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RESUMO 

Este trabalho tem como objetivo comparar técnicas de identificação de sistemas, 

especificamente os modelos ARX, ARMAX e uma rede neural NARX, aplicadas a uma 

planta simulada no Simulink, que para este trabalho foi usado o conversor Buck. A 

identificação foi realizada utilizando dados provenientes de variações reais no sinal de 

entrada, e o desempenho dos modelos foi avaliado por meio das métricas MSE e R². 

Testes iniciais com ruído no sinal mostraram que a planta atenua naturalmente essas 

perturbações, o que levou à utilização dos dados limpos para garantir uma 

comparação equilibrada entre os métodos. Os resultados obtidos evidenciam que os 

modelos lineares ARX e ARMAX representam satisfatoriamente o comportamento 

dinâmico observado, enquanto a rede NARX apresentou desempenho superior, 

alcançando menor erro e maior precisão na previsão da saída. Dessa forma, o estudo 

mostra que, embora métodos lineares sejam eficientes em diversas situações, 

abordagens não lineares baseadas em redes neurais podem oferecer maior fidelidade 

na identificação de sistemas, especialmente quando a dinâmica envolve 

características que os modelos lineares não capturam completamente.  

 
Palavras-chave: Identificação de sistemas; ARX; ARMAX; NARX; Redes neurais; 
Conversor Buck; Modelagem dinâmica. 
 
 
 
 
 
 
 
 
  



 
 

ABSTRACT 

This work aims to compare different system identification techniques, specifically 

the ARX, ARMAX, and NARX models, applied to a plant simulated in Simulink, for 

which a Buck converter was used as the study case. The identification was carried out 

using data obtained from realistic variations in the input signal, and the performance 

of the models was evaluated through the MSE and R² metrics. Initial tests with noise 

showed that the plant naturally attenuates such disturbances, which led to the use of 

clean data to ensure a fair comparison between the methods. The results demonstrate 

that the linear ARX and ARMAX models satisfactorily represent the observed dynamic 

behavior, while the NARX neural network achieves superior performance, presenting 

lower error and greater accuracy in predicting the system output. Therefore, the study 

shows that although linear models are effective in many situations, nonlinear 

approaches based on neural networks can offer higher fidelity in system identification, 

especially when the dynamics involve characteristics that linear models cannot fully 

capture. 

 
Keywords: System identification; ARX; ARMAX; NARX; Neural networks; Buck 
converter; Dynamic modeling. 
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1 INTRODUÇÃO 

Nas últimas décadas, o avanço da tecnologia e a crescente complexidade dos 

sistemas dinâmicos têm impulsionado a busca por métodos de modelagem e controle 

mais precisos e robustos. Quando o modelo dinâmico de um sistema controlado é 

conhecido exatamente, torna-se possível projetar um controlador ideal capaz de 

reproduzir a trajetória de referência desejada. Entretanto, na prática, a presença de 

ruídos, incertezas paramétricas e não linearidades torna difícil obter um modelo exato, 

o que compromete a precisão e a estabilidade do controle (JAMI‘IN et al., 2016; 

NAYANASIRI; LI, 2022). 

Para lidar com essas limitações, métodos clássicos de modelagem, como os 

modelos ARX (Auto-Regressive with eXogenous Input) e ARMAX (Auto-Regressive 

Moving Average with eXogenous Input), têm sido amplamente utilizados por sua 

simplicidade e eficiência na representação de sistemas lineares. No entanto, esses 

modelos apresentam desempenho limitado quando aplicados a sistemas não lineares, 

cuja resposta depende de variações complexas das variáveis de estado. Nesse 

contexto, as redes neurais artificiais (RNA) surgem como uma alternativa promissora, 

por sua capacidade de aproximar funções não lineares e representar comportamentos 

dinâmicos complexos a partir de dados experimentais (JAMI‘IN et al., 2016; ZHANG 

et al., 2018). 

A relevância científica das redes neurais pode ser observada por meio de uma 

pesquisa bibliométrica realizada na base de dados Web of Science, utilizando o tópico 

“neural network*”. Para isso, a Figura 1 apresenta, por meio de um gráfico de barras, 

a evolução do número de publicações ao longo dos anos, evidenciando um 

crescimento considerável desde 2002 e um acentuamento nesse aumento a partir de 

2015. Observa-se também que o volume anual de publicações passou de menos de 

4 mil trabalhos em 2001 para quase 77 mil em 2024, indicando a consolidação e a 

crescente importância das redes neurais na comunidade científica. 
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Figura 1 – Número de publicações no Web of Science para o tópico "neural network*". 

 
Fonte: AUTOR. 

A Figura 2  apresenta a distribuição das publicações por área de conhecimento, 

com destaque para “Engineering, Electrical & Electronic”, que lidera o número de 

trabalhos publicados. Essa predominância demonstra a forte presença das redes 

neurais em aplicações voltadas à engenharia elétrica, eletrônica, automação, 

sistemas de controle e processamento de sinais, áreas nas quais a modelagem de 

sistemas dinâmicos e o controle adaptativo desempenham papel central no avanço 

tecnológico. 

Figura 2 – Quantidade de publicações por área de atuação. 

 

 
Fonte: AUTOR. 
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Tabela 1 – Número de publicações totais no Web of Science sobre redes neurais. 

Área 
Número de 
publicações 

Percentual sobre o total. 

Engineering, Electrical & Electronic 119.318 21,857% 

Computer Science, Artificial 
Intelligence 

85.277 15,621% 

Computer Science, Information 
Systems 

57.141 10,467% 

Telecommunications 33.972 6,223% 

Computer Science, Interdisciplinary 
Applications 

33.153 6,073% 

Outros 67.789 56,489% 

Fonte: AUTOR. 

Dentro desse contexto, este trabalho propõe comparar o desempenho dos 

modelos ARX, ARMAX e NARX (rede neural ARX) aplicados à modelagem e 

identificação de sistemas dinâmicos. O estudo é realizado utilizando como planta de 

referência o conversor Buck, um conversor CC–CC amplamente empregado em 

sistemas de eletrônica de potência e frequentemente utilizado como modelo 

experimental em pesquisas de controle (NAYANASIRI; LI, 2022). Por sua estrutura 

simples e comportamento dinâmico não linear, o conversor Buck constitui uma 

excelente base para a análise comparativa de técnicas de identificação, permitindo 

avaliar a capacidade dos diferentes modelos em representar com fidelidade o 

comportamento dinâmico de sistemas reais. 

Dessa forma, o objetivo deste trabalho é avaliar a eficácia e a precisão dos 

modelos ARX, ARMAX e NARX na representação do comportamento do conversor 

Buck, comparando os erros de estimação e a resposta dinâmica simulada. Espera-se, 

com isso, demonstrar a contribuição das redes neurais na melhoria da capacidade de 

modelagem de sistemas não lineares, fornecendo subsídios para a aplicação dessas 

técnicas em projetos de controle mais robustos e eficientes. 
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1.1 Objetivos 

1.1.1 Geral 

Avaliar o desempenho de modelos clássicos de identificação (ARX e ARMAX) e 

de redes neurais artificiais do tipo NARX na modelagem do conversor Buck, 

comparando sua capacidade de representar o comportamento dinâmico do sistema. 

1.1.2 Específicos 

Para alcançar o objetivo geral proposto, foram definidos os seguintes objetivos 

específicos: 

• Implementar, no ambiente MATLAB/Simulink, a simulação de um 

conversor Buck para coleta de dados de entrada e saída; 

• Aplicar métodos de identificação clássicos ARX e ARMAX a partir dos 

dados simulados; 

• Desenvolver e treinar uma rede neural NARX com base nos mesmos 

dados, analisando seu desempenho de aprendizado; 

• Comparar quantitativamente os resultados obtidos entre os três modelos, 

utilizando métricas de desempenho como o erro médio quadrático (MSE); 

• Avaliar graficamente a resposta dinâmica simulada de cada modelo em 

relação à resposta real da planta; 

• Discutir as vantagens e limitações de cada método de modelagem, 

considerando aspectos de precisão, robustez e complexidade 

computacional. 

1.2 Organização do Trabalho 

Este trabalho está estruturado em quatro capítulos principais, que se 

complementam de forma lógica e progressiva para alcançar os objetivos propostos. 
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O Capítulo 1 apresenta a introdução ao tema, destacando a relevância da 

modelagem de sistemas dinâmicos e a motivação para o uso de técnicas baseadas 

em redes neurais artificiais. Também são definidos os objetivos geral e específicos 

que orientam o desenvolvimento do estudo. 

O Capítulo 2 aborda a fundamentação teórica, na qual são revisados os 

principais conceitos relacionados à identificação de sistemas, com ênfase nos 

modelos clássicos ARX e ARMAX e na estrutura das redes neurais artificiais. Nesse 

contexto, é apresentada a arquitetura NARX, destacando sua aplicação na 

modelagem de sistemas não lineares. 

O Capítulo 3 descreve a metodologia e o desenvolvimento do trabalho, 

detalhando o processo de simulação do conversor Buck, a geração dos sinais de 

entrada e saída, e a implementação dos modelos ARX, ARMAX e NARX no ambiente 

MATLAB/Simulink. São apresentadas ainda as etapas de treinamento, validação e 

comparação dos resultados obtidos por cada modelo. 

Por fim, o Capítulo 4 reúne as conclusões e propostas de continuidade, 

sintetizando os principais resultados alcançados e apontando possíveis direções para 

trabalhos futuros que busquem aprimorar ou expandir as técnicas de modelagem 

analisadas. 
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2 FUNDAMENTAÇÃO TEÓRICA 

A modelagem de sistemas dinâmicos é um dos pilares fundamentais da 

engenharia de controle e automação, pois permite representar matematicamente o 

comportamento de processos físicos a partir de suas variáveis de entrada e saída. A 

partir dessa representação, torna-se possível projetar controladores, prever respostas 

e realizar simulações sem a necessidade de ensaios diretos sobre o sistema real. 

Entre as diversas técnicas disponíveis para modelagem, destacam-se os 

métodos baseados em identificação de sistemas, que têm por objetivo estimar os 

parâmetros de um modelo formulado a partir de dados de entrada e saída. A área de 

system identification é ampla e está centrada justamente nesse processo de 

estimação de parâmetros de um modelo matemático previamente definido (LJUNG, 

1999). 

Esses métodos são amplamente utilizados em situações em que não se dispõe 

de um modelo analítico exato do sistema físico, ou quando o comportamento real é 

complexo. Nesse contexto, a identificação de sistemas é uma ferramenta essencial 

tanto em estudos de modelagem de sistemas do tipo caixa preta, nos quais a estrutura 

interna do sistema é desconhecida, quanto em abordagens de validação de modelos, 

nas quais se busca verificar a coerência entre o comportamento teórico e o observado 

experimentalmente. 

Nos últimos anos, o avanço das técnicas de inteligência artificial impulsionou o 

desenvolvimento de métodos de modelagem capazes de lidar com sistemas de 

natureza não linear e de comportamento complexo. Dentre essas técnicas, destacam-

se as redes neurais artificiais (RNAs), que se baseiam em estruturas computacionais 

inspiradas no funcionamento do cérebro humano e possuem a capacidade de 

aprender padrões e relações não lineares diretamente a partir dos dados 

experimentais. 

O presente capítulo apresenta os fundamentos teóricos que sustentam o estudo, 

abordando os conceitos de identificação de sistemas, os modelos ARX e ARMAX e 

os princípios das redes neurais artificiais aplicadas à modelagem de sistemas 

dinâmicos. Por fim, são discutidas as principais métricas de desempenho utilizadas 

para comparar a precisão dos modelos identificados. 
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2.1 Identificação de sistemas dinâmicos 

A identificação de sistemas é uma área fundamental da área de controle, voltada 

para a obtenção de modelos matemáticos capazes de representar o comportamento 

dinâmico de um sistema a partir de dados observados de entrada e saída. Essa 

abordagem é amplamente utilizada quando não se dispõe de um modelo físico 

completo do processo, ou quando o sistema apresenta comportamentos complexos e 

de difícil descrição analítica (LJUNG, 1999). 

De forma geral, o processo de identificação envolve três etapas principais: (i) a 

aquisição dos sinais de entrada e saída; (ii) a escolha de uma estrutura de modelo 

apropriada; e (iii) a estimação dos parâmetros que minimizam a diferença entre o 

comportamento real e o previsto. O resultado é um modelo capaz de reproduzir a 

dinâmica do sistema, o que permite sua aplicação em simulações, controle e previsão 

de estados. 

Figura 3 – Etapas para o processo de identificação de modelo. 

 
Fonte: AUTOR. 

Nos últimos anos, a identificação paramétrica de sistemas, que consiste em 

determinar as dinâmicas internas de um sistema com base em um modelo ajustado 
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sobre dados experimentais, tem recebido crescente atenção da comunidade científica. 

Esse tipo de abordagem busca não apenas descrever a resposta observada, mas 

também capturar as relações dinâmicas entre as variáveis envolvidas. A incorporação 

de redes neurais artificiais (RNA) nesse campo tem se tornado cada vez mais comum, 

impulsionada pela capacidade dessas estruturas de modelar relações não lineares 

complexas, pela menor necessidade de conhecimento prévio sobre o processo e pelo 

avanço do poder computacional disponível para treinamento (DONG; STARR; ZHAO, 

2023). 

A escolha de um modelo matemático adequado depende diretamente das 

características da planta em estudo, dos objetivos da modelagem e do nível de 

conhecimento disponível sobre o sistema. Na prática, essa decisão também envolve 

experiência e intuição do engenheiro, uma vez que diferentes estruturas são 

frequentemente testadas até que se obtenha uma representação satisfatória do 

comportamento real. Em projetos de controle baseados em modelos, há uma 

tendência em se utilizar representações lineares, em razão da ampla variedade de 

técnicas de controle desenvolvidas a partir dessas formulações. No entanto, para 

sistemas que apresentam não linearidades significativas, modelos mais sofisticados, 

tornam-se indispensáveis para capturar a dinâmica com maior fidelidade (TAVARES, 

2012). 

As técnicas de identificação podem ser classificadas conforme o grau de 

conhecimento prévio sobre o sistema: 

• Modelos caixa-branca, baseados em leis físicas conhecidas; 

• Modelos caixa-cinza, que combinam conhecimento físico parcial com 

parâmetros ajustados experimentalmente; 

• e modelos caixa-preta, que dependem exclusivamente de dados 

experimentais para representar o comportamento dinâmico. 

Os modelos ARX (AutoRegressive with eXogenous Input) e ARMAX 

(AutoRegressive Moving Average with eXogenous Input) são exemplos clássicos de 

abordagens lineares utilizadas em identificação paramétrica. Já as estruturas 

baseadas em redes neurais, como a NARX (Nonlinear AutoRegressive with 

eXogenous Input), estendem esse conceito para sistemas não lineares, permitindo 

uma descrição mais fiel de processos reais com dinâmicas complexas. Assim, a 
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identificação de sistemas se torna uma ferramenta essencial não apenas para fins de 

modelagem, mas também como base para o desenvolvimento de controladores mais 

robustos e adaptativos. 

2.2 Modelos clássicos de identificação (ARX, ARMAX) 

Os modelos ARX e ARMAX estão entre as estruturas mais utilizadas na 

identificação de sistemas lineares invariantes no tempo, devido à sua simplicidade e 

eficiência na modelagem de sistemas dinâmicos. Esses modelos são amplamente 

empregados para aproximar o comportamento dinâmico de sistemas lineares, sendo 

aplicados em tarefas de controle e detecção de falhas, por sua capacidade de 

representar de forma direta as relações entre entrada e saída (AGGOUNE; 

CHETOUANI; RADJEAI, 2014). 

Existem diversas formas de representar um sistema dinâmico, como funções de 

transferência, modelos em espaço de estados e representações polinomiais 

(TAVARES, 2012). No campo da identificação de sistemas, as representações 

polinomiais são as mais recorrentes, pois descrevem o comportamento dinâmico do 

sistema com base em dados experimentais e operadores de atraso. Dentre elas, 

destacam-se os modelos AR (AutoRegressive), ARX (AutoRegressive with 

eXogenous input), ARMAX (AutoRegressive Moving Average with eXogenous input), 

NARX (Nonlinear AutoRegressive with eXogenous input) e NARMAX (Nonlinear 

AutoRegressive Moving Average with eXogenous input), cuja escolha depende do tipo 

de planta, do objetivo da modelagem e do nível de conhecimento prévio sobre o 

sistema (TAVARES, 2012). 

Em aplicações de controle baseadas em modelos, observa-se uma preferência 

por representações lineares, em virtude da grande quantidade de métodos de análise 

e projeto já consolidados para esse tipo de estrutura (TAVARES, 2012). 
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2.2.1 Modelo ARX 

O modelo ARX descreve a saída de um sistema como uma combinação linear 

de saídas e entradas passadas, acrescida de um termo de erro. Sua formulação geral 

é dada por: A(1−ݍ)ݕ(݇) = (݇)ݑ(1−ݍ)ܤ + ݁(݇) (2.1) 

  

onde ݕ(݇) é a saída, ݑ(݇) é a entrada, ݁(݇) é o termo de erro, e 1−ݍ representa o 

operador de atraso, tal que ݕ1−ݍ(݇) = ݇)ݕ − 1). Os polinômios (1−ݍ)ܣ e (1−ݍ)ܤ são 

definidos como: A(1−ݍ) = 1 − 𝑎11−ݍ − 𝑎22−ݍ − ⋯ − 𝑎௡௔ݍ−௡ೌ (2.2) (1−ݍ)ܤ = 1−ݍ1ܾ + 𝑎22−ݍ − ⋯ − ܾ௡௕ݍ−௡್ (2.3) 

  

em que 𝑎௜ e ܾ௜ são coeficientes associados aos regressores de saída e entrada 

respectivamente, e 𝑛௔ e 𝑛௕ são as ordens dos polinômios. 

A expressão também pode ser reescrita como: 

y(k) = (1−ݍ)ܣ(1−ݍ)ܤ (݇)ݑ + (1−ݍ)ܣ1 ݁(݇) (2.4) 

  

O modelo ARX é classificado como um modelo de erro na equação, pois o termo 

de erro é tratado como ruído branco filtrado por um processo autorregressivo, o que 

faz com que o ruído na saída apresente correlação temporal (TAVARES, 2012; 

AGUIRRE, 2004). Essa estrutura é adequada para sistemas em que o ruído não 

domina o comportamento dinâmico e pode ser considerado uma pequena 

perturbação. 

2.2.2 Modelo ARMAX 

O modelo ARMAX é uma extensão do ARX, incluindo um termo adicional que 

representa a média móvel (Moving Average), permitindo modelar de forma mais 

precisa a influência do ruído. Essa característica torna o modelo mais adequado para 

sistemas nos quais o ruído apresenta correlação temporal significativa. Sua forma 

geral é: 
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A(1−ݍ)ݕ(݇) = (݇)ݑ(1−ݍ)ܤ + C(q−1)݁(݇) (2.5) 

onde, (1−ݍ)ܥ é o polinômio de média móvel, expresso como: C(1−ݍ) = 1 + 1−ݍ1ܿ + 2−ݍ2ܿ + ⋯ + ܿ௡೎ݍ−௡೎ (2.6) 

os coeficientes ܿ௜ representam a influência dos erros passados, e 𝑛௖ é a ordem do 

polinômio (1−ݍ)ܥ. O modelo pode ser reescrito como 

(݇)ݕ = (1−ݍ)ܣ(1−ݍ)ܤ (݇)ݑ + (1−ݍ)ܣ(1−ݍ)ܥ ݁(݇) (2.7) 

Ao contrário do modelo ARX, o ARMAX não é linear nos parâmetros, o que torna 

sua estimação mais complexa. Entretando, essa estrutura é mais robusta e flexível, 

especialmente em plantas industriais sujeitas a ruídos correlacionados (TAVARES, 

2012; AGUIRRE,2004). Esse tipo de modelo é apropriado quando se busca uma 

representação mais fiel da dinâmica estocástica do sistema. 

2.3 Redes neurais artificiais  

As redes neurais artificiais (RNAs) são modelos computacionais inspirados na 

estrutura e no funcionamento do sistema nervoso humano. O cérebro pode ser 

compreendido como um sistema composto por três estágios principais: receptores, 

rede neural e atuadores (HAYKIN, 1999). Os receptores convertem estímulos 

provenientes do ambiente externo em impulsos elétricos que são transmitidos ao 

cérebro, onde a rede neural realiza o processamento da informação e a tomada de 

decisões. Em seguida, os atuadores transformam os impulsos gerados pelo cérebro 

em respostas observáveis, como movimentos ou reações fisiológicas. Esse ciclo de 

percepção, processamento e ação serve como base conceitual para o 

desenvolvimento de modelos neurais artificiais. 
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Figura 4 – Representação do sistema nervoso em blocos 

 
Fonte: (GONÇALVES) 

Segundo Gonçalves (2023), o neurônio biológico é a unidade fundamental do 

cérebro humano, especializado na transmissão e processamento de informações por 

meio de impulsos elétricos. Ele é composto por três partes principais: o corpo celular 

(ou soma), responsável por integrar os sinais recebidos; os dendritos, que captam 

estímulos de outros neurônios; e o axônio, uma ramificação mais longa que conduz 

os sinais elétricos até outras células. Nas extremidades do axônio localizam-se os 

terminais sinápticos, que realizam a comunicação entre neurônios através de 

fenômenos conhecidos como sinapses (ARBIB, 2002). 

Figura 5 – Modelo simplificado de neurônio biológico. 

 
Fonte: (GONÇALVES) 

A partir do entendimento dessa estrutura, pesquisadores buscaram reproduzir 

computacionalmente o comportamento do sistema nervoso humano, originando o 

conceito de neurônio artificial. O modelo mais influente nesse sentido foi proposto por 

McCulloch e Pitts (1943), considerado o marco inicial das redes neurais artificiais. O 
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modelo, conhecido como Perceptron, implementa de forma simplificada os principais 

componentes e mecanismos de funcionamento do neurônio biológico. 

Nesse modelo, os estímulos provenientes de outros neurônios são 

representados por sinais de entrada (ݔ௝), e a intensidade com que cada estímulo 

influencia o neurônio receptor é definida por pesos sinápticos (ݓ௞௝). Cada peso 

representa o grau de importância ou “força sináptica” associada a uma conexão, por 

isso quanto maior o peso, mais significativo é o impacto do sinal sobre o neurônio de 

saída. 

O neurônio artificial realiza inicialmente uma soma ponderada dos sinais de 

entrada, multiplicando cada valor ݔ௝ pelo seu respectivo peso ݓ௞௝. Essa operação é 

expressa pela seguinte equação: 

௞ݑ = ∑ ௞௝ݓ ∙ ௝௡ݔ
௝=1 + ܾ݅𝑎(2.8) ݏ 

  

onde 𝑛 é o número total de sinais de entrada incidentes no neurônio ݇. O resultado 

dessa soma, ݑ௞, representa o nível de ativação do neurônio. 

Em seguida, aplica-se uma função de ativação ߮(ݑ௞) que transforma o valor de 

entrada em uma saída normalizada, conforme: ݕ௞ =  (2.9) (௞ݑ)߮

  

A função de ativação é responsável por introduzir não linearidade no modelo, 

permitindo que o neurônio artificial simule comportamentos mais complexos do que 

simples combinações lineares (ARBIB, 2002). A literatura apresenta diversas funções 

de ativação, cada uma com propriedades específicas para diferentes aplicações. 

Entre as mais comuns estão: 

• Função degrau (Heaviside) — usada nas primeiras redes, com saídas 

binárias (0 ou 1); 

• Função sigmoide logística — contínua e suave, amplamente utilizada 

em problemas de classificação; 

• Função tangente hiperbólica (ܐܖ܉ܜ) — semelhante à sigmoide, mas 

centrada em zero, facilitando o aprendizado em certas redes; 



29 
 

 
 

• Função ReLU (Rectified Linear Unit) — amplamente empregada em 

redes profundas, define a saída como zero para valores negativos e linear 

para positivos. 

Figura 6 – Modelo de neurônio artificial proposto por McCulloch e Pitts 

 
Fonte: (GONÇALVES) 

Figura 7 – Funções de ativação. 

 

Fonte: AUTOR. 
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Essas funções determinam como o neurônio reage a diferentes níveis de 

estímulo, controlando a propagação da informação dentro da rede. Ao interligar 

diversos neurônios artificiais em camadas, forma-se uma rede neural, capaz de 

aprender padrões e relacionamentos complexos entre variáveis a partir de dados. 

Esse aprendizado é realizado através de algoritmos de ajuste iterativo dos pesos 

sinápticos, que minimizam o erro entre a saída desejada e a saída produzida pela 

rede. 

Em síntese, conforme destaca Gonçalves (2023), o modelo matemático das 

redes neurais artificiais tem inspiração biológica, refletindo a tentativa de traduzir o 

mecanismo de funcionamento do cérebro humano em uma estrutura computacional 

capaz de processar informações, reconhecer padrões e aprender com experiências 

passadas. 

2.3.1 Rede Neural NARX (Nonlinear AutoRegressive with eXogenous Input) 

As redes neurais do tipo NARX representam uma classe específica de redes 

neurais recorrentes desenvolvidas para lidar com problemas de previsão em séries 

temporais e modelagem de sistemas dinâmicos não lineares. Diferentemente das 

redes alimentadas apenas por entradas externas, a NARX incorpora mecanismos de 

retroalimentação, permitindo que a rede utilize não apenas os sinais de entrada, mas 

também valores passados da própria saída para prever estados futuros do sistema. 

Essa característica confere à rede um comportamento dinâmico, em que as saídas 

anteriores influenciam diretamente os resultados subsequentes, refletindo de forma 

mais realista a natureza temporal dos sistemas físicos (AQUIZE et al., 2023). 

De forma geral, o modelo NARX pode ser descrito pela seguinte relação 

funcional: ݕ(݇) = ݇)ݑ)݂ − 1), ݇)ݑ − 2) … ݇)ݑ − 𝑛), ݇)ݕ − 1), ݇)ݕ − 2), … , ݇)ݕ − ݉)) (2.10) 

  

em que: 

 representa o vetor de entradas exógenas (sinais de entrada do (݇)ݑ •

sistema), 
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 ,é o vetor de saídas observadas (݇)ݕ •

• 𝑛 e ݉ são, respectivamente, os atrasos associados às entradas e às 

saídas (ARAUJO, 2024). 

A principal vantagem do modelo NARX está na sua capacidade de aprendizado 

contínuo. Ao combinar os dados originais de entrada com as saídas geradas durante 

o processo de treinamento, a rede é capaz de aprimorar iterativamente sua habilidade 

de predição, ajustando seus pesos sinápticos de modo a minimizar o erro entre o valor 

previsto e o valor real (KHALED et al., 2020). Essa propriedade torna o modelo 

particularmente eficiente na representação de sistemas complexos e não lineares. 

Internamente, a NARX é estruturada sobre uma Perceptron Multicamadas (MLP 

– Multi-Layer Perceptron), composta por uma camada de entrada, uma ou mais 

camadas ocultas e uma camada de saída. Os neurônios são interconectados por 

pesos adaptativos e operam por meio de funções de ativação não lineares, como 

sigmoide, tangente hiperbólica ou ReLU (funções já apresentadas neste capítulo), o 

que confere à rede a capacidade de representar relações complexas entre as 

variáveis. A presença das linhas de atraso (memory lines) e da realimentação das 

saídas faz com que a NARX capture de forma eficiente a dependência temporal das 

variáveis envolvidas, característica essencial na modelagem de sistemas dinâmicos, 

(SOUZA et al., 2019). 

Além disso, diversos estudos destacam que as redes NARX apresentam 

convergência mais rápida e maior estabilidade de treinamento em comparação com 

outras arquiteturas recorrentes tradicionais. Essa eficiência está relacionada à forma 

como as realimentações são incorporadas, permitindo que a rede aprenda de maneira 

mais direta as relações causais entre entradas e saídas do sistema (ARAUJO, 2024). 

A Figura 8 ilustra a estrutura genérica de uma rede neural NARX, onde ݑ(݇) 

representa a entrada exógena, ݕ(݇) é a saída estimada e os blocos de atraso indicam 

a memória temporal do modelo. Essa representação evidencia o fluxo de informações 

e a interação entre as variáveis passadas e presentes, fundamentais para a predição 

do comportamento futuro do sistema. 
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Figura 8 – Sistema dinâmico da rede neural NARX. 

 
Fonte: (ARAUJO, V. G., 2024). 

2.4 Métricas de desempenho para comparação de modelos 

A análise quantitativa do desempenho de um modelo é fundamental para avaliar 

sua capacidade de representar o comportamento real de um sistema dinâmico. As 

métricas de desempenho permitem quantificar o erro entre os valores medidos e os 

valores estimados, bem como a capacidade do modelo de responder adequadamente 

diante de ruídos ou variações nas entradas. 

Neste trabalho, são adotadas três métricas principais: Erro Quadrático Médio 

(MSE), Coeficiente de Determinação (R²) e Filtragem, conforme metodologia inspirada 

em Araújo. T. (2022). 

2.4.1 Erro Quadrático Médio (MSE) 

O Erro Quadrático Médio (MSE — Mean Squared Error) é uma métrica estatística 

amplamente utilizada para quantificar a precisão de um modelo de predição. Ele mede 

o desvio médio entre os valores reais e os valores estimados, elevando ao quadrado 

as diferenças para penalizar erros maiores. 

Matematicamente, é expresso como: 
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ܧܵܯ = 1𝑛 ௜ݕ̂)∑ − 2௡(1ݕ
௜=1  (2.11) 

onde: 
• 𝑛 é o número total de observações; 

 ;௜ representa o valor real do sistemaݕ •

 .௜ é o valor estimado pelo modeloݕ̂ •

O valor do MSE é sempre não negativo e varia entre 0 e ∞, sendo que valores 

próximos de zero indicam uma maior precisão do modelo. Essa métrica será usada 

como parâmetro comparativo principal entre os modelos ARX, ARMAX e NARX 

desenvolvidos neste estudo. 

2.4.2 Coeficiente de Determinação (R²) 

O Coeficiente de Determinação (ܴ2) mede o quanto o modelo é capaz de 

explicar a variabilidade dos dados observados em relação à média. Ele fornece uma 

medida intuitiva de ajuste do modelo aos dados reais, indicando o percentual da 

variação da saída que é corretamente reproduzida pela predição. 

Sua formulação é dada por: 

ܴ2 = 1 − ∑ ௜ݕ) − ప̂௡௜=1ݕ )2∑ ௜ݕ) − ௡௜=1ݕ̅ )2  (2.12) 

  

onde ̄ݕ é a média dos valores reais da saída. 

O coeficiente ܴ2 varia de 0 a 1, sendo 1 o valor ideal, que representa um modelo 

perfeitamente ajustado. Embora um ܴ2 alto não garanta sozinho a excelência do 

modelo, valores baixos indicam que o modelo possui baixo poder explicativo sobre os 

dados de saída (ARAÚJO, T., 2022). 

2.4.3 Filtragem 

A filtragem avalia a resposta do modelo diante da presença de ruído no sinal de 

entrada. Esse ruído, normalmente modelado como ruído branco de média nula e 
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variância unitária, é introduzido artificialmente para verificar o quanto ele se propaga 

até a saída estimada. 

Modelos com boa capacidade de filtragem mantêm a estabilidade e a precisão 

das estimativas, apresentando menor variação na saída mesmo quando submetidos 

a entradas ruidosas. 

Segundo Araújo, T. (2022), a filtragem é essencial na análise de sistemas reais, 

nos quais o ruído de medição pode comprometer o desempenho do estimador, sendo, 

portanto, um bom indicador da robustez do modelo. 
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3 METODOLOGIA E DESENVOLVIMENTO 

Este capítulo apresenta a metodologia adotada para a modelagem e análise 

comparativa dos modelos ARX, ARMAX e NARX, descrevendo detalhadamente as 

etapas de simulação, coleta e tratamento de dados, identificação e validação dos 

modelos propostos. O conteúdo também permeia por aspectos fundamentais do 

desenvolvimento do trabalho, destacando o conversor Buck como a plataforma de 

aplicação prática escolhida para demonstrar o desempenho das técnicas de 

modelagem abordadas. 

O conversor Buck é um dispositivo amplamente utilizado em sistemas de 

eletrônica de potência devido à sua eficiência na conversão de tensão contínua e sua 

dinâmica relativamente simples, o que o torna ideal para estudos de identificação de 

sistemas. A escolha desse conversor como planta de estudo permite analisar com 

clareza o comportamento dinâmico de um sistema não linear, cuja resposta depende 

diretamente do ciclo de trabalho (duty cycle) aplicado ao chaveamento. 

Dessa forma, o capítulo abrange tanto os procedimentos experimentais e 

computacionais utilizados na obtenção dos dados de entrada e saída quanto as 

ferramentas matemáticas e computacionais aplicadas na estimação e comparação 

dos modelos.  

3.1 Definição da planta e simulação do sistema 

O conversor Buck foi selecionado como planta de estudo neste trabalho por se 

tratar de um sistema dinâmico não linear de ampla utilização em pesquisas de controle 

e eletrônica de potência. Sua estrutura relativamente simples, composta por 

elementos reativos e chaveamento em alta frequência, torna-o uma excelente base 

para avaliar o desempenho de técnicas de identificação e modelagem de sistemas. 

De acordo com Nayanasiri e Li (2022), os conversores CC–CC redutores são 

amplamente empregados em aplicações que exigem alta eficiência e estabilidade, e 

sua dinâmica típica envolve relações não lineares entre tensão e corrente. 

A primeira etapa que envolve esse conversor no trabalho consistiu na 

modelagem e simulação da planta escolhida. O conversor Buck tem como principal 
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característica reduzir a tensão de entrada para um valor de saída inferior, mantendo 

a polaridade desta tensão (MOHAN; UNDELAND; ROBBINS, 1995). Sua operação é 

baseada na comutação controlada de um dispositivo semicondutor (geralmente um 

MOSFET), em conjunto com um diodo, um indutor e um capacitor de filtro. 

Figura 9 – Circuito esquemático de um conversor Buck. 

  
Fonte: AUTOR. 

A modelagem, por sua vez, foi desenvolvida no ambiente Simulink/MATLAB, por 

meio do Simscape Electrica – Specialized Power Systems. O circuito foi construído a 

partir de blocos que representam os elementos físicos do conversor, incluindo 

(MOHAN; UNDELAND; ROBBINS, 1995): 

• Fonte de tensão contínua ( ௜ܸ௡) — Fornece a tensão de entrada para o 

sistema, fixada em 24 V; 

• Chave semicondutora (MOSFET) — responsável pela comutação, 

controlada por um sinal PWM; 

• Diodo (D) — conduz a corrente durante o período em que o MOSFET está 

desligado; 

• Indutor (L) — armazena energia magnética e suaviza a corrente; 

• Capacitor de filtro (C) — reduz a ondulação na tensão de saída; 
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• Carga resistiva (R) — representa a carga conectada ao conversor. 

Os valores utilizados para os componentes foram definidos conforme a Tabela 

2, de modo a garantir uma resposta dinâmica adequada à frequência de chaveamento 

escolhida. 

Tabela 2 – Parâmetros dos elementos do conversor Buck. 

Parâmetro Símbolo Valor Unidade 

Tensão de 
entrada ௜ܸ௡ 50 ܸ 

Indutância ܪ݉ 1,2 ܮ 

Capacitância ܨߤ 15,3 ܥ 

Resistência de 
carga 

ܴ 4 Ω 

Frequência de 
chaveamento ௦݂ 12 ݇ݖܪ 

Fonte: AUTOR. 

Inicialmente, para avaliar o comportamento do circuito, foram aplicados valores 

fixos de duty cycle de 10%, 50% e 100%, de forma isolada, com o objetivo de observar 

o comportamento do conversor Buck e verificar se a simulação estava respondendo 

conforme o esperado. Essa etapa inicial foi importante para validar o modelo do 

conversor, garantindo que a tensão de saída variasse de maneira coerente com o 

princípio de funcionamento do Buck, isto é, apresentando uma tensão proporcional ao 

ciclo de trabalho aplicado, segundo a relação ௢ܸ = ܦ ⋅ ௜ܸ௡, em que ܦ é o duty cycle e ௢ܸ é a tensão na carga (MOHAN; UNDELAND; ROBBINS, 1995). 

A partir dessa verificação, confirmou-se que o modelo respondia 

adequadamente, permitindo então a utilização de um sinal variável de duty cycle para 

a coleta dos dados necessários à identificação dos modelos. O comportamento do 

conversor nessas condições pode ser observado nas figuras a seguir (Figura 10, 

Figura 11 e Figura 12), que mostram as respostas da tensão de saída para os três 

valores de ciclo de trabalho aplicados. 
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Assim, com o circuito finalizado, é possível simular respostas para vários valores 

de ciclos de trabalho para o levantamento dos dados que serão úteis para a devida 

continuidade do desenvolvimento deste trabalho. 

Figura 10 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho de 10%. 

 
Fonte: AUTOR. 
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Figura 11 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho de 50%. 

 
Fonte: AUTOR. 
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Figura 12 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho de 100%. 

 
Fonte: AUTOR. 

Para o funcionamento do circuito, o controle do chaveamento foi implementado 

por meio de um gerador PWM, como pode ser visto na Figura 13, formado pela 

comparação entre uma onda triangular periódica e um sinal de referência variável 

(duty cycle). 

A referência de valores de ciclo de trabalho foi fornecida a partir de um vetor 

criado no MATLAB e importado para o Simulink pelo bloco From Workspace, 

permitindo a variação ao longo da simulação. O código para gerar esse vetor de 

variação de duty cycle pode ser avaliado no Apêndice A deste trabalho. 



41 
 

 
 

Figura 13 – Diagrama do gerador PWM no MATLAB. 

 
Fonte: AUTOR. 

O sinal de duty cycle gerado apresenta variações aleatórias ao longo do tempo, 

formadas por níveis constantes em pequenos intervalos. Esse tipo de sinal foi 

escolhido porque permite testar a resposta do conversor Buck em diferentes 

condições de operação, o que é importante para uma boa identificação do sistema. 

Cada degrau permanece constante por cerca de 5 milissegundos e depois muda para 

um novo valor aleatório, variando entre aproximadamente 5% e 95% de ciclo ativo. O 

gráfico que mostra essa variação aleatória do duty cycle é apresentado na Figura 14, 

onde é possível observar o comportamento em degraus do sinal utilizado como 

entrada da planta simulada. 

Figura 14 – Varação aleatória do sinal de duty cycle utilizado como entrada na simulação do 
conversor Buck. 

 
Fonte: AUTOR. 
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Durante a execução da simulação, as principais variáveis monitoradas foram: 

• o duty cycle aplicado à chave; 

• a tensão de saída do conversor ( ௢ܸ௨௧). 
A tensão de saída foi capturada por meio de um bloco Voltage Sensor e 

exportada para o MATLAB utilizando o bloco To Workspace — item out.simout na 

Figura 15. Esse bloco salvou, no Workspace, os dados de simulação. Esses dados, 

por sua vez, serviram como base para as etapas seguintes de identificação dos 

modelos ARX e ARMAX e posterior treinamento da rede neural NARX. 

Figura 15 – Circuito do conversor Buck simulado no MATLAB. 

 
Fonte: AUTOR. 

3.2 Modelagem com ARX 

Nesta etapa, foi desenvolvido um modelo de identificação do tipo ARX, com o 

objetivo de obter uma representação aproximada da dinâmica do conversor Buck. 

Esse procedimento foi conduzido de forma híbrida: inicialmente, o modelo ARX foi 

estimado utilizando-se apenas o primeiro degrau presente no sinal de entrada, de 

modo a capturar o comportamento transitório fundamental do sistema em torno de 

uma variação real de entrada. Para isso, o algoritmo percorreu automaticamente o 

vetor de duty cycle, identificando o primeiro salto significativo e extraindo uma janela 

temporal que inclui tanto uma pequena parcela anterior ao degrau quanto o trecho 
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completo de subida da tensão de saída. Em seguida, esse conjunto reduzido foi 

estruturado no formato iddata e submetido a uma busca sistemática das ordens do 

modelo ARX (na, nb, nk), variando de 1 a 5, adotando-se como critério de seleção o 

menor valor de FPE (Final Prediction Error). O modelo resultante a partir desse 

primeiro degrau foi então considerado representativo da dinâmica local do conversor 

e utilizado como base para a próxima etapa. 

Nessa etapa, realizou-se uma busca das ordens do modelo ARX, variando os 

parâmetros 𝑛𝑎, 𝑛ܾ e 𝑛݇ de 1 a 5. No contexto de modelos ARX, 𝑛𝑎 corresponde à 

ordem do polinômio associado às saídas passadas, isto é, quantas amostras 

anteriores de (ݐ)ݕ o modelo utiliza para prever o valor atual. Esse parâmetro está 

relacionado ao número de polos do modelo discreto. Já 𝑛ܾ representa a ordem do 

polinômio aplicado às entradas passadas, definindo quantas amostras anteriores de (ݐ)ݑ influenciam a saída; este parâmetro está relacionado ao número de zeros do 

modelo. Por fim, 𝑛݇ corresponde ao atraso puro entre entrada e saída, indicando o 

número de instantes de amostragem necessários para que uma variação em (ݐ)ݑ 
provoque efeito observável em (ݐ)ݕ. Esses três parâmetros definem completamente 

o modelo ARX e são fundamentais para capturar a dinâmica do sistema. Como critério 

de escolha do melhor modelo, adotou-se o menor valor de FPE (Final Prediction 

Error), que fornece uma estimativa estatística da qualidade do ajuste penalizando 

modelos excessivamente complexos. 

Após definida a estrutura ótima do modelo, este ARX identificado a partir do 

primeiro degrau foi aplicado ao conjunto completo de dados do experimento, de modo 

a avaliar sua capacidade de generalização. Essa abordagem permite verificar se um 

modelo linear ajustado localmente em torno de um único transitório é capaz de 

representar adequadamente a dinâmica global do sistema, mesmo considerando que 

o conversor Buck apresenta comportamento inerentemente não linear. A saída 

prevista pelo modelo ARX foi comparada diretamente com a saída real do Simulink ao 

longo de todo o intervalo de simulação. 

O código completo adotado para identificação e simulação encontra-se 

disponibilizado no Apêndice C. 
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3.3 Modelagem com ARMAX 

Após a identificação do modelo ARX, foi desenvolvido também um modelo 

ARMAX. O modelo ARMAX é uma extensão natural do ARX, pois além dos polinômios 

que representam a dinâmica da planta (A e B), ele incorpora o polinômio (1−ݖ)ܥ, 

responsável por modelar a dinâmica do ruído como um processo de média móvel. 

Essa característica o torna particularmente útil em sistemas sujeitos a perturbações, 

flutuações de chaveamento ou medições ruidosas. 

Seguindo a mesma metodologia utilizada para o modelo ARX, o processo de 

identificação do ARMAX foi realizado com base somente no primeiro degrau presente 

no sinal de entrada. Primeiramente, o código identificou automaticamente o instante 

de ocorrência desse degrau, extraindo em seguida uma janela contendo tanto uma 

fração anterior ao salto quanto todo o transitório associado à subida da saída. Esse 

procedimento concentra a identificação em uma região dinâmica significativa. 

Com esse trecho selecionado, realizou-se uma varredura das ordens 𝑛𝑎, 𝑛ܾ, 𝑛ܿ 

e 𝑛݇, variando de 1 a 5, utilizando como critério de escolha o valor mínimo do FPE 

(Final Prediction Error). O modelo ARMAX escolhido apresentou estrutura (𝑛𝑎, 𝑛ܾ, 𝑛ܿ, 𝑛݇) = (5,2,5,1), indicando que tanto a parte autoregressiva quanto a parte 

de ruído possuem quinta ordem, enquanto a influência da entrada foi representada 

por dois coeficientes com atraso puro de uma amostra. 

Depois da identificação local, o modelo ARMAX foi submetido à aplicação global. 

Para isso, ele foi simulado utilizando-se todo o vetor de entrada do experimento, 

permitindo avaliar sua capacidade de generalização para além do primeiro degrau 

utilizado na estimação. Em seguida, a resposta prevista foi comparada com a saída 

real, gerando tanto o MSE global quanto o coeficiente de determinação ܴ2. Os 

resultados globais poderão ser vistos no próximo capítulo deste trabalho. 

3.4 Treinamento e validação da rede neural NARX 

Nesta etapa foi desenvolvida a modelagem do sistema a partir dos dados obtidos 

na simulação do conversor Buck, empregando-se uma rede neural do tipo NARX 

(Nonlinear AutoRegressive with eXogenous Input). Essa arquitetura foi escolhida por 
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sua capacidade de representar sistemas dinâmicos não lineares e por considerar tanto 

os valores passados da saída quanto os da entrada, permitindo capturar 

adequadamente o comportamento temporal do sistema. A implementação e o 

treinamento foram realizados no ambiente MATLAB, utilizando a toolbox Neural 

Network.  

O script completo foi elaborado de forma modular, iniciando-se pela importação 

dos dados simulados e pela preparação dos sinais para o treinamento. O arquivo 

“saida_simulacao.mat”, exportado do Simulink, contém duas variáveis principais: o 

vetor de tempo (tout) e o vetor de saída (simout), que representam respectivamente o 

domínio temporal e o valor da tensão de saída do conversor. Esses dados foram 

carregados e tratados conforme o trecho de código a seguir. 

Figura 16 – Código de carregamento de dados. 

 
Fonte: AUTOR. 

O tempo médio de amostragem ( ௦ܶ) é calculado automaticamente a partir da 

diferença entre amostras consecutivas do vetor ݐ, o que permite reproduzir no 

MATLAB a mesma relação de tempo utilizada no Simulink. Essa etapa é importante 

pois garante a coerência entre as bases de dados e o modelo neural que será treinado. 

Em seguida, foi adicionado ao sinal de saída um ruído de intensidade controlada, 

simulando a presença de incertezas ou medições ruidosas, comuns em sistemas 

reais. Esse ruído segue uma distribuição normal com média zero e variância 

proporcional à amplitude do sinal. O parâmetro “nivel_ruido” (Figura 17) pode ser 

ajustado para introduzir diferentes intensidades de ruído, permitindo analisar 

posteriormente a robustez do modelo NARX frente a sinais degradados. No caso 

inicial, o ruído foi mantido nulo para avaliar o desempenho puro da rede com dados 

ideais. No entanto, em outras simulações, esse valor de ruído será importante para 

testes de estresse na rede. 
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Figura 17 – Código para adicionar ruido no sinal de saída. 

  
Fonte: AUTOR. 

Após o pré-processamento, os dados foram divididos em conjuntos de 

treinamento e teste, correspondendo a 40% e 60% do total de amostras, 

respectivamente. Essa divisão é feita de forma sequencial, garantindo que o 

treinamento utilize apenas as primeiras amostras do sinal, enquanto as demais são 

reservadas para validação do modelo após o aprendizado. É importante saber 

também que o total de amostras é de 12.501 medições, garantindo que 40% para 

aprendizagem ainda seja bem eficiente. 

Figura 18 – Código para separação de dados entre treino e teste. 

 
Fonte: AUTOR. 

 
A criação da rede foi realizada com o comando narxnet, definindo atrasos de 

entrada e realimentação de 1 a 5 amostras, e uma camada oculta com 10 neurônios. 

A configuração de divisão interna dos dados foi ajustada para 60% de treinamento, 

20% de validação e 20% de teste, como apresentado na Figura 19. 
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Figura 19 – Código sobre uso do narxnet. 

 
Fonte: AUTOR. 

Os parâmetros de divisão controlam como o MATLAB separa os dados dentro 

do próprio conjunto de treinamento, garantindo um monitoramento contínuo do 

desempenho da rede ao longo das iterações. O conjunto de validação é usado para 

detectar overfitting, interrompendo o treinamento quando o erro de validação deixa de 

diminuir. 

No Apêndice B deste trabalho, será encontrado o código completo para a criação 

e treino da rede neural NARX aplicados nesta esta pesquisa.  

3.5 Comparação e análise dos resultados 

Nesta seção é finalmente apresentada a comparação e análise dos resultados 

obtidos a partir da aplicação dos modelos ARX, ARMAX e NARX à resposta do 

conversor Buck. O objetivo neste capítulo é avaliar o desempenho de cada abordagem 

de identificação, considerando critérios como a capacidade de representação da 

dinâmica do sistema, o erro de predição e o comportamento dos modelos. As 

subseções seguintes detalham individualmente os resultados alcançados por cada 

modelo permitindo uma análise comparativa entre as estruturas utilizadas. 

3.5.1 ARX 

As métricas quantitativas calculadas incluem o erro médio quadrático (MSE) e o 

coeficiente de determinação (R²). O MSE expressa o desvio médio entre as respostas 

real e prevista, constituindo uma medida direta do erro de modelagem. O coeficiente 
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R², por sua vez, indica o quanto da variabilidade da saída real é explicada pelo modelo 

ARX; valores próximos de 1 caracterizam elevada fidelidade da aproximação linear. A 

combinação dessas métricas, somada à inspeção do gráfico comparativo final, 

permite concluir sobre a adequação e as limitações do modelo ARX quando aplicado 

globalmente. 

Figura 20 – Parâmetros do modelo ARX obtido no MATLAB. 

 
Fonte: AUTOR. 

Figura 21 – Métricas obtidas para o modelo ARX. 

 
Fonte: AUTOR. 
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O modelo ARX estimado a partir do primeiro degrau resultou em uma estrutura 

de quinta ordem, com parâmetros (𝑛𝑎, 𝑛ܾ, 𝑛݇) = (5,5,1), apresentando coerência com 

a dinâmica rápida e de múltiplas constantes de tempo do conversor Buck. O polinômio (1−ݖ)ܣ possui cinco termos, representando a contribuição das saídas anteriores, 

enquanto o polinômio (1−ݖ)ܤ apresenta cinco coeficientes associados às entradas 

defasadas, refletindo a influência do sinal de duty cycle sobre a tensão de saída. O 

atraso identificado, 𝑛݇ = 1, é compatível com o comportamento físico do sistema, já 

que a resposta do conversor não ocorre instantaneamente após a aplicação da 

entrada devido à dinâmica LC e ao tempo de cálculo do modelo discreto.  

Após a identificação local, o modelo foi aplicado ao conjunto completo de dados 

da simulação, abrangendo todos os degraus e variações presentes no experimento. 

O desempenho global obtido teve erro médio quadrático (MSE) igual a 0,594 ܸ2. O 

coeficiente de determinação (ܴ2) calculado para todo o intervalo temporal foi de 

0,9972, indicando que 99,72% da variabilidade da saída real é explicada pelo modelo 

linear. Esses resultados demonstram que, embora baseado exclusivamente no 

primeiro degrau, o modelo ARX foi capaz de generalizar adequadamente para os 

demais regimes de operação, apresentando elevada fidelidade em relação à resposta 

real do conversor. 

Tabela 3 – Coeficientes do modelo ARX identificado (𝑛𝑎 =  5, 𝑛ܾ =  5, 𝑛݇ =  1). 

Termo Coeficiente 𝑎0 1,0000 𝑎1 -3,5886 𝑎2 5,1479 𝑎3 -3,8783 𝑎4 1,6707 𝑎5 -0,3518 ܾ0 0,0000 ܾ1 -5,4066e-6 ܾ2 5,2226e-5 
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ܾ3 -3,1898e-5 ܾ4 -3,2428e-5 ܾ5 2,1573e-5 

Fonte: AUTOR. 

Tabela 4 – Resumo dos parâmetros adicionais do modelo ARX 

Parâmetro Valor 

Ordem 𝑛𝑎 5 

Ordem 𝑛ܾ 5 

Atraso 𝑛݇ 1 amostra 

Variância do ruído 1,7914e-8 

Tempo de amostragem ௦ܶ 8 ∙ 10−7 

Fonte: AUTOR 

Sendo assim: (ݐ)ݕ(1−ݖ)ܣ = ݐ)ݑ(1−ݖ)ܤ − 1) (3.13) 

onde,  (1−ݖ)ܣ = 1 − 1−ݖ3,5886 + 2−ݖ5,1479 − 3−ݖ3,8783 + 4−ݖ1,6707 −  (2.14) 5ݖ0,3518

e  (1−ݖ)ܤ = −5,4066 ∙ 1−ݖ10−6 + 5,2226 ∙ 1−ݖ10−5 − 3,1898 ∙ 3,2428− 3−ݖ10−5 ∙ 4−ݖ10−5 + 2,1573 ∙  5−ݖ10−5
(2.15) 

 

Nas figuras a seguir, pode-se verificar a resposta do modelo para os dados: 
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Figura 22 – Comparação entre saída real e saída do modelo ARX (Dois primeiros degraus). 

 
Fonte: AUTOR. 

Figura 23 – Comparação entre saída real e saída do modelo ARX (Geral) 

 

Fonte: AUTOR. 
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3.5.2 ARMAX 

A Tabela 5 apresenta os coeficientes extraídos dos polinômios (1−ݖ)ܤ ,(1−ݖ)ܣe (1−ݖ)ܥdo modelo identificado, de acordo com o que foi observado na Figura 24 – 

Parâmetros do modelo ARMAX obtido no MATLAB.. 

Tabela 5 – Coeficientes dos polinômios do modelo ARMAX. 

Termo Coeficiente 𝑎0 1,0000 𝑎1 -3,2004 𝑎2 4,6288 𝑎3 -4,5889 𝑎4 3,1021 𝑎5 -0,9415 ܾ0 0,0000 ܾ1 8,5727e-7 ܾ2 8,7765e-6 ܿ0 1,0000 ܿ1 0,7085 ܿ2 0,6941 ܿ3 0,9612 ܿ4 -0,0249 ܿ5 -0,0204 

Fonte: AUTOR 
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Figura 24 – Parâmetros do modelo ARMAX obtido no MATLAB. 

 
Fonte: AUTOR. 

 

Figura 25 – Métricas referente ao modelo ARMAX. 

 

Fonte: AUTOR 

Esses valores indicam que o modelo ARMAX explica aproximadamente 99,7% 

da variabilidade da saída real ao longo de todo o intervalo da simulação, desempenho 

extremamente elevado para um modelo linear ajustado apenas a partir de um único 

transitório. Comparativamente, o ARMAX apresentou desempenho muito próximo ao 

do ARX, o que está de acordo com a baixa variância de ruído dos dados, indicando 

que o termo adicional (1−ݖ)ܥ contribuiu apenas marginalmente para a melhoria do 

ajuste. 
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Por fim, o gráfico comparativo entre as curvas real e prevista demonstra que o 

modelo ARMAX é capaz de acompanhar muito bem tanto o formato quanto a dinâmica 

da resposta do conversor, apresentando discrepâncias pequenas e concentradas em 

regiões onde se percebe maior não linearidade na operação chaveada. Dessa forma, 

o ARMAX se apresenta como uma alternativa linear robusta e coerente dentro do 

conjunto de técnicas de modelagem avaliadas neste trabalho. 

 

Figura 26 – Comparação entre saída real e saída do modelo ARMAX (Geral). 

 

Fonte: AUTOR 
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Figura 27 – Comparação entre saída real e saída do modelo ARMAX (Dois primeiros degraus). 

 

Fonte: AUTOR 

3.5.3 NARX 

Durante o processo de treinamento, o MATLAB exibe automaticamente a janela 

Training Progress, que inclui tanto gráficos quanto uma tabela com informações 

detalhadas sobre o estado do aprendizado. 

A tabela exibida na Figura 28, apresenta um exemplo desse relatório, que 

resume parâmetros como desempenho, gradiente, fator adaptativo (mu) e número de 

verificações de validação. 

Figura 28 – Relatório de desempenho de treinamento da rede. 

 
Fonte: AUTOR. 
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A coluna Performance representa o valor do erro médio quadrático (Mean 

Squared Error), que mede a diferença média entre as saídas reais e as saídas 

previstas pela rede. Observa-se que o valor caiu de 172 para 3.53×10⁻⁷ durante o 

processo, evidenciando um ajuste extremamente preciso do modelo à dinâmica do 

sistema. 

O parâmetro Gradient indica a taxa de variação do erro em relação aos pesos 

sinápticos, e quanto menor esse valor, mais próxima a rede está do ponto ótimo de 

convergência. Ao final do treinamento, o gradiente reduziu de 1.39×10³ para 

6.15×10⁻², o que sugere a estabilização do aprendizado. 

O termo Mu corresponde ao fator de ajuste do algoritmo de Levenberg–

Marquardt, utilizado pelo MATLAB como método de otimização. Esse fator regula o 

tamanho do passo de atualização dos pesos: valores maiores tornam a convergência 

mais conservadora, enquanto valores menores aceleram o processo. 

No decorrer do treinamento, Mu variou de 0.001 até 1×10⁻⁶, indicando que o 

algoritmo ajustou dinamicamente a taxa de aprendizado conforme o erro diminuía, 

favorecendo uma convergência suave e estável. 

Já o campo Validation Checks indica o número de vezes consecutivas em que o 

erro de validação não melhorou. Quando esse valor atinge o limite máximo (neste 

caso, 6), o treinamento é interrompido automaticamente, mecanismo conhecido como 

early stopping, que evita o sobreajuste do modelo aos dados de treinamento. 

Por fim, o tempo total decorrido (Elapsed Time) até o ponto de melhor validação 

foi de apenas 6 segundos, demonstrando que a rede, mesmo sendo recorrente, 

apresentou baixo custo computacional para o conjunto de dados utilizado. 

Além da tabela numérica, o MATLAB fornece automaticamente diversos gráficos 

de desempenho e diagnóstico. O mais relevante é o gráfico de desempenho (Training 

Performance), Figura 29, que mostra a evolução do erro de treinamento e de validação 

ao longo das épocas. Esse gráfico é útil para identificar o ponto em que a rede atinge 

o menor erro de validação, indicando o melhor ajuste possível antes do início de um 

possível overfitting. 
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Figura 29 – Validação ao longo das épocas. 

 
Fonte: AUTOR. 

Outro gráfico que pode ser apresentado é o Training State, que mostra a 

variação do gradiente e do parâmetro Mu durante o aprendizado. A redução 

simultânea de ambos confirma a estabilidade do processo de otimização. 

Figura 30 – Curvas de Training State do MATLAB. 

 
Fonte: AUTOR. 
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Após o término do treinamento, a rede foi submetida ao conjunto de teste, 

formado por dados que não foram utilizados no aprendizado, para verificar sua 

capacidade de generalização. 

A saída prevista pela rede (y_pred) foi comparada à saída real (y_real), e o erro 

médio quadrático foi calculado conforme a equação (2.11). 

A comparação entre as duas saídas mostra que a rede NARX conseguiu prever 

muito bem o comportamento do conversor Buck. No teste final, o MSE ficou em torno 

de  94 · 10⁻⁶, um valor bem baixo. Já no gráfico do Training Progress, aparece um 

MSE de 8,93 · 10⁻⁵ na época 16, e isso pode gerar dúvida à primeira vista. No entanto, 

essa diferença é normal, porque o gráfico mostra o erro durante o treinamento e 

validação, enquanto o código calcula o erro usando o conjunto de teste, que a rede só 

vê depois de treinada. Como os conjuntos são diferentes, os valores do MSE também 

variam um pouco. Mesmo assim, ambos os números são bem pequenos, indicando 

que a NARX representou a planta com muita precisão. 

As duas figuras a seguir mostram o resultado de previsão do modelo: 

Figura 31 – Comparação entre saída real e saída prevista pela rede NARX (Dois primeiros degraus). 

 
Fonte: AUTOR. 
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Figura 32 – Comparação entre saída real e saída prevista pela rede NARX (Geral). 

 

Fonte: AUTOR. 

3.6 Discussão dos resultados obtidos 

Para todos os modelos utilizados neste trabalho ARX, ARMAX e NARX, MSE e 

R² são apresentados na Tabela 6. No geral, pode-se dizer que os modelos lineares 

apresentaram a dinâmica geral da planta muito bem, tendo valores de R² muito 

próximos de 1 e erros relativamente baixos. No entanto, observamos a partir da 

comparação desses resultados com a rede NARX, a distinção é muito clara. A NARX 

apresentou um MSE de apenas 9,4 ×  10⁻⁵ e R² igual a 1, ou seja, conseguiu 

praticamente “encaixar” a saída real com pouquíssima diferença. Isso deixa evidente 

que, apesar de os modelos clássicos funcionarem bem na tendência geral, a rede 

neural alcança um nível de fidelidade muito maior na reprodução da dinâmica do 

sistema. 
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Tabela 6 – Comparação de métricas entre os modelos 

Modelo MSE R² 
Descrição do 
desempenho 

ARX 5,939207 ×  10⁻¹ 0,9972 
Representa bem a dinâmica 
geral; modelo linear simples 

com boa precisão global. 

ARMAX 6,426482 ×  10⁻¹ 0,9970 
Semelhante ao ARX, incorpora 
parte estocástica; desempenho 
ligeiramente inferior neste caso. 

NARX 9,4 ×  10⁻⁵ 1,0000 

Melhor desempenho; captura 
detalhes e não linearidades, 

reproduzindo a saída com alta 
fidelidade. 

Fonte: AUTOR. 

Essa diferença de desempenho não se limita apenas aos indicadores numéricos. 

Visualmente, é possível observar nas figuras de comparação que a NARX aprende 

detalhes da dinâmica que não aparecem nas respostas dos modelos lineares. Na 

Figura 31, nota-se claramente que a rede NARX reproduz com precisão o ripple 

presente na saída real da planta. Esse comportamento não é capturado pelos modelos 

ARX e ARMAX, como mostram a Figura 22 e a Figura 27. Ambos os modelos 

suavizam a resposta, deixando de representar as variações rápidas que fazem parte 

da dinâmica real do sistema. 

Essa capacidade da NARX de aprender essas pequenas não linearidades 

reforça sua vantagem em relação aos modelos clássicos, principalmente em sistemas 

onde essas oscilações carregam informações importantes sobre o comportamento da 

planta. Em contrapartida, como o ARX e o ARMAX são modelos lineares, eles tendem 

a ajustar apenas a tendência principal, reproduzindo a forma geral da curva, mas sem 

acompanhar os detalhes de alta frequência. 
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Outro ponto importante é que, durante o desenvolvimento do trabalho, foram 

realizados testes com diferentes níveis de ruído no sinal de entrada, na tentativa de 

avaliar a robustez dos modelos. No entanto, observou-se que o conversor 

naturalmente atenua o ruído devido ao filtro LC presente em sua estrutura. Mesmo 

com ruídos relativamente altos aplicados ao duty cycle, a saída da planta não 

apresentou uma saída relevante, o que impossibilitou uma análise de desempenho 

dos modelos em cenários ruidosos.  

No geral, esses resultados mostram que, embora os modelos lineares sejam 

ferramentas rápidas, simples e eficazes para muitos tipos de sistemas, a rede NARX 

se destaca quando o objetivo é capturar com maior precisão os detalhes da dinâmica, 

incluindo não linearidades e pequenas oscilações que fazem parte do comportamento 

natural do conversor. 
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4 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE 

Com base nos resultados deste estudo, pode-se concluir que as vantagens dos 

métodos de identificação são distintas, e a seleção depende muito da aplicação. Os 

modelos lineares ARX e ARMAX mostraram bom desempenho tanto na representação 

global do sistema quanto têm a vantagem especial de gerar expressões matemáticas 

explícitas, o que possibilita interpretá-las e usá-las diretamente na construção de 

controladores clássicos.  

Por outro lado, a rede neural NARX exibiu o melhor desempenho entre os três 

modelos, conseguindo reproduzir características da dinâmica que foram omitidas nos 

modelos lineares, como ondulações na saída da planta. Há uma desvantagem nessa 

abordagem: ela não fornece uma representação analítica do modelo, o conhecimento 

está "embutido" na rede, o que pode limitar quaisquer aplicações em torno de 

equações explícitas.  

No entanto, mesmo ao aplicar altos níveis de ruído ao sinal de entrada, a planta 

não mostrou mudanças significativas devido ao seu forte caráter de filtragem. Foi 

impossível, portanto, testar a robustez dos modelos em cenários ruidosos.  

Em uma continuação deste estudo, as mesmas técnicas podem ser aplicadas a 

qualquer planta com comportamento mais não linear ou menos filtrado, onde o ruído 

tem um efeito genuíno na saída. Além do exposto, pode ser uma possibilidade 

investigar redes LSTM, modelos NARMAX ou híbridos para a identificação do sistema. 
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APÊNDICES 

APÊNDICE A – CÓDIGO PARA GERAR VETOR DE VALORES DE DUTY CYCLE. 

% ============================================================ 
% Geração de sinal de duty cycle aleatório em degraus 
% ============================================================ 
% Este código cria um sinal de entrada (duty cycle) composto por 
% níveis aleatórios constantes em intervalos de tempo fixos, 
% utilizado como excitação para o modelo simulado do conversor Buck. 
% ============================================================ 
 
t = 0 : 800e-9 : 100e-03;   % Vetor de tempo: inicia em 0 e vai até 100 ms, 
com passo de 0,8 µs 
Ts = 800e-9;                % Passo de amostragem 
Tfinal = max(t);            % Tempo total de simulação 
 
duracaoDegrau = 0.005;      % Duração de cada degrau de entrada (5 ms) 
Npassos = ceil(Tfinal/duracaoDegrau);  % Quantidade de degraus dentro do 
tempo total 
 
% Gerar valores de duty cycle aleatórios entre 5% e 95% 
valores = 5 + 95*rand(1, Npassos); 
 
Ns = round(duracaoDegrau/Ts);  % Número de amostras correspondentes a cada 
degrau 
 
% Repitir cada valor de duty pelo número de amostras que dura o degrau 
u = repelem(valores, Ns); 
 
% Ajustar o tamanho do vetor de entrada para coincidir exatamente com o 
tempo total 
u = u(1:min(length(u), length(t)));    
u = padarray(u, [0, max(0, length(t)-length(u))], 'replicate', 'post');  
 
% Montar a matriz completa com tempo (coluna 1) e duty cycle (coluna 2) 
input = [t' u']; 
 
% Converter o sinal em objeto 'timeseries' para uso no Simulink 
input_ts = timeseries(u, t); 
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APÊNDICE B – CÓDIGO PARA CRIAÇÃO DE REDE NEURAL (TREINAMENTO, 
VALIDAÇÃO E TESTE) 

% ============================================================ 
%  Identificação com dados reais do Simulink (Rede NARX) 
% ============================================================ 
 
clear; clc; close all; 
 
%% Carregar dados da simulação 
load("C:\Users\joaop\Downloads\img\saida_simulação.mat"); 
 
t = out.tout;          % tempo 
y = out.simout;        % sinal de saída 
Ts = mean(diff(t));    % tempo de amostragem médio 
 
% Adicionar ruído à saída simulada 
nivel_ruido = 0; 
amplitude_ruido = nivel_ruido * max(y);   
y = y + amplitude_ruido * randn(size(y));   
 
% Sinal de entrada (duty cycle) 
u = out.valores_dutycycle; 
u = u / 100;  
 
%% Dividir em treino e teste 
nTreino = round(0.6 * length(t)); 
u_train = u(1:nTreino); 
y_train = y(1:nTreino); 
u_test  = u(nTreino+1:end); 
y_test  = y(nTreino+1:end); 
 
%% Converter para formato de sequência 
u_train = con2seq(u_train'); 
y_train = con2seq(y_train'); 
u_test  = con2seq(u_test'); 
y_test  = con2seq(y_test'); 
 
% Criar a rede NARX 
inputDelays = 1:5; 
feedbackDelays = 1:5; 
hiddenNeurons = 10; 
net = narxnet(inputDelays, feedbackDelays, hiddenNeurons); 
 
net.divideParam.trainRatio = 0.6; 
net.divideParam.valRatio = 0.2; 
net.divideParam.testRatio = 0.2; 
 
% Treinar a rede 
[Xs, Xi, Ai, Ts_train] = preparets(net, u_train, {}, y_train); 
net = train(net, Xs, Ts_train, Xi, Ai); 
 
% Testar a rede 
[Xs_test, Xi_test, Ai_test, Ts_test] = preparets(net, u_test, {}, y_test); 
y_pred = net(Xs_test, Xi_test, Ai_test); 
 
% Converter e alinhar resultados 
y_real = cell2mat(y_test); 
y_pred = cell2mat(y_pred); 
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delay = max([inputDelays feedbackDelays]); 
N = min(length(y_real), length(y_pred)) - delay; 
y_real_adj = y_real(delay+1 : delay+N); 
y_pred_adj = y_pred(1 : N); 
 
% Plotar comparação 
figure; 
plot(y_real_adj, 'b', 'LineWidth', 1.5); hold on; 
plot(y_pred_adj, 'r--', 'LineWidth', 1.5); 
legend('Saída real', 'Saída prevista (NARX)'); 
xlabel('Amostra'); 
ylabel('Tensão de saída (V)'); 
title('Comparação entre saída real e saída prevista pela rede NARX'); 
grid on; 
 
% Calcular MSE 
mse_val = mean((y_real_adj - y_pred_adj).^2); 
fprintf('Erro médio quadrático (MSE): %.6f\n', mse_val); 
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APÊNDICE C – CÓDIGO PARA O MODELO ARX 

% ================================================================ 
%   Identificação ARX usando apenas o primeiro degrau da entrada 
%   Aplicação do modelo ARX identificado em todo o conjunto de dados 
% ================================================================ 
 
clear; clc; close all; 
 
% Carregar dados 
load("C:\Users\joaop\Downloads\img\saida_simulação.mat"); 
 
t = out.tout; 
y = out.simout; 
u = out.valores_dutycycle; 
Ts = mean(diff(t)); 
 
% Detecção do primeiro degrau do duty cycle 
 
du = diff(u); 
tol = max(u) * 0.005;    % 0.5% da escala – evita ruídos pequenos 
 
idx_all = find(abs(du) > tol);   % todos os degraus reais 
 
if isempty(idx_all) 
    error("Não foi encontrado nenhum degrau real no sinal de entrada."); 
end 
 
idx_step = idx_all(1);   % primeiro degrau de verdade 
 
% Seleção da janela do primeiro degrau 
pre_time  = 0.2e-3;                       % 0.2 ms antes 
pos_time  = 3e-3;                         % pegar um transitório curto 
i1 = max(1, idx_step - round(pre_time/Ts)); 
i2 = min(length(t), idx_step + round(pos_time/Ts)); 
 
u_deg  = u(i1:i2); 
y_deg  = y(i1:i2); 
t_deg  = t(i1:i2); 
 
% Identificação do modelo arx com o primeiro degrau 
 
data_deg = iddata(y_deg, u_deg, Ts); 
 
melhor_fpe = inf; 
 
for na = 1:5 
    for nb = 1:5 
        nk = 1; 
        try 
            sys = arx(data_deg, [na nb nk]); 
            if sys.Report.Fit.FPE < melhor_fpe 
                melhor_fpe = sys.Report.Fit.FPE; 
                model_arx = sys; 
                ords = [na nb nk]; 
            end 
        end 
    end 
end 
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% Aplicação do modelo arx a todos os dados 
 
y_arx_total = sim(model_arx, u); 
 
N = min(length(y), length(y_arx_total)); 
y_real_total = y(1:N); 
y_arx_total  = y_arx_total(1:N); 
t_total      = t(1:N); 
 
% Métricas globais 
mse_global = mean((y_real_total - y_arx_total).^2); 
SST = sum((y_real_total - mean(y_real_total)).^2); 
SSE = sum((y_real_total - y_arx_total).^2); 
R2_global = 1 - SSE/SST; 
 
% Gráfico final – saída real × saída arx (intervalo completo) 
 
figure; 
plot(t_total, y_real_total, 'b', 'LineWidth', 1.4); hold on; 
plot(t_total, y_arx_total, 'r--', 'LineWidth', 1.3); 
xlabel('Tempo (s)'); 
ylabel('Tensão (V)'); 
title('Modelo ARX identificado no primeiro degrau e aplicado ao intervalo 
completo'); 
legend('Saída real', 'Saída ARX'); 
grid on; 
 
% Imprimir os resultados 
disp('Modelo ARX identificado (apenas 1º degrau):'); 
disp(model_arx); 
fprintf("MSE global: %.6e\n", mse_global); 
fprintf("R² global:  %.4f\n", R2_global); 
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APÊNDICE D – CÓDIGO PARA O MODELO ARMAX. 

% ================================================================ 
%   Identificação ARMAX usando apenas o primeiro degrau da entrada 
%   Aplicação do modelo ARMAX a todo o conjunto de dados 
% ================================================================ 
 
clear; clc; close all; 
 
% Carregamento dos dados 
load("C:\Users\joaop\Downloads\img\saida_simulação.mat"); 
 
t = out.tout; 
y = out.simout; 
u = out.valores_dutycycle; 
Ts = mean(diff(t)); 
 
% Detecção do primeiro degrau do duty cycle 
 
du = diff(u); 
tol = max(u) * 0.005;      % evita flutuações pequenas 
 
idx_all = find(abs(du) > tol); 
 
if isempty(idx_all) 
    error("Nenhum degrau significativo foi encontrado no sinal de 
entrada."); 
end 
 
idx_step = idx_all(1);      % primeiro degrau real 
 
% Seleção da janela do primeiro degrau 
pre_time = 0.2e-3; 
pos_time = 3e-3; 
 
i1 = max(1, idx_step - round(pre_time/Ts)); 
i2 = min(length(t), idx_step + round(pos_time/Ts)); 
 
u_deg = u(i1:i2); 
y_deg = y(i1:i2); 
t_deg = t(i1:i2); 
 
%   Identificação do modelo armax 
%   Ordens testadas: na = 1..5, nb = 1..5, nc = 1..5, nk = 1 
 
data_deg = iddata(y_deg, u_deg, Ts); 
 
melhor_fpe = inf; 
 
for na = 1:5 
    for nb = 1:5 
        for nc = 1:5 
            nk = 1; 
            try 
                sys = armax(data_deg, [na nb nc nk]); 
                fpe_atual = sys.Report.Fit.FPE; 
 
                if fpe_atual < melhor_fpe 
                    melhor_fpe = fpe_atual; 
                    model_armax = sys; 
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                    ords = [na nb nc nk]; 
                end 
            end 
        end 
    end 
end 
 
% Aplicação do modelo armax a todo o conjunto de dados 
 
y_armax_total = sim(model_armax, u); 
 
N = min(length(y), length(y_armax_total)); 
y_real_total = y(1:N); 
y_armax_total = y_armax_total(1:N); 
t_total = t(1:N); 
 
% Métricas globais 
mse_global = mean((y_real_total - y_armax_total).^2); 
 
SST = sum((y_real_total - mean(y_real_total)).^2); 
SSE = sum((y_real_total - y_armax_total).^2); 
R2_global = 1 - SSE/SST; 
 
% Comparação global – gráfico final 
 
figure; 
plot(t_total, y_real_total, 'b', 'LineWidth', 1.4); hold on; 
plot(t_total, y_armax_total, 'r--', 'LineWidth', 1.3); 
xlabel('Tempo (s)'); 
ylabel('Tensão (V)'); 
title('Modelo ARMAX identificado no 1º degrau e aplicado ao intervalo 
completo'); 
legend('Saída real', 'Saída ARMAX'); 
grid on; 
 
% Resultados 
disp('Modelo ARMAX identificado (apenas 1º degrau):'); 
disp(model_armax); 
 
fprintf("MSE global (ARMAX): %.6e\n", mse_global); 
fprintf("R² global (ARMAX):  %.4f\n", R2_global); 

 


