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RESUMO 

 

Este trabalho apresenta o desenvolvimento de um sistema embarcado modular 

e de baixo custo para aquisição, processamento e transmissão de dados veiculares. 

A solução integra os protocolos CAN (via OBD-II), Bluetooth Low Energy e MQTT, 

permitindo coletar parâmetros do veículo, normalizá-los e publicá-los em redes locais 

ou remotas. A arquitetura é organizada em módulos de interface (OBD-II/CAN), 

processamento e comunicação, adotando formatos de dados estruturados que 

favorecem a interoperabilidade com diferentes plataformas. Os resultados 

demonstram a viabilidade da solução para aplicações em telemetria veicular, com 

capacidades de expansão para novos sensores e protocolos. O sistema prioriza 

acessibilidade, utilizando componentes de baixo custo e formatos de dados 

estruturados, garantindo interoperabilidade com diferentes plataformas. A proposta 

oferece uma base sólida para monitoramento veicular em tempo real, com potencial 

para uso em gestão de frotas, diagnóstico remoto e pesquisas em mobilidade 

inteligente. 

 

Palavras-chave: Sistemas Embarcados; Telemetria Veicular; Internet das Coisas 

(IoT); Protocolo CAN; OBD-II; Bluetooth Low Energy; MQTT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

ABSTRACT 

 

This work presents the development of a modular, low-cost embedded system 

for vehicle data acquisition, processing, and transmitting. The solution integrates CAN 

(via OBD-II), Bluetooth Low Energy, and MQTT protocols, enabling the collection, 

normalization, and published over local or remote networks. The architecture is 

organized into interface (OBD-II/CAN), processing, and communication modules, 

adopting structured data formats that favor interoperability with different platforms. The 

results demonstrate the system's viability for vehicle telemetry applications, offering 

extensibility for new sensors and protocols. The system prioritizes accessibility, using 

low-cost components and structured data formats, ensuring interoperability with 

different platforms. The proposal offers a solid foundation for real-time vehicle 

monitoring, with potential for use in fleet management, remote diagnostics, and smart 

mobility research. 

 

Keywords: Embedded Systems, Vehicle telemetry; Internet of Things (IoT); CAN 

protocol; OBD-II; Bluetooth Low Energy; MQTT. 
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1 INTRODUÇÃO  

Impulsionado pela digitalização, o setor automotivo passa por uma 

transformação estrutural. A convergência entre conectividade embarcada, sensores e 

análise de dados amplia as possibilidades de mobilidade e de gestão de frotas. Nesse 

contexto, a telemetria veicular torna-se um componente central, visto que, coleta e 

transmite, em tempo real, indicadores operacionais do veículo, sustentando desde o 

monitoramento e diagnóstico básicos até aplicações avançadas baseadas em IoT e 

aprendizado de máquina (GUBBI, 2013).  

A importância desses sistemas vai muito além do simples acompanhamento de 

veículos, eles atuam como a base para a mobilidade inteligente, coletando e 

transmitindo dados cruciais sobre desempenho do motor, eficiência no consumo de 

combustível, hábitos de direção e condições mecânicas (ALAM, 2022). Essas 

informações são valiosas não só para proprietários de veículos, mas também para 

empresas de transporte, seguradoras, fabricantes e gestores de trânsito urbano 

(ZHANG, 2019). 

A disponibilidade de dados de telemetria abre amplas oportunidades de 

pesquisa em áreas como segurança viária, eficiência energética e planejamento 

urbano (LI, 2021). Ao aplicar reconhecimento de padrões e aprendizado de máquina 

a esses conjuntos de dados, é possível identificar perfis de condução, mapear fatores 

de risco para acidentes, otimizar rotas e até antecipar necessidades de manutenção 

preditiva, com impactos diretos em segurança, consumo e tempo de viagem (CHEN, 

2020). 

A evolução dos sistemas embarcados e da Internet das Coisas para 

automóveis mostra um progresso constante nas últimas décadas. A relevância prática 

desses sistemas aparece claramente quando olhamos para seus benefícios em 

diferentes áreas. Para a segurança no trânsito, a telemetria permite identificar 

comportamentos de direção perigosos, detectar problemas mecânicos com 

antecedência e até intervir em tempo real para evitar acidentes (VICTOR, 2022). No 

aspecto ambiental, o monitoramento preciso do motor e das condições de operação 

ajuda a melhorar o consumo de combustível e reduzir a poluição. 
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Economicamente, a telemetria veicular oferece oportunidades reais de reduzir 

custos operacionais através de manutenção preventiva, otimização de rotas e gestão 

eficiente de frotas. Do ponto de vista tecnológico, esses sistemas representam um 

campo cheio de possibilidades para inovação, unindo avanços em computação 

embarcada, comunicação sem fio, inteligência artificial e análise de dados (CHEN, 

2020). Neste cenário, empresas como CSS Electronics oferecem hardware 

especializado, enquanto soluções como Geotab e Sascar dominam o mercado com 

plataformas completas. Estes sistemas apresentam custos elevados, arquitetura 

fechada e limitada flexibilidade para customizações. 

Esta lacuna motiva o desenvolvimento de uma arquitetura aberta que mantém 

a confiabilidade do padrão On Board Diagnostics (OBD-II) com custo reduzido, 

inserindo-se no contexto de inovação e transformação digital do setor através da 

criação de uma arquitetura integrada para capturar, processar e transmitir dados 

veiculares. Este trabalho busca demonstrar as possibilidades tecnológicas atuais, 

contribuindo para o avanço dos sistemas de telemetria com aplicações práticas e 

acessíveis. 

1.1 Objetivos  

1.1.1 Geral  

O principal objetivo deste trabalho é desenvolver um sistema embarcado de baixo 

custo, capaz de fornecer dados veiculares estruturados e acessíveis através de 

múltiplas plataformas e protocolos de comunicação. O sistema deve incorporar 

requisitos de expansibilidade, permitindo a integração futura de novos sensores, 

funcionalidades e protocolos de comunicação. Utilizando componentes amplamente 

disponíveis no mercado e de custo acessível, este trabalho busca desenvolver uma 

plataforma para acesso e compartilhamento de dados veiculares, tornando viável o 

uso em diferentes aplicações e segmentos. 
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1.1.2 Específicos 

1. Projetar uma arquitetura de sistema modular e expansível: Definir uma 

estrutura de tarefas e dispositivos concorrentes, garantindo escalabilidade para 

futuras ampliações funcionais. 

2. Implementar uma camada robusta de aquisição de dados: Desenvolver 

mecanismos para leitura periódica de parâmetros veiculares via barramento 

CAN, utilizando a porta OBD-II. 

3. Integrar múltiplos protocolos de comunicação: Configurar interfaces 

diversificadas para transmissão de dados. Garantir interoperabilidade e 

capacidade de adaptação a diferentes cenários de conectividade. 

1.2 Organização do Trabalho 

O trabalho está organizado em quatro capítulos principais.  

No Capítulo 1, são apresentados o contexto e a motivação para o 

desenvolvimento do sistema de telemetria veicular, seguidos pelos objetivos gerais e 

específicos, e por fim uma visão geral da estrutura do trabalho. 

O Capítulo 2 apresenta fundamentação teórica, onde revisam-se os conceitos que 

sustentam o projeto. Abordou-se temas relacionados à sistemas automotivos como o 

protocolo CAN e o funcionamento do padrão OBD-II, sistemas embarcados como 

microcontroladores, o sistema operacional de tempo real RTOS, a comunicação 

Bluetooth Low Energy (BLE), o protocolo MQTT, e a metodologia Ciclo V para 

projetos. 

O Capítulo 3 apresenta o desenvolvimento do Trabalho, onde detalha-se o 

acompanhamento da metodologia adotada, abordando a estratégia de seleção de 

componentes e meios de comunicação, o projeto de arquitetura do sistema e fluxos 

de controle, implementação de ferramentas de codificação e projetos de hardware, 

além dos testes e resultados atingidos.  

Finalmente, o Capítulo 4 apresenta a Conclusão e Propostas de Continuidade, 

onde avalia-se o grau de atendimento dos objetivos, e apresentam-se sugestões para 

trabalhos futuros. 
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2 FUNDAMENTAÇÃO TEÓRICA 

2.1 Sistemas Automotivos 

A eletrônica veicular moderna é composta por uma rede complexa de Electronic 

Control Units (ECU) responsáveis por gerenciar funções críticas como injeção de 

combustível, freios ABS, airbags e controle de estabilidade. Essas unidades 

eletrônicas são distribuídas por todo o automóvel, propiciando uma comunicação 

confiável e em tempo real um requisito fundamental para o funcionamento seguro e 

eficiente do veículo. Dessa forma, o protocolo CAN surgiu como a solução dominante 

para este desafio. 

2.1.1 Controller Area Network (CAN) 

O Controller Area Network (CAN) é um protocolo de comunicação serial 

multimestre, amplamente reconhecido por sua robustez e elevada confiabilidade. 

Desenvolvido pela Bosch na década de 1980 para atender às demandas do setor 

automotivo, o CAN surgiu como alternativa ao complexo sistema de conexões ponto 

a ponto então utilizado. Sua adoção possibilitou a redução significativa do peso, do 

custo e da complexidade da fiação veicular, ao mesmo tempo em que assegurou uma 

comunicação eficiente e imune a interferências eletromagnéticas, condições comuns 

no ambiente automotivo (BOSCH, 1991). 

A principal característica do CAN é sua operação baseada em mensagens, 

onde a prioridade de transmissão é determinada pelo identificador da mensagem 

(CAN ID), e não por um endereço nodal. Isso significa que todas as ECUs na rede 

recebem todas as mensagens, cabendo a cada uma decidir, com base no CAN ID, se 

a mensagem é relevante para suas operações. Este modelo broadcast simplifica a 

adição de novos nós à rede, promovendo escalabilidade e flexibilidade (DAVIS, 2013). 

O barramento CAN físico é composto por um par de fios trançados, 

denominados CAN_H (Can_High) e CAN_L (Can_Low), que operam de forma 

diferencial. Esta configuração oferece alta imunidade a ruídos eletromagnéticos, pois 

a interferência afeta ambos os fios igualmente, e o receptor interpreta a diferença de 
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potencial entre eles. Como apresentado na Figura 1, a topologia de barramento requer 

a instalação de resistores de terminação (tipicamente 120 Ω) em cada extremo do 

barramento para evitar reflexões de sinal e garantir a integridade da comunicação, 

conforme ISO 11898-2 (ISO, 2016). 

Figura 1 - Barramento CAN 

 

Fonte: (MARINA LACERDA, 2019). 

2.1.2 Arquitetura de Hardware para interfaceamento da rede CAN 

A implementação prática da comunicação com o barramento CAN veicular requer 

mais do que apenas o conhecimento do protocolo. É necessária uma arquitetura de 

hardware que faça a interface entre o microcontrolador, que opera em níveis de tensão 

de 0V a 3.3V ou 5V, e o barramento CAN diferencial (CAN_H e CAN_L), que opera 

em níveis de tensão diferentes e em um ambiente eletricamente ruidoso, como 

mostrado na Figura 2 . Esta arquitetura é composta essencialmente por dois 

componentes integrados: o Controlador CAN e o Transceptor CAN (ISO, 2016). 

Figura 2 - Níveis de Sinal diferenciais CAN 

 

Fonte: (MARINA LACERDA, 2019). 
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O controlador CAN é um circuito integrado que implementa as camadas de Enlace 

de Dados e de Controle de Acesso ao Meio do protocolo CAN, conforme definido no 

modelo OSI. Sua função principal é aliviar a carga de processamento da CPU principal 

ao lidar com as complexidades do protocolo, como a montagem e desmontagem de 

quadros, verificação de CRC, arbitragem, e filtragem de mensagens (MICROCHIP, 

2019). 

O transceptor CAN atua como a interface física entre o controlador CAN e o 

barramento de pares trançados do veículo. Ele implementa a camada física do 

protocolo, convertendo os sinais lógicos digitais TX e RX do controlador nos sinais 

diferenciais do barramento CAN. (NXP, 2016) 

2.1.3 On-Board Diagnostics II (OBD-II) 

Enquanto o protocolo CAN estabelece o "meio de comunicação" entre as ECUs 

de um veículo, o padrão OBD-II define uma "linguagem" padronizada para acessar 

dados de diagnóstico e desempenho das ECUs. Trata-se de um sistema de 

monitoramento obrigatório regulamentado globalmente, incluindo agências como a 

Environmental Protection Agency (EPA) nos EUA e o Conselho Nacional do Meio 

Ambiente (CONAMA) no Brasil, cuja adoção tornou-se mandatória para veículos 

comercializados no país a partir de 2009. Seu objetivo primordial é o controle de 

emissões de poluentes, estabelecendo um protocolo universal de diagnóstico que 

permite a interoperabilidade entre diferentes fabricantes e sistemas de inspeção 

veicular (EPA, 2020) (CONAMA, 2009). 

A normatização OBD-II substituiu uma série de protocolos proprietários e 

conectores diversos das montadoras por um único padrão, garantindo que 

equipamentos de diagnóstico independentes pudessem se conectar a qualquer 

veículo vendido no mercado a partir de 1996 nos EUA e 2001 na Europa, desde que 

compatível, para ler dados padronizados, principalmente relacionados ao sistema de 

trem de força e às emissões (BOSCH, 2014). 

O ponto de acesso físico para o sistema OBD-II é o conector de 16 pinos J1962, 

mostrado na Figura 3, geralmente localizado na área do motorista, sob o painel. Este 
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conector fornece acesso à alimentação da bateria (pino 16), ao terra (pinos 4 e 5), e 

aos barramentos de comunicação do veículo, incluindo os pinos específicos para CAN 

(pino 6: CAN_H e pino 14:  CAN_L). A presença do barramento CAN nestes pinos é 

obrigatória para veículos leves tornou-se obrigatória no Brasil seguindo o cronograma 

estabelecido pela Resolução CONAMA 418/2009 (CONAMA, 2009), além dos 

produzidos a partir de 2008 nos EUA e 2001 para veículos a diesel na Europa (ISO, 

2016). 

Figura 3 - Conector OBD-II 

 

Fonte: o Autor. 

 

A parte principal do padrão OBD-II reside em seu conjunto de Modos de Serviço 

e Identificadores de Parâmetros (PIDs). Os modos de serviço, definidos pela SAE 

J1979, são categorias de operações de diagnóstico. O modo mais relevante para a 

telemetria em tempo real é o Modo 01, que solicita e retorna dados do trem de força 

enquanto o veículo está em operação. Dentro de cada modo, os PIDs funcionam como 

chaves que desbloqueiam parâmetros específicos do veículo. Cada PID é um código 

hexadecimal que, quando solicitado, instrui a ECU a retornar um valor específico 

(BOSCH, 2014). 

A comunicação via OBD-II segue uma estrutura de requisição-resposta, onde 

o dispositivo que deseja obter a informação deve enviar uma mensagem CAN para o 

endereço de diagnóstico do veículo. Como mostrado na Figura 4 , a mensagem de 

requisição contém o modo de serviço e o PID desejado. A ECU responsável responde 
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com outro frame CAN contendo o modo de serviço, o PID e os dados solicitados, que 

devem ser decodificados conforme a fórmula padrão definida para aquele PID, como 

o exemplo exibido na Tabela 1. O ID de requisição geralmente segue o padrão 0x7DF 

(11 bits) ou 0x18DB33F1 (29 bits). 

 

Figura 4 - Formato de mensagem OBD 

 

Fonte: (RFWIRELESS-WORLD.com). 

Tabela 1 - Tabela de Conversão de PIDs 

PID 
(Hex) 

Parâmetro 

Fórmula de 
Conversão 
(Exemplo) 

Unidade 

0C Rotação do Motor (RPM) 
((A * 256) + B) 

/ 4 
rpm 

0D Velocidade do Veículo A km/h 

5 
Temperatura do Líquido de 

Arrefecimento 
A - 40 °C 

2F 
Nível de Combustível no 

Tanque 
(100 * A) / 255 % 

*A: Primeiro byte da resposta; B: Segundo byte da resposta. 

Fonte: (SAE, 2021) 
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2.2 Sistemas Embarcados 

Sistemas embarcados são sistemas computacionais completos projetados para 

desempenhar uma ou poucas funções específicas, com restrições de custo, consumo 

energético, tamanho físico e desempenho em tempo real. Diferentemente de um 

computador de propósito geral, um sistema embarcado é tipicamente parte de um 

dispositivo maior, operando de forma autônoma e sem intervenção humana direta 

(LAKHTAR, 2023). No contexto automotivo moderno, dezenas de sistemas 

embarcados (ECUs) gerenciam desde o entretenimento até a segurança do veículo 

(BOSCH, 2014). 

2.2.1 Microcontroladores 

Microcontroladores são circuitos integrados que reúnem, em um único chip, todos 

os componentes de um computador como unidade central de processamento (CPU), 

memória RAM e Flash, e periféricos de entrada/saída (I/O). Essa característica os 

torna ideais para sistemas embarcados, oferecendo um equilíbrio entre desempenho, 

consumo e custo para aplicações dedicadas (BARR, 2022).  

A funcionalidade de um microcontrolador é drasticamente ampliada pelo seu 

conjunto de periféricos. Periféricos são circuitos especializados integrados ao chip que 

gerenciam a interação com o mundo externo, liberando a CPU para tarefas de 

processamento mais complexas (VALDERRÁBANO, 2023).  

Entre os periféricos mais comuns e essenciais para aplicações de interação com 

o mundo físico, destacam-se: 

• Interface Serial Periférica (SPI): Um barramento síncrono de alta velocidade e 

full-duplex, utilizado para comunicação com dispositivos próximos. É 

caracterizado pelo uso de quatro linhas: SCLK (clock), MOSI (dados do mestre 

para o escravo), MISO (dados do escravo para o mestre) e SS/CS (seleção de 

escravo). É amplamente usado para conectar sensores, memórias e 

controladores de interface. 

• Comunicação Serial Assíncrona Universal (UART): Um protocolo de 

comunicação serial assíncrono ponto a ponto que utiliza duas linhas: TX 
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(transmissão) e RX (recepção). A comunicação é baseada em um acordo pré-

estabelecido de velocidade (baud rate) entre os dispositivos. É comumente 

empregado para comunicação com módulos GSM/GPRS, GPS e para debug 

via console serial. 

• Inter-Integrated Circuit (I²C): Um barramento serial síncrono multi-mestre, multi-

escravo que utiliza apenas duas linhas bidirecionais: SDA (dados) e SCL 

(clock). É ideal para conectar múltiplos dispositivos de baixa velocidade em um 

mesmo barramento, como sensores de temperatura, umidade e pressão. 

• Conversor Analógico-Digital (ADC): Um periférico crucial que converte tensões 

analógicas do mundo real em valores digitais que podem ser processados pela 

CPU. Sua resolução é medida em bits, determinando a precisão da leitura. 

2.2.2 Sistema Operacional em Tempo Real (RTOS) 

Conforme a complexidade do software em sistemas embarcados aumenta, 

gerenciar de forma eficiente e confiável múltiplas funções ou tarefas como aquisição 

de dados e gerenciamento de comunicação, torna-se um desafio significativo. Esta 

abordagem pode levar a problemas de responsividade, bloqueio de funções de baixa 

prioridade por outras de alta prioridade e dificuldade em garantir tempos de resposta 

previsíveis. Para superar estas limitações, recorre-se a um Sistema Operacional em 

Tempo Real. 

Um RTOS é um sistema operacional especializado projetado para gerenciar os 

recursos de hardware de um microcontrolador e executar aplicações com timing 

preciso e previsível. A característica definidora de um RTOS não é sua velocidade, 

mas sua capacidade determinística, ou seja, a capacidade de garantir que as 

operações sejam realizadas dentro de um intervalo de tempo estritamente definido 

(LABROSSE, 2022). 

A programação com um RTOS introduz um paradigma diferente, baseado em 

concorrência e paralelismo. Seus conceitos mais relevantes para este trabalho 

incluem as tarefas que são unidades independentes de execução que encapsulam 

uma função específica, por exemplo, tarefa_leitura_can ou tarefa_comunicacao_ble. 
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O RTOS é responsável por simular a execução paralela dessas tarefas em um único 

núcleo de processamento. 

Dentre as opções disponíveis, o FreeRTOS destaca-se como uma solução 

amplamente adotada na indústria, conhecida por sua robustez, portabilidade e licença 

de código aberto (AWS, 2023). Seu ecossistema inclui portes para diversos 

microcontroladores, incluindo o ESP32, e implementa todos os mecanismos 

essenciais de um RTOS. 

2.3 Protocolos de Comunicação e Internet das Coisas 

A Internet das Coisas (IoT) refere-se a uma infraestrutura composta por sensores, 

softwares e demais tecnologias embarcadas, cujo propósito é conectar dispositivos 

físicos à internet, possibilitando o monitoramento, a troca e o processamento 

distribuído de dados. No contexto automotivo, a IoT viabiliza a concepção de veículos 

conectados, ampliando o escopo de funcionalidades disponíveis. Entre as aplicações 

mais relevantes destacam-se a manutenção preditiva, a gestão inteligente de frotas, 

os serviços baseados em localização e a integração com sistemas de automação 

residencial (AL-FUQAHA, 2015). 

O sistema desenvolvido neste trabalho insere-se nesse cenário, operando como 

um nó IoT de sensoriamento responsável pela coleta de informações de um ativo físico 

e pelo seu compartilhamento com plataformas externas. Nesse tipo de arquitetura, a 

escolha dos protocolos de comunicação desempenha papel central, pois determina 

como os dados serão transmitidos de forma eficiente, segura e confiável entre o 

dispositivo e o usuário final. 

2.3.1 Bluetooth Low Energy  

O Bluetooth Low Energy (BLE) é um protocolo de comunicação sem fio de curto 

alcance, parte da especificação Bluetooth 4.0 e posteriores, projetado 

especificamente para aplicações que demandam baixo consumo de energia. Diferente 

do Bluetooth Clássico, focado em transmissão contínua de dados, como áudio, o BLE 

é otimizado para operar em rajadas curtas de transmissão de pequenos pacotes de 
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dados, permanecendo a maior parte do tempo em modo de baixo consumo (Bluetooth 

Core Specification Version 5.3, 2023). 

O BLE opera sob um modelo cliente-servidor baseado em atributos. Como pode 

ser visto na Figura 5 o dispositivo periférico atua como um Servidor Generic Attribute 

Profile (GATT) onde hospeda um conjunto de Serviços, que são coleções lógicas de 

características. Uma característica é um contêiner para um valor de dado e seus 

descritores, que configuram como o dado pode ser acessado ou notificado (NORDIC, 

2023). 

Figura 5 - Arquitetura BLE 

 

 

Fonte: (AKB, 2024) 

2.3.2 MQTT 

O Message Queuing Telemetry Transport (MQTT) é um protocolo de transporte 

de mensagens leve, projetado para comunicação eficiente em dispositivos IoT com 

recursos computacionais limitados, bem como em redes com largura de banda 

reduzida ou latência variável (BANKS, 2019). Baseado no paradigma 

publicador/assinante, o MQTT possibilita uma comunicação assíncrona e altamente 

escalável entre dispositivos distribuídos.  
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Nesse modelo arquitetural, o cliente responsável pelo envio das mensagens 

denominado publicador, permanece desacoplado daqueles que as recebem, 

denominados assinantes. Como ilustrado na Figura 6, a interação entre esses 

elementos é intermediada por um servidor central denominado broker, o qual gerencia 

o roteamento, o armazenamento temporário e o direcionamento das mensagens. Os 

clientes podem publicar ou receber informações por meio de tópicos, que representam 

canais de comunicação identificados por strings hierárquicas, como por exemplo 

/dadosVeiculo (LIGHT, 2017). 

Figura 6 - Arquitetura MQTT 

 

Fonte: (GABRIEL, 2023) 

 

2.4 Metodologia de Projeto em V 

O desenvolvimento de um sistema embarcado requer uma abordagem sistemática 

e metodológica. A adoção de uma metodologia de projeto proporciona um roteiro para 

guiar o processo de desenvolvimento, mitigar riscos, gerenciar complexidade e 

aumentar as chances de sucesso do projeto (VALDERRÁBANO, 2023).  

Uma das metodologias tradicionais amplamente empregadas na engenharia de 

sistemas embarcados é o Modelo em V, ou Ciclo de Vida em V. Essa abordagem 

destaca a importância da verificação e da validação ao longo de todas as etapas do 

desenvolvimento, assegurando que os requisitos sejam rastreados de forma 

consistente desde a concepção até os testes finais. Conforme ilustrado na Figura 7, o 
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modelo organiza-se em duas fases que convergem para a implementação, assumindo 

a forma da letra “V”: no lado esquerdo, encontram-se as atividades de definição de 

requisitos e elaboração do projeto; no vértice, é realizada a implementação; e no lado 

direito estão as etapas de integração, testes e validação. Cada fase de teste 

corresponde diretamente a uma fase de especificação, garantindo a coerência entre 

o que foi projetado e o que é efetivamente entregue. 

A metodologia se inicia com a Definição e Análise de Requisitos, onde são 

estabelecidas de forma clara e documentada as funcionalidades que o sistema deve 

executar, suas restrições e seu desempenho esperado. Em seguida, avança-se para 

o Projeto de arquitetura do sistema, onde o sistema global é decomposto em 

subsistemas constituintes de hardware e software, com a definição das interfaces 

entre eles.  

A metodologia continua no projeto detalhado de software/firmware e hardware, 

onde a arquitetura de software é definida em minúcias, incluindo a modularização, o 

diagrama de tarefas concorrentes sob o FreeRTOS, o formato das estruturas de dados 

e os algoritmos de comunicação, enquanto a arquitetura de hardware é especificada 

através da seleção de componentes, diagramas esquemáticos e definição de 

interfaces físicas. 

O fundo do V representa a fase de Implementação ou Codificação. É nesta 

etapa que o projeto detalhado é traduzido em código-fonte, soldagem de componentes 

e montagem do hardware. As decisões e especificações definidas no lado esquerdo 

do V são materializadas em software e hardware funcionais. 

O lado direito se inicia com os testes de unidade, nos quais cada módulo ou 

função de software é testado individualmente de forma isolada. Superada essa etapa, 

realizam-se os testes de integração, onde os módulos previamente testados são 

combinados progressivamente e suas interações são validadas. Com o sistema 

integrado, executa-se o teste de sistema, que valida o comportamento do produto 

completo contra todos os requisitos definidos inicialmente, envolvendo testes em 

bancada e em ambiente real. Finalmente, o ciclo se encerra com o teste de aceitação, 

que é a validação final perante o usuário ou cliente para confirmação de que o sistema 

atende plenamente às suas necessidades e expectativas (SOMMERVILLE, 2019). 
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Figura 7 - Ciclo de Projeto em V 

 

Fonte: O autor. 

 

 

3 DESENVOLVIMENTO DO TRABALHO 

Este capítulo detalha o processo de desenvolvimento do sistema de telemetria 

veicular, seguindo uma adaptação da metodologia em V. A partir dos objetivos e 

requisitos do sistema definidos no Capítulo 1, são apresentados a arquitetura de 

hardware e software projetada para atendê-los, a implementação prática e, por fim, a 

estratégia de testes e validação. 
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3.1 Projeto do Sistema  

Com base nos requisitos estabelecidos no tópico 1.1, procedeu-se com a etapa 

de projeto de arquitetura do sistema, onde foram definidos a arquitetura de hardware, 

Figura 8, e a arquitetura de comunicação necessária para implementar as 

funcionalidades especificadas, Figura 9. 

Figura 8 - Arquitetura de Hardware 

 

Fonte: O autor. 
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Figura 9 - Arquitetura de Comunicação 

 

 

Fonte: O autor. 

3.1.1 Escolha das Tecnologias de Comunicação 

Para atender ao requisito de transmissão remota de dados, avaliou-se soluções 

baseadas em tecnologias como LoRa, Sigfox e redes celulares, os parâmetros estão 

resumidos na Tabela 2.  
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Tabela 2 - Comparação de Tecnologias de Comunicação 

Tecnologia Alcance 
Taxa de 
Dados 

Consumo 
Energético 

Custo de 
Implantação 

Custo 
Operacional 

GSM/GPRS Nacional  
~50-100 

kbps 
Moderado-Alto Baixo Moderado 

LTE-M/NB-IoT Nacional  
~100-300 

kbps 
Baixo Moderado-Alto 

Baixo-
Moderado 

LoRaWAN Regional  
~0.3-50 

kbps 
Muito Baixo Moderado Baixo 

Sigfox Nacional  ~100 bps Muito Baixo Baixo-Moderado Por mensagem 

Wi-Fi Local  
~10-100 

Mbps 
Alto Muito Baixo Baixo 

Bluetooth 
(BLE) 

Local  ~1 Mbps Muito Baixo Baixo Nulo 

Fonte: O autor. 

 

A seguir uma breve analise de adequação das tecnologias de comunicação 

elencadas na Tabela 2.  

A tecnologia LoRaWAN destaca-se por seu alcance de quilômetros em área 

rural e consumo energético extremamente reduzido, sendo ideal para sensores 

estáticos com transmissão esporádica de dados. Contudo, sua arquitetura baseada 

em gateways fixos cria uma dependência crítica da existência de infraestrutura de 

cobertura na região de operação do veículo.  

A rede Sigfox opera em banda estreita e oferece excelente eficiência energética 

para transmissão de pequenos pacotes de dados. Similarmente ao LoRaWAN, sua 

viabilidade está condicionada à disponibilidade de cobertura na área de operação. 

Apesar de possuir abrangência nacional, sua cobertura é inferior à rede GSM, além 

de operar em modelo de negócio baseado no número de mensagens transmitidas, o 

que poderia inviabilizar economicamente o envio contínuo de dados telemáticos 

(MOUNA, 2022). 

O Wi-Fi apresenta limitações críticas que o tornam inadequado para o cenário 

proposto. A tecnologia depende inteiramente da disponibilidade de redes externas e 

da inserção de credenciais de acesso para funcionar, o que é impraticável durante o 

deslocamento do veículo ou em locais sem infraestrutura preexistente (AL-FUQAHA, 

2015). 
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As tecnologias LTE-M (Long Term Evolution for Machines) e NB-IoT 

(Narrowband IoT) representam a evolução das redes celulares para aplicações de IoT. 

Oferecem vantagens significativas em consumo energético quando comparadas ao 

GSM/GPRS tradicional, além de maior penetração de sinal em ambientes internos e 

subterrâneos. Entretanto, o custo dos módulos especializados é substancialmente 

superior ao dos módulos GSM/GPRS, impactando negativamente o custo total da 

solução (RATAJ, 2022). 

 Dessa forma, diante da análise realizada, a tecnologia GSM/GPRS mostrou-

se como a opção mais adequada ao projeto em sua fase atual devido a fatores como 

a cobertura geográfica, volume de dados e custo operacional do sistema de telemetria 

veicular proposto. É necessário destacar que a rede GSM/2G ainda mantém uma 

ampla cobertura no território nacional, mas esta infraestrutura está em processo 

progressivo de desativação pelas operadoras. Assim, a implementação adotada utiliza 

módulo SIM800L comunicando-se com o microcontrolador principal via interface 

UART, empregando protocolo de comandos AT para estabelecimento de conexão e 

transmissão de dados através de conexões TCP/IP (WIRATAMA, 2021). 

Em complemento, o Bluetooth Low Energy (BLE) foi integrado ao sistema para 

prover conectividade de curto alcance com dispositivos móveis. Diferente das 

soluções de longo alcance, o BLE opera em uma faixa de até dezenas de metros com 

consumo energético extremamente reduzido, sendo ideal para cenários de 

configuração local. 

3.1.2 Hospedagem de Serviço em Nuvem 

Em um sistema de telemetria móvel, a escolha da infraestrutura para 

hospedagem do broker MQTT é decisiva para garantir uma comunicação confiável e 

escalável. Dispositivos móveis, como veículos rastreados ou sensores em trânsito, 

operam em redes com endereços IP dinâmicos e conexões instáveis, o que 

impossibilita que atuem como servidores fixos. Essa limitação exige um ponto central 

permanente na internet, capaz de agregar e gerenciar o fluxo de dados de fontes 

distribuídas e geograficamente dispersas. Sem um endpoint estável, a comunicação 

em tempo real se tornaria inviável, comprometendo todo o funcionamento do sistema. 



33 

 

 

 

Nesse contexto, uma máquina virtual (VM) em cloud, como as oferecidas pela 

DigitalOcean, Amazon Web Service (AWS), Microsoft Azure ou Google Cloud, surge 

como uma boa solução técnica. Ao provisionar uma VM, obtém-se um endereço IP 

público fixo e recursos computacionais dedicados, criando um hub sempre acessível 

para onde todos os dispositivos móveis direcionam seus dados. Essa centralização 

assegura alta disponibilidade, mesmo com flutuações na conectividade dos 

dispositivos, e permite o uso de mecanismos robustos de segurança, como firewalls 

configuráveis e autenticação por chave. Além disso, a possibilidade de aumentar CPU, 

RAM ou armazenamento sob demanda, torna a máquina virtual adequada para 

cenários de crescimento progressivo da frota ou do volume de dados. Entretanto, esta 

abordagem apresenta a desvantagem do custo operacional contínuo, que pode tornar-

se significativo conforme a escala do projeto aumenta, especialmente para aplicações 

com grande número de dispositivos transmitindo dados constantemente. 

Portanto, a escolha da DigitalOcean como provedor em nuvem para hospedar 

o broker MQTT foi motivada não apenas por seus atributos técnicos como 

simplicidade, custo acessível e desempenho estável, mas também pela grande 

documentação e exemplos práticos disponíveis para implementações similares. 

3.1.3 Seleção de Componentes de Hardware 

A seleção dos componentes de hardware foi orientada pelos requisitos 

previamente estabelecidos, priorizando o custo-benefício, a disponibilidade no 

mercado nacional, a robustez para o ambiente automotivo e a adequação técnica às 

funcionalidades do sistema. 

 

 

 



34 

 

 

 

3.1.3.1 Seleção do Microcontrolador 

A análise para a escolha do microcontrolador central, mostrado na Tabela 3, 

considerou plataformas amplamente utilizadas, como Arduino Uno (baseado no 

ATmega328P), STM32 (família ARM Cortex-M) e ESP32.  

O Arduino Uno, embora amplamente difundido devido ao seu baixo custo e ao 

vasto ecossistema de desenvolvimento, apresenta limitações significativas de 

memória, apenas 2 KB de RAM e de capacidade de processamento, baseada em uma 

arquitetura de 8 bits operando com um clock de apenas 16 MHz. Tais restrições o 

tornam inadequado para aplicações que demandam execução de um sistema 

operacional de tempo real e gerenciamento concorrente de múltiplas pilhas de 

comunicação (ARDUINO, 2023). 

Os microcontroladores da família STM32, por sua vez, oferecem desempenho 

superior, ampla variedade de periféricos avançados e, em algumas variantes, 

controlador CAN integrado. Porém, a necessidade de módulos adicionais para prover 

conectividade sem fio acarretaria maior complexidade de integração, aumento no 

consumo energético e elevação do custo total da solução (STMICROELECTRONICS, 

2022). 

Diante desse cenário, o ESP32 foi selecionado por apresentar o melhor 

equilíbrio entre desempenho, custo e funcionalidades integradas. Seu processamento 

em 32 bits, aliado à arquitetura dual-core, garante recursos suficientes para a 

execução do FreeRTOS e para o gerenciamento eficiente de tarefas concorrentes, 

como aquisição e transmissão de dados (ESPRESSIF, 2023). Além disso, a 

integração nativa de Wi-Fi e Bluetooth Low Energy (BLE) elimina a necessidade de 

módulos externos, simplificando o projeto de hardware e reduzindo custos. 
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Tabela 3 - Comparação de Microcontroladores 

Característica 

Arduino Uno 
(ATmega328P) 

STM32F103C8T6 
(ARM Cortex-M3) 

ESP32-WROOM-
32 (Xtensa LX6) 

Melhor Caso de 
Uso 

Arquitetura AVR 8-bit 
ARM Cortex-M3 32-

bit 

Xtensa LX6 32-bit 
(Single/Dual-

Core) - 

Freq. Clock 16 MHz 72 MHz 160 ou 240 MHz ESP32  

Memória Flash 32 KB 64 KB 4 MB 

ESP32 
(Armazenamento de 

código) 

Memória RAM 2 KB 20 KB 520 KB 

ESP32 (Manipulação 
de dados) 

Conectividade 
Nativa UART, I²C, SPI 

UART, I²C, SPI, I²S, 
USB 

Wi-Fi, 
Bluetooth/BLE, 
UART, I²C, SPI, 

I²S 

ESP32 
(Conectividade sem 

fio) 

Periféricos 
Avançados ADC 10-bit 

ADC 12-bit, DAC, 
DMA, CAN 

ADC 12-bit, DAC, 
DMA 

STM32 (Controle 
preciso e interface 

CAN nativa) 

Custo (Aprox.) Médio (R$ 30-40) Baixo (R$ 20-30) Médio (R$ 30-40) 
STM32 (Custo 

inicial) 

Facilidade de 
Desenvolvimento 

Excelente 
(Arduino IDE) 

Moderada 
(STM32CubeIDE, 

Mbed OS) 
Boa (Arduino IDE 

ou ESP-IDF) 

Arduino/ESP32 
(Prototipagem 

rápida) 

Ecossistema 

Maior número de 
bibliotecas e 

tutoriais 

Robusto, mas mais 
complexo 

Muito vasto e em 
crescimento 

Arduino 
(Simplicidade e 
comunidade) 

Fonte: O autor 

3.1.3.2 Seleção de Controlador CAN 

Para a interface com o barramento veicular, optou-se pela solução consolidada 

baseada no controlador CAN MCP2515 e no transceptor TJA1050. O controlador 

MCP2515 comunica-se com o microcontrolador através de interface SPI, gerenciando 

autonomamente as camadas de enlace de dados do protocolo CAN. O transceptor 

TJA1050 desempenha função crucial na interface física, convertendo os sinais lógicos 

do controlador para os níveis diferenciais do barramento CAN e providenciando 

isolamento elétrico e proteção contra transientes de tensão. 
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3.1.4 Ferramentas de Depuração e Monitoramento 

Para garantir a robustez e confiabilidade do sistema, devem ser implementadas 

ferramentas de depuração e monitoramento que permitam verificar o funcionamento 

em tempo real e diagnosticar possíveis falhas. A escolha das ferramentas considerou 

a simplicidade de implementação, o baixo custo e a eficácia na identificação de 

problemas durante as fases de desenvolvimento e operação. 

A principal ferramenta de depuração adotada foi a comunicação serial, utilizada 

para envio de mensagens de depuração e informações de status do sistema. Através 

do monitor serial, foi possível acompanhar o fluxo de execução das tarefas, verificar 

valores de variáveis críticas e identificar eventuais erros nas operações de 

comunicação. A implementação incluiu diferentes níveis de mensagens de depuração 

como informacional e erro. Adicionalmente, foram implementados três LEDs 

indicadores com funções específicas de monitoramento visual: 

• LED de Alimentação: Indicador de alimentação do sistema, permanece 

continuamente aceso quando o sistema está devidamente energizado e 

operacional. 

• LED de Status CAN: Atua como indicador de funcionamento do barramento 

CAN. Em condições normais de operação, pisca periodicamente indicando a 

recepção de mensagens do veículo. Em situações de erro na comunicação 

CAN (perda de conexão, falha na decodificação de mensagens), permanece 

aceso continuamente, sinalizando a necessidade de intervenção. 

• LED de Atividade BLE: Indicador de comunicação Bluetooth Low Energy, pisca 

sempre que uma mensagem é transmitida via protocolo BLE, permitindo 

verificar visualmente a atividade de comunicação com dispositivos móveis. 
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3.2 Projeto Detalhado 

3.2.1 Projeto de Firmware 

O firmware corresponde ao software embarcado que atua diretamente sobre o 

hardware, implementando as funcionalidades essenciais do dispositivo e 

coordenando o funcionamento de seus periféricos. No sistema desenvolvido, o fluxo 

operacional do firmware, ilustrado na Figura 10, inicia-se com a configuração e 

inicialização dos módulos e interfaces de comunicação, progredindo para a execução 

concorrente de tarefas que realizam a aquisição, o processamento e o envio dos 

dados coletados. 

Uma alternativa comum em sistemas embarcados é a abordagem bare metal, 

na qual não há um sistema operacional, todo o controle de tempo e lógica de execução 

depende exclusivamente do código da aplicação, frequentemente estruturado em 

laços principais e rotinas de interrupção. Embora seja apropriada para aplicações 

simples e com número reduzido de eventos concorrentes, essa abordagem tende a 

tornar-se complexa e menos previsível quando a aplicação exige múltiplas tarefas de 

forma simultânea e com diferentes prioridades. 

Diante disso, optou-se pelo uso do FreeRTOS, um sistema operacional de 

tempo real que permite estruturar o firmware em tarefas independentes, com 

escalonamento preemptivo baseado em prioridades. Essa característica garante que 

rotinas críticas, tais como, a leitura do barramento CAN mantenham comportamento 

determinístico e não sejam interrompidas por operações secundárias. Além disso, a 

organização modular do código facilita a manutenção, a depuração e a expansão 

futura do sistema. 

A arquitetura dual-core da ESP32 foi estrategicamente utilizada para otimizar o 

desempenho do sistema, alocando a tarefa crítica de aquisição CAN no Core 1 

(Application Core) para garantir temporalidade precisa e baixa latência, enquanto a 

tarefa de comunicação BLE foi designada ao Core 0 (Protocol Core) para aproveitar 

as dependências intrínsecas da função Bluetooth da fabricante Espressif. A tarefa de 

comunicação MQTT opera através de comandos AT para controle do modem 

GSM/GPRS, compartilha o Core 1 sem competição significativa por recursos. 
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Figura 10 - Arquitetura de Firmware 

 

 

Fonte: O autor. 
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3.2.1.1 Rotina de Inicialização 

1. Inicialização da Serial (UART): Configura a portas e baud rate da comunicação 

serial para depuração e troca de mensagens com o módulo GSM. 

 

2. Inicialização da comunicação com controlador CAN: Configura o controlador 

CAN MCP2515 via SPI e o inicializa para operação no barramento veicular. 

 

3. Configuração de Filtros e Máscaras CAN: Ajusta os filtros de hardware do 

controlador CAN para aceitar apenas as mensagens com IDs relevantes, 

ignorando o tráfego irrelevante do barramento.  

 

4. Inicialização do Bluetooth Low Energy (BLE): Configura o servidor BLE, 

definindo o serviço principal e suas características para permitir comunicação 

sem fio com um aplicativo. 

3.2.1.2 Tarefa CAN 

1. Verificação de ID: Verifica o tipo de protocolo CAN utilizado pelo veículo 

(Padrão ou Estendido) para ajustar a configuração do controlador CAN e o 

formato das mensagens de requisição. 

 

2. Solicita os PIDs Disponíveis no OBD-II: Envia mensagens de requisição OBD-

II para descobrir quais parâmetros estão disponíveis para consulta no veículo. 

 

3. Processamento de Disponibilidade: Processa a resposta da ECU, convertendo 

os dados hexadecimais recebidos em uma máscara binária onde cada bit 

representa a disponibilidade (1) ou não (0) de um PID específico. 

 

4. Inicialização dos temporizadores das mensagens: Configura temporizadores 

individuais para cada PID disponível, definindo períodos de solicitação 
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personalizados com base na taxa de atualização necessária para cada tipo de 

dado (ex: RPM com atualização mais frequente que temperatura). 

 

5. Fila de Solicitação: Preenche a fila com os PID solicitados para aquisição. 

 

6. Envio de mensagem: Rotina que monta e envia mensagens de requisição OBD-

II para o barramento CAN, utilizando o formato correto (Padrão ou Estendido) 

conforme detectado. 

 

7. Tratamento de Mensagem CAN Recebida: Acionada por interrupção, verifica o 

ID da mensagem recebida, extrai o conteúdo da mensagem recebida. 

 

8. Preenchimento da estrutura de dados: Decodifica os dados hexadecimais da 

mensagem de resposta conforme a fórmula definida pelo padrão OBD-II para 

o PID em questão e atualiza uma estrutura global de dados do veículo, 

compartilhada com outras tarefas do sistema. 

 

3.2.1.3 Tarefa MQTT 

1. Inicialização do Modem GSM/GPRS: Verifica as informações básicas do 

módulo e do estado do cartão SIM. Configura parâmetros de acesso 

específicos de cada operadora, incluindo o ponto de acesso (APN) e as 

credenciais de autenticação correspondentes.  

 

2. Configura servidor MQTT: Estabelece conexão GPRS para obter conectividade 

com a Internet, configura parâmetros de conexão com o broker MQTT 

(endereço do servidor, porta, credenciais de acesso e tópicos). 

 

3. Leitura de Dados Locais: Acessa a estrutura global de dados para obter os 

valores mais recentes dos parâmetros capturados do barramento CAN. 
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4. Atualização de Mensagem JSON: Converte os dados telemétricos em um 

formato JSON. Exemplo: {"rpm": 2100, "vel": 85, "temp": 92}. 

 

5. Publicação MQTT: Envia a mensagem JSON para o broker MQTT no tópico 

configurado. 

3.2.1.4 Tarefa BLE 

1. Inicialização do Servidor BLE: Configuração do servidor BLE com os serviços 

e características GATT definidos para a aplicação. Definição das propriedades 

das características (leitura, escrita, notificação). 

 

2. Monitoramento de Conexões: Verificação constante do estado das conexões 

BLE. Gerenciamento de eventos de conexão e desconexão de clientes. 

 

3. Atualização de Mensagem JSON: Acesso à estrutura global de dados do 

veículo para obter valores atualizados. Atualização dos valores das 

características GATT com novos dados telemétricos. 

 

4. Envio de Notificações: Envio de notificações para todos os clientes inscritos 

quando as características GATT são atualizadas com novos dados. 

 

5. Tratamento de Leitura: Resposta a solicitações de leitura das características 

GATT por dispositivos clientes. Retorno dos valores atuais dos parâmetros 

veiculares. 

 

6. Tratamento de Escrita: Processamento de comandos recebidos via 

características GATT com permissão de escrita. 
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3.2.2 Projeto de Hardware 

Baseado nos componentes escolhidos em 3.1.3, o projeto da placa de circuito 

impresso (PCI) foi desenvolvido no software KiCad, uma plataforma de 

desenvolvimento gratuita de fácil utilização e grande número de usuários. Foi adotada 

uma arquitetura de sistema modular em duas camadas, buscando proporcionar maior 

flexibilidade para futuras expansões, permitindo que diferentes aplicações possam 

utilizar e processar os dados veiculares adquiridos. 

A arquitetura da PCI foi organizada em dois blocos principais: 

Placa base que é responsável pela execução central do sistema, integrando o 

microcontrolador ESP32, a interface CAN e os circuitos essenciais de alimentação e 

proteção e a Placa modular que é dedicada à comunicação através da rede móvel 

celular, contendo o módulo SIM800L e dispondo de conectores compatíveis com 

protocolos como I²C e SPI, possibilitando a integração com módulos de comunicação 

alternativos ou sensores adicionais conforme a necessidade da aplicação.  

A Figura 11 mostra a arquitetura física projetada, dando como sugestões 

alguns componentes complementares que podem ser utilizados futuramente como: 

GPS para aplicações de rastreamento, acelerômetros para análises de impacto e 

comportamento do motorista, e Cartão SD para aplicações de armazenamento local 

de dados. 
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Figura 11 - Arquitetura Física de Hardware 

 

Fonte: O autor. 

 

 

Para o sistema de alimentação, foram implementados dois conversores buck 

LM2596 independentes. O primeiro fornece 5V regulados para a placa principal, 

enquanto o segundo é dedicado exclusivamente ao módulo SIM800L fornecendo 4.4V 

ou 5V, a depender do modelo, garantindo estabilidade da alimentação do módulo 

Sim800L. Esta separação previne interferências e queda de tensão durante os picos 

de corrente característicos das transmissões GSM. 

Com o objetivo de minimizar a área ocupada pela eletrônica, a placa base foi 

projetada utilizando componentes do tipo Surface-Mount Device (SMD), ou seja, 

dispositivos montados diretamente sobre a superfície da placa sem a necessidade de 

perfurações, o que favorece maior compacidade e melhor desempenho elétrico. A 

Figura 12 e Figura 13 ilustram o resultado dessa abordagem. 

Já a subplaca modular foi desenvolvida empregando componentes Plated 

Through-Hole (PTH), que utilizam terminais inseridos em furos metalizados da placa. 

Esse tipo de montagem proporciona maior robustez mecânica e facilita a substituição 

de módulos durante testes e experimentações, como mostrado na Figura 14. A Figura 

15 apresenta o arranjo físico planejado para o conjunto das placas. 
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Figura 12 - Parte Superior da Placa Base 

 

Fonte: O autor. 

 

Figura 13 - Parte Inferior da Placa Base 

 

Fonte: O autor. 

 

Figura 14 - Placa Modular 

 

Fonte: O autor. 
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Figura 15 - Montagem das Placas 

 

Fonte: O autor. 

 

3.3 Implementação 

3.3.1 Codificação 

O código-fonte foi estruturado em módulos especializados, seguindo uma 

abordagem de design orientado a objetos mesmo utilizando linguagem C/C++. A 

organização em pastas proporcionou separação clara de responsabilidades: 

• Módulo CAN: Responsável por toda a comunicação com o barramento veicular 

o CanMsgHandling.hpp: Implementa a máquina de estados para 

processamento de mensagens OBD-II e cálculo de valores físicos 

mediante fórmulas específicas de cada PID 

o CollectedDataStruct.h: Define a estrutura de dados global para 

armazenamento dos valores convertidos, permitindo acesso thread-safe 

pelas demais tarefas 

o Definitions.h: Centraliza todos os “defines”, constantes e mapeamentos 

de PIDs e periféricos 

o CANFunctions.cpp/h: Contém as funções de baixo nível para controle do 

MCP2515, formatação e envio de mensagens 

• Módulo Circular Buffer: Implementa o buffer circular para gestão da fila de PIDs 

a serem processados, incluindo verificação de disponibilidade no veículo. 
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• Módulo TickerISR: Utiliza a biblioteca Ticker para gerar interrupções 

temporizadas que disparam a aquisição dos PIDs em diferentes intervalos. 

• Módulo GPRS: Gerencia toda a comunicação com o módulo SIM800L, 

incluindo inicialização, comandos AT e protocolo de comunicação 

 

A seleção das bibliotecas e do framework de desenvolvimento foi realizada com 

base nos critérios de documentação e suporte da comunidade. Foi escolhido trabalhar 

pelo framework Arduino, em detrimento do ESP-IDF nativo, devido à maior 

simplicidade de desenvolvimento, vasto ecossistema de bibliotecas compatíveis. 

3.3.2 Montagem de Hardware 

Para realização de testes, a implementação física do sistema utilizou uma placa 

perfurada para a montagem dos componentes principais: a placa de desenvolvimento 

ESP32 DevKit V1, o módulo MCP2515 para interface CAN e o módulo SIM800L para 

comunicação GSM (Figura 16, Figura 17 e Figura 18, respectivamente). 

Figura 16 - ESP32 DEV KIT V1 

 

Fonte: O Autor. 
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Figura 17 - Módulo MCP2515 

 

 

Fonte:  O Autor. 

Figura 18 - Módulo Sim800L 

 

Fonte: o Autor 

 

 

A alimentação do sistema foi baseada no regulador buck LM2596, Figura 19, 

responsável por converter os 12V da bateria do veículo para 5V, seguido por um 

regulador linear AMS1117-3.3V para fornecer a tensão de 3,3V requerida pelo 

ESP32.   
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Figura 19 - Conversor Buck LM2596 

 

Fonte: (Mercado Livre) 

 

Foi adaptado um cabo com conector OBD-II, que forneceu tanto acesso ao 

barramento CAN quanto à alimentação de 12V, permitindo uma instalação 

simplificada. A Figura 20 mostra a arquitetura de montagem executada, já a Figura 21 

mostra a montagem dos componentes selecionados. 

Figura 20 - Arquitetura de Montagem para Teste de Hardware  

 

 

Fonte: O autor. 
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Figura 21 - Montagem Inicial do Sistema 

 

Fonte: O autor. 

3.4 Testes de Unidade 

Seguindo o lado direito do ciclo V, inicialmente, foi utilizado o hardware montado 

em placa perfurada e módulos comerciais, sendo a PCI projetada no Kicad utilizada 

posteriormente. Nos testes de unidade, cada tarefa desenvolvida foi testada de forma 

individual com seu componente de hardware. Realizou-se o teste de comunicação 

com o veículo, observando o envio e recebimento de mensagens utilizando a porta 

OBD-II.  

A Figura 22 mostra o resultado do teste de detecção de PIDs e a Figura 23 

mostra a resposta à solicitação de mensagens no Modo 01. Já na Figura 24 é possível 

observar a decodificação do conteúdo das mensagens recebidas. Esses testes foram 

realizados em dois automóveis, um Jeep Renegade 2015 e um Fiat Pulse 2023, Figura 

25, sendo obtidos resultados positivos em ambos. 
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Figura 22 - Solicitação e Resposta de PIDs disponíveis no barramento 

 

Fonte: O autor. 

Figura 23 - Envio e Recebimento de Mensagens no Modo 01 

 

Fonte: O autor. 
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Figura 24 - Decodificação do conteúdo das mensagens 

 

 

Fonte: O autor. 
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Figura 25 - Veículos Testados 

 

Fonte: O autor. 

3.5 Testes de Integração 

Nos testes de integração, os módulos previamente testados foram combinados, 

sendo testadas as Tarefas CAN + BLE e CAN + MQTT. A comunicação BLE foi 

testada utilizando o aplicativo nRF Connect (disponível na Play Store) em um 

smartphone Android. Como mostra a Figura 26, o dispositivo móvel conseguiu 

identificar e conectar-se ao servidor BLE do ESP32, assinando a característica 

responsável pelos dados OBD-II, enviados no formato exibido na Figura 27. Os 

valores transmitidos foram exibidos em tempo real no aplicativo, comprovando a 

eficácia da comunicação sem fio e a estruturação correta do pacote de dados. 
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Figura 26 - Recebimento de Mensagem BLE em aparelho celular 

 

Fonte: O autor. 



54 

 

 

 

Figura 27 - Formatação de mensagem JSON com os dados veiculares 

 

Fonte: O autor. 

 

Logo após, avaliou-se o recebimento e a publicação dos dados no broker 

MQTT hospedado na nuvem. Como mostrado na Figura 28, foi utilizado o programa 

MQTTBox para monitorar as mensagens no tópico assinado. É necessário destacar 

que foi embarcado no sistema um SIM card da operadora de telefonia CLARO, sendo 

assim, espera-se que o sistema apenas envie dados dentro da área de cobertura da 

operadora. Devido à restrições de utilização dos veículos fora do limites da 

Universidade Federal de Pernambuco, o teste foi realizado dentro do espaço da 

Universidade, Figura 29. 

Figura 28 - Recebimento de Mensagens no Tópico Assinado 

 

Fonte: O autor. 
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Figura 29 - Área de testes delimitada 

 

Fonte: O autor. 
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3.6 Testes de Sistema 

Com o sistema completo, foi executado o teste de sistema com a PCI projetada, 

Figura 30, averiguando a execução de todas as tarefas paralelamente. Como 

esperado, o funcionamento do sistema atendeu as expectativas. 

Figura 30 - Sistema Instalado na Porta OBD-II 

 
Fonte: O autor. 
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4 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE 

Este trabalho apresentou uma abordagem metodológica completa para o 

desenvolvimento de sistemas embarcados aplicados à telemetria veicular, 

abrangendo desde a seleção de componentes até a arquitetura de firmware. Os testes 

realizados demonstraram que o sistema é capaz de realizar a captura, tratamento e 

transmissão de dados veiculares. A decodificação OBD-II mostrou-se precisa, a 

comunicação BLE estável e a integração com MQTT eficaz.  

Esses resultados validam a arquitetura proposta e abrem caminho para 

expansões futuras que podem ser exploradas em continuidades deste trabalho, como: 

 

• Implementação de Armazenamento de Dados Locais: Para aumentar a 

confiabilidade em cenários com intermitência de conexão, pode-se 

implementar um banco de dados local com a utilização de cartões SD. Isso 

permitiria o armazenamento temporário dos dados em caso de perda de 

conectividade com a nuvem, com sincronização posterior assim que a 

comunicação for restaurada. 

 

• Integração de Serviços de Localização em Tempo Real: A fusão de dados de 

um GPS com os parâmetros OBD-II possibilitaria análises mais ricas, como 

monitoramento de rotas, detecção de frenagens bruscas ou acelerações 

excessivas. 

 

• Desenvolvimento de Dashboard Analítico Personalizado: A criação de uma 

interface poderia exibir históricos de telemetria, relatórios de consumo de 

combustível, eficiência do motor e demais métricas relevantes. 

 

• Aprimoramentos de Segurança: A adoção de certificados SSL/TLS para 

criptografia end-to-end na comunicação MQTT, além da implementação de 

autenticação mais robusta entre o dispositivo móvel e o broker, são essenciais 

para proteger os dados contra interceptações ou acessos não autorizados. 
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• Testes em Escala e em Condições Reais Diversas: Validar o sistema em uma 

frota de veículos, sob diferentes condições de tráfego, clima e conectividade, 

será crucial para refinar a estabilidade e o desempenho da solução em 

produção. 
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