
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE TECNOLOGIA E GEOCIÊNCIAS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA
CURSO DE GRADUAÇÃO EM ENGENHARIA DE CONTROLE E AUTOMAÇÃO

JOÃO PAULO DE BARROS SANTOS

MODELAGEM DE SISTEMAS DINÂMICOS BASEADA EM REDES NEURAIS

ARTIFICIAIS: uma comparação com métodos clássicos ARX e ARMAX.

Recife
2025

JOÃO PAULO DE BARROS SANTOS

MODELAGEM DE SISTEMAS DINÂMICOS BASEADA EM REDES NEURAIS
ARTIFICIAIS: uma comparação com métodos clássicos ARX e ARMAX.

Trabalho de Conclusão de Curso apresentado
ao Departamento de Engenharia Elétrica da
Universidade Federal de Pernambuco, como
requisito parcial para obtenção do grau de
Engenheiro de Controle e Automação.

Orientador(a): Prof. Dr. Rafael Cavalcanti Neto

Recife
2025

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Santos, João Paulo de Barros.
 Modelagem de sistemas dinâmicos baseada em redes neurais artificiais: uma
comparação com métodos clássicos ARX e ARMAX. / João Paulo de Barros
Santos. - Recife, 2025.
 71 p : il., tab.

 Orientador(a): Rafael Cavalcanti Neto
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Tecnologia e Geociências, Engenharia de Controle e
Automação - Bacharelado, 2025.
 Inclui referências, apêndices.

 1. Identificação de sistemas. 2. Redes neurais. 3. Modelagem de sistemas
dinâmicos. 4. Modelo NARX. 5. Sistemas de controle. 6. Conversor Buck. I.
Cavalcanti Neto, Rafael. (Orientação). II. Título.

 620 CDD (22.ed.)

JOÃO PAULO DE BARROS SANTOS

MODELAGEM DE SISTEMAS DINÂMICOS BASEADA EM REDES NEURAIS
ARTIFICIAIS: uma comparação com métodos clássicos ARX e ARMAX.

Trabalho de Conclusão de Curso apresentado
ao Departamento de Engenharia Elétrica da
Universidade Federal de Pernambuco, como
requisito parcial para obtenção do grau de
Engenheiro de Controle e Automação.

Aprovado em: 17/12/2025

BANCA EXAMINADORA

__
Prof. Dr. Rafael Cavalcanti Neto

Universidade Federal de Pernambuco

Prof. Dr. Douglas Contente Pimentel Barbosa

Universidade Federal de Pernambuco

Eng. M.Sc. Pablo Luiz Tabosa da Silva
Universidade Federal da Paraíba

Dedico este trabalho à minha mãe, Valéria
Barros, cuja garra e cuidado sempre impulsionaram
os meus passos. Mesmo com pouco acesso aos
estudos, ela me ofereceu o maior presente que
poderia: a oportunidade de ser transformado pela
educação.

AGRADECIMENTOS

Posso dizer que sou extremamente responsável por todos os meus passos

nesse curso, mas preciso ser justo afirmando que não poderia chegar aonde cheguei

sozinho. Em todos os meus passos, embora difíceis, pude contar com o apoio de

muitos, e isso tudo começa de berço. Serei eternamente grato a minha mãe por todo

o esforço dedicado desde a escola, que mesmo com poucos recursos me fez acreditar

em mim mesmo e me deu o necessário para que eu alcançasse meus objetivos.

Aqui, também agradeço às minhas tias, Mariinha e Paê, por cada centavo e

tempo investido em mim para que eu me tornasse quem sou hoje. Agradeço à minha

avó, Terezinha, eu te amo demais e você é minha maior inspiração de força e de

alegria. Agradeço a minha irmã, Andreza, que sempre fez com que eu me sentisse

amado; tudo teria sido muito mais difícil sem você por perto. Agradeço a Tia Neia, Tio

Marcos e Maria Rita, amo vocês. E, tão importante quanto, agradeço a Rafael, meu

maior parceiro da vida, sempre do meu lado me apoiando em tudo; também teria sido

um desafio maior sem você nessa reta final. Agradeço a todos meus familiares que

em algum momento, de alguma forma, investiram na minha educação em especial ao

meu Tio Valdeque, Muito obrigado.

Um grande agradecimento a todos os professores do departamento que pude

aprender junto, em especial ao meu professor orientador Rafael Cavalcanti e ao

professor Fabrício Bradachia, que foram os docentes que mais marcaram a minha

jornada na universidade.

Não poderia deixar de agradecer aos grandes amigos que pude formar na

faculdade: Hewerton, Letícia e Nathalia. Mas, também agradeço aos meus demais

amigos da vida: Thaynara, Mykaella, Rogério, Mª Letícia, Karol, Priscila, Valter e Day.

Todos vocês tornaram o processo mais leve e me ajudaram em algum momento.

Agradeço também à Galva, na figura de Kater, Filipe e Aline, que sempre me

deram oportunidades de crescimento, mas meu maior agradecimento aqui dedico a

Glauber por me impulsionar nas minhas atividades e enxergar potencial no meu

trabalho e por ter sido aquele que mais me motivou para que este trabalho

acontecesse. E, também deixo um agradecimento especial a todos meus amigos de

trabalho que tornam todos os meus dias melhores.

Por fim, agradeço a todos os negros da história que lutaram para que hoje eu, e

tantos outros jovens negros, pudéssemos acessar uma educação de qualidade.

Concluo este curso sendo o primeiro da minha família materna a obter um diploma em

uma universidade pública federal. Não escrevo isso por orgulho pessoal, mas com a

esperança de estar abrindo caminho para muitos outros. Como Paulo Freire, acredito

que a educação transforma pessoas, e pessoas transformam o mundo, e é com esse

mesmo pensamento que quero ver meus primos e, um dia, meus filhos, tendo as

oportunidades para transformar as realidades que ainda precisam ser transformadas.

“A essência da inteligência é ver o futuro e não saber
das coisas.”

— Michio Kaku.

RESUMO

Este trabalho tem como objetivo comparar técnicas de identificação de sistemas,

especificamente os modelos ARX, ARMAX e uma rede neural NARX, aplicadas a uma

planta simulada no Simulink, que para este trabalho foi usado o conversor Buck. A

identificação foi realizada utilizando dados provenientes de variações reais no sinal de

entrada, e o desempenho dos modelos foi avaliado por meio das métricas MSE e R².

Testes iniciais com ruído no sinal mostraram que a planta atenua naturalmente essas

perturbações, o que levou à utilização dos dados limpos para garantir uma

comparação equilibrada entre os métodos. Os resultados obtidos evidenciam que os

modelos lineares ARX e ARMAX representam satisfatoriamente o comportamento

dinâmico observado, enquanto a rede NARX apresentou desempenho superior,

alcançando menor erro e maior precisão na previsão da saída. Dessa forma, o estudo

mostra que, embora métodos lineares sejam eficientes em diversas situações,

abordagens não lineares baseadas em redes neurais podem oferecer maior fidelidade

na identificação de sistemas, especialmente quando a dinâmica envolve

características que os modelos lineares não capturam completamente.

Palavras-chave: Identificação de sistemas; ARX; ARMAX; NARX; Redes neurais;
Conversor Buck; Modelagem dinâmica.

ABSTRACT

This work aims to compare different system identification techniques, specifically

the ARX, ARMAX, and NARX models, applied to a plant simulated in Simulink, for

which a Buck converter was used as the study case. The identification was carried out

using data obtained from realistic variations in the input signal, and the performance

of the models was evaluated through the MSE and R² metrics. Initial tests with noise

showed that the plant naturally attenuates such disturbances, which led to the use of

clean data to ensure a fair comparison between the methods. The results demonstrate

that the linear ARX and ARMAX models satisfactorily represent the observed dynamic

behavior, while the NARX neural network achieves superior performance, presenting

lower error and greater accuracy in predicting the system output. Therefore, the study

shows that although linear models are effective in many situations, nonlinear

approaches based on neural networks can offer higher fidelity in system identification,

especially when the dynamics involve characteristics that linear models cannot fully

capture.

Keywords: System identification; ARX; ARMAX; NARX; Neural networks; Buck
converter; Dynamic modeling.

LISTA DE ILUSTRAÇÕES

Figura 1 – Número de publicações no Web of Science para o tópico "neural

network*". .. 17

Figura 2 – Quantidade de publicações por área de atuação. 17

Figura 3 – Etapas para o processo de identificação de modelo. 22

Figura 4 – Representação do sistema nervoso em blocos .. 27

Figura 5 – Modelo simplificado de neurônio biológico. .. 27

Figura 6 – Modelo de neurônio artificial proposto por McCulloch e Pitts 29

Figura 7 – Funções de ativação. ... 29

Figura 8 – Sistema dinâmico da rede neural NARX. ... 32

Figura 9 – Circuito esquemático de um conversor Buck. .. 36

Figura 10 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho

de 10%. ... 38

Figura 11 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho

de 50%. ... 39

Figura 12 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho

de 100%. ... 40

Figura 13 – Diagrama do gerador PWM no MATLAB. .. 41

Figura 14 – Varação aleatória do sinal de duty cycle utilizado como entrada na

simulação do conversor Buck. ... 41

Figura 15 – Circuito do conversor Buck simulado no MATLAB. 42

Figura 16 – Código de carregamento de dados. ... 45

Figura 17 – Código para adicionar ruido no sinal de saída. 46

Figura 18 – Código para separação de dados entre treino e teste............................ 46

Figura 19 – Código sobre uso do narxnet. .. 47

Figura 20 – Parâmetros do modelo ARX obtido no MATLAB. 48

Figura 21 – Métricas obtidas para o modelo ARX. .. 48

Figura 22 – Comparação entre saída real e saída do modelo ARX (Dois primeiros

degraus). ... 51

Figura 23 – Comparação entre saída real e saída do modelo ARX (Geral) 51

Figura 24 – Parâmetros do modelo ARMAX obtido no MATLAB. 53

Figura 25 – Métricas referente ao modelo ARMAX. .. 53

Figura 26 – Comparação entre saída real e saída do modelo ARMAX (Geral). 54

Figura 27 – Comparação entre saída real e saída do modelo ARMAX (Dois primeiros

degraus). ... 55

Figura 28 – Relatório de desempenho de treinamento da rede. 55

Figura 29 – Validação ao longo das épocas. .. 57

Figura 30 – Curvas de Training State do MATLAB. .. 57

Figura 31 – Comparação entre saída real e saída prevista pela rede NARX (Dois

primeiros degraus). ... 58

Figura 32 – Comparação entre saída real e saída prevista pela rede NARX (Geral).

 .. 59

LISTA DE TABELAS

Tabela 1 – Número de publicações totais no Web of Science sobre redes neurais. . 18

Tabela 2 – Parâmetros dos elementos do conversor Buck. 37

Tabela 3 – Coeficientes do modelo ARX identificado 𝑛𝑎 = 5, 𝑛ܾ = 5, 𝑛݇ = 1. 49

Tabela 4 – Resumo dos parâmetros adicionais do modelo ARX 50

Tabela 5 – Coeficientes dos polinômios do modelo ARMAX. 52

Tabela 6 – Comparação de métricas entre os modelos .. 60

LISTA DE ABREVIATURAS E SIGLAS

ARX AutoRegressive with eXogenous Input

ARMAX AutoRegressive Moving Average with eXogenous Input

NARX Nonlinear AutoRegressive with eXogenous Input

RNA Rede Neural Artificial

MLP Multi-Layer Perceptron

MSE Mean Squared Error (Erro Quadrático Médio)

R² Coeficiente de Determinação

PWM Pulse Width Modulation (Modulação por Largura de Pulso)

CC–CC Conversor de Corrente Contínua para Corrente Contínua

LC Indutor e Capacitor

Ts Tempo de amostragem

FPE Final Prediction Error

WoS Web of Science

MATLAB Matrix Laboratory

UFPE Universidade Federal de Pernambuco

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

DC Direct Current (Corrente Contínua)

LTI Linear Time-Invariant (Sistema Linear Invariante no Tempo)

IDDATA Formato de dados do MATLAB para identificação

IA Inteligência Artificial

PWM Pulse Width Modulation (Modulação por Largura de Pulso)

LISTA DE SÍMBOLOS

௜ܸ௡ Tensão de entrada do conversor Buck ௢ܸ Tensão de saída do conversor Buck ܮ Indutância do indutor ܥ Capacitância do capacitor de filtro ܴ Resistência da carga ௦݂ Frequência de chaveamento ܦ Duty cycle aplicado ao PWM ܫ௅ Corrente no indutor ݐ Tempo ݏ Variável da transformada de Laplace (ݐ)ݕ Saída do sistema (tensão simulada) (ݐ)ݑ Entrada do sistema (duty cycle) 𝑎௜ Coeficientes do polinômio A(z) nos modelos ARX/ARMAX ܾ௜ Coeficientes do polinômio B(z) nos modelos ARX/ARMAX ܿ௜ Coeficientes do polinômio C(z) no modelo ARMAX 𝑛௔ Ordem do polinômio A(z) 𝑛௕ Ordem do polinômio B(z) 𝑛௞ Atraso entre entrada e saída ݁(ݐ) Erro ou ruído da modelagem ̂(ݐ)ݕ Saída prevista pelo modelo ܧܵܯ Mean Squared Error ܴ2 Coeficiente de determinação

SUMÁRIO

1 INTRODUÇÃO ... 16

1.1 OBJETIVOS ... 19

1.1.1 Geral ... 19
1.1.2 Específicos ... 19

1.2 ORGANIZAÇÃO DO TRABALHO... 19

2 FUNDAMENTAÇÃO TEÓRICA ... 21

2.1 IDENTIFICAÇÃO DE SISTEMAS DINÂMICOS .. 22

2.2 MODELOS CLÁSSICOS DE IDENTIFICAÇÃO (ARX, ARMAX) 24

2.2.1 Modelo ARX ... 25
2.2.2 Modelo ARMAX .. 25

2.3 REDES NEURAIS ARTIFICIAIS ... 26

2.3.1 Rede Neural NARX (Nonlinear AutoRegressive with eXogenous Input) 30

2.4 MÉTRICAS DE DESEMPENHO PARA COMPARAÇÃO DE MODELOS 32

2.4.1 Erro Quadrático Médio (MSE) .. 32
2.4.2 Coeficiente de Determinação (R²) .. 33
2.4.3 Filtragem ... 33

3 METODOLOGIA E DESENVOLVIMENTO .. 35

3.1 DEFINIÇÃO DA PLANTA E SIMULAÇÃO DO SISTEMA 35

3.2 MODELAGEM COM ARX ... 42

3.3 MODELAGEM COM ARMAX ... 44

3.4 TREINAMENTO E VALIDAÇÃO DA REDE NEURAL NARX 44

3.5 COMPARAÇÃO E ANÁLISE DOS RESULTADOS 47

3.5.1 ARX .. 47
3.5.2 ARMAX ... 52
3.5.3 NARX .. 55

3.6 DISCUSSÃO DOS RESULTADOS OBTIDOS ... 59

4 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE 62

REFERÊNCIAS .. 63

APÊNDICES ... 65

16

1 INTRODUÇÃO

Nas últimas décadas, o avanço da tecnologia e a crescente complexidade dos

sistemas dinâmicos têm impulsionado a busca por métodos de modelagem e controle

mais precisos e robustos. Quando o modelo dinâmico de um sistema controlado é

conhecido exatamente, torna-se possível projetar um controlador ideal capaz de

reproduzir a trajetória de referência desejada. Entretanto, na prática, a presença de

ruídos, incertezas paramétricas e não linearidades torna difícil obter um modelo exato,

o que compromete a precisão e a estabilidade do controle (JAMI‘IN et al., 2016;

NAYANASIRI; LI, 2022).

Para lidar com essas limitações, métodos clássicos de modelagem, como os

modelos ARX (Auto-Regressive with eXogenous Input) e ARMAX (Auto-Regressive

Moving Average with eXogenous Input), têm sido amplamente utilizados por sua

simplicidade e eficiência na representação de sistemas lineares. No entanto, esses

modelos apresentam desempenho limitado quando aplicados a sistemas não lineares,

cuja resposta depende de variações complexas das variáveis de estado. Nesse

contexto, as redes neurais artificiais (RNA) surgem como uma alternativa promissora,

por sua capacidade de aproximar funções não lineares e representar comportamentos

dinâmicos complexos a partir de dados experimentais (JAMI‘IN et al., 2016; ZHANG

et al., 2018).

A relevância científica das redes neurais pode ser observada por meio de uma

pesquisa bibliométrica realizada na base de dados Web of Science, utilizando o tópico

“neural network*”. Para isso, a Figura 1 apresenta, por meio de um gráfico de barras,

a evolução do número de publicações ao longo dos anos, evidenciando um

crescimento considerável desde 2002 e um acentuamento nesse aumento a partir de

2015. Observa-se também que o volume anual de publicações passou de menos de

4 mil trabalhos em 2001 para quase 77 mil em 2024, indicando a consolidação e a

crescente importância das redes neurais na comunidade científica.

17

Figura 1 – Número de publicações no Web of Science para o tópico "neural network*".

Fonte: AUTOR.

A Figura 2 apresenta a distribuição das publicações por área de conhecimento,

com destaque para “Engineering, Electrical & Electronic”, que lidera o número de

trabalhos publicados. Essa predominância demonstra a forte presença das redes

neurais em aplicações voltadas à engenharia elétrica, eletrônica, automação,

sistemas de controle e processamento de sinais, áreas nas quais a modelagem de

sistemas dinâmicos e o controle adaptativo desempenham papel central no avanço

tecnológico.

Figura 2 – Quantidade de publicações por área de atuação.

Fonte: AUTOR.

18

Tabela 1 – Número de publicações totais no Web of Science sobre redes neurais.

Área
Número de
publicações

Percentual sobre o total.

Engineering, Electrical & Electronic 119.318 21,857%

Computer Science, Artificial
Intelligence

85.277 15,621%

Computer Science, Information
Systems

57.141 10,467%

Telecommunications 33.972 6,223%

Computer Science, Interdisciplinary
Applications

33.153 6,073%

Outros 67.789 56,489%

Fonte: AUTOR.

Dentro desse contexto, este trabalho propõe comparar o desempenho dos

modelos ARX, ARMAX e NARX (rede neural ARX) aplicados à modelagem e

identificação de sistemas dinâmicos. O estudo é realizado utilizando como planta de

referência o conversor Buck, um conversor CC–CC amplamente empregado em

sistemas de eletrônica de potência e frequentemente utilizado como modelo

experimental em pesquisas de controle (NAYANASIRI; LI, 2022). Por sua estrutura

simples e comportamento dinâmico não linear, o conversor Buck constitui uma

excelente base para a análise comparativa de técnicas de identificação, permitindo

avaliar a capacidade dos diferentes modelos em representar com fidelidade o

comportamento dinâmico de sistemas reais.

Dessa forma, o objetivo deste trabalho é avaliar a eficácia e a precisão dos

modelos ARX, ARMAX e NARX na representação do comportamento do conversor

Buck, comparando os erros de estimação e a resposta dinâmica simulada. Espera-se,

com isso, demonstrar a contribuição das redes neurais na melhoria da capacidade de

modelagem de sistemas não lineares, fornecendo subsídios para a aplicação dessas

técnicas em projetos de controle mais robustos e eficientes.

19

1.1 Objetivos

1.1.1 Geral

Avaliar o desempenho de modelos clássicos de identificação (ARX e ARMAX) e

de redes neurais artificiais do tipo NARX na modelagem do conversor Buck,

comparando sua capacidade de representar o comportamento dinâmico do sistema.

1.1.2 Específicos

Para alcançar o objetivo geral proposto, foram definidos os seguintes objetivos

específicos:

• Implementar, no ambiente MATLAB/Simulink, a simulação de um

conversor Buck para coleta de dados de entrada e saída;

• Aplicar métodos de identificação clássicos ARX e ARMAX a partir dos

dados simulados;

• Desenvolver e treinar uma rede neural NARX com base nos mesmos

dados, analisando seu desempenho de aprendizado;

• Comparar quantitativamente os resultados obtidos entre os três modelos,

utilizando métricas de desempenho como o erro médio quadrático (MSE);

• Avaliar graficamente a resposta dinâmica simulada de cada modelo em

relação à resposta real da planta;

• Discutir as vantagens e limitações de cada método de modelagem,

considerando aspectos de precisão, robustez e complexidade

computacional.

1.2 Organização do Trabalho

Este trabalho está estruturado em quatro capítulos principais, que se

complementam de forma lógica e progressiva para alcançar os objetivos propostos.

20

O Capítulo 1 apresenta a introdução ao tema, destacando a relevância da

modelagem de sistemas dinâmicos e a motivação para o uso de técnicas baseadas

em redes neurais artificiais. Também são definidos os objetivos geral e específicos

que orientam o desenvolvimento do estudo.

O Capítulo 2 aborda a fundamentação teórica, na qual são revisados os

principais conceitos relacionados à identificação de sistemas, com ênfase nos

modelos clássicos ARX e ARMAX e na estrutura das redes neurais artificiais. Nesse

contexto, é apresentada a arquitetura NARX, destacando sua aplicação na

modelagem de sistemas não lineares.

O Capítulo 3 descreve a metodologia e o desenvolvimento do trabalho,

detalhando o processo de simulação do conversor Buck, a geração dos sinais de

entrada e saída, e a implementação dos modelos ARX, ARMAX e NARX no ambiente

MATLAB/Simulink. São apresentadas ainda as etapas de treinamento, validação e

comparação dos resultados obtidos por cada modelo.

Por fim, o Capítulo 4 reúne as conclusões e propostas de continuidade,

sintetizando os principais resultados alcançados e apontando possíveis direções para

trabalhos futuros que busquem aprimorar ou expandir as técnicas de modelagem

analisadas.

21

2 FUNDAMENTAÇÃO TEÓRICA

A modelagem de sistemas dinâmicos é um dos pilares fundamentais da

engenharia de controle e automação, pois permite representar matematicamente o

comportamento de processos físicos a partir de suas variáveis de entrada e saída. A

partir dessa representação, torna-se possível projetar controladores, prever respostas

e realizar simulações sem a necessidade de ensaios diretos sobre o sistema real.

Entre as diversas técnicas disponíveis para modelagem, destacam-se os

métodos baseados em identificação de sistemas, que têm por objetivo estimar os

parâmetros de um modelo formulado a partir de dados de entrada e saída. A área de

system identification é ampla e está centrada justamente nesse processo de

estimação de parâmetros de um modelo matemático previamente definido (LJUNG,

1999).

Esses métodos são amplamente utilizados em situações em que não se dispõe

de um modelo analítico exato do sistema físico, ou quando o comportamento real é

complexo. Nesse contexto, a identificação de sistemas é uma ferramenta essencial

tanto em estudos de modelagem de sistemas do tipo caixa preta, nos quais a estrutura

interna do sistema é desconhecida, quanto em abordagens de validação de modelos,

nas quais se busca verificar a coerência entre o comportamento teórico e o observado

experimentalmente.

Nos últimos anos, o avanço das técnicas de inteligência artificial impulsionou o

desenvolvimento de métodos de modelagem capazes de lidar com sistemas de

natureza não linear e de comportamento complexo. Dentre essas técnicas, destacam-

se as redes neurais artificiais (RNAs), que se baseiam em estruturas computacionais

inspiradas no funcionamento do cérebro humano e possuem a capacidade de

aprender padrões e relações não lineares diretamente a partir dos dados

experimentais.

O presente capítulo apresenta os fundamentos teóricos que sustentam o estudo,

abordando os conceitos de identificação de sistemas, os modelos ARX e ARMAX e

os princípios das redes neurais artificiais aplicadas à modelagem de sistemas

dinâmicos. Por fim, são discutidas as principais métricas de desempenho utilizadas

para comparar a precisão dos modelos identificados.

22

2.1 Identificação de sistemas dinâmicos

A identificação de sistemas é uma área fundamental da área de controle, voltada

para a obtenção de modelos matemáticos capazes de representar o comportamento

dinâmico de um sistema a partir de dados observados de entrada e saída. Essa

abordagem é amplamente utilizada quando não se dispõe de um modelo físico

completo do processo, ou quando o sistema apresenta comportamentos complexos e

de difícil descrição analítica (LJUNG, 1999).

De forma geral, o processo de identificação envolve três etapas principais: (i) a

aquisição dos sinais de entrada e saída; (ii) a escolha de uma estrutura de modelo

apropriada; e (iii) a estimação dos parâmetros que minimizam a diferença entre o

comportamento real e o previsto. O resultado é um modelo capaz de reproduzir a

dinâmica do sistema, o que permite sua aplicação em simulações, controle e previsão

de estados.

Figura 3 – Etapas para o processo de identificação de modelo.

Fonte: AUTOR.

Nos últimos anos, a identificação paramétrica de sistemas, que consiste em

determinar as dinâmicas internas de um sistema com base em um modelo ajustado

23

sobre dados experimentais, tem recebido crescente atenção da comunidade científica.

Esse tipo de abordagem busca não apenas descrever a resposta observada, mas

também capturar as relações dinâmicas entre as variáveis envolvidas. A incorporação

de redes neurais artificiais (RNA) nesse campo tem se tornado cada vez mais comum,

impulsionada pela capacidade dessas estruturas de modelar relações não lineares

complexas, pela menor necessidade de conhecimento prévio sobre o processo e pelo

avanço do poder computacional disponível para treinamento (DONG; STARR; ZHAO,

2023).

A escolha de um modelo matemático adequado depende diretamente das

características da planta em estudo, dos objetivos da modelagem e do nível de

conhecimento disponível sobre o sistema. Na prática, essa decisão também envolve

experiência e intuição do engenheiro, uma vez que diferentes estruturas são

frequentemente testadas até que se obtenha uma representação satisfatória do

comportamento real. Em projetos de controle baseados em modelos, há uma

tendência em se utilizar representações lineares, em razão da ampla variedade de

técnicas de controle desenvolvidas a partir dessas formulações. No entanto, para

sistemas que apresentam não linearidades significativas, modelos mais sofisticados,

tornam-se indispensáveis para capturar a dinâmica com maior fidelidade (TAVARES,

2012).

As técnicas de identificação podem ser classificadas conforme o grau de

conhecimento prévio sobre o sistema:

• Modelos caixa-branca, baseados em leis físicas conhecidas;

• Modelos caixa-cinza, que combinam conhecimento físico parcial com

parâmetros ajustados experimentalmente;

• e modelos caixa-preta, que dependem exclusivamente de dados

experimentais para representar o comportamento dinâmico.

Os modelos ARX (AutoRegressive with eXogenous Input) e ARMAX

(AutoRegressive Moving Average with eXogenous Input) são exemplos clássicos de

abordagens lineares utilizadas em identificação paramétrica. Já as estruturas

baseadas em redes neurais, como a NARX (Nonlinear AutoRegressive with

eXogenous Input), estendem esse conceito para sistemas não lineares, permitindo

uma descrição mais fiel de processos reais com dinâmicas complexas. Assim, a

24

identificação de sistemas se torna uma ferramenta essencial não apenas para fins de

modelagem, mas também como base para o desenvolvimento de controladores mais

robustos e adaptativos.

2.2 Modelos clássicos de identificação (ARX, ARMAX)

Os modelos ARX e ARMAX estão entre as estruturas mais utilizadas na

identificação de sistemas lineares invariantes no tempo, devido à sua simplicidade e

eficiência na modelagem de sistemas dinâmicos. Esses modelos são amplamente

empregados para aproximar o comportamento dinâmico de sistemas lineares, sendo

aplicados em tarefas de controle e detecção de falhas, por sua capacidade de

representar de forma direta as relações entre entrada e saída (AGGOUNE;

CHETOUANI; RADJEAI, 2014).

Existem diversas formas de representar um sistema dinâmico, como funções de

transferência, modelos em espaço de estados e representações polinomiais

(TAVARES, 2012). No campo da identificação de sistemas, as representações

polinomiais são as mais recorrentes, pois descrevem o comportamento dinâmico do

sistema com base em dados experimentais e operadores de atraso. Dentre elas,

destacam-se os modelos AR (AutoRegressive), ARX (AutoRegressive with

eXogenous input), ARMAX (AutoRegressive Moving Average with eXogenous input),

NARX (Nonlinear AutoRegressive with eXogenous input) e NARMAX (Nonlinear

AutoRegressive Moving Average with eXogenous input), cuja escolha depende do tipo

de planta, do objetivo da modelagem e do nível de conhecimento prévio sobre o

sistema (TAVARES, 2012).

Em aplicações de controle baseadas em modelos, observa-se uma preferência

por representações lineares, em virtude da grande quantidade de métodos de análise

e projeto já consolidados para esse tipo de estrutura (TAVARES, 2012).

25

2.2.1 Modelo ARX

O modelo ARX descreve a saída de um sistema como uma combinação linear

de saídas e entradas passadas, acrescida de um termo de erro. Sua formulação geral

é dada por: A(1−ݍ)ݕ(݇) = (݇)ݑ(1−ݍ)ܤ + ݁(݇) (2.1)

onde ݕ(݇) é a saída, ݑ(݇) é a entrada, ݁(݇) é o termo de erro, e 1−ݍ representa o

operador de atraso, tal que ݕ1−ݍ(݇) = ݇)ݕ − 1). Os polinômios (1−ݍ)ܣ e (1−ݍ)ܤ são

definidos como: A(1−ݍ) = 1 − 𝑎11−ݍ − 𝑎22−ݍ − ⋯ − 𝑎௡௔ݍ−௡ೌ (2.2) (1−ݍ)ܤ = 1−ݍ1ܾ + 𝑎22−ݍ − ⋯ − ܾ௡௕ݍ−௡್ (2.3)

em que 𝑎௜ e ܾ௜ são coeficientes associados aos regressores de saída e entrada

respectivamente, e 𝑛௔ e 𝑛௕ são as ordens dos polinômios.

A expressão também pode ser reescrita como:

y(k) = (1−ݍ)ܣ(1−ݍ)ܤ (݇)ݑ + (1−ݍ)ܣ1 ݁(݇) (2.4)

O modelo ARX é classificado como um modelo de erro na equação, pois o termo

de erro é tratado como ruído branco filtrado por um processo autorregressivo, o que

faz com que o ruído na saída apresente correlação temporal (TAVARES, 2012;

AGUIRRE, 2004). Essa estrutura é adequada para sistemas em que o ruído não

domina o comportamento dinâmico e pode ser considerado uma pequena

perturbação.

2.2.2 Modelo ARMAX

O modelo ARMAX é uma extensão do ARX, incluindo um termo adicional que

representa a média móvel (Moving Average), permitindo modelar de forma mais

precisa a influência do ruído. Essa característica torna o modelo mais adequado para

sistemas nos quais o ruído apresenta correlação temporal significativa. Sua forma

geral é:

26

A(1−ݍ)ݕ(݇) = (݇)ݑ(1−ݍ)ܤ + C(q−1)݁(݇) (2.5)

onde, (1−ݍ)ܥ é o polinômio de média móvel, expresso como: C(1−ݍ) = 1 + 1−ݍ1ܿ + 2−ݍ2ܿ + ⋯ + ܿ௡೎ݍ−௡೎ (2.6)

os coeficientes ܿ௜ representam a influência dos erros passados, e 𝑛௖ é a ordem do

polinômio (1−ݍ)ܥ. O modelo pode ser reescrito como

(݇)ݕ = (1−ݍ)ܣ(1−ݍ)ܤ (݇)ݑ + (1−ݍ)ܣ(1−ݍ)ܥ ݁(݇) (2.7)

Ao contrário do modelo ARX, o ARMAX não é linear nos parâmetros, o que torna

sua estimação mais complexa. Entretando, essa estrutura é mais robusta e flexível,

especialmente em plantas industriais sujeitas a ruídos correlacionados (TAVARES,

2012; AGUIRRE,2004). Esse tipo de modelo é apropriado quando se busca uma

representação mais fiel da dinâmica estocástica do sistema.

2.3 Redes neurais artificiais

As redes neurais artificiais (RNAs) são modelos computacionais inspirados na

estrutura e no funcionamento do sistema nervoso humano. O cérebro pode ser

compreendido como um sistema composto por três estágios principais: receptores,

rede neural e atuadores (HAYKIN, 1999). Os receptores convertem estímulos

provenientes do ambiente externo em impulsos elétricos que são transmitidos ao

cérebro, onde a rede neural realiza o processamento da informação e a tomada de

decisões. Em seguida, os atuadores transformam os impulsos gerados pelo cérebro

em respostas observáveis, como movimentos ou reações fisiológicas. Esse ciclo de

percepção, processamento e ação serve como base conceitual para o

desenvolvimento de modelos neurais artificiais.

27

Figura 4 – Representação do sistema nervoso em blocos

Fonte: (GONÇALVES)

Segundo Gonçalves (2023), o neurônio biológico é a unidade fundamental do

cérebro humano, especializado na transmissão e processamento de informações por

meio de impulsos elétricos. Ele é composto por três partes principais: o corpo celular

(ou soma), responsável por integrar os sinais recebidos; os dendritos, que captam

estímulos de outros neurônios; e o axônio, uma ramificação mais longa que conduz

os sinais elétricos até outras células. Nas extremidades do axônio localizam-se os

terminais sinápticos, que realizam a comunicação entre neurônios através de

fenômenos conhecidos como sinapses (ARBIB, 2002).

Figura 5 – Modelo simplificado de neurônio biológico.

Fonte: (GONÇALVES)

A partir do entendimento dessa estrutura, pesquisadores buscaram reproduzir

computacionalmente o comportamento do sistema nervoso humano, originando o

conceito de neurônio artificial. O modelo mais influente nesse sentido foi proposto por

McCulloch e Pitts (1943), considerado o marco inicial das redes neurais artificiais. O

28

modelo, conhecido como Perceptron, implementa de forma simplificada os principais

componentes e mecanismos de funcionamento do neurônio biológico.

Nesse modelo, os estímulos provenientes de outros neurônios são

representados por sinais de entrada (ݔ௝), e a intensidade com que cada estímulo

influencia o neurônio receptor é definida por pesos sinápticos (ݓ௞௝). Cada peso

representa o grau de importância ou “força sináptica” associada a uma conexão, por

isso quanto maior o peso, mais significativo é o impacto do sinal sobre o neurônio de

saída.

O neurônio artificial realiza inicialmente uma soma ponderada dos sinais de

entrada, multiplicando cada valor ݔ௝ pelo seu respectivo peso ݓ௞௝. Essa operação é

expressa pela seguinte equação:

௞ݑ = ∑ ௞௝ݓ ∙ ௝௡ݔ
௝=1 + ܾ݅𝑎(2.8) ݏ

onde 𝑛 é o número total de sinais de entrada incidentes no neurônio ݇. O resultado

dessa soma, ݑ௞, representa o nível de ativação do neurônio.

Em seguida, aplica-se uma função de ativação ߮(ݑ௞) que transforma o valor de

entrada em uma saída normalizada, conforme: ݕ௞ = (2.9) (௞ݑ)߮

A função de ativação é responsável por introduzir não linearidade no modelo,

permitindo que o neurônio artificial simule comportamentos mais complexos do que

simples combinações lineares (ARBIB, 2002). A literatura apresenta diversas funções

de ativação, cada uma com propriedades específicas para diferentes aplicações.

Entre as mais comuns estão:

• Função degrau (Heaviside) — usada nas primeiras redes, com saídas

binárias (0 ou 1);

• Função sigmoide logística — contínua e suave, amplamente utilizada

em problemas de classificação;

• Função tangente hiperbólica (ܐܖ܉ܜ) — semelhante à sigmoide, mas

centrada em zero, facilitando o aprendizado em certas redes;

29

• Função ReLU (Rectified Linear Unit) — amplamente empregada em

redes profundas, define a saída como zero para valores negativos e linear

para positivos.

Figura 6 – Modelo de neurônio artificial proposto por McCulloch e Pitts

Fonte: (GONÇALVES)

Figura 7 – Funções de ativação.

Fonte: AUTOR.

30

Essas funções determinam como o neurônio reage a diferentes níveis de

estímulo, controlando a propagação da informação dentro da rede. Ao interligar

diversos neurônios artificiais em camadas, forma-se uma rede neural, capaz de

aprender padrões e relacionamentos complexos entre variáveis a partir de dados.

Esse aprendizado é realizado através de algoritmos de ajuste iterativo dos pesos

sinápticos, que minimizam o erro entre a saída desejada e a saída produzida pela

rede.

Em síntese, conforme destaca Gonçalves (2023), o modelo matemático das

redes neurais artificiais tem inspiração biológica, refletindo a tentativa de traduzir o

mecanismo de funcionamento do cérebro humano em uma estrutura computacional

capaz de processar informações, reconhecer padrões e aprender com experiências

passadas.

2.3.1 Rede Neural NARX (Nonlinear AutoRegressive with eXogenous Input)

As redes neurais do tipo NARX representam uma classe específica de redes

neurais recorrentes desenvolvidas para lidar com problemas de previsão em séries

temporais e modelagem de sistemas dinâmicos não lineares. Diferentemente das

redes alimentadas apenas por entradas externas, a NARX incorpora mecanismos de

retroalimentação, permitindo que a rede utilize não apenas os sinais de entrada, mas

também valores passados da própria saída para prever estados futuros do sistema.

Essa característica confere à rede um comportamento dinâmico, em que as saídas

anteriores influenciam diretamente os resultados subsequentes, refletindo de forma

mais realista a natureza temporal dos sistemas físicos (AQUIZE et al., 2023).

De forma geral, o modelo NARX pode ser descrito pela seguinte relação

funcional: ݕ(݇) = ݇)ݑ)݂ − 1), ݇)ݑ − 2) … ݇)ݑ − 𝑛), ݇)ݕ − 1), ݇)ݕ − 2), … , ݇)ݕ − ݉)) (2.10)

em que:

 representa o vetor de entradas exógenas (sinais de entrada do (݇)ݑ •

sistema),

31

 ,é o vetor de saídas observadas (݇)ݕ •

• 𝑛 e ݉ são, respectivamente, os atrasos associados às entradas e às

saídas (ARAUJO, 2024).

A principal vantagem do modelo NARX está na sua capacidade de aprendizado

contínuo. Ao combinar os dados originais de entrada com as saídas geradas durante

o processo de treinamento, a rede é capaz de aprimorar iterativamente sua habilidade

de predição, ajustando seus pesos sinápticos de modo a minimizar o erro entre o valor

previsto e o valor real (KHALED et al., 2020). Essa propriedade torna o modelo

particularmente eficiente na representação de sistemas complexos e não lineares.

Internamente, a NARX é estruturada sobre uma Perceptron Multicamadas (MLP

– Multi-Layer Perceptron), composta por uma camada de entrada, uma ou mais

camadas ocultas e uma camada de saída. Os neurônios são interconectados por

pesos adaptativos e operam por meio de funções de ativação não lineares, como

sigmoide, tangente hiperbólica ou ReLU (funções já apresentadas neste capítulo), o

que confere à rede a capacidade de representar relações complexas entre as

variáveis. A presença das linhas de atraso (memory lines) e da realimentação das

saídas faz com que a NARX capture de forma eficiente a dependência temporal das

variáveis envolvidas, característica essencial na modelagem de sistemas dinâmicos,

(SOUZA et al., 2019).

Além disso, diversos estudos destacam que as redes NARX apresentam

convergência mais rápida e maior estabilidade de treinamento em comparação com

outras arquiteturas recorrentes tradicionais. Essa eficiência está relacionada à forma

como as realimentações são incorporadas, permitindo que a rede aprenda de maneira

mais direta as relações causais entre entradas e saídas do sistema (ARAUJO, 2024).

A Figura 8 ilustra a estrutura genérica de uma rede neural NARX, onde ݑ(݇)

representa a entrada exógena, ݕ(݇) é a saída estimada e os blocos de atraso indicam

a memória temporal do modelo. Essa representação evidencia o fluxo de informações

e a interação entre as variáveis passadas e presentes, fundamentais para a predição

do comportamento futuro do sistema.

32

Figura 8 – Sistema dinâmico da rede neural NARX.

Fonte: (ARAUJO, V. G., 2024).

2.4 Métricas de desempenho para comparação de modelos

A análise quantitativa do desempenho de um modelo é fundamental para avaliar

sua capacidade de representar o comportamento real de um sistema dinâmico. As

métricas de desempenho permitem quantificar o erro entre os valores medidos e os

valores estimados, bem como a capacidade do modelo de responder adequadamente

diante de ruídos ou variações nas entradas.

Neste trabalho, são adotadas três métricas principais: Erro Quadrático Médio

(MSE), Coeficiente de Determinação (R²) e Filtragem, conforme metodologia inspirada

em Araújo. T. (2022).

2.4.1 Erro Quadrático Médio (MSE)

O Erro Quadrático Médio (MSE — Mean Squared Error) é uma métrica estatística

amplamente utilizada para quantificar a precisão de um modelo de predição. Ele mede

o desvio médio entre os valores reais e os valores estimados, elevando ao quadrado

as diferenças para penalizar erros maiores.

Matematicamente, é expresso como:

33

ܧܵܯ = 1𝑛 ௜ݕ̂)∑ − 2௡(1ݕ
௜=1 (2.11)

onde:
• 𝑛 é o número total de observações;

 ;௜ representa o valor real do sistemaݕ •

 .௜ é o valor estimado pelo modeloݕ̂ •

O valor do MSE é sempre não negativo e varia entre 0 e ∞, sendo que valores

próximos de zero indicam uma maior precisão do modelo. Essa métrica será usada

como parâmetro comparativo principal entre os modelos ARX, ARMAX e NARX

desenvolvidos neste estudo.

2.4.2 Coeficiente de Determinação (R²)

O Coeficiente de Determinação (ܴ2) mede o quanto o modelo é capaz de

explicar a variabilidade dos dados observados em relação à média. Ele fornece uma

medida intuitiva de ajuste do modelo aos dados reais, indicando o percentual da

variação da saída que é corretamente reproduzida pela predição.

Sua formulação é dada por:

ܴ2 = 1 − ∑ ௜ݕ) − ప̂௡௜=1ݕ)2∑ ௜ݕ) − ௡௜=1ݕ̅)2 (2.12)

onde ̄ݕ é a média dos valores reais da saída.

O coeficiente ܴ2 varia de 0 a 1, sendo 1 o valor ideal, que representa um modelo

perfeitamente ajustado. Embora um ܴ2 alto não garanta sozinho a excelência do

modelo, valores baixos indicam que o modelo possui baixo poder explicativo sobre os

dados de saída (ARAÚJO, T., 2022).

2.4.3 Filtragem

A filtragem avalia a resposta do modelo diante da presença de ruído no sinal de

entrada. Esse ruído, normalmente modelado como ruído branco de média nula e

34

variância unitária, é introduzido artificialmente para verificar o quanto ele se propaga

até a saída estimada.

Modelos com boa capacidade de filtragem mantêm a estabilidade e a precisão

das estimativas, apresentando menor variação na saída mesmo quando submetidos

a entradas ruidosas.

Segundo Araújo, T. (2022), a filtragem é essencial na análise de sistemas reais,

nos quais o ruído de medição pode comprometer o desempenho do estimador, sendo,

portanto, um bom indicador da robustez do modelo.

35

3 METODOLOGIA E DESENVOLVIMENTO

Este capítulo apresenta a metodologia adotada para a modelagem e análise

comparativa dos modelos ARX, ARMAX e NARX, descrevendo detalhadamente as

etapas de simulação, coleta e tratamento de dados, identificação e validação dos

modelos propostos. O conteúdo também permeia por aspectos fundamentais do

desenvolvimento do trabalho, destacando o conversor Buck como a plataforma de

aplicação prática escolhida para demonstrar o desempenho das técnicas de

modelagem abordadas.

O conversor Buck é um dispositivo amplamente utilizado em sistemas de

eletrônica de potência devido à sua eficiência na conversão de tensão contínua e sua

dinâmica relativamente simples, o que o torna ideal para estudos de identificação de

sistemas. A escolha desse conversor como planta de estudo permite analisar com

clareza o comportamento dinâmico de um sistema não linear, cuja resposta depende

diretamente do ciclo de trabalho (duty cycle) aplicado ao chaveamento.

Dessa forma, o capítulo abrange tanto os procedimentos experimentais e

computacionais utilizados na obtenção dos dados de entrada e saída quanto as

ferramentas matemáticas e computacionais aplicadas na estimação e comparação

dos modelos.

3.1 Definição da planta e simulação do sistema

O conversor Buck foi selecionado como planta de estudo neste trabalho por se

tratar de um sistema dinâmico não linear de ampla utilização em pesquisas de controle

e eletrônica de potência. Sua estrutura relativamente simples, composta por

elementos reativos e chaveamento em alta frequência, torna-o uma excelente base

para avaliar o desempenho de técnicas de identificação e modelagem de sistemas.

De acordo com Nayanasiri e Li (2022), os conversores CC–CC redutores são

amplamente empregados em aplicações que exigem alta eficiência e estabilidade, e

sua dinâmica típica envolve relações não lineares entre tensão e corrente.

A primeira etapa que envolve esse conversor no trabalho consistiu na

modelagem e simulação da planta escolhida. O conversor Buck tem como principal

36

característica reduzir a tensão de entrada para um valor de saída inferior, mantendo

a polaridade desta tensão (MOHAN; UNDELAND; ROBBINS, 1995). Sua operação é

baseada na comutação controlada de um dispositivo semicondutor (geralmente um

MOSFET), em conjunto com um diodo, um indutor e um capacitor de filtro.

Figura 9 – Circuito esquemático de um conversor Buck.

Fonte: AUTOR.

A modelagem, por sua vez, foi desenvolvida no ambiente Simulink/MATLAB, por

meio do Simscape Electrica – Specialized Power Systems. O circuito foi construído a

partir de blocos que representam os elementos físicos do conversor, incluindo

(MOHAN; UNDELAND; ROBBINS, 1995):

• Fonte de tensão contínua (௜ܸ௡) — Fornece a tensão de entrada para o

sistema, fixada em 24 V;

• Chave semicondutora (MOSFET) — responsável pela comutação,

controlada por um sinal PWM;

• Diodo (D) — conduz a corrente durante o período em que o MOSFET está

desligado;

• Indutor (L) — armazena energia magnética e suaviza a corrente;

• Capacitor de filtro (C) — reduz a ondulação na tensão de saída;

37

• Carga resistiva (R) — representa a carga conectada ao conversor.

Os valores utilizados para os componentes foram definidos conforme a Tabela

2, de modo a garantir uma resposta dinâmica adequada à frequência de chaveamento

escolhida.

Tabela 2 – Parâmetros dos elementos do conversor Buck.

Parâmetro Símbolo Valor Unidade

Tensão de
entrada ௜ܸ௡ 50 ܸ

Indutância ܪ݉ 1,2 ܮ

Capacitância ܨߤ 15,3 ܥ

Resistência de
carga

ܴ 4 Ω

Frequência de
chaveamento ௦݂ 12 ݇ݖܪ

Fonte: AUTOR.

Inicialmente, para avaliar o comportamento do circuito, foram aplicados valores

fixos de duty cycle de 10%, 50% e 100%, de forma isolada, com o objetivo de observar

o comportamento do conversor Buck e verificar se a simulação estava respondendo

conforme o esperado. Essa etapa inicial foi importante para validar o modelo do

conversor, garantindo que a tensão de saída variasse de maneira coerente com o

princípio de funcionamento do Buck, isto é, apresentando uma tensão proporcional ao

ciclo de trabalho aplicado, segundo a relação ௢ܸ = ܦ ⋅ ௜ܸ௡, em que ܦ é o duty cycle e ௢ܸ é a tensão na carga (MOHAN; UNDELAND; ROBBINS, 1995).

A partir dessa verificação, confirmou-se que o modelo respondia

adequadamente, permitindo então a utilização de um sinal variável de duty cycle para

a coleta dos dados necessários à identificação dos modelos. O comportamento do

conversor nessas condições pode ser observado nas figuras a seguir (Figura 10,

Figura 11 e Figura 12), que mostram as respostas da tensão de saída para os três

valores de ciclo de trabalho aplicados.

38

Assim, com o circuito finalizado, é possível simular respostas para vários valores

de ciclos de trabalho para o levantamento dos dados que serão úteis para a devida

continuidade do desenvolvimento deste trabalho.

Figura 10 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho de 10%.

Fonte: AUTOR.

39

Figura 11 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho de 50%.

Fonte: AUTOR.

40

Figura 12 – Curvas de tensão, PWM e corrente no indutor para um ciclo de trabalho de 100%.

Fonte: AUTOR.

Para o funcionamento do circuito, o controle do chaveamento foi implementado

por meio de um gerador PWM, como pode ser visto na Figura 13, formado pela

comparação entre uma onda triangular periódica e um sinal de referência variável

(duty cycle).

A referência de valores de ciclo de trabalho foi fornecida a partir de um vetor

criado no MATLAB e importado para o Simulink pelo bloco From Workspace,

permitindo a variação ao longo da simulação. O código para gerar esse vetor de

variação de duty cycle pode ser avaliado no Apêndice A deste trabalho.

41

Figura 13 – Diagrama do gerador PWM no MATLAB.

Fonte: AUTOR.

O sinal de duty cycle gerado apresenta variações aleatórias ao longo do tempo,

formadas por níveis constantes em pequenos intervalos. Esse tipo de sinal foi

escolhido porque permite testar a resposta do conversor Buck em diferentes

condições de operação, o que é importante para uma boa identificação do sistema.

Cada degrau permanece constante por cerca de 5 milissegundos e depois muda para

um novo valor aleatório, variando entre aproximadamente 5% e 95% de ciclo ativo. O

gráfico que mostra essa variação aleatória do duty cycle é apresentado na Figura 14,

onde é possível observar o comportamento em degraus do sinal utilizado como

entrada da planta simulada.

Figura 14 – Varação aleatória do sinal de duty cycle utilizado como entrada na simulação do
conversor Buck.

Fonte: AUTOR.

42

Durante a execução da simulação, as principais variáveis monitoradas foram:

• o duty cycle aplicado à chave;

• a tensão de saída do conversor (௢ܸ௨௧).
A tensão de saída foi capturada por meio de um bloco Voltage Sensor e

exportada para o MATLAB utilizando o bloco To Workspace — item out.simout na

Figura 15. Esse bloco salvou, no Workspace, os dados de simulação. Esses dados,

por sua vez, serviram como base para as etapas seguintes de identificação dos

modelos ARX e ARMAX e posterior treinamento da rede neural NARX.

Figura 15 – Circuito do conversor Buck simulado no MATLAB.

Fonte: AUTOR.

3.2 Modelagem com ARX

Nesta etapa, foi desenvolvido um modelo de identificação do tipo ARX, com o

objetivo de obter uma representação aproximada da dinâmica do conversor Buck.

Esse procedimento foi conduzido de forma híbrida: inicialmente, o modelo ARX foi

estimado utilizando-se apenas o primeiro degrau presente no sinal de entrada, de

modo a capturar o comportamento transitório fundamental do sistema em torno de

uma variação real de entrada. Para isso, o algoritmo percorreu automaticamente o

vetor de duty cycle, identificando o primeiro salto significativo e extraindo uma janela

temporal que inclui tanto uma pequena parcela anterior ao degrau quanto o trecho

43

completo de subida da tensão de saída. Em seguida, esse conjunto reduzido foi

estruturado no formato iddata e submetido a uma busca sistemática das ordens do

modelo ARX (na, nb, nk), variando de 1 a 5, adotando-se como critério de seleção o

menor valor de FPE (Final Prediction Error). O modelo resultante a partir desse

primeiro degrau foi então considerado representativo da dinâmica local do conversor

e utilizado como base para a próxima etapa.

Nessa etapa, realizou-se uma busca das ordens do modelo ARX, variando os

parâmetros 𝑛𝑎, 𝑛ܾ e 𝑛݇ de 1 a 5. No contexto de modelos ARX, 𝑛𝑎 corresponde à

ordem do polinômio associado às saídas passadas, isto é, quantas amostras

anteriores de (ݐ)ݕ o modelo utiliza para prever o valor atual. Esse parâmetro está

relacionado ao número de polos do modelo discreto. Já 𝑛ܾ representa a ordem do

polinômio aplicado às entradas passadas, definindo quantas amostras anteriores de (ݐ)ݑ influenciam a saída; este parâmetro está relacionado ao número de zeros do

modelo. Por fim, 𝑛݇ corresponde ao atraso puro entre entrada e saída, indicando o

número de instantes de amostragem necessários para que uma variação em (ݐ)ݑ
provoque efeito observável em (ݐ)ݕ. Esses três parâmetros definem completamente

o modelo ARX e são fundamentais para capturar a dinâmica do sistema. Como critério

de escolha do melhor modelo, adotou-se o menor valor de FPE (Final Prediction

Error), que fornece uma estimativa estatística da qualidade do ajuste penalizando

modelos excessivamente complexos.

Após definida a estrutura ótima do modelo, este ARX identificado a partir do

primeiro degrau foi aplicado ao conjunto completo de dados do experimento, de modo

a avaliar sua capacidade de generalização. Essa abordagem permite verificar se um

modelo linear ajustado localmente em torno de um único transitório é capaz de

representar adequadamente a dinâmica global do sistema, mesmo considerando que

o conversor Buck apresenta comportamento inerentemente não linear. A saída

prevista pelo modelo ARX foi comparada diretamente com a saída real do Simulink ao

longo de todo o intervalo de simulação.

O código completo adotado para identificação e simulação encontra-se

disponibilizado no Apêndice C.

44

3.3 Modelagem com ARMAX

Após a identificação do modelo ARX, foi desenvolvido também um modelo

ARMAX. O modelo ARMAX é uma extensão natural do ARX, pois além dos polinômios

que representam a dinâmica da planta (A e B), ele incorpora o polinômio (1−ݖ)ܥ,

responsável por modelar a dinâmica do ruído como um processo de média móvel.

Essa característica o torna particularmente útil em sistemas sujeitos a perturbações,

flutuações de chaveamento ou medições ruidosas.

Seguindo a mesma metodologia utilizada para o modelo ARX, o processo de

identificação do ARMAX foi realizado com base somente no primeiro degrau presente

no sinal de entrada. Primeiramente, o código identificou automaticamente o instante

de ocorrência desse degrau, extraindo em seguida uma janela contendo tanto uma

fração anterior ao salto quanto todo o transitório associado à subida da saída. Esse

procedimento concentra a identificação em uma região dinâmica significativa.

Com esse trecho selecionado, realizou-se uma varredura das ordens 𝑛𝑎, 𝑛ܾ, 𝑛ܿ

e 𝑛݇, variando de 1 a 5, utilizando como critério de escolha o valor mínimo do FPE

(Final Prediction Error). O modelo ARMAX escolhido apresentou estrutura (𝑛𝑎, 𝑛ܾ, 𝑛ܿ, 𝑛݇) = (5,2,5,1), indicando que tanto a parte autoregressiva quanto a parte

de ruído possuem quinta ordem, enquanto a influência da entrada foi representada

por dois coeficientes com atraso puro de uma amostra.

Depois da identificação local, o modelo ARMAX foi submetido à aplicação global.

Para isso, ele foi simulado utilizando-se todo o vetor de entrada do experimento,

permitindo avaliar sua capacidade de generalização para além do primeiro degrau

utilizado na estimação. Em seguida, a resposta prevista foi comparada com a saída

real, gerando tanto o MSE global quanto o coeficiente de determinação ܴ2. Os

resultados globais poderão ser vistos no próximo capítulo deste trabalho.

3.4 Treinamento e validação da rede neural NARX

Nesta etapa foi desenvolvida a modelagem do sistema a partir dos dados obtidos

na simulação do conversor Buck, empregando-se uma rede neural do tipo NARX

(Nonlinear AutoRegressive with eXogenous Input). Essa arquitetura foi escolhida por

45

sua capacidade de representar sistemas dinâmicos não lineares e por considerar tanto

os valores passados da saída quanto os da entrada, permitindo capturar

adequadamente o comportamento temporal do sistema. A implementação e o

treinamento foram realizados no ambiente MATLAB, utilizando a toolbox Neural

Network.

O script completo foi elaborado de forma modular, iniciando-se pela importação

dos dados simulados e pela preparação dos sinais para o treinamento. O arquivo

“saida_simulacao.mat”, exportado do Simulink, contém duas variáveis principais: o

vetor de tempo (tout) e o vetor de saída (simout), que representam respectivamente o

domínio temporal e o valor da tensão de saída do conversor. Esses dados foram

carregados e tratados conforme o trecho de código a seguir.

Figura 16 – Código de carregamento de dados.

Fonte: AUTOR.

O tempo médio de amostragem (௦ܶ) é calculado automaticamente a partir da

diferença entre amostras consecutivas do vetor ݐ, o que permite reproduzir no

MATLAB a mesma relação de tempo utilizada no Simulink. Essa etapa é importante

pois garante a coerência entre as bases de dados e o modelo neural que será treinado.

Em seguida, foi adicionado ao sinal de saída um ruído de intensidade controlada,

simulando a presença de incertezas ou medições ruidosas, comuns em sistemas

reais. Esse ruído segue uma distribuição normal com média zero e variância

proporcional à amplitude do sinal. O parâmetro “nivel_ruido” (Figura 17) pode ser

ajustado para introduzir diferentes intensidades de ruído, permitindo analisar

posteriormente a robustez do modelo NARX frente a sinais degradados. No caso

inicial, o ruído foi mantido nulo para avaliar o desempenho puro da rede com dados

ideais. No entanto, em outras simulações, esse valor de ruído será importante para

testes de estresse na rede.

46

Figura 17 – Código para adicionar ruido no sinal de saída.

Fonte: AUTOR.

Após o pré-processamento, os dados foram divididos em conjuntos de

treinamento e teste, correspondendo a 40% e 60% do total de amostras,

respectivamente. Essa divisão é feita de forma sequencial, garantindo que o

treinamento utilize apenas as primeiras amostras do sinal, enquanto as demais são

reservadas para validação do modelo após o aprendizado. É importante saber

também que o total de amostras é de 12.501 medições, garantindo que 40% para

aprendizagem ainda seja bem eficiente.

Figura 18 – Código para separação de dados entre treino e teste.

Fonte: AUTOR.

A criação da rede foi realizada com o comando narxnet, definindo atrasos de

entrada e realimentação de 1 a 5 amostras, e uma camada oculta com 10 neurônios.

A configuração de divisão interna dos dados foi ajustada para 60% de treinamento,

20% de validação e 20% de teste, como apresentado na Figura 19.

47

Figura 19 – Código sobre uso do narxnet.

Fonte: AUTOR.

Os parâmetros de divisão controlam como o MATLAB separa os dados dentro

do próprio conjunto de treinamento, garantindo um monitoramento contínuo do

desempenho da rede ao longo das iterações. O conjunto de validação é usado para

detectar overfitting, interrompendo o treinamento quando o erro de validação deixa de

diminuir.

No Apêndice B deste trabalho, será encontrado o código completo para a criação

e treino da rede neural NARX aplicados nesta esta pesquisa.

3.5 Comparação e análise dos resultados

Nesta seção é finalmente apresentada a comparação e análise dos resultados

obtidos a partir da aplicação dos modelos ARX, ARMAX e NARX à resposta do

conversor Buck. O objetivo neste capítulo é avaliar o desempenho de cada abordagem

de identificação, considerando critérios como a capacidade de representação da

dinâmica do sistema, o erro de predição e o comportamento dos modelos. As

subseções seguintes detalham individualmente os resultados alcançados por cada

modelo permitindo uma análise comparativa entre as estruturas utilizadas.

3.5.1 ARX

As métricas quantitativas calculadas incluem o erro médio quadrático (MSE) e o

coeficiente de determinação (R²). O MSE expressa o desvio médio entre as respostas

real e prevista, constituindo uma medida direta do erro de modelagem. O coeficiente

48

R², por sua vez, indica o quanto da variabilidade da saída real é explicada pelo modelo

ARX; valores próximos de 1 caracterizam elevada fidelidade da aproximação linear. A

combinação dessas métricas, somada à inspeção do gráfico comparativo final,

permite concluir sobre a adequação e as limitações do modelo ARX quando aplicado

globalmente.

Figura 20 – Parâmetros do modelo ARX obtido no MATLAB.

Fonte: AUTOR.

Figura 21 – Métricas obtidas para o modelo ARX.

Fonte: AUTOR.

49

O modelo ARX estimado a partir do primeiro degrau resultou em uma estrutura

de quinta ordem, com parâmetros (𝑛𝑎, 𝑛ܾ, 𝑛݇) = (5,5,1), apresentando coerência com

a dinâmica rápida e de múltiplas constantes de tempo do conversor Buck. O polinômio (1−ݖ)ܣ possui cinco termos, representando a contribuição das saídas anteriores,

enquanto o polinômio (1−ݖ)ܤ apresenta cinco coeficientes associados às entradas

defasadas, refletindo a influência do sinal de duty cycle sobre a tensão de saída. O

atraso identificado, 𝑛݇ = 1, é compatível com o comportamento físico do sistema, já

que a resposta do conversor não ocorre instantaneamente após a aplicação da

entrada devido à dinâmica LC e ao tempo de cálculo do modelo discreto.

Após a identificação local, o modelo foi aplicado ao conjunto completo de dados

da simulação, abrangendo todos os degraus e variações presentes no experimento.

O desempenho global obtido teve erro médio quadrático (MSE) igual a 0,594 ܸ2. O

coeficiente de determinação (ܴ2) calculado para todo o intervalo temporal foi de

0,9972, indicando que 99,72% da variabilidade da saída real é explicada pelo modelo

linear. Esses resultados demonstram que, embora baseado exclusivamente no

primeiro degrau, o modelo ARX foi capaz de generalizar adequadamente para os

demais regimes de operação, apresentando elevada fidelidade em relação à resposta

real do conversor.

Tabela 3 – Coeficientes do modelo ARX identificado (𝑛𝑎 = 5, 𝑛ܾ = 5, 𝑛݇ = 1).

Termo Coeficiente 𝑎0 1,0000 𝑎1 -3,5886 𝑎2 5,1479 𝑎3 -3,8783 𝑎4 1,6707 𝑎5 -0,3518 ܾ0 0,0000 ܾ1 -5,4066e-6 ܾ2 5,2226e-5

50

ܾ3 -3,1898e-5 ܾ4 -3,2428e-5 ܾ5 2,1573e-5

Fonte: AUTOR.

Tabela 4 – Resumo dos parâmetros adicionais do modelo ARX

Parâmetro Valor

Ordem 𝑛𝑎 5

Ordem 𝑛ܾ 5

Atraso 𝑛݇ 1 amostra

Variância do ruído 1,7914e-8

Tempo de amostragem ௦ܶ 8 ∙ 10−7

Fonte: AUTOR

Sendo assim: (ݐ)ݕ(1−ݖ)ܣ = ݐ)ݑ(1−ݖ)ܤ − 1) (3.13)

onde, (1−ݖ)ܣ = 1 − 1−ݖ3,5886 + 2−ݖ5,1479 − 3−ݖ3,8783 + 4−ݖ1,6707 − (2.14) 5ݖ0,3518

e (1−ݖ)ܤ = −5,4066 ∙ 1−ݖ10−6 + 5,2226 ∙ 1−ݖ10−5 − 3,1898 ∙ 3,2428− 3−ݖ10−5 ∙ 4−ݖ10−5 + 2,1573 ∙ 5−ݖ10−5
(2.15)

Nas figuras a seguir, pode-se verificar a resposta do modelo para os dados:

51

Figura 22 – Comparação entre saída real e saída do modelo ARX (Dois primeiros degraus).

Fonte: AUTOR.

Figura 23 – Comparação entre saída real e saída do modelo ARX (Geral)

Fonte: AUTOR.

52

3.5.2 ARMAX

A Tabela 5 apresenta os coeficientes extraídos dos polinômios (1−ݖ)ܤ ,(1−ݖ)ܣe (1−ݖ)ܥdo modelo identificado, de acordo com o que foi observado na Figura 24 –

Parâmetros do modelo ARMAX obtido no MATLAB..

Tabela 5 – Coeficientes dos polinômios do modelo ARMAX.

Termo Coeficiente 𝑎0 1,0000 𝑎1 -3,2004 𝑎2 4,6288 𝑎3 -4,5889 𝑎4 3,1021 𝑎5 -0,9415 ܾ0 0,0000 ܾ1 8,5727e-7 ܾ2 8,7765e-6 ܿ0 1,0000 ܿ1 0,7085 ܿ2 0,6941 ܿ3 0,9612 ܿ4 -0,0249 ܿ5 -0,0204

Fonte: AUTOR

53

Figura 24 – Parâmetros do modelo ARMAX obtido no MATLAB.

Fonte: AUTOR.

Figura 25 – Métricas referente ao modelo ARMAX.

Fonte: AUTOR

Esses valores indicam que o modelo ARMAX explica aproximadamente 99,7%

da variabilidade da saída real ao longo de todo o intervalo da simulação, desempenho

extremamente elevado para um modelo linear ajustado apenas a partir de um único

transitório. Comparativamente, o ARMAX apresentou desempenho muito próximo ao

do ARX, o que está de acordo com a baixa variância de ruído dos dados, indicando

que o termo adicional (1−ݖ)ܥ contribuiu apenas marginalmente para a melhoria do

ajuste.

54

Por fim, o gráfico comparativo entre as curvas real e prevista demonstra que o

modelo ARMAX é capaz de acompanhar muito bem tanto o formato quanto a dinâmica

da resposta do conversor, apresentando discrepâncias pequenas e concentradas em

regiões onde se percebe maior não linearidade na operação chaveada. Dessa forma,

o ARMAX se apresenta como uma alternativa linear robusta e coerente dentro do

conjunto de técnicas de modelagem avaliadas neste trabalho.

Figura 26 – Comparação entre saída real e saída do modelo ARMAX (Geral).

Fonte: AUTOR

55

Figura 27 – Comparação entre saída real e saída do modelo ARMAX (Dois primeiros degraus).

Fonte: AUTOR

3.5.3 NARX

Durante o processo de treinamento, o MATLAB exibe automaticamente a janela

Training Progress, que inclui tanto gráficos quanto uma tabela com informações

detalhadas sobre o estado do aprendizado.

A tabela exibida na Figura 28, apresenta um exemplo desse relatório, que

resume parâmetros como desempenho, gradiente, fator adaptativo (mu) e número de

verificações de validação.

Figura 28 – Relatório de desempenho de treinamento da rede.

Fonte: AUTOR.

56

A coluna Performance representa o valor do erro médio quadrático (Mean

Squared Error), que mede a diferença média entre as saídas reais e as saídas

previstas pela rede. Observa-se que o valor caiu de 172 para 3.53×10⁻⁷ durante o

processo, evidenciando um ajuste extremamente preciso do modelo à dinâmica do

sistema.

O parâmetro Gradient indica a taxa de variação do erro em relação aos pesos

sinápticos, e quanto menor esse valor, mais próxima a rede está do ponto ótimo de

convergência. Ao final do treinamento, o gradiente reduziu de 1.39×10³ para

6.15×10⁻², o que sugere a estabilização do aprendizado.

O termo Mu corresponde ao fator de ajuste do algoritmo de Levenberg–

Marquardt, utilizado pelo MATLAB como método de otimização. Esse fator regula o

tamanho do passo de atualização dos pesos: valores maiores tornam a convergência

mais conservadora, enquanto valores menores aceleram o processo.

No decorrer do treinamento, Mu variou de 0.001 até 1×10⁻⁶, indicando que o

algoritmo ajustou dinamicamente a taxa de aprendizado conforme o erro diminuía,

favorecendo uma convergência suave e estável.

Já o campo Validation Checks indica o número de vezes consecutivas em que o

erro de validação não melhorou. Quando esse valor atinge o limite máximo (neste

caso, 6), o treinamento é interrompido automaticamente, mecanismo conhecido como

early stopping, que evita o sobreajuste do modelo aos dados de treinamento.

Por fim, o tempo total decorrido (Elapsed Time) até o ponto de melhor validação

foi de apenas 6 segundos, demonstrando que a rede, mesmo sendo recorrente,

apresentou baixo custo computacional para o conjunto de dados utilizado.

Além da tabela numérica, o MATLAB fornece automaticamente diversos gráficos

de desempenho e diagnóstico. O mais relevante é o gráfico de desempenho (Training

Performance), Figura 29, que mostra a evolução do erro de treinamento e de validação

ao longo das épocas. Esse gráfico é útil para identificar o ponto em que a rede atinge

o menor erro de validação, indicando o melhor ajuste possível antes do início de um

possível overfitting.

57

Figura 29 – Validação ao longo das épocas.

Fonte: AUTOR.

Outro gráfico que pode ser apresentado é o Training State, que mostra a

variação do gradiente e do parâmetro Mu durante o aprendizado. A redução

simultânea de ambos confirma a estabilidade do processo de otimização.

Figura 30 – Curvas de Training State do MATLAB.

Fonte: AUTOR.

58

Após o término do treinamento, a rede foi submetida ao conjunto de teste,

formado por dados que não foram utilizados no aprendizado, para verificar sua

capacidade de generalização.

A saída prevista pela rede (y_pred) foi comparada à saída real (y_real), e o erro

médio quadrático foi calculado conforme a equação (2.11).

A comparação entre as duas saídas mostra que a rede NARX conseguiu prever

muito bem o comportamento do conversor Buck. No teste final, o MSE ficou em torno

de 94 · 10⁻⁶, um valor bem baixo. Já no gráfico do Training Progress, aparece um

MSE de 8,93 · 10⁻⁵ na época 16, e isso pode gerar dúvida à primeira vista. No entanto,

essa diferença é normal, porque o gráfico mostra o erro durante o treinamento e

validação, enquanto o código calcula o erro usando o conjunto de teste, que a rede só

vê depois de treinada. Como os conjuntos são diferentes, os valores do MSE também

variam um pouco. Mesmo assim, ambos os números são bem pequenos, indicando

que a NARX representou a planta com muita precisão.

As duas figuras a seguir mostram o resultado de previsão do modelo:

Figura 31 – Comparação entre saída real e saída prevista pela rede NARX (Dois primeiros degraus).

Fonte: AUTOR.

59

Figura 32 – Comparação entre saída real e saída prevista pela rede NARX (Geral).

Fonte: AUTOR.

3.6 Discussão dos resultados obtidos

Para todos os modelos utilizados neste trabalho ARX, ARMAX e NARX, MSE e

R² são apresentados na Tabela 6. No geral, pode-se dizer que os modelos lineares

apresentaram a dinâmica geral da planta muito bem, tendo valores de R² muito

próximos de 1 e erros relativamente baixos. No entanto, observamos a partir da

comparação desses resultados com a rede NARX, a distinção é muito clara. A NARX

apresentou um MSE de apenas 9,4 × 10⁻⁵ e R² igual a 1, ou seja, conseguiu

praticamente “encaixar” a saída real com pouquíssima diferença. Isso deixa evidente

que, apesar de os modelos clássicos funcionarem bem na tendência geral, a rede

neural alcança um nível de fidelidade muito maior na reprodução da dinâmica do

sistema.

60

Tabela 6 – Comparação de métricas entre os modelos

Modelo MSE R²
Descrição do
desempenho

ARX 5,939207 × 10⁻¹ 0,9972
Representa bem a dinâmica
geral; modelo linear simples

com boa precisão global.

ARMAX 6,426482 × 10⁻¹ 0,9970
Semelhante ao ARX, incorpora
parte estocástica; desempenho
ligeiramente inferior neste caso.

NARX 9,4 × 10⁻⁵ 1,0000

Melhor desempenho; captura
detalhes e não linearidades,

reproduzindo a saída com alta
fidelidade.

Fonte: AUTOR.

Essa diferença de desempenho não se limita apenas aos indicadores numéricos.

Visualmente, é possível observar nas figuras de comparação que a NARX aprende

detalhes da dinâmica que não aparecem nas respostas dos modelos lineares. Na

Figura 31, nota-se claramente que a rede NARX reproduz com precisão o ripple

presente na saída real da planta. Esse comportamento não é capturado pelos modelos

ARX e ARMAX, como mostram a Figura 22 e a Figura 27. Ambos os modelos

suavizam a resposta, deixando de representar as variações rápidas que fazem parte

da dinâmica real do sistema.

Essa capacidade da NARX de aprender essas pequenas não linearidades

reforça sua vantagem em relação aos modelos clássicos, principalmente em sistemas

onde essas oscilações carregam informações importantes sobre o comportamento da

planta. Em contrapartida, como o ARX e o ARMAX são modelos lineares, eles tendem

a ajustar apenas a tendência principal, reproduzindo a forma geral da curva, mas sem

acompanhar os detalhes de alta frequência.

61

Outro ponto importante é que, durante o desenvolvimento do trabalho, foram

realizados testes com diferentes níveis de ruído no sinal de entrada, na tentativa de

avaliar a robustez dos modelos. No entanto, observou-se que o conversor

naturalmente atenua o ruído devido ao filtro LC presente em sua estrutura. Mesmo

com ruídos relativamente altos aplicados ao duty cycle, a saída da planta não

apresentou uma saída relevante, o que impossibilitou uma análise de desempenho

dos modelos em cenários ruidosos.

No geral, esses resultados mostram que, embora os modelos lineares sejam

ferramentas rápidas, simples e eficazes para muitos tipos de sistemas, a rede NARX

se destaca quando o objetivo é capturar com maior precisão os detalhes da dinâmica,

incluindo não linearidades e pequenas oscilações que fazem parte do comportamento

natural do conversor.

62

4 CONCLUSÕES E PROPOSTAS DE CONTINUIDADE

Com base nos resultados deste estudo, pode-se concluir que as vantagens dos

métodos de identificação são distintas, e a seleção depende muito da aplicação. Os

modelos lineares ARX e ARMAX mostraram bom desempenho tanto na representação

global do sistema quanto têm a vantagem especial de gerar expressões matemáticas

explícitas, o que possibilita interpretá-las e usá-las diretamente na construção de

controladores clássicos.

Por outro lado, a rede neural NARX exibiu o melhor desempenho entre os três

modelos, conseguindo reproduzir características da dinâmica que foram omitidas nos

modelos lineares, como ondulações na saída da planta. Há uma desvantagem nessa

abordagem: ela não fornece uma representação analítica do modelo, o conhecimento

está "embutido" na rede, o que pode limitar quaisquer aplicações em torno de

equações explícitas.

No entanto, mesmo ao aplicar altos níveis de ruído ao sinal de entrada, a planta

não mostrou mudanças significativas devido ao seu forte caráter de filtragem. Foi

impossível, portanto, testar a robustez dos modelos em cenários ruidosos.

Em uma continuação deste estudo, as mesmas técnicas podem ser aplicadas a

qualquer planta com comportamento mais não linear ou menos filtrado, onde o ruído

tem um efeito genuíno na saída. Além do exposto, pode ser uma possibilidade

investigar redes LSTM, modelos NARMAX ou híbridos para a identificação do sistema.

63

REFERÊNCIAS

1. AGGOUNE, L.; CHETOUANI, Y.; RADJEAI, H. Recursive Identification of the
Dynamic Behavior in a Distillation Column by Means of Autoregressive Models.
Journal of Dynamic Systems, Measurement, and Control, v. 136, n. 6, p. 061009, 2014.
DOI: 10.1115/1.4026837.

2. AGUIRRE, L. A. Introdução à Identificação de Sistemas: Técnicas Lineares e Não
Lineares Aplicadas a Sistemas Reais. 2. ed. Belo Horizonte: UFMG, 2004.

3. AQUIZE, R.; CAJAHUARINGA, A.; MACHUCA, J.; MAURICIO, D.; MAURICIO
VILLANUEVA, J. M. System identification methodology of a gas turbine based on
artificial recurrent neural networks. Sensors, v. 23, n. 4, p. 2231, 2023. DOI:
https://doi.org/10.3390/s23042231.

4. ARAÚJO, Thainara de. Estimação de séries temporais via rede NARX em
aplicações industriais. Dissertação (Mestrado em Engenharia Elétrica) –
Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 2022. Disponível
em: https://repositorio.ufms.br/handle/123456789/4482
. Acesso em: 15 nov. 2025.

5. ARAÚJO, Valbério Gonzaga de. Monitoramento e diagnóstico de falhas em
motores de indução trifásicos utilizando rede neural NARX. Dissertação
(Doutorado em Engenharia Elétrica) – Universidade Federal do Rio Grande do Norte,
Natal, 2024. Disponível em: https://repositorio.ufrn.br/items/b8454a8f-7621-4466-bfb2-
32d08d726337. Acesso em: 14 nov. 2025.

6. ARBIB, M. A. The Handbook of Brain Theory and Neural Networks. MIT Press,
2002.

7. DONG, Aoxiang; STARR, Andrew; ZHAO, Yifan. Neural network-based parametric
system identification: a review. International Journal of Systems Science, v. 54, n.
13, p. 2676-2688, 2023. DOI: 10.1080/00207721.2023.2241957.

8. GONÇALVES, A. R. Introdução às Redes Neurais Artificiais. Disponível em:
https://andreric.github.io/files/pdfs/redes_neurais.pdf. Acesso em: 6 nov. 2025.

9. HAYKIN, S. Redes Neurais: princípios e prática. 2. ed. Porto Alegre: Bookman,
1999.

10. JAMI‘IN, Mohammad Abu; HU, Jinglu; MARHABAN, Mohd Hamiruce; SUTRISNO,
Imam; MARIUN, Norman Bin. Quasi-ARX neural network based adaptive predictive
control for nonlinear systems. IEEJ Transactions on Electrical and Electronic
Engineering, v. 11, p. 83–90, 2016. DOI: 10.1002/tee.22191

11. KHALED, S.; FAKHRY, M.; MUBARAK, A. S. Classification of PCG signals using a
nonlinear autoregressive network with exogenous inputs (NARX). In: Proceedings
of the 2020 IEEE. [S. l.: s. n.], 2020. p. 98–102.

12. LJUNG, L. System Identification: Theory for the User. 2. ed. Upper Saddle River,
NJ: Prentice Hall PTR, 1999. ISBN 978-0-13-656695-3.

13. MATHWORKS. arx (System Identification Toolbox) — MATLAB Function
Reference. Disponível em:
https://www.mathworks.com/help/ident/ref/arx.html. Acesso em 15 nov. 2025

64

14. MATHWORKS. iddata (System Identification Toolbox) — MATLAB Function
Reference. Disponível em: https://www.mathworks.com/help/ident/ref/iddata.html.
Acesso em: 15 nov. 2025.

15. MATHWORKS. sim (System Identification Toolbox) — MATLAB Function
Reference. Disponível em:
https://www.mathworks.com/help/ident/ref/sim.html. Acesso em 15 nov. 2025

16. McCULLOCH, W. S.; PITTS, W. A Logical Calculus of the Ideas Immanent in
Nervous Activity. Bulletin of Mathematical Biophysics, v. 5, n. 4, p. 115–133,
1943.**

17. MOHAN, Ned; UNDELAND, Tore M.; ROBBINS, William P. Power Electronics:
Converters, Applications and Design. 2. ed. New York: John Wiley & Sons, 1995.

18. NAYANASIRI, Dulika; LI, Yunwei. Step-Down DC–DC Converters: An Overview and
Outlook. Electronics, v. 11, n. 11, p. 1693, 2022. DOI: 10.3390/electronics11111693

19. SOUZA, Felipe Maraschin Pereira de. Aplicação de uma rede neural artificial NARX
para obtenção do comportamento dinâmico de um atenuador de impacto de
alumínio do tipo honeycomb. 2019. Dissertação (Mestrado em Engenharia
Mecânica) — Programa de Pós-Graduação em Engenharia Mecânica, Universidade
Federal da Paraíba, João Pessoa, 2019. Disponível em:
https://repositorio.ufpb.br/jspui/bitstream/123456789/19437/1/FelipeMaraschinPereiraD
eSouza_Dissert.pdf. Acesso em: 15 nov.2025

20. TAVARES, Marley Fagundes. Utilização dos modelos ARX e ARMAX em plantas
industriais ruidosas. 2012. Dissertação (Mestrado em Sistemas Dinâmicos) - Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2012.
doi:10.11606/D.18.2012.tde-23012013-144208. Acesso em: 14 nov. 2025.

65

APÊNDICES

APÊNDICE A – CÓDIGO PARA GERAR VETOR DE VALORES DE DUTY CYCLE.

% ==
% Geração de sinal de duty cycle aleatório em degraus
% ==
% Este código cria um sinal de entrada (duty cycle) composto por
% níveis aleatórios constantes em intervalos de tempo fixos,
% utilizado como excitação para o modelo simulado do conversor Buck.
% ==

t = 0 : 800e-9 : 100e-03; % Vetor de tempo: inicia em 0 e vai até 100 ms,
com passo de 0,8 µs
Ts = 800e-9; % Passo de amostragem
Tfinal = max(t); % Tempo total de simulação

duracaoDegrau = 0.005; % Duração de cada degrau de entrada (5 ms)
Npassos = ceil(Tfinal/duracaoDegrau); % Quantidade de degraus dentro do
tempo total

% Gerar valores de duty cycle aleatórios entre 5% e 95%
valores = 5 + 95*rand(1, Npassos);

Ns = round(duracaoDegrau/Ts); % Número de amostras correspondentes a cada
degrau

% Repitir cada valor de duty pelo número de amostras que dura o degrau
u = repelem(valores, Ns);

% Ajustar o tamanho do vetor de entrada para coincidir exatamente com o
tempo total
u = u(1:min(length(u), length(t)));
u = padarray(u, [0, max(0, length(t)-length(u))], 'replicate', 'post');

% Montar a matriz completa com tempo (coluna 1) e duty cycle (coluna 2)
input = [t' u'];

% Converter o sinal em objeto 'timeseries' para uso no Simulink
input_ts = timeseries(u, t);

66

APÊNDICE B – CÓDIGO PARA CRIAÇÃO DE REDE NEURAL (TREINAMENTO,
VALIDAÇÃO E TESTE)

% ==
% Identificação com dados reais do Simulink (Rede NARX)
% ==

clear; clc; close all;

%% Carregar dados da simulação
load("C:\Users\joaop\Downloads\img\saida_simulação.mat");

t = out.tout; % tempo
y = out.simout; % sinal de saída
Ts = mean(diff(t)); % tempo de amostragem médio

% Adicionar ruído à saída simulada
nivel_ruido = 0;
amplitude_ruido = nivel_ruido * max(y);
y = y + amplitude_ruido * randn(size(y));

% Sinal de entrada (duty cycle)
u = out.valores_dutycycle;
u = u / 100;

%% Dividir em treino e teste
nTreino = round(0.6 * length(t));
u_train = u(1:nTreino);
y_train = y(1:nTreino);
u_test = u(nTreino+1:end);
y_test = y(nTreino+1:end);

%% Converter para formato de sequência
u_train = con2seq(u_train');
y_train = con2seq(y_train');
u_test = con2seq(u_test');
y_test = con2seq(y_test');

% Criar a rede NARX
inputDelays = 1:5;
feedbackDelays = 1:5;
hiddenNeurons = 10;
net = narxnet(inputDelays, feedbackDelays, hiddenNeurons);

net.divideParam.trainRatio = 0.6;
net.divideParam.valRatio = 0.2;
net.divideParam.testRatio = 0.2;

% Treinar a rede
[Xs, Xi, Ai, Ts_train] = preparets(net, u_train, {}, y_train);
net = train(net, Xs, Ts_train, Xi, Ai);

% Testar a rede
[Xs_test, Xi_test, Ai_test, Ts_test] = preparets(net, u_test, {}, y_test);
y_pred = net(Xs_test, Xi_test, Ai_test);

% Converter e alinhar resultados
y_real = cell2mat(y_test);
y_pred = cell2mat(y_pred);

67

delay = max([inputDelays feedbackDelays]);
N = min(length(y_real), length(y_pred)) - delay;
y_real_adj = y_real(delay+1 : delay+N);
y_pred_adj = y_pred(1 : N);

% Plotar comparação
figure;
plot(y_real_adj, 'b', 'LineWidth', 1.5); hold on;
plot(y_pred_adj, 'r--', 'LineWidth', 1.5);
legend('Saída real', 'Saída prevista (NARX)');
xlabel('Amostra');
ylabel('Tensão de saída (V)');
title('Comparação entre saída real e saída prevista pela rede NARX');
grid on;

% Calcular MSE
mse_val = mean((y_real_adj - y_pred_adj).^2);
fprintf('Erro médio quadrático (MSE): %.6f\n', mse_val);

68

APÊNDICE C – CÓDIGO PARA O MODELO ARX

% ==
% Identificação ARX usando apenas o primeiro degrau da entrada
% Aplicação do modelo ARX identificado em todo o conjunto de dados
% ==

clear; clc; close all;

% Carregar dados
load("C:\Users\joaop\Downloads\img\saida_simulação.mat");

t = out.tout;
y = out.simout;
u = out.valores_dutycycle;
Ts = mean(diff(t));

% Detecção do primeiro degrau do duty cycle

du = diff(u);
tol = max(u) * 0.005; % 0.5% da escala – evita ruídos pequenos

idx_all = find(abs(du) > tol); % todos os degraus reais

if isempty(idx_all)
 error("Não foi encontrado nenhum degrau real no sinal de entrada.");
end

idx_step = idx_all(1); % primeiro degrau de verdade

% Seleção da janela do primeiro degrau
pre_time = 0.2e-3; % 0.2 ms antes
pos_time = 3e-3; % pegar um transitório curto
i1 = max(1, idx_step - round(pre_time/Ts));
i2 = min(length(t), idx_step + round(pos_time/Ts));

u_deg = u(i1:i2);
y_deg = y(i1:i2);
t_deg = t(i1:i2);

% Identificação do modelo arx com o primeiro degrau

data_deg = iddata(y_deg, u_deg, Ts);

melhor_fpe = inf;

for na = 1:5
 for nb = 1:5
 nk = 1;
 try
 sys = arx(data_deg, [na nb nk]);
 if sys.Report.Fit.FPE < melhor_fpe
 melhor_fpe = sys.Report.Fit.FPE;
 model_arx = sys;
 ords = [na nb nk];
 end
 end
 end
end

69

% Aplicação do modelo arx a todos os dados

y_arx_total = sim(model_arx, u);

N = min(length(y), length(y_arx_total));
y_real_total = y(1:N);
y_arx_total = y_arx_total(1:N);
t_total = t(1:N);

% Métricas globais
mse_global = mean((y_real_total - y_arx_total).^2);
SST = sum((y_real_total - mean(y_real_total)).^2);
SSE = sum((y_real_total - y_arx_total).^2);
R2_global = 1 - SSE/SST;

% Gráfico final – saída real × saída arx (intervalo completo)

figure;
plot(t_total, y_real_total, 'b', 'LineWidth', 1.4); hold on;
plot(t_total, y_arx_total, 'r--', 'LineWidth', 1.3);
xlabel('Tempo (s)');
ylabel('Tensão (V)');
title('Modelo ARX identificado no primeiro degrau e aplicado ao intervalo
completo');
legend('Saída real', 'Saída ARX');
grid on;

% Imprimir os resultados
disp('Modelo ARX identificado (apenas 1º degrau):');
disp(model_arx);
fprintf("MSE global: %.6e\n", mse_global);
fprintf("R² global: %.4f\n", R2_global);

70

APÊNDICE D – CÓDIGO PARA O MODELO ARMAX.

% ==
% Identificação ARMAX usando apenas o primeiro degrau da entrada
% Aplicação do modelo ARMAX a todo o conjunto de dados
% ==

clear; clc; close all;

% Carregamento dos dados
load("C:\Users\joaop\Downloads\img\saida_simulação.mat");

t = out.tout;
y = out.simout;
u = out.valores_dutycycle;
Ts = mean(diff(t));

% Detecção do primeiro degrau do duty cycle

du = diff(u);
tol = max(u) * 0.005; % evita flutuações pequenas

idx_all = find(abs(du) > tol);

if isempty(idx_all)
 error("Nenhum degrau significativo foi encontrado no sinal de
entrada.");
end

idx_step = idx_all(1); % primeiro degrau real

% Seleção da janela do primeiro degrau
pre_time = 0.2e-3;
pos_time = 3e-3;

i1 = max(1, idx_step - round(pre_time/Ts));
i2 = min(length(t), idx_step + round(pos_time/Ts));

u_deg = u(i1:i2);
y_deg = y(i1:i2);
t_deg = t(i1:i2);

% Identificação do modelo armax
% Ordens testadas: na = 1..5, nb = 1..5, nc = 1..5, nk = 1

data_deg = iddata(y_deg, u_deg, Ts);

melhor_fpe = inf;

for na = 1:5
 for nb = 1:5
 for nc = 1:5
 nk = 1;
 try
 sys = armax(data_deg, [na nb nc nk]);
 fpe_atual = sys.Report.Fit.FPE;

 if fpe_atual < melhor_fpe
 melhor_fpe = fpe_atual;
 model_armax = sys;

71

 ords = [na nb nc nk];
 end
 end
 end
 end
end

% Aplicação do modelo armax a todo o conjunto de dados

y_armax_total = sim(model_armax, u);

N = min(length(y), length(y_armax_total));
y_real_total = y(1:N);
y_armax_total = y_armax_total(1:N);
t_total = t(1:N);

% Métricas globais
mse_global = mean((y_real_total - y_armax_total).^2);

SST = sum((y_real_total - mean(y_real_total)).^2);
SSE = sum((y_real_total - y_armax_total).^2);
R2_global = 1 - SSE/SST;

% Comparação global – gráfico final

figure;
plot(t_total, y_real_total, 'b', 'LineWidth', 1.4); hold on;
plot(t_total, y_armax_total, 'r--', 'LineWidth', 1.3);
xlabel('Tempo (s)');
ylabel('Tensão (V)');
title('Modelo ARMAX identificado no 1º degrau e aplicado ao intervalo
completo');
legend('Saída real', 'Saída ARMAX');
grid on;

% Resultados
disp('Modelo ARMAX identificado (apenas 1º degrau):');
disp(model_armax);

fprintf("MSE global (ARMAX): %.6e\n", mse_global);
fprintf("R² global (ARMAX): %.4f\n", R2_global);

