Atualização de Mensagem JSON: Acesso à estrutura global de dados do

veículo para obter valores atualizados. Atualização dos valores das

características GATT com novos dados telemétricos.

4. Envio de Notificações: Envio de notificações para todos os clientes inscritos

quando as características GATT são atualizadas com novos dados.

5. Tratamento de Leitura: Resposta a solicitações de leitura das características

GATT por dispositivos clientes. Retorno dos valores atuais dos parâmetros

veiculares.

6. Tratamento de Escrita: Processamento de comandos recebidos via

características GATT com permissão de escrita.

42

3.2.2 Projeto de Hardware

Baseado nos componentes escolhidos em 3.1.3, o projeto da placa de circuito

impresso (PCI) foi desenvolvido no software KiCad, uma plataforma de

desenvolvimento gratuita de fácil utilização e grande número de usuários. Foi adotada

uma arquitetura de sistema modular em duas camadas, buscando proporcionar maior

flexibilidade para futuras expansões, permitindo que diferentes aplicações possam

utilizar e processar os dados veiculares adquiridos.

A arquitetura da PCI foi organizada em dois blocos principais:

Placa base que é responsável pela execução central do sistema, integrando o

microcontrolador ESP32, a interface CAN e os circuitos essenciais de alimentação e

proteção e a Placa modular que é dedicada à comunicação através da rede móvel

celular, contendo o módulo SIM800L e dispondo de conectores compatíveis com

protocolos como I²C e SPI, possibilitando a integração com módulos de comunicação

alternativos ou sensores adicionais conforme a necessidade da aplicação.

A Figura 11 mostra a arquitetura física projetada, dando como sugestões

alguns componentes complementares que podem ser utilizados futuramente como:

GPS para aplicações de rastreamento, acelerômetros para análises de impacto e

comportamento do motorista, e Cartão SD para aplicações de armazenamento local

de dados.

43

Figura 11 - Arquitetura Física de Hardware

Fonte: O autor.

Para o sistema de alimentação, foram implementados dois conversores buck

LM2596 independentes. O primeiro fornece 5V regulados para a placa principal,

enquanto o segundo é dedicado exclusivamente ao módulo SIM800L fornecendo 4.4V

ou 5V, a depender do modelo, garantindo estabilidade da alimentação do módulo

Sim800L. Esta separação previne interferências e queda de tensão durante os picos

de corrente característicos das transmissões GSM.

Com o objetivo de minimizar a área ocupada pela eletrônica, a placa base foi

projetada utilizando componentes do tipo Surface-Mount Device (SMD), ou seja,

dispositivos montados diretamente sobre a superfície da placa sem a necessidade de

perfurações, o que favorece maior compacidade e melhor desempenho elétrico. A

Figura 12 e Figura 13 ilustram o resultado dessa abordagem.

Já a subplaca modular foi desenvolvida empregando componentes Plated

Through-Hole (PTH), que utilizam terminais inseridos em furos metalizados da placa.

Esse tipo de montagem proporciona maior robustez mecânica e facilita a substituição

de módulos durante testes e experimentações, como mostrado na Figura 14. A Figura

15 apresenta o arranjo físico planejado para o conjunto das placas.

44

Figura 12 - Parte Superior da Placa Base

Fonte: O autor.

Figura 13 - Parte Inferior da Placa Base

Fonte: O autor.

Figura 14 - Placa Modular

Fonte: O autor.

45

Figura 15 - Montagem das Placas

Fonte: O autor.

3.3 Implementação

3.3.1 Codificação

O código-fonte foi estruturado em módulos especializados, seguindo uma

abordagem de design orientado a objetos mesmo utilizando linguagem C/C++. A

organização em pastas proporcionou separação clara de responsabilidades:

• Módulo CAN: Responsável por toda a comunicação com o barramento veicular

o CanMsgHandling.hpp: Implementa a máquina de estados para

processamento de mensagens OBD-II e cálculo de valores físicos

mediante fórmulas específicas de cada PID

o CollectedDataStruct.h: Define a estrutura de dados global para

armazenamento dos valores convertidos, permitindo acesso thread-safe

pelas demais tarefas

o Definitions.h: Centraliza todos os “defines”, constantes e mapeamentos

de PIDs e periféricos

o CANFunctions.cpp/h: Contém as funções de baixo nível para controle do

MCP2515, formatação e envio de mensagens

• Módulo Circular Buffer: Implementa o buffer circular para gestão da fila de PIDs

a serem processados, incluindo verificação de disponibilidade no veículo.

46

• Módulo TickerISR: Utiliza a biblioteca Ticker para gerar interrupções

temporizadas que disparam a aquisição dos PIDs em diferentes intervalos.

• Módulo GPRS: Gerencia toda a comunicação com o módulo SIM800L,

incluindo inicialização, comandos AT e protocolo de comunicação

A seleção das bibliotecas e do framework de desenvolvimento foi realizada com

base nos critérios de documentação e suporte da comunidade. Foi escolhido trabalhar

pelo framework Arduino, em detrimento do ESP-IDF nativo, devido à maior

simplicidade de desenvolvimento, vasto ecossistema de bibliotecas compatíveis.

3.3.2 Montagem de Hardware

Para realização de testes, a implementação física do sistema utilizou uma placa

perfurada para a montagem dos componentes principais: a placa de desenvolvimento

ESP32 DevKit V1, o módulo MCP2515 para interface CAN e o módulo SIM800L para

comunicação GSM (Figura 16, Figura 17 e Figura 18, respectivamente).

Figura 16 - ESP32 DEV KIT V1

Fonte: O Autor.

47

Figura 17 - Módulo MCP2515

Fonte: O Autor.

Figura 18 - Módulo Sim800L

Fonte: o Autor

A alimentação do sistema foi baseada no regulador buck LM2596, Figura 19,

responsável por converter os 12V da bateria do veículo para 5V, seguido por um

regulador linear AMS1117-3.3V para fornecer a tensão de 3,3V requerida pelo

ESP32.

48

Figura 19 - Conversor Buck LM2596

Fonte: (Mercado Livre)

Foi adaptado um cabo com conector OBD-II, que forneceu tanto acesso ao

barramento CAN quanto à alimentação de 12V, permitindo uma instalação

simplificada. A Figura 20 mostra a arquitetura de montagem executada, já a Figura 21

mostra a montagem dos componentes selecionados.

Figura 20 - Arquitetura de Montagem para Teste de Hardware

Fonte: O autor.

49

Figura 21 - Montagem Inicial do Sistema

Fonte: O autor.

3.4 Testes de Unidade

Seguindo o lado direito do ciclo V, inicialmente, foi utilizado o hardware montado

em placa perfurada e módulos comerciais, sendo a PCI projetada no Kicad utilizada

posteriormente. Nos testes de unidade, cada tarefa desenvolvida foi testada de forma

individual com seu componente de hardware. Realizou-se o teste de comunicação

com o veículo, observando o envio e recebimento de mensagens utilizando a porta

OBD-II.

A Figura 22 mostra o resultado do teste de detecção de PIDs e a Figura 23

mostra a resposta à solicitação de mensagens no Modo 01. Já na Figura 24 é possível

observar a decodificação do conteúdo das mensagens recebidas. Esses testes foram

realizados em dois automóveis, um Jeep Renegade 2015 e um Fiat Pulse 2023, Figura

25, sendo obtidos resultados positivos em ambos.

50

Figura 22 - Solicitação e Resposta de PIDs disponíveis no barramento

Fonte: O autor.

Figura 23 - Envio e Recebimento de Mensagens no Modo 01

Fonte: O autor.

51

Figura 24 - Decodificação do conteúdo das mensagens

Fonte: O autor.

52

Figura 25 - Veículos Testados

Fonte: O autor.

3.5 Testes de Integração

Nos testes de integração, os módulos previamente testados foram combinados,

sendo testadas as Tarefas CAN + BLE e CAN + MQTT. A comunicação BLE foi

testada utilizando o aplicativo nRF Connect (disponível na Play Store) em um

smartphone Android. Como mostra a Figura 26, o dispositivo móvel conseguiu

identificar e conectar-se ao servidor BLE do ESP32, assinando a característica

responsável pelos dados OBD-II, enviados no formato exibido na Figura 27. Os

valores transmitidos foram exibidos em tempo real no aplicativo, comprovando a

eficácia da comunicação sem fio e a estruturação correta do pacote de dados.

53

Figura 26 - Recebimento de Mensagem BLE em aparelho celular

Fonte: O autor.

54

Figura 27 - Formatação de mensagem JSON com os dados veiculares

Fonte: O autor.

Logo após, avaliou-se o recebimento e a publicação dos dados no broker

MQTT hospedado na nuvem. Como mostrado na Figura 28, foi utilizado o programa

MQTTBox para monitorar as mensagens no tópico assinado. É necessário destacar

que foi embarcado no sistema um SIM card da operadora de telefonia CLARO, sendo

assim, espera-se que o sistema apenas envie dados dentro da área de cobertura da

operadora. Devido à restrições de utilização dos veículos fora do limites da

Universidade Federal de Pernambuco, o teste foi realizado dentro do espaço da

Universidade, Figura 29.

Figura 28 - Recebimento de Mensagens no Tópico Assinado

Fonte: O autor.

55

Figura 29 - Área de testes delimitada

Fonte: O autor.

56

3.6 Testes de Sistema

Com o sistema completo, foi executado o teste de sistema com a PCI projetada,

Figura 30, averiguando a execução de todas as tarefas paralelamente. Como

esperado, o funcionamento do sistema atendeu as expectativas.

Figura 30 - Sistema Instalado na Porta OBD-II

Fonte: O autor.

57

4 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE

Este trabalho apresentou uma abordagem metodológica completa para o

desenvolvimento de sistemas embarcados aplicados à telemetria veicular,

abrangendo desde a seleção de componentes até a arquitetura de firmware. Os testes

realizados demonstraram que o sistema é capaz de realizar a captura, tratamento e

transmissão de dados veiculares. A decodificação OBD-II mostrou-se precisa, a

comunicação BLE estável e a integração com MQTT eficaz.

Esses resultados validam a arquitetura proposta e abrem caminho para

expansões futuras que podem ser exploradas em continuidades deste trabalho, como:

• Implementação de Armazenamento de Dados Locais: Para aumentar a

confiabilidade em cenários com intermitência de conexão, pode-se

implementar um banco de dados local com a utilização de cartões SD. Isso

permitiria o armazenamento temporário dos dados em caso de perda de

conectividade com a nuvem, com sincronização posterior assim que a

comunicação for restaurada.

• Integração de Serviços de Localização em Tempo Real: A fusão de dados de

um GPS com os parâmetros OBD-II possibilitaria análises mais ricas, como

monitoramento de rotas, detecção de frenagens bruscas ou acelerações

excessivas.

• Desenvolvimento de Dashboard Analítico Personalizado: A criação de uma

interface poderia exibir históricos de telemetria, relatórios de consumo de

combustível, eficiência do motor e demais métricas relevantes.

• Aprimoramentos de Segurança: A adoção de certificados SSL/TLS para

criptografia end-to-end na comunicação MQTT, além da implementação de

autenticação mais robusta entre o dispositivo móvel e o broker, são essenciais

para proteger os dados contra interceptações ou acessos não autorizados.

58

• Testes em Escala e em Condições Reais Diversas: Validar o sistema em uma

frota de veículos, sob diferentes condições de tráfego, clima e conectividade,

será crucial para refinar a estabilidade e o desempenho da solução em

produção.

59

5 REFERÊNCIAS

AKB. What is Bluetooth Low Energy (BLE)? Everything You Need to Know.
campuscomponent, 2024. Disponível em:
<https://www.campuscomponent.com/blogs/post/what-is-ble-bluetooth-low-energy-
explained?srsltid=AfmBOoqJxYaWty27p-
2MFQYBPP2N1cpUDbJA91m8VnnaCEl54zLVwNbJ>. Acesso em: 05 ago. 25.

ALAM, M. M. A Survey on Automotive Telematics: Past, Present, and Future. 8. ed.

AL-FUQAHA, A. Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications. 4. ed.

ARDUINO. Arduino Uno Rev3 Technical Specifications. [S.l.]. 2023.

AWS. FreeRTOS Reference Manual. AMAZON WEB SERVICES. [S.l.]. 2023.

BANKS, A. MQTT Version 5.0. OASIS Standard. [S.l.]. 2019.

BARR, M. Programming Embedded Systems: With C and GNU Development Tools.

Bluetooth Core Specification Version 5.3. BLUETOOTH SIG. [S.l.]. 2023.

BOSCH. CAN Specification Version 2.0. [S.l.]. 1991.

BOSCH. Automotive Electrics and Automotive Electronics.

BOSCH, Robert. Diagnostic Systems for OBD-II. Bosch. [S.l.]. 2014.

CHEN, L. Machine Learning for Vehicle Telematics: A Review.

CONAMA. Resolução CONAMA. Conselho Nacional do Meio Ambiente. [S.l.]. 2009. (nº
418).

DAVIS, R. A Review of Controller Area Network. Computing & Control Engineering Journal.
Computing & Control Engineering Journal, 2013.

DEVMEDIA. Ciclos de Vida do Software. devmedia.com, 2011. Disponível em:
<https://www.devmedia.com.br/ciclos-de-vida-do-software/21099>.

EPA. OBD (On-Board Diagnostics) Regulations and Requirements. Environmental
Protection Agency. Washington, DC: United States. 2020.

ESPRESSIF. ESP32-WROOM-32. [S.l.]. 2019.

ESPRESSIF. ESP32 Series Datasheet Version 4.6. [S.l.]. 2023.

GABRIEL, Leonardo E. L. MQTT. ufrj.br, 2023. Disponível em:
<https://www.gta.ufrj.br/ensino/eel878/redes1-2023-1/trabalhos/Grupo01>. Acesso em: 05
ago. 2025.

GUBBI, J. Internet of Things (IoT): A vision, architectural elements, and future directions. 7.
ed.

ISO. ISO 11898-2:2016. Road vehicles — Controller area network (CAN). [S.l.]. 2016.

ISO. ISO 15031-3:2016. Road vehicles — Communication between vehicle and external
equipment for emissions-related diagnostics. International Organization for
Standardization. [S.l.]. 2016.

LABROSSE, J. J. MicroC/OS-II: The Real-Time Kernel.

LAKHTAR, M. Embedded Systems: Design and Applications.

60

LI. Big Data Analytics in Intelligent Transportation Systems: A Survey. 6. ed.

LIGHT, R. A. Introduction to MQTT for IoT. INTERNATIONAL CONFERENCE ON

INTERNET OF THINGS. [S.l.], p. 1-6. 2017.

MARINA LACERDA, Tamine A. Y. N. UFRJ. ufrj.br, 2019. Disponível em:
<https://www.gta.ufrj.br/ensino/eel878/redes1-2019-1/vf/can/arquitetura>. Acesso em: 01
ago. 2025.

MICROCHIP. AN713: Controller Area Network (CAN) Basics. Microchip Technology Inc.
[S.l.]. 2019.

MOUNA, M. Performance Analysis of Sigfox Technology for IoT Applications. IEEE.
[S.l.]. 2022.

NIKOLOV, Neven; GOTSEVA, Daniela. Make a prototype of IoT connected diagnostic
tool using ESP32 and MQTT for reading data from car CAN bus OBD2. 59th
International Scientific Conference on Information, Communication and Energy Systems and
Technologies, ICEST 2024. [S.l.]: IEEE. 2004.

NORDIC. nRF5 SDK Documentation: Bluetooth Low Energy Applications. NORDIC
SEMICONDUCTORS. [S.l.]. 2023.

NXP. Application Note: TJA1050 High-Speed CAN Transceiver. NXP Semiconductors.
[S.l.]. 2016.

RATAJ, A. Cellular IoT in the 5G Era: An Overview.. IEEE. [S.l.]. 2022.

RFWIRELESS-WORLD.COM. RF WIRELESS WORLD. Disponível em:
<https://www.rfwireless-world.com/terminology/obd2-frame-format-message-structure>.
Acesso em: 01 ago. 2025.

RODRÍGUEZ, Armando; RAÚL, José; INOUYE, Ricardo. Implementation of an OBD-II
Diagnostics Tool over CAN-BUS with Arduino, Pinar del Río, 02 Fevereiro 2018.

SAE. SAE J1979: Diagnostic Test Modes. SAE INTERNATIONAL. [S.l.]. 2021.

SOMMERVILLE, I. Engenharia de Software.

STMICROELECTRONICS. STM32 Microcontrollers Technical Documentation. [S.l.].
2022.

VALDERRÁBANO, J. L. Embedded Systems Architecture: Explore architectural concepts
and the practical implementation of embedded systems.

VALDERRÁBANO, J. L. Embedded Systems Architecture: Explore architectural concepts
and the practical implementation of embedded systems.

VICTOR, T. Safety Benefits of Vehicle Telematics: A Meta-Analysis.

WIRATAMA. Design and Implementation of Low-Cost Vehicle Tracking System Using

SIM800L GSM/GPRS Module. IEEE. [S.l.]. 2021.

ZHANG, T. Urban Traffic Management Based on Vehicle Telemetry Data.

	a72fbe92328e69663a79b3cdc32210ded81a9f0870a7b8c61725f1717d3b9800.pdf
	a72fbe92328e69663a79b3cdc32210ded81a9f0870a7b8c61725f1717d3b9800.pdf
	a72fbe92328e69663a79b3cdc32210ded81a9f0870a7b8c61725f1717d3b9800.pdf

