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RESUMO

Este trabalho tem como objetivo comparar técnicas de identificagdo de sistemas,
especificamente os modelos ARX, ARMAX e uma rede neural NARX, aplicadas a uma
planta simulada no Simulink, que para este trabalho foi usado o conversor Buck. A
identificacao foi realizada utilizando dados provenientes de variagdes reais no sinal de
entrada, e o desempenho dos modelos foi avaliado por meio das métricas MSE e R2
Testes iniciais com ruido no sinal mostraram que a planta atenua naturalmente essas
perturbagdes, o que levou a utilizagdo dos dados limpos para garantir uma
comparacgao equilibrada entre os métodos. Os resultados obtidos evidenciam que os
modelos lineares ARX e ARMAX representam satisfatoriamente o comportamento
dindmico observado, enquanto a rede NARX apresentou desempenho superior,
alcangcando menor erro e maior precisao na previsao da saida. Dessa forma, o estudo
mostra que, embora métodos lineares sejam eficientes em diversas situagoes,
abordagens néo lineares baseadas em redes neurais podem oferecer maior fidelidade
na identificacdo de sistemas, especialmente quando a dindmica envolve

caracteristicas que os modelos lineares nao capturam completamente.

Palavras-chave: Identificagdo de sistemas; ARX; ARMAX; NARX; Redes neurais;
Conversor Buck; Modelagem dinamica.



ABSTRACT

This work aims to compare different system identification techniques, specifically
the ARX, ARMAX, and NARX models, applied to a plant simulated in Simulink, for
which a Buck converter was used as the study case. The identification was carried out
using data obtained from realistic variations in the input signal, and the performance
of the models was evaluated through the MSE and R? metrics. Initial tests with noise
showed that the plant naturally attenuates such disturbances, which led to the use of
clean data to ensure a fair comparison between the methods. The results demonstrate
that the linear ARX and ARMAX models satisfactorily represent the observed dynamic
behavior, while the NARX neural network achieves superior performance, presenting
lower error and greater accuracy in predicting the system output. Therefore, the study
shows that although linear models are effective in many situations, nonlinear
approaches based on neural networks can offer higher fidelity in system identification,
especially when the dynamics involve characteristics that linear models cannot fully

capture.

Keywords: System identification; ARX; ARMAX; NARX; Neural networks; Buck
converter; Dynamic modeling.
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1 INTRODUGAO

Nas ultimas décadas, o avango da tecnologia e a crescente complexidade dos
sistemas dinamicos tém impulsionado a busca por métodos de modelagem e controle
mais precisos e robustos. Quando o modelo dinamico de um sistema controlado é
conhecido exatamente, torna-se possivel projetar um controlador ideal capaz de
reproduzir a trajetdria de referéncia desejada. Entretanto, na pratica, a presencga de
ruidos, incertezas paramétricas e nao linearidades torna dificil obter um modelo exato,
0 que compromete a precisdo e a estabilidade do controle (JAMI'IN et al., 2016;
NAYANASIRI; LI, 2022).

Para lidar com essas limitagbes, métodos classicos de modelagem, como os
modelos ARX (Auto-Regressive with eXogenous Input) e ARMAX (Auto-Regressive
Moving Average with eXogenous Input), tém sido amplamente utilizados por sua
simplicidade e eficiéncia na representagcdo de sistemas lineares. No entanto, esses
modelos apresentam desempenho limitado quando aplicados a sistemas nio lineares,
cuja resposta depende de variagbes complexas das variaveis de estado. Nesse
contexto, as redes neurais artificiais (RNA) surgem como uma alternativa promissora,
por sua capacidade de aproximar fungcdes nao lineares e representar comportamentos
dinamicos complexos a partir de dados experimentais (JAMI'IN et al., 2016; ZHANG
et al., 2018).

A relevancia cientifica das redes neurais pode ser observada por meio de uma
pesquisa bibliométrica realizada na base de dados Web of Science, utilizando o tépico
“neural network™”. Para isso, a Figura 1 apresenta, por meio de um grafico de barras,
a evolugdo do numero de publicagdes ao longo dos anos, evidenciando um
crescimento consideravel desde 2002 e um acentuamento nesse aumento a partir de
2015. Observa-se também que o volume anual de publicacbes passou de menos de
4 mil trabalhos em 2001 para quase 77 mil em 2024, indicando a consolidagéo e a

crescente importancia das redes neurais na comunidade cientifica.
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A Figura 2 apresenta a distribuicdo das publicagdes por area de conhecimento,
com destaque para “Engineering, Electrical & Electronic”, que lidera o numero de
trabalhos publicados. Essa predominadncia demonstra a forte presenca das redes
neurais em aplicagbes voltadas a engenharia elétrica, eletrénica, automacgéo,
sistemas de controle e processamento de sinais, areas nas quais a modelagem de
sistemas dinamicos e o controle adaptativo desempenham papel central no avango

tecnologico.

Figura 2 — Quantidade de publicagdes por area de atuagao.
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Tabela 1 — Numero de publicagdes totais no Web of Science sobre redes neurais.

Area Numero~de Percentual sobre o total.
publicacbes

Engineering, Electrical & Electronic 119.318 21,857%

Computer Scllence, Artificial 85.277 15,621%
Intelligence

Computer Science, Information 57 141 10,467%

Systems

Telecommunications 33.972 6,223%

Computer SC|en_ce, _Interdlsmpllnary 33153 6,073%
Applications

Outros 67.789 56,489%

Fonte: AUTOR.

Dentro desse contexto, este trabalho propde comparar o desempenho dos
modelos ARX, ARMAX e NARX (rede neural ARX) aplicados a modelagem e
identificacdo de sistemas dindmicos. O estudo é realizado utilizando como planta de
referéncia o conversor Buck, um conversor CC—CC amplamente empregado em
sistemas de eletrbnica de poténcia e frequentemente utilizado como modelo
experimental em pesquisas de controle (NAYANASIRI; LI, 2022). Por sua estrutura
simples e comportamento dindmico nao linear, o conversor Buck constitui uma
excelente base para a analise comparativa de técnicas de identificagao, permitindo
avaliar a capacidade dos diferentes modelos em representar com fidelidade o

comportamento dindmico de sistemas reais.

Dessa forma, o objetivo deste trabalho é avaliar a eficacia e a precisdao dos
modelos ARX, ARMAX e NARX na representacao do comportamento do conversor
Buck, comparando os erros de estimacéao e a resposta dindmica simulada. Espera-se,
com isso, demonstrar a contribuicdo das redes neurais na melhoria da capacidade de
modelagem de sistemas néo lineares, fornecendo subsidios para a aplicagado dessas

técnicas em projetos de controle mais robustos e eficientes.
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1.1 Objetivos

1.1.1 Geral

Avaliar o desempenho de modelos classicos de identificacdo (ARX e ARMAX) e

de redes neurais artificiais do tipo NARX na modelagem do conversor Buck,

comparando sua capacidade de representar o comportamento dindmico do sistema.

1.1.2 Especificos

Para alcancar o objetivo geral proposto, foram definidos os seguintes objetivos

especificos:

Implementar, no ambiente MATLAB/Simulink, a simulagdo de um

conversor Buck para coleta de dados de entrada e saida;

Aplicar métodos de identificagao classicos ARX e ARMAX a partir dos

dados simulados;

Desenvolver e treinar uma rede neural NARX com base nos mesmos

dados, analisando seu desempenho de aprendizado;

Comparar quantitativamente os resultados obtidos entre os trés modelos,

utilizando métricas de desempenho como o erro médio quadratico (MSE);

Avaliar graficamente a resposta dindmica simulada de cada modelo em

relagao a resposta real da planta;

Discutir as vantagens e limitagcbes de cada método de modelagem,
considerando aspectos de precisdao, robustez e complexidade

computacional.

1.2 Organizagao do Trabalho

Este trabalho esta estruturado em quatro capitulos principais, que se

complementam de forma légica e progressiva para alcangar os objetivos propostos.
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O Capitulo 1 apresenta a introdugdo ao tema, destacando a relevancia da
modelagem de sistemas dindmicos e a motivagao para o uso de técnicas baseadas
em redes neurais artificiais. Também sao definidos os objetivos geral e especificos

que orientam o desenvolvimento do estudo.

O Capitulo 2 aborda a fundamentagao tedrica, na qual sao revisados os
principais conceitos relacionados a identificacdo de sistemas, com énfase nos
modelos classicos ARX e ARMAX e na estrutura das redes neurais artificiais. Nesse
contexto, €& apresentada a arquitetura NARX, destacando sua aplicacdo na

modelagem de sistemas n&o lineares.

O Capitulo 3 descreve a metodologia e o desenvolvimento do trabalho,
detalhando o processo de simulagdo do conversor Buck, a geragdo dos sinais de
entrada e saida, e a implementacao dos modelos ARX, ARMAX e NARX no ambiente
MATLAB/Simulink. Sado apresentadas ainda as etapas de treinamento, validacéo e

comparagao dos resultados obtidos por cada modelo.

Por fim, o Capitulo 4 reune as conclusbes e propostas de continuidade,
sintetizando os principais resultados alcangcados e apontando possiveis diregdes para
trabalhos futuros que busquem aprimorar ou expandir as técnicas de modelagem

analisadas.
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2 FUNDAMENTAGAO TEORICA

A modelagem de sistemas dindmicos € um dos pilares fundamentais da
engenharia de controle e automagao, pois permite representar matematicamente o
comportamento de processos fisicos a partir de suas variaveis de entrada e saida. A
partir dessa representacgao, torna-se possivel projetar controladores, prever respostas

e realizar simulacdes sem a necessidade de ensaios diretos sobre o sistema real.

Entre as diversas técnicas disponiveis para modelagem, destacam-se os
métodos baseados em identificagdo de sistemas, que tém por objetivo estimar os
parametros de um modelo formulado a partir de dados de entrada e saida. A area de
system identification € ampla e esta centrada justamente nesse processo de
estimacao de parametros de um modelo matematico previamente definido (LJUNG,
1999).

Esses métodos sdo amplamente utilizados em situagdes em que néo se dispde
de um modelo analitico exato do sistema fisico, ou quando o comportamento real é
complexo. Nesse contexto, a identificagdo de sistemas é uma ferramenta essencial
tanto em estudos de modelagem de sistemas do tipo caixa preta, nos quais a estrutura
interna do sistema € desconhecida, quanto em abordagens de validagao de modelos,
nas quais se busca verificar a coeréncia entre o comportamento tedérico e o observado

experimentalmente.

Nos ultimos anos, o avango das técnicas de inteligéncia artificial impulsionou o
desenvolvimento de métodos de modelagem capazes de lidar com sistemas de
natureza nao linear e de comportamento complexo. Dentre essas técnicas, destacam-
se as redes neurais artificiais (RNAs), que se baseiam em estruturas computacionais
inspiradas no funcionamento do cérebro humano e possuem a capacidade de
aprender padrbes e relagcbes nao lineares diretamente a partir dos dados

experimentais.

O presente capitulo apresenta os fundamentos tedricos que sustentam o estudo,
abordando os conceitos de identificagcdo de sistemas, os modelos ARX e ARMAX e
os principios das redes neurais artificiais aplicadas a modelagem de sistemas
dinamicos. Por fim, sdo discutidas as principais métricas de desempenho utilizadas
para comparar a precisao dos modelos identificados.
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2.1 Identificagao de sistemas dindmicos

A identificagdo de sistemas € uma area fundamental da area de controle, voltada
para a obtencdo de modelos matematicos capazes de representar o comportamento
dindmico de um sistema a partir de dados observados de entrada e saida. Essa
abordagem € amplamente utilizada quando nao se dispde de um modelo fisico
completo do processo, ou quando o sistema apresenta comportamentos complexos e
de dificil descricdo analitica (LJUNG, 1999).

De forma geral, o processo de identificacao envolve trés etapas principais: (i) a
aquisicao dos sinais de entrada e saida; (ii) a escolha de uma estrutura de modelo
apropriada; e (iii) a estimacdo dos parametros que minimizam a diferenca entre o
comportamento real e o previsto. O resultado € um modelo capaz de reproduzir a
dinamica do sistema, o que permite sua aplicagao em simulagdes, controle e previsao

de estados.

Figura 3 — Etapas para o processo de identificacdo de modelo.

Aquisigdo de Dados de
Entrada e de Saida

Escolha de Modelo

Estimagao de pardmetros
minimizadores de erro.

Fonte: AUTOR.

Nos ultimos anos, a identificagdo paramétrica de sistemas, que consiste em

determinar as dindmicas internas de um sistema com base em um modelo ajustado
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sobre dados experimentais, tem recebido crescente atengao da comunidade cientifica.
Esse tipo de abordagem busca ndo apenas descrever a resposta observada, mas
também capturar as relagdes dindmicas entre as variaveis envolvidas. A incorporagéo
de redes neurais artificiais (RNA) nesse campo tem se tornado cada vez mais comum,
impulsionada pela capacidade dessas estruturas de modelar relagbes nao lineares
complexas, pela menor necessidade de conhecimento prévio sobre o processo e pelo
avancgo do poder computacional disponivel para treinamento (DONG; STARR; ZHAO,
2023).

A escolha de um modelo matematico adequado depende diretamente das
caracteristicas da planta em estudo, dos objetivos da modelagem e do nivel de
conhecimento disponivel sobre o sistema. Na pratica, essa decisdao também envolve
experiéncia e intuicdo do engenheiro, uma vez que diferentes estruturas séo
frequentemente testadas até que se obtenha uma representacdo satisfatéria do
comportamento real. Em projetos de controle baseados em modelos, ha uma
tendéncia em se utilizar representacdes lineares, em razdo da ampla variedade de
técnicas de controle desenvolvidas a partir dessas formulagcées. No entanto, para
sistemas que apresentam nao linearidades significativas, modelos mais sofisticados,
tornam-se indispensaveis para capturar a dindmica com maior fidelidade (TAVARES,
2012).

As técnicas de identificagdo podem ser classificadas conforme o grau de

conhecimento prévio sobre o sistema:
¢ Modelos caixa-branca, baseados em leis fisicas conhecidas;

e Modelos caixa-cinza, que combinam conhecimento fisico parcial com

parametros ajustados experimentalmente;

e ¢ modelos caixa-preta, que dependem exclusivamente de dados

experimentais para representar o comportamento dinamico.

Os modelos ARX (AutoRegressive with eXogenous Input) e ARMAX
(AutoRegressive Moving Average with eXogenous Input) sdo exemplos classicos de
abordagens lineares utilizadas em identificacdo paramétrica. Ja as estruturas
baseadas em redes neurais, como a NARX (Nonlinear AutoRegressive with
eXogenous Input), estendem esse conceito para sistemas nao lineares, permitindo

uma descricado mais fiel de processos reais com dindmicas complexas. Assim, a
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identificacdo de sistemas se torna uma ferramenta essencial nao apenas para fins de
modelagem, mas também como base para o desenvolvimento de controladores mais

robustos e adaptativos.

2.2 Modelos classicos de identificagao (ARX, ARMAX)

Os modelos ARX e ARMAX estdo entre as estruturas mais utilizadas na
identificacdo de sistemas lineares invariantes no tempo, devido a sua simplicidade e
eficiéncia na modelagem de sistemas dinamicos. Esses modelos sdo amplamente
empregados para aproximar o comportamento dinamico de sistemas lineares, sendo
aplicados em tarefas de controle e detecgao de falhas, por sua capacidade de
representar de forma direta as relagdes entre entrada e saida (AGGOUNE;
CHETOUANI; RADJEAI, 2014).

Existem diversas formas de representar um sistema dinamico, como fungdes de
transferéncia, modelos em espago de estados e representagdes polinomiais
(TAVARES, 2012). No campo da identificagcdo de sistemas, as representacdes
polinomiais sdo as mais recorrentes, pois descrevem o comportamento dindmico do
sistema com base em dados experimentais e operadores de atraso. Dentre elas,
destacam-se o0os modelos AR (AutoRegressive), ARX (AutoRegressive with
eXogenous input), ARMAX (AutoRegressive Moving Average with eXogenous input),
NARX (Nonlinear AutoRegressive with eXogenous input) e NARMAX (Nonlinear
AutoRegressive Moving Average with eXogenous input), cuja escolha depende do tipo
de planta, do objetivo da modelagem e do nivel de conhecimento prévio sobre o
sistema (TAVARES, 2012).

Em aplicagbes de controle baseadas em modelos, observa-se uma preferéncia
por representagdes lineares, em virtude da grande quantidade de métodos de analise

e projeto ja consolidados para esse tipo de estrutura (TAVARES, 2012).
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2.2.1 Modelo ARX

O modelo ARX descreve a saida de um sistema como uma combinagao linear
de saidas e entradas passadas, acrescida de um termo de erro. Sua formulacéo geral

€ dada por:

A(g™ Yy (k) = B(q~Du(k) + e(k) 2.1)

onde y(k) é a saida, u(k) € a entrada, e(k) é o termo de erro, e g~ representa o
operador de atraso, tal que g 1y(k) = y(k — 1). Os polindmios A(q~1) e B(q™1) sédo

definidos como:

A@D=1-aqg ' —a,q? = —ap,q " (2.2)
B(@ ') =biq7' +a,q* = —bp,q ™ (2.3)

em que a; e b; sdo coeficientes associados aos regressores de saida e entrada

respectivamente, e n, e n, sdo as ordens dos polindmios.

A expressao também pode ser reescrita como:

_B(@™h

yk) = A(@™)

u(k) +

o) e(k) (2.4)

O modelo ARX é classificado como um modelo de erro na equacéo, pois o termo
de erro é tratado como ruido branco filtrado por um processo autorregressivo, o que
faz com que o ruido na saida apresente correlacdo temporal (TAVARES, 2012;
AGUIRRE, 2004). Essa estrutura é adequada para sistemas em que o ruido nao
domina o comportamento dinamico e pode ser considerado uma pequena

perturbacao.

2.2.2 Modelo ARMAX

O modelo ARMAX é uma extensao do ARX, incluindo um termo adicional que
representa a média mével (Moving Average), permitindo modelar de forma mais
precisa a influéncia do ruido. Essa caracteristica torna o modelo mais adequado para
sistemas nos quais o ruido apresenta correlagdo temporal significativa. Sua forma

geral é:
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A(q Dy(k) = B(q~u(k) + C(q He(k) (2.5)
onde, C(g™1) é o polindmio de média movel, expresso como:
ClagD=14cq +eq?++cpq™ (2.6)

os coeficientes c¢; representam a influéncia dos erros passados, e n. € a ordem do

polindmio C(g~1). O modelo pode ser reescrito como

_B(@™h C(@h
B A(q‘l)u(k) T A

Ao contrario do modelo ARX, o ARMAX néo é linear nos parametros, o que torna

y (k) e(k) (2.7)

sua estimacao mais complexa. Entretando, essa estrutura € mais robusta e flexivel,
especialmente em plantas industriais sujeitas a ruidos correlacionados (TAVARES,
2012; AGUIRRE,2004). Esse tipo de modelo é apropriado quando se busca uma

representacdo mais fiel da dindmica estocastica do sistema.

2.3 Redes neurais artificiais

As redes neurais artificiais (RNAs) sdo modelos computacionais inspirados na
estrutura e no funcionamento do sistema nervoso humano. O cérebro pode ser
compreendido como um sistema composto por trés estagios principais: receptores,
rede neural e atuadores (HAYKIN, 1999). Os receptores convertem estimulos
provenientes do ambiente externo em impulsos elétricos que sdo transmitidos ao
cérebro, onde a rede neural realiza o processamento da informagao e a tomada de
decisdes. Em seguida, os atuadores transformam os impulsos gerados pelo cérebro
em respostas observaveis, como movimentos ou reagoes fisioldgicas. Esse ciclo de
percepgado, processamento e acdo serve como base conceitual para o

desenvolvimento de modelos neurais artificiais.
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Figura 4 — Representagao do sistema nervoso em blocos

Estimulo —»| Receptores Atuadores |—» Resposta

Neural

Fonte: (GONCALVES)

Segundo Gongalves (2023), o neurdnio biolégico € a unidade fundamental do
cérebro humano, especializado na transmisséo e processamento de informacdes por
meio de impulsos elétricos. Ele € composto por trés partes principais: o corpo celular
(ou soma), responsavel por integrar os sinais recebidos; os dendritos, que captam
estimulos de outros neurénios; e o axénio, uma ramificagcdo mais longa que conduz
os sinais elétricos até outras células. Nas extremidades do axénio localizam-se os
terminais sinapticos, que realizam a comunicacdo entre neurdnios através de

fendmenos conhecidos como sinapses (ARBIB, 2002).

Figura 5 — Modelo simplificado de neurdnio biolégico.

Dentritos
Nervos terminais

\ \
\
Axonio

Ocorréncia de sinapse

Corpo celular ou soma

Fonte: (GONCALVES)

A partir do entendimento dessa estrutura, pesquisadores buscaram reproduzir
computacionalmente o comportamento do sistema nervoso humano, originando o
conceito de neur6nio artificial. O modelo mais influente nesse sentido foi proposto por
McCulloch e Pitts (1943), considerado o marco inicial das redes neurais artificiais. O
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modelo, conhecido como Perceptron, implementa de forma simplificada os principais

componentes e mecanismos de funcionamento do neurénio bioldgico.

Nesse modelo, os estimulos provenientes de outros neurbnios sao
representados por sinais de entrada (x;), e a intensidade com que cada estimulo
influencia o neurdnio receptor € definida por pesos sinapticos (ij)- Cada peso
representa o grau de importancia ou “forga sinaptica” associada a uma conexao, por
isso quanto maior o peso, mais significativo € o impacto do sinal sobre o neurdnio de

saida.

O neurénio artificial realiza inicialmente uma soma ponderada dos sinais de
entrada, multiplicando cada valor x; pelo seu respectivo peso wy;. Essa operagao €

expressa pela seguinte equacao:

n

j=1

onde n € o numero total de sinais de entrada incidentes no neurdnio k. O resultado

dessa soma, uy, representa o nivel de ativagdo do neurénio.

Em seguida, aplica-se uma fungéo de ativagéo ¢ (u;) que transforma o valor de

entrada em uma saida normalizada, conforme:

Vi = ¢ (Uy) (2.9)

A funcgéo de ativagéo é responsavel por introduzir ndo linearidade no modelo,
permitindo que o neurdnio artificial simule comportamentos mais complexos do que
simples combinagdes lineares (ARBIB, 2002). A literatura apresenta diversas fungdes
de ativacdo, cada uma com propriedades especificas para diferentes aplicacoes.

Entre as mais comuns estao:

e Funcao degrau (Heaviside) — usada nas primeiras redes, com saidas
binarias (0 ou 1);
¢ Funcao sigmoide logistica — continua e suave, amplamente utilizada

em problemas de classificagao;

¢ Funcao tangente hiperbdlica (tanh) — semelhante & sigmoide, mas

centrada em zero, facilitando o aprendizado em certas redes;



29

e Funcao RelLU (Rectified Linear Unit) — amplamente empregada em

redes profundas, define a saida como zero para valores negativos e linear
para positivos.

Figura 6 — Modelo de neurdnio artificial proposto por McCulloch e Pitts
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Entrada Sinapticos

Fonte: (GONCALVES)

Figura 7 — Fungbes de ativacgao.
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Essas fungbes determinam como o neurbnio reage a diferentes niveis de
estimulo, controlando a propagacédo da informacgao dentro da rede. Ao interligar
diversos neurdnios artificiais em camadas, forma-se uma rede neural, capaz de
aprender padrdes e relacionamentos complexos entre variaveis a partir de dados.
Esse aprendizado é realizado através de algoritmos de ajuste iterativo dos pesos
sinapticos, que minimizam o erro entre a saida desejada e a saida produzida pela

rede.

Em sintese, conforme destaca Gongalves (2023), o modelo matematico das
redes neurais artificiais tem inspiragao biologica, refletindo a tentativa de traduzir o
mecanismo de funcionamento do cérebro humano em uma estrutura computacional
capaz de processar informacdes, reconhecer padrdes e aprender com experiéncias

passadas.

2.3.1 Rede Neural NARX (Nonlinear AutoRegressive with eXogenous Input)

As redes neurais do tipo NARX representam uma classe especifica de redes
neurais recorrentes desenvolvidas para lidar com problemas de previsdo em séries
temporais e modelagem de sistemas dindmicos nao lineares. Diferentemente das
redes alimentadas apenas por entradas externas, a NARX incorpora mecanismos de
retroalimentacao, permitindo que a rede utilize ndo apenas os sinais de entrada, mas
também valores passados da prépria saida para prever estados futuros do sistema.
Essa caracteristica confere a rede um comportamento dinamico, em que as saidas
anteriores influenciam diretamente os resultados subsequentes, refletindo de forma

mais realista a natureza temporal dos sistemas fisicos (AQUIZE et al., 2023).

De forma geral, o modelo NARX pode ser descrito pela seguinte relagao

funcional:

y(k) = f(u(k —Dutk —2)..utk—n),y(k —1),y(k — 2),...,y(k — m)) (2.10)

em que:

e u(k) representa o vetor de entradas exdgenas (sinais de entrada do

sistema),
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e y(k) é o vetor de saidas observadas,

e n e m sao, respectivamente, os atrasos associados as entradas e as
saidas (ARAUJO, 2024).

A principal vantagem do modelo NARX esta na sua capacidade de aprendizado
continuo. Ao combinar os dados originais de entrada com as saidas geradas durante
0 processo de treinamento, a rede € capaz de aprimorar iterativamente sua habilidade
de predicao, ajustando seus pesos sinapticos de modo a minimizar o erro entre o valor
previsto e o valor real (KHALED et al., 2020). Essa propriedade torna o modelo

particularmente eficiente na representagao de sistemas complexos e n&o lineares.

Internamente, a NARX é estruturada sobre uma Perceptron Multicamadas (MLP
— Multi-Layer Perceptron), composta por uma camada de entrada, uma ou mais
camadas ocultas e uma camada de saida. Os neurdnios sao interconectados por
pesos adaptativos e operam por meio de funcdes de ativacdo ndo lineares, como
sigmoide, tangente hiperbdlica ou ReLU (fungbes ja apresentadas neste capitulo), o
que confere a rede a capacidade de representar relagbes complexas entre as
variaveis. A presenca das linhas de atraso (memory lines) e da realimentagdo das
saidas faz com que a NARX capture de forma eficiente a dependéncia temporal das
variaveis envolvidas, caracteristica essencial na modelagem de sistemas dinamicos,
(SOUZA et al., 2019).

Além disso, diversos estudos destacam que as redes NARX apresentam
convergéncia mais rapida e maior estabilidade de treinamento em comparagédo com
outras arquiteturas recorrentes tradicionais. Essa eficiéncia esta relacionada a forma
como as realimentagdes sao incorporadas, permitindo que a rede aprenda de maneira

mais direta as relagdes causais entre entradas e saidas do sistema (ARAUJO, 2024).

A Figura 8 ilustra a estrutura genérica de uma rede neural NARX, onde u(k)
representa a entrada exdgena, y(k) € a saida estimada e os blocos de atraso indicam
a memoria temporal do modelo. Essa representacéo evidencia o fluxo de informacgdes
€ a interacao entre as variaveis passadas e presentes, fundamentais para a predicao

do comportamento futuro do sistema.
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Figura 8 — Sistema dinamico da rede neural NARX.

E

Fonte: (ARAUJO, V. G., 2024).

2.4 Métricas de desempenho para comparagao de modelos

A analise quantitativa do desempenho de um modelo é fundamental para avaliar
sua capacidade de representar o comportamento real de um sistema dinamico. As
métricas de desempenho permitem quantificar o erro entre os valores medidos e os
valores estimados, bem como a capacidade do modelo de responder adequadamente

diante de ruidos ou variagdes nas entradas.

Neste trabalho, sdo adotadas trés métricas principais: Erro Quadratico Médio
(MSE), Coeficiente de Determinacao (R?) e Filtragem, conforme metodologia inspirada
em Araujo. T. (2022).

2.4.1 Erro Quadratico Médio (MSE)

O Erro Quadratico Médio (MSE — Mean Squared Error) € uma métrica estatistica
amplamente utilizada para quantificar a precisao de um modelo de predicdo. Ele mede
o desvio médio entre os valores reais e os valores estimados, elevando ao quadrado

as diferencas para penalizar erros maiores.

Matematicamente, € expresso como:
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n
1
MSE == (9= y2)? @11
i=1

onde:
e n € o numero total de observacoes;

e y; representa o valor real do sistema,;
e ¥; € o valor estimado pelo modelo.

O valor do MSE é sempre ndo negativo e varia entre 0 e o, sendo que valores
proximos de zero indicam uma maior precisdo do modelo. Essa métrica sera usada
como parametro comparativo principal entre os modelos ARX, ARMAX e NARX

desenvolvidos neste estudo.

2.4.2 Coeficiente de Determinagao (R?

O Coeficiente de Determinacdo (R?) mede o quanto o modelo é capaz de
explicar a variabilidade dos dados observados em relagao a média. Ele fornece uma
medida intuitiva de ajuste do modelo aos dados reais, indicando o percentual da

variagao da saida que é corretamente reproduzida pela predicao.

Sua formulacéao é dada por:

a0 — 902
U o @12

onde y é a média dos valores reais da saida.

O coeficiente R? variade 0 a 1, sendo 1 o valor ideal, que representa um modelo
perfeitamente ajustado. Embora um R? alto ndo garanta sozinho a exceléncia do
modelo, valores baixos indicam que o modelo possui baixo poder explicativo sobre os
dados de saida (ARAUJO, T., 2022).

2.4.3 Filtragem

A filtragem avalia a resposta do modelo diante da presenga de ruido no sinal de

entrada. Esse ruido, normalmente modelado como ruido branco de média nula e
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variancia unitaria, € introduzido artificialmente para verificar o quanto ele se propaga

até a saida estimada.

Modelos com boa capacidade de filtragem mantém a estabilidade e a precisao
das estimativas, apresentando menor variagdo na saida mesmo quando submetidos

a entradas ruidosas.

Segundo Araujo, T. (2022), a filtragem é essencial na analise de sistemas reais,
nos quais o ruido de medigao pode comprometer o desempenho do estimador, sendo,

portanto, um bom indicador da robustez do modelo.
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3 METODOLOGIA E DESENVOLVIMENTO

Este capitulo apresenta a metodologia adotada para a modelagem e analise
comparativa dos modelos ARX, ARMAX e NARX, descrevendo detalhadamente as
etapas de simulagéo, coleta e tratamento de dados, identificacdo e validagdo dos
modelos propostos. O conteudo também permeia por aspectos fundamentais do
desenvolvimento do trabalho, destacando o conversor Buck como a plataforma de
aplicacdo pratica escolhida para demonstrar o desempenho das técnicas de

modelagem abordadas.

O conversor Buck é um dispositivo amplamente utilizado em sistemas de
eletrénica de poténcia devido a sua eficiéncia na conversao de tensao continua e sua
dindmica relativamente simples, o que o torna ideal para estudos de identificacdo de
sistemas. A escolha desse conversor como planta de estudo permite analisar com
clareza o comportamento dinamico de um sistema nao linear, cuja resposta depende

diretamente do ciclo de trabalho (duty cycle) aplicado ao chaveamento.

Dessa forma, o capitulo abrange tanto os procedimentos experimentais e
computacionais utilizados na obteng¢do dos dados de entrada e saida quanto as
ferramentas matematicas e computacionais aplicadas na estimacao e comparagao

dos modelos.

3.1 Definigcao da planta e simulagao do sistema

O conversor Buck foi selecionado como planta de estudo neste trabalho por se
tratar de um sistema dinamico nao linear de ampla utilizagdo em pesquisas de controle
e eletrbnica de poténcia. Sua estrutura relativamente simples, composta por
elementos reativos e chaveamento em alta frequéncia, torna-o uma excelente base
para avaliar o desempenho de técnicas de identificagdo e modelagem de sistemas.
De acordo com Nayanasiri e Li (2022), os conversores CC—CC redutores sao
amplamente empregados em aplicagdes que exigem alta eficiéncia e estabilidade, e

sua dinamica tipica envolve relagdes nao lineares entre tensao e corrente.

A primeira etapa que envolve esse conversor no trabalho consistiu na

modelagem e simulagédo da planta escolhida. O conversor Buck tem como principal
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caracteristica reduzir a tensédo de entrada para um valor de saida inferior, mantendo
a polaridade desta tensdao (MOHAN; UNDELAND; ROBBINS, 1995). Sua operacéo é
baseada na comutagéo controlada de um dispositivo semicondutor (geralmente um

MOSFET), em conjunto com um diodo, um indutor e um capacitor de filtro.

Figura 9 — Circuito esquematico de um conversor Buck.
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MOSFET L

C) v, AN c = § ?

Fonte: AUTOR.

A modelagem, por sua vez, foi desenvolvida no ambiente Simulink/MATLAB, por
meio do Simscape Electrica — Specialized Power Systems. O circuito foi construido a
partir de blocos que representam os elementos fisicos do conversor, incluindo
(MOHAN; UNDELAND; ROBBINS, 1995):

e Fonte de tenséo continua (V;;;) — Fornece a tensao de entrada para o

sistema, fixada em 24 V;

e Chave semicondutora (MOSFET) — responsavel pela comutagao,

controlada por um sinal PWM;

e Diodo (D) — conduz a corrente durante o periodo em que o MOSFET esta

desligado;
e Indutor (L) — armazena energia magnética e suaviza a corrente;

e Capacitor de filtro (C) — reduz a ondulagéo na tenséo de saida;
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e Carga resistiva (R) — representa a carga conectada ao conversor.

Os valores utilizados para os componentes foram definidos conforme a Tabela

2, de modo a garantir uma resposta dindmica adequada a frequéncia de chaveamento

escolhida.

Tabela 2 — Parametros dos elementos do conversor Buck.
Parametro Simbolo Valor Unidade
Tensao de

entrada Vin 50 4
Indutancia L 1,2 mH
Capacitancia C 15,3 UF
Resisténcia de R 4 qQ
carga
Frequéncia de
chaveamento fs 12 kHz

Fonte: AUTOR.

Inicialmente, para avaliar o comportamento do circuito, foram aplicados valores
fixos de duty cycle de 10%, 50% e 100%, de forma isolada, com o objetivo de observar
o comportamento do conversor Buck e verificar se a simulagcéo estava respondendo
conforme o esperado. Essa etapa inicial foi importante para validar o modelo do
conversor, garantindo que a tensdo de saida variasse de maneira coerente com o
principio de funcionamento do Buck, isto €, apresentando uma tensao proporcional ao
ciclo de trabalho aplicado, segundo a relagdo V, = D - V;,;, em que D € o duty cycle e
V, é atensdo na carga (MOHAN; UNDELAND; ROBBINS, 1995).

A partir dessa verificagdo, confirmou-se que o0 modelo respondia
adequadamente, permitindo entdo a utilizagdo de um sinal variavel de duty cycle para
a coleta dos dados necessarios a identificagdo dos modelos. O comportamento do
conversor nessas condigdes pode ser observado nas figuras a seguir (Figura 10,
Figura 11 e Figura 12), que mostram as respostas da tensédo de saida para os trés
valores de ciclo de trabalho aplicados.
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Assim, com o circuito finalizado, é possivel simular respostas para varios valores
de ciclos de trabalho para o levantamento dos dados que seréo uteis para a devida

continuidade do desenvolvimento deste trabalho.

Figura 10 — Curvas de tensédo, PWM e corrente no indutor para um ciclo de trabalho de 10%.
Vo
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ik PWM] |
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x107
Fonte: AUTOR.
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Figura 11 — Curvas de tensdo, PWM e corrente no indutor para um ciclo de trabalho de 50%.
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Figura 12 — Curvas de tensédo, PWM e corrente no indutor para um ciclo de trabalho de 100%.
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Fonte: AUTOR.

Para o funcionamento do circuito, o controle do chaveamento foi implementado
por meio de um gerador PWM, como pode ser visto na Figura 13, formado pela
comparagao entre uma onda triangular periddica e um sinal de referéncia variavel

(duty cycle).

A referéncia de valores de ciclo de trabalho foi fornecida a partir de um vetor
criado no MATLAB e importado para o Simulink pelo bloco From Workspace,
permitindo a variagdo ao longo da simulacdo. O cédigo para gerar esse vetor de

variagcao de duty cycle pode ser avaliado no Apéndice A deste trabalho.



Figura 13 — Diagrama do gerador PWM no MATLAB.
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Fonte: AUTOR.
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O sinal de duty cycle gerado apresenta variagdes aleatorias ao longo do tempo,

formadas por niveis constantes em pequenos intervalos. Esse tipo de sinal foi

escolhido porque permite testar a resposta do conversor Buck em diferentes

condi¢cbes de operacao, o que € importante para uma boa identificacdo do sistema.

Cada degrau permanece constante por cerca de 5 milissegundos e depois muda para

um novo valor aleatério, variando entre aproximadamente 5% e 95% de ciclo ativo. O

grafico que mostra essa variagao aleatéria do duty cycle é apresentado na Figura 14,

onde é possivel observar o comportamento em degraus do sinal utilizado como

entrada da planta simulada.

Figura 14 — Varagéo aleatoria do sinal de duty cycle utilizado como entrada na simulagao do
conversor Buck.
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Fonte: AUTOR.
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Durante a execugao da simulagéo, as principais variaveis monitoradas foram:
e 0 duty cycle aplicado a chave;
e atensao de saida do conversor (V,,;).

A tensdao de saida foi capturada por meio de um bloco Voltage Sensor e
exportada para o MATLAB utilizando o bloco To Workspace — item out.simout na
Figura 15. Esse bloco salvou, no Workspace, os dados de simulagdo. Esses dados,
por sua vez, serviram como base para as etapas seguintes de identificagdo dos

modelos ARX e ARMAX e posterior treinamento da rede neural NARX.

Figura 15 - Circuito do conversor Buck simulado no MATLAB.

el

. e a. v [Vo]
= 50V ZS D 153F 40 -v
(¢]
-

Circuita

:

Fonte: AUTOR.

3.2 Modelagem com ARX

Nesta etapa, foi desenvolvido um modelo de identificagdo do tipo ARX, com o
objetivo de obter uma representacéo aproximada da dindmica do conversor Buck.
Esse procedimento foi conduzido de forma hibrida: inicialmente, o0 modelo ARX foi
estimado utilizando-se apenas o primeiro degrau presente no sinal de entrada, de
modo a capturar o comportamento transitério fundamental do sistema em torno de
uma variagao real de entrada. Para isso, o algoritmo percorreu automaticamente o
vetor de duty cycle, identificando o primeiro salto significativo e extraindo uma janela

temporal que inclui tanto uma pequena parcela anterior ao degrau quanto o trecho
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completo de subida da tensdo de saida. Em seguida, esse conjunto reduzido foi
estruturado no formato iddata e submetido a uma busca sistematica das ordens do
modelo ARX (na, nb, nk), variando de 1 a 5, adotando-se como critério de seleg&o o
menor valor de FPE (Final Prediction Error). O modelo resultante a partir desse
primeiro degrau foi entdo considerado representativo da dindmica local do conversor

e utilizado como base para a proxima etapa.

Nessa etapa, realizou-se uma busca das ordens do modelo ARX, variando os
parametros na, nb e nk de 1 a 5. No contexto de modelos ARX, na corresponde a
ordem do polinbmio associado as saidas passadas, isto €, quantas amostras
anteriores de y(t) o modelo utiliza para prever o valor atual. Esse parametro esta
relacionado ao numero de polos do modelo discreto. Ja nb representa a ordem do
polinbmio aplicado as entradas passadas, definindo quantas amostras anteriores de
u(t) influenciam a saida; este parametro esta relacionado ao numero de zeros do
modelo. Por fim, nk corresponde ao atraso puro entre entrada e saida, indicando o
numero de instantes de amostragem necessarios para que uma variagao em u(t)
provoque efeito observavel em y(t). Esses trés parametros definem completamente
o modelo ARX e sdo fundamentais para capturar a dindmica do sistema. Como critério
de escolha do melhor modelo, adotou-se o menor valor de FPE (Final Prediction
Error), que fornece uma estimativa estatistica da qualidade do ajuste penalizando

modelos excessivamente complexos.

Apods definida a estrutura 6tima do modelo, este ARX identificado a partir do
primeiro degrau foi aplicado ao conjunto completo de dados do experimento, de modo
a avaliar sua capacidade de generalizagcado. Essa abordagem permite verificar se um
modelo linear ajustado localmente em torno de um unico transitério € capaz de
representar adequadamente a dindmica global do sistema, mesmo considerando que
o conversor Buck apresenta comportamento inerentemente nao linear. A saida
prevista pelo modelo ARX foi comparada diretamente com a saida real do Simulink ao
longo de todo o intervalo de simulagéo.

O codigo completo adotado para identificagdo e simulagdo encontra-se

disponibilizado no Apéndice C.
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3.3 Modelagem com ARMAX

Apos a identificacdo do modelo ARX, foi desenvolvido também um modelo
ARMAX. O modelo ARMAX é uma extensao natural do ARX, pois além dos polinbmios
que representam a dinamica da planta (A e B), ele incorpora o polindmio C(z™1),
responsavel por modelar a dindmica do ruido como um processo de média movel.
Essa caracteristica o torna particularmente util em sistemas sujeitos a perturbagoes,

flutuagdes de chaveamento ou medi¢des ruidosas.

Seguindo a mesma metodologia utilizada para o modelo ARX, o processo de
identificacdo do ARMAX foi realizado com base somente no primeiro degrau presente
no sinal de entrada. Primeiramente, o cédigo identificou automaticamente o instante
de ocorréncia desse degrau, extraindo em seguida uma janela contendo tanto uma
fracdo anterior ao salto quanto todo o transitério associado a subida da saida. Esse

procedimento concentra a identificagdo em uma regiao dinamica significativa.

Com esse trecho selecionado, realizou-se uma varredura das ordens na, nb, nc
e nk, variando de 1 a 5, utilizando como critério de escolha o valor minimo do FPE
(Final Prediction Error). O modelo ARMAX escolhido apresentou estrutura
(na,nb,nc,nk) = (5,2,5,1), indicando que tanto a parte autoregressiva quanto a parte
de ruido possuem quinta ordem, enquanto a influéncia da entrada foi representada

por dois coeficientes com atraso puro de uma amostra.

Depois da identificagcao local, o modelo ARMAX foi submetido a aplicagao global.
Para isso, ele foi simulado utilizando-se todo o vetor de entrada do experimento,
permitindo avaliar sua capacidade de generalizagdo para além do primeiro degrau
utilizado na estimacdo. Em seguida, a resposta prevista foi comparada com a saida
real, gerando tanto o MSE global quanto o coeficiente de determinagdo R?. Os

resultados globais poderao ser vistos no proximo capitulo deste trabalho.

3.4 Treinamento e validagao da rede neural NARX

Nesta etapa foi desenvolvida a modelagem do sistema a partir dos dados obtidos
na simulagao do conversor Buck, empregando-se uma rede neural do tipo NARX

(Nonlinear AutoRegressive with eXogenous Input). Essa arquitetura foi escolhida por
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sua capacidade de representar sistemas dinamicos n&o lineares e por considerar tanto
os valores passados da saida quanto os da entrada, permitindo capturar
adequadamente o comportamento temporal do sistema. A implementacdo e o
treinamento foram realizados no ambiente MATLAB, utilizando a toolbox Neural

Network.

O script completo foi elaborado de forma modular, iniciando-se pela importagéo
dos dados simulados e pela preparacao dos sinais para o treinamento. O arquivo
“saida_simulacao.mat”, exportado do Simulink, contém duas variaveis principais: o
vetor de tempo (tout) e o vetor de saida (simout), que representam respectivamente o
dominio temporal e o valor da tensdo de saida do conversor. Esses dados foram

carregados e tratados conforme o trecho de cédigo a seguir.

Figura 16 — Codigo de carregamento de dados.

7 %% Carregar dados da simulacao

8 load("C:Users'\JjoaopDownloadstimghsaida_simulacdo.mat™);
9

1@ t = out.tout; % tempo

11 y = out.simout; % zinal de saids

12 Ts = mean{diff{t}); % tempo de amostragem médio

Fonte: AUTOR.

O tempo médio de amostragem (T,) é calculado automaticamente a partir da
diferenga entre amostras consecutivas do vetor t, o que permite reproduzir no
MATLAB a mesma relagao de tempo utilizada no Simulink. Essa etapa € importante

pois garante a coeréncia entre as bases de dados e o modelo neural que sera treinado.

Em seguida, foi adicionado ao sinal de saida um ruido de intensidade controlada,
simulando a presencga de incertezas ou medigdes ruidosas, comuns em sistemas
reais. Esse ruido segue uma distribuicdo normal com média zero e variancia
proporcional a amplitude do sinal. O parametro “nivel_ruido” (Figura 17) pode ser
ajustado para introduzir diferentes intensidades de ruido, permitindo analisar
posteriormente a robustez do modelo NARX frente a sinais degradados. No caso
inicial, o ruido foi mantido nulo para avaliar o desempenho puro da rede com dados
ideais. No entanto, em outras simulagdes, esse valor de ruido sera importante para

testes de estresse na rede.
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Figura 17 — Codigo para adicionar ruido no sinal de saida.

14 % Adicionar ruido & saida simulada

15 nivel_ruido = @;

15 amplitude_ruido = nivel_ruido * max(y);
17 y = vy + gmplitude_ruido * randn{zize(y));
18

Fonte: AUTOR.

Apds o pré-processamento, os dados foram divididos em conjuntos de
treinamento e teste, correspondendo a 40% e 60% do total de amostras,
respectivamente. Essa divisdo € feita de forma sequencial, garantindo que o
treinamento utilize apenas as primeiras amostras do sinal, enquanto as demais sao
reservadas para validagdo do modelo apés o aprendizado. E importante saber
também que o total de amostras é de 12.501 medi¢des, garantindo que 40% para

aprendizagem ainda seja bem eficiente.

Figura 18 — Codigo para separagao de dados entre treino e teste.

23 ¥% Dividir em treino e teste

24 nTreine = round(@.4 * length{t)};
25 u_train = u{l:nTreino};

26 y_train = y{1:nTreino};

27 u_test = u{nTreino+l:end);

28 y_test = y{nTreino+l:end);

]
]

Fonte: AUTOR.

A criacao da rede foi realizada com o comando narxnet, definindo atrasos de
entrada e realimentacao de 1 a 5 amostras, e uma camada oculta com 10 neurbnios.
A configuracao de divisdo interna dos dados foi ajustada para 60% de treinamento,

20% de validacao e 20% de teste, como apresentado na Figura 19.
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Figura 19 — Codigo sobre uso do narxnet.

3o %% 4) Criar a rede NARX

37 inputDelays = 1:5;

38 feedbackDelays = 1:5;

39 hiddenMeurons = 18;

48 net = narxnet{inputDelays, feedbackDelays, hiddenNeurons);
41

42 net.divideParam.trainRatio = 8.58;

43 net.divideParam.valRatio = @.2;

4z net.divideParam.testRatio = @.2;

Fonte: AUTOR.

Os parametros de divisdo controlam como o MATLAB separa os dados dentro
do proprio conjunto de treinamento, garantindo um monitoramento continuo do
desempenho da rede ao longo das iteragdes. O conjunto de validagdo € usado para
detectar overfitting, interrompendo o treinamento quando o erro de validagao deixa de
diminuir.

No Apéndice B deste trabalho, sera encontrado o codigo completo para a criagao

e treino da rede neural NARX aplicados nesta esta pesquisa.

3.5 Comparacao e analise dos resultados

Nesta secao é finalmente apresentada a comparagao e analise dos resultados
obtidos a partir da aplicagdao dos modelos ARX, ARMAX e NARX a resposta do
conversor Buck. O objetivo neste capitulo € avaliar o desempenho de cada abordagem
de identificacdo, considerando critérios como a capacidade de representacdo da
dindmica do sistema, o erro de predicdo e o comportamento dos modelos. As
subsecgdes seguintes detalham individualmente os resultados alcangados por cada

modelo permitindo uma analise comparativa entre as estruturas utilizadas.

3.5.1 ARX

As métricas quantitativas calculadas incluem o erro médio quadratico (MSE) e o
coeficiente de determinagao (R?). O MSE expressa o desvio médio entre as respostas

real e prevista, constituindo uma medida direta do erro de modelagem. O coeficiente
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R2?, por sua vez, indica o quanto da variabilidade da saida real é explicada pelo modelo
ARX; valores préximos de 1 caracterizam elevada fidelidade da aproximacgao linear. A
combinagdo dessas métricas, somada a inspegdo do grafico comparativo final,
permite concluir sobre a adequacéo e as limitagdes do modelo ARX quando aplicado

globalmente.

Figura 20 — Parametros do modelo ARX obtido no MATLAB.

Command Window

Modelo ARX identificado (apenas 12 degrau):
idpoly with properties:

A: [1 -3.5886 5.1479 -3.8783 1.6707 -8.3518]
E: [@ -5.4866e-86 5.2226e-05 -32.1898e-85 -3.2428e-85 2.15732-85]
C: 1
D: 1
Fr 1
IntegrateNoise: @
Variable: "z~-1°
IODelay: @
Structure: [1%1 pmodel.polynomial]
MoiseVariance: 1.7914=-08
InputDelay: @
OutputDelay: @
InputMName: {‘'ul'}
InputUnit: {''}
InputGroup: [1x1 struct]
OQutputMame: {'yl'}
OQutputUnit: {'"}
OutputGroup: [1x1 struct]
Notes: [@x1 string]
UserData: []
Mame: *'
Ts: B.0080=-07
TimeUnit: 'seconds®
SamplingGrid: [1x1 struct]
Report: [1x1 idresults.arx]

Fonte: AUTOR.

Figura 21 — Métricas obtidas para o modelo ARX.

Command Window

MSE global: 5.933287=-61
R global: ®.3972
s

Fonte: AUTOR.
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O modelo ARX estimado a partir do primeiro degrau resultou em uma estrutura
de quinta ordem, com parametros (na,nb,nk) = (5,5,1), apresentando coeréncia com
a dindmica rapida e de multiplas constantes de tempo do conversor Buck. O polindmio
A(z™1) possui cinco termos, representando a contribuicdo das saidas anteriores,
enquanto o polindmio B(z™1) apresenta cinco coeficientes associados as entradas
defasadas, refletindo a influéncia do sinal de duty cycle sobre a tensédo de saida. O
atraso identificado, nk = 1, é compativel com o comportamento fisico do sistema, ja
que a resposta do conversor ndao ocorre instantaneamente apds a aplicacdo da

entrada devido a dinamica LC e ao tempo de calculo do modelo discreto.

Ap0s a identificagao local, o modelo foi aplicado ao conjunto completo de dados
da simulagao, abrangendo todos os degraus e variagdes presentes no experimento.
O desempenho global obtido teve erro médio quadratico (MSE) igual a 0,594 V2. O
coeficiente de determinagdo (R?) calculado para todo o intervalo temporal foi de
0,9972, indicando que 99,72% da variabilidade da saida real é explicada pelo modelo
linear. Esses resultados demonstram que, embora baseado exclusivamente no
primeiro degrau, o modelo ARX foi capaz de generalizar adequadamente para os
demais regimes de operagao, apresentando elevada fidelidade em relagéo a resposta

real do conversor.

Tabela 3 — Coeficientes do modelo ARX identificado (na = 5,nb = 5,nk = 1).

Termo Coeficiente
a, 1,0000
a, -3,5886
a, 5,1479
as -3,8783
ay 1,6707
as -0,3518
b 0,0000
b, -5,4066e-6
b, 5,2226e-5
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bs -3,1898¢-5
b, -3,2428¢-5
bs 2,1573e-5

Fonte: AUTOR.

Tabela 4 — Resumo dos parametros adicionais do modelo ARX

Parametro Valor
Ordem na 5
Ordem nb 5
Atraso nk 1 amostra
Variancia do ruido 1,7914e-8
Tempo de amostragem T 8-1077

Fonte: AUTOR

Sendo assim:
Az Dy() =B Hu(t-1) (3.13)
onde,
A(z7Y) =1-3,58862z"1 +5,1479z72 — 3,8783z73 + 1,6707z™* — 0,3518z°>  (2.14)
e

B(z™') = =5,4066 - 107°2z~' +5,2226 - 107527 " — 3,1898 - 1075273 (2.15)
—3,2428-107527% 42,1573 - 1075275 :

Nas figuras a seguir, pode-se verificar a resposta do modelo para os dados:



Figura 22 — Comparacéo entre saida real e saida do modelo ARX (Dois primeiros degraus).

Tensao (V)

Tensdo (V)
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Fonte: AUTOR.

Figura 23 — Comparagéo entre saida real e saida do modelo ARX (Geral)
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Tempo (s)

Fonte: AUTOR.
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3.5.2 ARMAX

A Tabela 5 apresenta os coeficientes extraidos dos polinémios A(z™1), B(z Ve
C(z~1)do modelo identificado, de acordo com o que foi observado na Figura 24 —
Parametros do modelo ARMAX obtido no MATLAB..

Tabela 5 — Coeficientes dos polinbmios do modelo ARMAX.

Termo Coeficiente
a, 1,0000
a, -3,2004
a, 4,6288
as -4,5889
ay 3,1021
as -0,9415
b, 0,0000
b, 8,5727e-7
b, 8,7765e-6
Co 1,0000
c1 0,7085
fos 0,6941
3 0,9612
C4 -0,0249
Cs -0,0204

Fonte: AUTOR
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Figura 24 — Parametros do modelo ARMAX obtido no MATLAB.

Modelo ARMAX identificado (apenas 12 degrau):
idpoly with properties:

F:
IntegrateNoise:
Variable:
I0Delay:
Structure:
NoiseVariance:
InputDelay:
OutputDelay:
Inputhame:
InputUnit:
InputGroup:
OutputName:
QutputUnit:
OutputGroup:
Notes:
UserData:
Mame:

T=:

TimeUnit:
SamplingGrid:
Report:

Figura 25 —

oM om

[1 -3.2804 4.5288 -4.588% 3.1821 -2.9415]
[@ 8.5727e-087 8.7765e-86]
[1 @.7885 @.6941 0.9612 -9.0249 -0.8284]

[1%1 pmodel.polynomial]]
1.3523e-88
a

a

{Tul’}

{1

[1x1 struct]
{'y1'}

{1

[1x1 struct]
[@x1 string]
[1
&.0000s-a7
'seconds’

[1x1 struct]
[1x1 idresults.polyest]

Fonte: AUTOR.

Métricas referente ao modelo ARMAX.

Command Window

MSE global (ARMAX): 6.426482e-01
R? global (ARMAX): @.997@

>

Fonte: AUTOR

Esses valores indicam que o modelo ARMAX explica aproximadamente 99,7%

da variabilidade da saida real ao longo de todo o intervalo da simulagéo, desempenho

extremamente elevado para um modelo linear ajustado apenas a partir de um unico

transitorio. Comparativamente, o ARMAX apresentou desempenho muito proximo ao

do ARX, o que esta de acordo com a baixa variancia de ruido dos dados, indicando

que o termo adicional C(z~1) contribuiu apenas marginalmente para a melhoria do

ajuste.
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Por fim, o grafico comparativo entre as curvas real e prevista demonstra que o
modelo ARMAX é capaz de acompanhar muito bem tanto o formato quanto a dindmica
da resposta do conversor, apresentando discrepancias pequenas e concentradas em
regides onde se percebe maior ndo linearidade na operag¢ao chaveada. Dessa forma,
o ARMAX se apresenta como uma alternativa linear robusta e coerente dentro do

conjunto de técnicas de modelagem avaliadas neste trabalho.

Figura 26 — Comparacéao entre saida real e saida do modelo ARMAX (Geral).

Tensdo (V)

0 0.01 0.02 0.03 0.04 0.05 0.068 0.07 0.08 0.09 01
Tempo (s)

Fonte: AUTOR
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Figura 27 — Comparagéo entre saida real e saida do modelo ARMAX (Dois primeiros degraus).

40

35

Tensao (V)

s ——— Saida real
— = — Saida ARMAX

0 | | | | | |
5 3} 7 8 el
Tempo (s) x10*

Fonte: AUTOR

3.5.3 NARX

Durante o processo de treinamento, o MATLAB exibe automaticamente a janela
Training Progress, que inclui tanto graficos quanto uma tabela com informagdes

detalhadas sobre o estado do aprendizado.

A tabela exibida na Figura 28, apresenta um exemplo desse relatorio, que
resume parametros como desempenho, gradiente, fator adaptativo (mu) e numero de

verificagbes de validagao.

Figura 28 — Relatério de desempenho de treinamento da rede.

Training Progress

Unit Initial Value |Stopped Value |Target Value
Epoch 0 22 1000
Elapsed Time - 00:00:06 -
Performance 172 3.53e-07 0
Gradient 1.39e+03 0.0615 1e-07

Mu 0.001 1e-06 1e+10
Validation Checks 0 B 6 -

Fonte: AUTOR.
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A coluna Performance representa o valor do erro médio quadratico (Mean
Squared Error), que mede a diferenca média entre as saidas reais e as saidas
previstas pela rede. Observa-se que o valor caiu de 172 para 3.53x107" durante o
processo, evidenciando um ajuste extremamente preciso do modelo a dindmica do

sistema.

O parametro Gradient indica a taxa de variagao do erro em relagao aos pesos
sinapticos, e quanto menor esse valor, mais proxima a rede esta do ponto 6timo de
convergéncia. Ao final do treinamento, o gradiente reduziu de 1.39x10° para

6.15%1072, o que sugere a estabilizagao do aprendizado.

O termo Mu corresponde ao fator de ajuste do algoritmo de Levenberg—
Marquardt, utilizado pelo MATLAB como método de otimizagdo. Esse fator regula o
tamanho do passo de atualizagao dos pesos: valores maiores tornam a convergéncia

mais conservadora, enquanto valores menores aceleram o processo.

No decorrer do treinamento, Mu variou de 0.001 até 1x107¢, indicando que o
algoritmo ajustou dinamicamente a taxa de aprendizado conforme o erro diminuia,

favorecendo uma convergéncia suave e estavel.

Ja o campo Validation Checks indica o numero de vezes consecutivas em que o
erro de validagao ndo melhorou. Quando esse valor atinge o limite maximo (neste
caso, 6), o treinamento € interrompido automaticamente, mecanismo conhecido como

early stopping, que evita o sobreajuste do modelo aos dados de treinamento.

Por fim, o tempo total decorrido (Elapsed Time) até o ponto de melhor validagao
foi de apenas 6 segundos, demonstrando que a rede, mesmo sendo recorrente,

apresentou baixo custo computacional para o conjunto de dados utilizado.

Além da tabela numérica, o MATLAB fornece automaticamente diversos graficos
de desempenho e diagnostico. O mais relevante € o grafico de desempenho (Training
Performance), Figura 29, que mostra a evolugéo do erro de treinamento e de validagao
ao longo das épocas. Esse grafico é util para identificar o ponto em que a rede atinge
o menor erro de validagdo, indicando o melhor ajuste possivel antes do inicio de um

possivel overfitting.
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Outro grafico que pode ser apresentado € o Training State, que mostra a

variagdo do gradiente e do parametro Mu durante o aprendizado. A redugéo

simultanea de ambos confirma a estabilidade do processo de otimizacéao.

gradient

mu

10*

102

102

107 5

10

10®

Figura 30 — Curvas de Training State do MATLAB.
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Fonte: AUTOR.
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Apods o término do treinamento, a rede foi submetida ao conjunto de teste,
formado por dados que ndo foram utilizados no aprendizado, para verificar sua

capacidade de generalizagao.

A saida prevista pela rede (y_pred) foi comparada a saida real (y_real), e o erro

médio quadratico foi calculado conforme a equacéao (2.11).

A comparagao entre as duas saidas mostra que a rede NARX conseguiu prever
muito bem o comportamento do conversor Buck. No teste final, o MSE ficou em torno
de 94-107° um valor bem baixo. Ja no grafico do Training Progress, aparece um
MSE de 8,93 - 107° na época 16, e isso pode gerar duvida a primeira vista. No entanto,
essa diferenca € normal, porque o grafico mostra o erro durante o treinamento e
validagao, enquanto o cddigo calcula o erro usando o conjunto de teste, que a rede so
vé depois de treinada. Como os conjuntos sao diferentes, os valores do MSE também
variam um pouco. Mesmo assim, ambos os numeros sdo bem pequenos, indicando

que a NARX representou a planta com muita precisao.

As duas figuras a seguir mostram o resultado de previsao do modelo:

Figura 31 — Comparacéo entre saida real e saida prevista pela rede NARX (Dois primeiros degraus).
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Fonte: AUTOR.
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Figura 32 — Comparacéo entre saida real e saida prevista pela rede NARX (Geral).
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3.6 Discussao dos resultados obtidos

Para todos os modelos utilizados neste trabalho ARX, ARMAX e NARX, MSE e
R? sdo apresentados na Tabela 6. No geral, pode-se dizer que os modelos lineares
apresentaram a dinamica geral da planta muito bem, tendo valores de R?* muito
proximos de 1 e erros relativamente baixos. No entanto, observamos a partir da
comparacgao desses resultados com a rede NARX, a distingdo € muito clara. A NARX
apresentou um MSE de apenas 9,4 x 10°e R? igual a 1, ou seja, conseguiu
praticamente “encaixar” a saida real com pouquissima diferenca. Isso deixa evidente
que, apesar de os modelos classicos funcionarem bem na tendéncia geral, a rede
neural alcanga um nivel de fidelidade muito maior na reproducdo da dinamica do

sistema.
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Tabela 6 — Comparagéo de métricas entre os modelos

Descricao do

Modelo MSE R?
desempenho

Representa bem a dindmica

ARX 5939207 x 107! 0,9972 geral; modelo linear simples
com boa precisao global.

Semelhante ao ARX, incorpora

ARMAX 6,426482 x 107! 0,9970 parte estocastica; desempenho
ligeiramente inferior neste caso.

Melhor desempenho; captura
detalhes e néo linearidades,
reproduzindo a saida com alta
fidelidade.

NARX 9,4 x 107° 1,0000

Fonte: AUTOR.

Essa diferenca de desempenho nao se limita apenas aos indicadores numéricos.
Visualmente, é possivel observar nas figuras de comparagao que a NARX aprende
detalhes da dinamica que ndo aparecem nas respostas dos modelos lineares. Na
Figura 31, nota-se claramente que a rede NARX reproduz com precisdo o ripple
presente na saida real da planta. Esse comportamento ndo é capturado pelos modelos
ARX e ARMAX, como mostram a Figura 22 e a Figura 27. Ambos os modelos
suavizam a resposta, deixando de representar as variagdes rapidas que fazem parte

da dinamica real do sistema.

Essa capacidade da NARX de aprender essas pequenas nao linearidades
reforga sua vantagem em relagdo aos modelos classicos, principalmente em sistemas
onde essas oscilagdes carregam informagdes importantes sobre o comportamento da
planta. Em contrapartida, como o ARX e o ARMAX sdo modelos lineares, eles tendem
a ajustar apenas a tendéncia principal, reproduzindo a forma geral da curva, mas sem

acompanhar os detalhes de alta frequéncia.
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Outro ponto importante é que, durante o desenvolvimento do trabalho, foram
realizados testes com diferentes niveis de ruido no sinal de entrada, na tentativa de
avaliar a robustez dos modelos. No entanto, observou-se que o conversor
naturalmente atenua o ruido devido ao filtro LC presente em sua estrutura. Mesmo
com ruidos relativamente altos aplicados ao duty cycle, a saida da planta nao
apresentou uma saida relevante, o que impossibilitou uma analise de desempenho

dos modelos em cenarios ruidosos.

No geral, esses resultados mostram que, embora os modelos lineares sejam
ferramentas rapidas, simples e eficazes para muitos tipos de sistemas, a rede NARX
se destaca quando o objetivo é capturar com maior precisao os detalhes da dinamica,
incluindo ndo linearidades e pequenas oscilagdes que fazem parte do comportamento

natural do conversor.
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4 CONCLUSOES E PROPOSTAS DE CONTINUIDADE

Com base nos resultados deste estudo, pode-se concluir que as vantagens dos
meétodos de identificacdo sao distintas, e a selecdo depende muito da aplicagcéo. Os
modelos lineares ARX e ARMAX mostraram bom desempenho tanto na representacao
global do sistema quanto tém a vantagem especial de gerar expressdes matematicas
explicitas, o que possibilita interpreta-las e usa-las diretamente na construgéo de

controladores classicos.

Por outro lado, a rede neural NARX exibiu o melhor desempenho entre os trés
modelos, conseguindo reproduzir caracteristicas da dinamica que foram omitidas nos
modelos lineares, como ondulagdes na saida da planta. Ha uma desvantagem nessa
abordagem: ela ndo fornece uma representagéo analitica do modelo, o conhecimento
esta "embutido" na rede, o que pode limitar quaisquer aplicacbes em torno de

equacgodes explicitas.

No entanto, mesmo ao aplicar altos niveis de ruido ao sinal de entrada, a planta
ndao mostrou mudangas significativas devido ao seu forte carater de filtragem. Foi

impossivel, portanto, testar a robustez dos modelos em cenarios ruidosos.

Em uma continuagao deste estudo, as mesmas técnicas podem ser aplicadas a
qualquer planta com comportamento mais nao linear ou menos filtrado, onde o ruido
tem um efeito genuino na saida. Além do exposto, pode ser uma possibilidade

investigar redes LSTM, modelos NARMAX ou hibridos para a identificagdo do sistema.
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APENDICES

APENDICE A — CODIGO PARA GERAR VETOR DE VALORES DE DUTY CYCLE.

o\
()
(O]
=
0]
Q)
[l
O
Q.
()
0
-
3
0]
[
Q.
()
Q.
e
+
B
Q
=
Q
=
()
0]
[
()
0]
+
O~
=
-
O
0]
3
Q.
()
Q
=
[0)
o
0n

e

o\

Este cbédigo cria um sinal de entrada (duty cycle) composto por
niveis aleatdérios constantes em intervalos de tempo fixos,
utilizado como excitacdo para o modelo simulado do conversor Buck.

o\

o\

t =0 : 800e-9 : 100e-03; % Vetor de tempo: inicia em 0 e vai até 100 ms,
com passo de 0,8 us

Ts = 800e-9; % Passo de amostragem
Tfinal = max(t); $ Tempo total de simulacdo

duracaoDegrau = 0.005; % Duracdo de cada degrau de entrada (5 ms)

Npassos = ceil (Tfinal/duracaoDegrau); % Quantidade de degraus dentro do
tempo total

% Gerar valores de duty cycle aleatdérios entre 5% e 95%

valores = 5 + 95*rand(l, Npassos);

Ns = round (duracaoDegrau/Ts); % Numero de amostras correspondentes a cada
degrau

% Repitir cada valor de duty pelo nUmero de amostras que dura o degrau
u = repelem(valores, Ns);

% Ajustar o tamanho do vetor de entrada para coincidir exatamente com o
tempo total

u = u(l:min(length(u), length(t)));

u = padarray(u, [0, max(0, length(t)-length(u))], 'replicate', 'post');

% Montar a matriz completa com tempo (coluna 1) e duty cycle (coluna 2)
input = [t' u'l;

% Converter o sinal em objeto 'timeseries' para uso no Simulink
input ts = timeseries(u, t);
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APENDICI~E B — CODIGO PARA CRIAGAO DE REDE NEURAL (TREINAMENTO,
VALIDACAO E TESTE)

Identificacd&o com dados reais do Simulink (Rede NARX)

clear; clc; close all;

Carregar dados da simulacdao
load ("C:\Users\joaop\Downloads\img\saida simulac&o.mat");

t = out.tout; % tempo
y = out.simout; % sinal de saida
Ts = mean(diff(t)); % tempo de amostragem médio

% Adicionar ruido a saida simulada

nivel ruido = 0;

amplitude ruido = nivel ruido * max(y);

y = y + amplitude ruido * randn(size(y)):;

% Sinal de entrada (duty cycle)
= out.valores dutycycle;
u / 100;

u
u
%% Dividir em treino e teste
nTreino = round (0.6 * length(t));
u_train u(l:nTreino) ;

y train y(l:nTreino);

u test = u(nTreino+l:end);

y _test = y(nTreino+l:end);

Converter para formato de sequéncia

u _train = con2seq(u_train');

y train = con2Zseq(y train');

u_test = con2seqg(u_test');
(

y_test con2seq(y test');
Criar a rede NARX
inputDelays = 1:5;
feedbackDelays = 1:5;
hiddenNeurons = 10;
net = narxnet (inputDelays, feedbackDelays, hiddenNeurons) ;

net.divideParam.trainRatio = 0.6;

net.divideParam.valRatio = 0.2;

net.divideParam.testRatio = 0.2;
Treinar a rede

[Xs, Xi, Ai, Ts_train] = preparets(net, u train, {}, y train);

net = train(net, Xs, Ts_ train, Xi, Ai);

% Testar a rede
[Xs_test, Xi test, Al test, Ts_test] = preparets(net, u test, {}, y test);
y _pred = net(Xs test, Xi test, Ai test);

% Converter e alinhar resultados
y real = cellZmat(y test);
y_pred cell2mat (y pred);



delay = max ([inputDelays feedbackDelays]);

N = min(length(y real), length(y pred)) - delay;
y real adj = y real(delay+l : delay+N);
y_pred_adj y pred(l : N);

Plotar comparacgao

figure;

plot (y_real adj, 'b', 'LineWidth', 1.5); hold on;
plot (y pred adj, 'r--', 'LineWidth', 1.5);
legend('Saida real', 'Saida prevista (NARX)');
xlabel ('"Amostra') ;

ylabel ('Tensdo de saida (V) ');
title ('Comparacdo entre saida real e saida prevista pela rede NARX');
grid on;

Calcular MSE
mse val = mean((y real adj - y pred adj).”2);
fprintf ('Erro médio quadratico (MSE): %.6f\n', mse val);

67
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APENDICE C - CODIGO PARA O MODELO ARX

% Identificacdo ARX usando apenas o primeiro degrau da entrada
% Aplicacdo do modelo ARX identificado em todo o conjunto de dados

clear; clc; close all;

% Carregar dados
load ("C:\Users\joaop\Downloads\img\saida simulac&do.mat");

t = out.tout;

y = out.simout;
out.valores dutycycle;
Ts = mean(diff(t));

ot
Il

% Deteccdo do primeiro degrau do duty cycle

du = diff(u);

tol = max(u) * 0.005; $ 0.5% da escala - evita ruidos pequenos
idx all = find(abs(du) > tol); % todos os degraus reais

if isempty(idx all)
error ("Ndo foi encontrado nenhum degrau real no sinal de entrada.");
end

idx step = idx all(l); % primeiro degrau de verdade

% Selecdo da janela do primeiro degrau

pre _time = 0.2e-3; $ 0.2 ms antes
pos _time = 3e-3; % pegar um transitdério curto
il = max(l, idx step - round(pre time/Ts));

i2 = min(length(t), idx step + round(pos time/Ts));

u deg = u(il:i2);
y deg = y(il:12);
t deg = t(il:i2);

$ Identificacdo do modelo arx com o primeiro degrau

5

data deg = iddata(y deg, u deg, Ts);

melhor fpe = inf;
for na = 1:5
for nb = 1:5
nk = 1;
try
sys = arx(data _deg, [na nb nk]);

if sys.Report.Fit.FPE < melhor fpe
melhor fpe = sys.Report.Fit.FPE;
model arx = sys;
ords = [na nb nk];

end

end
end
end



% Aplicacdo do modelo arx a todos os dados
y_arx _total = sim(model arx, u);

N = min(length(y), length(y arx total));
y real total = y(1:N);

y arx total =y arx total(l:N);

t total = t(1l:N);

% Métricas globais

mse global = mean((y real total - y arx total).”2);
SST = sum((y real total - mean(y real total))."2);
SSE = sum((y real total - y arx total).”2);

R2 global = 1 - SSE/SST;
Grafico final - saida real x saida arx (intervalo completo)
figure;

plot (t_total, y real total, 'b', 'LineWidth', 1.4); hold on;

plot (t_total, y arx total, 'r--', 'LineWidth', 1.3);

xlabel ('Tempo (s)');

ylabel ('Tensdao (V) ');

title('Modelo ARX identificado no primeiro degrau e aplicado ao intervalo
completo');

legend ('Saida real', 'Saida ARX');

grid on;

$ Imprimir os resultados

disp('Modelo ARX identificado (apenas 1° degrau):');
disp(model arx);

fprintf ("MSE global: %.6e\n", mse global);

fprintf ("R? global: %.4f\n", R2 global);



APENDICE D - CODIGO PARA O MODELO ARMAX.

% Identificacdo ARMAX usando apenas o primeiro degrau da entrada
Aplicacdo do modelo ARMAX a todo o conjunto de dados

clear; clc; close all;

% Carregamento dos dados
load ("C:\Users\joaop\Downloads\img\saida simulac&do.mat");

t = out.tout;

y = out.simout;
out.valores dutycycle;
Ts = mean(diff(t));

o
Il

% Deteccdo do primeiro degrau do duty cycle

du = diff (u);
tol = max(u) * 0.005; $ evita flutuacdes pequenas

idx _all = find(abs(du) > tol);
if isempty(idx all)
error ("Nenhum degrau significativo foi encontrado no sinal de
entrada.");
end

idx step = idx all(l); % primeiro degrau real

% Selecdo da janela do primeiro degrau
pre time = 0.2e-3;

pos _time = 3e-3;
il = max(l, idx _step - round(pre time/Ts));
i2 = min(length(t), idx step + round(pos time/Ts));

u deg = u(il:i2);
y deg = y(il:12);
t deg = t(il:12);

Identificacdo do modelo armax
Ordens testadas: na = 1..5, nb = 1..5, nc = 1..5, nk =1

data deg = iddata(y _deg, u _deg, Ts);
melhor fpe = inf;

for na = 1:5

for nb = 1:5
for nc = 1:5
nk = 1;
try
sys = armax (data deg, [na nb nc nk]);

fpe atual = sys.Report.Fit.FPE;

if fpe atual < melhor fpe
melhor fpe = fpe atual;
model armax = sys;



ords = [na nb nc nk];
end
end
end
end
end

3 Aplicacdo do modelo armax a todo o conjunto de dados
y _armax_total = sim(model armax, u);

N = min(length(y), length(y armax total));
y _real total = y(1:N);

y_armax total = y armax total(l:N);

t total = t(1:N);

$ Métricas globais
mse _global = mean((y real total - y armax total).”2);

SST = sum((y real total - mean(y real total)).”2);
SSE = sum((y real total - y armax total).”2);

R2 global = 1 - SSE/SST;
% Comparacdo global - grafico final
figure;

plot (t_total, y real total, 'b', 'LineWidth', 1.4); hold on;

plot (t_total, y armax total, 'r--', 'LineWidth', 1.3);

xlabel ('Tempo (s)'):

ylabel ('Tensdo (V) "'");

title('Modelo ARMAX identificado no 1° degrau e aplicado ao intervalo
completo');

legend('Saida real', 'Saida ARMAX');

grid on;

% Resultados
disp ('Modelo ARMAX identificado (apenas 1° degrau):');
disp (model armax);

fprintf ("MSE global (ARMAX): %.6e\n", mse global);
fprintf ("R? global (ARMAX) : %.4f\n", R2 global);
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